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ABSTRACT 

A method for attacking a wide variety of commonly occurring heat- 
transfer problems is presented.   The method stems from a mathematical 
model obtained by dividing a system into pieces.   The differential equa- 
tion of the temperature of each piece with respect to time is derived 
considering heat sources and heat transfer by conduction and radiation. 
The resulting system of first-order ordinary differential equations is 
put in a form convenient for programming a numerical solution by 
defining coefficients in terms of the data of the system.    Form-surface 
factors are a generalization of form factors to include multiple reflec- 
tions.   The factor is defined and discussed.   A formula is derived for 
the factor in terms of the form factors and the reflectivities.    The form- 
surface factor relations for the conservation of energy and the reciproc- 
ity law are derived.   The conditions necessary and sufficient for its 
existence are derived.   Methods of calculation are discussed.   A 
FORTRAN subroutine is presented that calculates the form-surface 
factors from the form factors and the reflectivities.   A FORTRAN sub- 
routine is presented which performs unit conversions on data tabulated 
for the mathematical model.   Another FORTRAN subroutine is presented 
which calculates the coefficients from the tabulated data.   A numerical 
method for solving the system of differential equations is developed and 
a FORTRAN subroutine is presented which effects the solution.   Several 
example problems are worked out, and the results are compared with 
analytical solutions. 

111 
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SECTION I 
INTRODUCTION 

General methods are needed to solve wide varieties of commonly 
occurring heat-transfer problems to shorten the time from defining the 
problem to obtaining a solution..   This report presents a method for 
transient,  conduction, and radiation heat-transfer problems.   The 
given system is divided into pieces to form a mathematical model. 
The differential equation of each piece with respect to time is derived 
considering internal power sources and heat transfer by conduction and 
radiation.   The resulting system of first-order differential equations is 
put in a form convenient for programming a numerical solution by de- 
fining coefficients in terms of the data of the system.    FORTRAN sub- 
routines are presented which convert units of the data of the system, 
calculate the coefficients,  and effect a numerical solution to the equa- 
tions'. 

The form-surface factor is a generalization of the form factor to 
include multiple reflections.   This factor is defined and discussed, and 
a formula is derived giving the factor in terms of the form factors and 
the reflectivities of the system.   The form-surface factor relations for 
conservation of energy and the reciprocity law are derived.   Also, con- 
ditions necessary and sufficient for the existence of the form-surface 
factor are derived.   Methods of calculation are discussed and a 
FORTRAN subroutine is presented which calculates the form-surface 
factor from the form factors and the reflectivities. 

Once familiar with the mathematical model and the subroutines, the 
following steps are taken:   (1) The system is divided into pieces; (2) a 
FORTRAN program is written to calculate and tabulate data for the 
mathematical model; (3) a subroutine is called which calculates the 
form-surface factors from the form factors and the reflectivities; (4) a 
subroutine is called which performs unit conversions on all the tabu- 
lated data; (5) a subroutine is called which calculates the coefficients 
from the converted data; (6) lastly,  a subroutine is called which effects 
the numerical solution to the system of differential equations. 

Example problems illustrating the method are worked out, and the 
results are presented and compared with analytical solutions.   The 
FORTRAN listings of the programs used in the example problems are 
given in appendixes to be used as a guide. 
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SECTION II 

MATHEMATICAL MODEL 

2.1   DERIVATION OF EQUATIONS 

The data input to the computer programs are based on a mathe- 
matical model of the system.   The model is obtained by dividing the 
system into pieces,  with uniform thermal properties (Fig.   1).    The 
equations for this mathematical model are derived by performing an 
energy balance on each piece. 

a.   View of a General System 

e 4 P.   = S.e.aT., i l l    i 

Conduction on Five Faces 

P±
S - i2R 

b.   View of ith Piece 
Fig. 1   Illustrative System 
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Assume that the model consists of n pieces.   The rate of tempera- 
ture change of the ith piece depends on the net rate that heat is gained 
by the piece according to the equation 

di Vs cj Tj = Pi (1) 

where the dot represents the time derivative. The types of heat trans- 
fer which will be considered are heat sources, conduction, and.radiant 
heat transfer in a vacuum; thus, the net rate that heat is gained is 

Pi = Pj» - P> +  (Pia - Pie) (2) 

The first term accounts for heat supplied by a source such as an elec- 
trical heater.   This quantity may be negative in which case it represents 
a heat sink. 

The rate that heat is gained by the ith piece by conduction is 

Pf-   ifq/    AT • da] (3) 

where the summation is over the pieces j in contact with the ith piece 
(abbreviated] on i) and where the differential area vector is directed 
outward.   It will be assumed that the temperature gradient is constant 
over each conducting area, ay,  and that it is proportional to the tem- 
perature difference Tj - Tj..    To derive the proportionality constant 
consider the linearized case illustrated in Fig.  2. 

T 
k 

-| ith Piece 

■du- 

Fig. 2 Linearized Temperature 

3 
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It can be seen that there will be a discontinuity of the temperature 
gradient at the interface of the two pieces if their thermal conductivities 
are different.   Conservation of energy requires that at the interface 

dT I                dT 
Kt  -r-\    =   K-     dx  |j J    dx  I. (4) 

Using this relation and geometrical reasoning one derives 

dT|   =      2(Tj - Tj) 

"''" *("♦£) <5) 

Using these approximations Eq. (3) becomes 

pjc S     2 K; Kj aij (Tj - Tj) 

j on i djj (Ki + Kj) xu/ 

where the summation is over the pieces which are in contact with the 
ith piece.   Note that the conducting area, ay, is defined as the area 
perpendicular to the conducting path, thus the cosine factor resulting 
from the dot product of Eq. (3) is one. The conducting distance, d«, 
is the distance along the conducting path. 

The rate that radiant energy is emitted by the ith piece is 

Pj« = Sifi«7Ti4 (7) 

The rate that radiant energy is absorbed by the ith piece is 

pia = j^iGjiSj^Ty (8) 

The factor Gji is defined as the ratio of that part of the flux incident on 
the ith piece, after all reflections, which was originally emitted by the 
jth piece to the flux emitted by the jth piece.    Thus the last four factors 
of Eq. (8), yielding the rate at which radiant energy is emitted by the 
jth piece,  are multiplied by Gu to obtain the resulting flux on the ith 
piece.    This is multiplied by the absorptivity and summed over all the 
pieces to get the rate heat is gained by absorption by the ith piece.   The 
explicit dependence of G-H on the geometry and surface properties of the 
system is derived in the next section along with some important relations 
it must satisfy.   A FORTRAN subroutine is described in Section IV which 
can be used for its calculation. 
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After all substitutions, the energy balance equation for the ith piece, 
Eq. (1),  becomes 

_.      2Ki Ki  Bij (Tj - Ti) n a,v,cT,- v ♦ x, ,;„;,,;,   -n«.w * i,.,<*«,,.v   (8) 

There is one equation like Eq. (9) for each piece in the model. 

Equation (9) can be written in a more convenient form for pro- 
gramming a numerical solution by collecting terms and solving for Tj: 

Ti = Ai +JBIJT, +   XJCIJT,- (10) 

where 

Ai = 
Pi 

di Vi ci 
i 

0 

Bij = < 
)      2*l<j aij 

\di  ViCi djj (»q + Kj) 

2*i         v          *kaik 

\       di Vi Ci  fcoii dik (Ki + Kit) 

1 ai Gji Sj fj o 

Cij   = 
)       diViCj 

/-     S,fiff    (1 -   »G..I 

(11) 

j not on i 

J = » 
(12) 

* ** J 

diViCi     -        "-' l = J (13) 

A FORTRAN subroutine is described in Section V which, when given 
the values of the quantities on the right side of Eqs. (11) through (13), 
will evaluate these equations.    When evaluating Eq. (12), the subroutine 
assumes that pieces are in contact if and only if their conducting area 
is positive.   The results of this subroutine can be used directly in 
another subroutine described in Section VI which numerically calcu- 
lates the solution of the system of differential equations represented 
byEq. (10). 

Dividing the system into hypothetical pieces has effectively reduced 
the partial differential integral equation relating temperature as a func- 
tion of time and position into a system of ordinary differential equations 
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for which there are standard general numerical methods (Ref.   1) for 
solution.    This method of reducing partial differential equations to 
ordinary differential equations is discussed on page 110 of Ref.  1 which 
lists additional references. 

2.2  BOUNDARY CONDITIONS 

Most heat-transfer problems are subject to boundary conditions, 
usually in the form of an insulated boundary or a boundary held at a 
fixed temperature.    The insulated boundary requires that no heat flows 
across the boundary.   Since the mathematical model was based on an 
isolated system, this type of condition is inherent to the model and re- 
quires no further analysis.    The fixed temperature boundary condition 
can be imposed by including the boundary as one of the pieces of the 
model,  say the ith piece,  and letting its total heat capacity,  dj V^ cj, 
be infinite.    Thus,  no amount of heat transferred into or out of the 
piece will change its temperature.    This may or may not be a true 
representation of the actual physical system,  but it gives the desired 
result of constant temperature.   Mathematically, from Eqs. (11) 
through (13), it is seen that when the total heat capacity of the ith piece 
is infinite, then 

A;   = 0 
Bjj = 0 j = l, 2, ..., n 
Cjj   =  0 j   =  1, 2, . . . , n 

thus Eq. (1) becomes 

Ti = 0 

so the temperature is constant.   The FORTRAN subroutine described 
in Section V was programmed to recognize this case and set the coeffi- 
cients of the ith equation equal to zero when the input, CJ, is zero. 

SECTION III 
FORM-SURFACE FACTORS 

3.1   DEFINITION 

Let Qij be the portion of the flux incident on the jth piece which was 
originally emitted by the ith piece.   Let Wj be the flux emitted by the 
ith piece,  for radiant flux that is 

Wj = SifiaTi4 (14) 
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The form-surface factor is defined as 

GU-TST (15) 

This definition warrants some elaboration.   It is tacitly assumed that 
flux can be distinguished as to its origin.   Picture, for instance, 
radiant energy as a stream of photons.   Let the units of flux be photons 
per second and assume that the average time from a photo being emitted 
to it being absorbed is negligible.    Consider a photon which is emitted 
by the ith piece, is reflected around the system striking the jth piece 
six times,  and finally is absorbed by the kth piece.   This photon will 
contribute one unit to Wj and six units to Qjj.   Statistically, as the num- 
ber of photons becomes large, the ratio, Eq. (15), will become constant. 
It can be seen that Gu depends only on the geometry and surface prop- 
erties of the system; thus its name: the form-surface factor.   With this 
idea in mind it is no longer necessary that flux be distinguished as to 
its origin.   It is only necessary to be able to associate with the flux 
emitted by the ith piece a quantity of flux, Qy, incident on the jth piece, 
for which the ratio, Eq. (15), will be constant as Wi is varied.   Ob- 
viously, the ratio of Eq. (15) will depend on the distribution of Wi over 
the ith piece and also on the angular emittance at each point.   The form- 
surface factor will be defined by Eq. (15) where Wj is emitted diffusely 
and uniformly. 

3.2  DERIVATIONS 

There are several ways to derive an equation for the matrix,  G,  of 
the form-surface factors of a system.    Three derivations are included 
here because they lead to a better understanding of the factor and be- 
cause some interesting observations can be made on the respective 
approximations. 

Consider the integral equation for the irradiation 

where 

H«) = /p(?)H(j?)F(?,*)dSy - f<Q)aVty F(y", x) dSy (16) 
S 3 

-.  -»                      FdsT -As, 
F(y, x)  =      lim       —  (17) 

ASx->0 ASX 

where ASX is a small area around the point x.   If the integrals are 
approximated using the partitioning as determined by the mathematical 
model as described in Section II, one obtains 

H<^,'fHiir-si vVi»Ti,Jii-si (18) 
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Multiplying through by Sj this becomes 

Q, =   i^jQjFj, * StW, Fji (19) 

Letting Q and W be column matrices of the Qi and Wj,  respectively, 
and letting R be the diagonal matrix of the reflectivities, Eq. (19) can 
be written as the matrix equation 

Q =  F'RQ + F'W (20) 

Solving for Q one obtains 

Q = (I - F'R)-F'W (21) 

Defining 

G = F(I - RF)-1 (22) 

Equation (21) becomes 

Q = G'W (23) 
or 

Qj =   |x Gij WS (24) 

From Eq. (24) it is seen that a quantity of flux,  Q^, incident on the 
jth piece given by 

Qij = GijWj (25) 

can be associated with the flux emitted by the ith piece.    From Eq. (22) 
it is seen that G depends on F and R which are determined by the geom- 
etry of the system and its surface properties,  respectively.    Further- 
more,  G does not depend on W; thus the elements Gjj of the matrix, G, 
conform to the definition of the form-surface factor. 

Equation (22) can also be derived by summing all the reflections. 
Let Qk be the column matrix of the incident flux which has been reflected 
exactly k times.    The flux incident directly is 

Q° = F'W (26) 

If it is assumed that flux is redistributed uniformly over a piece before 
being reflected, then the flux vector for the next reflection can be ob- 
tained from the previous one by the equation 

Qk = F'RQ"
-1 k > 0 (27) 
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The total incident flux is the sum of all the reflections or 

Q = ?■ Qk 
k=0 

= F'W + F'RQ0 + F'RQ1 + .. . 

=  F'W - F'R(Q° + Q1 - ...) (28) 

or 

Q = F'W + F'RQ (29) 

This is the same as Eq. (20); thus Eq. (22) for G follows the same as 
before. 

A different equation for G can be obtained from an equation that is 
consequent from the definition of G.   The flux incident on the jth piece 
resulting from Wj is the sum of the flux incident directly from the ith 
piece and the flux from all reflections.   If it is assumed that flux inci- 
dent on a piece directly from the ith piece is redistributed uniformly 
over the piece before being reflected the first time, then the form- 
surface factor can be used to obtain the flux incident on the jth piece 
from all reflections.   Thus it is deduced that 

n 
Qij = WiFjj -^WiFikPkGkj (30) 

Thus, from Eq. (15) is obtained 
n 

Gij = Fij +k2 FikpkGkj (3D 

from which is obtained the matrix equation 

G = F - FRG (32) 

Solving for G one obtains 

G = (I - FR)-'F (33) 

Equations (22) and (33) are two different equations; however, they give 
the same matrix, G, as is seen from 

F(I - RF)- = (I - FR)-'F <34> 

Multiplying each side of this equation on the left by (I - FR) and on the 
right by (I - RF) one obtains 

» 
(I - FR) F (I - RF)"1 (I - RF) =   {I - FR) (I - FR)"'F (I - RF) 

or 

(I-FR)F I    F(I-RF) (35) 

9 
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This multiplication does not change the equality since the multipliers 
are nonsingular.   Equation (35) is indeed an equality since by the 
distributive law it is equivalent to 

F - FRF = F - FRF (36) 

which verifies the equivalence of Eqs. (22) and (33). 

It is interesting to note that an equation for G has been derived in 
three different ways using three different simplifying approximations. 
The approximation in the first derivation was the discretization of the 
integrals. In the second derivation flux was redistributed uniformly 
over a piece before each reflection, whereas in the third derivation the 
flux was redistributed uniformly over each piece before only the first 
reflection. Nevertheless, the matrices obtained for G in all three 
derivations are identical. 

3.3 CONSERVATION OF ENERGY 

From the definition of the form factor one obtains for a closed sys- 
tem the relation that the sum of each row of F must be one, or 

i Fi] = 1 (37) 

Since the form-surface factor is a generalization of the form factor, 
one would look for a relation for G generalizing Eq. (37).    This 
generalization is easily obtained from the definition of the form-surface 
factor and the conservation of energy. Since in a closed system, the 
energy emitted by a piece must all be absorbed, 

or dividing by Wj 

2 WiGitai = Wj (38) 
i=i        J   ' 

2  ajGii = 1 (39) 
j=l 

Thus, from physical laws,  the form-surface factors must satisfy 
Eq. (39).    However, it does not necessarily follow that the matrix,  G, 
given by Eq. (22) satisfies Eq. (39),  since Eq. (22) was derived under 
approximate conditions.    If Eq. (22) is to be used to calculate G, it is 
imperative that it be known how well the resulting G satisfies Eq. (39), 
since conservation of energy in the mathematical model depends on 
Eq. (39).    Fortunately,  it can be proved mathematically that the G 
given by Eq. (22) satisfies Eq.  (39) exactly. 

10 
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Multiplying both sides of Eq. (22) on the right by (I - RF) one ob- 
tains 

G - GRF = F (40) 

Summing row i of Eq. (40) one obtains 
n n      n n 

jLiG|J ~ j=ii5i GikpkFki = jf^'l (41) 

Rearranging this becomes 

,lG«-lll
s'lK.-°Fk)"(-'F") (42) 

But, by Eq. (37), the quantities in parentheses are one, so Eq. (42) 
becomes 

n n 

jJiGij ~k?iGikPk = l <43) 

Since k in the second summation is a dummy index it can be changed 
to j and the two summations can be combined.    Factorization of Gy 
and substitution of Oj for (1 - pj gives the desired result, Eq. (39). 

3.4 RECIPROCITY LAW 

It can be proved that form factors obey the reciprocity law, that is 
that SF is symmetric or 

SF = (SF)' (44) 

where S is the diagonal matrix of the Sj.   It can be proved from the 
second law of thermodynamics that the form-surface factor also obeys 
the reciprocity law.    From Eq. (8) the net rate of heat transfer from 
the ith piece to the jth piece is 

Pi] = aj  GijSiqaTi4 - at Gji Sj (j a Tj4 (45) 

If Ti = Tj = TQ then the second law of thermodynamics requires that 

Pjj be zero. Setting the emissivities equal to the absorptivities this 

condition becomes 

ai aj a T0
4 (Si Gij  -  Sj Gji) =  0 (46) 

In general the factors on the left are not zero, thus the quantities in 
parentheses must be zero.   Thus SG must be symmetric or 

SG = (SG)' (47) 

11 
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By reasoning parallel to that in Section 3. 3, it is desirable to prove 
mathematically that the matrix,  G,  given by Eq. (22),  satisfies Eq. (47); 
since this is required if the mathematical model is to obey the second 
law of thermodynamics. 

Multiplying both sides of Eq. (22) on the left by S one obtains 

SG = SF (I - RF)-1 (48) 

Using the substitution, Eq. (44) for SF, and the fact that S is diagonal, 
thus symmetric,  Eq. (48) becomes 

SG = F'Sd - RF)- (49) 

Since S is diagonal and has no zero elements on the diagonal, it is non- 
singular and one can write 

SG = F'[(I-RF)S-1]"1 

= F'[S-1 - RFS-]-1 

= F'[S-' -  S^SRFS"1]-4 (50) 

Since S and R are both diagonal, they commute; thus 

SG = F'[S~l - S- RCSFJS-1]--1 (51) 

Making the substitution of Eq.  (44) for SF again one obtains 

SG = F'tS-1 - S^RF'SS-]-* 

= F'[S"1 - S^RF']-1 

= F'tS-1 d-RF')]"1 

= F'[I - RF']~lS 
= [S(I - FR)-'FJ' (52) 

Thus by Eq. (33), which has been proven to yield the matrix G identical 
to Eq.  (22),  Eq. (52) becomes 

SG = (SG)' 

and it has been proved that the G given by Eq. (22) obeys the reciprocity 
law. 

3.5 SINGULARITY AND NONSINGULARITY CONDITIONS 

Equation (22) is a formula for G provided the matrix (I - RF) is non- 
singular.   It is desirable to know the general conditions for the singularity 
or nonsingularity of this matrix.   These conditions can be induced from 
physical considerations and then proved mathematically.   Consider each 

12 
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subsystem of a given system which is by itself a closed system.   If for 
a given subsystem all the reflectivities are one, then any flux inside the 
subsystem will be reflected continuously and G for the system will not 
exist.   If,  on the other hand,  every subsystem has at least one surface 
with a reflectivity less than one, then any flux in the system,  eventually 
after multiple reflections, will be absorbed and G will exist.   These 
conditions can be stated as follows:  Group the pieces into sets 
111 12»   •   •   •   Im such that for each set Ijj 

X     F„ - 1 
J«'k 

ij 

Then by renumbering the pieces the form factor matrix can be parti- 
tioned into a diagonal matrix, the elements of which are the subform 
factor matrices of the groups described above.    The matrix (I - RF) 
for the system is nonsingular if and only if the matrix (I - RF) for each 
subsystem is nonsingular.    From the above physical considerations, a 
matrix for a subsystem is nonsingular if and only if at least one of its 
reflectivities is less than one.   The property of the subform factor 
matrices described above is seen to correspond to the mathematical 
term,  irreducible.   A general matrix F is said to be reducible if two 
sets of subscripts I and J exist such that: 

1. There exists i such that i e I 
2. There exists j such that j e J 
3. k e I U J for every k 
4. k 4 I fl J for every k 
5. If i e I and j e J, then Fy = 0 

Otherwise the matrix is irreducible. 

If (I - RF) is singular then there exists a nontrivial solution to 

(I - RF) X = 0 (53) 

In terms of the elements this becomes 

<i - Pi   £   Fj X:    =    0 
j=l 

or 
O 

«i   - Pi Fu xi  = ^    2   Fij XJ 
HI 

Let x' be the value of the largest element in X, then 

xi - Pi Fii xi ^ Pi x'2  Fj: 

or 
xj - Pi Fij xj < Pix'Ü-Fii) (54) 

13 
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In particular if x^ = x',  then Eq. (54) becomes for i = k 

"k  - Pk Fkk "k  £   Pk xk  -  Pk Fkk "k (55) 

The only possible way for Eq. (55) to hold is for p^ to equal one and for 
the equality of Eq.  (54) to hold.    Thus for (I - RF) to be singular the 
equality of Eq. (54) must hold for i equal to k.    That is 

XJ   =  x'       for Fkj  4  0 

Then, however,  Eq. (55) must hold for every k such that 

xk   =  x' 

The only possibility that there could be elements of X not equal to x' is 
for there to exist two sets of subscripts I and J such that if k e I and 
j € J then Fkj = 0, that is for F to be reducible.   If k e I, then Xk must 
equal x'; thus Eq. (55) must hold, which requires Pk to be one.    Thus a 
necessary and sufficient condition for (I - RF) to be singular is for the 
system itself to be irreducible and all of its reflectivities be one,  or 
for there to exist an irreducible subsystem for which all the reflectivi- 
ties are one.   If every irreducible subsystem has at least one surface 
with a reflectivity less than one, then (I - RF) will be nonsingular. 

SECTION IV 
CALCULATION OF FORM-SURFACE FACTORS 

Just as there were a variety of ways to derive the formula for G, 
there are a variety of ways to calculate it:   namely,  matrix inversion, 
summation,  and iteration.    The obvious way is directly from the 
formula, Eq. (22),  using a matrix inversion routine.   This has the 
advantage of being simple,  and since it is direct, no convergence 
criterion is needed.   Though it was not apparent at the outset, matrix 
inversion is also the quickest method.    However, the other methods will 
also be given here,  since it is sometimes desirable to do a reflection 
by reflection analysis of a system, in which case the summation and 
iteration techniques are applicable,  whereas the matrix inversion 
method is not. 

4.1  MATRIX INVERSION METHOD 

The subroutine GINV was written in FORTRAN IV to calculate G 
using the matrix inversion method.   The routine is called by the state- 
ment 

CALL GINV (N, NDLM, R, F, G, DLT) 
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where 

N Contains n 

■ NDIM Contains the dimension of F and G 
(see example below) 

R Is a one-dimensional array containing 
the reflectivities 

F Is a two-dimensional array containing 
the form factors 

G Is a two-dimensional array,  in which 
the form-surface factors are returned 

DET Returns the value of the determinant 
of (I-RF) which will be zero if the 
routine was unable to invert the 
matrix. 

As an example of the purpose of NDIM, suppose the main program 
has the dimension statement 

DIMENSION R(60), F(60,60), G(60,60) 

If G is to be calculated for a system of ten pieces, then the call state- 
ment would be 

CALL GINV (10,60,R,F,G,DET) 

Thus, it is seen, the dimension of the FORTRAN variables may be 
greater than or equal to (not less than) the order of the algebraic 
matrices 

The listing of GINV is given in Appendix I. The subroutine GINV 
calls another subroutine INVERT which is a matrix inversion routine, 
Appendix II.   The timing for GINV is approximately 

t =  t0n2 (3n  +  8) 

where for the IBM System/360 Model 50 

t0  =   1.43  x   1(T4 sec 

It is to be mentioned that the subroutines set aside 400 bytes of scratch 
storage in labeled COMMON/SPACE/.    This storage is used only during 
the execution of the subroutines and is free at other times for use by 
other routines. 

15 
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4.2 SUMMATION METHOD 

Another method of calculating G is to sum the flux from different 
reflections as was done in the derivation of Eq. (29). From Eq. (15), 
if Wj is set equal to one, then Gjj is equal to Qy.   But if Wj is set equal 

to zero for ] not equal to i, then by definition Qjj is equal to Q-: since 
the flux incident on the jth piece had to come from the ith piece.   Thus, 
for a given i, if 

Wj = Sij (56) 

then letting ^G be the ith row of G, 

;G = 0' (57) 

The vector Q can be calculated from Eq. (28).    The first term of 
Eq.  (28) is calculated from Eq.  (26) where W is given by Eq. (56). 
Succeeding terms are obtained from Eq. (27).   Letting i vary from one 
to n, G can be calculated a row at a time.   A convergence criterion is 
easily established by noticing that the sum of the elements of Q* gives 
the flux remaining after k reflections.   Since a unit quantity of flux was 
started,  the summation should be continued until the quantity of flux 
left is small (to the desired accuracy) when compared to one. 

Subroutine GSUM was written to calculate G, employing the method 
described above.   This routine is called by the statement 

CALL GSUM (N.NDIM.R.F.G.NT.TOL) 

where N, NDIM, R,  F,  and G are the same as for GINV.   On call,  NT 
contains a limit to the number of terms to be used in the series.   On 
return, NT contains the number of terms actually used.   Accuracy is 
controlled by the argument TOL.    Summation is continued until the re- 
maining flux is less than the value contained in TOL.   As an example, 
since unit flux is started; given a value of 0. 001 in TOL, summation 
continues until G is correct to three significant figures.   The listing of 
GSUM is given in Appendix III. 

4.3  ITERATION METHOD 

Multiplying both sides of Eq. (22) on the right by (I - RF) and trans- 
posing the negative term one obtains 

G = F + GRF (58) 

from which one can use the method of successive approximations to 
calculate G.   That is, let 
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fork  =  0 

RF fork  > 0 (59) 

G  =   lim      Gk (60) 
k-wo 

Calculating G in this manner would require one two-dimensional array 
to store Gk-1 and another two-dimensional array to store G^ and thus 
would use more storage than the previous methods.   However, storage 
can be saved by calculating G one row at a time.    Writing Eq.  (58) in 
terms of the elements, it becomes 

G"i = Fü+ L^fnn* (61) 

Letting ^G and jF be the ith rows of G and F, respectively, Eq. (61) 
becomes 

iGk = iF - iG^RF (62) 

Equation (62) can be used to calculate G one row at a time. 

Using Eq. (58) to derive an expression for G, one obtains 

G = F + FRF + FRFRF + . . . (63) 

When calculating G a row at a time, one observes that each term of 
Eq.  (63) is the contribution attributable to the corresponding reflection. 
Thus the iteration and summation methods are equivalent except that 
the iteration method calculates a partial sum at each iteration, where- 
as the summation method calculates a term each time and adds it to the 
total.   Since the elements of ^G^ are monotonically increasing with k and 
have upper limits,   convergence is ensured.    Equation (39) can be used 
as a convergence criterion to test for any desired accuracy. 

It is interesting to note that a formula for calculating G by columns 
can be obtained in an analogous manner except using Eq. (33) instead 
of Eq. (22).   Letting Gj and Fj be the jth colums of G and F,  respec- 
tively, the corresponding formula is 

Gjk = Fjk + FR^"1 (64) 

Numerically, calculating G by columns should have the same attributes 
as calculating it by rows; however, it lacks the convenient convergence 
criterion, Eq. (39). 
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Subroutine GROW was written to calculate G by iteration a row at a 
time.    This routine is called by the statement 

CALL GROW(K,NDIM,R,F,G,NT,TOL) 

where N,  NDIM,  R,   F,  and G are the same as for GINV.    On call NT 
contains a limit to the number of iterations to be taken.   On return it 
contains the number of iterations actually taken.   Accuracy is'controlled 
by the argument TOL.   Iteration is continued until Eq. (39) is satisfied 
within the given tolerance.    Thus, given a value of 0. 001 in TOL, itera- 
tion will continue until G is correct to three significant figures.    The 
listing of GROW is given in Appendix IV. 

SECTION V 
CALCULATION OF THE COEFFICIENTS 

5.1   DATA MANAGEMENT 

In the process of taking the data of the mathematical model and 
calculating the coefficients of Eqs. (11) through (13), three tasks are 
amenable to computer programming for a general system.    These are 
calculation of G, conversion of units,  and the evaluation of the equa- 
tions.   The first of these has already been discussed.    The subroutines 
UNIT and COEF were written to perform unit conversions and to 
evaluate the equations.    Before describing these subroutines, however, 
the data management will be viewed. 

Table I tabulates the algebraic variables, the FORTRAN variables, 
and the dimensional formulas of the data of the mathematical model. 
For the moment consider only the storage of data.   It can be seen that 
the first eight parameters of the table are stored in the same array P. 
This was done solely for the purpose of decreasing the length of the 
argument list of the subroutines.    The first eight parameters of Table I 
are called local parameters, since they give the properties of individual 
pieces.    Once G has been calculated, the form factors are no longer 
needed.   Thus,  if this calculation is done before the conducting areas 
and distances are stored, then the FORTRAN array F can be equiva- 
lenced to the variable B.    Since aji and dji are symmetric, they both 
can be stored in the same array by storing ay above the diagonal and 
dj-j below the diagonal, replacing the form factors.   Since the products 
diVicj occur in all three of the Eqs.  (11) through (13),  the subroutine 
COEF calculates these products, replacing the ci.   The coefficients, Aj, 
replace the P^s, and the coefficients B^ replace the ajj and djj.   Also, 
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the coefficients Cjj replace the Gy; therefore the FORTRAN array G 
should be equivalence«! to the array C.    With this arrangement of data, 
considerable storage economy is realized. 

TABLE I 
DATA REPRESENTATION AND DIMENSIONAL FORMULAS 

Algebraic FORTRAN Dimensional Formula 

di P(I,   1) MiLi3 

Vi P(I,   2) L3 

c.i P(I,   3) E4M5   0g 

Ki P(I.   4) E7T§1Lg2(01OLil)-1 

<*i P(I,   5)   

ei P(I,   6)   

Si P(I,   7) I2 L12 

Pf P(I,   8) El3TlJ 
aij B(I, J),  J > 1 T 2 L15 
dü B(I, J),  J < I L16 

a SIG -2     -4 E17L18 019 

diViCi P(I,   3) E0_1 

Fü F(I, J) ^ B{I, J)   

Gij .    G(I, J) = C{I, J)   

Ai P(I,   8) 0T"1 

BH B(I,  J) T-l 

Cij Ctt. J) Q-3T-1 

5.2  UNIT CONVERSIONS 

Subroutine UNIT was written to perform the unit conversions.   The 
subroutine is called by the statement 

CALL UNIT (N,NDIM,SIG,PfB,FROM,TO) 
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where briefly: 

N Contains n 

NDIM Contains the dimension of the 
arrays P and B 

SIG Returns a in desired units 

P Array containing local parameters 
(See Table I) 

B Two-dimensional array containing 
conducting areas above the diagonal 

and the conducting distances below 

FROM Sixteen element integer array 
indicating units of input data 

TO Nineteen element integer array 
indicating units of returned data 

If the main program contains the statement 

DIMENSION P (100,8), B(100,100) 

then in the call statement above, NDIM would contain 100.    The dimen- 
sion of the arrays can be greater than or equal to (not less than) n.   The 
value of a in the International System of Units (SI) (Ref.  2), 

a =  5.6697 x  10-"   —i—r- 

is stored in the subroutine. The value of o as indicated in the array TO 
is returned in the FORTRAN variable SIG. When UNIT is called, P and 
B contain data in the units indicated in FROM. The subroutine replaces 
these data with data in units indicated in the array TO. 

The dimensional formulas are given in Table I, where the dimen- 
sions are indicated as follows: 

Symbol Dimension 

L Length 
M Mass 
T Time 
8 Temperature 
E Energy 

In Table I the input data have subscripts on the dimensional symbols. 
These subscripts give the position of the indicators for that dimension 
in the arrays FROM and TO.   Thus the fourth elements of FROM and TO 
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contain the indicators of the units of the energy dimension of the specific 
heat capacity.   It is noticed that there are two length dimensions in the 
dimensional formula for the thermal conductivity.    The first derives 
from the conducting area and the second from the temperature gradient. 
The formula was left in this form rather than simplified since it is 
given this way in some tables.    The units for a are not included in the 
array FROM since its value is not input to the subroutine, but rather 
is stored internally. 

The indicators of the various units and the conversion factors (ob- 
tained from Ref.  2) are tabulated in Table II.    For example,  values of 4 
and 2 in the fourth elements of FROM and TO,  respectively, indicate 
that the unit of the energy dimension of the specific heat capacity data 
input to UNIT is in Btu and it is desired to convert it to ergs.   It is to 
be noticed that a one in each element of TO converts all units to SI.   The 
FORTRAN listing of UNIT is given in Appendix V. 

TABLE II 
UNIT INDICATORS AND CONVERSION FACTORS 

Dimension Indicator Unit 
Conversion 

Factor 

Length 1 
2 
3 
4 

m 
cm 
in. 
ft 

1 m/m 
0. 01 m/cm 
0. 0254 m/in. 
0. 3048 m/ft 

Mass 1 
2 
3 
4 

kg 
g 
lb 
slug 

1 kg/kg 
0.001 kg/g 
0.4535933 kg/lb 
14.5939 kg/slug 

Time 1 
2 
3 

s 
min 
hr 

1 s/s 
60 s/min 
3600 s/hr 

Temperature 1 
2 

°K 
°R 

1 °K/°K 
0.5555556 °K/°R 

Energy 1 
2 
3 
4 

J 
erg 
cal 
Btu 

1 J/J 
1 x 10"7 J/erg 
4. 184 J/cal 
1054.35 J/Btu 

Note:   s = seconds 
J = joules 
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5.3   EVALUATION OF EQUATIONS 

Subroutine COEF was written to evaluate Eqs. (11) through (13). 
It is assumed that all data are in consistent units. The subroutine is 
called by the statement 

where: 
CALL COEF (N,NDIM,SIG,P,B,C) 

N Contains n 

NDIM Contains dimension of P, B, and C 

SIG Inputs the value of a in units consistent 

with the rest of the data 

P Array which inputs the local parameters, 

returns the product d; V; CJ in place of 

the cj, and returns the coefficients Aj 

in place of the Pi" 

B Two-dimensional array which inputs the 

conducting areas above the diagonal and 

the conducting distances below the diag- 

onal; returns the B coefficients 

C Two-dimensional array which inputs G and 

returns the C coefficients 

The argument, NDIM, is the same as for UNIT except that it applies 
also to the array C.   When evaluating Eq. (12),  it is assumed that pieces 
are in contact if and only if their conducting areas are positive.   If CJ is 
zero, then Aj, the ith row of B,  and the ith row of C are set to zero (see 
Section 2.2).   The evaluation of the equations is straightforward,  and 
the argument descriptions above are self-explanatory.    A FORTRAN 
listing of COEF is given in Appendix VT. 

SECTION VI 
SOLUTION OF THE DIFFERENTIAL EQUATIONS 

6.1   NUMERICAL METHOD 

The numerical method used to obtain solutions of Eq. (10) is the 
Taylor expansion of order four (Ref.  1).   Leaving off the summation 
signs and letting it be understood that there is a summation over j from 
one to n,  Eq. (10) and its derivatives are: 

22 



AEDC-TR.69-121 

fj   =  Aj  +  BijTj   +  CijTj* (65) 

Tj = Tj (Bij + 4Cij Tj1) (66) 

Ti = Tj (Bij + 4 Cij Tj») + 12 Cij Tj2 Tj2 (67) 

T]  = T" (Bij  + 4 Cij Tj5) +  24 Cij Tj Tj (Tj1 +  1.5 Tj fj) (68) 

By the Taylor formula with a remainder (Ref.  3) the temperature 
can be written 

Ti(t) = Ti(tl) + Tj (O (t - g + -L Tj (tj (t - t,)> 

+ 4" Ti(0 tt - t,)3 + ^ "t" (t*) (t - t,)4 
(69) 

where 
tt < t* < t (70) 

The errors obtained by approximating Eq. (69) by 

Tj(t) = Ti(tt) + fi (tj (t -1.) + i- Ti (tt) (t - tt)
2 

+ — Ti (tt) (t - tl)
J + — Ti (O (t - O4 (71\ 

6 24 V ' */ 

are 

Ei = ^-I'TI (tl) - Tj (t*)| (t - tt)
4 (72) 

If the temperature error per unit time is to be less than Ac, then for 
the time interval from ti to t,  it is necessary to ensure the inequality 

Ei < Ac(t - tj (73) 

for all i.   It is known that the derivative of the temperatures with 
respect to time of the physical system described by Eq. (10) approach 
constants.   This indicates that the absolute value of the derivatives of 
higher order decreases monotonically with t to zero.   Therefore, from 
Eq.  (72) 

Ei < iffi^'.U - O4 (74) 

Therefore, to guarantee Eq. (74),  it is sufficient to ensure for all i 

^iT'ife,)! (t-O4 < Ac (t - O (75) 

or 
% 

(t - t 
\|TCtt)|/ (76) 
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To find the maximum time, tm,  for which the Taylor expansions for all 
n temperatures are valid one must use the maximum value over i for 
the denominator of Eq. (76), so 

= t. vrffiWiy (77) 

Given the initial temperatures and time, the Taylor expansion and 
tm are calculated.   If the time, t,  at which the temperatures are de- 
sired is less than tm, then the Taylor expansions are evaluated at t. 
Otherwise the Taylor expansions are evaluated at tm and then tj is set 
equal to tm and new expansions and a new tm are calculated.   This is 
repeated until t is less than tm.    The flow chart of this method is 
shown in Fig.  3. 

T. - Initial Temperatures 

t, ■ Initial Time 

t - tn m   1 

Evaluate Expansions at t 

1 'No 

Evaluate Expansions at tn 

t, - t 
1   m 

Calculate New Expansions 

Calculate the New t 01 

Fig. 3   Flow Chart of Numerical Method for Obtaining the Solutions to Eq. (10) 
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6.2 SUBROUTINE SOLU 

Subroutine SOLU was written employing the numerical method de- 
scribed.   The subroutine is called by the statement 

where 
CALL SOLU (N,NDIM,AC,T1,T,TMITEMP,Q>A,B,C) 

N Contains n 

NDIM Contains the dimension of Q, A, B, and C 

AC Contains the allowable temperature error 

per unit time 

Tl On first call contains the initial time: returns 

with the base time for the Taylor expansions 

and must be left unchanged for subsequent 

calls. 

T Contains the time at which the temperatures 

are desired, 

TM On the first call contains the initial time; 

returns with tm and must be left unchanged 

for subsequent calls 

TEMP Returns the temperatures at the time con- 

tained in T 

Q On first call Q(1,I) must contain the initial 

temperature; on return Q contains the Taylor 

expansions of the temperatures and must be 

left unchanged for subsequent calls 

A One-dimensional array containing the A 

coefficients 

B and C        Two-dimensional arrays containing the 

B and C coefficients, respectively 

In the main program,  if the arrays are dimensioned 

DIMENSION TEMP (70),Q(5,70),A(70),B(70,70),C(70,70) 

then in the call statement above, NDIM would contain 70.   The dimen- 
sion of the arrays can be greater than or equal (not less than) n.   Note 
that if the local parameters are no longer needed,  one can save storage 
by the statement (assuming that NDIM is the same for COEF and SOLU) 

EQUIVALENCE (P(1),Q(1)), (P(1,7),TEMP (»), (P(1,8),A(D) 

The FORTRAN listing of SOLU is given in Appendix VII. 
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SECTION VII 
EXAMPLE PROBLEMS 

The following example problems are to serve as a guide for users 
of the computer programs.    The problems were chosen such that solu- 
tions were available so the results could be checked; thus they serve as 
check problems for the programs.   Although the examples are simple, 
the real usefulness of the programs is for much more complicated 
problems. 

7.1   ISOTHERMAL RADIATING OBJECT WITH A HEAT SOURCE 

The differential equation for an isothermal radiating object with a 
heat source is 

dVcT = Pa - SecrT (78) 

which can be put in the form 

f = A + CT4 (79) 

It is seen that the steady-state temperature,  T,,,,  is 

T~ = (£J (80) 

and the initial time derivative of the temperature is 

f 0 = A + CTo4 (81) 

In these terms the solution is 

i^-T/L ILL 'T«*-To"  „   |T + Toe|      „       _!   T        „     |To+T«:|     n        ,   T0  I »_ I     _J ^  2 tan  l £n   U-L-—    _   2 tan-' —" 
|4T0  Too'   L      IT-Tool T» I To-Tool Too 

t = 

for Toe   ^  0 

3T0    L T J 
for Too  =  0 

(82) 

A program was written using SOLU to solve Eq. (79) and compare the 
solution with Eq. (82).   Some of these solutions are shown in Fig.  3. 
The accuracy was better than that specified by the FORTRAN variable, 
AC,  and the error was much too small to be seen in Fig. 4.   The 
FORTRAN listing of this program is given in Appendix VIII. 
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7,2 CONDUCTING RADIATING SPHERICAL SHELL 

Consider a spherical shell of thickness b and radius a shown in 
Fig. 5.    The emissivity of the inside surface is e 1 and the outside sur- 
face is eO.    The sphere is exposed to parallel radiation of uniform cross 
section of intensity qs for which the absorptivity of the surface is as. 
There is vacuum inside and outside the sphere and it is assumed that 
b « a.   The heat-transfer equations for this system have been derived 
in Ref.  4,  and a numerical method of solution for the steady-state 
equations is given.    The numerical method described in this report was 
applied to this system to obtain the steady-state solution as an illustra- 
tion of the application of the method. 

x-= -1 

x = 0 x = 1 

Fig. 5  Conducting Radiating Spherical Shell 
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Dividing the system into n pieces one obtains the following equa- 
tions: 

x = cos 6 

2 
Ax = — =  -sin 0 A 6 n 

A<9   = 

dlj     =-«4ö = -äAi_ 
VT^x2 

ajj  =   2ffabsin0 =  2nab \1 - x2 

Pi8   =   (asqs)(2ffasin 0)(-Aasinfl) 

=   2na2aa qs x A x 

Vj =   2ffaabAx 

It will be assumed that a* = e* and a® = eO, but note that the interior 
radiating surface of a piece is different than the exterior surface, which 
is contrary to the assumptions of the mathematical method.   One could 
divide the sphere into two spherical shells, but this would require twice 
as many pieces.   This can be avoided by defining effective emissivities 
and form-surface factors in the following manner.   The radiating area 
will be the sum of the internal and external areas,  so 

Si  = 4*a2 A x 

The effective emissivity, e ', will be defined so that the rate radiant 
energy is emitted remains unchanged, so 

sif'<7Ti« = -ii- f',r + *C°»T,
4 

or 
i        0 

The effective form-surface factor,  Gu, will be defined so the heat 
transfer by radiation between two pieces remains unchanged,  so 

a'Sif'aTVG^ a1 S, c1 a TV Gij 

or . , 
G'äj=(i-)    Gij 

The effective form-surface factor is thus 
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In Ref. 4 it is proved that the steady-state temperature distribution 
depends only on the two parameters 

NR = 

and 

E = 

/«s_qs_\ 

U°a ) 
a2f  a   (aB q. • 

bk 

So that solutions of the two different methods could be compared, the 
following numerical values were assigned to the system data to obtain 
the specified NR and E: 

a = 1 

<° = 1 

asq8  =  4a 
b =  a 

£'   =   E 

A program was written using subroutines COEF and SOLU to ob- 
tain the solutions.    A FORTRAN listing of the program is given in 
Appendix IX.   Three solutions are shown in Fig.  6.   Letting n = 20, the 
solutions by the two different methods are the same to better than three 
significant figures; 

7.3   CLAUSING FACTOR CALCULATIONS 

The formula for the form-surface factor was based on the assump- 
tion of diffuse reflection.    Thus the use of the formula is not confined to 
radiation, but can be used to calculate flux transfer of any type provided 
the diffuse reflection assumption is valid.   In fact, the method has been 
used for molecular flux as reported in Ref.  5.   To illustrate the method, 
subroutine GINV was used to calculate Clausing factors.   The Clausing 
factor is used in vacuum technology to calculate the molecular conduct- 
ance of tubes and is defined as the ratio of the rate at which gas leaves 
the outlet of a tube to the rate at which it is incident on the inlet.    To 
employ the method the tube was divided into n-2 equal pieces and the 
inlet and outlet were each counted as a piece.   The form factors for the 
system for various ratios of length to the radius of the tube, L/r, were 
calculated.   Each piece of the tube was assigned a reflectivity of one, 
and the inlet and outlet were assigned a reflectivity of zero.   It can be 
seen that the Clausing factor is just Gin.   The results obtained were 
compared with a table given in Ref.  6 and are shown in Fig.  7.    The 
FORTRAN listing of the program used is given in Appendix X. 
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APPENDIX I 
FORTRAN LISTING OF GINV 

SUBROUTINE GINV(N,NDIM,R,F,G,DET> 
C CALCULATION OF G BY MATRIX INVERSION  D.C. TOOD  10-21-68 
C USES 4N BYTES OF COMMON /SPACE/.  RESERVES 400 BYTES. 

REAL R(NDIM),F(NOIM,NDIM)tG  (NDIM,NDIM»,DET  »V(100) 
COMMON   /SPACE/   V 
00   1    1=1,N 
DO   1   J = 1,N 

1 G(ItJ)=-RU>*F(I,J) 
DO  2   I=1»N 

2 G(I,I)=GU,I> + 1. 
CALL   INVERT(N,NDIM,G»DET> 
IF(OET.EO.O.)RETURN 
DO  6  J=1,N 
DO  3   I = 1»N 

3 V(I>=G<ItJ) 
DO  5   I=lrN 
SUM=0. 
DO  4   K = 1,N 

4 SUM=SUM+F(I,K)*V(K> 
5 GIIfJ)=SUM 
6 CONTINUE 

RETURN 
END 

37 



AEDC-TR-69.121 

APPENDIX II 
FORTRAN LISTING OF INVERT 

SUBROUTINE INVERT IN,IDIM,A.DET> 
C MATRIX INVERSION  O.C. TOOO  11-9-67 
C USES 4N BYTES OF COMMON /SPACE/.  RESERVES 400 BYTES. 

INTEGER*? IRC(2,100> 
COMMON /SPACE/ IRC 
DIMENSION AIIDIM.IDIH) 

C 
DET=1. 
00 9 K=1,N 

C FIND PIVOT 
ABSP=0. 
DO L  I=K,N 
DO 1  J=K,N , 
ABSA = ASSIAI I.JM 
1FIABSA.LE.ABSP1G0 TO 1 
[RC(1,K>=I 
1RC(2,K)=J 
ABSP=ABSA 
PIVOT-AII,J) 

1 CONTINUE 
C OET IS PROOUCT OF PIVOTS.  IF PIVOT IS ZERO, THEN A IS SINGULAR 

0ET-OET*PIVOT 
IF(PIVOT.EO.O.)GO TO 15 

C INTERCHANGE ROWS K AND I 
I-IRCU.K) 
IFII.EO.KIGO  TO  3 
OET=-DET 
DO  2   J=L,N 
SAVE=AIK,J> 
A<K,J>=A(I,J> 

2 A(I,J)-SAVE 
C   INTERCHANGE  COLUMNS  K   AND  J 

3 J=IRC(2,K) 
JFIJ.EQ.OGO  TO  S 
DET—DET 
DO  4   1=1,N 
SAVE»A(I,K> 
All.KI-A(I.J) 

4 A( I,J)=SAVE 
C DIVIDE COLUMN K BY MINUS PIVOT 

5 R=l./PIVOT 
DO 6 1=1,N 

6 AU,K)»-R*AII,K) 
C   REDUCE   MATRIX 

DO  20   I-l.N 
IFII.EO.OGO   TO  20 
00  T  J-1,N 
IFIJ.E0.K)GO   TO  T 
A( ],J)=A(I,J)+A(I,K)*A(K,J) 

7 CONTINUE 
20  CONTINUE 

C  DIVIDE   ROM  K   BY   PIVOT.     A(K,K)=R 

DO 8 J«1,N 
8 A<K,J) = R*AU,J> 

A(K,K)«R 
9 CONTINUE 

REARRANGE MATRIX 
K=N*1 

10 K»K-1 
J=IRC(1,K) 
IF<J.EO.K>GO  TO  12 
DO   11   1=1,N 
SAVE=AU,KJ 
A(I,K)-A(I,J) 

11 A(I,J)-SAV£ 
12 I«IRCI2,K) 

IFCI.EQ.KIGO TO 14 
DO 13 J=1,N 
SAVE»AIK,J> 
A(K,X)>=A(I,J) 

13 A(I,J)-SAVE 
14 IFIK.NE.DGO   TO   10 

15  CONTINUE 
RETURN 
END 
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APPENDIX III 
FORTRAN LISTING OF GSUM 

SUBROUTINE   GSUM (N,NDIM,R ,FfG tNT, TOD 
C  CALCULATION   OF   G  BY  SUMMATION     D.C.   TODD     10-21-68 
C  USES   8N   BYTES   OF   COMMON   /SPACE/.   RESERVES   800   BYTES. 

REAL   R(NDIM),F(NDIM,NOIM)fG(NDIM,NOIMJ,V(100,2) 
COMMON /SPACE/ V 
MM=0 
DO 15 1 = 1,N 
00 10 J = 1,N 
G(ItJ)=F(I,J) 

10 V(J,1)=R(J)*F(I,J) 
Ll = l 
L2=2 
DO 13 M=1TNT 
ERR=0. 
DO 12 J=1,N 
SUM=0. 
DO 11 K=1,N 

11 SUM=SUM+V(K,L1)*F(K»J) 
G( I»J>=G(ItJ)+SUM 
V(J,L2)=R(J)*SUM 

12 ERR=ERR+V(J,L2> 
IF(ERR.LE.TOL)GO TO 14 
L3=L2 
L2 = L1 

13 L1=L3 
M=NT 

14 IF(MM.LT.M)MM=M 
15 CONTINUE 

NT=MM 
RETURN 
END 
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APPENDIX IV 
FORTRAN LISTING OF GROW 

C   CALCULATION  OF   G   8Y   ROW   ITERATION     D.C.   TODO     10-21-TE>8 
C  USES   8N  BYTES  OF  COMMON  /SPACE/.   RESERVES   800  BYTES. 

SUBROUTINE   GROW{N,NDIM,R,FtG,NTrTOL) 
REAL   R(NDIM),F(NDIM,NDIM>,G<NDIM,NDIM),V(100T2) 
COMMON   /SPACE/   V 
MM=0 
DO   6   1=1»N 
00   1   J=1,N 

1 V(Jtl)=F(I,J) 
Ll = l 
L2=2 
DO  4   M=1,NT 
ERR=0. 
DO   3   J=1TN 
SUM=0. 
DO   2   K=1,N 

2 SUM=SUM+V(K,L1>*R(K)*F(K,J> 
V(J,L2)=F(ItJ)+SUM 

3 ERR=ERR+V(J,L2)*(1.-R(J>> 
L3=L2 
L2=L1 
L1=L3 
IF(1.-ERR.LE.T0L)G0  TO   5 

4 CONTINUE 
M=NT 

5 IF<MM.LT.M)MM=M 
DO   6   J=ltN 

6 G(I,J)=V(J,L1) 
NT=MM 
RETURN 
END 
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APPENDIX V 
FORTRAN LISTING OF UNIT 

SUBROUTINE   UNIT IN,NDIM,SIG,P»BfFROM,TO) 
C  CONVERT   UNITS   OF   SYSTEM  DATA     O.C.   TODD     10-24-68 

REAL   PINDIM,8>»B(NDIM,NDIM>, 
L L(4>/1.,.01,.0254,.3048/, 
M M(4>/l.,.001,.4535933,14.5939/, 
S S(3)/l.,60.,3600./, 
T T(2)/l.,.5555556/, 
E E(4)/l.,l.E-7,4.184,1054.35/ 

INTEGER   FR0M(16),T0(19) 
SIG=5.6697E-8 
F0=(M<FR0M(1))/M(T0(1) >>*IU TO (2) >/L(FR0M(2H )**3 
FV=(L<FROM<3)>/L(TO<3)>>**3 
FC=E(FR0M<4))*M(T0(5)>*r(T0(6>)/(EIT0(4J)*M(FR0M(5))*T(FR0M(6M) 
FK=E(FR0M(7>)*L(FR0M(11))*S(T0(8))*T(T0(10))*(L(T0«9)>/UPR0M(9))J 

K**2/(E(T0(7))*L(T0(11>)*S«FR0MI8))*T(FR0M(10))) 
FS=(UFR0MU2>>/UT0(12>>>**2 
FP=E(FR0M<13>>*S(TO(14)>/(E(TO(l3>>*S<FR0M(14))) 
FA=(L<FR0M(15>>/I_{T0(15>>>**2 
FN=L(FR0M(16)>/L(T0«16>> 
FG=(E(FR0M(17>)/E(T0(17)))*(L(T0(18))/L(FR0M<18)))**2 

G*« T(TO <19))/T(FROM(19 > > >**4 
DO   1   1=1,N 
P<I,1)=FD*PII,1> 
P( I,2>=FV*P<1,2» 
P<I,3)=FC*P(I,3> 
P(I,4)=FK*P(1,4) 
PU,7> = FS*PU,7> 

1 PU,8)=FP*PU,8) 
NM1=N-1 
00   2   1=1,NM1 
IP1=I+1 
00  2   J=IP1,N 
B( I,J)=FA*B<I,J) 

2 B(J,I)=FN*B(J,I) 
S1G=FG*S1G 
RETURN 
END 
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APPENDIX VI 
FORTRAN LISTING OF COEF 

SUBROUTINE COEF<N,NDIM,SIG.P,B,C) 
C COEFICIENTS FOR HEAT TRANSFER DIFFERENTIAL EOUATIONS 
C O.C. TODO  10-23-68  ST8002-Y00 
C P INPUTS D,V,C,K,ALPHA,EPSILON,S, AND P 
C   RETURNS DVC IN C ANO A IN P 
C B INPUTS AREAS ABOVE THE DIAGONAL ANO DISTANCES BELOW 
C   RETURNS WITH B COEFIC'IENTS 
C C INPUTS G AND RETURNS WITH C COEFFICIENTS 

REAL P(ND1M,8>,B<NDI.M,NDIM>,CINDIM,N0IM1 
DO 2 1=1,N 
D=P(1,1')*P( I,2>*P(I,3> 
P(It3)=D 
IF1D.NE.0.)G0 TO 1 
PU«8)»0. 
GO TO 2 

1 P(I,8)=P(I,B)/D 
2 CONTINUE 

DO 7 1=1,N 
D=P!I,3> 
IF(O.NE.O.)GO TO 24 
B(I,I)=0. 
C(I,I)=0. 
GO TO 7 

24 SUM=0. 
DO 6 K=1,N 
IFIK-I>4,6,3 

3 11 = 1 
JJ=K 
GO TO 5 

4 I l=K 
JJ = I 

5 IF(B{II,JJ).EO.O.)GO TO 6 
SUM=SUM+P(K,4>*Bf 1I,JJ>/(B(JJ,II>*(PU,4) + P(K,4))) 

6 CONTINUE 
B(I»I)=-2.*PII,4)*SUM/0 
ClltI)=SIG*P(I,6)*P(I,7)*IPII,5)*C(I,I)-1.)/D 

7 CONTINUE 
NM1=N-1 
DO 13 1=1,NM1 
DI=P(I,3) 
IP1=I+1 
DO 12 J=IP1,N 
0J=P(J,3) 
IF(B(I,J).E0.0.)B(J,I)=1. 

11 E=2.*P( I,4)*PIJ,4>*BII,J)/(B<J,I)*(P(I,4)+P(J,4))) 
IF(DI.NE.O.)GO TO 20 
B( I,J)=0. 
CIJ=0. 
GO TO 21 

20 B(I,J)=E/OI 
CIJ=5IG*P(I,5)*CIJ,1>*P(J,7)*P(J,6)/0I 

21 1FIDJ.NE.0.)G0 TO 22 

B(J,I)=0. 
C(J,I>=0. 
GO TO 23 

22 BIJ,I)=E/DJ 
CU.I)»S16*PU.5)*CII.J>*P(Ii7l*P(It6)/DJ 

23 C( I,J)=CIJ 
12 CONTINUE 
13 CONTINUE 

RETURN 
END 
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APPENDIX VII 
FORTRAN LISTING OF SOLU 

SUBROUTINE SOLU«N,NDIM,AC,T1,T,TM,TEMP,P,A,B,C) 
C SOLUTION TO HEAT TRANSFER DIFFERENTIAL EQUATION 
C D.C. TODD  10-25-68  ST8002-Y00 
C AT FIRST CALL PI1,I> INPUTS INITIAL TEMPERATURES AND TM=T1 
C CONTENTS OF P, Tl, AND TM MUST BE LEFT UNCHANGED FOR SUBSEQUENT CALLS 

REAL TEMPI1),P(5,1),A(l>,B(NDIM,1>,C<NDIM,1) 
1 IF(TM.GE.T)GOTO 2 
X=TM 
K=0 
GO TO 3 

2 X=T 
K=l 

3 DX=X-T1 
DO 4 1 = 1,N 

4 TEMP«I>=P(1,I>+DX*(P(2,I>+DX*(P(3,I>+DX*(P(4,I}+DX*P(5,I) ))) 
IFIK.EQ.l )RETURN 
T1 = TM 
P5M=0. 
DO 5 1=1,N 
P<1,I>=TEMP(I) 
P(2,I)=A(I) 
P(3,I>=0. 
PI4,I)=0. 

5 P(5,I)=0. 
DO 6 1=1,N 
DO 6 J=1,N 

6 P(2,I> = P(2,I) + BU,J)*PI1,J>+CII,J>*P(1,J)**4 
DO 7 1=1,N 
DO 7 J = 1,N 

7 PI 3,1>=P(3,I)+P(2,J>*IBII,J>+4.*C(I,J)*P(1,J)**3) 
DO 8 1=1,N 
DO 8 J-1,N 

8 P(4,I)=P<4,I 1+PI3» J>*(BU,J)+4.*C(I,J)*P(1, JJ**3J 
1       +12.*C11,J)*P(1,J)**2*PI 2,J)**2 
DO 10 1 = 1,N 
DO 9  J=1,N 

9 PI5,I)=P(5,I)+P(4,J)*(B(I,J)+4.*C(I,J>*P(1,J>**3) 
1      +24.*CII,J)*P(1,J)*PI2,J)*(PI2,J)**2+1.5*PI1,J)*P(3,J)) 
AP5=ABS(PI5,I>) 
IFIAP5.GT.P5M)P5M=AP5 

10 CONTINUE 
P5M=P5M/24. 
DO 11 1=1,N 
P(3,I>=.5*PI3,I> 
PI4,I)=.1666667*P(4,I> 

11 P<5,I)=.04166667*P<5,I> 
I?<P5M.GT.1.E-66>G0 TO 12 
TM=1.E16 
GO TO 1 

12 TM=T1+(AC/P5M)**.3333333 
GO TO 1 
END 
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APPENDIX VIM 
FORTRAN LISTING OF PROGRAM TO COMPARE SOLUTIONS OF RADIATING OBJECT 

C COMPARISON  OF   ANALYTICAL   AND NUMERICAL   SOLUTIONS  OF   ISOTHERMAL 
C   RADIATING   OBJECT   WITH   HEAT   SOURCE      D.C.   TODD     12-16-68      AEA00071 

REAL   P(5),TI*8,C0NST*8 
1 READ(5,1001,END=900)N,TO,TI,TOD,AC 

IF(TI.NE.O.)GO   TO   2 
A=0. 
C=T0D/T0**4 
D=1./(3.*C) 
C0NST=1.D0/T0**3 
GO  TO  3 

2 A=T0D/(1.-(T0/TI)**4) 
C=-A/TI**4 
D=TI/(4.*A> 
CONST=DLOG(«TO+TI)/DA8S(TO-TI))+2.*DATAN(TO/TI) 

3 S1=0. 
SM=0. 
P(l)=TO 
DT=(TI-TO)/(N+l) 
T=TO 
WRITE<6,1000> 
WRITE(6»1005> 
WRITE(6,1003)T0,TI,TOD,AC,A,C,O,C0NST 
WRITE(6,1006> 
DO 6 1=1,N 
T=T+DT 
IF(TI.NE.0.)GO TO 4 
S=D*(C0NST-L00/T**3> 
GO TO 5 

4 S=D*(DLOG((T+TI)/DABS(T-TI))+2.*DATAN(T/TIJ-CONST) 
5 CALL SOLU<l,l,AC,Sl,S,SM,TEMP,P,A,0.,C) 
ERR=T-TEMP 

6 WRITE(6,1003)S,T,TEMP,ERR 
GO TO 1 

900 WR1TE<6,1004> 
STOP 

1000 FORMAT (■ ID.C. TODD  AEA00071M 
1001 FORMAT«12,E10.0,5E12.0) 
1003 F0RMAT(1P11E12.4> 
1004 FORMATJ'OTHE END'/lHl) 
1005 FORMAT(1H04X2HT010X2HTI10X3HTOD9X2HAC11X1HA11X1HC11X1HD9X5HCONST/) 
1006 FORMAT«1H05X1HS1U1HT9X4HTEMP9X3HERR/) 

END 
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APPENDIX IX 

FORTRAN LISTING OF PROGRAM TO OBTAIN SOLUTION 
TO CONDUCTING RADIATING SPHERICAL SHELL 

C CONDUCTING RADIATING SPHERICAL SHELL  O.C. TODD  12-16-68  AEA00072 
REAL PI60,8>,Q(5,60>,A[60>,B(60,60),C(60,60),TEMP(60),MR, 

* PI/3.m593/,SIG/5.6697E-8/,TUREI60> 
EQUIVALENCE (P<1>tOI1>).(PI 1.7).TEMP I 11),IP(1.8),M1)) 

1 READ!5,lOOl,END«900>NH,E,NR 
MRITEI6.1000) 
HRITE(6,1005)E,NR 
N"2**H 
0X-2./N 
DS=4.*PI*DX 
DV=2.*PI«S!G*DX 
TK-l./NR 
EP=.5»IE*1.> 
AQ=8.»PI«SIG*DX 
X=-1.-.5*DX 
DO 2 1=1,N 
X=X*DX 
P(1,1>=1. 
P(I,2>=DV 
P(I,3>=TK 
P(1,4>=TK 
P(I,5)=EP 
P(I,6)«EP 
P(I.7>=DS 

2 PII,8>=AQ*X 
DO 3 1=1,NH 

3 P(I,8>=0. 
G=.25*E»DX/EP**2 
DO 4 1=1,N 
DO 4 J=1,N 
B(I,J>=0. 

4 CU,J)=G 
»■-1. 
DO 5 J=2,N 
X'X+DX 
I»J-1 
ST=(1.-X*X>**.5 
B(I,J)=2.*PI*S1G*ST 

5 B(J,I)=DX/ST 
CALL CDEFIM,60,SIG,P,B,C) 
T1=0. 
T-l.E-10 
TH=0. 
DO 6 1=1,N 
TUREIII-1. 

6 0(1,1)-l. 
WRITE 16,1006) 
LAST=0 
IPRT=20 
DO 9 IT-1,100 
CALL S0LU(N,60,.2,T1,T,TM,TEMP,0,A,B,C) 
DMAX«0. 

DO 7 1=1,N 
DIFF=TEMPII)-TURE(I> 
IF1ABS(DIFF).GT.ASS<DMAX)>DMAX=DIFF 

7 TURE( D-TEMPIII 
WRITEI6,1002)IT,T,DHAX 
IFIT.LT.1.E15)G0 TO S 
IPRT=IT 
LAST-1 

8 IFIIPRT.NE.mGO  TO   9 
IPRT=IPRT+20 
NRITE(6,1003)(TEKP(M,I»1,M) 
IF(LAST.N:.0)GO   TO  10 

9 T=1.001»Tf 
10  GO  TO   1 

900  WRITE(6,10041 
STOP 

1000 FORMAT (< 10.C.   TODD      AEA00071M 
1001 F0RMATI12,E10.0,5E12.0I 
1002 F0RMATI118,6X1P2E12.4> 
1003 FORMAT I 1PUE12.4) 
1004 FORMAT!'OTHE END'/lHl) 
1005 FORMATPOE ='1PE12.4,6X'NR ='E12.4> 
1006 FORMAT!1H ) 

END 
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APPENDIX X 
FORTRAN LISTING OF PROGRAM TO CALCULATE CLAUSING FACTORS 

C  CALCULATION  OF  CLAUSING   FACTORS     O.C.   TODD     1-3-69 
REAL   F(60,60)fA<2),G<60,60>fR<60> 

WRITE(6t1000) 
1 READ(5,1001,END=900)M,H 

CALL   TUBE<M,1.»H,A,F) 
N=M+2 
00  2   I=2»N 

2 R( I) = l. 
RI1)=0. 
R(N)=0, 
CALL GINV(N,60rR,F,GtDET) 
IF(DET.E0.0.)G(1,N)=2. 
WRITE(6,1003)M,H,G<1,N) 
GO TO 1 

900 WRITE<6,1004> 
STOP 

1000 FORMAT(»1AEA00075  D.C. TODO«/) 
1001 FORMATU2»E22.0> 
1003 FORMAT«I6t6X,lP2E12.4> 
1004 FORMAT(«0THE   END'/lHl) 

END 
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considering heat sources and heat transfer by conduction and radiation. 
The resulting system of first-order ordinary differential equations is 
put in a form convenient for programming a numerical solution by 
defining coefficients in terms of the data of the system.  Form-surface 
factors are a generalization of form factors to include multiple reflec- 
tions.  The factor is defined and discussed. A formula is derived for 
the factor in terms of the form factors and the reflectivities.  The 
form-surface factor relations for the conservation of energy and the 
reciprocity law are derived.  The conditions necessary and sufficient 
for its existence are derived.  Methods of calculation are discussed.  A 
FORTRAN subroutine is presented that calculates the form-surface factors 
from the form factors and the reflectivities. 
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