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Abstract 

The method of Bayesian statistical   inference  is used  to 

derive estimates of operational parameters in a simple system that can 

be in one of two states:     failed, or operative.    The sampling plan 

consists of occasional observations of the system for  finite periods: 

snapshop, plus patch sampling.     Numerical examples are given. 
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I.     Introduction 

In investigations in the area of systems reliability it is often 

appropriate to consider systems which alternate between two capacility 

states, u£ or down, according to some random process.    One measure of 

effectiveness that is of importance in such systems is the long-run 

probability that the- system will be up or productive when needed; the 

latter is equivalent to the long-run fraction of the time during which 

the system is productive.    This parameter is also known in the literature 

as the long-run availability or the operational readiness of the system, 

but these terms are not standardized.    The problem of estimation of the 

above availability parameter received some consideration in a recent 

paper [4.]» where the authors pointed out that operator log-book data on 

field operations of systems may be untrustworthy and suggested some 

sampling procedures for obtaining supplementary estimates of the system 

parameters.    These sampling plans yield the following two types of 

observations on the system:    a) those which reveal only the state of the 

system at isolated time-points,  and    b) those which continuously record 
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the duration of the ~ and ~~ times of the systc .. t' ··oushotlt i:1hrv~ 

of fixed or randor:1 length. Cox (2) has cons 5.de.re:d a similar su: .. ;-; l in.., 

plan for a pl'obl em in com;)ui.;er acceptance testing. 

The papers [2] and [4) use the method of maximum likeli . ood 

to obtain estimates of the system parameters from the tv:o com~i~ec 

sources of data. Frequently, however, prior inforr:1at ion about the 

system par~~eters is.available and is based on experience vdth prsvious 

or current systems oi a similar kind. A strong i mpetus to use this 

information often exists. Frequently it is incorporated in:orma.ly by 

enginoers vmo are familiar with particular systems. But there may exist 

merit in carrying out a more foz:rnal analysis by expressing at l eazt 

so:r.c of the additional .:nformation in the f'orr.1 of prior dis tributio r~s 

for system parameters, and applying the t~chnique of 3aycsian inference. 

In this paper such analysis is provided for a pa:-tici.ila:- clas:> of sa1:-:plins; 

plans, with the objective of estimating the long-r~n syste:n availability. 

Since the maximum likelihood estimates are not gua~antecd ~o 

posst-ss any desirable optimal properties in the non-asy.np to t:!.c cas~, 

\'le believe that it v.'ill be useful to inv~stigc.t~ otho!' esti r.ia";es \'k.:c. 

have known properties in the U£\:al sr.:a ll. sarr;>l c situation. T'ne Ba·.-es · 

e&timates are, fvrmally speaki1~;, optimum with r~spect to the as£.un;c ci 

prior distributions and loss structure; in addition thvy of fer one-

pla~sible w~y for combining the above two sources of data, provided the 

underlying model remains approximately valid. The fact that so~~ of 
. 

these: estimates appear to improve upon the maximum likelihood esti rr1a te:s 

-
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in particular cases investigated (see Section V) offers heuristic 

justification for proposing these estimates. 

In Section II a description of our sampling procedure and of 

the system model is given.    In Section III mathematical expressions 

for the Bayes estimates are derived using the assumptions stated in 

Section II.    It turns out that these estimates can be represented in 

explicit forms for a.special case of the sampling plan;  these are 

obtained in Section IV.    Finally, in Section V some illustrative 

numerical comparisons are give.-, for different estimates obtained in 

this paper. 

 -.,„■,..,■-,. ""' "'-."".fi iin-oiMiriii MMiwiiM<w<iii«iriii«i»i>w»ww<i«witM>iiir(iiiwiWiTiiTrrirri)ia 



II. Assumptions 

A. Description of tho System Mod?] 

We assume that tho times spent in the ug and dov.'n states are 

mutually statistically independent; both up and down times have the 

exponential distribution. Specifically, if U. and D. are the i-th jjp 

and .djjwn times, then their densities are given by 

(1) yx) = Xe-Xx   [x > 0] , 

(2) fD(y) = ^   [y > 0] , 

«»here \ and p. are unknown positive parameters.    Thus the system is 

described by a tv/o-state renewal process (see Cox [l]).    The assumption 

of exponential density for the up and down times is made here because 

it has been found to represent, at least approximately, a large variety 

of empirical failure and repair time distributions and because of its 

attractive mathematical properties. 

Using (l) and (2) it can be shown that the probability of 

finding the system in the ujs state a long time after it has been put 

into operation is given by 

(3) p = P[up in the long run}    =    E^jfeg^ = j^[ 

so that 

(4.) q = 1-p - P[down in the long run] = rrr    . 

Suppose that observations are made at widely spaced instants, meaning 
1 

that prior knowledge is utilized to assure that the sampling interval 

is greater than, say, sU+tiT  .    Then tho states observed are 

■ ■   ^^iitftiihUij 



effectively independent, and the probability that the system is observed 

to be up is p. 

B. Sampling Procedure 

Following [2] and [4], we consider sampling procedures which 

yield the following two types of information on the system: 

(a) A sequence of "snapshot" observations, which are available only 

at widely dispersed instants. These snapshots merely reveal whether 

the system is u^ or down at the instant when the observation is made. 

(b) A sequence of continuous observations on the ug and down times 

of the system throughout intervals of fixed or random duration. Follow- 

ing the terminology of [4J, these observations will be called "patches". 

Some examples of patch observations are given below. 

When the exponential distribution holds and snapshots are made 

at random instants, it is the time remaining in a given state after the 

snapshot has been made (rather than the total time in the state, before 

and after the observation) that follows the exponential law with the 

parameter appropriate to the state observed; Intuitively this is because 

long times in state tend to be observed, but renewal theory mathematics 

provides a proof. Thus under the exponential assumption we can consider 

sampling plans, e.g.. Case II below, where observations are not made 

for the complete lengths of the up and down times. 

We now define the quantities which arise in the above sampling 

procedure and develop notations for them. 

.        ■   .*«***•■::■- »t,,».^*.*«*!. T, «Ukv 4MMMI3MIHWWI 
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a:  total number of U£ intervals observed during patches. 

a x.: total UJ2 time observed; x+ = I,,  x., x. being an individual 

up interval (or forward recurrence time). 

b;  total number of down intervals observed during patches; 

b may be fixed or random depending on the sampling plan. 

y.: total down time observed; y+ = I.. YifYi  being an individual 

down interval (or forward recurrence time). 

a:  total number of snapshots showing the system to be U£ 

ß:  total number of snapshots showing the system to be down 

It follows from the above description that the likelihood 

function of the observations following the above sampling procedure 

will be given by 

(5) 
-^ . -iiy. K  .. .a_ , _ß 

L(X, ,) = e  V e  V (^) &)    . 

A number of alternative sampling plans are special cases of the general 

procedure described above.    Two examples appear below. 

■MMMaarti 
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Case I 

A system1 s up and down history is continuously recorded 

through k cycles, each consisting of one up period and one down period, 

(possibly during the developmental phase of the system). Thereafter m 

rare snapshots are taken, r of which show the system to be up. In this 

case 

a = b = k 

a = rj p = m - r. 

Case II 

A system is observed m times at rare intervals, and each time 

the system state and the remaining time in that state are recorded. If 

r is the number of snapshots showing the system to be up, then 

a = a = r 

b = ß = jn - r 

C. A Priori Distribution 

We assume next that X and p. have independent priors belonging 

to the gamma family: 

(6) f^X) = Y(C,K;X) = j^-y ^X0'1 e-U   (X > 0) 

and 

(7) f2(l0 = YU.TI^) = p^y nV"1^       (^ > 0) 

Containing (5), (6) and (7), we obtain the posterior density 

).L^..-._„.±iij>LiiHWi'i—w111 " ' " "    '||'i'i' "mjtmmmmmm 
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(8) LpU,ii)   =   L(x,n)f1(ii)f2(\) 

-x(x.+i;) a+r ,   -^(y,+n)   M.H !   ,.   a  v   P 
X+ti' 'x+n' 

In the above, c, ^, d and ß are assumed to be knrwn positive constants 

which will perhaps be estimated from the prior data available about the 

distributions of \ and \L.    In the case when there is no prior information 

we shall put c = d=l,^ = fj = 0.    It is seen from (8) that for these 

values of the parameters, the modified likelihood function Lp(\,n) 

reduces to L(\,n) as defined in (5).    The prior distributions have 

been assumed to belong to the gamma family since the latter is 

conjugate to the exponential distribution. 

D,    Loss Functions 

Let t> denote an estimate of long-run system availability, p. 

The loss L(6, p) from estimating & when, in fact, p prevails may be 

specified in various ways.    In general the loss should increase 

as the difference between   t>    and p   increases,    but the 

loss associated with a negative error may not be the same as that 

8 
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associated with a positive error of equal magnitude.    The loss 

functions to be used here, however, will be symmetrical;  they are 

all related to the familiar mean squared error 

(9) L(6, p) = C(p)(6-p)2 . 

We shall  first consider the loss function which is the unweighted mean- 

squared error 

(10) 1^(6, p) = C(6 - p)2 . 

where C is a positive constant. 

It seems clear, however, that when estimating a probability 

the importance of an error of the magnitude e =  16 - pi may not be 

independent of the probability level;  an error of 0.1 may be of more 

importance at p = 0.05 or 0.95 than at 0.5«    If so, the loss function 

(9) with C(p) = CCp(l-p)]'1 reflects this qualitative condition and 

leads to the following loss function: 

(11) L2(6,  p)    =    -^ (6  - p)2, 

C again being a positive constant. 

Still another criterion for estimating a probability, super- 

ficially plausible when p is large, is that the fractional (per cent) 

error of the estimate be minimized. This leads to C(p) = p' and the 

loss function 

(13)     L3(6, p) = C(^- I)2 . 
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This paper is devoted to obtaining Bayes estimates with 

respect to the above loss functions, which are all variations on the 

mean-squared error thone. In specific instances other loss functions 

may well occur, and the estimates implied must be constructed anew. It 

is perhaps worth mentioning that the point estimation problem that 

concerns us here is by no means the only relevant, nor even the most 

important, statistical question likely to arise in practice. For 

instance, one may wish to provide confidence limits for the unknov/n 

readiness parameter on the basis of sample information, or, 

alternatively, to test the hypothesis that one system is an improvement 

upon another. Such problems are not considered here. 

III. Bayes Estimates for Long-Run Availability under Patch-Snapshot 
Sampling 

In this section wo derive formal expressions for the Bayes 

estimates of the measure of effectiveness under patch-snapshot sampling 

for the system model we have described above. 
y 

Let &?, 6| and 5* be the Bayes estimates with respect to the 

loss functions L., L^, L- when the prior distributions of X and ji are 

given by (6) and (7) respectively. In terms of the posterior distribu- 

tion of p the estimates corresponding to l., L2, and L„ are respectively 

(U)     6} = E(p) , 

(15)   6|- = -UlrP-TlL- , 
2   EEp-^l-p)"1] 

10 
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and 

(16) 6*    =    &£     , 
3 E[p-2]     ' 

Notice first that if the sampling plan is simply to take m 

snapshots, r of which find the system up, and if the prior distribution 

of p is uniform, then J>* = (rU)(nr*2)      while 6jJ = r/m, which equals the 

maximum likelihood estimate.    On the other hand, under similar 

circumstances, 

r   0 for r = 0, 1 

'S = i rl *-= for r = 2, 3, ..., m. 

If the prior is proportional to p, however, bt   -   r/nH-1. 

Since the Bayes estimate does not depend on the order in which 

the patch and snapshot observations havo been taken because of the 

exponential assumption, we assume without any loss of generality that 

the patch observations are taken first and then followed by the snap- 

shots.    Thus under the above assumption, x.  and y   denote respectively 

the total up and down times observed in a sequence of (a+b)  successive 

observations.    It now follows from the familiar reproducibility property 

of the gamma prior distributions with respect to exponential distribu- 

tions that the posterior distribution oi: X. and (i after such observations 

have been made will be given by Y(a+c, *>x+;\) and yCb+d, tj+y • jt) 

respectively;    [see (6)]  . Further, the posterior distribution 

of the ratio p = rj— after X , X.,  ..., X , Y , Y2,  ,.., Y,   have been 
f 

observed can be shown to be of the form 

11 
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g(plxi=xi; VfYy  i = l,2,...,a;  j=l,2,...,b) 

(17) 

rc^c-fd)       (^x+)    (n+y^)    P       (I-P)      n„   ,, 
Lx+H+(n-!y+-^-x+)p] 

Moreover, after (a+ß) snapshots have been taken which result 

in a successes, the posterior distribution will be 

h(p) (18) g(p|x1,x2,...,xa; y1,y2,...,yb;a,ß) = 

j   h(p) dp 
0 

where 

(19) h(p) = pbfdfa-1(l-p)fffcfP-1[x+^(^y+-C-x+)p]-(&fbfc-Hd)
; 

0 < p < 1. 

Now using (U),  (15), (16) and (18) we finally get (see [3]) that 

x*   -   B(a^a+ofl, bt-p+d)    . Fjsrfbfc-td.  afa+c+1;  a4-b<-a+ß+c-t-d|-l; z) 
1 B(arfa+c, b+ß+d)       * F(afb+-c+d, a+a+Cj  a+bfa+ß+c+dj z) 

(20) 
bfa+d i  F(a>bfc+dt bfdm+l;  a+bfa+p+c+dt-lsz) 

a+b+-a+ß+c+d *  F(a+b+-c+d, bfa+dj  ä^bt-a+ß+c^d;z) 

(See [3]) 
where ?(•,•}•;•) is a hypergeometric function/representable as 

F(Q B.Y-Z) = 1+^ z+ °La±LMM)_ z2 + ^^,^^,2) - I + l,r z^      1.2-YCrH) 

x++?-Ti-y+ 

r(riT)" 

and 

i   = x+H 

Similarly> 

^ . .•    _       bt-cH-a-1 FCa+b'c+d, bHa+d;   gjjrfgj-Bj^d-ltz) 
VÄAy 2 afbt-c+d+a+ß-2      F(a+b!c+d, b^a+d-l;  a4bfa+p+c+d-2; z) 

12 
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and 

(22) 6»    =     frf°fd-g .  F(a-H^c^dt bf-a+d-1;   g^bfc+dHa+p-l; 2) 
u^;              3   ~    »fbfc+d+a+ß-2      F(a+tri-cfd, bKi+d-2j  ^ bt-c+-d+a+ß-2jz)  * 

However, to ensure convergence of the hypergeometric series 

occurring in (20), (21) and (22), we require that 

(23) |z| < 1, 

which implies that 

(2A)    0 < y++ n< 2ix++K). 

This does not seem too severe a restriction in view of the fact that for 

most of the systems in practice, p will be near 1 and therefore with a 

high probability the total up time.' in a given situation will be larger 

than the total down time . When (24.) does not hold, the form of solution 
given in (20)-(22) will not be usable. 

We thus see that the three Bayes estimates we have considered 

can all be expressed as products of the quotient of two hypergoemetric 

functions and a simple fraction. In general it will not be possible to 

simplify the above expressions further and reduce them to a more 

convenient form. However an equivalent representation in terms of 

continued fractions can be given. We notice that the two hypergoemetric 

series associated with the Bayes estimate are of the form F^t, n&l;  n+l;z) 

and F(-t, m, nj 2). From a result given in [3], we have 

13 
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(25)    FO^l^ gfli z) 
FC-t, m; n; z) 

1 - — 
V 

1 - v 
1 - V 

1 - V 

where 

(26) _ (&-s-l)(n-nrfs-l 
s "  (rH-2s-2)(n+2s-l 

. (n^s)gi-^-s) 
(rrf2s-l)ln+2s)  ' 

S "" X f    £ j    •••< 

Thus the ratio of the LKVO hypergeometric functions appearing in the 

expressions for the Bayes estimates can be replaced by a continued 

fractlonj there seems to be a possibility of extracting useful 

approximations from this representation. When a = ß = 0(i.e. no shapshot 

information is used), it can be shown that v2 = 0 in the continued 

fraction expansions for the Bayes estimates 6^ and f^ so that they may 

be represented in simple explicit forms in this special case. In this 

case they can, however, be obtained more directly and because of the 

relative case with which they can be evaluated, the direct derivation 

of these estimates under patch-sampling alone is given in the following 

section. 

U 
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IV.,    Bayes Estimates for Long-Run System Availability.under, Patch Sampling 
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The preceding developments have yielded the formulae (20), (21) 

and (22) for the Bayes estimates of the system availability, p, when 

patch and snapshot information is available. The purpose of this 

section is to show that when patch infromation alone is utilized, the 

Bayes estimates &S and &* resulting from loss functions L- and L„ may 

be presented in simple explicit forms. 

If a uj) intervals have been observed having total uptime x., 

then the posterior density of \ is gamma 

-(c+x.MU+xJx]^8-1 
(27)     YjCc+aj? +x+; \) = e   "  —j^^  U+x+) 

and similarly the posterior density of ^ is the independent gamma 

(28) Y2(bi-d, fi+y+;n) = e 
-(n+yJ^^y+W^-1 

r(Fd5 (T,+y+) * 

The Estimate fc^ under Patch Sampling 

If posterior information c 

(27) anrl (23) then we may rewrite (15) as follows: 

If posterior information concerning p -• r*~; is contained in 

cn   00 

(29) 6*    = 
2 00   00 

I   I     <1+ &S2 M» 

The gamma integrals are easily evaluated, and we obtain 

15 
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(30) 65 
1 + (^)( 'a+c-l 

For the special case in which C = H = 0, c = d=:l ("flat" priors) 

(31) '1 
xy + W-l r.2 

Klx^^^y^ 
where 

x =  xVa and y = yVb . As a and b become large (31) approaches 

the maximum likelihood estimator ^-^ ; for finite a and b, the right 
xfry 

hand side of (31) is somewhat larger than the maximum likelihood 

estimate when the latter exceeds -5 . 

The Estimate 6* under Patch Sampling 

The form of the estimate t* may be found in exactly the same 

manner as was used to obtain 6JJ . From (l6) we similarly obtain 

(32) 65 = 

1
 + <^)& 

1 + 2(v:c)(bfd^) + r + )2'" TbTd-^CFdrrj • (x+ + 0 

16 
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V.    Numerical Results 

The estimates we have obtained above are optimum when it is 

assumed that ■'.he system parameters have prior distributions given by 

(6) and (?) and loss functions are as given by (10), (ll) and (12). 

It is however of considerable importance to investigate their 

performance in samples of realistic sizes when the actual system 

samples is given a fixed set of parameter values.    Since any analytical 

results appear to be difficult to obtain for the general case, we carry 

cut the investigation by means of experimental sampling for a specific 

system involving the following set of parameter values: 

:X   =   0,2 (expected u£-time of 5 units) 

j»   =   1      (expected down-time of 1 unit) 

The particular sampling plan used is that of Case I described in 

Section IIB,    The following parameters are chosen for the sampling 

plan: 

k   =    ^(number of initial periods observed) 

m   =   10 (number of lator snapshots). 

A synthetic system realization is observed continuously through five 

consecutive up-and-down times, after which merely the state — up or 

down — is notedj  snapshots are taken at intervals of approximately 15 

time units.    Altogether five hundred such sample realizations are 

examined.    From the data for each realization the estimates if, &£ and 

t* are computed using (20),  (21) and (22) and substituting c = d = 1; 

^ = T) = 0 (the parameters corresponding tc "flat"  prior distributicn) 

17 
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in the above expressions. The data used for the purpose of these 

investigations are the same as reported in [^] and it is therefore 

possible to compare the maximum likelihood estimate obtained there 

with the above Bayes ectimates. In addition, the estimates are 

computed using merely the outcomes of the k = 5 initial period 

observations, omitting the snapshots. A summary of the results 

(computed from 500 independent realizations) showing the averages 

of the estimates and their mean squares about the true value are 

given in Table I. The last row in this table gives the value of 

the Cramer-Rao lower bound for the variance of the unbiased estimate 

of p, which has been computed from the formula given in Lehmann [5]. 

For Case 1 of the sampling plan, this lower bound is given by the 

right hand side of the following inequality: 

02 >    2kp
2(l-p)2 t 

T " 2k2+2k(m-2k)p(l-p)-(l-2p)2k2 

where T is any unbiased estimate of p. 

18 
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TABLE 1 
Estimates of Long Run Availability, 

X = 1, H « 0.2, p = 0.öJ3> Je = 5, ra = 10 
(The Bayes estimates have been computed with 

respect to "flat" prior distributions) 

Estimate Averaees | Mean Squares 
Patch-Snapshot Patch only Patch-Snapshot Patch o;ily[ 

»r 0.8155 0.8017 .005725 .009735 

6' 

0.8353 0.8288 .005^86 •009^97 

■   ^ 

0.8007 0.7710 .007778 .01789 

Maximum Likelihood 0.8223 O.815U .00577^ .0097^5 

Cramer-Kao 
Lover Bound 

    
.00'i95 .0077^           j 
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The above table indicates that even in the absence of a priori 

information the estimates &? and &2 are perhaps a little better than the 

maximum likelihood estimate for the particular set of parameter values, 

X and |i, assumed. The estimate 6S soems to have a slight edge over both 

6* and the maximum likelihood estimate. On the other hand, the estimate 

5* appears to be definitely inferior to the other estimates. In view of 

the above fact, a more detailed investigation of the estimates &? and 

6Ä seems to be warranted.    For all these estimates, patch-snaoshot 
i 

sampling considerably reduces the mean square errors below those 
I I 

obtained from patch sampling alone. ! 

If there exists accurate prior information about the ' 
i ! 

distribution of system parameters, we expect that the mean square should 
I !       : 

be reduced considerably by incorporating the available prior information 
i 'I 

in our estimates.    To investigate the effect of this reduction, the 
l i 

above estimates were computed with respect to three sets of gamma 
I i 

distributions each having E(n) = 1.0 and E(\) = 0.2 for one hundred 
i ! 

sample realizations of the system described above.    The mean squares 

of these estimates are displayed in Table 2.    Columns (l) h IUFHI.-, %. 

and (5) of the table give the results coresponding to the generalised 
i 

maximum likelihood estimates obtained by maximizing (8)  and using the 
I 

formulae (2.8)  and (2.9) of [4-].    This table shows that reduction of 

the mean square error is indeed effected by using the above set of 

priors,  as is to be anticipated.    This table indicates  that &■£ is 

definitely inferior but as to the relative efficacy of the other estimates, 

Table 2    is somewhat uncertain.    Also it must be emphasized that only one 

parameter value, p, and a few prior distributions were considered. 
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(.; 

Parameters 
of the 

gamira prior 
dlstributionc 

1. c=0.2jd=2.0 
e=1.0jTV--2.0 

2. c=0.2;dr.-10.0 
{ i.0;Ti-10.0 

3. c=10.0;d=2.0 
t=50.0;n 2.0 

Table 2 
Mean Squares of Estimates of Long-Run 
Availability Usins Prior Information 

Ji - 3, X  » 0.2, p B 0.833, k « 5i n « 10 

 Patch-SnapahoiL 
GMT, »i 

JBELtch. 
»•■ S GML 

6r **2 

do (2) (3) CO (5)       (6) 

83 

(7)        (8) 

.00^22^    .00^309    .0043^0    .005763 [.006206    .OC6835    .006^20    .01182 

.002973    .003236   .00319h   .004193 1.003786   .004878   .00^076   jOc667; 

.002730   .0025^0   .00?5I+1   .003195 .00299^   .002922   .002808   .00^25; 

21 



H-i""   '! —— 

VI,    Refcronccs 

1. D, R. Cox, Renewal Theory, Methuen Monograph, New York: John Wiley 
& Sons, Inc., 1962. 

2. D.  R. Cox, "A Mote on tho Analysis of a Type of Reliability Trial," 
SIAM Journal on Applied Mathematics. Vol.   U (1966), pp.  1133-1142. 

3. A,  Erdolyl, et.  al.  Higher Transcendei'tal Functions, Bateman 
Manuscript Project, California Institute of Technology, New York: 
McGraw-Hill Book Company,  Inc. (1953). 

4. D.  P. Caver, M. Mazumdar,  "Statistical Estimates in a Problem of 
System Reliability,"  Naval Research Logistics Quarterly, 1967, 
Vol. U, pp. £73-488.     ~       '           

5. E, L. Lehmann, Notes on the Theory of Estimation (Chaps. 1-5), 
University of California,  Berkeley, 4, Calif,  (reprinted 1962). 

6. H.  Raiffa and R. Schaifer,  Applied Statistical Decision Theory, 
Boston:    Harvard University Press (T96l}. 

22 

- 



l'nclaüslficd 

DOCUMEI-IT CONTROL DA7A   R&D 
Security cl^r:siticatton at tl:U, *JUC/> ut abstract and tndckin^ .innot/iti^n .TU«? hf cM-v* J tthen Wie ovi'^ui' rvp.jrt is cUtkaltltdj 

i   o*<ii<iu* TINS ACnvi Tv (Cafpordfe «ulfiury J«. REPOHT »icuwi I « CLASSIFICATION 

Uni-iassified Graduate School  of Industrial Administration 
Cornegie-Mcllon University »6.   ÜHOUP 

Not applicable 
»RfPOHTTITLF 

Some Bayes  Estimates  of Long-Run Availabilif.y  in a Two-State System 

4. DESCPIPTIVE NOTES ("Typ* oi rcpjrt anrl.inctuMve duict; 

Management  Science Research Revolt May 1969 
5   AuTMORd; (FitH nem', middle initial, larl r jnv; 

D. P.  Gaver      and      M. Mazumdar 

t    REPORT   DA TL 

May 29,   1969 
13.    CONTRACT    .•;.."<   5 RANT   NO. 

NONR ?6U(24) 
b.  PROJECT NO 

NR 047-048 
c. 

d. 

7«.   TOTAL  NO. OP PAOES 

23 
7b.   NO.  OF   REPS 

6 
»a.  ORIGINATOR'S REPORT  NUMBERIS) 

Management Sciences Research Report No.  161 

»6. OTHER REPOKT NOtsi (Any other numbsr« thai may b« attlgntd 
Ihli tepntt) 

Not applicable 

10.   DISTRiBUTION  STATEMENT 

Distribution  of  this  document  is  unlimited. 

II.   SU^LP-MENT AP.V   NOTES 

Not applicable 

12.  IPONSCHINO MILITARY   ACTIVITY 

Logistics and Methematical Statistics Br. 
Office of Naval Research 
Washington, D. C.   20360 

13.   A EXTRACT 

The method  of Baycsian statistical  inference  is used  to derive  estimates 
of operational  parameters  in a simple  system  that can be in one  of  two  states' 
failed,  or operative.     The sampling plan consists of occasional  observations 
of the system  for  finite periods:   snapshop,  plus patch sampling.     Nuiucrical 
examples are given. 

DD/rj473   (PAGF ,, 

S/N  0101 -807-631 1 
Unrlassi ficd 

Security Classification 
A-3M0C 

■ . '... ;:*»■■  v 



I Ml .11II l.U     .     - ■■ 

I 4 

Unclassified 
Stomty C ij-isii'.i'aticn 

. i'"* 'in««tM.* ■^»iM.itflry-Ä.tF'« 

K t * Vionos 

RaliabiliLy 

Statistics 

Probability 

Systems 

Availability 

Bayesian 

InTerence 

L INK   A 

HOLE 

k't   *» . r»»  *i v» VPS»»» 

Pt i'^     FORM     <    a •'/'"•    z^,-,,. , 
'■»«•■fvir^fw^i^ifcr«« juMViMMUj .-«r «.i^wirvfc« WJ»iir*.-»«   **■ 

LINK,   e I I. I N «    C 
-4—.... 

w -       !    r - v 

J. .J 
S / '•   0 t 0 I - ? 0 ■ ■ f ■ 

UrielciFsi fled 
St oua'y CIs;. ■.' 

' 


