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Abstract

The method of Bayesian statistical Inference is used to
derive estimates of operational parameters in a simple system that can
be in one of two states: failed, or operative. The sampling plan

consists of occasional observations of the system for finite periods:

snapshop, plus patch sampling. Numerical examples are given,
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I. Introduction

In investigations in the area of systems reliability it is often
appropriate to consider systems which alternate between two capacility
states, up or down, according to some random process. One measure of

effectiveness that is of importance in such systems is the long-run

probability that the system will be up or productive when needed; the
latter is equivalent to the long-run fraction of the time during which
the system is productive. This parameter is also known in the literature

as the long-run availability or the operational readiness of the system,

but these terms are not standardized. The problém of estimation of the
above availability parameter received some consideration in a recent
paper [ 4], where the authors pointed out that operator log-book data on
fieid operations of systems may be untrustw§rthy and suggested some
sampling procedures for obtaining supplementary estimates of the system
parameters. These sampling plans yield the following two types of
observations on the system: a) those which reveal only the state of the

system at isolated time-points, and b) those which continuously record
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of fixed or random length. Cox [2] has considercd a similar saupl
plan for a problem in compuier acceptance testing.

The papers [2] and [4] use the method of maximum likelihood
to obtain estimates of the system parameters from the two combined
sources of data. Frequently, however, prior information about the
syétem parameters is available and is based on experience with previous
or current systems of 2 similar kind. A strong impetus to use thi
information often exists. Frequently it is incorécrated informally by
éngineers vho are familiar with particular systems. But there may ex
merit in carrying out a more formal analysis by exéressiﬁg at least
some of the additional information in the form of prior distributions
for system paramecters, and applying the technique of Zayesian inference. -
In this pa§er such analysis is provided for a particular class of sampling
plans, with the objective of estimating the long-run system availebility.

Since the maximum likelihood estimaies are not guaranteed to
possess any desirable optimal propértics in the hon-asymptotic case,
we believe that it will be useful to investigate other estimétes which
have known properties in the usual smzll sample situation, The Baje

est 1mates are, formally speaking, optimum with respect to the assumed

w

prior distributions and loss structure; in addition they offer one
plausible way for combining the a2bove two sources of data, provided the
underlying mcdel remains approximately valid. The fact that scome of

these estimates appear to improve upon the maximum likelihood estimaties

. .



in particular cases investigated (see Section V) offers heuristic
Jjustification for proposing these estimates.

In Section II a description of our sampling procedure an§ of
the system model is given., In Section III mathematical expressions
for the Bayes estimates are derived using the assumptions stated in
Section II, It turns out that these estimates can be represented in
explicit forms for a.special case of the sampling plan; these are
obtained in Section IV, Finally, in Section V some illustrative
numerical comparisons are give.. for different estimates obtained in

this paper.
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II, Assumptions
A, Description of the System Mode)

We assume that the times spent in the up and down states are
mutually statistically independent; both up and down times have the
exponential distribution. Specifically, if U1 and Di are the i-th up

and down times, then their densities are éiven by

(1) £x) = 2™ [x20],

(2) £5(y) peHY [y> o],

where A\ and p are unknown positive parameters, Thus the system is
described by a two-state renewal process (see Cox [1]). The assumption
of exponential density for the up and dovn iimes is made here because
it has been found to represent, at least approximately, a large variety
of embirical failure and repair time distributions and because of its
attractive mathematical‘properties.

Using (1) and (2) it can be shown that the probability of
finding the system in the up state a long time after it has been put

into operation is given by

: Hu _ B
(3) p = P{up in the long run} = E[U%+2[D] v
so that

= g : o =M
(4) q=1l-p= Pidown in the long run} = it

Suppose fhat observations are made at widely spaced instants, meaning

i

that prior knowledge is utilized to assure that the sampling interval

is greater than, say, 5(x+u)'1. Then the states observed are




effectively independent, and the probability that the system is observed

to be up is p.

B. Sampling Prucedure

Following [ 2] and [4], we consider sampling procedures which
yield the following two types of information on the system:

(a) A sequence of "snapshot" oSservations, which are available only
at widely dispersed instants. These snapshots merely reveal whether
the system is up or down at the instant when the observation is made.

(b) A sequence of continuous observations on the up and down times
of the system throughout intervals of fixed or random duration. Follow-
ing the terminology of [4], these observations will be called "patches".
Some examples of patch observations are given belcw.

When the exponential distribution holds and snapshots are made
at random instants, it is the time remaining in a given state after the
snapshot has been made (rather ;han the total time in the state, before
and after the observation) that follows the expoﬁential law with the
parameter appropriate to the state observed; intuitively thigvis because
long times in state tend to be observed, but renewal theory mathematics
proQides a proof. Thus under the exponential assumption we can consider
sampling plans, e.g., Case II below, where observations are not made
for the complete leﬁgths of the up and down times.

We now define the quantities which arise in the above sampling.

procedure and develop notations for them.
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a: total number of up intervals observed during patches.
x,: total up time observed; x,_ = I:=1 Xgs Xg being an individual
up interval (or forward recurrence time).
b;  total number of down intervals observed during patches;
b may be fixed or random depending on the sampling plan,
i=
down interval (or forward recurrence time).

Y4: total down time observed; Y = ib 1 Yi0Yy being an individual

a: total number of snapshots showing the system to be up

B: total number of snapshots showing the system to be down

It follows from the above description that the likelihood
function of the observations following the above sampling procedure
will be given by

-\ =
(5) ~ L(n, p)=e e '.“/+ub (_E_)u(._L

B
A k+p.)

A number of alternative sampling plans are special cases of the general

procedure described above. Two examples appear below.
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Case I
A system’s up and down history is continuously recorded

through k cycles, each consisting of one up period and one down period,

(possibly during the developmeﬁtal phase of the system). Thereafter m

rare snapshots are taken, r of which show the system to be up. In this

case
a=b=k
e=r; f=m-mr.
Case II

A system is observed m times at rare intervals, and eachhtlme
the system state and the remaining time in that state are recorded. If
r is the number of snapshots showing the system to be up, then

a=a=r

b=f=m-r

C. A Priori Distribution

We assume next that A and W have independent priors belonging

to the gamma family:

(6) f£,(0) = y(c,E50) = F%ES g1 B (» > 0)
and
(7) f,(p) = v(d,n;p) = 1:%-55 ad-le ™ (> o)

Containing (5), (6) and (7), we obtain the posterior density

e,

s it
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LOn ) (p)£,(0)

&) L)

At oy -plyn) a , B
¥ >\3+61e : pb+d 1(;"_%}-‘) (-):‘);—P .

In the above, ¢, £, d and B are assumed to be knewn positive constants
which will perhaps be estimated from the prior data available about the

distributions of A and p. In the case when there is no prior information

"we shall put c =d=1, £ = n=0. Itis seen from (8) that for these

values of the parameters, the modified likelihood function Lp(x,p)
reduces to L(\,p) as defined in (5). The prior distributions have
been assumed to belong to the gamma family since the latter is

conjugate to the exponential distribution.

D. loss Functions

Let » denote an estimate of long-run system availability, p.
The loss L(s, p) from estimating ® when, in fact, p prevails may be
specified in various ways. In general the loss should increase |
as the difference between ® and p increases, but the

loss associated with a negative error may not be the same as that

h
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assoclated with a positive error of equal magnitude. The loss
functions to be used here, however, will be symmetrical; they are

all related to the familiar mean squared error

(9) L(s, p) = C(p)(s-p)? .

We shall first consider the loss function which is the unweighted mean-

squared error

(10) L (s, p) = Cls - p)? .

where C 1s a positive constant.

It seems clear, however, that when estimating a probability
the importance of an error of the magnitude e = lb - pl may not be
independent of the probability level; an error of 0.1 may be of more
importance at p = 0.05 or 0.95 than ét 0.5. 'If so, the loss function
(9) with C(p) = C[p(l-p)]'l reflects this qualitative condition and

leads to the following loss function:

() 10, p) = sy 6 - p)2,

C again being a positive constant.
Still another criterion for estimating a probability, super-

ficially plausible when p is large, is that the fractional (per cent)

-2

error of the estimate be minimized. Thie leads to C(p) = p < and the

loss function

(13) Ly(s, p) = c@ I
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This paper is devoted to oktaining Bayes estimates with
respect to the above loss functions, which are all variations on the

mean-squared error theme. In specific instances other loss functions

may well occur, and the estimates implied must be constructed anew. It
is perhaps worth mentioning that the point estimation problem that
concerns us here is by no means the only relevant, nor even the most
important, statistical question likely to arise in practice. For
instance, one may wish to provide confidence limits for the unknovmn
readiness parameter on the basis of sample information, or,
alternatively, to test the hypothegis that one system is an improvement

upon another. Such problems are not considered here.

III. Bayes Estimates for Long-Run Availability under Patch-Snanshot
Sampling

In thils section we derive formal expressions for the Bayes

estimates of the measure of effectiveness under patch-snapshot sampling

for the system model we have descrited above.
e
Let bf, bg and bg be the Bayes estimates with respect to the 3

loss functions Ll’ L2, L3 when the prior distributions of A and p are
given by (6) and (7) respectively. In terms of the posterior distribu-

tion‘ofip the estimates corresponding to Ll’ L2, and l.3 are respectively

(14) 5{ E(P) ’

(15) 8% = f (1))

Ep~t(1-p)7%)




and
-1
(16) 6"3" = 5[2:51 ’
Elp )
5 Notice first that if the sémpling plan is simply to take m

snapshots, r of which find the system up, and if the prior distribution
of p is uniform, then 3} = (1:+1)(xrr+2)"1 while 3% = r/m, which equals the

maximum likelihood estimate. On the other hand, under similar

circumstances,
0 forr=0,1
by = { '
r-1 £ -
—m_' or r = 2, 3’ seey m.

If the prior is proportional to p, however, 65 = r/ml.

Since the Bayes estimate does not depend on the order in whiéh
the patch and snapshot observations have been taken because of the
expoﬂential assumption, we assume without aﬁy loss of generality that
the patch observations are taken first and then followed by the snap-
shots. Thus under the above assumption, X, and Y, denote respectively
the total up and down times observed in a sequence of (atb) successive
observations. It now follows from the familiar reproducibility property
of the gamma prior distributions with respéct to exponential distribu-
tions that the posterior distribution o# N\ and p after such observations
have been made will be given by y(atc, E+x+;k) and y(btd, T, ; 1)
respectively; [seé (6)1-. Further, the posterior distribution

of the ratio p = Igﬁ after xl,

observed can be shown to be of the form

X2, ooy Xa, Yl, Y2, coay Yb have been




g(p1Xi=xi; YEyg, 15 1,2,00,8 521,2,0.0,b)

(17)

_ D(atbrctd) _(:;+x+)‘*°(q+y+
Fate)Nbrd) [x, 48+ (nty, -E=x )p

)bi-dpbi-d-l(l_p)ai-c-l

]a"'b"“ﬁd H OSPS 1.

Moreover, after (a+p) snapshots have been taken which result

in a successes, the posterior distribution will be

(18) g(plxl,xz,...,xa; yl,yz,...,yb;a,p) - ._h(p) ,
‘ JJ h(p) dp
o
where
(19) h(p) = pb*.d+u-1(l'P)a-*‘c'-ﬁ-l[x++§+(ﬂ"'Y+'E-X+)p]-(a+b+c’-d)3
' | o<pgl

Now using (14), (15), (16) and (18) we finally get (see [3]) that

o = Blatarctl, biptd) | F(atbtctd, atarctl; atbratBrcrdtl;z)
(20) 1 = B(atat+c, btptd) F(atbtctd, atatc; atbtatf+ctd;z)
m N
b+a+d . F(atbtctd, btdratl; atbtatptetdtl:z)
at+bta+ptctd  F(atbtc+d, bratd; atbtatptcd;z)

(See [31)

where F(.,+;-;-) is a hypergeometric fpnctioq/representable as

F(a,B5v;z) =1+ §I$ 2 a(g+.'lz)$§$i; -

and
X, Ae-1-y,
z =t ———-;Z— @
Xy
Similarly,
(21) g - brdtad  Flatb’ ctd, bratd; atbratprotd-1;z)
2 ~ atbtctdtatp-2  F(atbtctd, btatd-1; atbtatpretd-2;z)

12
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and

(22) px = _btatd-2 . F(atbtctd, bratd-1; atbtctdratp-1;z)
3 ~ atbtctdtatp-2 F(atbtctd, bra+d-2; albrctdratp-2;z) ’

However, to ensure convergence of the hypergeometric series

occurring in (20), (21) and (22), we require that

(23) lz| <1,
which implies that
(24) 0 <y, + 1< 2(x+E).

This does not seem too severe a restriction in view of the fact that for
most of the systems in practice, p will be near 1 and therefore with a
high probability the total -up time: in a inen situation will be larger
than the total down time . When (24) does not hold, the form of solution
given in (20)-(22) will not be usable,

We thus see that the three Bayes estimates we have considered
can all be expressed as products of the quotient of two hypergoemetric

functions and a simple fraction. In general it will not be possible to

simplify the above expressions further and reduce them to a more |
convenient form. However an equivalent representation in terms of
continued fractions can be given. We notice that the two hypérgoemetric

series associated with the Bayes estimate are of the form F({, ml; nt1;2z)

and F(4, m, n; z). From a result given in [3], we have

13




F(4, ml: n+l; 2)

(25) F({, m; n; 2z)

where
(26) u

L&*s-l)(n-m+sfl%
s (n+2s-2)(n+2s-1

(mt+s)n-Ats)
s (mrt2s-1)(nt2s) ?

v 8 =1, 25 Jubh o

Thus the ratio of the .wo hypergeometric functions aépearing in the
expressions for the Bayes estimates can be réplaced by a continued
fraction; there seems to be a possibility of extracting useful
approximations from this representation. When a = B = O(i.e. no shapshot
information is used), it can be shovm that v, = O in the continued
fraction expansions for the Bayes estimates bg and 35 co that they ray

be represented in simple explicit forms in this speclal case. In this
case they can, however, be obtained more directly and because of the
relétive case with which they can be evaluated, the direct derivation

of these estimates under patch-sampling alone is given in the following

section,

14
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I1V. Bayes Estimates for Long-Run System Availability under Patch Sampling

The preceding developments have yielded the formulae (20), (21)
. and (22) for the Bayes estimates of the system availability, p, when
patch and snapshot information is available, The purpose of this
section 1Is to show that when patch infromation alone is utilized; the

Bayes estimates 65 and b*3 resulting from lose functions L, and L3 may

2
be presented in simple explicit forms.
If a up intervals have been observed haviig total uptime Xy

then the posterior density of N\ is gamma

~(E N [(5+ x ]!
Icta)

(27) Yl(c+a;§ x5 N) = e (E+x,)

and similarly the posterior density of p is the independent gamma

-(nty, Jp [(fr“y,,)u]'m"1
| (28) Yo(btd, nty ;p) = e (5rd) (nty,) .
l The Estimate 65 under Patch Sampling
' If posterior informatioh concerning p = KEE is contained in

(27) and (28) then we may rewrite (15) as follows:

™ oo
t[ t[ (1+ E)yyv, drdp
(29) 55' = o©

| ([ [ G DG Prr, o

The gamma integrals are easily evaluated, and we oblain

15
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X +F)
¥ = v (Y +n)(a+c |
i (30) 8% = :
; ! ‘ ( )(a+c 1) (x +E)(b+d 1)

n=0, c=d=1 ("flat" priors)

For the special case in which §

(1) i vt
3 0% = , Where
S R R
x = x/aand y=y/b. As a and b become large (31) approaches 5
the maximum likelihood estimator —- ; for finite a and b, the right

' Xty . !
: hand side of (31) is somewhat larger than the meximum likelihood

estimate when the latter exceeds % . |

The Estimate % under Patch Sampling

3 t

The form of the estimate b§ may be found in exactly the same |

manner as was used to obtain 3% . From (16) we similarly obtain .
y.tn
1+ (x 0 ey

% =

22) . (y,+ n)2
1+ 2B e Ty ¢ Larellaen)
X+ brd-1 (x. + 1) " To+d-2)(b+d-1) *
+

16
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V. Numerical Results

The estimates we have obtained above are optimum when it is

assumed that “he system parameters have prior distributions given by

(6) and (7) and loss functions are as given by (10), (11) and (12).

It is however of considerable importance to investigate their
performance in samples of realistic sizes when the actual system
samples is given a fixed set of parémeter values, Since any analytical
results appear to be difficult to obtain for the general case, we carry
out the investigation by means of experimental sampling for a specific

system involving the following set of parameter values:

‘N = 0.2 (expected up-time of 5 units)
# = 1 (expected dovn-time of 1 unit)

The particular sampling plan used is that of Case I described in
Section IIB, The following parameters are chosen for the sampling
plan:

k

5(number of initial periods observed)

m 10 (number of later snapshots).

A synthetic system realization is observed cortinuously through five
coﬁsecutive up-and-down times, after which merely the state -- up or
dovn -- is ncted; snapshots are taken at intervals of approximately 15
time units. Altogéther five hundred such sample realizations are
examined. From the data for each realization the estimates bf, 55 and
bg are computed’using (20), (21) and (22) and substituting ¢ = d = 1;

§ = n =0 (the parameters corresponding +c "flat" prior distributicn}

17 .

- o s L SN0 SRR ) PR VAN AR P "¢ " 3)




in the above expressions. The data used for the purpose of these
investigations are the same as reported in [4) and it is therefore
possible to compare the maximum likelihood estiimate obtained there
with the above Bayes esctimates. In addition, the estimates are
computed using merely the outcomes of the k = 5 initial period
observations, omitting the snapshots. A summary of the results
(computed from 500 independent realizations) showing the averages
of the estimates and their mean squares about the true value are

given in Table I. The last row in this table gives the value of

the Cramér—Rao lower bound for the variance of the unbiased estimate

of p, which has been computed from the formula given in Lehmann [5].

For Case 1 of the sampling plan, this lower bound is given by the
right hand side of the following inequality:

o2 5 — 2p°01-p)°
T= 2 2.2
2k“+2k(m-2k )p(1-p)-{1-2p)°k

where T is any unbiased estimate of p.

18
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"TABLE 1
Estimates of Long Run Availability
M=l p=0.2 p= 0833, k=5 n=10
(The Bayes estimates have been computed with
respect to "flat" prior distributions)

T Oy,

Estimate Averages Mean Squares
.- Patch-Snapshofy Patch only; Patch-Snapshot| Patch oaly

5{ 0.8155 0.8017 .005725 .009735

' o .

62 0.8353 0.8288 . 005486 .909&97

5; 0.8007 0.7710 .007778 .01783
Maximum Likelihood 0.8223 0.8154 . 00577k 009745
Cramér-Rao e JE—

Lover Bound . 00495 .00TTh
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The above table indicates that even in the absence of g;p;iori

information the estimates bf and b; are perhaps a little better than the

maximum likelihood estimate for the particular set of parameter values,

\ and p, assumed. The estimate 55 scems to have a slight edge over both

br and the maximum likelihood estimate. On the other hand, the estimate

3% appears to be definitely inferior to the other estimates. In view of

3

the above fact, a more detailed inveétigation of the estimates bf'and

i ‘
65 seems to be warranted. For all these estimates, patch-snapshot

i H
sampling considerably reduces the mean square errors below those

‘ '
obtained from patch sampling alone. %

If there exists accurate prior information about the

! ,
distribution of system parameters, we expect that the mean square should
I ]

be reduced considerakly bv incorporating the available prior info#matioh '

f ' ’
in our estimates. To investigate the effect of this reduction, the '
! i

above estimates were computed with respect to three sets of yamma

| i
distributions each having E(#) = 1.0 and E(\) = 0.2 for one hundred
A |

sample realizations of the system degcribed above. The mean squares
of these estimates are disﬁlayed ir %able 2. Columns (1) ’:lumn:.(,x
and (5) of the table give the result% coresponding to the generalized
maximum likelihood estimates obtainea by maximizing (8) and using the
formulae (é.S) and (2.9) of [4]. Th;s table shows that reduction of
the mean square error is indeed effe;ted by using the above set of

i 1

priors, as is to be anticipated. This table indicates that b§ is

definitely inferior but as to the relative efficacy of the other estimates,

Table 2 is somewhat uncertain. Also it musi be emphasized that only one

t

parameter value, p, and a few prior distritutions were considered.
ot i 20

i
1

i

+
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Table 2
Mean Squares of Estimates of Long-Run
Availability ‘Using Prior Information
B=1N=02 p=0.833, k=5 mn=10

| Patch-Snapshot Patch X
, Parametsrs GM. 8k BX- ) GML ) o 8%
| of the . g 3 = £ ?._
1
| e, (0 (2 (3 (4) (5) (6 (m (8
1. ¢=0.2;d=2,0 .00k21L  ,00k303 .0CL3LO ,005763 | .006206 ,006835 .006420 .01182
¢=1.0; n-2.0
; 2. ¢=0.2;d=10,0 |.002973 .003236 .003194 004198 ||,003785 .00uB78 .004OTE :0CE575
§ 1.0;1=10.0 :
‘ 3. ¢=10.0;d=2.0 |.002730 .002540 .002541 .003195 [.002994 .002922 .002808 .0C4257 1
| £=50.0;n-2.0
o
! l
| |
; ! *
| o
i ! !
o
| o
l | ; |
| | o
| ! ; ]
I
l : : g ! 1
| N ; ) ! |
| ' ; '
| %
x
) 21 | ]
i
E
i et s WE{M
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