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OPTIMIZATION OF ARMAMENT DESIGN

by

H. O. Hartley, R. R, Hocking,
L. R. LaMotte and H. H. Oxspring

1. Introduction

In this report, we describe a mathematicsl programming solution to the problern
of optimizing the design of the warhead of o missile for the purpose of destroying
enemy aircraft. The warheed consists of fragments and explosive chsrges. Upon
detonation of the explosive, the fragments are projected outward. By suitably
packing the fragments a:nd the explosive it is possible to control the fragment
pattern, thus the problem is to determine that fragme~-t pattern which will be
most effective. The velocity and flight psth of the target relative to the
irtercept missile will vary, but it is assumed that they vary according to
known probability laws, In view of this, the problem to be solved is that of
determining the fragment pattern which will maximize the probability of destroying
the target.

In Section 2 we develop the basic no.ation and assumptions tor the special
case in which the flight path of the torget and the intercept missile are in the
same plane, In Section 3 the optimizstion problem is described and in Section
i the mathematicel progrsmming problem is formulsted for this coplenar case.

The formulas necessary for implementing the solution are developed in Section 5
and an example is given in Section 6. The generslization to the non=coplanar

‘ase is developed in Section 7, end other extensions developed in Section 8.

7. Notation

The notation for the problem will be developed in terms of Figure 1 vhich

illustrates ¢ typical intercept situsticn, It is assumed that ot time t = O,
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Figure 1. Typical Intarception




the aissile is et point A on the indicated flight path traveling with velocity

v,, and that the target is at point F on the indicated flight path and hac

IS

T

at point E. The angle of detection ¢ ic known. At time t = td’ the missile it

velocity V.. At time t = tD, the missile is at point B and the target is detected

at point C and the explosives are detcnated yielding fragments whose velccity is

VF' Finally, o fragment, projected at an angle Y, is sssumed to intercept

the target at point D with t =t The angle y denotes the =sngle ¢t which the

I.

frugments strike the missile at a velocity Vs’ The wvulnerability of the turget

will te denoted by A(y, Vs) which is assumed to be a known function oI y and Vs.
The following quantities sre assumed known:

(1) v,, the missile velocity

M)

() ¢

4 tD’ the delay time after detection

(3) Vp» the fragment velocity

(4) w, the detection angle

The velocity of the target V_, the angle 1) between the two flight paths

T
osnd the coordinates of the point E are not assumed known. However, it irs acsumed
thnt they follow a known protability law, This probebility law is described

in terms of VT’ M and Rm where Rm denotes the minimum distance hetween the micaile

an1 the target if they follow the present flight path. e chall denote the jci

Ai-tritution of V., M, R by r(vT, n, Rm).

3. Foimulation of the Optimizstion Problem in the Ccplanar Cnse

The probability of destroying the tsrget may be expressed in terms cf R,
the distsnce the fragment travels, @, the angle at which the frogrent is proi- -1,
v+, the engle ot vhich the fregment strikes the tsrget and V_ the velocity st

interception. For given values of R, €, y and Vs, this probability is nssumed

to be given by




|\0

PR, 9, v, V) = 1 - exp{- Ay, v,) )/ ) - (1)

The function p(6) represents the fragment density function in terms of the angle
€. (It is ossumed that the fragment pattern is symmetric about the axis of the
missile,) The 'intercept geometry', (R, 9, vy, Vs) depends on the missile constants

Vys tq = tps Vg and # and on the target variesbles Vp» M, and R which are dis-

M’ F

tributed according to f(VT, n, Rm). In Section 5, the formulas for determining
the intercept geometry (R, 6, vy, Vs) in terms of the missile constants and the
target variables sre developed. Thus & probsbility distribution is induced on
the intercept geometry. Denote the joint distribution of the intercept geometry
varisbles by g(R, 6, vy, Vs). The aversge prcbability of destroying the target

is then given by

[a(r, & v, v,) {1 - exp( - Aly, v,) o(8)/8D)} (2)

where the integration is over the range on the variables (R, 6, vy, Vs)'
The objective is to determine the density function p(8) so as to maximize

the 'kill' probability given by (2). Since

IE(R) 6 v, V') =1 (3)

it is sufficient to consider the minimization of

2
Je(R, 8, v, V) exp ( - Alv, V) p(8)/R") . (4)
The function p(®) is constreined to satisfy the requirements

Jo(8)ad = M (5)
and

p(8) >0 for all 9, (F)




The constraint (5) is the requirement that a given number of particles will be
packed into the warhead and (6) is the obvious requirement that the density
function be non-negative.

The minimization of (L) with respect to p(®8) where p(6) must satisfy
(5) and ‘6) is o problem in control theory, that is, the calculus of variations
further complicated by the inequality constraint (6). Only special cases of
thic general prcblem have been solved and the complexity of the integrand in (L)

forces us to use an spproximate method of solution,

.. The Mathematical Programming Solution

In order to solve the problem formulated in Secticn 3 it is necessary to
sssume that

(i) the dictribution f(VT, M, Rm) is discrete and,

(i1) it is sufficient to determine p(8) for only a finite set of values ar!

then approximate p(®) by a LaGrange interpolating polynomial,

With these assumptions the problem described by (L) (5) snd (6) is now written

as

2
minimize T g, exp{ - A(Vi’ v, ) pi/Ri} (7)
p1 i i
subject to L ap, = M (8)
i i
Py 20 (9)

The sum in (7) and (8) is over sll points (R, 9, vy, Vs) which have positive
probability in the discrete distribution g(R, 9, vy, Vs). The variables CHY
represent tnc value of the fragment density function at the corresponding valvec

of 8, that is, Py = p(Bi). The constraint (2) is juct a suitstle zppreoximation
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to the constraint (5) for the relevant values of 6,
Rather than determine the density at the points Oi as determined by the
distribution g(R, 6, vy, Vs) it has been decided to specify in advance a set of

variables 9;, k=1, «s., r ot which p(6) will be determined. The approximation

to p(6) will then be given by a LaGrange interpolation over these points, that is ’
r
p(€) = Z 1(%, s = p(8) (20)
k=1
where
r
n(e. o)
q=1 1
ﬂ-———’
L (8) = J& . (11)
O .
n (6 - %)
q=1
afk
The functionsl (7) is then written as
r
E 84 exp{ - A(Yi’ Vsi)kfllk( Oi)pk/Rf} (12)

and the minimization is over the Pye
It now remains to determine the distribution g(R, 6, vy, Vs) induced by the
distribution on VT’ M, Rm' The appropriate formulas will be developed in Section
5. In fact, it is not necessary to explicitly develop this distribution but
rather, the functional (12) is expressed directly in terms of the varisbles
VT’ n, Rm as follows:
N

Z

) £ 14,(9,) 5/} (13)
j=1 k=1Lk e 1 I 3

fj exp{ - A(YJ- VsJ

In (13), it is sssumed that the distribution f(V., 7, Rm) assigns protability
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to N poinrvs, (VT’ 1, Rm) of fj, J=1, «c., No Further, RJ' Gj, Yy Vo

dAenote the values of these variables for a given point (VT’ M, Rm)j as ccmputed
trom the formulas in the next section.

The function (13) is seen to be convex in the variables and hence 1its

Py
minimization subject to the constraints (8) and (9) is just a problem in convex
progremming and can be solved by a number of algorithms. In Section 6 we describe

an example using the Hartley-Hocking (. «,3) c-nvi:: pregreoning algerithm,

5. Development of Formulas for the Coplanar Case

The solution of the programming problem developed in Section 4 required that
ve develop expressions for R, 6, y and Vs in terms of VT’ M, Rm as well as the

constsnts V.., t and #.

M* d F
For convenience, we shall assume that t

'tD’V
e 0, hence the point (xo, YO) repre=-
cents the coordinates at which detection is made. In general, the point on the
target which we wish to hit, say the target center, will not be the same as the
point which is first detected. Let (X;, Y;) be the coordinates of the target

. = * = .

center at t = O where xo = Xo + ¢ Y; Yo *c,
Let the coordinates of the terget center at time t be denoted by (xt’Yt) whr re

X, =X* -tV cos T
t o) T (14)

Yt = Yg -t VT sin T .

Similarly the coordinstes of the missile (XM, Yz) at any time t are given by

XM atV

t M
M (15)
o
The coordinates of a fragment projected at sngle 6 for any time t > td are given
by (xf, YF) where
t
= S 0
xf t vM + (t td) vF cos
= = 0
Y{ (t td) Vg sin (16)
0<6<2on,




The first task in describing the intercept geometry is to determine the time

of intercept t This is achieved by solving the equations

e
X, = X;
(17)
S N
Using (14) and (16) the equations (17) become
X$ -tV ocosT-tV, = (t - td) Vg cos ]
(18)

Y-t VT sin 7

Squaring both sides, adding and simplifying yields the following quadratic in t:
2
t (vi + Vﬁ +2 VoV cos M - Vi)

2
- * -
2t(x;;v,r cos T + X2V, + YV, sin 1 thd)

*Of e xf - - 0 (9)

For certain values of the input varisbles and missile constants, this quad-
ratic mey have either zerc,one or two reslroots which exceed td. The usual case

will be that only one root exceeds td’ end this will be t If no roots exceed

I.
ty for the Jth case that is (V., 1, Rm)j then it is impossible to intercept
with this choice of input verisbles. In this case, the jth term is deleted

from (13) and the solution obtained ss ususl. However the kill probability

(2) will now be decreased by an amount f,. The case of two roots grester than

J.
td indicates thet two 'hits' are possible. At the present time we only consider

one snd hence let tI be the smsllest root greater than td.

Tie ansle GI yielding the interception is new determined frem (18) by settinz

oA iI ard colving for @, The dictence the fracmert muct travel, R., is then

given by
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2 3 =
Rp = (X, = Vt)" + Y, . (20)

tI I

Finally, the angle at which the fragment strikes the target is given by

Y =y*-1
where tan y* = ;EX (21)
SX
and VSy = Vg sin 0+ Vip sin 7
Vox = Vy * Vg cos 9+VTcos M .

The striking velocity is given by

V2 = V2 + V2
s s

5X (22)

y

Inspection of these re. ults shows that we hsve expressed the intercept
geometry (R, 8, vy, Vs) in terms of X¥, Y* the coordinates of the target center st
t = 0 rether than the miss distance Rm as desired. The modification of the
formulas is easily achieved. For a specified detection angle @, the detection

point satisfies the equation

Y, = X, ten g . (23)

The squared distance between the missile and the detection point at any time t is

given by
R2=(X - (v cosT]+V))2+(Y -tV sin‘n)z. (2L)
o] T M o] T
This distance is seen to be minimum for t = tm where

. XO(VT cos T + VM) + ¥, Vposin 1 o
m 2 2
Vt + VM + 2 VTVM cos 1|
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In view of (23) we have

Vi cos 1+ V, + Vp sin 1 tan ¢

M
t =X (26)
m 0. ¢ 2
VT + VM +2 VTVM cos 1)
(26)

X, K(Vy, Yy, M, @) .

The square of the miss distance is thus given by substituting (23) and (26)

into (24). Thus,

o]
It

xz {[1 - (Vpcos 1 + VM)H]2 + [tan @ - Vp sin 7 H]z}

xi G(Vp, Vi M, #) (27)

Thus, for a specified value of Rm vwe can determine Xo end hence x; and thus

specify the intercept peometry. The procedurec is surmarized as follows:

(1) From (27), determine

[]
3

28
and xg = xo + c1 ( )

(Note: It is assumed that G is different from zero. The case G = O

VT sin 7

VT cos 1| + VM

arises if tan @ =

and corresponds to zero miss
distance.)
(ii) From (23) determine Y and Y¥ =Y + ¢, and then deternine the tize

of intercept t._ from (19).

I
(1i1) The intercept geometry (R, 6, v, VS) is then determined from (20),

(18), (21) and (22).

Thus each term in the functionel (13) may be evaluasted. Using the same
informstion the derivatives of (13) with respect to Py ey be evalusted for any

perticulsr point Py = pﬁ. These two evaluations are all that are necesssry in
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the Hartley-Hocking convex programming algorithm and hence the optimal solution

is readily obrained.

6. Illustration of Computations in Coplanar Case

The optimization problem a8s formulated in Section b required the minimization

with respect to Py X =1, saey r of

N r
2 exp{-A(v RIEANENS /R‘j} (29)

cubject to the constrajints

r
Leap =M (30)
k=1 k"k
pkzo k=l, seey T o (31)
The o, k = 1, ..., r represent the value of o(8) for specified angles 9{,
kK =1, «euy r aud the spproximation to p(0) is then given by
r
p(®) = I L.(8)p, (32)
k=1

vhere Lk( 8) sre the LaGrange interpolation coefficients as given by (11). It
is clear that the constraint (31) is not sufficient to guerantee that the
approximate fragment density function (32) will be non-negative for all 6,

To partially rectify this situation we edjoin to the problem the constraints

r
z (9 )p 30 J=l, ooc,N. (33)
k=lLk J'Tk

Since these constraints sre lirear in the varisbles Py the problem may still be




solved using the convex programming algorithm. In addition to giving added
assurance that the approximation to p(6) will be non-negative, the constraints
(33) insure that the optimal solution of (29) is between zero and one which is
essential,

As observed esrlier, the minimization of the functionsl (29) subject to

the constraints (30), (31) and (32) by the Hartley-Hocking algorithm requires
that we be able to evaluate (29) and its derivetives with respect to pk for
specified values of Py? K =1, «oey re In this section we shall illustrate the
procedure used to prepare the problem for solution. In particular, consider the

evalustion of one term of the functionsl (29), that is

r
f, exp{ - A(VJ, vsj) kfl Lk(ed)pk/Ri} . (3%)

Recall that the missile constants V.., t and § are fixed but that N

M? “d F
triples (VT’ uR Rm)J, J =1, «.., N are specified.

-tD,V

The exemple considered hss,

Vy = 5000 ft./sec. |
[
Vg = 11,000 ft./sec. |
A(yj, vsJ) = 1000
td - tD = ,002 sec.
¢ = "/h

the density, p(©), will be determined for the points

n k=-1)m
elt=H+£_lzL, k=l,--o,r=9o
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The distributions on VT’ N, and Rm are sssumed to be

y vy = 4000, k250, L500, 5000 ft./sec.
)

otherwise |

1 n n
T N=%0, -
i = { R

otherwise
1
= R _= 50, 100, 150 ft.
3 m
£f(R ) = {

0 otherwise.

|
|
The numbers used for this test problem sre not based on real data but are merely
designed to provide a simple example.

For simplicity, it is assumed thet the variables VT, T and Rm are independent,

thus

£(Vgs M5 R = £(Vp) £(1) £(R)) .

The first step in the evaluation of i) is to determine which triple (VT’ 1, Rm)
is being considered. Let VT = L5500, n =0, Rm = 100, We cer ‘lat <here fp-

N =3 triplas and Ir ‘kis sircple exarrle,
f'j='3z .j=l’ ceaey N . (35)
We then determine X according to (28) and Y  according to (23) es

100

tad
L[]

100 .

<
n

e ncoume Xn = Zx end Yo = Y; fror this exsmrle, t sheuld tre chserved “het, irn
eneral, Adetectien ~ould cceur for aither [ = ﬂ/h rrf o= -ﬂ/h' We adepl the

cenventien Shet sar. J > 0, shst Iz, 720,
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Substituting into the quadratic (19) and sclving yields

= 0.0111

ct
ite

We now solve (18) for 6. Let

. YO-VTtIsmn_
sin @ = CREEN)] =V
I da’'F

X, - (VT cos 1 + VM)tI
(ty = £V

cos ©

The value of O is obtained according to the following rules:
(a) If arc sin (V) <0 then

(1) e

(2)

2n + arc sin (V) if cos 6>0

m - arc sin (V) if cos 0 <0
(b) If arc sin (V) >0

(1) © = arc sin (V) if cos 8 >0

(2) © =m - arc sin (V) if cos © <0,

In this case we obtain the intercept angle corresponding to the current choice

(VT’ )P Rm)J as

GJ = 1,626 RAD .

From (14) the position of the target at intercept is given by

>4
L}

L
xo tIVT cos 1

100 - (45C0)(0.0111) = 50.5

<
[}

Y; -tV sin N = 100

T




NS =

and hence from (20) we obtain
2 4
Rj = 1 . 1602 x lo L

Next, we must evaluate the T.aGrange interpolation coefficients Lk(e) for the

current value of 6, = 1.6257. For example,

J
9
AT
L (0,) = 1;—2-—-— = 0.000¢3
(o - ox)
122

Repeating this for k = 2, 3, .us, r = 9 would ,i2ld the terms Lk(qj),
k=1, «ss, 9.

Finelly, from (21) and (22) we could obtein \2 and V_ end eveluste
A(y, VS). In the current example the function A(y, Vs) wag assumed constant
so this is not necesssry. At this point we have available the necessary
information to evaluate (3L) for any choice of Px and also its derivative
with respect to any Py The procedure described above is then repeated for
all possible choices (VT’ M, Rm)j to generate the N terms in the sum (29).
It should be emphasized that all of this computation is done prior to the
application of the convex programming slgorithm. This algorithm will not be
d escribed at this time.

The spproximation (3)) to the integral constreint (5) was trapezoidal.

Thus

The value of M wrpe ascumed to be 2000 %é
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For this data the convex programming algorithm gave the solution shown

in Table 1.

TABLE 1. Solution to Example Problem

k ok "
1 0.250 n 0

2 0.3125 m 0

3 0.3750 n 0]

L 0.4375 m 1359.2
5 0.,5000 n 433.9
6 0.5625 n 17.8
7 0.6250 n 109.9
8 0.6875 n 79.2
9 0.7500 n 0.0

The approximstion to p(8) is then given by (10) and (11).

probebility (2) is given by

P = l = 001535 =S oc8b65

The kill

Execution time on the IBM 360-65 for this example was 0.0k minutes.
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7. Development of the Three-Dimensioral Case

In this section we consider the extension of the problem to the more general,
three-dimensional case. A typical intercept situation is illustrated in Fig.re
2., The X-axis is agsin the flight path of the intercept missile. At time
t = 0 the terget is detected at position (Xo, Yo, Zo) traveling with velocity
VT on a flight path deccribed by the angles T} and W. At time t = tD = 0 the
tarpet is detected with detection angle #. At time t = t the explosives are
detonated and finslly at time t = tI a fragment projected in a direction described
by the angles o and B is assumed to intercept the target. The striking anrle vy
and velocity VS are defined as in the planar case.

Following the development in Section 5 we shall now develop the expressions

for the variables describing the intercept geometry in terms of the missile

constants and the target varisbles. Let the coordinates of the target at time

t be
Xt = X; -t VT cos « cos T
Y, = Y% -t V, cos usinT (35)
Zt = Z; -t VT sin
where
X; = Xo + Sy Yg =Y, * Cos Zg = ZO + c3 .

The coordinates of the missile are

X =t v

£ M
Y’t‘ 50 (36)
Moo




Target
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The coordinates of a typical fregment are given by (t > td).

X

%

tv, +(t- td) V.cos B cos o

t M F

(t - td) Vg cos 8 sin o
(37)

i |

(t - td) Ve sin 8

0 <o <2n -

= B

M |
UM

is determined by setting Xt = Xf, Yt = YF,

As before, the time of intercept t t

I

Zt = Z: » 8nd solving for t.

Using (35) end (37) we obtain

X; -tV cos «cos I

- o
T tVM+(t td) Vg cos B cos

Y¥ -t V, cos usin 1| (t-td)VFcosBsino ‘ (38)

T

Zg -t Vv, sin ¢

. (t.-td) Vp sin B

Fliminating o and B yields the following quadratic in t

2 2 s 2
t (v$+vM+2vaT cos (' cos M vF)

+ Y;V cos wsin T + Z;VT sin v - V

M T ptd)

-2t(x;vT cos (' ¢os T + XV

2 2 2 2 »
+XE4YEZE -Vt =0 (39)

The last real root of (39) which exceeds ta is the time of intercept tI. We then

ottain OI and B, from (38) and finslly Ri is obtained frem

2 2 P pd
= - l,‘ C‘
RI (XtI VMtd) + YtI o ZtI . (L)

Inspe~tion of these results chows that we have des~ribed the intercept

cecmetry in terms of XS, Y;, Z; and the two angles o end @, Ascuming thut the




g
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fragment pattern is symmetric with respect to the axis of the missile, it is not
necessary to specify a and 8 but only the zngle that the fragment direction makes
with the missile axis. Denoting this angle by © as in the planar case we see

that © is given by

cos 8 = cos @ cos B. (41)

The direction of the fragment and its velocity relative to the target ere

determined by the quantities

st = VM + VF cos § cos o + VT cos (" cos T

= : \ 3 -
Vsy = Vg cos B sin o + Vp cos « sin ) (2)
Vsz = VF sin 8 + VT sin (.

The angles Yy and Yo as indicated in Figure 2 are given by

Yl = YI - T]’ Y2 = Y5 - (143)
vhere
vs Vsz
tan y* = =Y and ten yx = y (L)
l Vv 2 2 2)’5
sx V._+V
5X 5y
The squared velocity is given by
VeV eV eVl (L5)
s sX sy 52

We now consider the problem of exprescing the intercept geometry in terms of
the minimum miss distance,

For a specified detection sngle § we see that
2 e 2 2
= % L
Y +2Z_ = ‘an ¢x0 (L6)

where (Xo, Yo Zo) is the detection point., The cquared dictance between the

Antantinar, Loin'. an) the miscile st any time t ic given by
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2 ) 2
R s t(Vy + Vp cos ¢ cos )

o (Yo -V, tcos sinn)2 (47)

,‘ S
+ (Lo -t Vv, sin W)

This distance is seen to be minimum for t = tm vhere
) LY 3 s w
- Xo(VM + Vy, cos « cos n) + YO(VT cos &' sin T])+ZOVT in
m 2 2 .
VM + VT + 2 VMVT cos (- cos T

(48)

The square of the minimum miss distance is thus given by substituting (48) into
(h7). To use the formulas developed thus far we now attempt to determine

Xo, Yo’ Zo in terms of Rm. It is seen that an additional angle must be specified
namely the angle which describes deviation from the coplanar case. Accordingly,

we define the angle ¥ by

lo

tan ¥ p (49)

<

Using (49) we obtain

Y =X_ tan f cos ¥
o "o
(50)
Z =X_ ten @ sin ¥
o o
Substituting (50) into (L48) yields
by = Xy Wi Vo T s ()

snd hence (L7) and (51) yields




- &2 .

2 2 2
Ry = X, {(1 - H(VM + Vp, cos ' cos m)

+ (tan @ cos y - Vp H cos wsin n)2 (52)

+ (tan § sin y - H Vp sin ajg} g

It shcould be observed that there is no loss of generality in assuming that
the angle V¥ is zero or equivalently that Zo is zero. This is equivalent to
assuming that the X-Y plane in Figure 2 is determined by the line of flight
of the intercept missile and the point at which the target is detected. Care
must be taken so that the angles 7, and « defining the target flight path are
described relative to this convention.

In view of the sbove comments, we see that either XO, Rm or for that matter
the variasble Ro defined as the distance between missile and target at the time of
detection may be used to determine the intercept geometry keeping in mind that
all of these variables refer to the point of detection of the target. The choice
of which of these variables to use will depend on the data available.

From this point, the procedure is just as in the planar case. That is,
specification of the missile constants and the variables VT, N, &, and either
Rm, Xo or RO ensbles us to determine the intercept geometry (R, 0, vy, VS) and
hence the mathematicel progrsmming slgorithm may be used to determine the

optimum fragment density.
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8. Extension to Multiple Targets

In Sections 5 and 7, the formulas for computing the intercept geometry
for the special case of a single point target were developed. These formulas
were then used to develop the mathematical progrsmming problem for the
determination of the optimum fragment pattern. Frequently, the incoming air-
craft will have more than one vulnerable point or target, for example the
engine and the pilot are normally thought of as distinct point targets. Usually,
destruction of some combination of these point targets is sufficient to destroy
the aircraft. Such combinations as (i) two out of three (ii) at least one and
(iii) either targets 1 and 2 or targets 3 end L4 are encountered. The development,
of the appropriate mathematical program for solving this extended problem
usually causes no difficulty but, in some cases, the resulting functional msy
no longer possess the desired convexity.

To indicate the procedure, consider the special case of an aircraft with
two point targets such that the destruction of either will result in de.truction
of the aircraft., Assuming that the location of the targets (1 and 2) relative
to the point of detection is known, then using the formulas of Section 5 (or 7),
two intercept geometries (R, 0, vy, v.), end (R, 9, v, Vs)2 may be computed. The
associsted kill probabilities, say Pl and P2 are yiven by (1). The probability

of destroying at lesst one of the targets for this intercept geometry is given by
1-(1-P)Q1-p) (53)

Assuming that Al(y, V_) and A2(y, Vs) represent the vulnerability functicns for
the two targets then the function to bte minimized, that is, one minus the

vverage kill probability (esnnlogous to (13)) is

. PP— T i~
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exp{ Ag(vej, ngj) flLk(eli) pk/RQJ. J (5%)

k
This function is seen to be convex in the variables P and hence the minimi-
zation of it subject to the constraints (8) and (9) es well as (33) is a
convex programming problem,

More general requirements on the combination of point targets which must bte

destroyed to insure the destruction of the aircraft cause no diff'iculty in forrmu.-

lation but in general lead to a lack of uniqueness and optimaltiy of the solutiou.

For example, suppose that the destruction of both targets is requireu. The
probability of destroying the aircreft for a given intercept geometry ic given
by P1 P2 where Pl and P2

(R, 8, Y, Vs)z' In this case, after reformulation as a mothematical progran

are given by (1) in terms of (R, 9, vy, vr)l and

we see that the function to be minimized is no longer convex. In this case,
more that one relative minimum may exist. The algorithm of Fiacco and
McCormick (196L) may be used to determine relative minimas and by using several
initisl points more than one relative minimim ~ay .+ -wewi.o i, ot o,
designer may have several fragment patterns suggested each of which are lucsliy
optimol, Assuming that they ere all physically and ecoromically precticsl he
would then select the one which yields the highect averapge kill protsbility.

Tl.ere is no guarantee, however, that there does not exist a superlor solution,
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