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OPTIMIZATION OF ARMAMENT DESIGN 

by 

H. 0. Hartley, R. R, Hocking, 
L. R. LaMotte and H. H. Oxsprinc 

1.  Introduction 

In this report, we describe » mathematical programming solution to the probleit 

of optimizing the design of the warhead of a missile for the purpose of destroying 

enemy aircraft. The warhead consists of fragments and explosive charges. Upon 

detonation of the explosive, the fragments are projected outward. By suitably 

packing the fragments and the explosive it is pOBßlble to control the fragment 

pattern, thus the problem is to determine that fragment pattern which will be 

noct effective. The velocity and flight path of the target relative to the 

intercept missile will vary, but it is assumed that they vary according to 

known probability laws. In view of this, the problem to be solved is that of 

determining the fragment pattern which will maximize the probability of destroying 

the target. 

In Section ? we develop the basic notation and assumptions for the special 

case in which the flight path of the target and the intercept missile are in the 

snme plane. In Section 3 the optimization problem is described and in Sfrticn 

'4 the mathematical programming problem is formulated for this coplanar cane. 

The formulas necessary for implementing the solution are developed in Section 5 

nnd  an example is given in Section 6. The generalization to the ncn-coplannr 

•rise is developed in Section 7, and other extensions developed in Section 8. 

?,     Notation 

The notation for the problem will be developed in terms of Figure 1 which 

illuctratcs 0 typiinl intercept Situation.  It is assumed thc^ at time t = 0, 

^■^ 
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the   nissile  is at point A on the indicated flight path traveling with velocity 

V and that the target  is at  ooint  F on the  indicated flight path and Mar 
M 

velocity V . At time t = t , the missile iz  at point B and the target is detected 

at point E. The angle of detection 0 is known.  At time t = t , the missile is 

at point C and the explosives are detonated yielding fragments whose velocity is 

V .  Finally, a fragment, projected at an angle B, is assumed to intercept 

the target at point D with t = t .  The angle y  denotes the angle et which the 

fragments strike the missile at a velocity V . The vulnerability of the target 
s 

will be denoted by A(Y, V ) which is assumed to be a known function of y and V,. 

The following quantities are assumed known: 

(l)    vu> the nissile velocity 

(?)    t    - t , the delay time after detection 

(3)    V_,  the  fragment velocity 
r 

(U)    p,  the detection angle 

The velocity of the target V , the angle 11 between the two flight paths 

and the coordinates of the point E are not assumed known. However, it Is arsu-T.?! 

that they follow a known probability law.  This probability law is described 

in terms of V_, 71 and R where R denotes the minimum distance between the micii1? 
T' '     m      m 

and the target if they fellow the present flight path. We shall denote the jci 

ii-trlbution of VT, Tl, Rm by f(VT, 7), Rm). 

"i.  Foinulation of the üotimizotion Problem in the Coplanar Case 

The probability of destroying the target may be expressed in terms rf R, 

the distance the fragment travels, <?, the angle at which the ffgrent is pro.1 :t-d, 

V, the angle nt vhlch the fragment strikes the target and V the velocity at 
s 

Interception.    For given values of R,  P, y and V  , this nrobabillty is  nrpuned 
s 

to be given by 

.jfc. 
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P(R, 9, Y. Vs) = 1 - exp{- A(Y. VS) p(6)/ 2} .       (l) 
R 

The function p(ö) represents the fragment density function in terms of the angle 

6.  (it is orsumc<i that the fragment pattern is symmetric about the axis of the 

missile.) The 'intercept geometry", (R, d, v. V ) depends on the missile constants s 
vu» tj " ^n» VP and 0 and on the target variables V_, Tl, and R which are dis- M  u   u  r r       m 

tributed according to f(V_, 71, R ). In Section 5, the formulas for determining T     m 

the intercept geometry (R, 6, y» ^ ) ^n terras of the missile constants and the s 

target variables are developed.    Thus a probability distribution is induced on 

the  intercept geometry.    Denote the joint distribution of the intercept ßeometry 

variables by g(R,   e, y» v )•    T*16 average probability of destroying the target 

is then given by 

/gCB.  e. v, Vß) {l - exp( - A(Y. V8) p(e)/R2)} (2) 

where the integration is over the range on the variables (R, Ö, y» v0)« s 

The objective is to determine the density function p(6) so as to maximize 

the 'kill' probability given by (2). Since 

Jg(R, e, Y, v8) - 1 (3) 

it Is sufficient to consider the minimization of 

Jg(R. 6, Y, Vs) exp ( - A(v. vs) p(e)/R
2) .        (k) 

The function p(6) Is constrained to satisfy the requirements 

;p(e)de= M (5) 

and 

p(e) > 0   for all 9. (6) 
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The constraint (5) is the requirement that a given number of particles will be 

packed into the vrarhcad and (6) is the obvious requirement that the density 

function be non-negativo. 

The minimization of (U) with respect to p(6) where p(6) must satisfy 

(5) and '6)  is a problem in control theory, that is, the calculus of variations 

further complicated by the inequality constraint (6). Only special cases of 

this general problem have been solved and the complexity of the integrand in (k) 

forces us to use an approximate method of solution. 

The Mathematical Programming Solution 

In order to solve the problem formulated In Section 3 it is necessary to 

Resume that 

(i) the distribution f(V_, T), R ) is discrete and, 

(ii) it is sufficient to determine p(e) for only n finite set of values ar.i 

then approximate p(6) by a LaGrange interpolating polynomial. 

With these assumptions the problem described by (U) (5) and (6) Is now written 

as 

minimize E g1 exp{ - A^, V.. ) p^} (7) 

subject to £ a p    = M 
I        i 

(8) 

P!^0 (9) 

The sum In (7) and (8)  Is over all points (P,   6, y, V ) which have positive 
s 

probability in the discrete distribution g(R, 6, Y» v )• The variables p s i 

represent tne value of the  frapnent density function at the correspondlnf; value: 

of 0, thnt is,  p    - p(6 ). The constraint  (8)  is Juct a  nult^llc  opprcxlmatlon 

■■—■-i 
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to the constraint (5) for the relevant values of 6. 

Rather than determine the density at the points 9. as determined by the 

distribution g(R, 6, y» V ) it has been decided to specify in advance a set of 
s 

variables 0*, k = 1, ..., r at which p(9) will be determined. The approximation 

to p( 6) will then be given by a LaGronge interpolation over these points, that ii 

p(£) i L  Lk(e)pk, pk = p(0») (10) 
k=l 

where 

r 
n (e - e») 

q=i   q 

h^-t  (n) 
n (e» . e») 

q«l     q 

The functional (7) Is then written as 

Z gi eXp{ - A(yit VSi)JiI1t(ei)pk/Rf} (12) 

and the minimization Is over the p.. 

It now remains to detemine the distribution g(R,   9, Y> 
v )  induced by the 

distribution on V , T),  R .    The appropriate formulas will be developed  In Section 

5.    In  fact,  It  Is not necessary to explicitly develop this distribution but 

rather, thr  functional (12)  is expressed directly In terms of the variables 

V-r.» Tli R   oc follows: 
i     m 

J^j exp{ - A(Yj> y.)*^)  V!) • <") 

In (13), It Is assumed that the distribution f(VT, T), R ) assigns probability 

**t 



to N point«, (V-, T], R ) of f , J = 1, ..., N. Further, R . 6 y  ,  V 

denote the values cf these variables for a given point (V , T), R ) as cc.mputed 

from the formulas in the next section. 

The function (13) is seen to be convex in the variables p and hence its 

minimization subject to the constraints (8) and (9) is just a problem in convex 

programming and can be solved by a number of algorithms.  In Section 6 we describe 

an example using the Hartley-Hocking (', .^) -t,v, :: prcgrc^inß alGcrithm. 

3. Development of Formulas for the Coplanar Case 

The solution of the programming problem developed in Section h  required that 

v.-e develop expressions for R, 9, y and V In terms of V , T), R as well as the 

constants V , t - t., V and 0. 

For convenience, we shall assume that tD ■ 0, hence the point (X . Y ) repre- 

sents the coordinates at which detection Is made. In general, the point on the 

target which ^e wish to hit, say the target center, will not be the same ae the 

point which Is first detected. Let (X*, Y*) be the coordinates of the target 

center at t = 0 where X* ■ X + c,, Y» = Y + c0. 00   loo? 

Let the coordinates of the target center at time t be denoted by (Xt,Y ) wh-- 

X, - X* - t VT cos T) (iu) 

Yt ' YS " t VT Sln ^ * 

Similarly the coordinates of the missile (Xv, Yv) at any time t are given by 
v.   X» 

Y?*0. 

The coordinates of a fragment projected at angle Ö for any time t > t are given 

by (X^, Y^) where 

< - t VM . (t - td) VF cos 9 

Y[ = (t - td) vF sin e (16) 

0 < 6 < 2n . 

re 



The  first task in describing the intercept geometry is to determine the time 

of intercept t-.    This is achieved by solving the equations 

F 
Xt = Xt 

Yt = < ' 

(17) 

(18) 

Using (lU) and (16) the equations (17) become 

XJ - t Vt cos 7) - t VM = (t - td) VF cos 6 

Y* - t VT sin 7) = (t - td) VF sin 6 . 

Squaring both sides, adding and simplifying yields the following quadratic in t; 

t2(v£ + v£ + 2 VTVM cos T) - V^) 

-2t(X*VT cos T] + X»VM + Y^T  sin 7) - V2
?td) 

+ ^1 + Y! * 4$ = 0 (19) 

For certain values of the input variables and missile constants, this quad- 

ratic may have either zercjone or tworeelroots which exceed t . The usual case 

will be that only one root exceeds t , and this will be t-. If no roots exceed 

t for the J  case that is (V , T], R )j then it is impossible to intercept 

4* V\ 
with this  choice of input variables.    In this case, the j      term is deleted 

from (13)  and the solution obtained as usual.    However the kill probability 

(2) will now be decreased    by an amount f..    The case of two roots greater thtm 
J 

t. indicates that two 'hits' are possible. At the present time we only consider 

one and hence let t_ be the smallest root greater than t,. 

Tta «n-lo Ö yielding the interception is ntw determined frcm (18) by setting 

* •% t and colvinc for Ö. The dlctence the fracnent nuct travel, Rj, is th^n 

f^iven by 
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RI = (xtI - Vd)2 + ^ • (20) 

Finally, the angle at which the fragment strikes the target is given by 

where tan y _ L* (21) 
Vsx 

and V  = V^ sin 6 + v sin Tl sy   F       T    ' 

V  = Vw + V,, cos 9 + Vm cos Tl . 
sx   M   F        T    ' 

The striking velocity is given by 

V2 = V2 + V2 (22) 
s   GX   sy v ' 

Inspection of these re alts shows that we have expressed the  intercept 

geometry (R,   9, Y> 
v )  in terms of X*,  Y* the coordinates of the target center at 

s o      o 

t = 0 rather than the miss distance R    as desired.    The modification of the 
m 

formulas  is easily achieved.    For a specified detection angle 0,  the detection 

point satisfies the equation 

Yo = Xo tan 0 . (23) 

The squared distance between the missile and the detection point at any time t is 

given by 

R    =  (Xo " t(VT COS ^ + V)2 + (Yo " t VT Sin ^  '     (2k) 

This distance is seen to be minimum for t = t    where m 

t   Xo(VT cos T) . VM) . Yo VT sin T] ^ 

1,1  Vt + ^ + 2 VTVM COS ^ 

•tJ1UUe^Km*m-J^m*——m 
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In view of (23) we have 

V COE T] + VM + VT sin 7] tan 0 
t„ = X„ 4 ^ ^ i  (26) 

(26) 

V + V + 2 V V cos Tl 
T   M    T M    ' 

= Xo H(VT, VM, Tl, 0) . 

The square of the miss distance is thus given by substituting (23) and (26) 

into (2k).    Thus, 

Rm = Xo i'"1 " ^VT COS ^ + VM^H^2 + '■tan ^ " VT Sin ^ H-'2} 

« xl  G(VT, VM, Tl, 0) (27) 

Thus,  for a specified value of R   we can determine X    and hence   X* and thus 
' r m 00 

specify the intercept geoinetry.    The procedure  is suimarizfi as follows: 

(i)   From (27), determine 

Xn = R   G'z     and   X» = XA + c. (28) o       m o       o       1 

(Note:  It is assumed that G is different from zero.    The case G = 0 

VT sin 7) 
arises if tan 0 = „ and corresponds to zero miss 

VT cos Tl + VM 

distance.) 

(ii)    From (23) determine Y   and Y* = Y    + c? end thon deternine the tiv.p 

of intercept t_ from (19). 

(iii)    The intercept geometry (R,   6, y, V )  is then determined from (20), 
s 

(18), (21) and (22). 

Thus each term in the functional (13) may be evaluated. Using the same 

information the derivatives of (13) with respect to p may be evaluated for any 
A, 

particular point p. = p*. These two evaluations are all that are necessary in 
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the Hartley-JIocking convex programming algorithm and hence the optimal solution 

is readily obtained. 

6.    Illustration of Computations in Coplanar Case 

The optimization problem as formulated in Section U required the minimization 

with respect to p   , k = 1 r of 

cubject to the constraints 

E 8vpk - M (30) 
k=l K K 

p.   > 0       k » 1,  ..., r . (31) 

The p  , k =» 1,   ...,  r represent the value of p(e) for specified angles 6*, 

k = 1,   ,..,  r and the approximation to p(8)  is then given by 

p(e) =   z:Lk(e)p (32) 
k=l K     K 

where 1*^(6)  are the LaGrange interpolation coefficients as given by (ll).    It 

is clear that the  constraint  (31)  is not sufficient to guarantee  that the 

nnproximate  fragment density function (32) will be non-negative  for all 9, 

To partially rectify this situation we adjoin to the problem the  constraints 

r 
S VöjK > 0     j = 1,  ..., N . (33) 

Since these constraints are linear in the variables p    the problem may still be 

safiHk 
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solved using the convex programmiag algorithm.    In addition to giving added 

assurance that the approximation to p(6) will be non-negative, the constraints 

(33) insure that the optimal solution of (29)  is between zero and one which is 

essential. 

As observed earlier, the minimization of the functional (29) subject to 

the constraints  (30),  (31) and (32) by the Hartley-Hocking algorithm requires 

that we be able to evaluate (29) and its derivatives with respect to p    for 
k 

specified values of p. ,  k = 1,  ...,  r.    In this section we shall illustrate the 

procedure used to prepare the problem for solution.    In particular, consider the 

evaluation of one term of the functional (29), that is 

rj exp{ - A(V vSj) J^ yejVR*} . (3M 

Recall that the missile constants Vu, t, - t_, V_ and <f) are fixed but that N 
M       a D       f 

triples (V_, "H, Rm)j. J =1,  ...i  N are specified. 

The example considered has, 

V„ = 5000 ft./sec. 

VF = 11,000 ft./sec. 

A(Y1, V    )  = 1000 

t.  - t-  =  .002 sec. 
d        D 

the density, p(6), will be determined for the points 
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The distributions on V , Ti,  and R are assumed to be 

r h     V_ = U000, U250, U500, 5000 ft./sec. 
f(vT) = {   T 

0  otherwise 

inn 

m = {3      8      8 
0  otherwise 

i  R = 50, 100, 150 ft. f(v={! .:, 0  otherwise. 

The numbers used for this test problem are not based on real data but are merely 

designed to provide a  simple example. 

For simplicity,  it is assumed that the variables V-,  T] and Rm are independent, 

thus 

f(VT, T),  RB) =» f(VT)   f(Tl)  f(Rm)   . 

The  first step in the evaluation of rl")  is to determine which triple  (V  , 7],  R ) 

is being considered.    Let V_, =  ^500, Tl » 0, R    = 100.    WP n*r 'hut thcr» r.r- 
T ra 

N = 2^  trifles «nri in this siinplo exlffple, 

fJ ' k     J = 1»  •••» " • (35) 

We then determine X according to (28) and Y according to (23) as 

X = 100 
o 

Y = 100 . 
o 

,> ficsump X    = '/.*■ end Y    = v* for this ejcfinrle.    It  ahruld Yo observed thfit,   in 
0000 

r^n^rfil,  det^^.ti^n rould occur for rithnr f = v/\   T / = -Tf/, .    W« BdT't th» 
*^ ^ 

envrnti^n that, tfir. / ^ ^,  th^t  is,  Y   -* 0, 

"^HMUS 
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Substituting into the quadratic (19) and solving yields 

t    = 0.0111 

We now solve (18) for 9. Let 

.  .  Yo - V t sin T] 
Sin 6 =  rr—i TTT.  = v 

^1 - V^ 

X0 - (VT cos Tl . VM)tI 

^^  ^^  

The value of 9 is obtained according to the following rules: 

(a) If arc sin (v) < 0 then 

(1) 6 = 2n + arc sin (v) if cos 0 > 0 

(2) 9 = TT - arc sin (v) if cos 9 < 0 

(b) If arc sin (v) > 0 

(1) 9 = arc sin (v) if cos 9 > 0 

(2) 9 = n - arc sin (v) if cos 9 < 0. 

In this case we obtain the intercept angle corresponding to the current choice 

(VT, 71, Rm)j as 

9 = 1.626 RAD . 

From (Ik)  the position of the target at intercept is given by 

\ ' X*o -  VT COS ^ 

= 100 - (U5C0)(0.0111) = 50.5 

Y.  = Y» - tV- sin T) = 100 
t.   o   T    ' 
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and hence from (20) we obtain 

2 k 
R    = 1.1602 x 10    . 

Next, we must evaluate the ^aGrange interpolation coefficients L-C6) for the 

current value of 6 = 1.6257. For example, 

n re, - 0*) 

V9^ =   9 = 0'0GC^3 

n (e* - e») 
1=2  "■     q 

Repeating this for k = 2,  3,  ..., r = 9 would j'eld the terms L (6 ), 

k = 1, ..., 9. 

Finally,  from (21)  and (22) we could obtain y. and V     and evaluate 
o s 

A(Y, V ).    In the current example the function A(Y, V ) was assumed constant 

GO this is not necessary.    At this point we have available the necessary 

information to evaluate  (3^) for any choice of p.   and also its derivative 

with respect to any p  .    The procedure described above is then repeated for 

all possible choices (V_, T), R )j to generate the N terms in the sum (29). 

It should be emphasized that all of this computation is done prior to the 

nppliration of the convex programming algorithm.    This algorithm will not be 

described at this time. 

The approximation (30) to the integral constraint (5) was trapezoidal. 

Thus 

a,   = a_ = 

a     = 1 k = 2,   ...,  8  . 

The value of M WPS assumed to be 2000 —. 

^m^m^am^^^^ 
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For this data the convex programming algorithm gave the solution shown 

in Table 1. 

TABLE 1.  Solution to Example Problem 

k 
^ 

pk 

1 0.250 n 0 

2 0.3125 n 0 

3 0.3750 TT 0 

k O.U375 n 1359.2 

5 0.5000 n U33.9 

6 0.5625 n 17.8 

7 0.6250 TT 109.9 

8 0.6875 TT 79.2 

9 0.7500 n 0.0 

The approximation to p(9) is then given by (10) and (ll). The kill 

probability (2) is given by 

P = 1 - 0.1535 = 0.8U65 

Execution time on the IBM 360-65 for thic example was O.Oli minutes. 

k^ 
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7. Development of the Three-Dimensloral Case 

In this section we consider the extension of the problem to the more general, 

three-dimensional case. A typical intercept situation is illustrated in Figure 

2. The X-axis is again the flight path of the intercept missile. At time 

t = 0 the target is detected at position (X , Y , Z ) traveling with velocity 

V on n flight path described by the angles Tl and CO. At time t = t = 0 the 

target is detected with detection angle 0. At time t = t. the explosives are 

detonated and finally at time t = t a fragment projected in a direction described 

by the angles or and R is assumed to intercept the target. The striking an^le y 

and velocity V are defined as in the planar case. 

Following the development in Section 5 we shall now develop the expressions 

for the variables describing the intercept geometry in terms of the missile 

constants and the target variables. Let the coordinates of the target at time 

t be 

X = X* - t V,,, cos Ct cos 7) 
t   o    T ' 

where 

Y - Y» - t v cos u  Sin * (35) 
t   o    T 

Z = Z* - t V sin 0' 
to    T 

^ = x
0 

+ V YS = ^o + V ZS = zo + c3 

The coordinates of the missile are 

xt t VM 

<- 
0 

<- 
0 

(36) 

^^SUaBHHHBBfiaHüi^üaii 
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The coordinates of a typical fragment are given by (t > t.). 

x[ = t VM + (t - td) Vpcos 0 cos or 

yf = (t - t.) V_ cos 3 sin a 
% (If 

z[ = (t - td) VF sin 3 

0<a<2n      _r<ß<| 

As before, the time of intercept t    is determined by setting *.= Xl, Y.  = Yl, 

Zf = Z    , and solving for t. 

Using (35) and (37) we obtain 

X* - t V    cos a' cos Tl = t V„ + (t - t.) V_ cos ß cos a 
O T 'Mar 

Y» - t V_, cos u sin 7) «  (t - t.) Vr cos 0 sin Q (38) 
or a      r 

Z* - t VT sin 0 » (t - td) VF sin 0 

Eliminating oi and 0 yields the following quadratic in t 

t2(VT + VM + 2 VMVT COS U' COS ^ " ^ 

-?t(X*V_ cos c-.'cos T\ ♦ X»V,. + Y;V_ COB U" sin Tl ♦ Z»V_ sin 0 - Vt.td) 

2 2 2 2      2 /        X + X* ♦ Y* ♦ Z» - Vf. t^ = 0 39) 00        o        F    d 

The last real root of (39) which exceeds t is the time of intercept t . We then 

2 
ottnin 0    and 0    from (38)  and finally R    is obtained from 

R
J 1 - \ - V/ * ^ * ^ • w 

Inspection of nhese results chows that we have described the  intercept 

Cecmetry  in terms of X*,  Y*, Z* and the  two angles or and 0.     Ascumlnf: thit   the 

aui 
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fragment pattern is symmetric" with respect to the axis of the missile, it is not 

necessary to specify Q- and B but only the angle that the fragment direction makes 

with the missile axis. Denoting this angle by 9 as in the planar case we see 

that 6 is given by 

cos 6 = cos ot  cos 0. C+l) 

The direction of the fragment and its velocity relative to the target are 

determined by the quantities 

V ^ V + V cos 9 cos ot + V    cos (•' cos 7] 

V = V cos 0 sin a + V    cos a" sin T)       (U,?) 

Vsz * VF Sin 9 + VT Cin ^ * 

The angles y.  and y    as  indicated in Figure 2 are given by 

Yi = Yj - Tl.    Y2 = Y? - ^ (^3) 

where 
V                                      V 

tan Y? = TT1   «nd    ^n y* = T^ ^ ('*'.) 
( V      + V    )' N   sx        sy/ sx 

The  squared velocity is given by 

V2 = v2   + v2   + v2 (I45) s        sx        sy        sz 

We now conr,Lder the problem of expresring the intercept geometry in terms of 

the minimum mlac riistance. 

For *  specified detection angle 0 we sec that, 

Y2 + Z
2 = tan2 y5 X2 (M5) 

o   o       '  o 

where   (X   ,  Y  , Z  )   i *j the detection point.    The  couored  distance between the o'    c'    o' 

^«t«.».* i^r, poir;4,  rinl  the rr-.icnile  at  eny tirije  t  is  (3iven by 
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R2 = (X0 - t(VM + VT cos u- cos T]))2 

+ (Y - V t cos a* sinTl)2 (U?) 

+ (Z - t V,,, sin w)2 v
 o     T 

This distance is seen to be minimum for t = t where 
m 

Xo(V + V cos 0" cos J\)  +  Yo(V cos Ci' sin T])+ZoVT sin O! 

01    VM + V? + 2 VMVT C0S '■" COS ^ 
(W) 

The square of the minimum miss distance is thus given by substituting (U8) into 

(U7). To use the formulas developed thus far we now attempt to determine 

X , Y , Z in terms of R . It is seen that en additional angle must be specified o' o' o m 

namely the angle which describes deviation from the coplanar case. Accordingly, 

we define the angle ^ by 

Z 
tan * = ^ . (1+9) 

o 

Using (U9) we obtain 

Y    = X    tan / cos   * 
00 r 

Z    = X    tan 0 sin  ♦ 
00 r 

(50) 

Guistituting (50)  into (U8) yields 

\ - Xo H(VT' VM' ^   a' ^ {CA) 

-jnd hence (^7)  and (51) yield: 

*m 
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Rm = Xo {(1 " H(VM + VT CC,S a,COS V^' 
2 

+ (tan 0 cos ^ - V H cos O." sin T\) (5?) 

+ (can 0 sin ^ - H ¥„, sin a;)c| . 

It should be observed that there is no loss of generality in assuming that 

the angle ♦ is zero or equivalently that Z is zero. This is equivalent to 

assuming that the X-Y plane in Figure 2 is determined by the line of flight 

of the intercept missile and the point at which the target is detected. Care 

must be taken so that the angles T], and a-defining the target flight path nre 

described relative to this convention. 

In view of the above comments, we see that either X . R or for that matter 
' o  ra 

the variable R defined as the distance between missile and target at the time of 
o 

detection may be used to determine the intercept geometry keeping in mind that 

all of these variables refer to the point of detection of the target. The choice 

of which of these variables to use will depend on the date available. 

From this point, the procedure is just as in the planar case. That is, 

specification of the missile constants and the variables VT, 7), U^ and either 

R , X or R enables us to determine the intercept geometry (R, 0, y» V ) and 
moo ^ 

hence the mathematical programming algorithm may be used to determine the 

optimum fragment density. 
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8.    Extension to Multiple Targets 

In Sections 5 and 7,  the formulas for computing the  intercept geometry 

for the special case of a single point target were developed.    These formulas 

were then used to develop the mathematical programming problem for the 

determination of the optimum fragment pattern.    Frequently,  the incoming air- 

craft will have more than one vulnerable point or target,  for example the 

engine and the pilot are normally thought of as distinct point targets.    Usually, 

destruction of some combination of these point targets is sufficient to destroy 

the aircraft.    Such combinations as  (i) two out of three (ii) at least one and 

(iii) either targets 1 and 2 or targets 3 end k are encountered.    The development 

of the appropriate mathematical program for solving this extended problem 

usually causes no difficulty but,  in some cases, the resulting functional may 

no longer possess the desired convexity. 

To indicate the procedure,  consider the special case of an aircraft with 

two point targets such that the destruction of either will result in deotruction 

of the aircraft.    Assuming that the  location of the targets  (l and 2) relative 

to the point of detection is known,  then using the formulas of Section 5 (or 7), 

two intercept geometries  (R,   9, y, V  ),   and (R,   d, y,  Vt%)0 may be computed.    The 

associated kill probabilities,  say P    and Pp are given by  (l).    The probability 

of destroying at least one of the targets for this intercept geometry is given by 

1 - (1 - P^d - P2) (53) 

Assuming that A,(Y, V )  and A0(Y,  V  )  represent the vulnerability functloris  for 
X G c S 

the two targets then the function to be minimized, that is, onu  minus the 

average kill probability (analogous to (13)) is 
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This function is seen to be convex in the variables p. and hence the minimi- 

zation of it subject to the constraintb (8) and (9) as well as (33) is a 

convex programming problem. 

More general requirements on the combination of point targets which must be 

destroyed to insure the destruction of the aircraft cause no difficulty in forrr..- 

lation but in general lead to a lack of uniqueness and optiraaltiy of the solution, 

For example, suppose that the destruction of both targets is requireu. The 

probability of destroying the aircraft for a given intercept geometry ic given 

by P P- where P.. and P? are given by (l) in terms of (R, 0, y, V ), and 

(R, 6, Y, V )0.    In this case, after reformulation as a mathematical program 
S £. 

we see that the function to be minimized is no longer convex. In this cose, 

more that one relative minimum may exist. The algorithm of Fiacco and 

McCorraick (196^) may be used to determine relative minima and by using severs! 

initial points more than one relative minimi m ■ ey .•  v.-yi:.. 3.  j'Lo* in. 

designer may have several fragment patterns suggested each of whi<,h are locally 

optinol. Assuming that they ere all physically and ecor.omically practical he 

would then select, the one which yields the highect average kill probability. 

Ti.ere is no guarantee, however, that there does not exict a superior Sülutioi:. 
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