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ABSTRACT 

The general problem of the effects of impurities on the vibrational, 

electronic, and magnetic properties of crystalline solids has currently 

attracted much interest.    One aspect of this problem has been the study 

of random disordered systems, and in recent years, there have been 

numerous experimental and theoretical investigations  >i the phonon optical 

properties of mixed crystal systems.    We have studied experimentally the 

Raman scattering (at ~40K,   770K,  and 300oK) from the mixed fluorite 

systems, Ca, _ Sr_F„ and Ba,     Sr F7,  using laser excitation and a photon 

counting detection system.    Analogous» -work on the far-infrared reflecti- 

vity spectra for these systems has been carried out by Verleur and Barker. 

The Green's function methods which have been extensively employed 

for the isolated defect and random disorder problems are reviewed, and 

it is shown how the phonon optical properties can be expressed using this 

formalism.    These techniques have been very useful for qualitative and 

quantitative understanding of impurity effects, although they usually in- 

volve cumbersome computational difficulties for physically realistic models 
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of the impurity and the host lattice.    A low concentration theory for 

Raman scattering and infrared absorption in mixed crystals,  based 

on an average Green's function <G>,  is described and applied to the 

Ca,     Sr F, system; theoretical calculations are presented and com- 

pared with experimental measurements.    The "proper self-energy" 

functions which arise in this formalism are calculated to first order 

in the concentration c, and involve certain unperturbed phonon Green's 

functions G .,(*«, I'/C'ju + it), which have been computed numerically 

fo- a rigid ion model of a harmonic fluorite lattice.    These Green's 

functions,  which would be useful for many other studies of phonon 

impurity properties in CaF,, are included in an appendix. 
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I.  INTRODUCTION 

The study of the physical effects that impurities have on the vi- 

brational, electronic, and magnetic properties of a crystal lattice has 

recently attracted mu'ih experimental and theoretical interest. The work 

in this field has nad a variety of objectives, which cam be broadly char- 

acterized as: l) a study of new effects, such as local and resonance 

modes, which can arise when suitable impurities are present, 2) the use 

of impurities to induce new effects, through a breakdown in the selec- 

tion rules applicable to a perfect crystal, 3) the study of dynamical 

properties of the impurity itself, U)  the study of the modification of 

existing properties with the addition of defects. Furthermore, there 

has been a wide range of experimental techniques which have been employed 

for these investigations. Such work has included Raman and infrared 

spectroscopy, the Mössbauer effect, neutron scattering, measurement of 

thermal and electrical conductivity, etc. 

The literature in this field has been expanding so rapidly that it 

would be futile to attempt to cite all of the «rork that has been done. 

An excellent and extremely thorough review article on the effects of 

point defects and disorder on lattice vibrational properties has been 

given by Maradudin^1'. Although the emphasis in the present work shall 

be specifically on the phonon problem, some further references to work 

on the electronic and magnetic impurity problems will be given at appro- 

priate places later. Many of the review articles can often be consulted 

for numerous references on specific aspects of this general field. 
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The mathematical techniques which have been most useful for describ- 

ing and understanding impurity effects in crystalline solids involve 

Green's function methods, analogous to those used in many-body problems. 

These techniques, which can be used to relate the properties of an im- 

perfect crystal lattice to those of a perfect lattice, are  nvenient for 

analyzing the "ibolated impurity" problem, and can be successfully applied 

whenever the perturbation caused by the defect is spatially localized. 

Because of their generality. Green's function techniques can be used to 

describe a wide variety of impurity effects on the physical properties of 

solids. The underlying unity that characterizes these methods allows the 

mathematical formulation of many physically diverse phenomena to be car- 

ried out in essentially the same way. We shall discuss some of the basic 

aspects of the Jreen's function formalism in a later chapter. 

Because the problem of a single impurity is now reasonably well un- 

derstood, qualitatively and quantitatively, much of the current interest 

in this field has shifted to studies—both experimental and theoretical— 

of mixed crystal systems. The most extensive (analytical) theoretical 

work on random disordered crystals has consisted of attempts to extend 

those methods of Green's functions which have proved so successful for 

describing the isolated local impurity problem. These "average Green's 

function" techniques have been fruitful for explaining many of the fea- 

tures of a disordered system, although they are often limited by the ap- 

proximations that must be imposed for even the simplest models.  In some 

respects, these approximations have not been completely satisfactory; for 

example, they are inadequate to explain or predict many of the compli- 

cated "spike" effects which exact ma.chine solutions have shown can exist 
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(in the density of states) for even the simplest systems. These diffi- 

culties may be related either to the limitations of the rumerlcal approxi- 

mations, or possibly even to the inadequacy of the assumptions made on 

the analyticity properties of the average Green's function aa a function 

of the concentration n.    Furthermore, even in situations where these 

methods have been applied with reasonable assurance of validity, they 

usually involve tediou?! numerical calculations for realietic models of 

the lattice and defect. Nevertheless, despite some of the shortcomings 

in certain pathological cases, or the problems of computational diffi- 

culty, these techniques have had great success in describing many of the 

impurity effects observed in physical systems. The method of Green's 

functions as applied to the study of a random disordered crystal will be 

discussed more fully for the vibrational problem in a subsequent chapter. 

At that time, we shall also give a survey of tlie variety of other (non- 

Green's function) approaches that have been taken to analyze this prob- 

lem, and some of the results that have been obtained. 

One aspect of this general problem is the investigation of the ef- 

fects of disordering on the behavior of the long-wavelength optical vi- 

brations of mixed crystals. There has recently been numerous experimen- 

tal work on Raman scattering and infrared absorption from phonons in a 

wide variety of mixed crystal systems. The present work is concerned with 
t        -     F 

a study of the mixed-fluorite systems, Cai_vSrxF2 an<* ^l-x^x^* We-**,ve 

investigated experimentally^2' the first order Raman scattering from these 

systems, and Verleur and Barker^' have done analogous work on the infra- 

red reflectivity. The work to be reported her« is an attempt to discuss, 

. qualitatively and quantitatively, the observed experimental effects of 
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diborderlag on the optical vibration modes for the mixed-fluorite systems. 

The experimental literature on phonon optical properties in mixed 

crystal systems is extensive; several examples of other systems that have 

Sh 
x x 

(M been studied by Raman and infrared spectroscopy include GaAs, 

Nll-xCoxo(5)' Znl-x.Cdxs(6)' ZnSel-xTex(7)' Nal-xKxCl(6)' KC1l-xBrx(9)' 

Kl-xRbxCl(9)' KMgl-xNix?r3(l0)' Sil-xGex{ll)' InP.l-xAsx(l2)' GaPl-xAsx(13' 

lU). CdSl-xSex(l5"1T;' ZnSl-xSex(l8). NaCi^cif (19), LiE^D^20^ 

There would be many more examples if tha list were enlarged to include 

work on other than phonon optical properties. There are also some gen- 

eral articles which pre a useful review of the experimental results on 

f 21) 
mixed crystal systemsk; and a discussion of the behavior of the long- 

wavelength optical modes^ . 

Experimental observations on Raman scattering and infrared absorp- 

tion from such crystals has yiplded, basically, two characteristic types 

of behavior. Assume that a aixeJ crystal 4.. „B C can be fonred from AC 

and BC, each of which are characterized by one optically active mode, 

with frequency CD. and .j respectively. Then in the first (Type I) bena- 

(2-10)        -*■ 
vior, the mixed crystal A-, B C continues to exhibit     a a4  gle k ^ 0 

JL—X X —^     

optic mode which shifts linearly with the concentration x from the fre- 

quency w^ (that characterizes pure AC) to Wg (that for pur3 BC). The 

intensity of the mode remains approximately constant, and the linewidth 

increases and peaks near the center (x ^ .5) of the mixture. For the se- 

cond (Type II) behavior1   ", the mixed crystal exhibits two modes which 

are close to those which characterize pure AC and pure BC. The intensity 

of these modes varies in approximate proportion to the fraction of each 

component present. As the (molar) concentration x increases, the inten- 
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sity of tha 5C mode increases, while that of AC decreases, with both 

shifting slightly. 

The experimental observations on Haman scattering from the mixed- 

riuoritesvc' represents a good example of Type I behavior, and since this 

system constitutes the subject of the present study, these results will 

be described in more detail later. A good example of Type II behavior la 

represented by the Raman spectrum of Si1_xGex, sho^n in Fig. l.l (taken 

from the work of Feldman, Aahkin, and Fnrker, Phys. Rev. Lett. IJ,, 1209 

(1966), Ref. 11), and the infrared reflectivity spectrum of CdS1_xSex, 

shown in Fig. 1.2 (taken from the work of Verleur and Barker, Phya. Rev. 

155. 750 (1967), Ref. 17). 

It is possible for some modes of a crystal to exhibit a behavior 

intermediate between types I and II, and it is also jossible for differ- 

ent modes of the same mixed crystal system to display different behavior 

(10,18), rj^g theory for the optical phonon properties of a mixed crys- 

tal will be formulated in terms of "average Green's functions," whic*! 

will be described later, and then applied later to calculations for the 

mixed-fluorite system, Ca, Sr F0. These methods, althougn formidable 

to apply, eure useful for both a qualitative and quantitative understand- 

ing of the effects of disordering on the optical properties. They pro- 

vide a criterion for the "virtual crystal approximation" that characver- 

izea the linear shift (type I) behavior, and are also capable of explain- 

ing the "local mode" behavior that characterizes type II spectra. 

A brief outline of the presentation of material to follow should be 

helpful to define the scope of the present study. In Chapter II, some 

elementary topics related to crystal atruc-ure, apace group symmetry, the 
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Frequency Shift (cm    ) 

Fig. 1.1; Raman spectra of gerinanium-silicon alloys for several compo- 
sitions (Takjn from the worK of Feldman, Ashkin, and Parher, 
Phys. Rev. Lett. 17, 1209 (1966), Ref. 11.) 
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Pig. 1.2: Experimentally determined far-infrared reflectivity- 
spectra of CdS1_xSex at 15^, with EHc-axis. A 
smooth line was drawn through experimental points. 
(Taken from the work of Verleur and Barker, Phys. 
Rev. 155., 750 (1967). Ref. 17.) 
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reciprocal lattice and Brilj.ouin zone, e^c. will be reviewed, with the 

fluorite lattice as an illustration. The normal modes of a crystal lat- 

tice in the harmonic approximation will be discussed from a phenomenolo- 

gical viewpoint, in order to provide a foundation for the worK to follow. 

A brief qualitative discussion of anharmonio effects and mode broadening 

will conclude this chapter■ Chapter III will be devoted to a development 

of the (classical and quantum mechanical) Green's function methods that 

are useful for treating the vibrational impurity problem. The interest- 

ing "local mode" and "resonance mode" phenomena serve to illustrate the 

usefulness that Green's function methods have for defect lattice dynami- 

cal problems. The formal properties of Green's functions are reviev ^, 

and their physical significance illustrated; it will be shown how they 

arise in the expression for thermodynamically averaged correlation func- 

tions. In Chapter IV, it will be shown how the phonon optical proper- 

ties—Raman scattering and infrared absorption—can be related to phonon 

Jreen's functions. Some of the general aspects of these processes, e.g., 

selection rules, will also be discussed. In Chapter V, we shall tal^e up 

the subject of disordered systems, with a brief survey of the variety of 

methods that have been attempted for this type of problem. A reasonably 

complete discussion of the failures, successes, and usefulness of a num- 

ber of approachf.s will be presented, and a number of the results reviewed. 

The description of disordered systems in terms of average Green's func- 

tion is developed, and the relatively cumbersome diagrammatic techniques 

that have been used by many authors to calculate these average Green's 

functions is replaced by a simpler differential technique. We are ulti- 

mately interested in describing the effects of disordering on the long- 
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wavelength vibrational properties of a random, mixed crystal. This will 

require the calculation of phonon ''proper self-energy" functions, as well 

as certain unperturbed phonon Green's function» for the perfest lattice. 

Finallj, in Chapter VI, we present the experimental observations that we 

have obtained for Raman scattering for the mixed-fluorite systems. Based 

on the formalism developed in Chapter II-V, theoretical calculations are 

carried out (using the average Green's function) for the CfeJSrJfa sys- 

tem and compared with experiment. Thsso calculations are based on a rigid 

ion model for CaJg which is discussed thoroughly in that chap^^er. Some of 

the computational aspects of this type of calculation are so-flewhat tedi- 

ous, and the (grubbier) details (and some of the computer program listings) 

are relegated to the appendix. 



II. NORMAL MODES OF A CRYSTAL LATTICE 

2.1 Introduction 

A brief discussion of lattice dynamics in the harmonic approximation 

will be given in Sec. 2.2, and some of the notation that will be useful 

for describing lattice structure is introduced here. Since the fluorite 

structure is the object of the present work, it shall serve as an illu- 

stration. 

A perfect crystal lattice is considered to be composed of an infi- 

nite number of primitive cells, each of which is a parallelepiped bounded 

by three non-coplanar vectors t-^, t2, and t-,, called the primitive trans- 

lation vectors.  Each primitive cell will be assumed to contain r atoms, 

labeled by a basis index K = l, 2, 3, ..., r.  If R- denotes the rela- 

tive location of atom K.   within the cell, then the equilibrium position 

of any atom can be expressed as 

R*K= R£ + RK (2.1) 

-♦ 
where R^ is a lattice vector consisting of integral numbers of primitive 

translations from some (arbitrary) origin, 

*Jl =  At, + ^z + ^3- (2-2) 

i represents a triplet of integers, (^, X2, /•,),  The crystal can be de- 

scribed as consisting of r interpenetrating sublattices, each of which 

possesses translational periodicity under the lattice vectors R«. Two 

atoms of a lattice will be said to be equivalent if they are separated 
—» 

by some lattice vector R^ —i.e., if they have the same basis index K . 
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Of course, iderttical atoms can have different basis indices, as, for ex- 

ample, the two fluorines do in the CaF2 structure. 

The rotational and translational sy^netries of a perfect crystal for« 

the operations of a s^ce ^^ Space groups are ^^ ^^ ^^^ 

subgroups, of the general group of linear, inho.ogeneous coordinate trans- 

formations, 

r' = 0(.r + v 

and this operation is conveniently denoted by (ot j "v). The group of trans- 

formations (« | v) has two general properties:  (i) the matrix parts a   of 

the operations (a | v) themselves form a group, and (ii) the pure trans- 

lations, which are of the form (1 ( v)„ form em invariant subgroup. A 

space group is a subgroup of these general coordinate transformations, and 

consists of all operations (S | t) that obey further restrictions. First 

of all, the rotational operations S must be real, orthogonal matricjs. 

Secondly, a space group is characterized by the property that i+. mv.at pos- 

sess a particular type  of invariant subgroup: all of the pure transla- 

tions (1 jt) must be of the form (1 |K|), where R^ is a lattice vector de- 

fined by (2-2). Of the several consequences implied by these tvo restric- 

tions, one of the most important is the fact that the rotational parts S 

of a space group must form one of the 32 point groups. 

For the fluorite structure, the apace group is 0h^~Pm3m. The crys- 

tal consists of three interpenetrating face-centerct cubic lattices, and 

can be alternatively pictured as a cubic lattice of fluorine ions with 

metal ++ ions in every other body-centered position. The lattice struc- 

A   A  A ture is shown in Fig. 2.1.  In terms of caitesian unit vectors i, J, k, 

the primitive translation vectors are given by 
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^ = r0(j + k),  tg - ro(i + k),  t3 = r0(i + J) (2.3) 

whrch defines a face-centered cubic lattice. Thu unit cell contains r = 3 

basis ions—two (inequivalent) fluorines, and one calcium. We can arbi- 

trarily choose the basis vectors to be 

Ca: K = 1, % = ^r0{i + J  + k) 

Fl: IC = 2, R2 = 0 

V fc = 3, s - ^ 
(2.U) 

where r = a/2, and a is the "lattice constant" (cf. Fig. 2.1). 

Fig. L.l: Crystal structure of the (fee) CaFp latvi«, with 
the primitiv.i translation vectors t, , ■to» ^s shown. 
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The reciprocal lattice is defined in the usual way. in terms of a 

set of vectors, 

b 1-   2nl2_iLil   uIL(4 + Uh 
va     

ro 

b2. 2nhJLll    -JL( i -j+^ 
va 

^3- 2n!l_l!2 ..*( t + 2-h 

(2.5) 

where va = 2ro
3 « (t^ x t2)-t is the volume of the primitive cell. The 

reciprocal systems of vectors satisfy t^ «tj -    2ftSi..    A general ret-j.- 

procal lattice vector, h^ , is defined to be the sum of integer multiples 

of the vectors IK: 

hx   » *,£, + 'Xzhz    + Aaba (2.6) 

where A denotes a triplet of integers, ( TU, ^»A^)- 

If we introduce the cyclic Born-von Karmen boundary conditions, and 

assume that the infinite crystal has a periodicity of G for each of the 

primitive translations t,, tg, or IT,, then there will be a total of N = 

G x G x G = G^ primitive cells. In the usual way, the general wave-vec- 

tors k which label the irreducible representations of the translation 

group for the lattice are defined by 

k = ^{ A,^ + Ajbg + ^3) (2.7) 

where ( X-iiXoik-i) are integers. The first Brillouin zone is defined to 

be the symmetrical cell in reciprocal space which contains, in and on its 

surface, the N (=G3) values of k which label the distinct and non-equiva- 
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lent  representations. The-e are two relations which are often useful; 

N Z, ^ °*t (2.8a) 
—» 
k 

and 

e '==   Sri:. (2.8b) 

For the latter relation, we have tacitly assumed that k  and k' both lie 

in the first Brillouin zone; in general, the right-hand side of (2.8b) 

would be S j? t+K' where K is some reciprocal lattice vector of the forn 

(2.6). 

For the fluorite structure, a k-vector in the first Brillouin zone 

can be written 

t=    (£-(Kx'VKz)' o 

where 

i) Kx, KY, K are integers 

ii)    Kx, Ky, Kz are all even, or all^ odd 

iii}     |KXI,   |Kyl,   |KZ|   <G 

iv)     (|KX|   +   iKyl   +  |Kz|) <  3G/2 

(2-9) 

The first Brillouin Zone is taken to be the familiar truncated octohedron 

that characterizes a face-centered lattice, and is shown in Fig. 2.2. Var- 

ious points and lines of high symmetry have been labeled according to the 

standard notation. The details of the Brillouin zone structure are very 

important in later calculations of phonon Green's functions for pure CaF . 
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/ k.. 

L: -IUl.1.1)   W: ^-(2,1,0)   X: ^2.0,0) 
2r 2r, 

K: 4^(3,3,0)   U: ^{2,H>h) 
Zu 

Fig. 2.2: First Brillouin zone for the (fee) CaF2 lattice, with 
points and lines of high symmetry (r0 = F-F distance). 
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2.2 The Harmonic Approximation 

There are many good sources      on the general topic of lattice 

dynamics, but a short summary will be useful as a background for the la- 

ter discussions. The treatment here will be phenomenological, with no 

attempt to describe the fundamental electronic interactions ».'hich are re- 

sponsible for the "force constants" that bind the lattice together. This 

would involve a discussion of the Born-Oppenheimer approximation, which 

(25) 
is covered in more detail in the book by Born and Huang   . 

It will be assumed in the subsequent development that the int:- oduc- 

tion of impurities does not distort the lattice. This is not strictly 

true, of course, but the assumption can be Justified—or at least made 

plausible—by pointing out that lattice distortion effects will be impli- 

citly incorporated into any realistic model of the lattice and defect site. 

For the discussion of dynamical properties of the crystal, the force con- 

stants are the fundamentally important quantities, and lattice spacings 

do not appear explicitly in the results. The new force constants that re- 

sult when an impurity is introduced will depend on both distortion and on 

a possible change in the fundamental interactions that characterize the 

imjurity. In any case, both of these effects are implicitly incorporated 

when the force constants are determined from experimentally measured quan- 

tities. This assumption is, in fact, always made for this type of problem, 

since it desireable to be able to continue to describe the lattice at equi- 

librium by a set of vectors R^K . 

If the atoms of a general lattice (perhaps containing impurities) 

are subjected to displacements U{XK)  from their equilibrium positions, 

the total potential (p  (which depends upon all of tne electronic and nu- 
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cleax  coordinates of the syetem) will changed 

^ * ^o 4.1 2 *(**>• i«*.*v).scxv} + ... 
where 

8*<p 

3u-«(ii0du^iV) (2.10) 

are the second derivatives of (f  evaluated for the equilibriua configu- 

ration. There is no linear term in U{£K), since its coefficient would 

be S^/'&UUK:) L, which must vanish in the equilibrium configuration, 

since it represents the force on atom (IK).    The first term for (f   is 

an unimport-wt constant which can be discarded. If only the quadratic 

terms in the displacement are retained« the vibrational Kamiltonian for 

a general crystal lattice can be written 

^ ä jL^^c**)14. ~ £ ^cuviaiuv^ctv) (2.11) 
IK XKX'K' 

This is called the harmonic approximation, and leads to linear equations 

of motion for the displacements, 

M^il aC^,t)-f- X ic-«K,jev).«(xv,-i)« o       (2•12, 

There are several general properties that the force constants ^gUtci'ie') 

must possess^ '. The invarieuice of the potential energy «p under rigid- 

body translations and rotations imposes two conditions for a general lattice- 

(2.13) 

t Dyadic quantities will be denoted by a wlggly line; e.g. 3  represents 
a dyad (or second rank tensor) with (cartesian) components Sag. 
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X"K" jt'k1   ' 

It follows immediately from the formal expression (?.10) for the coeffi- 

cients i^ßv 2K ,£V) that there is a symmetry under interchange of sites; 

fo^U^XV) = ^AcU'^ifc) (2.15) 

It is convenient to introduce a matrix notation; the quantities u^iii:), 

M^K, QoLßi JLK. ,Z'K,')  can be regarded as the matrix elements of matrices u, 

M, and $ in a crystal lattice-site representation, with "basis vectors" 

M = 2 i^«) Mu <^^l {2-l6) 
XKOI 

t = X I ^«a) ^^(.U^V^/'K'ß 
XK« 

(2.17) 

U = /^ Ua,(£'c)U/<a) (2.18) 

Jim 

The basis vectors |£wx) for this matrix representation satisfy 

<(£Kä| X'K>> ^ Sf£'SKK'^ (2.19a) 

XK« (2.19b) 

The Hamiltonian (r1.!!) becomes 

JP ^ 1 aT M ^ -j- - uT $ u- (2.20) 
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and the equation of motion (2.12), 

M ü -^ <^ a = 0 
(2.2.1) 

This equation characterir.es a system of harmonic oscillators, and a trial 

solution of the form u(t)/vy u0 e*
iurt; will lead to an eigemrAlue probl 

that defines the normal modes of xhs  system. The eigenfrequencies 

determined froa* a secular equation, 

em 

are 

aetlM^-Sl-O (2.22) 

which can be written In terms of the "dynamical matrix". D ■ M^jM^8 as 

det|a>l_D|=0 (2.23, 

In terms of the dynamical matrix 0° ■ M^ ^.A^ and a column vector, 

Q « M0%, the unperturbed Hamiltonian (2.11) for a perfect lattice can be 

written in matrix fcrm as 

Wo  = ~QT Q H- ^ do"* (2.2k) . 

and the equation of motion, 

Q -K D0Q ^ O (2.25) 

For a perfect lattice, there are several further restrictions on the 

$^Äv f.K,Z'K')  that are isposed by the invarlance of the lattice under 

operations of the crystal space group. Tivariauice under primitive trans- 

lations implies that $^(iic,/'tc') can be a function only of the differ- 



ence (P^ - R#'): 

$lßiliC>t'*')    = $°ß(X-X'; <",'} (2.26) 

There are also restrictions on ^^( ZK , I'K')  imposed by the more general 

rotation operations (S ( t) of the space group. Under such an operation, 

every lattice :ite {IK)  is taken into some similar site (LK): 

Ro,CLK)= ZSvßRßCl^+t«. 
ß 

The operation (S | t) induces a transformation of the displacements, 

u —♦ 0 a , 

where k3     is a large (3rK x 3rN) rratr-'x that describes the permutation of 

sites and rotation of vectors produced by (S j t).  If 0 is pictured as 

partitioned into boxes, then 3x3 orthogonal rotation matrices 3 will 

occur once, and only once, in every row and column labeled by the site 

indices (IK).    That is, if site (i«) is taken into site (LK) under the 

operation (S | t), then <(LKa| (J { ließ)   = S^ , but is zero otherwise. 

The transformation properties that the matrix elements $>£*( IK. , i'x.') 

have under an operation (S | t) ai J derived from the requirement that the 

potential energy must, be invariant, both as to value and form, under such 

operations. The potential energy in the harmonic approximation is a quad- 

ratic form, ^uT-$0-u, and its invariance under the space group of trans- 

formations (S j t) implies that the coefficients $(*«( Ü.K ,/£'«.') must trans- 

form like a second rank tensor. Under (S | t), 

z z 
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and slnr-e the dlapluceaent column vector u can be regarded as arbitrary, 

Thus, if sites (/,, K.,) and (£7.^) are taken into (L^) and (LgKg), then 

,v *-**) 

In order to carry out the reduction of a specific force conattnt 

tensor, it is necessary to consider the subgroup .& ot operations that 

(1) leave the crystal invariant, and (2) leave a pair of sites (jt,*,) and 

U^K*) invariant  For operations (S | T) 6 ^ , the following interrela- 

tion among the element' $ «« (I(K(,£2I^) is obtained 

^u.K,. ^*.)« x^5AV $;v(i.«..z,KZ). (2.29) 

These conditions are useful later, when they are invoked to simplify the 

general form that certain force constant matrices are required to assume 

for a rigid-ion model of CaFg. In some cases, other physical considera- 

tions that are independent of the symmetry group {^ might lead to further 

simplifications. 

The determination of the eigenfrequencies from the secular equation, 

det | oo*- D'l « 0 (2.30) 

involves the diagonalixation of the 3rN x 3rH matrix D0, but the exploi- 

tation of group theory can provide a considerable reduction in complexity. 

The total number of solutions to (2.30) is equal to the total number of 
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degrees of freedom, 3rN, but a tlgnificant simplification results from 

the fact that the eigenstates of a physical system must transform accord- 

ing to the irreducible representations of the symmetry group for that Sys- 

tem. For a perfect lattice, the symmetry group is the crystal space group, 

which co.rtains an invariant subgroup of pure translations through the lat- 

tice vectors R». 

For the present, we shall restrict our attention to the consequences 

(27-30) 
of translational periodicity alone. As iü well known      , the repre- 

sentations of ehe (abelian) group of pure lattice vector translations 

(1 I Rj) are one-dimensional phase factors, exp(ik.R|,), where the ware- 

-» . 
vectors k are defined by (2.7) over the reciprocal lattice. A reflection 

of this fact is the general rule that the eigenstates of a translation- 

"lly invariant system consist of wave-like excitations. In the present 

case, these eigenstates are the phonons, and the parameter k has the phy- 

sical significance of representing the phono, momenttun. The mathematical 

operation of Fourier transformation can be regarded, group-theoretically, 

as constituting a projection onto ^he representations characterized by 

the wave vector k. The operation of Fourier transformation will have the 

effect of partially diagonalizing tne Hamiltordan jH^ for the perfect crys- 

tal, and it will reduce the secular equation (2.30) to a block form in 

which orthogonal subspaces labeled by different values of k are separated. 

The reduction to block form greatly simplifies the eigenvalue problem, 

since it is then only necessary to dlagonalize a 3r x 3r matrix in each 

of the subspaces labeled by the N distinct k-vectors in the first Eril- 

louin zone. Define a projection operator, 
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N L (2.31) 

where T^ is a unitary operator which translates the lattice sites through 

the vector H^. In the crystal lattice site representation, T. can be de- 

fined by the relations 

TL I £««> = U-i-L, K<X> 

U* ZK« (2.32) 

It is easy to verify that the operators P^ satisfy the usual rules for 

projection operators. 

PgP*'= ^.iT-Pu {2-33a) 

X P]? = 1 (2.33b) 
i 

p^t ^ f^, (2.33c) 

The relation (2.31) can be inverted, using (2.8a), 

TL - X e-^ V ,2.3M 
t 

and expresses the decomposition of the unitary operator TT into a sum of 

projections onto the orthogonal subspaces labeled by k. The eigenvalue 
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of Tj. in tlie subspace k is expl-ik-R^), and this can be expressed as 

TyR = exp(-ik'RLl Pc,  In the crystal lattice-site representation, 

N Ix«. 
L 

which can be written 

P?   =    Z     !fe, <«><£. KLOC I, 
K« 

where we havt defined a set of vectoi's 

;2.36; 

VN      L 

i 

These vectors satisfy an orthonormality condition, 

(k.K«! fe'. <>) = ^fete'^KK'Sa/S (2o8) 

Thus, each of the orthogonal 3r-dimensional subspaces labeled by k can 

be spanned by the orthonorraal set of vectors | k,«)(^>. The phase factor 

exp(ik>RK) was includec arbitrarily in the definition (2.37) to conform 

with usage in the literature. The statement of dynamical invariance of 

the lattice under a translation (1 j RL) can be expressed ii.athematically as 

TL D
0 TL-1 = D0 (2.39) 

This is just the condition 0° (XK.IV) = D° ( £+L,Ki i'+L.K') • Thus, the 

dynamical matrix D commutes with the operators TT: 
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TL D0 = DO ^L (2.k0) 

By multiplying (2.1.0) by exp(i*.RL) and sulMning over ^ laUice ^ - ^ 

we obtain I,* 

P?DO = DOpir (2.41) 

and i* follows fron (2.33a) and (2.33b) that 

DO    ^     |   ^ DO Pir (2^2) 

Thus, D0 can also be decomposed into a su. of projections onto the N dis- 

tinct, orthogonal. 3r x 3r subspaces labeled by the wave-vector k.    Eq. 

(2.1*2) becomes 

=       11     I^KO^D'UIKK'K^K'/ 
?     ^ (2.43) 

where we have defined 

D6   ' ^ ^ (k | KK') «   (fe.KocI D0| fe, K)3> 
(2.U) 

L'0,(klK.K') is Just the Fourier-transformed dynamical matrix. 

These equations have shown that 0° has eigenstates | k,...^ which can be 

partially labeled by the momentum k. The reduction cf D0 to block form 

(2.142) raakee it  possible to factor the secular equation. 
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There are also rotational symmetry operations for D0, and a further char- 

acterization of the states |k,.../ could be discussed in terms of the 

representations of the full space group. This would involve a considera- 

tion of the group of the k-vector, <&£>  which consists of all operations 

which keep k invariant. The task of constructing the representations of 

the space group is equivalent to the problem of finding, for each wave- 

vector k, all of the irreducible representations of "he factor group, 

^k^^k' where "ZTfc is the group of all translations (1 \~t)  for which 

k't is a multiple of Sit^1»^2'. When k = 0, this factor group becomes 

the point group of the crystal class, and it will be shown later how group 

theory is used to classify the symmetry of the k = 0 modes for CaFo« 

For CaFp, the space group is O^-FmSm, and the properties of the ge- 

neral representations throughout ■•■he Brillouin zone have been worked out 

in detail by Chen, Berenson, and Birman^-5'^ ', using techniques deve- 

(•35) 
loped earlier by Birnan y/ for symmorphic space groups. We need not go 

into the involved subject of these representations here; it suffices to 

notice that, for every wave-vector k, the subspace of k is 3r-dimensional, 

and the eigenstates of D0 can be denoted by | k,0^> , CT -  1, ?.,   ..., 3r. 

The additional knowledge that these modes must transform according to 

specific space group irreducible representations has no further useful- 

ness for the general discussion at this point. 

For a more complete discussion of space groups and thei- representa- 

tions, reference can be made to an excellent review article by Koster'^2'. 

A very thorough treatment of the symmetry properties of the normal vibra- 
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tions of a perfect crystal has recently appeared in review articles by 

Maradudin and Vosko , and by Warren^ . The present discussion is 

limited to basic results that are dircCly relevant for this work. 

Thus, the basis vectors in each of the N distinct and orthogonal k- 

subspacea are chosen to be those which diagonalize the dynamical matrix 

in those subspaces: 

D0|kC->= u>i<r  l^> 
(2.U7) 

<i?cr|D0 = ^<r<^| 

This equation defines the phonon eigenmodes, which are characterized by 

a momentum k and a branch index <r = 1, 2, 3...., 3r. In terms of the 

states j kc^ , we can write 

Pfir  = Z   l&r><&r| (2.48) 

D0 =  Z Ibry^friSrl (2.U9) 

and 

Let us define the relationship between the set of eigenvectors |k<r^> 

and the set of vectors |k,Ka/   encountered earlier  (and which also span 

the subspace k).    If we use (2.36), 

ifer) -   Pglfcr) = Z!fe.K«><kAotUff>=-.   Z^CM^Ite.K«)        (0 _ 
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where we define 

W0LCKlk<r)=   <^, Ka|Ko-> (2.52) 

The quantities vjK^ff)  represent the coefficients that allow the 

eigenstates |k<r> to be constructed as a linear combination of jk,Ka) in 

the subspace k. From (2.51), 

D0|ko->= Z D'lfe, K'/J> W^CK'I&T) - CO^jko-)    (2-53) 
Kfl 

Multiply by <k,;<a| on the left, and use the definitions (2.1*10 and 

(2.52) to obtain 

Equations (2.36), (2.U8), and (2.^9) can be used to give 

Z w*UlK(r) . wCMfeo-'W ^cr' (2,55) 

(2.56) 

(2.57) 

All that remains is to determine the transiormation properties between 

the ba3i3 vectors UK«I> of the crystal lattice site representation, and 

the basis vectors )k(r> of the momentum space representation: 

l*<r> = 2. UK.OC> <XKot I'Eff) (2-58) 
ZKOL 
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The transformation function <£Ko(|Kcr> deperia upon R/ only thi-ough 

phase factor: 

and (2.37b) can be used to give 

(fe.K«!^)^ VM e-^^OK«!^) 
(2.60) 

By definition, the left hand side of (2.60)  is equal to ^K^)t 

the transformation function <£Kotl^<r> 
so 

oecomes 

<£K* i feo") = ^ e1'*^ w^Kl^cr) (2.61) 

Formally, the relationship between the two choices of matrix represen- 

tation can be summarized by a set of equations that define the linear 

transformation between the basis vectors: 

lU^   ^    T^T   21   e-ll*'Rx*w*Ulir<r)  I tec) (2.62a) 

lte<r>    =    -_   2.   e w^Ulko-) |iK«> (2.62b) 

In effect, we have carried out a linear, unitary transformation of 

the basis vectors | ^K«^ of the "crystal lattice site" representation, 

to a set of basis vectors j k<r^ that diagonalize the dynamical matrix D 

and define the "momentum apace" representation. The Hamlltonian (2.25) 

for the perfect crystal can be written 
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= 17  [ 6t(^,)QC1<r)4-  CJ^QH^QC^)] 
*-   h<r 

(2.63) 

where we have defined QdcoO to be the matrix element / k<r j Q of tl.e  (co^ 

umn) matrix Q, in the momentum space representation. 

QCfe<r)= <K<riQ « -4? 7 e i,t'^Kw*C<l1a)<i.(t«|Q 
VN 

(2.61*: 

IK« 

- u ^■ Recall that we defined Q = MJ5 u, so that <(i. tc« | Q = M K
2 u^ £K ). By 

making use of the inverse relation, (2.62a), it is possible to express 

the displacements UW{^K) in terms of the phonon normal mode coordinates, 

Q(k<r): 

U*U*) = 
CNMKV

A ^ •A t- 

R JtK 
W^Cttika) Q(tea)      (2.65) 

If we take the matrix element ^k<rj of the matrix equation of motion (2.26), 

we obtain immediately the familiar harmonic oscillator equations for the 

phonon normal mode coordinates, 

QCfe<r) v- u)^ Q(,k<r) = O (2.66) 

Equations (2.6l) and (2.62) will be very useful throughout this work for 

facilitating the transformation to momentum space. 

Since it is the long-wavelength optic modes of a crystal that are 

important for light scattering, we shall discuss here the detennination 

of the symmetries of tne k = 0 modes, with CaFg as an iliustraticn. At 
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k = 0, all of the prinitivc cells of a perfect crystal lattice vibrate 

in phase, so any two atoms which are equivalent (i.e., separated by some 

lattice vector R|) must have the same instantaneous displacements in those 

modes. Thus, the most general k = 0 displacement can be comp?"tely de- 

scribed by r vector displacements, v, , v0, v , ..., v , corresponding to 

the r basis indices for a primitive cell. These displacements will be 

periodically repeated throughout the crystal. The 3r-dimensional column 

vector. 

v = 

V 
I r ; 

can be used as a basis function for the 3r x 3r reducible representation 

that determines the most general form that the k = 0 modes can have under 

the point group symmetry of the crystal. 

This representation is easily constructed. For every operation of 

the point group, similar atoms are transformed into each other, but the 

set of basis indices K = 1, 2, 3, ..., r can, in general, undergo a per- 

mutation.  (For example, there are two inequivalent fluorines in the pri- 

mitive cell of CaFg, and under some operations of the 0. point group, the 

fluorine basis indices can be permuted.) Furthermore, all of the dis- 

placements will be rotated bj a three-dimensional, orthogonal matrix S. 

Thus, for every operation of the point group, a 3r x 3r matrix »is  con- 

structed by placing 3x3 matrices S in boxes that are defined by the per- 

mutation induces on the basis indices. For example, under aiiy one of the 
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six C^ rotations for CaFo, Ca—►Ca, F^—►Fp» ^2~,'?'lf  and t''le me-tri * 

that represents this operation is 

V   - 
/ sick) 0 0 

0 

0 \ 

0 

s{cu) o     / 

:2.67) 

The set of matrices J   form a 3r-dimensional reducible representation 

that defines the transformation properties of a general displacement v 

with k = 0. The character of some operation S in this representation F 

will be determined by the number of times a 3 x 3 rotation matrix S ap- 

pears as a diagonal block. I.e., if n, is the number of basis atoms that 

remain invariant under the point group operation S, then the character of 

the representation F will be given by 

0Cr(S) = TrJ   = nb Tr 5 = ± nb ( I + Zcos 0 ) (2.68) 

where 6 is the rotation angle of 3, and ± is used according to whether 

the rotation is proper or improper. This character can be decomposed by 

the standard methods of group theory •'"•''; the number of times an irre- 

ducible representation « occurs is given by 

h s 
(2.69) 

where h is the order of the group. (Tht method described here is based 
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OR an original werk of Wigner   , who first discussed the ■•ormal riodes 

of symmetrical systems.) 

Pig 2.3 summarizes the character of the k = 0 displacements for 

CaFg; its decomposition into the irreducible representations of the 0 

group leads to 

T = 2 Flu + F?g (2.70) 

E SCj 3C2 6CP 2 6cu I 8S3 3cr 6a' 6SU 

% 3 3 3 1 1 1 l 1 3 '< 

Tr(S) 3 0 -1 -1 1 -3 0 1 1 —j. 

Xr(s) 9 0 -3 -1 1 -3 0 1 ■5 -> -3 

Fig. 2.3: Character table for k - 0 modes in CaF0 

One of the P  representations corresponds to the acoustic phonon branches; 

the other six degrees of freedom correspond to optic modes. Under inver- 

sion, Ca--*-Ca, Fj—• Fp» and Fp-*^-' Hence> ;for z^e  cven F2jr mode» *he 

calciums remain stationary, while the two fluorine sublattices vibrate 

against »ach other. For the odd P^u optic mode, the fluorines all  have 

the same cisplacement, and that of the calcium can be obtained by requir- 

ing the center of mass to be stationary in such a mode. The (unnormalized) 

mode vectors at k = 0 are 
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2g F,   OPTIC MODE F.,  ACOUSTIC MODE 
lu 

Although selection rules will not be discussed unMl later, we men- 

tion here that the (triply degenerate) F_ mode is Raman-active, and the 

transverse optic F. mode is infrared-active. The infrared F, mode is 
lu lu 

split at k = 0 into longitudinal and transverse branches, due to the ef- 

(25 39 119) 
feccs of long-range electrostatic forces -5 -    , This phenomenon is 

connected with the macroscopic polarization field which accompanies a po- 

lar vibrational mode, and will be the subject of further r'-iarks in Chap- 

ter VI, where the problem of constructing a model to describe the phonon 

spectrum of CaF- is discussed. 
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2.3 Anharmonic Effects 

It is possible that the harmonic approximation .fill not be a good 

description for a perfect crystal, althoiigh it shall be used throughout 

this work and for the calculations to be carried out later for the mixed 

fluorite systems. The phonon normal modes have been obtained from the 

assumption that the potential energy is strictly quadratic in the dis- 

placements from equilibrium of the atomsi they are thus exact states 

of the Hamiltonian in the harmonic approximation, and are therefore inde- 

pendent and nou-interacting. As was shown above, this approximation 

leads to well-defined dispersion relations between the frequency and 

momentum of the normal mojes of vibration. For a given wave-vector k, 

the frequency a) of an excitation is infinitely precise, and is gxven by 

one of the phonon branch frequencies u)^,; that is, the spectral con- 
aw 

tent A(k,{ü) of an excitation with momentum k is a del:a-function, 

J> (co- u>£-).    For the harmonic crystal, a normal mode which is excited 

could nevar decay, and would thus have an infinite lifetime. 

If anharmonic interactions are present, these phonon normal modes 

no longer represent the exact eigenstates of the vibrational system. 

However, if the anharmonic forces are small, it is still meaningful to 

describe the lattice in terms of these modes, although they become 

coupled by the anharmonic interactions and are no longer independent. 

Anharmonic coupling can thus provide a mechanism by which energy can be 

exchanged between the modes of the harmonic lattice—i.e., modes can 

decay intc each other, and thus acquire a finite lifetime. The creation 

of an excitation with precise wave-vector k in such a system will con- 

tain contributions from all of the exact eigenstates of the system, and 
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will be distributed over a spectrum of frequencies. Thus, in an anhar- 

monic crystal, there is no longer a precise and well-defined dispersion 

relation that relates frequ^ncy to momentum. Ever with anharmonic in- 

teractions, the perfect crystal possesses translational periodicity, so 

—» 
it remeins possibJe to characterize the excitations with a wave-vector k. 

However, the frequency or a "phcnon mode" with momentum k becomes "fuzzy," 

and in situations whore ar.harmonic forces are very large, the concept of 

phonon modes may even become meaningless.  In that case, the problem 

would nave to be formulated in terms of a spectral density function Aik,,->>) 

for each wave-vector k. Loosely speaking, if the spectral aaplitude of 

an excitation with momentum k is peaked at some frequency co^ with a 

well-defined (full) width fy, it is possible to retain the concept of 

"phonon" as developed above, by incorporating the width n-/2 with a>j» 

to form a complex frequency Wj ± j rj/2. 

In general, the most elegant mathematical description of the exci- 

tations of a many-body system makes use of quantum mechanical Green's 

(ho) function techniques, and Gillis, Werthamer, and Fredkin    have attemp- 

ted to formulate a quantum many-body theory of lattice dynamics in that 

way. A simple discussion of how the spectral amplitude A(k,oü) of the 

excitations of a system can be related to the Fourier transforms of cer- 

tain Green's functions is given by Nozieres'   . In the simple case of 

a harmonic lattice that we shall use here, the phonon modes of frequency 

(A'j* and momentum k are non-interacting, and car. be characterized as the 

singularities of the (k,u)) Fourier transform of a classical Green's 

function.  In general, the methods of Green's functions span a wide range 

(hO-hb) 
of sophistication, and in many applications, can become quite formal 
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To include arharmonic forces in the treatment of lattice dynamics is a 

difficult task for realistic physical problems, and generally represents 

a difficult many-body ca]cu3ation. Although it can provide no informa- 

tion about the broadening of the modes, the harmonic approximation can 

usually give a reasonably good description of the vibrational frequen- 

cies of typical crystal lattices. Some of the simpler a?- -cts of the 

Green's function method that are useful fox a discussion of the optical 

properties of mixed crystals will be developed in subsequent chapters. 

There are many properties of a perfect crystal which are not ex- 

plained by the harmonic approximation at all—e.g., lifetimes of modes, 

thermal expansion and conductivity, temperature dependence of some phy- . 

sical quantities, etc. On the other hand, some effects may depend for 

their existence upon the assumption of anharmonic forces, but in fact re- 

flect properties of the crystal which are well described by the harmonic 

approximation—e.g., the pnonon sidebands on the local modss induced by 

U-centers in crystals. (Of course, the latter effect can also arise from 

a higher order coupling between light and the electronic structure—e.g., 

the second-order electric moment.  ' '~5ü,59;J 

Cowley  *   has discussed the effects of anharmonic interactions 

on the lattice dynamics of e. crystal; in these review »rticles, the mathe- 

matical techniques are f'-.veloped and applied to a variety of optical, ther- 

mal, electrical, and mechanical properties. Maradudin^' has discussed 

the anharmonic broadening of a local mode induced by a defect. Other 

references to work on defects in anharmonic crystals can be found in the 

review articles by Maradudin' ' and Elliott^' . 



m.  THE METHOD OF GREEN'S FUNCTIONS 

3.1 Introduction 

In thin  chapter, we shall develop '•he basic theory of classical pho- 

non Green's functions (and their relation to the quantum mechanical, dou- 

ble-time Green's functions) for the lattice vibrctional problem. There 

are numerous excellent review articles or. the Green's function method 

' " ' for impurity problems. Although most of these        are re- 

stricted to the viorational problem, Izyumov    has discussed the impu- 

rity problem with the more general objective of showing the unity that 

whese techniques provide for vibrational, electronic, and magnetic sys- 

tems. There is an extensive literature on th5 application of Green's 

function methods to electronicv' and FP.pr.etic^"0-0 ' impurity prob- 

lems. 

The formulation of the phonon problem in the harmonic approximation 

in terms of classical or quantum mechanical Green's functions id equiva- 

lent, because the equations of motion for a harmonic oscillator are the 

same in classical or quantum mechanics. The classical Green's function 

approach for the phonon problem is limited to the harmonic approximation, 

since the classical Green's function methods are typically formulated for 

systems which satisfy linear equations of motion. For calculations that 

involve anharmonic effects, the quantum mechanical formalism is more rea- 

dily applied. The quantum mechanical formalism is also especially con- 

venient, for it provides a relation between thermally-averaged correlation 

functions and Green's functions.  In processes such as Raman scattering 

or neutron scattering, the physically observable scattering intensity or 

cross section can be related directly to such correlation functions. 
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As we shell see later, an essential condition that is necessary for 

the practical application of the Green's function method to Impurity prob- 

lems is that the perturbation caused by the aefect is spatially localiaed. 

When the theory of phonon optical properties is formulated in terms of 

specific Green's functions, it will becone clear that there are often two 

separate aspects to such an assumption. 

For vibrational properties, the assumption of only a simple mass 

change for the def3ct is often inadequate to correctly explain experimen- 

tal results, and changes in force constants must also be included. For an 

isolated point defect, the totality of sites that are affected by mass and 

force constant changes shall be called the impurity subspace. The diffi- 

culty of carrying out quantitative calculations for an actual crystal 

lattice inertases rapidly as the size of the impurity subspace increases, 

so it is often desireable and usually necessary to restrict the assump- 

tions on force constent changes. In order to make a problem manageable, 

compromiaes have tc be made that »rill provide a physically realistic model 

of the impurity and host lattice, and simultaneously keep the defect space 

as small as possible. The exploitation of symmetry by the techniques of 

group theory can often provide great simplifications, but even then, the 

inclusion of more than nearest-neighbor force constant changes generally 

makes the computational problems incredibly difficult. Thus, only a 

small number of force constant changes are admitted. 

A further assumption on localizability ic involved when physically 

observable quantities are expanded in terms of Green's functions—e.g., 

by means of coefficients that couple light to the lattice. It is often 

necessary to make the assumption that these coefficients do not change. 



or change only locally with the introduction of an impurity. This will 

be discussed further in Chapter IV, where the theory for Raman scatter- 

ing and infrared absorption is given. 

3.2 General Theory 

In the harmonic approximation, the free vibrationa of a crystal lat- 

tice not driven by external fields satisfies an equation of motion given 

by (2.12). It is convenient to introduce a classical Green's function G, 

which is defined by the equation of motion 

= - JC-0 ^ ^K' SKK'   (3.1) 

In matrix notation, 

[M— 4- $ 1 G = - ^t)i (3.2) 
L   oLta       -J 

Where it exists, the Fourier transform 

GLio) =  [ oLt e^GCO (3.3) 

is given by 

The eigenfrequencies tos for the normal modes of vibration are determined 

from a secular equation, 

ölet [Oü1- D] ^ de-t G"'(u>)/det M = O (3-5) 
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and for a finite crystal, appear as simple poles of G along the real axis 

in the (complex) frequency plane. 

So far, no boundary conditions have been imposed on this Green's 

function. A retarded (or causal) Green's function C (t) is defined to 
■■ ■ ' r 

satisfy the equation of motion (3.1) subject to the boundary conditions. 

G_(t) • JLo (t) - 0, t < 0        (3.6) 
r    dt r 

Likewise, it is possible to define an advanced Green's function with 

boundary conditions analogous to (3.6) for t > 0. For a system with 

time-reversal invariance, G (t) = G (-t). 
r     a 

Formally, the inversion of the Fourier transform i3.k)  is given by 

ee 

e(t) = -L f oLoo e'^CM^-^)"'        (3.7) 

However, G(co) has simple poles on the real axis, and in order to carry 

out this inversion, it is necessary to make some prescription for integra- 

tion around these singularities. The choice of integration contour that 

is made is related to the boundary conditions imposed on G(t). For a de- 

scription of the system in terms of retar' " n-een's functions, Gr(t) 

vanishes for t < 0, and for advanced Green's functions, Ga(t) v^ 'shes 

for t > 0  For the former description, it is necessary to integrate 

above the poles of G('Jü), and for the latter, below the poles. Thus, for 

example, 

r   '      -Z-K I *        «-►o+ Aw J 
(3.8) 
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where the contour T   is shown in Fie.  3.1 below. 

r 
^—rv s-\ 

Fig. 3.1: Integration contour for G (t) 
r 

A similar result holds for the advanced Green's function Ga(t), for which 

G{co-ie ) appe rs. These rules are conveniently suramarized: G(uj±i£ ) is 

us_d for Gr a('
,■), respectively, when the transform (S-M is formal.^; in- 

verted.  It is, of course, always tacitly understood that the limit g.—►0+ 

is to be taken in all of the final results. 

For a lattice driven by an external force, F0(( ttt,t), the equation 

of motion is 

[ M^ -+- $ ]• uCt) = FCt) 
(3.9) 

The response of the 2   ttice can be expressed directly in terms of the 

Green's function: 

(3.10) lUt) = -   <**' GCt-f) FCt') 
j 

The use of the retarded Green's function is, perhaps, the most natural, 

since this description preserves the cause-and-effeet order of stimulus 
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and response: no excitation occurs at times beforee. driving force is 

applied. In that case, the lattice response is given by 

u(t) = - f At'GrCt-OFCi') (3.11) 

The causal Green'6 function Gr(t) shall be used in most of the subsequent 

development. No consequence of physical importance can depend upon this 

completely «arbitrary choice of description. For a coherent driving force 

of the form 

» 

F(t^ - j dUü e~tü,t FC«) (3.12) 

the lattice response is, from the rule suggested above» 

oo 

-uCO = - l«Vn   dw e """GCw + ie) FC">)      (3.13) 
—  o» 

The it Eurtifica in Eq. (3-13) is, of course. Just a symbolic vay of 

stating that the u>-integration is to be carried out along a contour 

slightly above the real axis.. Note that, along such a contour, F{t)-» 0 

as t-^-oo, so that the causal description is consistent wich an "adiabatic" 

(i.e., slow) switching-on of the interaction in the distant past. 

For the harmonic lattice (to whi„h we shall limit the present work), 

it  was possible to obtain a simple, explicit form (3^)  for G(w) that 

was analytic everywhere except for poles on ••■.he reel axis. The signifi- 

cance of that statement can be made more precise, if we define, for com- 

plex z. 



öv.aU) = j dt elit(3rn<,Ct) (3.H») 

If we assume that the inverse tr',,"'5fonn G^ „^UJ) exists—I.e., that G  (z) 
^ >a      r,a 

exists for all z on a contour (above or helow) and infinitcBi^ally close 

to the reed axis—then we are led to the general property that Gr(z) is 

analytic in the upper half-plant, and G_(z) in the lower half-plane. In 

general, if G(t) is defined ts 

Gr(t),   t > 0 

G(t) = i 

G (t),   t < 0 
V. a 

then the Fourier transform. 

(3-15) 

G(z) = < 

Gr{z),  Im z > D 

G (z).  Im z <1 0 
v a 

is analytic throughout the entire complex frequency plane, except for the 

real axis. In more complicate.! problems involving anharmonic forces, Eq. 

(3-'0 no longer holds, although these general analyticity properties con- 

tinue to be valid. If the modes becomsd dampea by anharmonic forces, the 

singularities for Gr(z) will be moved off of the real axis into the lower 

half-plane, and those for Ga(z) to tie upper half-plane. 

There are some useful relations that e..i3t for G_ „(z). First of 

all, the rule developed earlier for specifying the contour of integration 

can be expressed symbolically as 

G_ a(uj) = lim G(to±i e ) (3.17) 



-1*5- 

For a general system, 

Gr.a^ = «rj-^ ' (3-l8) 

and for a iystem invariant under time-reversal, 

Gr)a(z) = Ga)r(-z) (3.19) 

The latter relation and the definition (3.16) lead to GU) = G(-2) for 

systems that are invariant under time-reversal. Notice that the result 

(3^) for the harmonic lattice obeyed this requirement. For real a) , 

(3.18) and {3.19) can be specialized using (3.17) to give 

G(a)+i£. ) = G(-o+ie ) # (3.20) 

G(u;+i£ ) » G(-cü+ie ) (3-21) 

which are the loms  encountered most frequently in the subsequent work. 

As a simple exaaple that vill motivate the use of Green's functions 

for later discussions of phonon optical properties, consider a classical 

linear system driven by a random, fluctuating force F(t). The average 

power absorbed in such a system can be expressed as 

oo 

p = (Fit).  liCt)>= - j 0lt'<FCt)F(-O>- it GCt-t')    (3.22) 

where the brackets < ^ represent an average over a statistical ensemole 

of systems. For the variables F(t), u(t) it is not meaningful to intro- 

duce the Fourier transform, but it is possible to define the Fourier trans- 

form of the correlation function R(t,,t) = <^ Fft')F(t.) N for stationary 

random processes. In that situation, the correlation function R depends 
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only upon (f - t), and if we define 

RCu») = [ dr eiwX<F(T)F(ö)> 13.23) 

the power can be written 

2ic 
[ oluiCcu))   { JLt'€,u'(t'_0<Fa')FCt)>   &(oo+i£) 

_   _L   j   duj (oo) R(cü). G(UJ+ce) 
2,n:  J 

Since R(-w) = R{u>), G(-o)+ie )  = G  ( uj+i e ), 

IT   J 
dui uj RC^) 1*^ GCw+i£) (3.2lt) 

and the spectral power density Pecomes 

PCu.)   = 
co (3.25) 

This simple classical example is an illustration of the usefulness that 

Green's functions have for the calculation of power ahsorption spectra 

in physical systems. 

Another simple example is provided by the phonon density of states, 

which can also be expressed in terms of the imaginary part of a Green's 

function evaluated as UJ  approaches the real axis. It is easy to verify 

that, if a new (Green's) function H(t) is defined as h(t) = M dG/'dt, and 

thus, 

to*— D 
A  u,   M-ya (3.26) 
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the density of phonon states will be given by 

pCw) = .-L- 7 S(Cü-UJ,)= -l^Tr{MlmG(w-fiE)} r      3rN 5 3-«cr J   I ' 

= -—-T.ReTrHCw-hle). (3.27) 
3irrN 

When a more general approach is introduced later to develop the Green's 

function formalism quantum mechanically, the "conjugate" Green's function 

H will achieve more significance. 

For a perfect lattice with translational invariance, the Fourier 

transformed Green's function is 

Cou)-1 = MoOJ1-^0. (3.28) 

In terms of the dynamical matrix D0 = M^^ $ M "^ defined in the earlier 

discussion of the phonon modes of the perfect lattice. 

)   ' ,0  ^_ D0 (3-29) 

If we make use of {2.33b) and (2.^8), the unperturbed Green's function 

G0 can be written in spectral form. 

G
O
(^= M:*2 J3ii<*ii M:'* (3.30) 

tr      <J--  Wf1 
'ka 

Then 

ILr UZ-OJ^ (3.31) 

which becomes, after inserting the expression (2.6l) for the transforma- 

tion functions <JtKa(| te.o-"> , 



-1*8- 

M 
(3.32) 

K' 

For a finite lattice, the Green's function G0 has poles along the 

real axis which become densely spaced as N-♦en . In an infinite crystal, 

G0(u) ) will thus be analytic throughout the entire complex frequency plane 

except for branch cuts along the portions of the real axis corresponding 

to the (positive and negative) frequency bard(s) of the crystal. This is 

illustrated in Fig. 3-2 below for a crystal that contains only one phonon 

band. 

I 
Complex co -plane 

U)„ 

Fig. 3.2: Branch cut for G0(z) in an (infinite) 
crystal containing one phonon band. 

Specifically, if u> ( > 0) Is in one of the vibration?:! frequency bands 

of the lattice, then the Green's function G0(z) will exhibit a Jump dis- 

continuity as z crosses the real axis from io+it    to u)-i£ ; 

G,,Cw±i-e)= ho\o0+ihU)C«) 

(2), where the matrix lr2'(ü) )  is given by 

-Vlr- hwCcü)  =    -rr Ml ^S(co^-D•)M; ■•/2 

(3.33) 

(3.3M 
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with the matrix % {•#*-■ D0) defined in terms of its spectral representa- 

tion, 

^(ar-D') « Z l^>S(^-coV<r)<?cr)       (3.35) 

The real part, h^Hui),  is given by a Kllbert transform. 

The matrices h^*'(a») and hl '(u>) can also be expressed in the crystal 

lattice site representation | Jt*ot^ , by the rule (2.6l) given earlier. 

Thus, for example. 

h*UtK.i'*'ti») = <XK«| hW(u))|rK'/j> 

N(MKMKW       kff 

(3.3T) 

Clear3y, if UJ  lies outside of the phonon frequency bands, the Imaginary 

part hl2'(u)) of the Green's function will vanish, since the delta-func- 

tions can only make a contribution when tu is in a band of phonon frequen- 

cies. Eq. (3.33) shows that the imaginary part of G0(z) changes sign as 

the branch cut on the real axis is crossed. 

So far, all that has been emphasized is the usefulness that Green's 

functions have for describing the response of a lattice to an external 

force. However, the Green's function formalism also arises naturally as 

the most convenient mathematical framework for studying the perturbation 

on the lattice dynamics of a crystal containing defects. Their usefulness 
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for expressing concisely the coupling of an impurity site with the rest 

of the lattice will become apparent shor-ly. These techniques are, there- 

fore, ideally suited to the study of optical properties of defects, since 

Green's functions contain, implicitly, the complete information about the 

perturbed eigenfrequency spectrum, and represent the response of the lat- 

tice to external electromagnetic fields as well. In principle, the de- 

termination of the normal modes of the perturbed lattice would provide 

a complete solution to the impurity problem, although such detailed in- 

formation (even if it could be obtained) rfould not usually be of direct 

usefulness for discussing the physically observable properties. As the 

simple examples above have suggested, many quantities of physical inter- 

est (such as Raman and infrared spectra, phonon density of states, etc.) 

can be related directly to certain Green's functions. In the next sec- 

tion, it will be shown how Green's function methods can be used (in the 

harmonic approximation) for the vibraticnal impurity problem. 

3.3 Lattice Dynamics of Defects 

The Green's function G(u)) for a general lattice containing an ar- 

bitrary configuration of substitutional impurities was given by (3.M, 

and this can be related to the Green's function G0(u)) for the unperturbed, 

perfect lattice, Eq. (3-28), by 

GCw)"1 = G^'s^rV V (3.38) 

where the defect matrix V is defined by 

V =■- CM-MOW-C§-3>0) (3.39) 
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Thus 

GCoü) « Q\ui)- G'Cü)^ V G(a)) 
is.ko) 

GCCü) ^ [| -j- G0CCüW]'1G-CCü) 

* G0(u)) - G',,(u>)v[l -+-60Cu')v]'1G0(w) (3.1*1) 

Kleirry ' and Benedek and Nardelli^) have discussed the defect problem 

fron the point of view of phonon scattering and the T-matrix (the T-matrix 

In (3.1*1) is Vd+G^)'1 ). In principle, Eq. (S-kl)  represents the solu- 

tion of the problem of an arbitrary configuration of impurities, although 

for a general defect matrix V, it has little practical usefulness for 

providing any explicit knowledge of the nature of the perturbed modes, 

or for changes in actual physical quantities. However, if we restrict 

our attention to the problem of a single isolated substitutional defect 

in an otherwise perfect lattice, it is possible to obtain several useful 

results from this formalism. Since the use of Green's functions for im- 

purity effects on lattice dynamics has been thoroughly discussed iu  ths 

litsrature, particularly in several excellent review articles "^  ~'-'vJ') 

only a brief account will be given here. 

For the vibrational problem, the introduction of a substitutional 

point defect will involve changes in the äiass and force coastaotS. The 

situation is, of course, mure crniplicated for defects such es molecular 

impurities, or interstitial impurities, sln^c extra degrees of freedom 

are added to the prcbl•-m' ' ' "-•''D'^''. The translational symmetry of the 

perfect lüttice is destroyed, and the normal modes can no longer be ja- 

beled by a wave vector k. The great simpliflcationa that trar-dlational 
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invariance provided for the reduction of the secular equation to the 3r x 

3r form i?..3k)  no longer obtain, and all that remains at our disposal is 

the point group symmetry that characterizes the impurity site and the sur- 

rounding lattice. For the problem of a single substitutional impurity, 

the exploitation of defect site symroecry and the use of matrix partition 

(57 95 98) 
techniques  '    ' makes it possible to obtain several useful, quanti- 

tative results from the basic equation (3.i+l), provided that the space 

affected by the defect is not large. Define 

g u12 
vo 0 

G = , v = 
G21 G22 0 0 

Gu = 

g0 i r0 
| G12 

"4 1 ro 
| G22 

(3.1*2) 

where the first set of rows or columns in each partition refers to the 

impurity subspaca. If there are a total of n sites affected by the intro- 

duction of an impurity, then the matrices g, g , and v will be 3n x 3n. 

From (3 ^O), (3.hi),  one can show that 

|(uO = [M- f0c^Wo]"1g0(^) (3.U3) 

The frequencies of the perturbed spectrum, which are the discrete poles 

of G for a finite lattice, are given by the secular equation, (3.5) • Since 

det 1 + gV)v0 -   = 5  

to- 

it follows from (3-5), (3.^2) that the solutions to the equation 

det [ 1 4'g4Cü^v0] Ä 0 (3.UM 
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will give the frequencies of those nodes whi'' 1 we perturbed by the intro- 

duction of the impurity,  thus, for a localized defect described ^y v , 

the problem can be reduced to a form in which only those C-rnen's functions 

defined for the (small) impurity subspace are  involved. The way in which 

e, defect is coupled to a pure lattice is thus expressed concidJly in 

terms of the Green's function formalism. There is an extensive litera- 

ture on the nature of the solutions for (S.1*^). and no attempt will be 

made here to duplicate the excellent accounts elsewhere, except for a few 

brief remarks. 

It has been well known, since the early work of Lifshitz^9)> Mon- 

troll and Potts^100), and others'>■L'101,102' that one striking contaquence 

of equation {3.kk)  is the possibility of obtaining "local mole" (or "gap 

mode") solutions that have frequencies outside of the band(s) of fre- 

quencies allowed for the perfect lattice. When a defect atom of differ- 

ent mass, end perhaps characterized by different "spring constants," is 

introduced substitutionally into & perfect lattice, it may have vibra- 

tional properties considerably different from those of the host atom it 

replaces. As a simple example, when a light defect mass replaces a heavy 

mass in a one-dimensional chain, e mode cam split off of the top of tne 

vibrational continuum to produce a local mode. Because modes with fre- 

quencies outside of the band(8) are not propagated by the perfect crystal, 

these so-called "local modes" are actually characterized by a high degree 

of spatial localization around the defect, and the vibrations of the atoms 

in such a mode fall off rapidly with distance away from the defect site. 

Similar effects result from changes in the force constants. In three di - 

menslons, there is generally a critical value for the mass or force con- 



stant change tha must be exceeded in order to produce these effects. 

The in-tand modes will be perturbed only blightly, with frequency shifts 

of order 1/N in the quasi-continuum. As  -> oo , the change in the band 

frequencies will approach zero, and in that limit, g (w ) will become u 

principle part integral (which is Just Re gc(u)+le )). Since its solu- 

tions describe only the perturbed modes, Eq. (3.M) will have a solution 

only at the local mode frequency in that limit. 

In addition to local modes outside of the band, there are also inter- 

esting resonance phencmena^1,1^"110^ that can occur inside of the band. 

The expression for many physical quantities (that can be related to the 

Green's function j) will contain an inverse, (1 + g ( ui+iE )v0)" • In- 

side the band, the imaginary part of g0( co+iE ) is, in general, non-zero, 

and if there is some frequency w0 inside the band for which the real part 

of detll + g0(uJc+ie, )v 1 vanishes, this can lead to a resonant behavior 

at that frequency with a "width" related to the imaginary part oT g (-i>+ie)v0. 

For example, if a sufficiently heavy defecx ii introduced into a per- 

fect lattice, it will prefer to vibrate at a lower frequency than the ty- 

pical hose atoms, and this can result lo a low-frequency, in-band reso- 

nance. Such "resonance modes" have often been loosely characterized as 

being at frequencies where a local mode would like to exist, but cannot, 

since the phonon density of states for the pure crystal is n^n-vanishing 

there. Such a ("quasi-local", or "virtual") mode would be able to decay 

into the continuum of neighboring band modes, and this mecha.iism would 

make the lifetime finite (or equivalently, give a "width" to the resonance). 

In contrast, of course, a true local mode that lies in a gap or above the 

maximum frequency of the unperturbed lattice is all by itself, and is un- 
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able (in the harmonic approximation) to decay into any of the other mcdes 

of \.he lattice. 

Similar phenomena, such as locftl and resonance mode behavior, have 

been discussed by Wolfram and Callaway   , Wang and Callen»""'., Hone^  , 

and others for single impurities in magnetic systems. If impurities are 

introduced into ferro- or antiferromagnets described by a Heisenberg hamil- 

tonian, the situation id analogous, in many respects, to the lattice vi- 

brationp.l problem in the harmonic approximation. At low temperatures, 

the system is described by non-interacting spin waves (magnons) which play 

the part of phonons. The magnons represent wave-like spin-deviation 

states frrm the ground state. Just aa we can consider phonons to repre- 

sent wave-like displacements of atoms from an equilibrium configuration. 

(Spin waves are discussed in Kittel^ *' and in a review article by Kran- 

kendonk and Van Vleck*^11'.) The ferro- or antiferromagnet consists of a 

system of spins localized at fixed lattice sites, and coupled by pairwise 

exchange interactions. For the perfect system (Just as for the phonon 

problem) the normal modes are a set of aagnon states described by disper- 

sion curves giving energy versus k. Once again, defects are considered 

in the approximation that the perturbation they produce is spatially lo- 

calized. In the lattice site representation, this means that the change 

induced by the impurity on the exchange coupling constants (which are ana- 

logous to "force constants") must be localizec' near the impurity site. 

Furthermore, a general substitutional impurity can also involve a change 

in the spin. Although the formulation of the spin problem requires the 

quantum mechanical Green's funct.'on formalism, all of the results discussed 

above for the lattice dynamics of defects have their counterpart in magne- 
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tic systems. As would be expected, it is possible to obtaiu, for appro- 

priate defect parameters, localized modes outside of the (magnon) bands 

of the perfect lattice; it is also possible to observe "virtual" or "reso- 

nance" modes, with finite lifetimes, within the band(sr90"53'. 

The electronic impurity problem for a substitutional defect was first 

treated by Koster and Slater^61', and it has also been discussed by Wolff^, 

Clogston1   , Friedel^' and others. For this type of problem, we are 

interested In the effects of a highly localized impurity potential on the 

wave function of an electron in an otherwise perfect, translationally 

periodic, crystal field. By expanding wave functions and operators in 

terms of Wannier functions (states which are highly localized about atomic 

sites) it is also possible to treat the electronic impurity problem by 

Green's function methods analogous to those tor  lattice vibrations.  If 

the perturbation is sufficiently large, electronic bound states analo- 

gous to local modes can appear outside of the energy baodts) for the pure 

(50) 
crystal. Elliott ' has given a good simple exar.ple to illustrate the 

electron impurity problem: suppose a single defect is introduced at the 

origin of an "empty lattice", described by a single band of free electrons 

with energies E(k) = frk'Van. The single impurity problem then consists 

only of the defect potential at the origin, and all that is required are 

the solutions for the electron wave function in a potential well. Con- 

sider an impurity potential such as that illustrated in Fig. 3-3 below. 

The positive energy solutions correspond, by analogy, to the continuum 

band modes of the vibrational problem, and except for an asymptotic phase 

shift at large distances, their wave functions are not appreciably altered 

from the free, plane-wave solutions, except in the vicinity of the defect. 
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If the well is sufficiently complex that it attempts to form a bound 

state at an energy of one of the continuum states outside of the well, 

then a virtual or resonance state will form which can decay, with finite 

probability, through the barrier and into the potential-free region. The 

j—übability density of a Jtate with energy E, will be resonantly enhanced 

i..- ehe region of the defect well. Likewise, if the well is deep enough, 

it can form true bound states, with an energy E outside of the continuum 

energy band; such a state is analogous to the vibrational local mode. 

W\AA- ^/- 
-*■ r 

Fig. 3-3: One-electron impurity potential for the "empty lattice" 
with a single, substitutional defect at the origin. E0 
represents a true bound state, and Ej a virtuaj. state. 

For further details concerning the electronic and magnetic impurity 

problems, reference can be made to th« literature, and especially co  the 
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review article by Izyumov^ '. 

Let us now return to the lattice vibration prcblem.  The introduction 

of a single isolated defect can, under favorable conditions, cause one of 

the modes of the perfect lattice to split off from the continuum and form 

a localized vibrational mode. When many impurities are present, they can 

interact (even if only indirectly through the intermediate coupling with 

other host at ms) and it is possible to produce a more complicated local 

mode spectrum.  For small concentrations, the defects will be far apart, 

and the results for the isolated impurity problem will be adequate for 

many purposes. However, depending upon the configuration of the impuri- 

ties, the multiple impurity problem can, in general, become verj complax. 

For example, the localized mode structure may contain many components from 

"islands" of adjacent defects, and these localized cluster effects can 

become important for some problems if the concentration of defects is not 

small. Many authors have studied the local mode structure for the multi- 

pie-impuri'vy problem exactly for simple models in conjunction with the 

random crystal problem. This topic is, therefore, properly postponed 

until Chapter V, where we will discuss disordered lattices. 

3.k    Quantum Mechanical Double-Time Green's . anctions 

Zubarev^ 0' has given an excellent review of the theory of quantum 

mechanical double-time Green's functions, which have recently been used 

in a variety of statistical mechanical, impurity, and many-body problems. 

As we shall see, one of the basic, simplifying features of the harmonic 

approximetion makes it possible to use, equivalently, either a classical 

or quantum mechanical formulation for ti.e lattice Vibration problem.  How- 

ever, the quantum mechanical framework is far more versatile, in general, 
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and it is necessary for extending Green'r "unction methods to magnetic 

and electronio systems, which carnot be aescribed by classical equations. 

Even for the lattice vibration problem, where a classical description 

could suffice, the quantum mechanical formulation has many advantages, 

for it expresses results as thermally averaged correlation functions. 

In the harmonic approximation, a certain quantum mechanical Green's 

function will turn out to obey the same equation of motion as the classi- 

cal function G, introduced earlier in Eq. (3.2). When anharmonic inter- 

actions are included, the classical differential equations of motion for 

the lattice displacements becomes non-linear, a;:d a description of the 

system in terms of the classical Green's function G(t) is not available. 

It then becomes necessary to resort to the more general quantum mechani- 

cal formulation of Green's functions. 

Withir- the harmcnio approximation, a simple, linear, second-order 

differential equation, in closed form, describes the time evolution of 

the classical Gieen's function G{t). This led to a simple, explicit form 

for the Fourier transform G(ui ), given by (3.1*). The presence of anhar- 

monic interactions, which requires the quantum mechanical formalism, leads 

to the necessity of defining an infinite heirarchy of Green's f-inctions, 

coupled by an infinite sequence of equations of motion. For the quantum 

iechani^al Green's function G(t) that is anal^ous to the classical one 

in the harmonic approximation, there would no longer be a simplt equation 

of motion in closed form, and it would no longer be possible to obtain, 

simply, the Fourier transform G(cu).  Further remarks shall be made at 

the appropriate places below. 
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The retarded and advanced Green's functions (at some finite tempera- 

ture T) for two Heisenberg operators A(t) and B^t') are defined by 

er
ABCt-V)= ioCt-t'KCACO^BCt')]^        (3.U5a) 

^BCt-t') « -_!.0(t'-t)<[ACt))B(t')]>T       (3.^b) 

and 

r^ct), t> 
GAß(t) »^1 

r  . ..    , 0 
-AB/ 

(3.U5C) 

,AB(t),  t<0 

where e(t) is the unit stop-function, defined by 9{t) = 0 for t < 0, 

and e(t) = 1 for t >0. The brackets < > represent an average over 

a thermodynamic ensemble defined by a density matrix  Po = e"   , where 

T is the temperature and /J = 1/kT, I.e., for c.n operator A(t), 

In order to motivate the quantum mechanical definition for tne Gieen's 

function given above, it is instructive to show it arises naturally in 

expressing, to lowest order, the driven response of a system, in thermo- 

dynamic equilibrium at temperature T, to an externally applied field. Let 

the unperturbed system be defined by fhe hamiltonian dG , and suppose that 

an external perturbation is applied, which couples a driving force F(t) 

to some operator B.  Ji he Schrödinger picture, 

H = J£ -f- B- FU) 
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In the Schrödinger picture, the state of the system (in this case, e.g., 

described by a density matrix p ) evolves in time, whereas in the Heisen- 

berg picture, the state is regarded es remaining constant (i.e. p«)» and 

the dynamics is described by time evolution of the operators. The evolu- 

tion in time for an operator A(t) is described by a unitary transformation, 

A(t) = U(t)t A U(t) (3.1*6) 

vhere 

U(t) = e*p C- idit)  | eyp - t J cLt' B(t') F(t') \ 
(3.1*7) 

The expression on the right contains a time-ordered exponential, (exp...) , 

which is defined formally in terms of its expansion by a rule that states 

that all operator products are to be ordered in such a way that later times 

occur on the lefV  '. The operator B(t) is given b1' 

B(l)= er.p(i^t) B cxp(-taet) (3.U8) 

which defines the interaction representation for the complete system 

(including the perturbation). Note that B(t) is Just the Heisenberg 

operator for the system without the perturbation. 

Then, if it is assumed that there is no static contribution from 

Tr(p0A), the response in the operator A due to the* coupling of B with an 

external driving force F(t) is, to lowest order in F, 

t 

<ACi»T « - i j dt' ([A(i), BCt'^FCf) 
-oo oe 

=  j 4t'er
AB(t-t')F(t') 

(3.^9) 
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If the time-ordered exponential in (3.^7) had been expanded further, higher 

order terms which are non-linear in the driving foroe F would result. Such 

terms would be useful, for example, in obtaining quantum mechanical expres- 

sions for the non-linear susceptibilities in optics    . 

For the case of an external field of frequency 60 that is  switched on 

"adiabatically" (i.e., slowly) in the distant past, given by the real part 

of 

Fw(t) = Fo exp{-iu)t + et). 

the response become-; 

(Aa)\  = 7/BCcu). F^Cf) (3.50) 

where 

xABo) = G^C^ + Le) 
(3.51) 

The linear susceptibility is, therefore, just tne Fourier transform of a 

double-time Green's function. 

AB/ \ 
The equation of motion for the Green s function G (t) can be obtained 

by invoking the equations of motion for the operators A(t), B(t) which, by 

definition, evolve in time as Heisenberg operators of the unperturbed 

system, viz. , 

., *  im . -ivtt 
A(t) = e    A e (3.52) 

Then 

i d/dt A(tj =  [A(t), 7t] , (3.53) 

which is the familiar Heisenberg equation of motion for the unperturbed 
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system (i.e., wjth no external driving fields). The equation of motion 

for G_/1 (t; 'becoines 

I ii-G/9 (t) = Set) < [ Ait), BO)] \ 
At 

+ T0CiK[[A^^].S(o)]) (3.51») 

The presence of the S (:) allows the first term in (3.5^) to fee written 

as an equal-tima commutator, S(t)\ (_ A(0), B(0) 3 NT- The second term 

on the right is a new Green's function, and this is a general characteris- 

tic of the quantum mechanical theory: successive differentiations will 

continue to generate new Green's functions on the RHS, leading to an infi- 

nite heirarchy of coupled equations. 

By specializing the operators A, B, the quantum mechanical formalism 

could be applied to vibrational, magnetic, electronic, or other systems. 

(For the electronic Green's functions, anti-commutators must be used.) 

In the present case, we wifh to discuss the vibrational problem. For an 

arbitrary crystal lattice, we can define a (retarded) displacement-dis- 

placement Green's function G, and a momentum-displacement Green's func- 

tion H as 

e^UK.XVjt) = jBii)([u*U*>ih   UAUV.O)]^    (3.55a) 

HÄ(iUK,iv';t) = jöct)<[pet(jeic,t)i u0UV,o)])T 
(3.55t} 

where p^(iK,t) = M t„dui Ji* ,t)/ät    is the conjugate momentum operator. 

By differentiating once, 
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— MJUG^UK./VJO   =    H^^iK.X'K'-t) (3.56) 

and 

-0^)<[[f«U^tX^],   ^UV.O)]^ (3.57) 

The right har,.d side of (3.56) contained a term with %{t)  which vanishes 

because it included a ^u,u] commutator.  In the harmonic approximation, 

the right hand side of (3.57) does not generate any new Green's function; 

in fact, it reproduces the original Green's function G. By invoking the 

equal-time commutator relations, 

[f.ux.n. i^uxt)] = 4-WWV        (3-58) 

it follows, in the harmonic approximation, that 

[tvU*.^, ft]  =  -f Z ^rC^xvWy^V,*)     (3>59) 

Eq. (3.58) and (3.59) can be used to simplify (3.57), which becomes 

(3.60) 

The original Green's function G has reappeared en the right hand side. 

In matrix notation, (3.56) and ^3.60) become 

M —Or  = H (3.61) 
alt 
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* H = - ^G- - g(t)i (3.62) 
V-- * to 

By differentiating (3.61) and using (3.62), we obtain finally 

(Mi£ -h $)& - -S(t)l (3-63) 

which is identical to the equation of motion (3.2) for the classical 

Green's function G introduced earlier. Recall that H(t), the "conjugate" 

Green's function, occurred earlier in connection with the phonon density 

of states (cf. Eq. (3.26), (3.2?)). 

With the inclusion of anharmonic forces, the simple form (3.59)» 

(3.62), and (3-63) no longer hold. The presence of anharmonic terms is 

the hsmiltonian, 

Xj<ia' +  fit-    ^Z'V01*COUU) 1^3)^(4)4-... 

(3.6U) 

will modify the commutation relation (3.59): 

+ 57 2-  ^o>1^(^'<sx1K1,ititt)tt«,C-e,K..t)tior.^lKl.t)-f-.. 

'"""' (3.65) 
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Ths equation of motion (3.63) is now replaced by 

I MAK^U.SKK.^. -^   4-    ^ (XK.X.K.) 
AK,«.

1
- ■ — oLt 

Gro<lfi(^1'<.>^'<'it) = 

I 0C^([uoti(XtKl.-t)^lC^Kl)-t), U^C^<'»
0)]^ +.- 

(3.66) 

and new Green's functions occur on the RHS. The calculation has imme- 

diately become a more complicated many-body problem, and requires some 

sort of truncation approximation to terminate the equations. Since the 

simple closed form (3-63) for G(t) is no longer valid, it is no longer 

possible to use the simple form (3.'0 forö(w) if the harmonic approxi- 

mation is abandoned. 

Frequently, the Fourier transform of certain thermally averaged cor- 

relation functions of the form RAB(t - f) = <A(t)B(t1)). T appear in 

the treatment of physically observable quantities. The spectral density 

function, 

OS 

JA8(u>) =   I dtcicü*<ACt)BCOX (3-67) 

- 00 

can be expressed in terms of the Grten's functions GAB(u)) in a relatively 

simple way. Since A(t) = exp(ig€t) A(0) exp(-i3tt), it is possible to 

exploit the formal similarity between time and temperature dependence in 

the thermal average. 
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<BO)Mt>>T =   ^Tr{e-^BCo)etWACo)e-tm} (3-68) 

where Z = Tr(e~*    ) is the partition function.    Simple rearrangement, 

using the cyclic property of the trace,  leads tc 

<B(O)A(0>T   =   <A(t-i/OB(o)>T (3.69) 

so that 

OO 

dtelü,t<[A(t),BCo)])T =  C4 - c"    yJAB(«>) (3.70) 

Again, the i« artifice can be used to express 

-oo 

Subtraction of the (two) equations (3-71) gives 

l[GAB(u>+le)-G
AV-^)l =  at eta,i<[A(t\BCo)]^     (3.72) 

_«o 

where the relation [e(t) + e(-t)] = 1 has been used. Combination of 

(3.70) and (3.72) leads to a final result which is a useful relation^  ' 

expressing the spectral density of the correlation function ^(1)8(0)^^, 

in terms of the Green's function 0^(0)): 

JA0(cu) = L 'n-n(cü)l l.m  G-AB(«ii-it)-GAB(c«-le)l   (^.73) 

where n( UJ ) =^e'u>— l]"1 U  the Bose distribution function. It is pos- 
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AH 
sible to express each of the Green's functions G  (w ) separately in 

r ,a 

terms of the spectral distribution J^w ) by making use of a convenient 

representation of the 8(t) step-function. 

ect)= ~ { <w-.e"*w't (3.7U; 
^TC J 0)'+ te 

Then 

^ Co») = ± J~ f -   dt0'.   f clt e^^^^VCAC*), B(o)]> 
2rc       oü'-J-Le   j T (3.75) 

oo 

which can be reduced, by means of (3.70), to yield 

&>)  = du)'((_ ^«)__züi^i 
to — W ±.tt 

(3-76) 

The formal rule 

(3.77) 

can be invoked to express (3-76) explicitly: 

(3.78) 

The displacement-displacement Green's function G defined in (3.55) can be 

used to evaluate the Fourier transform of a certaiii correlation function 

that will occur later in the theory of first-order Raman scattering from 

phocons: 

(3.79) 



IV.  THE PHONON OrflCAL PROPERTIES 

k.l    Raman Scattering 

The Raman effect is an inelastic scattering process in which light, 

interacting with matter, can transfer energy to (or receive energy from) 

the material system. In the present case, we shall be concerned with 

Raman scattering from lattice vibrations, which involves the creation or 

destruction of phonons when light interacts with a crystal. Raman scat- 

tering from other excitations—e.g., spin waves'11^ »^^) ^ electronic 

states " ' "', and perhaps plasmons^^-"', etc.—is also possible. 

An siectromagnetic wave can be coupled to the phonon modes in a 

crystal by means of the electronic polarizability, and the scattering me- 

chanism is the fluctuations in the polarizability that are induced by the 

lattice vibrations. Classically, the effect can be pictured as radiation 

from an electric dipole- that was induced by an incident light wave, and 

which is modulated in time because of the coupling of the electronic mo- 

tion to the lattice mode oscillators. If we neglect the effects of reso- 

nant enhancement that can result when the incident frequency Cü^ is near 

an electronic absorption band of the crystal, then the Raman effect is 

not sensitive to the frequency CD^. Louden  "' has recently given a com- 

prehensive review of Raman scattering, and several other authors have 

treated^120"123' specific aspects of the theory of RS from phonona. Ex- 

cept for some of the more basic details, it will not be our pu-pose here 

to develop the theory of RS. It will be shown how the scattering inten- 

sity from lattice vibrations can be related to certain phonon Green's 

functions. 

Since energy must be conserved for the total system of radiation 

and matter in the scattering process, the frequency of the scattered light 
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is either decreased (Stokes component) or increased (anti-Stokes compo- 

nent) by an amount UJ . 

where •ftc0o is the energy gained or lost by the lattice. The present work 

shall be restricted to the first-order Raman effect, in which a single 

phonon is created or destroyed in the scattering process. 

The wavelength of light is very long corapai-ed with typical lattice 

spacings, and the conservation of momentum implies that the phcnons ex- 

cited in the first-order Raman effect will have a very small wave-vector 

k relative to the allowed momenta of the first Brillouin zone. The ap- 

proximation can be made that k swO, and the first-order Raman spectrum 

will exhibit a series of lines that correspond to certain optical phonon 

frequencies at the center of the Brillouin zone. There are also selec- 

tion rules involved, and only lattice vibrations having certain types of 

symmetry can give rise to first-order Raman scattering. 

(29) Group theoryx *'  provides the selection rules by which one decides 

which modes are Raman-active, infrared-active, or neither ("siljm. modes"). 

Paman-active modes must transform, under the operations of the crystal 

point group, like a second rank tensor (i.e., according to representa- 

tions with x , y^, xy, etc. basis functions). For Raman scattering from 

phonons, one can usually assume the second rank tensor to be symmetric. 

IR-active modes must transform according to the representations for a 

polar vector (x, y, z basis functions). If every atom of the lattice is 

at a site of inversion symmetry, all k = 0 phonons will have odd parity, 

and there can be no first-order RaLian-active modes. If the point group 
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does not contain inversicr,. symmetry (at any site), modes can be simulta- 

neously Raman- and IR-active, and special complications arise because of 

(25 39 110) 
the long-range electric polarization field . These complications 

do not occur in crystals with a conter of inversion symmatry, for which 

Raman- and IR-active modes are complementary and have definite parity. 

Firally, there can be situations where it is possible to have modes which 

are silent—i.e., neither Raman- nor IR-active. Loudon^ °' has lioted 

the forms of the polarization tensors for phonons of given symmetries that 

can be used to determine the effect of geometry on scattering intensity. 

For the 0, point group, the components of a symmetric, second rank 

tensor transform according to (A, + E + F2 ), and those of a polar vec- 

tor according to F, . Thus, the F- and F-,  optic modes, found in Sec. 

2.2 for CaFg at k = 0, are respectively Raman and infrared active. A ri- 

gorous quantum mechanical treatment of the combined system of radiation, 

electronic, and vibrational degrees of freedom is difficult, and not al- 

ways; very fruitful for obtaining practical results. Loudon^ *' and Lax 

(12U) 
and Burstein     have discussed Raman scattering from crystal lattices 

in terms of the coupled system of photons, phonone, and excitons, but 

since explicit knowledge of the electronic states is impossible, most of 

these treatments are only useful for a formal understanding of the prob- 

lem. For the first-order Raman effect, involving the creation (or de- 

struction) of one phonon, there are several combinations of intermediate 

interactions between these three coupled systems that can contribute to 

the scattering; it is only of academic interest to examine the elementary 

processes individually. For most purposes (including the present work) 

it is possible to adopt a semi-classical approach in which the incident 



light field is regarded as a classical source, and the details of the 

electronic states of the system are lumped into certain phenomenologicel. 

constants that characterize the polarizability. The description of Raman 

scattering in terms of the polarizability is based on the early work of 

Born and Bradburn     , and has been expanded into a vr  useful formal- 

ism by Xinh^K 

An incident light field of frequency u>. will induce a polarization, 

where the electronic polarizability tensor Pa,  depends upon the positions 

of the ions u.(t), and upon the frequency u). . It is tacitly assumed that 

the frequency of the exciting light U)^ is much less than the electronic 

transition frequencies, so that P^, will be approximately independent of 

U).v ^ ''.  (E.g., a 6328 A helium-neon laser corresponds to an exciting 

frequency of ui^ ^^ I.96  ev., compared to about 6 ev. for the band gap n 

CaF2). Furthermore, since the frequencies of electronic motion ar? so 

high, it is possible to regard the polarizability as a parametric function 

of the instantaneous positions of the nuclei. This "aaiabatic approxima- 

tion" is rt-asonable, because the vibrational frequencies are so low that 

the electronic system always sees, effectively, a static lattice with the 

ions in their instantaneous positions. Classically, it can be seen that 

the lattice vibrations will induce a frequency-mixing in the polariza- 

tion M (Eq. (U.l)) when P . is expanded in terms of the displacements 

u(X»c,t), which were given by (2.65) in terms of the normal mode oscil- 

lators. In the treatment to be presented below, the vibrational part of 

the system shall be treated quantum mechanically. 
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The intensity per unit solid angle of the scattered radiation is 

given by^25'"'^, 

Ku,) = Jfl^   /^   nwn^ in,ps(")ErE*       (it.2) 

where n is a unit polarization vector of the scattered radiation, and E 

is the (complex) amplitude of the electric field for the incident radia- 

tion. The scattering tensor i   .g(u)) can be expressed as a Four- 

ier transform of a correlation function of the electronic polarizability, 

Uy.pst00^   —     ^ etcot<PpsU)PÄyCo)>T (U.3) 
-OO 

where P^j (t) is a Heisenberg operator. If P0A (t) is expanded in terms 

of the nuclear displacements. 

P^C^= Pa/J +^ Poifi^U^iifLUKA)* ik.k) 

■*? 

and substituted into (I.3). the first term of [U.k)  will contribute to 

Rayleigh scattering, the second term to one-pnonon Raman scattering, the 

next to second-order Raman scattering, and so on. For first-order RS, ' 

l-^sC^ = 2, ^^C^^I^UK.XVJü»)?^^^^ 
XKM 
X'K'V 

(^•5) 

whf;re 

I^CiMV^-J_  ^e^u^UK.i)^^^))   (l,.6) 
00 



and has been evaluated earlier (cf. Eq. (3.79) )• Thus, the Ramn scatter- 

ing intensity l(wJ) can be related, by means of the coupling coefficients 

P .  (Ate), to the phonon displacement-displacement Green's function G, 
•'•Pi p 

discussed earlier: 

»»iSyS X n*. np, Ey Ej 

Eq. (It.7) is a general result, valid for an arbitrary lattice, and if we 

define a column vector p ( A* ) = n^ P^, „{ £K) E., it can be expressed 

in matrix notation as 

I (u>) -^ p Im GC"J+ i-e) p (U.8) 

For a perfect crystal, the coupling coefficients P    ( JLK)  are 

independent of the cell index £ , and will have certain symmetry proper- 

ties determined by the grouj. of operations that leave the crystal and the 

site K   invariant. The symmetry of each site K. determines the form of 

the tensors P° „  ( K), and provides one point of view for obtaining the 

selection rules for the first-order Raman effect. Since P^« u.( *-) is 

a third-rank tensor, it follows that P1^« M( K ) will vanish if K. is at 

a site with inversion symmetry.  In particular, if every atom of a per- 

fect crystal is a site of inversion symmetry, then all of the first-order 

coupling coefficients P°   ( K. ) must vanish, and there can be no first- 
*/»> p- 

order allowed Raman spectra. 

For a perfect crystal, the sum over ail cell indices JL,  Ji',  in (^.7) 

will serve to project onto the k = 0 modes.  Furthermore, it is only the 



Raman-active modes that are selecttd, because of the structure of the 

coefiicients P°  u ( < ). To see this, we shall elaborate somewhat. 
"pi r 

In order to treat a slightly more general situation, suppose that 

impurities are introduced into the crystal that do not significantly 

change the P -coefficients, but which do perturb the lattice dynamics; 

the phonon spectral density will then be characterized by a Green's func- 

tion G. Then 

I(u)) -^ p<,ImG(u)-»-l£)p0= Iwi p0lG-Cu)+Le)p' (M) 

where we have inserted the unit operator, 1, between p0 and G. If we use 

the identity 

Co- 

then we obtain 

Is- ik.ll) 

Since the coefficients p0jjtKiüi.N= p0( < ) characteristic of a perfect, lat- 

tice are independent of the cell index, the sum over X in (^.ll) can be 

carried out to produce JjJ n> which confirms the above assertion that there 

is a projection onto k = 0.  (Of course, the same thing happens on the 

RHS of G if a similar expression is inserted between G and p0.) Hence, 

I(u)) ~ Z, | FV(>c)wMCK|K-o.<r)| <i*~o,cr|ly», GCw^-ic) p0 

(U.12) 



-76- 

When the svun over K is taken, ths quantity in brackets will vanish for 

all but the Raman-active modes. We shall illustrate this for CaF , which 

has only the one Raman-active Fg^ mode. Since Ca-»>Ca, F-^Fp, and F'p-*'^! 

under inversion (about a Ca site), it follows that 

pV^(Ca) = 0 

For the k = 0 F^ modes in CaF2, the fluorines all have the same displace- 

ments; for the Fp- Raman-active mode, the two fluorine sublattices have 

equal and opposite displacements. The K -sum in (U.12) will therefore 

project only onto the k = 0 Fp Raman mode.  In a crystal such as CeiF-, 

for which there is only one first-order Raman-active mode. 

This equation applies to situations where the impurities do not change 

the P-coefficients. For an imperfect crystal containing defects that dif- 

fer considerably (in electronic structure) from the host atoms the re- 

place, the coefficients P^.  ( X,K ) will not, in general, be the same as 

those for the pure lattice. In particular, they need no longer be indepen- 

dent of the cell index ^. Because translational symmetry is destroyed, 

it becomes possible to induce scattering from modes other than those at 

k = 0. For example, this will be possible when impurities are added to a 

pure host which has nc first-order allowed Raman effect. In the alkali 

halides, crystal symmetry demands that all P° .  ( K ) vanish, because 
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every atom K   is at a center cf inversion—there is thus no first-order 

RS allowed. The introduction of a defect—e.g., a U-center—will lead 

to a new set of quantities P_A „(Jltc) which depend upon i, since trans- 

lational symmetry has been destroyed for every site except for that of 

the impurity center. 

To calculate the RS intensity fi om a single defect by means of (U.7) 

would require knowledge of the perturbed Green's function G{ü)+ie ) for 

every pair of lattice sites in the crystal. For a general defect problem, 

it would do little good to assume that the defect matrix v0 is highly lo- 

calized if no restrictive assumptions are made for the polarizability 

coefficients P^»  (/.it). Xintr '' has treated the problem of RS from 

U-centers in alkali halides by assuming that the defect induced P-coeffi- 

cients are non-^ero only in the localized subspace of the impurity, so 

that the sums over (XK.) and ( XV) in (k.T)  extend only over sites af- 

fected by v . Then, all that is required is g(u)+iE ), given by (3.^3)' 

For a perfect lattice containing only a small number of such impurities, 

there will be approximate local symmetry about a defect site. It is then 

possible to simplify the ?_ U.(^K) 'to some extent by applying a reduced 

symmetry group of operations that leave the crystal, the defect, and the 

(nearby) site {IK)  invariant. For a good discussion of the simplifica- 

tion of i   »c^ a))» ^«Ä U.(XK ), ar.'d other analogous quantities by sym- 

(147) 
metry considerations, reference can be made to the work of Xinh   . 

For a host in which there is a first-order allowed Raman line, the 

coefficients P^* ij ^ ) will not vanish, but will have a structure which 

projects onto the k = 0 Raman mode. The introduction of impurities into 

such a crystal again may alter the structure of the P's in the vicinity 

of a defect, but the strongest part of the spectrum will continue to be 
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a central k «^ 0 line.  If we define p ~ p0 -*• 8p, then in addition to the 

contribution (^9) that results in a k = 0 projection due to p0, there may 

also be induced scattering from the fluctuation term Sp: 

Sp &(to4-i.e)p0 4- SpGr(t*>-»-ie)Sp J    {U.15) 

The important thing to be emphasized is that the spectrum of Raman 

scattering from phonons depends upon a combination of effects—lattice 

vibrational characteristics, and electronic polanzability.  If the im- 

purities differ mainly in mass or ''spring constant" characteristics, but 

are not very different in electronic structure, it is reasonable to as- 

sume that the poiarizability coefficients will not change, or vill change 

only slightly. In any case, some assumptions about the electronic coup- 

ling of defects (in addition to those about the mecnanical vibrational 

characteristics) must always be made if the Raman effect is to be used 

as a probe of the' lettice dynamics of crystals containing impurities. 

k. 2    Infrared Absorpti'.on 

There are several excellent references that treat the dielectric 

properties of matter.  Stern^~c' has given a review that covers the gen- 

eral field in great detail, and Martin''  ' ' has discussed, in particular, 

the study of lattice vibrations by far infrared spectrosoopy. Kubo^   ', 

Cowley'51,5a)) Maradudin^, Dilz^
125', and many otherr^l8»130»131) have 

used the Green's function point of view to treat the complex dielectric 

constant f(a)), from which the absorption, reflectivity, and other quanti- 
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ties may be calculated. The review article by Maradudirr ' can be con- 

sul-ted for many referencee to work on impurity-induced infrared lattice 

absorption in crystals. 

In the present situation, we are interested only in the infrared 

absorption from optical phonons, and shall not be concerned with elec- 

tronic or other effects. We shall show how it is possible to express 

the frequency-dependent dielectric constant tiu)  in terms of the phonon 

Green's function discussed earlier, Just as was done for the Raman scat- 

tering intensity in the previous section. The reflectivity at normal 

incidtnce ie usually the experimentally measured quantity, unlena very 

thin samples are available for absorption measuiexents. The reflecti- 

vity can be obtained from 

t(«) = l>/^I- I 
\/dCZY* i 

lk.16) 

When far infrared radiation impinges on a crystal, it interacts 

strongly with only those transverse optical phcnon modes near k = 0 

which posse s em electric dipole moment. Although en accurate treatment 

of the interaction requi-es a redefinition of the normal modes of the 

total system of vibrations and radiation (cf. discussion in Sec. 6.2, 

§3) we can begin to di cucc the problem in the limit that the electric 

dipole moment fcr these modes is -vanishingly small.  In such a process, 

energy is conserved, and the »ibsorDtion of light energy is accompanied 

by the excitation of a phonon, but with no change in the electronic state 

of the system. The k ^ 0 selection rule will be relaxed if impurities 
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are introduced into the crystal, and then light will be able to interact 

with other polar modes of the (imperfect) lattice. For a perfect crys- 

tal without phonon damping processes (i.e., in the harmonic approximation) 

the so-called reststrahlen bands are 6-functior. absorption peaks at tha 

k = 0 TO modes which have vector-like symmetry. 

Assume that a (long-wavelength) light field, tarned on adiabatically, 

interacts with the electric dipole moment M of a crystal lattice; 

H' = - M-E expv-iut+et). (U.lj) 

This perturbation is of the same form as that considered in Sec. 3-^» 

and leads to a response function XQ-O^) for < M (t) > which can be ex- 

pressed (cf. Eq. (3-50), (3-51)) as the Fourier transform of the Green's 

MM "^ 
function G (t) between two M-operatorr.: 

< Ma(t) > = I  xa3(w) Eg exp(-i»t+et), 
S 

where 

Xa?Cw) - i  At <[Ma(t)>M^(o)l>Tcxp[l(uw.ie)t]   ^^Q) 

o 

The electric dipole moment M can be expanded in terms of the ionic dis- 

placements , 

4 Z ^a^A^.tK-) viAiKt±)uv{l'K\t) 4-...    ('4.19) 
2   ,■ 

A*       ■ 
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The first order coefficient (for the linear term) has the significance 

of representing an effective charge tensor, and for one-phonon absorption 

processes, this is the important term. Just as for the force constants 

^„aiiKyiW )  and the electronic polarizability coefficients P . (£tc), the 

coefficients M.      (IK)  for the first order electric moment induced by lat- 

tice displacements will satisfy various symmetry conditions' '. There 

will be the rigid-body conditions analogous to (2.13) and i2.lk)  for an 

arbitrary lattice, and the more stringent tensor transformation relations 

analogous to (2.28) ^or a perfect lattice. In some cases, it is also pos- 

sible to invoke site symmetry about a defect. Just as for the P-coeffi- 

cients. If only the first order electric moment is retained, then inser- 

tion of (U.19) into (i».l8) gives the one-phonon contribution to the far- 

infrared dielectric constant. The susceptibility Xag^ becomes 

X^(U)) * 2- ^a>>.C^)<
£^|G("o-Hie)U'KV>^>v/(£K') ih.20) 

JLicf. 
£Vv 

For the perfect crystal, the coefficients c^Ca '<) are independent of the 

cell index £., and because we have again summed over £, £' (just as in Eq. 

(U.7) and following discussion) the expression (U.20) will lead to a pro- 

Jection onto the k -<■ 0 modes. However, the limit as k ->• 0 of the phonon 

Green's function is not uniquely defined for modes that have an electric 

moment (this is related to the fact that D0(k) has a term fiat looks like 

(3 -j - 1) as k -+ 0, which will be discussed in Sec. 6.2, §3). There will 

be a dependence upon the direction of approach, but only insofar as this 

di-ection fixes the definition of "longitudinal" and "transverse." The 

limiting singularities of G are well-defined, of course, but they are split 
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into transverse and longitudinal branches because of the macroscopic elec- 

tric field that is associated with the longitudinal wave (this phenomenon 

is discussed in more detail in Sec. 6.2, §3). The susceptibility XagC^^O»«) 

can, in fact, be expressed as 

Xa/JU-o,u>) = fe^L x^w) 4- [S«*- L^]xTH) {k.2i) 

There are, therefore, two scalar susceptibilities, xM") and X (w)» which 

meas'jre the response of the lattice to transverse and longitudinal elec- 

tromagnetic fields, respectively.  It is the former quantity that is of 

interest for the optical properties, since the electric moment vector M 

is coupled to a transverse electric (radiation) field in (k.lf).     It is 

only the transverse optic phonon modes that can contribute to the lattice 

absorption, 

- < E-M > = as Im xTiu)   !E(u))|2 

and it will, moreover, be only the transverse lattice susceptibility x (w) 

that contributes to the optical dielectric constant c(u), which is used m 

(l*.i6) to calculate the reflectivity.  In matrix notation, {k.20)  would be 

written as X0e(
w) = -^ G(a)+ie) .Ag, where the first order coefficients have 

been made into a column matrix ^  , with < IKV | ^ x A       (2.<) ■ For the 

situation where the coefficients yft0    (K)  are those of the perfect lattice, 

it will be only the transverse IR modes (as we would expect) that are se- 

lected by the sum in (U.19); we can insert a (matrix) factor M0 -I-MQ 

between Ji°  and G, 
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Wu) = K  «O^5*1'^ G(u)+ie)X° 

and again use the identity (I+.IO) to obtain 

teo- 

Because ^° Mo~
15|£icu > = JC°    {*)/&**  is independent of the cell index, 

we can again sum over £ to obtain a 6^ «, which accounts for the (LHS) 

projection onto k = 0: 

ik.22) 

When the sum over I  is taken, the structure of the coefficients ,Ä° (K) 

will have the effect of cancelling all but the optic modes with polar 

symmetry, since the expression in brackets is Just the dipole moment of 

a unit cell generated in mode o. The situation is, therefore, completely 

analogous to that for Raman scattering, where the sum C1*.^) led to a 

projection onto the k = 0 Raman mode. We shall again illustrate for CaFp. 

Under inversion (about a Ca site), Ca + Ca, ?i * 'F2*  and F2 "*■ Fl' and 

since M.a  U(K) is a second rank tensor, it will be even under inversion. 

Thus, 

<,u(Fl) *KJ*2) U.SSa) 

and the tensor for Ca can be obtained from a relation that is the counter- 

part of the translation condition (2.13). 



M°  , (Ca) + 2^° (F) = 0 (It.23b) 

Eq. (^.23) is easily seen to hold if the effective chax-ge tensors are as- 

sumed to be scalars—e.g., 2Ze for Ca, and -Ze for each F,  (This is, in 

fact, what we shall assume in a rigid ion model to be discussed later for 

CaF2.) In any case, Eq. (4.23a) demonstrates that the F2_ Raman mode does 

not contribute to (U.22), since for that mode (Ca stationary, and F, and 

F2 with equal and opposite displacements), the expression in brackets in 

(i*.22) vanishes. Likewise, (4.23b) shows that the acoustic mode (all dis- 

placements equal) cannot contribute either. (Cf. Eq. (2.T1)) 

Notice that an extra (matrix) factor M0^ had to be included for the 

IR results—this is a consequence of the fact that the displacements in 

the k = 0 modes are related to the vectors w(<|ka) by an extra factor of 

M^. It is actually the vector M ^^1° (end not Just ytC0) that pro- 

Jects onto the appropriate k = 0 IR mode. Striccly speaking, for the same 

reason it weal* be necessary to include such a factor in the discussion 

of the Raman effect; however, it was omitted there because of our tacit 

intent to apply the formalism to the fluorites, for which M0 |k=0,Op>= 

hi-* , mF |k=0,ao >•     (This relation is a consequence of the fact that only the 

fluorine masses are involved in the Raman mode for CaFg.) For a more com- 

plicated structure, a factor M^  would have to be included for the Raman 

result as well. 

Eq. (4.20) is general, and holds for the phonon susceptibility for 

an arbitrary lattice. Much of the discussion that was given for the P- 

coefflcients in Sec. k.l  fur RS applies here also. Fcr example, if impu- 

rities are added to a perfect crystal lattice which has no one-phonon 
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absorption allowed, the relaxation of the k = 0 selection rule by the de- 

fects can lead to induced infrared lattice absorption, if the defects have 

significantly differsüt effective charge characteristics. To treat .such 

problems, assumptions of localizability must agein be made on the «^-coef- 

ficients as well as on the mass and force constant characteristics. 

In addition to the TO optical phonon contributions tc the dielectric 

constant e(ü)), there will also be contributions from ultraviolet (elec- 

tronic) absorptioh processes. In the far-infrared region, the frequency 

w is so low that the latter processes contribute only a constanc value, 

Xe ^ (e,,, - l)/l+Tr to the total susceptibility (xe is the electronic sus- 

ceptibility, and £„ the high frequency dielectric constant). Thus, for 

crystals with only one IR-active mode, if we assume that "-he first order 

electric monent coefficients do not change, 

EU) - £„ ■W k=0,T0| M0^ G(u)+ie) ttj*  |k=0,T0 >      [k.Zk) 

We can verify that the result ik.2h)  holds for the perfect crystal if 

we insert the unperturbed Green's function, G (u+ie), which gives 

tiu3)-e» = K(te = ojTo 
CW-V-IE^

7
- D4 

te = o. TO) =   !i_ 
CO1— Cii*0+ i€ 

The constant K can be expressed as K = - ^Q^O " Co0^' w^ere e^^  3 eo 

is the static dielectric constant. Thus, we obtain 

£(UJ) =  e. 
eo— e. 

UJ*- —to^o-»- ie 
CÜ TO 

which is in agreement with the well-known result^ '''°' for the disper- 
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sion of a (harmonic) lattice with one IR mode.  Eq. ik.2k)  becomes, finally, 

ecw)/e0o - 1 - 

^     Goo ' 



DISORDERED SYSTEMS 

5.1 Introduction 

When a pure crystal lattice is altered by the introduction of a 

single substitutional impurity, many qualitative and quantitative re- 

sults can be established with the Green's function techniques, provided 

that the "defect matrix" v0 for the impurity is localized. For many pur- 

poses, those effects which are induced by a small concentration c of 

point defects (e.g., impurity-induced RS or IR absorption) can be inter- 
(li7) 

preted in the context of the isolated impurity problem. Xinh   , Mar- 

tin^o;, an(i m&ny  others (cf. Maradudin  ) have treated such problems 

by multiplying the results obtained for a single defect calculation by 

cN, the number of impurities present. For properties which exist ori- 

ginally in the perfect crystal, but which are mcclfied by the addition 

of imp-'rities, the 5ituation is generally more complicated. F'  example, 

the effects of frequency shift or broadening of (existing) Reman or IR 

modes that results when a small finite concentration of impurities is in- 

troduced, cannot be explained so easily. 

In many cases—e.g., the systems^ ' that were discussed in Chap- 

ter I—two similar isomorphs which are mutually soluble and able to form 

homogeneous mixtures at large concentrations have been studied s:cperimen- 

tally. In other cases, particular impurities may have electronic or 

chemical properties significantly different from those of the host atoms 

they replace, and it may not be possible to grow crystals with more than 

a trace amount of such impurities. For a situation where the concentra- 

tion of impurities can be increased to finite amoantti to form disordered 

crystals, the theoretical problems become more difficult. Many of the 
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properties of such mixed crystal systems will display features which can- 

not be simply explained by extrapolation from results for the single im- 

purity problem. 

When a finite concentration c of impurities is added to a host crys- 

tal, they will be distributed in some unknown way over cN sites through- 

out the lattice. The easiest mathemacical assumption to make for the mixed 

crystal problem is that a random, disordered lattice is formed—i.e., that 

the probability that a given site contains ar. impurity atom is c, and a 

host atom, (1 - c). The impurities are regarded as .»placing hosts in a 

perfectly random way, with the probability for the occurrence of an impu- 

rity (on any given site) that is unccrrelated with the presence of speci- 

fic atoms on the neighboring sites. This assumption has been made in al- 

most all of the theoretical work that has been done in this field. 

Since Rfunan scattering and IB absorption can be related directly to 

certain Green's functions, the most logical approach to a theory of these 

effects in mixed crystals would b«3 to extend the previous results to an 

average Green's function formalism. The average Green's function <G> 

for concentration c can be defined as a statistical ensemble average of 

the Green's function G (for cH impurity sites, given cy (3^l))i over all 

possible configurations of a host lattice containing cN impurities. We 

shall pursue the average Green's function formalism further, after we give 

a brief survey of some of the other work in this field. For the study of 

the frequency spectrum (i.e., density of states) of a disordered lattice, 

there have been numerous other theoretical approaches, some of which have 

been quite different in their direction -f attack. Maradudin^1' has re- 

viewed many of these other methods in soite  detail. There has also been 
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much work on the application of the average Green's function method to 

electronic """""^ and magnetic^"-'-'^' systems, although we shall not dis- 

cuss these topics here. 

Tie en~1.ie3t work on the frequency distribution of a disordered lat- 

tice was done by Dyson^ ^ ', who obtained a result (for a simple linear 

chain) in the form of a functional integral equation.  His work was ex- 

tended and simplified by Bellman^-'S des Cloiseaux^1-^; f and Englman^ 
3^' 

but these methods are formidable to apply, and unsuitable for numerical 

calculations. Schmidt^ 3' originated another method which also led to 

a solution in the form of a  functional equation, tut was unable to solve 

it except for certain limiting cases. Agacy^'', Hori and Asahi^-1-^' 

Hori^"""', and Mahanty^1 ' have also used Schmidt's method, and results 

have been obtained for a simple linear chair, that agree with spectra com- 

puted by numerical methods. However, Schmidt's technique has not been 

extended beyond one dimension, and it has little usefulness for realis- 

tic problems. A "moment-trace" method has been developed by Maradudin 

(lkl) (lk2) 
et al' , an^ by Domb et al/ ', but because it is based on the assump- 

tion of a smooth spectrum, it is unable to account for some of the compli- 

cated effects that can occur at high frequercies, 

Dean(li*3'"5j, Bacon(ll*5'llr'^, Martin(^ ••l1*6 ^, Rosenstock and McGill 

\1^"', and Payton and Visscher^ *' have carried out exact (machine) cal- 

culations for simple models of 1-, 2-, and ^-dimensional lattices that 

were generated in a random manner. Their work has provided much useful 

information, both qualitative and quantitative, about certain striking 

features in the frequency spectrum of a disordered lattice. This work is 

valuable, beceuse it can be used for a conparison of the exact results 
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(for a particuleu- lattice) with those obtained by the average Green's 

function calculations. The latter are often limited in their validity 

because of the necessity of certain approximations, and the possibility 

of comparison vith exact results in simple examples gives some general 

indications of where these approximations may be inadequate. The ap- 

proach of these authors to the calculation of frequency spectra uses 

theorems about the roots of polynomials in a Sturm sequence; the re- 

sulting spectra are exact, and often reveal complicated structure at the 

high frequency ends. An example of this behavior (taken from P. Dean, 

Proc. Roy. Sec, A2^, 50? (I960)) is shown in Fig. 5.1 for a 50-5C mix- 

ture of atoms, with a mass ratio of two, on a linear chain (of 6J+,0Ü0 

atoms) with nearest-neighbor forces. The fine-structure can be inter- 

preted as impurity bands corresponding to localized mode frequencies 

that characterize various types of clusters of the lighter atoms^  •J--''. 

This figure also shows a comparison between the exact spectrum, and the 

results of a moment-trace calculation for the same system using the me- 

thods of Domb et_ &1_ " *  >  Dean  ^'  has "h^vn how short-range or long- 

range order can be incorporated into the machine calculations for the 

simple linear chain; although +he high frequency local mode region of 

the spectrum can be sensitive to a degree of order (compare the solid 

and dotted lines in Fig. 5.1), the low frequency end and the middle of 

the band are appreciably less sensitive, and depend mostly on the per- 

centage composition. Rcsenstock and McGill^^"'  and Dean and Bacon^^5) 

have studied the form of all the exact normal modes of a short, randomly 

generated, linear chain, and have confirmed that the lower frequency 

modes are wave-like, and the higher frequency modes highly localized in 
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Fig. 5.-I: Frequency distributiun for isotopic, two-component linear 
chains (with mass ratio 2, and 50-5C mixture). The solid 
curve is for a completely disordered chain (gener'ted for 
6^,000 atoms in a completely random manner), and was ob- 
tained by the machine calculations of Dean. The dashed 
curve represents a moment-trace calculation for the same 
system; the dotted curve is the distribution for an or- 
dered linear chain.  (This figure was taken from the work 
of P. Dean, Proc. Roy. Soc. A2^k_,  507 (i960), Ref. lU3.) 

spatial character. Although all of these alternate approaches to the 

disorder problem have been involved only with the frequency distribution, 

they do suggest, if on^y qualitatively, the situations where caution may 

be necessary in the application of th« average Green's function method, 

which will be described in more detail below. 
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The formulation of the theory of average Green's functions shall, 

in principle, be applicable for any concentration.  In practice, however, 

the calculation of the proper self-energy function which arises presents 

a formidable obstacle, and except for rather simple, idealized problems, 

the best efforts to date have produced numerical results only to lowest 

order in the concentration c. Many authors have discussed problems of 

this kind using diagrammatic methods that are analogous to those used in 

field theory or in many-body problems. Langer ^  , Poon and Bienen- 

stoch-351^ , Leath and Goodman    , TakenoK >J;, Yonezawa and Matsubara 

(76) , and  others have approached the problem by expanding G in terms of 

G0 and V (cf. Eq. (3-^1)); they obtain <G) as an expansion of "configu- 

ration averages" of the form <G0VG0VG0...VGÜ^ , and represent the terms 

in these summations pictorially by diagrams. The method of calculating 

the configurational averages is based on the cumulant expansion methods 

of Kubo^ ^ ', and involves the so-called "multiple occupancy" polynomials 

Fn(c), discussed in detail by some of these authors  '-'-'-'', These dia- 

grammatic tanhniques are often cumbersome, usually requiring a degree of 

"bookkeeping" skill, and have been applied only to simple lattice models. 

The average Green's function ^ G )> can, however, be obtained without re- 

course to diagrammatic methods ' '      , in practice, it is much more 

straigntforward to make use of the general expressions for *( G ^ . These 

approaches clearly demonstrate the relation between the randoir, impurity 

problem and the isolated impurity problem. A number of results for simple 

models, which were obtained by previous authors using diagrammatic sums, 

have been obtained more easily1 ■>'''. 
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Except for methods that attempt to introduce "self-consistency," 

the tacit assumption in all of the numerical calculations that have been 

done is that it is possible to expand the proper self-energy for the 

average Green's function in a power series in the concentration c. Be- 

cause of the mathematical difficulties involved, even for non--"self-con- 

sistent" approaches, it is generally very tedious (even for simple models) 

to carry ou'; calculations beyond first order in c. There have been some 

attempts to develop self-consistent theories that would be valid for 

treating problems with large concentrations of it'nurities. Yonezawa and 

(76) 
Matsubaraw ' have developed a self-consistent approximation suggested 

by diagrammatic considerations (replacing an unperturbed propagator by 

the actual propagator in a certain class of diagram sums). This method 

leads to an integral equation involving complicated matrix exponentials. 

Davies and Langer' ^' appeal to general analyticity properties, and mo- 

dify the original first order results of Langer^ ■ in an ad hoc way, 

again by replacing an unperturbed propagator by the actual propagator. 

Taylor -57) has recently developed a method, based on the multiple-scat- 

tering formalism of L&x^°°',  that leads to an infinite heirarchy of "con- 

ditional average" equations that must be terminated by an approximation. 

The average Green's function is expressed in terms of the propagator of 

an "effective field", rather than G0; after an approximation is made to 

terminate the set of equations, the scattering matrix is set equal to 

zero as the criterion for the "best" approximation to the proper self- 

energy function. Velicky, Kirkpatrick, and Ehrenreich^  ' have adopted 

a similar approach for a self-consistent theory for the electronic prob- 

lem. All of the self-concistent theories for the vibrational problem 
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share the common disadvantage that their usefulness is limited to the 

simplest possible systems with nass changes only.  When force constant 

changes must be included to adequately describe the defects, it becomes 

questionable whether it would be practical to develop the theory beyond 

first order in the concentration.  Even to first order in c, calculations 

for the (relatively simple) Ca,  Sr^F„ system present a cumbersome com- 

putational task. 

Taylor's calculations for the frequency spectrum of isotopically 

disordered three-dimensional systems at large concentrations are in good 

agreement with the results of machine calculations by Payton and Vis- 

scher. However, for small concentrations of light impurities, Taylor's 

method is not able to produce the spike structure at high frequencies 

that are attributable to local modes of defect clusters. As the concen- 

tration increases beyond certain finite amounts (the "critical percola- 

tion concentration"), one no longer has "isolated defect clusters." The 

spike structure displayed by the machine calculations tends to smooth 

out in the region of larger concentrations, and Taylor's results achieve 

better agreement.  For low concentrations of heavy defects, Taylor's re- 

sults agree veil; the modes of defects and defect clusters are not iso- 

lated, and there is no complicated high frequency spike structure. His 

method is also somewhat better than that of Davies and ..^naer, for it is 

able to predict an impurity band (for light defects) that lies astride 

the local-mode frequency of a single mass defect.  Although it is by no 

means obvious, some of the various self-consistent theories are related 

or equivalent. The connection between Taylor's method and that of Davies 

and Langer has been discussed recently by Leath' '  . He shows how these 

oro methods can be viewed in terms of diagrams, and that although the two 
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methods sum the same diagrams, the latter authors' treatment does not 

properly compensate against multiple occupancy of sites by defects. A 

general discussion of these complications has also been given by Elliott 

et_ al11-'"', Velicky et_ al_   compare some of the self-consistent methods 

that have been applied to electronic properties of mixed crystals. Since 

we shall not be concerned with self-consistent methods in this work, we 

shall not discuss these topics further. 

5.2 The Average Green's Function 

We turn no»? to a discussion of the average Green's function forma- 

lism    ,  For a lattice with an arbitrary configuration of impurities, 

the Green's function G was expressed by (3.Ul) in terms of G0 and the 

defect matrix V. 

GU)  = G0(a)) - G0(W)V[l + G0(u))v]-
1 G°U) (3.ia) 

and for a single isolated de^ct located at some site i » U0, <0), this 

becomes 

where 

=  G0  - G0v.[l +  GV]"
1
  G0 

vi   = 
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represents tne defect matrix for the i^*1 Impurity subspaee, and has the 

form v0 that characterizes a single isolated defect. 

Consider now the case where a single impurity is added not to a per- 

fect lattice, but to one which already contains n = cN defects, all of 

the same t^pe.  If the Green's function for that particular distribution 

of cN impurities is denoted by G(C,Y), where "y"  specifies the particu- 

lar configuration of impurities, then 

G(c,Y)-
1 = (G0)-l + V(Y) (5.1) 

If another impurity is added at a new site i, consistent with y, then 

the Green's function for the lattice with cN + 1 = (c + l/N)H defects 

becomes 

G(c+1/N, Y')"1 = (G0)"1 + Vty') = GCcy)-1 + SV(Y,I)     (5-2) 

where Y' is the new configuration that results by adding a defect at site 

i to the existing configuration y,  and 6V(Y,i) is the change produced in 

the defect matrix. This equation can be written 

G(c+1/N, Y')"1 = 

G(c,Y) - G(c,Y)<5V(Y,i)[l + G(c,Y)«V(Y,i)j~1 G(C,Y) 

If a "configuraticn average" is taken over all Y  - i wb'ch are consis- 

tent with each other, 
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<G^c-^)> = <0(c)>- ^<G(c)>f(c)<G(c)> 
(5.3; 

where 

Kc) ^ N<G(c)>-<&(c>v^v(y>;)[l + G(Ciy)gv(y>.)]-bCc^<(,(c)>.) 

This average can, in principle, be carried out. although it has no use- 

fulness for actual computation. As N -^ », (5.3) becc ;omes 

^G-Cc))^ -<G-(c)>f(c)<0(c)> (55) 

which can he immediately integrated to cast the result for < G(c) > into 

a standard form. 

<G(c)y1 = (Go)-+F(c) 
(5.6) 

vhere 
e 

J 
O 

dc He) 
(5.7) 

is called the "proper self-energy.1' This is the quantity that arises for- 

mally in many-body theory from a Dyson equation, which relates the actual 

propagator to the unperturbed propagator. Note that al] of these quanti- 

ties are a function of u, but this dependence has been suppressed to sim- 

plify the notation. 

The tacit assumptions have been made that « G(c) > is differentiable, 

and that f(c) ia integrable. Thes" assumptions are also inherent in the 
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(equivalent) iterative technique of diagrain summation, since all the re- 

sults for < G > obtained by that method are also expressed as power series 

in c. The assumption is generally made that F(c) has a power series ex- 

pansion about c = 0.  (This need not necessarily be true—perhaps F(c) ^ 

/c(1 - c), for example.) Assuming that F(c) is analytic at c - 0, and 

using the fact that F(0) = 0, we can expand 

F(c) = cf(0) + |c2f'(0) + ... (5.8) 

Eq. (5.5) can be used to express successive derivatives of f(c) in terms 

of the derivatives of < G(c) >. Since < G(0) > = G0, 

a ^ c .= o 

f'(0) = -(&)-< jlL(Gic)\\ (^)- (5.9) 

+ 2(6T'^<eCc)>|o(GT'^<&(c)>| fe'V 

etc. The relationship between the multiple-impurity problem and the ran- 

dom disorder problem becomes apparen. when the derivatives of < G(c) > 

are automatically defined through the following heirarchy of expressions: 

dc 

<GCc)>|     =    lim   M [<&//   - G0] 

i<G-CO>|    =     lim   Ni[<G,>-2<G;>-f-&0] 
(5-10) 

N —>• oo 
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etc, where < Gn > is the multiple-impurity Green's function of  (3.Ul) 

averaged over all possible configurations in which n impurities are pre- 

sent. Thus, for sxample. 

(Ml! 

etc. To lowest order in the concentration, the proper self-energy for 

< G(c) > becomes P(c) = cF  (c), where 

P(l!(c) Ivi[1 + 
a\\ -I (5.12) 

Note that the sum over sites i is usually Just a sum over the cell index 

£ with a fixed basis index ic . Of course, if some particular type of de- 

fect replaces an atom which can have several different basis indices (e.g., 

if an H~ replaces an F~ in JaFg), a sum over K will also be required. The 

equations to be developpa are thus easily modified for that case. 

There is an analogous equation for the proper self-energy associated 

with the average conjugate Green's function, < H(c) >, ana in general, 

these proper self-energies are not the same. The corresponding "defect 

Ow -1 matrix" for H is given b} w0 = (i/w)($ M IM" ), and does not always 

have an "impurity subspace" that coincides with that for v . This will 

become apparent when a simple example is considered later. 

The average Green's function < G(c,w) > can be written 



—iüij^ 

GCc.w))    =   G0(w)'V F(c)   =   Iv^.uj2-  $V F(c) 

=   M^^^-D0^  M0'
/zF(c)Mo-Vl] Mf (5.13) 

sc that 

Mo <&(C.">)>M;/: = wz- DN- Mj^FCOMo'^ (5.1M 

We shall be interested in the function 

5K0 ==   M:VtF(c)M0'</2 (5.15) 

which can be expressed in momentum space using the relation (2.621)  given 

earlier. The sum over all sites £ in the expression {5-12) makes it im- 

mediately obvious that the first order term in the proper self-energy will 

be diagonal in k. Denote the oefect matrix v.   by v {a,<   ), and ass le 

that the substitutional impuri'ies under consideration correspond to one 

(fixed) value of <0. Then the first order result 3»^Ha)  is  gii'en by 

t 
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The matrix element on the right is, of course, unaltered by a uniform 

translation of the site indices IL, «,„, and £. by a lattice vector R-j 

in particular, we can translate by - R to obtain 

v0(<0) is Just the defect matrix for an impurity in the l = 0 cfll, and 

we shall abbreviate it as v0. It then follows, from a uniform transla- 

tion of the «., and *. summation indices in (5.16) by - R., that 

which imp^es that < So j ,?  U) IJ'a' > = 0, unless t 'P.    Hencr, ^ 

is diagonal in k, and we can write < kaljP '(u)j£,';,> = 5-^, ^^'(k,!.))  , 

The sum over i,  which has not yet been taken, .Just cancels the factor N, 

since the translation of the £1 an^ ^o sunmation indices removed all of 

the ^-dependence. Hence, 

?C"C^ acr' .   l^< -K/K-RXV) w*(K|W<r)wACK'|fe(r') 
LKOC 

.5.17) 

Inspection of thfi expressions (5.9)-{5.1l) shows that the proper self- 

energy is di-gonal in k tc all orders in the concentration c, and since 



G is diagonal in k, the average Green's function < G{c,(i}) > will also be 

diagonal.  The mathematical process of averaging over all configurations 

has the important effect of restoring k as a good "quantum number," in a 

certain sense.  The fact that < G(c,a)j > is d'a.gonal in k is an expression 

of the translational invariance that an "average crystal" would be expec- 

ted to possess; in fact, < G(c,u) > will have all of the space group sym- 

metry of the empty lattice. This is not to say that there are eigenmodes 

of the perturbed system with well-defined momentum k; the random disor- 

dered crystal is defined by a configuration average over a large ensemble 

of systems, each of which is not periodic. An experiment which probes the 

crystal by exciting a disturbance of well-defined momentum k will, there- 

fore, yield a spread in frequencies. Mathematically, this will be de- 

scribed by the imaginary part of the proper self-energy. 

To illustrate the equivalence of the results of the differential and 

the diagrammatic techniques, and to demonstrate the relative ease with 

which (5.17) can be applied, we shall consider a simple example. Langer 

^ ' has treated (using diagrams) the problem of a random, disordered 

chain of atoms with isotopic mass defects, bound by nearest-neighbor force 

constants. For the average Green's function < G >, the defect matrix is 

o 
a simple scalar, vo = (m* - m)äj*'. The (one-dimensional) impurity subspace 

thus involves only one unperturbed Green's function. 

 L_ V ._J_.. 
k 

S    -mM il- uji.. oj 

and the first order proper self-energy can be immediately calculated from 

(5.17) to give 
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m  ( 

Vm    /   1V   nr1N)r ^i-00 1 

whinh is independent of k. Langer, however, calculates the proper self- 

energy associated with the average conjugate Green's function < H(c) >. 

In that case, the form of the "defect matrix" is 

and even though only a simple mass change is involved, w is not a simple 

scalar, since the force-constant matrix *0 that appears on the left 

couples the nearest-neighbor sites. The impurity subspace for *0 is 

thus three-dimensional.  However, ^M^- - M""1) = (l/m - l/a')J0><0| pro- 

jects only onto the impurity site "0". and 

W0[I^HOW0] ^rioxoi/ Km  *1 I 
1 ! '       i 

where we have used (i/w)H
0(ü)) = M0G

0(aJ) 

becomes 

^m-m')<0KGO(a,)$o|0> J 

The proper self-energy for < H > 

The matrix element <0\MoG04°\o>    is obtained by multiplying 
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2a  -a  C 

-a  2a -a 

10       -a  2a j 

and 

! «o sl ^ 

«i g0 6,  . 

g2 ßl So 

where a is the spring constant (for nearest neighbors), and 

-I ~^ — 
1  T cos tea 

The dispersion relation for the unperturbed chain la piven by 

cu l  =   ~Ct-coska) = 

and can be used to obtain 

£ e-tk£<uirio> ^ m oü. 

I 

7« 

After minor manipulations, the PSE associated with < H > becomes 

and agrees with the result of Danger's calculation.  It is also possible 

to denonstrate that the second order calculation to order c (using (5.11b)) 

agrees with that of Langer; since it involves slightly more algebra, it 
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will be omitted here.  It is also possible to use this method to obtain 

the one- and two-dimensional results of Poon and Bienenstock ^   ' 

for random spring constants. 

Except for soiue of the self-consistent techniques, the numerical 

application of these average Green's function methods have been confined, 

even for the simplest models, to the approximation that the PSE can be 

expanded to the lowest order in the concentration c. For the frequency 

distribution function, comparisons can be made with the exact results ob- 

tained by Dean and others-  ^"■'•9* in order to obtain some criteria for 

where the average Green's function approximations are valid. However, 

the complete spectral function < G(c;k,u) > obviously contains much more 

information than the density of states, <p(u^)> ^ Im Trt<MG((jü+ie)>} ^ 

Im l+    <ko I <MG((i)+ie )> |ka> . Since there have been no exact machine cal- 

culations (even for simple models) of the more detailed information con- 

tained in < G(c;k,u) >, no comparisons with exact results are possible in 

tuat case. Thus, the validity of many of the approximations that are re- 

quired in practice to evaluate the average Green's function < G(c;k,u)) > 

are  speculative, and there remain many open questions. However, it is 

possible to proceed with caution in order to avoid applying these approxi- 

mations to situations where they are known to be inadequate for the cal- 

culation of the density of states. For example, an expansion of the PSE 

to first order in the concentration c would probably be a bad approxima- 

tion in the vicinity of band edges, or in regions where there are local- 

ized mode impurity bands. Since the results to order c are related to 

the single impurity problem, those to order c^ to the two-impurity prob- 

lem, etc., it is possible that the exotic behavior that is knovn to charac- 

terize the density of states (and presumably, also the complete Green's 
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function < GCcikjuj) >) could be properly described if it were possible to 

carry out the PSE stun to all orders in c  However, it is also possible 

(and indeed, more likely) that there may be a non-analytic dependence on 

c in these frequency regions, and that expansion in powers of c is not pos- 

sible at all.  There has recently been some work by Domb      and Lif- 

shitz  '    for certain artificial limiting cases in simple models (and 

again, only for the frequency distribution function) that suggests a non- 

analytic dependence on c. 

The first order approximation in c is probably the most reliable for 

small concentrations of impurities that do not give rise to local modes. 

For defects that car produce these complicated impurity bands, the machine 

solutions show that an expansion in powers of c may be adequate to describe 

the behavior in low and intermediate frequency regions.  Nevertheless, the 

validity of the expansion of the P3E to lowest order in c has often been 

assumed to apply for the entire frequency region. For disordered systems 

that do not involve changes in the P- or M-coefficients, Raman scattering 

and IR absorption are related to certain projections onto the average 

Green's function < G(k = O^+ie) >, according to the results 'if Chapter IV. 

(Cf. Eq. (U.lU) and {k.2k).)    Thus, we can discuss both effects in a paral- 

lel way, and the general semi-quolitative remarks that follow could apply 

equally well to RS or IR.  The evaluation of the average Green's function 

requires the PSE, which (to lowest order in c) will involve (according to 

(5.17)) certain projections onto cvo 1 + g
0((ij+ic)v0 ~1.  If the first order 

PSE (different for RS and IR, of course) is denoted by c|P1(a)) + ^(c)] > 

then the denominator of the relevant < G(k = 0) > Green's function will 

have a structure of the form [ w2 - Q2 + c{P1(w) + IPoU)} ], where Q0 
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represents the k = 0 Reman or IR mode frequency for the pure crystal. Thus, 

there will be a singularity at a frequency Q., given by 

Q2 . n2 _ cpi(no) 

and T^ will be shifted from ri0  by % i5cP1(no)/n0, and broadened by ^cP2(no)/n0. 

In addition, < G{c ;k.=0,uj+i£) > may also exhibit a singularity near any local 

mode (or resonance mode) frequency u produced by the  jl + g0(uj+ie)v 

structure of the first order PSE function. Fig. 5.2 shows a schematic 

example of a situation where the rial part P, of the PSE becomes infinite 

at a local mode frequency CJ ; if it is assumed that the expansion of the 

PSE to first order in c is valid for all frequencies (in the low concentra- 

tion limit), then the local mode frequency that shows up for the single 

impurity problem will also occur (slightly shifted) as a singularity in 

< G(c;k-0,u)+ie) > at u-^. For very small concentrations (c« 1), this sin- 

gularity at w^ (cf. Fig. 5.t) is approximately the local mode frequency, as 

would be expected. However, such a theory cannot predict a width to the 

Re F'^U+IE) 

Fig. 5.2 



mode at u-, , since the imaginary part of the PSE, P0(w), vanishes outside 

of t>e unperturbed band of frequencies.  In a self-consisteßt treatment, 

this would not be the case; self-consistency is able to provide the cor- 

rect analyticity properties for the PSE—viz., a branch cut along the per- 

turbed band, and along the impurity bands that form outside of the unper- 

turbed band^ ^   . Xinlv4'^ and Maradudin^ ' have done calculations on 

RS and IR absorption using a first order PSE that they assume to be valid 

in the local mode region, and also obtain singularities of the u-^-type. 

This type of spectral behavior would thus seem to apply to the two-mode 

behavior observed in some mixed crystal systems' 1~ ^> t  although the ma- 

thematical Justification for assuming the validity of the first order ap- 

proximation to the PSE in the high-frequency local mode region is unsub- 

stantial. 

For situations where local modes do not occur, and where g v can be " o 

neglected compared to unity, there will be only the fi-, singularity for 

< G(c;k=0,iD+ie) >.  in that case, we obtain the "virtual crystal approxi- 

mation" which accounts for the one-mode behavior'   J^ in which a single 

optic frequency shifts linearly with concentration. 



VI.  THE MIXED-FLUORITE SYSTEMS 

6.1 Introduction 

For many yea/s since 1928, when Raman scattering was first reported 

by C. V. Raman'^" ', experimental work in this field has been carried out 

using mercury discharge lamps for the exciting radiation, with photo- 

graphic detection of the spectra.  Because Raman scattering intensities 

are typically very low, intense light sources are required, and long ex- 

posure times necessary. The numerous experimental difficulties involved, 

made this type of work somewhat unappealing, and placed some limitations 

on the type of effects that could be studied. The development of las^r 

light sources, which have the advantages of monochromaticity, high inten- 

sity, high collimation, and plane polarization, provided exactly what 

Raman spectroscopy badly needed and has led to a rebirth of interest in 

this field in recent years. The use of lasers makes it possible to study 

low-temperature effects and polarization effects easily. A further impe- 

tus for the renewed experimental interest in Raman scattering has been 

provided by modern electronic developments that have made it possible to 

streamline the detection system; we shall presently describe what we be- 

lieve to be a relatively sophisticated photon-counting technique (using 

a multi-channel analyzer) that we have used to measure the spectra. When 

(?) 
this work was originally reportedv ', it was the first time that such a 

detection system had been used for Raman spectroscopy, a]though others have 

most likely used similar methods in allied fields. 

(2) We have studied experimentallyv  the Raman scattering from the mixed 

crystal systems Ca, Sr FgEnd Sa-,  Sr Fo for a variety of concentrations 
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from x = 0 to x = 1.  These crystals, which have long been known to form 

(l62-^) 
continuous solid solutions     ', wore obtained from Optovac, Inc. A block. 

diagram of the basic setup which we used to messure right angle scattering 

in these systems is shown in Fig. 6.1.  All of the major equipment, except 

for a low-temperature Ke-dewar and an electronic control device that was 

used to regulate the spectrometer scan (described below), was obtained com- 

mercially. The light source used was a Spectra Physics Model lib helium- 

o 
neon gas laser, which we operated at 6328 A, with a typical power output 

of ^ 25 milliwatts.  The laser light source was focused at the center of 

the crystal sample, and a dielectric-coated spherical mirror with high re- 

,  _ 0 
flectivity at 6328 A was used to reflect the emergent laser light back 

through the crystal.  This forms an "external cavity" with the laser, and 

the purpose of this trick was to increase the effective light intensity in 

the sample by using multiple passes of the beam. In practice, this in- 

creased the output intensity of the scattered radiation by about a factor 

of two. The use of this method is not possible if it is desired to make 

high precision polarization measurements, since the several reflections 

would probably destroy the plane polarization characteristic of the exci- 

ting radiatior, into the sample. A double prism arrangement (cf. Inset, 

Fig. 6.1) produced a vertical line source, which is imaged onto the en- 

trance slit of a 1-meter Jarrell Ash, Model 76-^20 spectrometer.  Because 

the systems ' mrt we studied exhibit first order Raman frequency shifts on 

the order of ^ 300 cm-1, the separation from the laser line is far enough 

tart the probl(.'n of extraneous scattering in the spectrometer can be eli- 

minated using u dielectric interference filter at the entrance slit to re- 

o 
Ject the laser light. We used a step-function filter that rejected 6328 A 
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Nuclear Chicago RIDL, Model 
3k-12B  U00-channel analyzer 

Spectrometers: 

Jarrell Ash, Model 
78-4*20 

Spex, Model ikOO 

LAS«R 

Laser sc ^ces: 

He-Ne, 6328 C 

Argon, 1880 

Phototubes: Amperex XP1002; EMI 9558 

Fig. 6.1:  Block diagram showing experimental setup for measures/ent of 
right-an^le Raman scattering. 
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.light by ^ 10"^, ana passed at ^ 80*, with essentially flat repponse ;, 

light shifted by > 250 cm-1. 

The method of detection involved photon counting; an Ampere;; XP10Q2 

phototube (which has an S-20 response) was used at the exit slit of the 

Jarrell Ash. Signal pulses from the phototube were f'jd into a Nuclear 

Chicago RIDL Model 3^-125 multi-channel analyzer. This instrument is used 

in the "time base" modo of operation: all of the pulses that arrive from 

the phototube, in a selected interval of time, are counted and spired 

sequentially in U^.1 channels. The spectrometer is equipped with a motor 

drive that is capable of scanning the spectrum at selected discrete speeds, 

and the RIDL channel width is also variable with discrete values (typi- 

cally, we used a channel width of 1 or 2 seconds). The phototube was 

I   ased in an assembjy that permitted it to be cooled to a low temperature 

by blowing cold l^  gas, boiled off from a liquid nitrogen dewar, over the 

cthode. Operation of the tube at lower temperatures decreases the prob- 

-.-_jis of dork current from thermionic emission. 

In order to improve signal-to-noise characteristics, it is often de- 

sireabls tc sc a the same spectral reuige over and over, and add up the re- 

sults. This can be done easily with the RIDL, since it is capable of add- 

ing a new spectrum to one already stored in its memory. An electronic and 

mechanical control -'.vice (designed at Harvard) was used to regulate this 

multiple scan feature. The details of this mechanism are rather involved, 

and it is unnecessary to gi-e more than this operational description of 

hov it worked,  'rfith multiple scanning of a spectrum, it was possible to 

obtain very good signal-to-noise; Fig. 6.2 shows a typical Raman spectrum 

(in this case, t^ken fo.r Ca j^Sr gFg) taken at room temperature, with tan 
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passes over the spectral range. The use of a multi-channel analyzer and 

the photon counting technique provides a method by which very clean data 

can be obtained.  Furthermore, the ' iae required to produce a spectrum 

such as thai uhown in Fig. 6.k   ..with ten passes) would be only about two 

hours (assuming 2 second widths for the RIDL).  Compared with the long 

exposure tines required by photographic techniques, this is a definite 

advantage. Howeve.?, the usefulness of this method is decreased if it is 

necessary to observe a spectrum over large wavelength intervals, for which 

correspondingly more time would be required. Fig. 6.2 covers a total 

range of ^ 30 A or "-■ 75 cm~x (at 6328 A)., The low temperature measure- 

ments carried out at 6328 A were obtained using a (Harvard built) cold- 

finger He dewar. 

Later measurements were taken on a similar setup, which included a 

Spex model lU00 double monochrometer, an ionized argon laser (operated at 

o 
1*880 A with ^  200 mw.) built at Harvard, and a Janis Super Vari-Temp (Mo- 

del 10DT) He gas-cool dewar.  The phototube, which was again cooled, was 

an EMI 9558, with an S-20 response. The Spex double monochrometer signi- 

ficantly reduced the problem of  extraneous scattering, so it was not ne- 

cessary to use a dielectric filter for eliminating the laser line when this 

apparatus was used.  Furthermore, the multiple-reflection cavity was not 

used in this case, since the argor laser intensity was significantly higher 

than that of the helium-neon laser. 

The experimental results for the Ca,  Sr F... and Sr, ..Ba F0 mixed 
X—X  X ci L—j*      X £ 

crystal systems are shown in Fig. 6.1* and Fig. 6.5; the first order it ^ 0 

Raman line shifts linearly with concentration, with an integrated inten- 

sity that remains approximately constant, and with a linewidth that in- 
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creases and peaks noar the 50-50 mixture. Because ^aman scattering is 

such a weak effect, it was necessary to use relatively large spectrometer 

slit openings for studying these systems.  (For the Jarrell Ash spectro- 

o -I 
meter -in. 6328 A laser, \  3.9 cm-1, and for the Spex spectrometer and the 

o , 
U880 A -aser, ^ 1.6 cr'1.)     in order to obtain linewidth results, it is 

then necessary to convolute the observed line profiles with the "slit 

function", which can be inferred from an observation of the laser line 

with the same slits. Theoretically (for curved slits, or for straight 

slits with small vertical aperture) the slit function should be a tri- 

angle. In practice, the slit function for the Jarrell Ash data had a 

small top, and that for the Spex (with straight slits) had a small tail 

■jn  one side. Assuming that the slit function is approximately trape- 

zoidal, as shown in Fig. 6.3 below, the convolution of the slit function 

S(u)) with a Lorentzian line, 

becomes 

where 

Zn J (u)'-tu)a
+ry4 

r      A ^   (A+B-co)V rtA 
4Tt3 ^ (A- u))1 -p r1/» 



Fig. 6.3:  Trapezoidal slit function, S(u)) 

For any selected values of A and B, one can conpute, numerically, a 

table of observed full-widths versus F, which represents the "true width" 

for (an assumed Lorentzian) process.  It is important to note that it is 

not possible to merely subtract the instrumental width from observed widths 

when the slits are opened wide. 

The low temperature ('v-U0 K) iinewidth data was taken using both the 

o        o 
6328 A and kQQO  A lasers, and after the appropriate convolutions, the re- 

sults of the two sets of measurements were reasonably consistent (cf. Fig. 

6.5)-  Taking into account the experimental error involved in reading the 

date, as well as that for the convolution process, these values are pro- 

bably accurate to about t   .3 cm- , with a systematic discrepancy of ^ .3 

cm  in the two sets of measurements.  Taking into consideration the fact 

that the two sets of data were taken at different times and with completely 

different experimental equipment, a systematic error of that magnitude 

does not seem too large. However, the source of that systematic error is 

most likely in the assumptions made for the shape of the slit function, 

which could easily lead to a systea.atic error of that magnitude when the 

two sets of data are reduced by convolutions with different slit functions. 
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Although it is possible that excitation with 1+880 A or 6328 A could pro- 

duce different linewidth results, i'- is unlikely that this discrepancy is 

a real effect. H. Goldberg (private communication) has carried out the 

convolution for the 6328  A measurement of Ca ngSr QO^O  ^y an independent 

procedure, and obtains "v 1.6 cm" , "hich is consistent with the present 

results. These considerations suggest th&t  the origin of the systematic 

error is probably re?ated to the convolution process. 

Some data was also taken at liquid nitrogen temperature, and within 

the experimental error, the results for the shifts and linewidths were 

about the same ax % i+0K and ^ 77UK. 

The theory of the Cai-X^rx^2 m^xe^ crystal that is discussed later 

in this work is only able to predict the contribution of disordering to 

the linewidth; since it is only the change in linewidth with concentra- 

tion that concerns us here, the possible discrepancy of ''■ .3 cm between 

the two sets of data (at h0Y is not relevant. The dashed line of Fig. 

6.5 is the result of a numerical calculation to be described later. 
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6.5: Experimental and theoretical (full) linewidths (at half 
max) for the Ca2_xSrxF2 system. Experimental points are 
tfte actual widths after convolution; dashed line is theo- 
retical. Open circles correspond to kQQO  X, Spex data, 
and closed to the 6328 A, Jarrell Ash measurements. 
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6.2 The_ Rigid Ion Model for CaF 

In order to calculate the phonon Green's functions that vere involved 

in the preceding mathematical treatment of the isolated defect or random 

disorder problems, it is necessary to have knowledge of the phonon eigen- 

frequencies w*    and eigenvectors »(tcjka) throughout the first ~rillouin 

zone for the unperturbed (perfect) lattice.  These quantities shall be 

evaluated using a "rigid ion" model, due to Ganesan and Srinivasan  '  , 

for the fluorite lattice.  In this idealized model, the (ionic) CaF2 crys- 

tal is regarded as consisting of a lattice of rigid, non-polarizable ions 

which interact through long-range electrostatic and short-range repulsive 

forces.  The short-range interaction terms., whose physical origin is a re- 

pulsion between overlapping electronic distributions, fall off rapidly 

with distance, and are included only for nearest neighbors in this model. 

The Coulomb forces between ions are assumed to be electrostatic inter- 

actions between rigidly spherica^. charge distributions (i.e., "point" 

charges) that are multiples of an effective electronic charge, Ze.  The 

polarizability of the ions cannot be properly taken into account with this 

model, however. 

It would, perhaps, be more sophisticated to use a "shell model" 

for the calculations; in that case, the ions of the lattice would be as- 

sumed to consist of positively charged massive cores surrounded by mass- 

less and negatively charged spherical shells.  In the simplest approxima- 

tion, the cores and shells would be assumed to be coupled by a scalar , iso- 

tropic force constant.  As the lattice vibrates, the shell and core wou^.^ 

be assumed to retain their rigid spherical shapes, although it would be 

possible to generate a dipole moment on the ion when the shell and core 
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are relatively displaced. Tvo equations of /notion would be necessary 

for the (coupled) system of cores and shells, and the computational labor 

would be increased. Alternatively, the rigid ion model would probably be 

improved by the inclusion of more than nearest-neighbor short-range forces. 

In addition to increasing the computational difficulties, both of these 

attempts to improve the model have one common disadvantage: they require 

an increase in the number of force constant parameters, and there is only 

a limited amount of experimental data available that can be used to fix 

these phenomenologi^al constants. A more complete description of thf; 

physics of the rigid ion model, and the successes it has for prediccing 

various experimental quantities, can be found in the original sources   ' w 

Many of the formal details that are relevant to the present calculation of 

phonon eigenfrequencies and eigenvectors are omitted in the work of Gane- 

san and Srinivasan    , and shall be described in more detail here. 

The ultimate aim—the numerical calculation of some of the phonon 

Green's functions G ,(£<-^'<';ui+ie} given by (3.32) - (3.37). requires a 
dp 

good model for the pure CaFo lattice dynamics.  The accuracy of these cal- 

culations may be impaired by one difficulty that cannot be simply remedied 

in either the rigid ion model or the shell model.  Namely, the harmonic 

approximation itself may be inadequate to describe the unperturbed modes 

of pure CaF2 no matter which of  these models is used, or how detailed the 

force com cant assumptions may be.  It is possible that anharmonic inter- 

actions are not completely negligible, and that each of the modes of the 

pure lattice will have a broadened frequency. This could have the effect 

of smearing out some of the structure in Gu(tj+ie), or perhaps e,ren of al- 

tering the results more drastically. There are, in fact, indications from 



the infrared reflectivity spectra of pure CaFg that the harmonic approxi- 

matior. Is not  completely adequate to describe the modes of CaF2 accurately. 

The inclusion of the effects of anharmonic broadening would require that 

we abandon nest of the simplifying features of the harmonic approximation, 

and would lead to a complicated many-body problem. To make this improve- 

ment in the formalism would not be a trivial matter; to include anharmonic 

effects properly, it is necessary to work with a coupled heirarchy of 

Green's function equations, as we mentioned earlier.  Phenomenologically, 

we could, perhaps, extend Eq. (3.28) by including a damping term in the 

equation of motion (2.12) for the pure lattice dynamics.  I.e., 

(6.1) 

which would lead to 

-7r(uO *   = (M0u/- $
0) 4- G (.CU n (6.2) 

The resulting secular equation. 

«iet [ (Cü
Z
— (o^)^^. 4-  ly«r.C?)tt)]   = (6.3; 

where 

'/«,_,  .   -Va y^. (fe) = <k*cr I M;  r0M Rö" '> iS.h] 

ia a 9 x 9 matrix that would define the broadening of the phonon modes it 

any wave vector k. There is, however, no obvious way of obtaining the form 

of Y from data available for the crystal; the experimentally available 
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parameters give very little detailed information about the broadening of 

phonon modes throughout the Brillouin zone. Without going into detail, 

it is instructive to make the observation here that a formal quantum mecha- 

(52) nical treatment of the anharmonic crystal    could be represented by a 

Dyson equation that relates the actual Grsen'a function (propagator) of 

the pure crystal to the harmonic Green's function and a proper self-energy 

function n(u): 

actual   harm   harm     actual (6.5; 

or 

G%) 1 = (M J  - *0) + n(u) (6.6) 

This is completely analogous to the formal result obtained in the treat- 

ment of averaged Green's functions for the disorder problem (Eq. (5.6)), 

although the 'proper self-energy" in the two cases K.re not the same. The 

proper self-energy II((i)) will have both real and imaginary parts, and in 

addition to adding a damping to the modes, it. will also renormalize the 

(52) frequenciesw  . The renormalized frequencies are, of course, those that 

would be observed experimentally (e.g., in neutron scattering, optical 

spectroscopy, etc.). Note the similarity between (6.6) and the phenome- 

nological form (6.2). 

Because of the severe complications that would be involved, nc at- 

tempt will be made to include broadening in the model for pure CaF2' The 

harmonic approximation permits the calculation of the pure Green's func- 

tions from the spectral forms (3.32)-(3.37)•  The neglected effects of 
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anharmo.'.xc broadening probably represent a Tiore serious limitation on the 

accuracy of the calculated Green's functions than the choice of model to 

be used here. At low temperatur ., where the vibrations of the nuclei are 

small, the anharmonic interaction effects are reduced, and we ?an, there- 

fore, hope to minimize those effects by carrying out the calculations fol- 

low temperatures (^ k0K). 

Later, when the averaged Green's function methods are applied U   the 

optical properties of the mixed fluorites, it will be necessary to include 

(in a somewhat sloppy way) an intrinsic width for certain k = 0 optic 

modes in pure CaFg. This can be done, as remarked above, by including an 

imaginary part y/2  with the phonon frequency ID . The earlier discussion 

of analyticity properties specifies that this phenomenological damping 

should be represented by a pole ir> the lower half-plane for the retarded 

Green's function description; i.e., the broadened mode should be repre- 

sented by the complex frequency (ai0 - iy/S). 

l) Short-3ange > ^on-Cou'Lombic Contributions 

The present model includes short-range forces between nearest-neigh- 

bor fluorines, nearest-neighbor calciums, and between a given calcium and 

its nearest-neighbor fluor. nes. Symmetry techniques can be used to deter- 

mine the general forms of the nearest-neighbor force constant matrices. 

The reduction is carried out by examining the interrelation between the 

elements *°g(il<,£.'<' ) expressed by (2.29) for the group ^ of elements 

that:  1) leave the crystal i..variant, and 2) leave the pair of sites {l<) 

and (H'tc') invariant. For the following discussion, we shall label the 

arguments of the force constant matrices <J> as * J„(R . .-R„ ;<,<"), and 
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shall express the coraponents of the vector ^R  j " "« ) ^n  dimensionless 

units for which r , the F-F separation, is taken to be unity (cf. Fig.2.1), 

The group ^ of symmetry operations for the nearest-neighbor calcium- 

fluorine interaction is C-^, consisting of E, 2C3, and 3P. The two CU 

operations are the il20o rotations about a (lll)-axis Joining Ca and F, 

and the three reflection planes are the (llO)-planes. From these opera- 

tions, it can be shown that ^^ih^hthiCa.,?)  contains only two independent 

constants, and all of the other force constant tensors pertaining to the 

nearest-neighbor Ca-F short-range interaction can then be obtained from 

^0{h,h,h;Ca.,F)  by using (2.28) with appropriate rotation operations: 

^0i-h,-H, h;CatF) 

*1    h -h\ 
1 

6i ai -%! 

h -h   ai! 

■    *0{  h, h,-hiC*tF) 

*0i-h, h, hiC&>F) = 

al -31 -h 

■h  «i   h 

■31   ßl   al 

■   *0( h*-h,-h;Csi,F) 

*0(  h,  h, ^iCa,F)  = 

^ ß 1 el 

h   ai   h 

Bl 

(6.7) 

"    *0(-%,-^.-^;Ca,F) 

*0(  h,-h, ^;Ca,F) 

al -ßl    h 
•6,     a,   -sn 

-ßi     01 

*0{-^, ^,-^;Ca.F) 
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¥OT  the nearest-neighbor calcium ions along tha   (llO)-directions, 

the symmetry group is C2V, with the operations B, C-,, L 

suiting force constant matrices are 

2' >■•-.! o,^.    The re- 

*0( 1, 1, 0;Ca>Ca)= - | 
! Y2 

I o 
I 

» *w(~l,-l, 0;Ca,Ca) 

Y, 

*0( 1, 0, l;Ca,Ca)= - | 

! Y2 

*0(-l, 0,-l;Ca,Ca) 

, a2 0  0 

*0( 0, 1, l;ra,Ca)= - \   0 
h  ^2 

i 0 

0o( 0,-l,-l;Ca,Ca) 

I a2 0 

*0( 0,-1, l;Ca,Ca)= - j o 

i 0 

0 

62 -t2 

Y2 ß2 

= * ( 0, l,-l;Ca,Ca) 

(6.8) 

TO 
* ( 1, 0,-l;Ca,Ca)= - 

rY2 

0 -y. 

c 

= *0(-l. 0, l;Ca,Ca) 

*0( 1,-1, 0;Ca,Ca)= - 

^-Y2 0 

Y2 32 0 

0  0  a, 

= *0(-l, 1, 0;Ca,Ca) 
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Finally, for tl  nearest-neighbor fluorines the symmetry group is 

C^, and leads to the following forms: 

*o(l,0,0;F,F) = - 

lO(0,lf0iF»F) = 

$O(0,0,l;F,F) = - 

013 0  o 

0  B- ■ = 7° 30!= <to(-l,0,C,F,F) 

0  0 ß3! 

ß, 0 0 

0 

0 

aß 0 i = 

0  83' 

* (0,-l,0;F,F) 

i ß^   0 

0 

0 

0 

0 

0  o, 

*o(0,0,-l;F,F) 

(6.9) 

The "self" force constant matrices *o(0,0,0;Ca,Ca) and $o(0,0,0;F,F) can 

be calculated from the condition (2.13) that resulted from invariance 

under rigid-body treiislation: 

* (0,0,0;Ca,Ca) = 1*^ , + 2S2 + a2).T 

*o(0,0,0; F, K) = 2{2a1 + 263 + «3).! 
(6.10) 

They fire multiples of ''..e unit matrix, which we would expect, since the 

vector (0,0,0) has the full 0h symmetry. The short-range force contri- 

butions to the Fourier-transformed dynamical matrix, Fq. (2.U5), become 
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DjJ(k|l.l)   = —{^ +  ß2(2  - cc.i  kx  COS  k     -  COS  k,    CCS  k_) 
Ca j x z 

+ 0.2(1 - cos ky cos k  ) 1 

^y^l1'1)  =i—^2 s^ ^ sinky 

Dxx(kl 
ka-i Hui     r 

1»2) = - - cos hlx.x cos Hk^ cos ^k2    + 

n^z] 

D^(k|l,2)  = _^!L [sin Jskjj sin 

i  sin ijk    sin Jjk    si 

^k    cos ^kj,    + 

i  sin ^kz crs ^kx cos 5sk   1 

DM2,3) "  ~[a3  CC3  kx  +  ß3(cos  ky +  cos  kz)] 

^tS|2.3) = 0 

(6.11) 

D^kll.S) D-(k|l,2)* 

,Sr/r»-| 
D^g(k|2,2)  = D;J(S|3.3)  = ~<- (a3 + 263 + 2a2) 

with all other elements determined by cyclic permutation of x, y, and z. 

The components cf the k-vector appearing in (6.11) are expressed in the 

dimensionless units for which r0 (the P-P separation) is chosen to be unity. 
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2) Long-Range Coulomb Contributions 

In the harmonic approximatior  ehe quadratic truncation of the (l/.r) 

Coulomb forces leads to a sum of dipole-dipole interactions distributed 

over the entire lattice. In the present model, the charges on -.he rigid, 

non-polarizahle ions are apsumed to be +2Ze for the calciums, and -Ze for 

the fluorines, where Ze is an effective charge which(along with the other 

constants o1§ ß-^ ag, 62» Y2» 
a3> a-nd 63) vill  later be determined from 

experimentally observed parameters.  Since the ions are assumed to be ri- 

gid and non-polarizable, the dipole moments arise purely from mechanical 

displacements from equilibrium.  From the expansion 

TZ TT = 1 ' u + u.l\3~-i[l-.'ii   4-... I r + u|     r    r3 2 i   rx    j r3    ^ 

it is pcEsib^e tc express the total Coulomb potential 

?""'   =   1- Z' -g-Q^ ..  S:=  R. 

energy 

2- *~  1*   rT' ~'   -*-*-tt; 

as 

f Caul ±7', 

1 

alRi-Rjl* 
3 C^-^Xg.-R.)   J _  _, 

(6.12) 

in the harmonic approximation. Here, i and J refer to ion sites, and u4 

and u. represent displacements fro^i the equilibrium positions S^ and H.. 
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The Coulomb energy must be expressed as a quadratic form in the displace- 

ments , 

^ i.j J 

and comparison with the expansion (6.12) yields 

^tW(^c)= 0 
(6.13) 

Thus, the Coulomb »r.i rgy in the harmonic approximation is formally equi- 

valent to a sum of i \pole-dipole interactions between dipoles Q-jU. and 

Q.u. at sites i and j. 

iS.ik) 

The  ulomb contribution to the Fourier-transformod dynamical matrix (Eq. 

(.2*k5))  becomes 

DC^(^U.<') = - QKQ K W.K- .T -*fe-(^4-rKK.) 

(M* M.-V
2
 ^r     IME-4-WI 

3 ^X+^-XRji-^')  . 

Rt-V- r KK' 
:6.i5) 

where r  , = (R -S ,), and where the ' on the sum means that  terms for 

which  R^ + r^.^, = 0 are to be omitted. The summand fall; off as l/R,3 

at large distances, but since the area of a spherical shr.l goes as R*^, 
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the sum falls off only ^  l/Rj- However, the convergence is assisted by 

the phase factor, expf-ik'Cfi + r i)1 , which oscillates rapidly as Ä 

increases, and by the dyadic expression in curly brackets (an angular 

factor which has ^2 m sy^^ry) and whose contribution over a large sphere 

tends to average to zero. The convergence of (6.15) is extremely slow, 

and as'k ■* 0, the sum is only conditionally convergent and depends, in a 

limiting way, on the direction of approach to ti-.e origin. We shall re- 

turn to this point later, when we discuss the splitting of the Flu it = 0 

modes of CaF2 into longitudinal and transverse branches. 

In order to evaluate the Coulomb contribution (6.15) to the dynami- 

cal matrix D0(k «*),  it, is convenient to use techniques formulated by 

Kijboer and De Wette^1'^) 1or a generai class of lattice sums. These 

are, essentially, the Ewald sum methods, and are necessary for converting 

the slowly converging series (6.15) into a form suitable for numericel 

computation. 

No attempt will be made here to elaborate on the generality of the 

techniques, nor to provide complete motivation for all of the steps in 

the derivation, since excellent discussion is available in the original 

source^ '■''. The development below will contain only those steps that 

are relevant for an evaluation of the specific type of lattice sum that 

arises in the expression (6.15) for DCC1U (kj«'). Consider the sum 

so?^.)- 7/r:u*'A)13cr<twx^WL 11 (6,6) 
t-V-r^i      [ lR£V?KK.|

2 

which can be v-ritten 
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S(^w) = 
|rl3 3  ll~-i (6.17; 

where 

w(7J) =   Z'e-^'r Kr-R,-7KK,) (6.18) 

with the primes on the sums again indicating that a term is to be omitted 

if (Rj + r  ,) = 0. Since the vector r 1 has the physical meaning of a 

relative displacement of two inns K,  K'  within a unit cell, it is clear 

thav no primitive translation vector Rj can make (R^ + r^^i) a 0 unless 

r  1 = 0 (i.e., K = K'). The primes on the sum thus refer only to that 

case. (Note that the function S(ic,rL,^I) is a dyadic quantity.) 

Introduce an auxiliary function cfrir),  and split the sum S(.t,riC)<.i ) 

into two terns: 

sax*) = dr 

r 

dr 

W(r.k) 

Ki3 

1 < 1 

3.^-1     W) 

\3Tfii~il t1 -56^1   (6'19) 

The function 3*(?) shall be chosen 00 hsvt vi« 'n« properties, and 

the necessity for these should, become apparent as the derivation progresses 

i) 3^(r) is a rapidly decreasing function of |f*"|, 

ii) cf<i?)  is finite at the origin, 

iii) (l - 3&(i*0)/r3 is slowly varying at the origin, 

iv) S^r) is otherwise arbitrary. 

FurthercoiiSiderati as discussed subsequently will lead to a convenient 



-133- 

ultimate choice for the function c^(r). In the separation of S(^,rl<:)(. i ^ 

above, the firs+, term in (6.19) 

(6.20) 

will converge rapidly, because of the ff.cfcor ^(r), whi".le the second tei'm, 

t        Ki-4-rÄÄ'i  -   Kt-t-rKK'!     J        (6.21) 

will converge no faster than the original expression for 3(1?,? t). How- 

ever, we can exploit Parseval's theorem (for a discrete lattice) to trans- 

form the sum So, which is slowly convergent over the real lattice, to n 

form which converges rapidly over the reciprocal lattice. The general 

philosophy of this technique is based on the property that the Fourier 

transform of a smooth, slowly-varying function will decay rapidly in "mo- 

mentut: space". The ultimate choice for the function Jj^?) will thus be 

based on the objective of making the Fourier transf rm of 

|R(-t-lw" I    !Rx-+-rKK.|'       J l J 

decrease as rapidly over the reciprocal lattice as the summand of S, de- 

creases over the real lattice. The second term 

5« - i t? ^^ -a - i U 
j rM-f3^-1^1-*^]      ;6-22> 

can be written as an integral over momentum space by using Parseval's 

theorem.  If we define 
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w(^) = 
iPcT 

ctT e    w(r> k) (6.23) 

9Ch) = dr e   J_ il[, ^(T)"! (6.21») 

then Pa^se'val's theoren states that 

- j «it w{lt.lt)o(W) (6.23) 

The form of the Fourier transform of w(r,k), which will be derived below, 

makes explicit the connection between Parseval's theorem and the duality 

that allows a sum over a discrete lattice to be transformed into a cum 

over its reciprocal lattice. It is convenient to define a new functic. 

w(r,k) by 

X 
(6.26) 

Kote that (6.26) here contains no ' on tha BUK, as (6.13) did. Th-n, 

since 

'^•"wCnk) = Z SCr-Rt-rKK-) 
(6.27) 

18 a periodic function of r over the lattice, it can be expanded in a 

Fourier series as 

(6.28) 



vh-re the vectors ^ are the reciprocal lattice vectors, defined by (2.6) 

If tnis expression i3 multiplied by exP(-ihr?) and integrated over the 

total volume c. the crystal. 

Z-V^f^oj '= Z f dr ^'^•r — e   *  U?-^-w) 

then by using the relation 

ciryj+»l 

I 7    -iCK-h^). = ns v 

we obtain 

A,(6,7.,)- ^Zj-?e-ih-?SC?-R.-7w.) 
cr;rt«.i 

(6.29) 

where Q is the volume of the crystal. The coefficients iL&£    ,} reduce 
A 

to 
« 

\CkJ^) =. JL^e'^'^^^l   N ä-^.7KK, n ~ n e 

(6.30) 

Thup, the function w(?,l) can be expressed as a sum over the reciprocal 

lattice. 

W Cr, k; =_e    £ e^p j chx. (r_ w)l 
(6.31) 
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and the Fourier transform, w(?,k), can also be expressed as a sum over 

the reciprocal lattice, 

<*as)~ ^iKt+i-^)*'^7**- 
^ X 

:6.32) 

From this expression f^r w(h,k), it is apparent from (6.25) that the term 

Sp can he transfoimed into a fram over the reciprocal lattice of the crys- 

tal. If the function 3Hr) is chosen to be a function of {"rj only, then 

the transform function g(h) defined by (6.2^) can be further simplified 

by carrying out the angular part of the integration with the aid of the 

addition theorem for spherical harmonics. Tue separation of the iiteg.a- 

tions. 

K) = .b.33) 

involves the evaluation of an "angular part". 

iCt^-ff^e-^^sH«,) 
(6.3^; 

which can be expressed iu  the form 

-tk., 

d'a äp |7+p| 

Expand 

*-'    ==   Z ^U^Oi.Chr) P^U) 

[6.35) 
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and 

!r + p 

for |p| < r. Then 

olOr 
,-vh.r 

r 4-p 

£(-0V(2£+,)_£_j/hrv
r   .P^^O^C;^) 

which can be simplified, with the aid of the orthonormality relation 

da? picfi.f)pr^.^Ä 
4Tr 

Zg-h 1 S>tt' ^LC^'fl     (6.36) 

to give 

4ic 
dllr 

s— th • r 

I'^-f 0 I 

Expansion to 0(p2) yields 

1    . 
73oCh0   "   ^  i,(hr)f f 

1 

2r: 
kh OaCKOf.    3^.!   .? + 

and with (6-35), leads to the result that 



I(R?)= _ ^(KONli- 1|        (6.37) 

Hence, 

!^)= -4T.(3iH-i)jdr-ia,(hr)[1_3,(0] :6.38; 

A Judicious choice for 3"(r) = ^(r) is the "incomplete gamma function. 

>(<) = r(Vz;«y-)/r(5/2) (6.39) 

where 

r(«;%) = cLte-V-1 

This form for 3&(r) will be shown to have the desirable properties that 

both ^(r) ana the integral arising in (6.38) are rapidly decreasing func- 

tions of their arguments.  The constant a is completely arbitrary, and can 

be conveniently chosen to make convergence in the two sums iL and S2  equal- 

ly rapid. The integral in (6.38), 

{ ^jxC^)[l-3K0] 

otr* 
r r 

dt e-'t37' 

can be rewritten with a change of variables, p = hr and t = ar2u2. as 

<x> 

■ 8(xy/a .1 dp \ du  p'-ii^ e 

0 o 

|)+u4 e ^(pi 
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Use 

da   u*3i(u)e 
-fau1 

- »Ab 

Ife bJ 

to obtain,  finally. 

4Tr -hV4a 
3^)  =  --i- hh -o (6.i*0) 

The sum Sp becomes 

52 =   dT; w(^te)^(K) + 

^KK' "*rSC7)Jj[l->(0](3^-l) 

Since 

fJl-JW] -r^. 

as ? -<• 0, the second term with 6  . vanishes, and *S2 becomes, upon sub- 

stitution of (6.32) and {6.k0), 

sa  = 
4-rv Y -»^•W-l^>.-^l%of 

3vft 

y e-iR,.we-i^-feiy4cc  f   (^-H)(hx-. -fe) -i ' (6.U1) 

jF»(r) can be expressed in terms of the "complementary error function," 

GKO = E^c(r/5r)-hZre ary^ (l-4-|.ocr*) (6.1*2) 
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and we obtain,  finally. 

5C )l.rK,-)=   >     ^-^ 3 ^Ri + r^)(Rt-frKK.) 1 

[E.fc(^|R£+7K,|)+2lRl+rK,|^e-^R^r-'l(1 + |L(i|+r;K.r)" 

K-k 
-1 ^      (6.13) 

The sum S(S,r  ,) is thus excres 
sed as two sums, one over the real lat- 

tice, and the other over the reciprocal lattice, 

ly converging.  In order to make the two 

and both sums are rapid- 

series converge about equally 

rapidly, a value of a = 7r/2 was chosen for 

(the details of which can be f 

actual computer calculations 

bund in an appendix), 

The Coulomb contribution to the dynamical 

lattice sum functions S(k,r  ,): 

matrix involves only three 

Ca 
,2.2 

D    ^12,2)  = - Z-JL-   3(]U000})  = D^la|3,3) 

;coul 
(k|l,2) = 2    Ze^   stf,^}) - D00^^^,!)* 

l>WUA(k|l.3)  = DCOul(kJ3,l)# = D^l(J,2!l) 

BCOUl{lt|3,2)  = - Zfe'l   S(it,{l00})  =100*1^^* 

nCOUl, 

{6.kk) 
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We have, by means of (6.11) and (6.MO1 obtained the complete ex- 

pression for the Fourier transformed dynamical matrix D (kltcic1)- Tht 

phonon eigenfrequencies ow and eigenvectors W(K|SO) can be obtained for 
ka ' 

any wave vector It by means of (2.5^)• All that remains is the detenni- 

nation of the model parameters. 

3) Long-Wavelength Optic Modes 

At this point, it is instructive to examine the form of the k = 0 

modes in more detail, in order to illustrate the remarks made earlier 

about the splitting of the degeneracy of the optic Flu modes into trans- 

verse and longitudinal branches by the long-range Coulomb field.  If we 

split off the term for which A = (0,0,0) in expression (6.1*3), then as 

k -* 0, we will be left with two absolutely (and rapidly) convergent sums 

that each approach zero.  (This is a consequence of the fact that both 

sums contain an angular factor of Y5  symmetry, and there exists uo 

linear combination of the spherical harmonics Yo  that has cubic sym- 

metry.) Thus, as k -> 0, only the X = (0,0,0) term remains, and (6.U3) 

becomes 

li* 3(S,?_.) = -(W3va) [3 *| _ i" 

L  k2 KK • '      ^■•' -"&'   \   ^   .  O ■■■ I (6.U5) 
k-«-0 

and this dyad clearly depends upon the direction of approach £.8 we take 

the limit k -•■ 0. Therefore, the Coulomb contribution to the dynamical 

matrix D (k-HDiKK') will also display this property as k becomes small. 

2 
Howaver, the eigenvalues w^- do not depend upon the direction of approach 

(it would be shocking if they did!).  The dyad (3 ~^- - i) can be taken to 



define a set of axes with one longitudinal vector parallel to It, and two 

(arbitrarily selected) transverse, orthogonal vectors that are perpendi- 

cular to k. In that cartesian system, the dyad is diagonal, with eigen- 

values respectively 2, -1, -1. The dynamical matrix D" (lc-»-0|<< ' ) splits 

into three independent blocks, when it is partition ' into boxes accord- 

ing to the longitudinal and transverse vectors defined in the above way: 

lim D0(k) 
ic-*0 

TO, 

TO. 

LO   TO 
i 

d,  1 

TO; 

1 d2 {6.U6) 

The matrices d («'), v = 1, 2, 3, are all 3x3, with rows and colun 

labeled by the basis indices <, K'  = 1, 2, 3. They are given by 

Mi* CIVU.K')M'
/2 

K'   — 

Mv -1U -2U 

-1U S-f Tv u-% 
-2(v U-% ^ + c 

(6.UT: 

where 

(6.U8) 

and where A(v) = 2, -1, -1 for v = 1, 2, 3 are the eigenvalues of the 

itS 
dyad (3 —5- - !)•  Because tne dynamical matrix has split into three inde- 

k^ 
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pendent blocks, it can be diagonalized separately for each of the three 

"subspaces." Clearly, since the matrices d? and d are identical, the 

eigenfrequencies for the two transverse polarizations will be the same. 

It  is straightforward to obtain the secular equation. 

cu' 
(6.49) 

from which we can obtain the 
eigenfrequencies of the optic modes: 

<° =  4i; 2 

(6.50a) 

(6.50b) 

(6.50c) 

u) is the frequency of the triply degenerate, Raman-active, F2K mode; ui^Q 

is the frequency of the double degenerate, IR-active, transverse F, mode; 

and UI^Q is the frequency of the longitudinal F, mode, split from Wmn- 

These expressions could have been obtained from (6."+7) directly by using 

the vectors w(k=0,cr) for the k = 0 modes given earlier by (2.71)- Eq. 

(6.50) for these three frequencies supplies three relations that can be 

used later to help determine the parameters of the rigid ion model. The 

above demonstration has been somewhat formal, and does not really illus- 

trate t^e physics involved, which we shall discuss below. 

The {harmonic oscillator) equations of motion for the ions are 

coupled to the Maxwell equations for the electromagnetic field, whenever 

the>-e is a macroscopic polarization field induced by the lattice vibra- 

tions. Even in the electrostatic approximation, for which the Coulomb 
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interaction is treated as instantaneous, the existence of an uiduceü po- 

larization for any mode will lead to a splitting of the degeneracy between 

the longitudinal and transverse branches of that mode.  It is the exis- 

ttnce of =uch ?.r. "^ompanying polarization field that is responsible for 

the splitting of tht ic = 0 Flu optic mode in CaF^ which was described 

earlier. For the Raman-active F^jg mode, for which no polarization is 

established, no extra complication of this kind arises. One of the con- 

veniences oi   studying first order Raman scattering from crystals with 

inversion symmetry is that the Raman-active modes in such substances are 

not complicated by the presence of such an electric polarization field. 

Let us shov how the splitting of the degeneracy as k -»■ 0 crises in the 

electrontalic appi ximation, for which only part of the Maxwell equa- 

tions are retained, viz., 

V.(E + l+Tr?) = 0 

V x S = 
(6.51) 

These fro equations imply, respectively, that k-(E + ''-.P) = Ü, and 

k X E = 0, for wavelike solutions (in the present case, we are interested 

in the long-wavelength solutions, k—»-C). Thus, 

E = 0      (transverse waves) 

—#> —* 
E = -taP   (longitudinal waves) 

(6.52) 

For an F-,  mode in CaFo, the equation of motion foi the ions can be writ- 

ten as 
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(6.53) 

mF up  4- 4«, (up —ac*) = -leEi 

where we have invoked the fact that the two fluorine sublattices have the 

same displacement (up) in such a mode, and where |L is the internal elec- 

tric field developed by the deformation.  In the rigid ion model which we 

are using, the ions are non-polarizahle, so electronic effects are ne- 

glected. The polarization will be given by 

P=^(^-«F) (6.5ll; va. 

and for systems with cubic (or higher) symmetry, the internal field is 

Ej = E + (W3) P (6.55) 

Thus, from (6.52), 

Ej = (UTT/S) P   (transverse wave) 

(6.56) 

tt " -(8TI/3) P   (longitudinal wave) 

If we define f = (S^ - 1,), the two equations (6.53) can be manipulated F 

to give 

^  +   ^"^ + i](^-|l^^)vT = o 
(6.57) 

We can immediately identify the LO and TO frequencies from this equation. 



•IHO- 

and these agree with the earlier result (6.50). This derivation shows more 

clearly that the splitting is an electrostatic effect, and "hat the origin 

of the frequency difference for the L0 and TO branch is the non-vanishing 

electric field (cf. Eq. (6.52)) associated with a longitudinal mode. 

Actually, the preceding remarks about the long-wavelength optic modec 

havi not been completely accurate, for the discussion up to this point has 

been based, essentially, only upon the equations of electrostatics. Al- 

though the lattice vibrations have been treated in a dynamical way, all 

of the time dependent equations of the electromagnetic field have been 

suppressed, and these must be included in a rigorous treatment. The tacit 

assumption in the development has been that there is an instantaneous 

static Coulomb interaction between the vibrating ions, and only lattice 

equations of motion were considered.  In reality, of course, the Coulomb 

field does not act instan' aneously, and a more complete description of the 

lattice modes In an ionic crystal requires that all of the equations of 

the electromagnetic ^ield be included on an e^ual basis, in order to de- 

scribe the effects of retardation. These considerations lead to some im- 

portant phenomena for " -» 0 in ionic solids, and we shall summarize some 

of the important aspects here. 

In addition to a splitting of frequencies for vector-like modes, the 

situation near k = 0 is further complicated because of retardation effects. 

The zvo  electrostatic equations really describe only the longitudinal part 

of the electromagnetic field, which is_ derived from the instantaneous 

charge sources (i.e., the instantaneous Coulomb field). The remaining 

Maxwell equations, which must be reinstated in order to describe iirpor- 

tant phenomena near k = 0 thPt electrostatics is incapable of explaining , 
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constitute dynamical equations "or the transverse radiation field (i.e., 

the photon field) which has been neglected so far.  In a region near k = 0, 

when the dispersion relation of photons and phonons brings the frequencies 

of these two systems near resonance with each other, there can be  a strong 

interaction between transverse mechanical waves and radiation. The exact 

solutions to the equations of motion for the coupled system of vibrations 

and the electromagnetic field are a complicated mixture of photon and pho- 

non ("polaritons") in taat region of k-space. A simplified sketch of the 

situation for a diatomic lattice is shown in Fig. 6.6. This behavior is 

discussed in much more detail by Born and Huang ^'  and others^ ^*"''';, 

and leads to the famous Lyddane-Sachs-Teller^ '°' formula, 

^LO=    ^ToUo/6<»y/2 (6-58) 

where e0 and tx  are the static and high-frequency dielectric constrnts. 

I TT", \ (119) 
It is shown by Cochran and Ccwley* ''' and by Loudon     how these re- 

sults can be extended to more complicated crystals—e.g., many infrared- 

active branches, uniaxial crystal structure, etc. 

For Raman scattering m crystals lacking inversion symmetry, the 

first order Raman-active modes will display these complications as k-* 0. 

However, typical light sources used in Reman scattering have k ^ 20,000 

cm . The phonons involved in right angle Raman scattering will have a 

momentum k ^ 0 relative to the Brillouin zone edge (^ 10^ cm-1), but it 

will be far to the right of the polariton mixing region shown in Fig. 6.6. 
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Fig. 6.6; Dispersion curves for optical waves in a diatomic lattice 
near k = 0. The dashed lineü represent phonons ä.nd pho- 
tons without interaction; the solid lines det-i-ihe the 
coupled system of lattice vibrations and radiation. 

k)    Determination of the Model Parameters 

The rigid ion model adopted in this work contains eight constants, 

Z, a^t  8]_» 02» ^2» Y2' a'if  an^ v':3"  ■'■n order to determine these parameters, 

it is necessary to relate them to experimentally measured quantities. Eq. 

(6.50) for the k = 0 optic frequencies provides three relations, and three 

others are supplied by the expression for the elastic constants^ ■'■fci5): 

-I- 3 
Z e 
'a  J 

C.z = 

'-44 = 

i r 
f [ zh -  *rt-a,~2«4-p z - ß 3 — it zV 

2   Va 

^[«,4- 2aa + ^+A3_ 3 ZV 

«. -t- «3 4- 2ß: 

(6.59*) 

(6.59c) 
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Following Ganesan and Srinivasan^l65) , ve can reduce the number of para- 

meters from eight to six by malting the assumptions that a? and ß,, the 

force constants for displacement of two calciums or two fluorines perpen- 

dicular to the line Joining them, is  zero. The six remaining constants, 

2, ot,, g.,. So, Yo» and a„, can then be obtained from experimental know- 

ledge of (uR, uT_, a-., C^-,, dg, and C^^. The Lyddane-Sachs-Teller for- 

mula (6.58) is usually used to obtain the LO frequency from the experi- 

mentally measured TO frequency. There are several references to experi- 

mental work on the optical^178"182^ and elastic^:L83"195^ constants of the 

fluorites in the literature. The table below gives the values of certain 

parameters for CaF^ at low temperature (•*- 1+0K), with the resulting force 

constants o^, B-, 62, y2,  and a^ (in units ..f  e /r0
3, where r0 = F-F se- 

paration, as .'■•hown in Fig. 2.1) and effective charge Z. 

ü)R    (cm-1) j 326 

—ir- 
it 
11 
11 
1 

z2 
1        .609 

^  (cm-1) j 26Ta 
11 
11 
11 
N 

al |     1.537 

wL0  (cm-1) | kj2a 
II 
li 
a 
11 

31 2.707 

eo 1 6.38a 
ii 
11 

u ß2 • 315 

^ 2.0l+Ta 11 
11 
11 '2 ;    .271* 

C11  (dyneZ-m2) 17.!♦ x 1011 b 
it 
l 
II 
11 

a3 1.079 
C12  (äyne/cm2)   ; 5.6 ^ LO11" b 11 

n 
11 

C^i^  (dyne/cm2)   ! 3-59 x 1011 b 
11 
11 
11 

ro <«)        j 2.725 
11 

ii 

U 
1 

 J. 

(a) Reference 179;  (b) Reference 183 
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6.3 Theoretical Calculations: Ca,  Sr F 

In addition to a physically realistic ms lei for the pure CaFg lat- 

tice, a good model is needed to describe the effects of a substitutional 

Sr  impurity. The calculation of the proper self-energy, to lowest or- 

der in the concentration x, can be carried out for the mixed-fluorite 

system ~ai_xSrxF2 by using Eq. (5-12). However, in order to make the com- 

putational aspect of the problem manageable, assumptions have to be made 

on the force constant changes (induced by a Sr++ impurity) that will keep 

the defect subspace as small as possible. 

In the model of the defect to be adopted here, we shall assume that 

the long-range Coulomb forces are not affected, and that there are no 

force c nstant changes associated with the short-range interaction be- 

tween the ++ ions. The defect matrix, v0 = (M - M0)as2 - (* - *0),shall 

be constructed from the following assumptions: 

1) The mass of the ++ metal ion changes {Sr++ replaces Ca++), 

2) The effective charge Z does not change, 

3) All nearest-neighbor short-range interactions (except for 

that between ++ ions) may change. 

These requirements lead to a defect space that contains nine atoms: it is 

an XYg complex, ccnsisting of the ++ impurity and its eight nearest fluo- 

rines, as shown in Fig. 6.7- The calculation of the proper self-energy 

requires the evaluation of 

v jl + g0((o+ie )v ~1, 
OL OJ 

which is of order 2? x 2?. Even with the present simple assumptions, the 
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dimensionality of the impurity subspace is quite large. Clearly, without 

the simplifications that point symmetry can provide, the calculation would 

be a formidable task. 

Fig. b.f:  Impurity subspace. 

The matrix g is the Green's function (imbedded) in that subspace, 

for the unperturbed lattice. Even though it is here confined to the de- 

fect subspace, g0 has the full symmetry of the perfect lattice—i.e., 0. 

point group symmetry, and also, translation symmetry. The simplifications 

that group theory provides are tremendous: instead of the 37S independent 

elements that a general (symmetric) 2? x 2? matrix possesses, g can be 

shown to have only 13 independent elements. The transformation properties 

for g£g(*ic,Jl'ic';(ij+ic) are the same as those expressed by (2.28) for 9°, 

and the reduction of the 2? x 27 matrix g0 is a laborious manipulation of 

rotation operations. The details are omitted; the final result is dis- 

played in Fig. 6.8, which shows the most general form that g can have in 
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Fig. 6.8:  The unperturbed phonon Green's function matrix, containing 
13 independent functions A, B, ..., U, V, for the XYg impu- 
rity subspace shown in Fig. 6.7-  The sit- labels I,J " 0, 
1, 2, ..., etc. refer to the notation in Fig. 6.7- 
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the impurity subspace. The notation 0, 1, 2, ..., 1, 2,   .-. etc- refers 

to the site labels introduced in Fig. 6.7. The numerical calculation of 

the 13 Green's functions A, B, ..., U, V is described in the appendix, and 

the r?al and imaginary parts of these functions are displayed grtphically 

there. 

The defect matrix v0, and also v0[l + g
0(u+ie)voJ~

1, has the site 

symmetry of the XYg complex, i.e., the U8 operations of the 0^ point group. 

There will be one mass change, (mgr - m ), and three force constant changes, 

öa-^, 66^, and 60, involved in the defect matrix V (refer to the notation 

used for the rigid ion model). The change in a, is calculated from (6.50) 

using the .!assumed unchanged) value of Z = .609 and the value (-79) of 

urpo = 225 cm-1 for SrFg (at ^ i»0}^); the change in (3, is obtained from 

(6.59b) using the experimental value    of C^ = i*.'75 x 10  dynes/cm2 

for SrFg (at 'v l+OK); and the change in a., comes from (6.50a) using the 

experimental value of Wp = 290 cm"1 for SrFp (at ^ it0K). The masses rf 

Ca and Sr (relative to the fluorine nass) are, respectively, 2.109 and 

4.612; the change is thus 6m = 2.503. Since every nearest-neighbor F-F 

pair shares the subspace for two possible impurity sites, the average o 

force constant is used for two F ions located between a Sr++ defect and 

a Ca  host atom. This is equivalent to associating a change of ^60- in 

tne F-F matrix elements for the defect matrix v0 that describes a single 

Sr++ impurity. The complete form of the matrix v0 over the 27 x 27 di- 

mensional impurity subspace is displayed in Fig. 6.9.  The "self" force 

constant changes in Fig. 6.9 were deternined from the translation condi- 

tion (2.13), which la valid for an arbitrary lattice. 

Under each of the UQ  operations of the 0^ group, a matrix X defined 
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Fig. 6.9'     The defect matrix v0 in the XYg impurity subspace; the site 
labels 0, 1, 2,..., etc. refer to the notation in Fig. 6.7. 



over the sites of the XYg impurity aubspace will be subj^ted to a 27- 

almenaional siMlarity transformation w : X—»JxJ . If X has the sym- 

metry of the XYp, "defect molecule", then it will be invariant under all 

of these similarity transformations, and X will commute with each of the 

1*8 27-dimensional mat ices iJ .    The 27-dimenslonaj (reducible) represen- 

tation formed by these similarity transformations can be shown to reduce 

to 

r(XY8) = Alg + Eg + Flg + 2F2g + A2u + ^ + 3Flu * F^      (6.6O) 

With some intuition, it is possible to construct 27-dimensional column 

vectors with the appropriate symmetries that can be used as "basis vec- 

tors" to reduce the matrix X into block form, corresponding to the decom- 

position (6.60) into orthogonal subspaces with Alg, E , F^, ..., etc. 

symmetry. These (unnormalized) basis vectors are displayed in Fig. 6.10, 

and are, 01  course, not unique; all that i:3 claimed for them is that they 

have the symmetry stated  They have been constructed so that the equiva- 

lent polarizations (e.g., in a 3-cimensiona. representation such as F2g) 

are orthogonal. However, since they were obtained purely by geometrical 

intuition, it will be only accidental if they diagonal!ze a given matrix 

X completely. All of the simplification that group theory can provide is 

contained in the decomposition (6.60), and since some representations 

(e.g., Fp^ and F^u) occur more than once, complete diagonalization in 

those subspaces cannot be accomplished by (0h) symmetry considerations 

alone. Aside from the fact that there are three equivalent polarizations, 

the reduction of a matrix X with the symmetry of the XYg "defect molecule" 
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metry subspaces given by the decomposition of Eq. (6.60). 
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Fig. 6.11: The unperturbed Green's function matrix G0 and the defect 

matrix v0 in the ¥2^ and ^iu symmetry subspaces as deter- 
mined by the mode vectors of Fig. 6.10. 



will lead to (three) 2x2 F2g blocks, and (three) 3 v- 3 Flu blocks.  The 

diagonal!zation of these blocks vill determine the linear combinatiors of 

F2„ and F^u vectors (given in Fig. 6.10) that diagonalize a particulcr ma- 

trix X completely. The elements of the unperturbed Green's function ma- 

trix g0 and of the defect matrix v can be calculated for each of the aym- 

me+'-y subspaces by using Fig. 6.8, 6.9, and 6.10. These calculations are 

rather tedious, and have been carried out for the F0 and F,  subsoaces, 
^g    lu    - 

with the results shown in Fig. 6.11.  These matrices are necessary later 

for .he evaluation of v0[l + g
0(u;+ie )v0J

_1 (which occurs in the first or- 

der proper self-energy) as a function of f"requt..:cy in the F , and F,  sub- 

spaces.  (The constants p., q in Fig. 6.8, 6.9» 6.10, and 6.11 are related 

by p = l/q, but are otherwise arbitrary; it shall prove convenient for 

the later jnfrared calculations to choose p ~ III„ /nu-.) r   Ca r 

l) Raman Scattering 

It may be reasonable to assume that the formation of a mixed crystal 

from two similar isomorphs, such as Ca- ,Sr_Foor Ba, Sr„F0, will not in- 

volve any appreciable changes in the P0  (»c) coefficients that charac- 
Gtp t|i 

terize the electronic polarizability structure. Evidence for this assump- 

tion could be taken to be the fact that significant changes in these 

quantities would most likely lead to induced scattering from impurity 

anodes, other than the k \  G excitation. Since this is contrary to our 

observations of a single peak which shifts linearly, and broadens wif 

concentration, we shall assume that the dominant scattering mechanism 

-omes from the first ten., in (U.15), which was expressed by (U.lU). Using 

that result, we can write tho scattering intercity as 
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I(aj) ^^ Im  (Jü
Z
_ (UJ'R- [ XB.)i~4- U 

__ i 

(6.61) 

where the proper self-energy has been expanded only to the lowest order 

in c. We have also included, phenoaenologically, a broadening to the 

k = 0 mode of pure CaF2 by adding a term -iy^/2  to BU, where YR repre- 

sents a full width. From (f.l?), it is evident that, as k + 0, the pro- 

per self-energy term in the denominator of (6.6l) is Just the projection 

of v0[l + g
0(aj+iE)v0]~

1 onto the mode defined by the second set of F2 

vectors listed in Fig. 6.10. Calculations have been carried r->i   "or the 

first order PSE that occurs in expressio-i (6.6l) for the RS intensity, 

and the resets are shown in Fig. 4.1? (with details in the appendix). 

These calculations have verified the validity of the conjecture that g0v0 

is negligibüe compared to unity for the Raman mode. This laads (accord- 

ing to the discussion in Sec. 5-2) to the "virtual crystal approximation" 

for the first order Raman line, as observed; this behavior is related to 

the real part of the PS2. The linewidth, on the other hand, is related 

to the imaginary pc^t of the PSE, acccrding to (6.61). One of the neces- 

sary assumptions that this formalism makes is that the contribution of 

disordering to the linewidth of mixed crystals is additive with other ef- 

fects, which are included only phenomenologically by the addition of the 

terra -iy-^/2  which characterizes the pure crystal (c=0). The results of 

the linewidth calculations that were carried out using (6.61) and the PSE 

function of Fig. 6.12 are shown by the dashed line in Fig. 6.5, which 
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REAL <F2(-I 3<"\^*)\F2q> 
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COiCM   ) 

Fig. 6.12:  The (k = 0.1 proper self-energy function <apjMo^1 Mk=0,w+ic)l.:~^pi; 
that occurs in Bq. (6.63) for the Hainan scattering intensity. 
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also contains the experimental data. The results of these calculations 

agree reasonably well with the experimental obcervat^ons. 

2) Infrared Reflectivity 

A similar procedure was followed in an attempt to explain the infra- 

red reflectivity data obtained for the Ca,  Sr F0 systems by Verleur and 

Barker'^'. It was assumed that, with the introduction of a 3r++ impuri- 

ty, the first order electric moment coefficients do not change apprecia- 

bly from the values <M0    (<) that characterize the pure CaFo host. Thus, 
CttV c 

we shall again assume that the dominant contribution to the mixed crystal 

behavio~ (in this case, the far-infrared dielectric function e(u))) comes 

from the (transverse, TO) k ^ 0 excitations. Then, to lowest order in c 

for the PSE, the expression (i».25) for c({o) becomes 

4- C <crT0| Mo
,/i FC')(k = O,0ü-(-Le)Mo'Vz kro)]    (6.62) 

where we have, once again, included a phenomenological term ifüKüipQ (con- 

forming to the notation in Verleur and BarkerVJ') to account for the damp- 

ing of the TO frequency of the pure CaF2 lattice. Thus, we takeVJ/r = 

.025. The value of e^ for piire SrF2 is^1^9) 2.07, compared to 2.0U7 for 

CaFg, so it is a good approximation to regard e^ as a constant in (6.62). 

Again, if we appeal to (5.17) and (2.71), it is possible to show that, as 

k -*■ 0, the proper self-energy in the denominator of (6.62) will b; the 

projection of v0 1 + g
0(u)+i£)v0j ^ onto the mode defineti by the second 
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set of F-[u vectors listed in Fig. 6.10.  (This is a consequence of the M ^ 

factors, and our convenient choice of p = m /mF = 1/q.) The results of 

the calculation for the PSE that occurs in (6.62) are shown in Fig. 6.13. 

(Details of the calculation can be found in the appendix.) Eq. (6.62) was 

used in conjunction with (4.16) to calculate the far-infrared reflectivity 

for pure CaF5 and for Ca ,,,-Sr oc^p» since vhese cases can be compared with 

the experimental observations of Verleur and Barker'-''. These results are 

displayed in Fig. 6.1^, and although the quantitative agreement is not per- 

fect, there are many qualitative similarities between the theoretical and 

experimental reflectivities. The inability of a single (damped) mode to 

adequately describe the pure CaFg crystal is an indication of the fact 

that the crystal may not be well-approximated by a purely harmonic solid. 

The effect of anharmonic processes has also been discussed briefly by 

Br'Somworthv 'y', who also observes departure from a harmonic lattice in 

his study of IR absorption in pure CaF?.  The theoretical curve for the 

mixed crystal Ca 752^25^2 ^^s describe the general decrease of the re- 

flectivity, as compared with the pure crystal, and the rounding off of the 

edge at ~ 280 cm-1.  It also displays a bump near 350 cm- , as observed. 

However,, there is an anomolous structure at ~ 210 cm-1 which corresponds 

to the sharp peak in the PSE, shown in Fig. 6.I3.  This coincides with a 

ip-vnimum in the density of states for pure CaFg (cf. Fig. A-lU in the appen- 

dix) and is probably an accidental anomoly of the host model.  In addi- 

tion to the fact that anharmonic effects are completely neglected (which 

is probably the most serious deficiency), it is also possible that the 

models of the defect or the host are not sufficiently sophisticated.  Fi- 

nally, the assumption that the i/*t0-coefficient3 do not change may be inac- 

curate, and In that case, there coulu be a comj-licated absorption struc- 

ture throughout the band. 
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APPENDIX 

In this appendix, we shall briefly describe some ol the computational 

techniques that have been used in this work. Listings of some of the main 

(FORTRAN IV) programs will be included, as we'.l as some graphical results 

for the density of states, dispersion curves, arid certain Green's functions 

for pure CaFg. The computer programs have been written in a manner that is 

6eneral enough to permit their use for any of the fluorites; they are based 

only upon the assumption of a harmonic rigid ion lattice, and require know- 

ledge only of a)R, wT0, W^Q, C11, C12, Cj^, a (= 2r0), and mCa/mF. Because 

these programs would be useful for a wide variety of phonon defect problems 

that involve fluorite host lattices, it was considered worthwhile to in- 

clude them in this appendix. For example, the phonon Green's functions 

that are calculated by these programs could also be applied to problems of 

defect-induced RS or IR absorption, to vibrational sidebands^   ' in fluo- 

rescence spectra, neutron scattering from impurities    , etc. 

l) General Remarks 

The calculation of the phonon eigenfrequencies OJ:* and eigenvectors 

, ■•♦■ X 
w (<|ko;, using t.je rigid ion model for the harmonic fluorite lattice, can 

be carried out by diagonalizing the (total) Fourier transformed dynamical 

matrix Dag(k!<<'), given by (6.11) and {b.kk).    These quantities can be de- 

termined, for any given wave vector k in the first BZ, by using subroutine 

"KSPACE", which is included in this appendix. We shall first discuss some 

general symmetry conditions that ^„(klKK:') possesses which are useful for 

simplifying unperturbed Green's function calculations, which involve sums 

over all k in the first BZ (cf. Eq. (3.32)). The eigenvectors and eigen- 
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values for the phonon branches have the point group symmetry of the crys- 

tal (0. in the present case), and the meaning of this statement shall be- 

come more precise below.  If {i<) ■*  (LK) and UV) -* (L'K') under an oper- 

ation (sit) of the crystal space group, then from (i?.U5), 

• ^ • ) "nO,' • SD0(k|K:<•) S-1 - 2, e~ik-(R£K ~ Rfc' K ' ; D0(LK,L,K,)     (A.l) 

.•* -*■ i-i. a and since (R.  - R. , , ) = S"1- {RTV -  R,.,,,,), this can be written 
IK £'< LK  "L'K" 

S^Ckl«') S"1 = 2 e"^*8"1*^!* '^L'K'5 D0(LK,L'K')  (A.2) 

Thus, finally. 

S D^kl«') S-1 = ^(SklKK1) (A.3) 

If we set 

a j  S  if < -»■ K under operation (S|t) 

XK 
=     \ . + 

0  if <-A K under operation (s|t) 
(A.U; 

then 

^D^te)^1 = D0CS^) 

(A.5) 

Since </ represents a similarity transformation, it follows that D (Sk) 

and D0(k) will have the same eigenvalues. If we write 

ef D0(.£) ^ ^ J w(k(r) = ^Jvjtfa) (A.6) 
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we see from (A.5) and (A.6) that >4w(ka) is an eigenvector of D0(Sk) with 

eigenvalue tn&Z.    Thus, if we denote the eigei rectors of D (Sit) by w(Sk,o), 

we can write wa(K|sk,o) ■ I  SagWg(K-jka), where <  is the basis index that 
ß 

in transformed into K under rotation S. Thus, knowledge of the phonon 

eigt'nfrequencies and eigenvectors for a given wave vector k can be used to 

calculate these quantities for all of ihe momenta in the "star of k." Thus, 

for a general value of k, there will be ko  vectors 3k in the star of k, but 

only one matrix diagonal!zution is required to obtain complete information 

about all of them. Since numerical diagonalization of the 3r x 3r matrix 

^aß^' "■'^ is a time-consuming process, this exploitation of crystal sym- 

metry can be a valuable simplification when sums over k, involving the OJJ 

and wa(K|ko), must be carried out. Furthermore, since D°g(ilK ,£'K ') is 

real, it is easy to show from Eq. (2.U5) that D0(-k) = D0(k) ; this implies 

that wa(ic|ko) is the eigenvector associated with the eigenvalue wj for 

the matrix D0(-k). 

2) Unperturbed Green's Functions 

The 13 independent Green's functions g°Q(iU,«,'<' ;a)+ie) that arise in 

the XYg defect subspace (and which have been denoted by A,B,...U,V in Fig. 

6.8) can be calculated by a "histogram" method, using Eq. (3.33), (3-36), 

and (3.37). The band of (normalized) squared frequencies i<ii/'^mBLX)    is di- 

vided into a number (e..-?., 200) of equally spaced intervals, or "bins." It 

is convenient to calculate the imaginary part of g (u+is) first, using the 

,   . -*■ 

spectral representation (3-37/, which contains a sum over all  k in the first 

BZ. The 6-functions can be regarded as contributing only to the "bin" in 

which the frequency u^ lies. After choosing a suitable mesh size G for the 

grid of momentum vectors, the N = G-5 vectors k in the first BZ are defined 

by Eq. (2.9) (for an fee lattice). However, because of the considerations 
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above regarding the point group symmetry of the quantities w+ and wa(ic|ko), 

the summation In (3-37) can be reduced to a sum over a restricted set of k- 

vectors that lie in only l/kd  of the first BZ: all of the other k-vectors 

will lie in the "stars" of these vectors.  (This 1/1*8 region of k-space is 

shown in Fig. 2.2, and shall be called the "fundamental wedge.") Further- 

more, since inversion takes k -> -it, and since D0(-k.) = D0(k) , it is easy 

to shef that Eq. (3.37) can be written 

where ■'"he sum over S. is a sum over proper rotations only.  (For every ro- 

tation SJ, the improper rotation IS^ produces a result which is Just the 

complex conjugate; hence, the "2 Re".) The quantity m(k) in A.7 is a mul- 

tiplicity factor that repreeents the fraction of the point k which lies in 

the "fundamental wedge": if k lies on points or lines of hi^h symmetry, some 

->■ 

of the proper rotations S- will not yield new k-vectors, and in such a case, 

-+■ 

some k-vectors would be accidentally induced more than once in the sum. 

The factor m(k) prevents this; e.g., for k = (0,0,0), m(k) = lA8.  The 

multiplicity factor is Just related to the "group of the K-vector," (?(k), 

and a summary is given in Table A.l. A convenient method for determining 

:r.(k) for any k-point in the "fundamental wedge" is described in the listing 

of program I given later. Since the imaginary parts of the phonon Green's 

functions are volume integrals (in k-space) of 5-functions, they are really 

equivalent to surface integrals; arithmetically, they behave more like 

derivatives than integrals, and it is necessary to use a fine mesh for the 
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'2v 

m(it) 

1/1*8 

1/16 

1/12 

1/8 

i/8 

1/6 

1A 

1/k 

1/2 

1/k 

1/k 

1/k 

1/2 

1/2 

Table A.l: Points of hi^h symmetry in the first BZ for a fco 
lattice; {^(k) is the group of the k-vector, and 
m(k) represents the fraction of ic that lies in the 
fundamental 1/1+8 wedge. 

Brillouin zone if good resolution is desired. Table A.2 gives the total 

number of distinct k-vectors involved in the sum (A.7) over the fundamen- 

tal wedge for a given grid size, G (which corresponds to using a total of 

N = G-3 points for the entire first BZ). The calculation of the imaginary 

part of a given Green's function is carried out with (A.?) by determining, 

for each k ir the fundamental wedge, the 9 "bins" that correspond to 
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(to^o/wniax)
2, o = 1,2,...,9; a contribution 

-*■-*■ ■+ 

^ m(k) [ ei(Sik'1-(R£< ~ ^e'K') Relwa(<jSik,a)v*(«:'|sik,o)| (A.8) 

i 

then results for Im ° (äK.ä'K*; u+ic) at the frequency u = uivj , and is 

dropped into that "bin." In practice, we used a mesh size of G = Uo for 

carrying out the sums over the 1/U8 wedge of k-vectors, and this r. quired 

a calculation of the tu* and va(Klka) at 1686 distinct k points (cf. Table 

G 

2 3 52 351^ 
u 8 5U 3906 
6 16 56 U33^ 
8 30 5c hlQh 

10 Uö 60 5272 
12 Ik 62 578U 
la 106 6U 6337 
16 ikg ti 6915 
18 199 68 7536 
2C 262 70 818U 
22 33^ 72 8878 
21 U22 ^ 9600 
26 520 76 10370 
28 636 78 11170 
30 76U so 1202]. 
32 913 82 12903 
3^ 1075 C 13838 
36 1260 B6 lii606 
3c 1U60 88 15830 
ko 1686 9C 16888 
1*2 1928 92 1800U 
U 2198 9^ 19156 
^6 2136 96 20:569 
UÖ 2805 96 2l6l9 
50 31^3 100 22932 

.ble A.2: F01 c mesh size G, there arö N = GJ k-vectors 
(defined by (2.9)) in the ertire first BZ; n0 
gives the number of distinct k-vectors in the 
fundamental 1A8 wedge. 



A.2).  This corresponda to a grid of N = ^0^ = 6U,000 points for the entire 

first BZ, and required approximatej-y k  hours on the IBM 709U.    After the 

imaginary parts of the Green's functions g^gU* ,Ä'< ' ^ic) have been cal- 

culated by this histogram technique, the real parts can be obtained using 

the Hilbert transform relation, (3-36). The real anri imaginary parts of 

the 13 independent Green's functions g0c(x,K,{.'K: ' ; w+ie) for CaF-j that occur 
Up                         — 

in the XYg subspace of Fig. 6.7, and which have been labeltd A, B,   U, 

V in ?ig. 6.8, are displayed graphically in Fig. A-l to A-13. They have 

been included in this appendix because it is quite conceivau^.^ that they 

would be useful for the study of other phonon effects in CaFg. 

3) Computer Programs 

Because the listings of the computer programs are liberally sprinkled 

with "COMMENT" cards which describe most of the minor details (and which 

leave almost nothing to the imagination) it is unnecessary to elaborate 

i_rther on these calculations here.  Some of the programs make use of Share 

Libiary Subroutines, and where that is the case, it is always stated in the 

COMMENT cards. We have attempted to use names for FORTRAN variables which 

are consistent with the mathematical quantities appearing in this work; 

e.g., the force constant a, is called ALPHA1, etc.  (To avoid confusion, 

the mesh size G for the grid of k-vectors is called H in these progrnms, 

since G is often used to denote a Green's function.) To adapt these pro- 

grams to any of the fluorites, it is only necessary to have knowledge of 

the following experimental constants: 

1) up, u)rpQ, W-^Q,  the k = 0 optic frequencies in cm~^, 

2) CjLi, C^2» t-kh*    the  elastic constants in units of 10* dyne/cm^, 

.        , o 
3) a, m^a/mp,    lattice constant (A), and the ratio of masses. 
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In the order in which the listings appear later, these programs do the 

following: 

Program I: Deck Name "CAF2". This program will calculate, as a function 

of (w/cujuax) and in units of l/(rap ^^x  )» the real and imaginary parts of 

< JUaj g0 lil'ic'ß > = M^-' < £<a|  ~  U'ic'ß > M , 
(u - ic - D 

for the 13 independent functions that occur in the XYn complex of Fig. 

6.7, and denoted in Fig. 6.8 by A, B, ..., U, V. The (complex) array 

GFCN(M,I), M = 1,..,,13, and I = 1,...,501 represents these 13 Green's 

functions (see chart in program listing for exact identification) for 

501 values oJ'  (w/w „„) = (I - l)/200, corresponding to a range of 2.3 

times the band of squared frequencies. The density of squared states, in 

units of l/umax , is also calculated as a function of (w/M^y) , and is 

represented by the (real) array RHC(I), I - 1,...,201. All chat is required 

to use this program is a single DATA card (8F9.M conviining the values of 

a, Wipo' ^LO» U>
R' ^i"i > <~^2,  ^UU' an^ ^a'^F ^n ^e nn^s  specified earlier. 

The program makes the assumption (based on CaFQ) that w„„„ = ü)Tr,; if that 
—      max   LiU 

is not the case for somt other fluorite, a minor modification (a change of 

one card) will be necessary. A tape on A5 is needed for writing the output 

(two records, GFCN and RHO) in binary. The deck setup is as follows: 

5.1+5  267. 

$DATA 

$IBMAP 3CDIAG 

$IBFTC KPT ACE 

$IBFTC MODELS 

$IBFTC CAF2 
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where the decks named "KPLACE" and "MODELS" arc ; rograms II and III below, 

and where the deck "SCDIAG" is a Share Library Subroutine, SDA 3368, which 

diagonalizes hermitian matrices. SCDIAG actually occurs because it is a 

necessary part of the package associated with KPLACE, described next. 

Program II: SUBROUTINE KSPACE, Deck Name "KPLACE". This subroutine will 

construct the Fourier transformed dynamical matrix D°g(k|KK') for a given 

wave vector k in the first B2 (using Eq. (6.11) and (S.kk)),  and then diago- 

nalize it to produce the phonon eigenfrequencies un* and eigenvectors w(ko). 

The calling sequence is CALL KSPACE (KX, KY, KZ, OMEGA, W, MU), where 

KX, KY, KZ  is a triplet of (floating point) numbers that specify 
the wave vector as 

k = ^ (KX, KY, KZ; 

OMEGA      is a real 9-dimensional array that contains the 
final calculated values ot a?  , o = 1,2,...,9. in cm 

W is a complex array, dimensioned W(3,3,9) correspond- 
ing to W(ALPM, KAPPA, SIGMA), and containing the 9 
eigenvectors w (>cjko), o = 1,2,...,9. 

MU specifies a write-out option that is described more 
fully in the program listing. 

This subroutine requires, as part of the package, a Snare Library Subrou- 

tine "SCDIAG", SDA 3368. N (which corresponds to the mesh size G), ALPHA1, 

ALPHA2,..., etc. must be listed in COMMON with the main program. The main 

program must also contain dimensioned storage space for OMEGA and W. The 

following miscellaneous details should be noticed:  1) MCA is the mass of 

the ++ ion in units of the fluorine mass; 2) the force constants ALPHA1, 

2   ^ 
ALPHA2, ..., GAM2 are assumed to be in units of e /r0 , where e * U.Ö03 x 

10  is the electronic charge in esu; 3) A is the lattice constant (■ 2r0) 
o 

in A, and k)  K    = 1, 2, 3 correspond, respectively, to Ca, F^, and Fg. 
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Program III: SUBBOUTIHE MODEL, Deck Name "MODELS". This subroutine will 

determine the : orameterB ALPHA1, ALPHA2, ..., GAM2, 2SQ of the rigid ion 

model fro« the experimental quantities discussed earlier. The calling se- 

quence is CALL MODEL (T, A, WTO, WLO, WR, Cll, C12, CU, MASS, ZSQ, ALPHA1, 

ALPHA2, ALPHAS, BETA1, BETA2, BETA3, GAM2), where 

T is the temperature in 0K, 

A is the lattice cc 3tant in A, 

WTO, WLO.WR     are the ic = Q optic frequencies in cm 
at T 0K, 
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Cll, C12, Ckh        are the elastic constants, in unite of 
1011 dyne/cin2> at T 

0K, 

MASS is the ratio of the ++ mass to that of F, 

ZSQ is Z2, the square of the effective charge 
(dioensioniess), 

ALPHA1,...,     are the short range force constants in 
...,QAM2   units of e2/r0

3, where e = h.QO'i  x 1Q1C 

is the electronic chJirge in esu, and r0 
is the F-F separation in cm. 

Progran IV; Deck Name "GFCS". This prograa will calculate the symmetrized 

Green's functions in the F2 , F, , A-j^ , and E_ pjbspaces (refer to the 

charts in the program listing for complete details). It will elso convert 

the Green's functions to functions of frequency w, in cm- , and will cal- 

culate the ordinary phonon density of states, p0(u), in units of lA^ax- 

The eyanetriEed matrix elements for g0 in the F2_ and F, subspaces were 

given in Pig6.ll, based on the basis vectors of Fig. 6.10; in the Ala  and 1« 

E- subspaces, the Green's functions are given by 

< Alg g0 |Alg >=B+Q-U-F-2{H+2S+V+P+R-M) 

< Eg| g0 |Eg > = B + Q - U - F + R + H + V + 2(S + M - P) 
(A.9) 



In order to use this prügrajn, a single DAT^ card containing the values 

of mCa/mp and umax (2F9.M must be provided. The tape with the (binary) 

Green's function data calculated from Program I is required on A5. On 

B5, a tape must be supplied to vrite the output in binary. l6 logical 

records will be written: 15 records containing complex arrays G(l), I = 

1,...,IMAX, giving the symmetrized g0(a)+iE) matrix elements for the Fg«' 

A  » E_» and F,  subspaces, and one real array R(I), I = 1,...,IMAX, 
xg  ©      J-

1
^ 

for the density of states P
0
V'UJ).  (Refer to the charts in the program list- 

ing for a precise specification of the Green's function matrix elements.) 

The subscript variable I = 1,....IMAX for these arrays gives the frequency 

u! = (I - 1) in CM--1-; IMAX is determined by the largest integer that satis- 

fies the condition (lMAX/cümax)^ 1 2.5 (since the original calculations of 

"CAF2:; were carried out for 0 <_ (u/u^^)2 <_2.5). 

Program V: Deck Name "DEFECT". This program vlli calculate matrix ele- 

ments of the perturbed Green's function g(u)+ic) = [l + g0(»+ie)v0j" g
0(u+ie) 

in the A-^ , E , ^2s,  an(i ?lu 5yTIlmet:ry manifolds of the XYg defect space, 

for an impurity matrix v0 as discussed in Sec. 6.3.  It will also calcu- 

late the (complex) eigenvalues X(üJ) of the matrix g0(u)+ie)v in those sym- 

metry subspaces, and the proper self-energy functions that occur in Eq. 

(6.6l) and (6.62), and displayed in Fig. 6.12 and 6.13 for CaFg. 

To use this program,, it is necessary to have the tape of symmetrized 

Green's functions generaced by Program IV, "GFCN". Various experimental 

quantities are entered in data statements (cf. program listing). A tape 

must be supplied on B5 for writing output data in binary, and the input tape 

from "GFCN" is required on A5. There will also be a standard printout that 
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gives the calculated data in tabular form. The binary output tape on B5 

will contain 21+ logical records, whicn are identified specifically in 

COMMENT cards in the program listing.  The deck setup is as follows: 

$IBFTC AMAT 

$IBFTC CSMQ 

$IBFTC DEFECT 

The decks "CSMQ" and "AMAT" are Share Library Subroutines: 

1) Deck "CSMQ":  SUBROUTINE CSIMEQ, SDA 3084, inverts complex 
matrices, and 

2) Deck "AMAT":  SUBROUTINE ALLMAT, SDA 3Mtl, diagonalizes an 
arbitrary complex matrix. 

Program VI: Deck Name "W VS K". This program will produce CALCOKP plots 

of the phonon dispersion curves for an arbitrary k-direction in a fluo- 

rite lattice. To use the program, the following DATA cards are necessary; 

l) Card 1: Contains the values of a. UT0' "LO' •••' etc.(8F9.U) 

2) Card 2,3,...,n: Contains four integers, ^1, N2, N3, and N 
(312, 13); the direction of the k is specified by 
(Nl, N2, N3), and N is the number of intervals into 
which %  is divided from (0,0,0) to the first BZ 
edge along that direction.  (N ^ ^0) 

The output will be a standard printout giving üt> and w (<|ko) in tabular 

form, and CALCOMP plots of all of the dispersion curves. A tape on A6 is 

necessary to generate the CALCOMP plots. Timing is about 5 seconds per 

k point. The deck setup is as follows: 
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flDATA 

fl 1 0 ^Q 
ll 0 Q kQ 

267-0 

$IBMAP    SCDIAG 

$IBFTC    KPLACE 

^- 

[ilBFTC    MODEL 

$IBFTC    W VS K 

All of these subroutines have been encountered earlier; "KPLACE" and 

"MODELS" are Program II and III above, and SCDIAG is a part of KPLACE 

(Share SDA 3368). Fig. A-lk  shows some dispersion curves calculated 

for the (100), (110), and (ill) directions in CaF,. 

The card listings of these programs, I-VI, r.jre given on the follow- 

ing pages. 
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1-1 
BiNimiOM Mtic 1*1. Kivmii. ttrttnu «PC"«-i*. u,  tu*.i.ii, 

tUfltttll.   «11,11,4011,«HOIIOI^tTH«) 111.lU'M.II.   tl«l4l.   Qlll 
«.  \l   KliltTiKl,Bt,aiiKC,«0Ofl.,LLlllt(.lLi< tlt.LDUD.MISIll.NC« 
«■•I  M>C> 
tNtibiM AiMaun.  Hitiin 
-OfHl,   M\}.i.1i .    I,   ^Mfttl.Vt.Vl.ftrCNI U.tOU 
COTMM  H.llMtl.urMU.urHAI.MTM.ItKl.tlfllieMJ.ng.MU.t 
t9UIV>llN(l   IfrfCklll.   Cll'l 

'»I    »OMCI   C0N1IANI1   »l^i.l.    UPMil,    .44.     •*■«      All    I   !\lin    |N   u^ I I %     ;• 
l|a«>/K0**ll .   u-f«t   IS  ■   tf.      •   ii»t:   QM   ■!   II   MflOfO  »OH   OUt^uT   . 

MIR   11,1011   «,  HTQ.  OLr,  «ft.   Ml,   Clt.   CMi   "'^ * 
:ail  «GBIL   I».,  A.  HlO.  M.0t   ■«.   Cll>   CU,   C»*i   "■■.   .■■-.   U'nAi, 

Ul*tUt.   ALPMI,   iir*l.   It!«].    IH»».    «Mil 
101 fnui up*,«) 

1-2 
oirt  lieu. ji.j-i.ii.i-n.m. t-k.it/ 

-■•i*   MIIILil*itiJ»ltll*L*l>«l»l*I«l 

.,.'...- i -.. t«i 

til   rOiLQMllK   ME   THI   M   iHtlf-0|M|N1 IOM«l   i.« I HC^ )-....   «ATI ICH   '■»■ 
aEmii*ii int i*  •».■;»(>• •oitnoMi or tm D-H MOU».    it*u MAIIILH 
MI wSlfui. roo iu-i avfa iw IMTIIE nai? MIILOUI« tont    «•■ BE 
KlOwCffO   ID   ft   CCMJIDEKATION  .J«   OMIT   !/«■   Of   IMII   ni». ,   CftiLEO   ' ■■' 
■PUlOkiNftrtl   HlQM1    l»i^-.    |f    tt.   THItEfOOE,   POIlttit   10  «"tfttl '  COW- 
MflVf   r.O«*jlftttOM   UM    IM   TMi   CftLCULftllVI  U*   Ltltf;   .   J.' I i :-.■,   IT 
tinfllTIOK   THC  VftCI   THAT   TMf   ilSftVKtii-i   «NO  tlMN(«tul&   * ■-    <-i 
PMCMt      tlftNCHO   »HI   «»»(   fwl   MIMI-flOOu»   SVftMiTIf   O*   IHC    .J>\i«i. 

TMdf   tit   110  Of&M' 

Dftli   I lllll.t,jl 

oAii <nii.i.ji,j>i.ii,i>i.>i/ 

i Ui   <>••   o.. 
I 0..      t,.     0.. 
I 0..     0,.     t./ 

INIM   Ml   TMI    110  DIGAM   iOTftllONt   ftOOUT   I. 

OATt  (IISU.I ,JI.J-U>t,k>}«*t. l*l.lt/ 

■ Olli ttm »«■■■■!   I 110: 

J-I.>I.L<1«.2UI l-l.l> 

■11*141«l-l.ll/ 
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311* RW| (■(. 

l/l.l 
JO..) 
M..0 

t,i,<}..a 
1.1.1,0. 
.:.t.2.i 
.t..i,i. 

fti,pMl<PI,illFIIN 

■«O(«Itttl*lt0*> 

11 llll).LL 11«) , 

.0..1.1.2.l.U. 
l.iD.tt«t.I.l. 
.«..»«.»«li 1.1 

.1,2.2.2.0..I 
0.,2.1.2.2,1. 
.),.).;.I.I.I 

ln|l(   UI   tit   i>0  DE6RII   flOTftTIONS-' 

VftTft   ll(»Utl.JI.«-l.ll.L-«>T   l.l>|,l)/ 

DaTft   ll<S(L.t.JI.J*lili.l««.lOt,|at.)t/ 

1-3 
H   -   *0 
I«   ■   N 
III»   ■    t1"> 
Nil   ■   11*1 
It    -   "/l    •    I 
■.1   a    »*«/*    •    I 
»i ■ i.m»*i** 
I»t  -  .099 

Ml SMLl CftLCULftTI tMIM'l fu«CMOMI Kiln a Vaan NU. iWIC. »UI ttt 
fni LONTLti OMCai*! PLAM. tM«a| Ml II luCH .»*■',•: ajICIIOMi THAT 
aai NitoiD if 1N( ;sMtlt« iuurAci it HFIMIO IT AM in ccnfiEi ::■—■■ 
tftlMIMft   A   ■■   im   AMD   Hi   ilbHf   MEaani-Mll«MMO«   'lUQUMIt.      tMftl    II 
UIIM't  rtMTIQMt   MILL   II   LaMLfO   Or   M   iMOft   »   -    r .    /,    | n. 
Ml   aQliO«|M6  CMMt   StVlt   IM|   IMOlCli   '>"«'   Olfltf   MMftl   IM If   GIEIM* t 
»vMCttont Aai"i.(..  it CNit (HI »aLuis or lan. K'na,  ...it;. > .« 
■ ACM   Of    It«    II  rUMCIIO'tt   .-,ul.»»rl.«l»»».      Lt.lMi.UtA,      QNltAaW- 
■ •lf«i.    TMl vfcio«  an.  iw, Lilt  tt .uli aiLl.«Aai) - inuxtfii, 
IM  DIMfMtlONLltl   UMITt   'CM   «RICH   Ixf   l»IHC(   CIMtTMl   1*1    •   2. 

L      tHt   »OILOMlMt;   U^MAHfllC   OAII  HILL    •!   Utl'Ul    fO«   «tl!{-0UT   fORKaT-- 

«l»l     .An    IMAb    .IHtl.imO.JMMO.tO'inTH.tHA. 
1MM.1HS.IUC.IHO.lMu.lN«; 

U4MI  fVIIT   AOTATIOM  till.   I   -   1.2«.   THI   llllt   ATOMl   UI.   M,  »21  AU 
MAMUIIP   IH   SUCH   I   *a»   IN«!   i.k'\   it**   Cl'i.    «MO  f*   tTaT  » «l.   HOMfVH 
it it ""■'.ii,»  tan »i  io »ico»e FZ -jMPt« IUCM A aoiaiioM,  ano «««M 
JUIT   OILCatlES   MHIt   t *C-   ia^!l    IMPtl   -.■"'■,   UNOM   IDIAtlOM   S.   MOtKI 
IHAI  MI Ni«t  iaaaM«EO IMI aotaooM Mtiaicts  IM IXM a -*•  IHAI  |K| 
Fiiti 12 UF TMEM aatimi  ica.rL.r^i, MHtafat IHC UM  12 tMiflCHANbE 
TH|   aLUOMIMtt. 

oara  tiaPEiPiL.ai /24*t.l2*).lI«l,l2»9.U>2/ 

1-U 

taai    ALMta «»»*    ma 111        LI.2       111 

p«t>i*s*i*i*i 

O'l'l'I'l'l'l 

K*t'l*l*l*l*l 

I • 2 • I • 2 * l ' l • I 

C • I ' I ■ I • I • .1 • .1 

0 • 2 • | • I • 2 • .1 ' -1 

ti'2,l,l,l,l'l 

■    t|*l«l«|ii<| 

-r  li cOM»Lia catlM't IUNCIIOMI MI taiciMCO IT »CMIM.II.  •■»•' 
-     lUMt   llOn   t    10    II.    AMQ    |    IMHICN   CMM.ltONOt    TO   0M|U**l.     IM    1U«. 
HiMTi o>  .oo» i laMOMiotHi ihH» aaoM i rg tot 12.« r\mt\ IM iiNtii. 
IH(   CMFtl   may   :»CM   It  IWIfALlMt   MITM  C—■!   tNALL   utf   OII.M.II    «-.■,■ 

3l2.M.lt MlatCTIVEL* F'.'l THE 11 AL aMO IMaCtMaBT »MT or l-t UEEII'I 
ruHCTION bIH, Onlbl**! - t*ITII. THI rifMCTIONt CI2.M.II MILL IE MOM- 
IEIO OMIT IM THI HMD 1*12., rot I IClMEEN 1 AM 2011. THE UlL »•■' 
OF THi COMTLtl oaffM^t ruhCIION. (ill.M.I), DOES MOT VAMIIM Ow^tlOi 
it» IAMO. ano II ii/ni tiNEt THE HiiiifcT TRaNtroM" or IX iMat mi. 
6(2.«.M. 

1H|   HIIHQO  QT   CALCULATION  OT   THC   DEMtltv   or   t«uAA|0   tTATES.   ANO  QE 
THE    11   fclEEM'S   PUKCTIONt   A.l.a.l , .,.u.»    't   THf   'MltTOMAN'    ' üC-iM foul . 
taCM or  T«tc  fuMtnoHi  KnOLvil a tun o'Ei  i«.ii6-*i.  ****  ■ atf 
(Mf   VfC(0«t   I"  TN|   lil   IIILLOUIM  IOMI,   IHO  tttna All   TMl rxMOM 
•AAMCH   iNOtCft.      IICAUIE   THE   SJ-1    TO   IE   CVALWaltO   tNVOL«!   OELfa- 
rmcilOMt. THE« an  actuaLiT IOUUUIMT  to imraci  iMTecaaM.  »if. 
TNUt a(H«,t   laat TMHEMCAIAV.  aMiMan HOME Lite OEtlVATlvit  THAM   IMIE- 
-•»■ V,      l>wt.   K   [I  NECEÜMT   TO  UIE   r  FIKE  MUH  IM  TNI  ttttlOulM 
XOHf.       i-.* MitHOo Or COM^utatiOM  invOivEt a tUNMAllOM ovii w«i or 
THE  I.I.   Itll  MLOM).     AT   IvftT  roiN(   a,   I Hi   tauMEO  rMtWEMCtft 
iWlNaLUtO  (o 60 rao« 0   (0 tu   ano THE  fCO«m*i  COLUHM ll6(M*fc(0Rt 
Ml cattutado IT   tutaoullME  ■atraci*.     IACH OIIIU**2   It (HEM nuLfl- 
FLIIO a* loo.  ui  ii aooED,  ano otciHai  r«ai   it ra^caTEO.   (a toa) 
EVIIT tfluuco raiguEMCv  in mr « aatPiCHrt   IMTO a ••IM<, LaitLEO rao* 
4  (0 291.      THIM, ru* IICH batfi't EUMCTIOM,  TM« coMiaiiut tOMt IALCV 
LATIO AI  rciHf  t   ftai oaorrEO  IMTO IM(   arraorfiiftfi  IIMS.    trt  MIOIH 
OT    ■-»    ••IHt>    MO   (Ml   AEraEtEMf ATIOM  Of    '.-f   OELTA-rUMCTim   tHOULD  l( 
COVafllLE.     r^itMtMNoaE,   (M( tlMt   .-'.■i:   BE HIOE EMOUCH 10 Tna* 
■«"•   COMfMltvdOMt   Hlli   IE   DaOMEO   {MIO   [ICH 0«E (   V   IHI   ivfaact. 

 IMI   MIILOWIM  IOME   

tHt   riat> aaULßuiM IOME   It THE  MMILI«   ■ :■'i*fr>*-.*.   TaMCaifo a»   tu 
rLMEt-fHit LfAvit A uanEiatcai  tOLU -; i-. t ouati-MiiuaiaL FACEI. 
AMO in touani racit,    THE «icfoat to IH< ctMtiat or  THC •MfiaboiiaL1 

»-cti aat or  T*  rot« iri/iiati. t. li.  AMD TQ I-E CHIIERI J«   I*M 
touaat »acit. or   (HI EOMM FI*II.O.D).    ME aac COIMC to COatlOia a 
iicioti or TH«  HI I.I. oiFtMfD if— 

It     Rti   ■«,   >;     ait   ratM!*E   IMIEOEA« 
21    Mt a*, %t an  E*tM. oa ILL OOD 

it    ti.LE.ar.LE.Hi 
«I     AI.LE.M,      a*.LE.*i,     ■! .(.t.M 
M        l»l    *   %1    •   K2l.L(.lM/2 

THIS «Edm occuriEt i/ai or (HE  m ».(.      rot ivftv victoR a IN 
tMis aibicn,   M CaM »•-•■ txt   ■■,i4»  ur ■•--(Mtt MILL   raoouci  (liCIFT 
FOB   POIMtt.   LlMlt.   ETC.   0*   HlCN   tfMHITRTl   a«   DltTIMCt   VECTOKt.      at 
lact or  tMitE  *i  rtt.  IN K-IFACE.  (HE  iiCEMrargufMCict Ml  TN«  tu«, 

(-;•■.■ *... THflE aiE A*.000 rOtMtt IN IHI «AILLOUiH 10».. IM THE 
fuNOANtNiaL i/*a «EDbf. IHEBE M* tala CIITINCT roiMtt THAI MUIT if 
CONtlOIIED   IN   u»»rli-   OUI    AM   IMtfbRAIID^  OVI«   ■. 

10*   Or    tMtE    iftl*   FOIMtt   LIE   ON   i  INI'.   CM   fACIt OF    IHI    •FUNOAIIEHIAL 
<*ocf.  AND tnvt HE ONI* raactiONAtLi   IN tun   i/*t IOHI.    FDM A 
«IrtN FQINI K. ME Ngtt (EtI to HE ■HETHCM IT Lilt DM VX« LIMft 0« 
FACH   TO  Mffl-iMt    111   MULTIFLICIIT—I.E..    TO   OfttlMlMI   •«■ «AM«   *IC- 

f 
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1-5 
1-6 

CHUN If , JUbl 4 *■-■-: 
'-'•■ IRI . <«VI\ IS! fOlllv, ■ i-.t,, t-, »451J (IF ■■:..! VfMMla* IH* I 
*'t luMICIEtl 10 i-iM-- N'. hit ■mnnUltT Uf [wtHf ■.-!>'- IH Of 
»UVIAMIMtM    hi XI .      Ml«   " . ■'    -l-,   Au   t, .„ilältu t. I |iM'- I'/   IW    Wit 
► O" «N» (•!»»»« MIMI «. iwdM PUCflOttt »0« EUM »Uli* «"IC-« IN) 
- :'Nt ■ IMIUKS •■'■ KJll Ifl ttO FULI TMll lu Tlltn * . i -..* T, ||, 
«f»M   r..i  .  Elvtl   tMi   «ölt ! •■ ■■ 11 r   j#   in«|   fc l«tl,      1"»»    Ulli  Mi- 

ll   It («/.3|     t«( IfM  •   I.-.' 
21   If lKT>ai     MCILW   *   in 
II    It ■•I-; .   oa 
• 1   IMMHtll     » 
11    11 ItlMtl   □■ 

00 v m •  t.n 
00  »  1   •   i,«» * BtttM.tl   •  0. 

c 
P0   14   1    ■   1,101 

I» •"Olli   -   0, 

<l   UNI   imt 

CAf^l!       If     tnat    n   not    !rt(    bASt«    A   I 
«»*«    -    «10 
«atw   •   waa*«*.' 

»actw   •   l/i 

Ti  • an  - 

CO  IU   1 

l>     l».M . - ' . I       „0   tU   J 
It    l*ft«lk.«Tl*t»*«Vt*EB 
I."  I(J  /I 
■ > •   M/a.ft 
<• ii ia,iwMI<.«"i>.(a*i.iü.>ii)i    ii ■ fiyt.9 

M • M/;.O 

lati  ..-.■■ ^ ■.-■:■.--... 

■ IHtJI    •    |W).*1    •    l,\ 
I    ■    », -.1 ,1 
MnniI)   ■   "■   ■ I )    i   It 

^ ■'*•■ «i^floaittaii« a oitia UM» cKiaiat. at ■(■■IC a utiaHMiiai 
•..■■.tt M HfibMi l/flffi 'ID liitHOfit. '•"■ I - IM'f fi » • fw;, 
tnui.  (*C» laiUUIMCr  CCniaiW/'fl   10 (Mir  ml   'ftiw*. 

■ (  •   alt   -   | 
aC   ■   '|*R|/IM 
/I'l.O 
tnait.fg.ii    n ■ ii/t.o 

an • K/I.W.I 
a» •  a»l   -  I 
a* .  Fi.av/tN 
1/  ■   /I 
If lati.lO.11     11 * If' 1.0 

a.|   .   «ti..t..l 
■«  •  «11   -  1 
aa   ■   M*ai/tN 
11   •   tt 
IM*.l.lw.).Oa.aa .lw 

LMFant   IN   IMI    )/*•   MfolON uf 

t% mt. 

-IPaci KCauM ■?.!( .at.il .aa 
FtAlHCiNoai, «fcat/ll a?i aNO aai i» l^ [N Will >'• !■ I« l«IHl ' «■ 
at, ai t* an f ,ts at att u&D. -• C*H HI>B U\T IMI fai'Ll* IU \(t 
if  it tamfitv tNt  aFpaiiitiC COMCMIIM >  • Bf i*c a R-#fmi  \H  IW 
Fltll   »atllOUlN   ICH»   -- 

lit tObamO fa(«U|iKi(i IN ' ~. HlHI tMOv MVt SKN MMUI mo to CO 
faux 3.0 13 ,-.■«»*■».». 'm niNitif UF >ot'asfD (tatlt «m i| a --•((- 
rd«-   1'iT   Iilf*U  Fag« 0  IC   I   I«  n«Ua**l   lP*i I * 

OC   1   L   •    I.I* 

.ii»a •  Mt.../nan  • «U.I.IMBC 

DU I ■ >  t • 11 
. i • aavi|M| 
ai • ..-/oi 
i\   ■  «iPftaini 

1-7 «CiaiifM i i i "' 

Hi   . «»(K-u.ali 

1-8 • i   - aaMi«i 
■ |   ■   aavimi 
EIIHO*   *   I»1HH1 
00 »  I   •   l./Ot 

a   .It.".II    •   ■...*.-,::.■:■(•.■- 

■ •  Uttlll 
.•.■■, I   *   .!•! I   •   » .   11| t 
00   I«   I   •   J.JOO 

(    ■    «'TItI 
r . «HOIt»ii 
'-Uli    *   .Ml.laS   l 

**l>iall*«alliKfH/IJ.*»lt 

en.*. 11 > ctl.'i n  . a 

mi cOHraituiim rao« a axo -a MuOucit • «(»L  ■.-it«  t,    •>■-.*. s? 
txi   INVIHIOH WCKailo« "»"ii'  FSOOUCI) a cO'li« cftHjucai«  aftuir. 
tKi   ■tailir ■.!•   toi  FUHCIKM £l}.a,ii   it   imtiDiaiiir  t*FaaiHi.   «■■:   ( 
It SM V NKMiaa,   IC COHIIOi«  '«t   '»o»ia  «OiatltMS*   ■•»   i".   Ciriu«   • 

a COMIHUI 

1 CWtaiUt 

t C0*T|Nt4 

I  CONII^nif 

«H1I201I    -    .«•!■    *    —    i.'jl     ' 

SU*  •  0. 
OtMOK   ■   l»t>(«l*t. 
00  31   I   ■   1.191 
■ Mniii   •  «•.■iMOili/DtiK!* 

II   tfc*  •   W*  *  11*0111 
wm - hi«/ioo. 

TNI Fu>«tion sti.M.ii   is i-f  iMctiatf vaar OF  IHF  fiiitN>i Ft*« tttpi 
lv*iu«tEP »'I- a jDAtt  «ffrari«!  litac. 'aat  m  i«« c(M*iCi i»(t*..i 
■1*1*.      M   "IU   H««C   IC   Ot*IOC   IT   '1    «"I-   ■!   THf   tHf  wu<MT   rKAHl- 
«   *"  rnat GlfliS  tM(  afai   *•»•   or   IMT    adn-i PwcTlM.    Mü 11  tNt 
oiHin* ■■'  touaaco itaiis, «.TM * -im;  WMiaLiiio to «a '■» 

■.■■"»■. *.'.'    ■   0.    10   1.0.    Ftf   FVHCtlDH   Fw:   (t   aLlO  NOIlUt U(0   ID  UMl I 
ME* ai a fiwcMOM ■' c«(Ca**l. 

ao« 200 ■iMt'tato. fiafftiiNCl ■■*■ SHOVH r.it tN( «fsuLraxt u*un'\ 
ffm\ ai| lontMMii 'aaGCtO* IF « It ONLT ao. It^t, •-■ [«atiNaa* 
"•atl catcuLaifo aacvl -!.■   «c iMootHto iv cutHOiNC  i-t  MM: u.. 
• IOIH  OF   INf   Itilt   10   .01   a   aaHO   (illMOUCf   Iff   aRtUMHl   »Nf&a.«!   »l; i 
ttui  asvaacl   i-»   r*iCaE*>tNlt  -     .oat a  laMCi   -- 

00   I«   H   •    1.11 
■  ■ ttl.n.ll 
611*11,II   -   .fall   «   Clltf.}'! 
00  2«   I   •   i.ioo 

a - sitfM.ii 
0 •  fttl.M.I*!! 
i.U.«   i)   •   .)■(,*••   *   •   *   .>*DI 
• ■  i 

.«•it • fiii^M.mii 

iiatsiti ■ MU 
«aattli - I. 
■asttll  ■  1. 

OQ a M *  1.11 

«att(  ca.ion   ii.aHrin.  i - i.ioii. %tm 
101   f0afUM|Ml,4Sl.I«ttlH|   OCNIIIV   OF   VWMfD  tT*l|i.ll'litllill.|M|,10 

li.lMat)a.aa,//,|oi()oi.ll.i»ll t.9,/i.//t|«i,rfiallia ■  .l»il«.4i 

OC  «0  H •   1.11 
0/  •  4t2i 

«a ««Iff   U.100I  S2.ii.tufaiHi,«aaiiMi,Atr*<aiiii.KaP|iNt.ittaiNi.iLi(ii) 
i,iil<Mi.LLiiiit.tTMi(Fii.dj,gi,ai.ai.oj.it.Ktr>«. ■■•i>i.io«i 

i«o ■üa-*ntHi.,/.m.^oHiH» FDHOHIIW ii tMf.at.ii**««' o*  tNf.ti.aii 
ill"  MCItt*t 'C.'./t».'Koia»»!-. ti, fi».»^««-, li.aM.aai-i«, i iiv-.a! t 
raa.ll.lOH.LU-lK)*) .Fl.l.|M..'l.l.lH,.F|.U|M'|)OMCSa*a|l   ■   .ai. 
I//.     «<.U0I1H-| ,/,«■, |M|. |i |i, IN t.ti.aa« IMI C i.la, ti*|   >./.tR,l|9ll 
4M-I   '.«a.iMt.iiioa.iKi.iii.'.iBoi«!,)»«!.»! M.IMta.a.n.lHl   i./. 
t«l..'41,l(|0l,|M|,ll|,/| ,«1,1101 \*-li 

 ——CMCULat IM o» TX» HILMII raaniFMM NMCfUM ——-  

ini iHttcuriOMi iMvoiveo !«• tMt cauuLaiiMi o* TNI MIIMMT ftam- 
F0M1  aai  CaKailO  üut  «ITM t|**1(M*l  «Ali     TM  CO«  t|«NS  CI ff   to«.- 
TailiitlOHt  10  tHC   iititaai    i(t  mi  KICIOM  (a-ftl.   Lli'li   IHCOI   IM 
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INtt 
HON r 

■OU£ 

l.l i 

Fll.13.11 C0««-ÜU."i II - • 
f ii-i«.f i roa< ■ 11.■(,<«.«. 
rUtt.t.;.«>iD.].'.i.i(K>t  con« 

»n.ig.jooi cu«« « !»,•&(«,» 

»    II.^T.jC, CM.«   •   0, 

•Vt/,", II 
i    i.--.i i.». )t>C1 2.".«I 
irJ4].*>.i*li  -  6il,".I 

>    -    -: I.".I•til 1/3*0 
|««|   -   Bl|«ftt|«ll  -   !■• 

tl   DO   t 
V  ■ 

11 •U«i 

II.&T.JSII     !!•■    ' 

11-11     U.11.11 

-    1.1 I 

'   Sim.ilXl.' 
«I  ' • &lt.">J*I)>l>,' 

lfll««-ll    1S.1A.U 

It DC IT   J •   n.ioo 
» • J-l 

II  HI,»,II   >  Ktl*M, 

15  «U 
Ml 

10 :OM 

M.I) 

ii-i 

HaiTt Itl Wl"i 
■■111 l>l totO 
RE«iNO   ■ 

{JtlOUIl«C   ■S'»i;('»".«t ,n2,0"€6».«.-üi 

11-2 

TMlt   »RMtAN   ■III   CilCiaUE   TMC   FOUllCK   IKMSFDIIIVEO  OTHAHtO'.   »T« t 1 
PH   THI   PL^MlTt   nine»   11.ft..   Ctrl»   MO   OUftMAltir    IT,   mil»   !HI 
FOLLOriW DUTNT  0>TIO«t— 

|t   «"/-a *0  MllITEN  OUTPUT 
21   ri«| tICI*MlguE)|CIES   t I>t   Cf^l) 
M   Ml«! IIBIUFnC*»   tC»-ll.   MO  COlUM*  tlCCMtftCloat 
«I  mi't !Mi   Oi«i   UItU  U'ORI  DUCOHUIIkTION.   CffttaiM 

MiatCil   till.   Illl.   Itli   RELATEO TO  COUIPM»    ..«■-:, 
MO  THE  EltfN»nEaui«<CtCS   **0 COim*  ClfttNvKiOit 

1   CIVtNC   TMIfC   IPLDATItfi   PT.I   NUHBE«!  HI« 

x-fECtcn • IPI/«I*IKI. K*. tli 

IN UfttlS Or 11/HOI. MNEIE «0 " Vi (I.E.. HO !S T-E FiutMt M-f L>JOa I«« 
W»*«».ir.-. WHICH IS HAIP THE LATTICE CO^STM' '«'1. OHE&AI«! n ** 
HRAT CDNOtniNft THE *l«i*i (IftENEMOUEHCIM Un-P ro« T-* «>«C-«K- 
TO* «. *■ ■ IM| ItOiiPLMl *•■*» ■It.>.«l ■ «'»I I'M»,-\«-.,-,;',■* , ,!»■ >; 
THE C«IHJ- ;—H.l!(0 CQlUHN ElftEnVtCIOKI. OMEfttiq), MD HIT.].71 HUIT 
M «iSIBIHt} «PmOniATE niBtNiiOt SPACE In ':-< BAIN »AOftOA* IK< t 
CALLS •■SPACk'. N PEMlIIMtS THE SUE 0» THC »«in W;-. lOHE HtVi. 
*»0 KttT M inTID, AlOMft NlTH «OTfkOUS fO*CE CCMSTANTS. IH A .;-*.)- 
STAIflUNT   WITH  THE   PAIN  P«OMiH. 

E   (TH(  EltCTAOHIC  CHMftli,  «9   < "*•   H*#k   "iMntm.   MD Hfl   t |M| 
'IJ0«IN|   mAiil   API   All   IME«   10   «I   U<l[lT.     IATEI,    TO   DIIAI«  tESATS 
POP   THE   PHONOH f IftlMPflEOUEttCIEt   In  CN-1.   H   Uli..   SE   ^e-:(S\*J«   TO  flui- 
TIPLf  VHUfS  OP   OnCfiA**Z   IT   A  SCALE   FACTO«.    ftlVE* tr 

KAll  ■  2  |>I2/IP1*>1  PiKAlS  C**)  A*>ll. 

mf   ••■IBITIVl  VECTDHS*   "3«  THE  •(«(.   AHO  PECIPAOCAl   LATTICES  A*f, 
«IfiCTJTllT,   II« TMf  Q|H|»S|<M.E»  IMtTS  ADOPTED  ^Iti I— 

Tl   •   10.I.11 

01   ■   1-1.I,, 

T» •   11.0.II 

01  ■   1%,'UXttt 

Tl  >  II. 1.01 

• 1  -  It, l.-li/l 

•MClPtOCAl  LATTICE   -fCtOPi-   AM   INTIftCP  CtWOIHATlOHS  OF   TME   VCCID«S 
01.   02.   AW  01.      THE   HQST  ftEMEPAl  lECIFPOC«:.  LATTICE  «ECTQ«   tS  OF   IM 
FOP»    HLAMOOA  A  Pi*4Hl.  Hit  HI I,   PMEPE  «I.   rt},   wt   IS  A   TllfitT  OP   IH- 
TlfttPS   THAT   AP(   All   ■«••I,  0«  AIL   000.     It(  HOST  SiNSAAl  PEAL   i»Mi:i 
VfCTCa   II OP   TW   POPP    «IPTTICB  -   l-l.   H2.   HI).  HHEM  H1*HI*H1   ■ EVEH 

OtHINillW   Vltl.   Ulli.   «III.   •(1,11. 
IEAL   PR.If>Rl.im,IS0<   •«■•.   "»FCl 
CO«PlEi  PMAH,  00,1.1,11,  QK|«t«t. 
lOOKAl  HTtiT 

»lllll,   ONfftAIMI.   OHtftAI«! 

AM,1.11,   (.   MtftVttl'Oifttl 

DATA   1/   .»,   .0.   .f. 0.,   0..   D.. 1..    0.,    0./ 
CA Fl El 

«•.PPA   -1 1 1 

THE   SfOPT   AAHtl   CA-F   «lUlil   Hi 16MMM   IHTEAiCTlON   MS   THE   F3IP-- 

■    AIPHI1 1E>»    1 »ETA    I    • 

»HIICA.F^I BET'    1        ALPHAl        »ETA   1 1F0ACE   COÜSTANT  MAIAII 
'Oft   I   >   tl.l.l>/2.l 

•   All«   1 PEIA   1 AIFHA1   • 

THE   SHONt   «Atlftt   fiS-CO   NfAAfsT   sf; .,-   »    (Itl IAA; T IM   HU    ■-•    POM— 

■   IETI  I       ftANUl 9.        ' 

PHI >La.CAt ■ ETA    I l»OA(l    Ct«|TA».T   ■AIA1I 
FOI  ■    -  I 1.1.01,1 

THE   SHONT   AAHftE   Fi-*I   MU1ST   Kf l^p-S,m    IMIitAf.TIM   MAS   Tl«   FON»-- 

'    ALPHAS 0. 0. ' 

ALPHAL, ALPHAl, ALNHAl, OCTAL ...ETC. AC | THf ',*)1! A ANftt FCHCE CO«P- 
STAHTS FQn THt CAF1 LATTICE AS DtFINIO IN THE PAPSN (.f UMtM AW 
SNINIVASAN. CAN, JOUNN. Of PHVSIU, AO,T«-«0. SCMt b* TH( CONtTANTS 
HI SiT IWAL TO 1EP0 IN THE NOOEil Of OMESAN AMD SNINlMSAN IOI- 
CAUSI OP A LAC« Of ENOUftH EfPEPINtNT Al, »MVSICAl PANANITHSI. HOM- 
»•»«. All QP TMP NlAMST-NEtftHftDP fOtCf CONSTANTS THAT ■OSUk.T f«OH 
«|««AL ftJOuP-INfOAEIICAL SfMETIV MftUN^lTS HAVl IK» MTAINfO IN 
MRITINfi   TMf   PNKRAH.   SINCf   A  LATE«  »OOfL   NiftMT  OKOM   AVAIlMll   Nl TN 
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II-3 
DirrciEtt!  «*tu«t  tan  ?Hf  lN(Mtt-«AiifiI  fO>C(-CON>fM>l.     F(lllHCa>ua(, 
»nil   «Ut.   UU   im    »aOCIlM  NM|   VIMWT ILt   FD«   »Oltttll   AWLtCAriOh 
TO of*t* fiuMini.    itfl it iHf s«u*«i or iHf  'irficTivt CM*»' /. 
im FOICI coMttxiTi AH mmnci » f*>»/«o**i> 

mi in» »om-tcii Maiaicft rot L • (o.g.oi «•< oantNiD r'OK int 
COWIItOM W  rU^UAllOMti   mvMUMCI,   ix^   *■(   >ti   "-.HMM »■,  0»   THC 
UNIT  0T»i! 

'HUn.m ■ 'mr'i.'/i • i/"«i'>-*>'«-if t*(..-«i »■.*; i 

ICO' 

0  10 

II-l* 
b««J*lll||BI ill t*t IMC Ulli 
OOf.l.Jlill 

BUItZiJl'lt   ■  10.C.  0.01 
■tjt.i. ii.n  ■ <e.o. o.ot 

Oil ,t.J,ll    11   filU*i   '0  01 1.2. 

ui.i.jt.j. • i.*iL*>t*i*cMni)CQt*.i*aaii*cott»i>Rmi<CQt 
1.)*KII)I.   H'*l.,».«lllP«ilN(.')-IHII"ll1l->- 
■tllll 

rHKCk.CAi >  i • *i »»      i t *i »»«a * I IfTtj t 

1 0 u 

0 10 

• 0  1 

•i ll .1. Jt..''    •   -/.•tITI    *C»rtltt01l.«*l|Jlll*IINI*9«K( J<'- 
.   isi .n.. , , MI.   UNt.l-Kl.llUCOll .S-n Jl'l 
•caii.i*«t Jim 

DlJ>.liJliil   •   StJ<.l,Jlr}| 

SOit.iill    tl   '■•(   CN»ll   CDHJfi  Of      M.I.J., 

Ml   -   « 

«•oci  - i.mvn« 

HI ji.i.juii - '}.>(aL»M«i*taiituiii*MMi*icasii>iiii > 
COSUUtM ii 

IJf.l.JI.II   ■   (S.,0.1 
■■I .■).;. j/. u ■ to.•a. i 

«Hi - rt*KR/Eii 
Rill   ■ ri.«»/£h 
KID  • H*tt/t* 

TH|    liltUi   IHTIlfS   trORIO   IN   01 Ji.«*-■;, J(-««»ii   rUi   «I   ttllllO   It) 
'Hf   NOM tOUlON».    IHO^r-aAWCC   »0»Cf   CONTtlluf IOMS,      •»"«   •   l.t.1   «Kl 
cooti^rom TO t«. Ft.  >l.  ■"«£) j;,  J2,   MO j) "f c«arfsiH  isouii. 

-t.Jl.Jl  fO«N « CrCLIC  HMfWI—1,1.   l.i.l 09   i.l.i  OB   hUl. 

OtJUI.Jl.ll   ■   I.*airM|   «   •IT«t*tl.-C0UtflJI>l*ICOtllll 
1 *   CSStltJlltll    I   i(.»MW«l|.   -   COKRIJ/I 
I cOlm J»I ti 

IMISQ.IO.O.)     «IM   ■   1.1   10 

I»   *   -   lO.OtOI.  1*t* THC  COUlOMtlC  C(MI«I»wriON  ro  3   i; NOT UNIOUtLV 
0l'tMO'-«l  ■  tfrtC'CMff  IHf  (MICIN.   TH<   ii-li   <?«   THI  COIACMIC   »MT 
v o oin«! UPCK r*i omctroM e* »mo«CH to ■ - o.   rm »n« wun 
■ >    Ml    tH   '    UMU"    TMtT    tHOvl    Lit!«»    nil   rHl^OHCMOM   OF    A    WlltTlNG 
0*   Tnf   0iUW|«4CV      limCtTL'PIHAl    «MJ   laaulVI«1|I   FM   IM«   |H*«4RtO 
«ciivr crtic  «it««noM. »e« coNviMifMci. «t *t.n «■•ITIUU* U**I«IU 
ii«r   |F  ■  -   10,0.01.  Ml   lH*ki   tMOOS*   T -It  DUICTIOH 0*  «M*«OACH  O •» 
UWfi   (Ml   I-4IU.     TM|t   |i   DOMf   Or   tllli-U «IM   •1.1-10   t"   IM 
IS fOU«!   TD  uta. 

II-5 11-6 
MtlT.   Vf   MILL   t*l;y»ri   rtti   CDULO«*   COXTMIIUTION   Tj    IHf   p  MattiCII. 
THI  F4TN0D fM'LOTfD *C* CBLCUltflMC  TMI   couiO-t caMttllillON   10  IMI 
MTIII   0   Ulli   TCCMIiau»   DtVtlO»»   IT   NlJIOfg   MO   DI   Mt T Tl      UM   '*■- 
ItCUkil*   «TFIt  10  •OM  THI   CALCUltllQ« OF   LATTtCI   l^t. *   »•• * J: f *.   Ml 
mil. i«»-i2i. I«ITI. 

fHI   INTHE   Utttl   0-COUilKtKA#l.«*»||      C*1   If   CUCMkTIO FtQH   • 
■ MOVLIWE   Or   (Mill   l»»»fT»|C   0**D1.   tO  Ml   MUl   FOCLf Out   » i M , i | x 
KLOM ON   IHF   CtLCULtTIO« 0*   (Mil  ««TftlCtt,   Uli.   Fill.   MO  iltl. 
W(   MILL   riOCIID   TO  CtLCJLtfl   TMI   U»*§*   T«|i««Ut«t   H«L*   OF    l-lSt    IMBII 
UKICBI,  IMICN HAvl   T»,(   F0lL0nlt&  IIMir ICMCI—Tnft  ut   THI   COULU«- 
IIC  OVtOt   THAT   Fit   l«I0   TH|   TOTAL   Jf-CCÄVl I « ,■ •» 1 ,»•» 7 <   M.iin   t| 
POLlOlit— 

■Attit nil rot iCfrn 

CA M n 
-    I 

'    i 

MAitti IIZI roi in-rn 

iiAitti mi rot iri-rii 

Htcit i 

IF   HI   •  H*   •   Mt   ■   tit*.   1*t* ■   -   )    AND   IH.KI.H1I    It   A«  ALlOMO   MAL 
LAlTUI   VICTIM   IlLAlTlCH.    ir   HtfW   I«   IOCICAL   VAftlAtHII   It   lluf • 
tMfN  iHt.Htil»   •*!   It  AN  «LLOMIO tlCirfKM   LATTICI  »ICfOt   tHitlWMt, 
m   AM   »IHOtlT    [MtlmtO«,   TO W1I   TMC   \km,    (.MIC.   {jr    •AtltM.I»,    INI.HI, 
H)l    TO  lirilKM   WTM  TMI   »Mi    ANC  «(CIMAOCAL   LAtl (CIS  HfCUl   l*M I 
Mf    t|t    THI   r-r   DitttMCI   TQ UNItT..      IM   Twtt   MAT.   HI   CM   Utf   TW    5AM 
■«IT  or   00 \0O*%   tO CAHr Out  HTM tl At   AMt  «ICIMOCAL  LAIIICI   Mint— 
All   tHAT   It   MClfttAIF   II   THAI   a«    TltT   fAC»<  FOIMT   I«   TMI   0110* 
IHltMl.Htl.    MllH    •*•    tNC   '-'fir-    TO  MttAHIHI   MrffRfl    IT   II  ACCI^IA- 
All   FOA   ••«   LATTICI   1UM   jtof   COmiOilATIOM. 

I'IM.Ii.O;       60   tO   * 

IF   M   Jt   MCT   ).   THC*   THIl   »AIIICULAI   TlirLtt   |M|,H|.M)I    It   WT   tm 
ACCirttiK   •tlMTIKf.   10 KB  TM« CO  10  »i   VMM  A   TltT   It  HAM   At   to 
TM uccrrAiiiir? or IHI.HX.HII rn uti i« »w IKI'UKAI iAftici im 

CLlAl   TMU   NATAIdt  TO  1110   IMiriHlT— 

JO *• Jl »lit 
00 M Jl • 1.1 
00  M  11   •  1.9 

M  iiil.Jl.JIl  >   10..0.1 

MC  NA«I   HAM   UU   0«   TM  FACT   TMAT  tf>|  90*  All   OT   TH|  MAHICII  M  AMI 
CAICUI.ATIME   ItiC  OiAMiM MOMI.     iMUl,   A||til   • OIL,All  >  III.til 
•  All,»II,  tT OUI  CMOUI  M  IU.II   •  0. 

00 I    LI   •  l.Mt 
Mt   »   11   -   IMAI   •   lift 
M]   -   U   -   lll/l>*2 

--~- COMTCICUIion racH* ten LAtnci umi ——M- 

ee *   L • i.i 
»III    •   FU .    •   Alllll 
»tc ■ ■ii:**tti  • viti*«i|i 

TMI  COMinONAL     iriv«.«,.!«!     l«WMt  THAT  mi  00   Tl«   it*   t*«l|- 
CAiLT--tt wAi TMI crticT or CUTTI«« fNi :mMM t»» 90 THI CUOKM 
UACC THAI M Aac ii.r«iiH, ovi«.    I-,« c id or fie • 11 rot A cut-por 
OltTAMCf   HAI  MC IOCS  I*   ■-I  »ACT   TfAT   1*t   F.tlOA  tiM  Mi«! »KONfl 
or 0A011 t.»f-T roi vie »AiAtci rtNM w. 

vo > cqiMVM) 
1 • CMiiio.o* •itiiuviit 
rFMU - tflMII 
1 ■ ri»ffiB/i 
IAOT   ■  IMTlTl 

Ul*VIII   • «Ut»VliMt 
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II-T 
i;. •••■.?-««^-" 

i/itra > i.e 

Olir..|/«<]a<) 
#..* ,f. ;»---i »-■ 

CWTiiftuiio« •• - aici»0CH  iiriict 

If   .■>ri.-'H(   it   MM«   THift   ii  fl|A«i  iMif  •ii.Nt.   '■■.   «•! wit mat   »  . 
tgxi     tN»l   ii.  Ml.  -,■.   AMQ M*  t«f   nor   «n   Of   '-•>    M-'   •**[■•   ifrt« 
0«   OOOr.       ID    IiMT   C«II.    mC    It.»!!!    IMI.HliHtl    'I   MCT   4Cr(>)<hf    '-■ 
n*< iEci'tec"  tattici v.'». M« •* co TO ». 

M 11 I • .» 
yn I • III t i > "1 

-n. • «111 •» W< tli i 
If ulC.61. t. WL IB I 

■ HI      Otll«   •   3. 
tn - lui.^i.Jii  • tj.■*■/>.i*fHftii* 

■ufU'J.i*! l.*U<iIi*uU<t/uW   -   Ofi ?> < 
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Fig. A-l:  Real and imaginary parts cf the Ist  Green's 
'unction, n£x(0,0,u)+ie) = "A" (cf. Fig. 6.8) 
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-188- 

WJ JSO        400 

fREQueNCY     «„(cm-'j 
«M        500 SC        «DO 00 SO 

u 

40- 

u- 

-i 1 1 r 
I i r 

IMAG   G*„(l.2, w*i() 

._L_ 

Fig. A-3: Real and Imaginary parts of the 3rd Green's 
function, G°x(l,2;u)+ic) = "M" (cf. Fig. 6.8; 



-189- 

no     w      is      «D 
FREQUENCY    u, (em") 

«0        500        i»        HO        60 
J I 

70) 

T—i 1 r 

'MAO    G'n(1.2; u^i.j 

50 ICO ISO »0        no        MO        MO        U 'x        'T - " W        ««I        «»        5flC HO        KÖ W 4" 
FREQUENCY     w (cmM 

Fig. A-lt: Real and imaginary part of the hth  Green's 
function. GOy(i.2,u+iE) . ^  (cf- Fig> 6 6) 

; 



-190- 

1 1 r 

REAL (ft. (1.2. Wit) 

250 300 i» 400 
cReQUENCY     u (cm'1 

_1 I I I L 
»0 S»        BOO »G        700 

1 - 
-1— 

' 
T" i 1    " 1 r   ■ 1             1             1 r 1 i 

* - 
/ 
/ l AiS 

IMAC   G'jjll.Z; u*icl 
- 

. 

s r ' k r- ̂^^ 

4' I ,/ 

f V i 
- 

: . 

■i* 

20 ] 1 i i 

1/ 
i i i i i           i           i 1 I i 

90 K» i» 200 250 »0 530 400 «0         500         550 600 650 TOO 

FREOUENCI'   !u (cm'') 

Fig. A-5: Real and imaginary parts of the 5  Green's 
function, G°z{l ,2;ü3+iE) = "H" (cf. Fig. 6.8) 



-191- 

T i 1 r 

RFAL  G*,,!!^, w»u) 

«4 ■J 1 1 L. J i_ J L -I 1_ 
M » 20} 290 300        1» WO 

FREQUENCY    u (em"1) 
4M SOD MC 800 630 TO 

2» 30! JSC «I 
FREQUENCY    u, (cm-) 

«o     «so      m 

th Fig. A-6:  Real and imaginary parts of the 6tn Gree^:s 
function, c.0xx{l,3^ie) = "?"  (cf. Fig. 6.8) 



-192- 

-r— r -i 1 r 

REAL  (S'IICI, 3, w. n) 

■M- 

•u. _i L J I L I       I I 1 1 L. 
m 150J002a30OJS)«»45O5a:5SO60D6SCTO 

FREQUENCY     UJ (cm'') 

-2.0 

1 r i r -i 1 1 r n r 

iai J00 2M        JOO 350        « 
FREOUENCV   ukm') 

J 
SO 550        600 650 ?00 

Fig. A-7.  Real and imaginary parts of the Tth Green's 
function, G°z(l,3,oj+ic) = "Q" (cf. Fig. 6.8) 



-193- 

»       a»       2»       Mo 

PREOUENCY     «(cm-; 
SO SM 800 «x 

HO        « 
FREOUENC-    «(cm-) 

''ig.  A-3:     Real and -■rnaginary parts  of the 8^- Green's 
function,  G°y(l,3,w+ie)   ,  ^  (c,.   ^^ 



-19^- 

"1 1 1 1 1 1 T -i 1 1 1 r 

REAL Q^,tl,3;«*i«l 

1 J I 1 1 1 L. 
so      no     is     no     zx     w     3»     4«o     «o     soo     SM     coo     ssii     no 

FHEQueNCV    u (em-,j 

4* 
u. 
E 

!fl 
fe   0 
§ 

-i 1 1 r 

IMAC,    G-j,tl,3. wie) 

"ife ifc Jfe- 
'0 50 IOO      is      a»      so      JOO      J»      «D 

FREQUENCY   <■> (cm-'j 

MD SG 

Fig. A-9: Real and imaginary parts of the 9  Green's 
function, ß° (l,3;a)+ie) = "S" (cf. Fig. 6.8) 



-195- 

0 

u - 

—1   1  —i— r \ 1  

J 
I 1 1 1 1— I            i —r—- 

u 
/ 
A/ - 

r _ / „ 

/ 
HEAL  ^„(O, 1 ; u/»H) 

n k / \ * . 
S / \ A J\ 
b 0 / V; \y ̂ ^ 

1-4 - 
/ 

/ V v 
- 

-.1 - 
/ 
/ - 

Hi - 
/ 

- 

11 / t 1 ■         i         i !                       1                       1                      1                      l i           i i 
50 n BO 290       2H        300 J5C        «        4S0        *»        550 m     eo 7» 

FREQUENCY    u» (em") 

14 T 1 1 T 1 1 1 1 1 r 

IMAG   0*0,(0, I; u*i<) 

Fig. A-10: Real and imaginary parts of the 10  Green's 
function, G^CO.lit^lc) = "C" (cf. Fig. 6.8) 



-196- 

u 
"f 1 1 1 r n i i r- 1 1 1- 

REAL 3\y{Q, lj«»U) 

"*     *     W     aö     w     MO—m—&—i^ö sc—«Ö no—JoT 
FBEQUENCY    w (em') 

J- 

-r r "T ~T 1 1 1 1 1 r 

.4 - 

•^ r 
« 

- 

in x 
h "■ 

* - 

i 

• ■ ~1 1 1 1 ■       ■       ' 

IMAG    (?v(0, I. vi«) 

J l_ J L 
I»        ZOO        30       W        !K        «B        450       JOD        J»        51        j» m 

Fig. A-li: Real and imaginary parts of the lltil Green's 
function, G° (O.llw+it) = "D" (cf. Fig. 6.8) 



-197- 

FREQUENCY     w {em-'l 

s«—sir-ä—m—foT 

«i 

-12, •A- ^ J, j, ^ j -J 1 4- 4- X J 
0 SO iöö      BÖ       W      253       JOO        150       «0       4S0       5»       S»       «00       «       W 

FREQUENCY   « (cm'1) 

Fig. A-12:    Real and imaginary parts of the 12^ Green's 
function, G°x(i,];ü,+ie) = "u" (cf. Fig. 6.8) 



-198- 

■4, 

I' 
v 

-i 

"i      i      i      i      i      i 1 1 1 1 , 1 1 p 

RE*'. 0*^(1,T,(K*i«) 

i 1 I I I I ' I i l i I 
* M IH        190        200        2»        JOO        »0        4«       4M       SCO        SSO       600        (SO        m 

fREOUENCV   oi (cm-1) 

» —r ■       i       i       i ■ i       i       i       IT     T 1 r  r 

J - 
\ IMAS   (}•,,( 1,Tj<U+if) - 

.1 - \ _ 

N/ 1 \ 

—   B AJ \    r^^ 
& ' V              / \ \   / in 
t -i v_/ y \ / 
$ \/ 

-.2 - v - 

-i i ...i. i i i . 1       1.     1.    _1 1- .1       1       1 i 
0 30 BO 150 JOO 250        300        350        M0        '50 500        550        600        «0        fW 

FREQUENCY   w {cm'') 

A.  Vl 

Fig. A-13: Real and imaginary parts of the 13  Green's 
function, G° {l,r;u+ie) = "V" (cf. Fig. 6.8) xy 



-199- 

1— 
\                   E 
\                *•* ^-" 

\.                          \             ** w 

Xv                           \        fco l^' 

f      §      § 

Fig. A-lU: Calculated phonon density of states and dis- 
persion curves for CaF2. basod on the rigid 
ion model described in Sec. 6.2. 



REFERENCES 

1. A. A. Maradudin, in Solid State Physics, edited by F. Seitz and D. 

Turnbull (AcademiG Press, N. Y.), 18, 273 (1966)i 1£, 1 (196?) 

2. R. K. Chang, B. Lacina, and P. S. Pershan, Phys. Rev. Lett. IJ,, 

755 (1966) 

3. H. W. Verleur and A. S. Barker, Jr., Phys. Rev. 16U,  1169 (1967); 

Solid State Conanun. 5., 695 (1967) 

k.    R. F. Potter and D. L. Stierwalt, in Proc. of the Internat'1. Conf. 

on the Physics of Semiconductors, Paris, 196k  (Academic Press, N. Y., 

1965), p. 1111 

5. P. J. Gielitse, J. N. Plendl, L. C. Mansur, R. Marshall, S. Mitra, 

R. tfykolajewycz, and A. Smakula, J. Appl. Phys. 36, 2kk6  (1965) 

6. G. Lucovsky, E. Lind, and E. A. Davis, in Proc. of the Internat'1. 

Conf. on the Physics of II-VI Semiconductors (W. A. Benjamin. Inc., 

K, Y., 1967) 

7. 0. Braftaan, I. P. Chang, and S. S. Mitra (unpublished); cf. Ref. 21 

below. 

8. F. Kruger, 0. Reinkoler, and E. Koch-Holm, Ann. Physik Sjj., 110 (1928) 

9. A. Mitsuishi (unpublished); cf. Ref. 21 below. 

10. A. S. Barker, J. A. Ditzenberger, H. J. Guggenheim, Phys. Rev. 175, 

1180 (1968) 

11. D. W. Feldman, M. Ashkin, and J. H. Parker, Phys. Rev. Lett. 1^, 

1209 (1966) 

12. F. Oswald, Z. Naturforsch., ikk,  371* (1959) 

13. Y. S. Chen, W. Shockley, and G. L. Pearson, Phys. Rev. 151, 6U8 

(J.966) 

Ik.    H. W. Verleur and A. S, Barker, Jr., Phys. Rev. l>t£, 715 (1966) 



-201- 

15. M. Balkanski, R. Beserman, and J. M. Besson, Solid State Conanun. 

k,  201 (1966) 

16. J. Parrish, C. H. Perry, 0. Braftnan, I. F. Chang, and S. S. Mitra, 

in Proe. of the Internat'1 Conf. on the Physics of II-VI Semicon- 

ductors (W. A. Benjamin, Inc., N. Y., 196?) 

17. H. V. Verleur and A. S. Barker, Jr., Phys. Rev. 1^. 75Ö (1967) 

18. 0. Braftoan, I. F. Chang, G. Lengyel, S. S. Mitra, and E. Carnall, 

Phys. Rev. Lett. 1£, 1120 (1967); in Proc. of the Internat'1. Conf. 

on Localized Excitations in Solids (Plenum Press, Inc., N. Y.,1968) 

19. M. V. Klein and H. F. MacDonald, Phys. Rev. Lett. 20, 1031 (1968) 

20. S. S. Jaswal and J. R. Hardy. Phys. Rev. 171. 1090 (1968) 

21. G. Lucovsky. E. Burstein, and M. Brodsky, in Proc. of the Inter- 

nat '1. Conf. on Localized Excitations in Solids (Plenum Press, Inc., 

N. Y., :968) 

22. I, P. Chang and S. S. Mitra, Phys. Rev. 172, 92»+ (1968) 

23. J. M. Ziman, Theory of Solids (Cambridge, 196^); Electrons and 

Phonons (Oxford, 1963) 

2k.    A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid State 

Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., 

N. Y., 1963), Suppl. 3: "Theory of Lattice Dynamics in the Harmo- 

nic Approximation" 

25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, 

1966) 

26. A. A. Maradudin, Rept. Prog, in Phys. 28, 331 (1965) 

27. R. S. Knox and A. S. Gold, Symmetry in the Solid State (W. A. Ben- 

jamin, Inc., N. Y., 196iO (contains many useful reprints) 



-202- 

28. M. Tinkham, Group Theory and Quantum Mechanics, (McGraw-Hill, Inc., 

N. Y., 1961+) 

29. V. Hein3, Group Tueory in Quantum Mechanics (Macmillan, N. Y., 196h) 

30. J. S. Lomont, Applications of Finite Group? (Acader-ic Press, Inc., 

N. Y., 1959) (contains an extensive bibliography on the application 

of group theory to physics.) 

31. C. Herring, Jour. Franklin Inst. 233, 525> (19^2) (reprinted in Knox 

and Gold, Ref. 27) 

32. G. F. Koster, in Solid State Physics, edited by F. Seitz and D.Turn- 

bull (Academic Press, Inc., N. Y.) 2, 173 (1957) 

33. L. Chen, R. Berenson, and J. L. Birman, Phya. Rev. 170, 639 (1968) 

3h.    J. L. Birman, Phys. Rev. 127, 1093 (1962) 

35. J. L. Birman, Phys. Rev. 150. 771 (1966) 

36. A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. ]*0, 1 (1968) 

37. J. L. Warren, Rev. Mod. Phys. U0, 38 (1968) 

38. E. Wigner, Nach, der Akad. Wiss. zu Gott., Math-Kl. Phys., Berlin, 

1930, p. 133 (translated in Knox and Gold, Ref. 27) 

39. C. Kittel, Quantum Theory of Solids (John Wiley, Inc., li.  Y.f 1963) 

kO.    N. 3. Gillis and N. R. Werthamer, Phys. Rev. 167. 607 (1968); D. K, 

Fi-edkin and N. P. Werthamer, Phys. Rev. 136. A1527 (1965) 

kl.    P. Nozieres, Interacting Fermi Systems (W. A. Benjamin, Inc., N. Y., 

196h),  Chapter 2, 3 

U2. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of 

Quantum Field Theory in Statistical Physics Cprentlce-Hall, N. J., 

1963) 

1*3. G. Baym, Ann. of Phys. lit, 1 (1961) 



-203- 

kk.    V.U.  Galitskii and A. B. Migdal, Zhur. Eksp. i. Teor. Fiz. 3ii, 

139 (1958); Engl. trans., Soviet Physics-JETP 3^, 96 (1958) 

U5. P. C. Martin and 0. Schwinger, Phys. Rev. 115, I3k2  (1959) 

k6.    D. N. Zubarev, Usp. Fiz. Nauk., Jl,  71 (i960); Engl. Trans., So- 

viet Phys.-Uspekhi 3, 320 (i960) 

hj.    Nguyen Xuan Xinh, Westinghouse Research Report No. 65-9F5-l*lt2-P8 

(1965); J. Phys. (France) 28, Suppl. No. 2, Cl-103 (196?) 

1*8. T. Timusk and M. V. Klein, Phys. Rev. ikl, 66U  (1966) 

k9-    W. Hayes, G. D. Jones, H. F. Macdonald, C. T. Sennett, and R. J. 

Elliott, Proc. Roy. Soc. A289, 1 (1965) 

50. E. Burstein, in Phonons and Phonon Internetior^,, edited by T. A. 

Bak (W. A. Benjamin, Inc., H. Y., 1964) 

51. R. A. Cowley, in Phonons in Perfect Lattices and in Lattices vith 

Point Imperfections, edited by R. W. H. Stevenson (Plenum Press, 

Inc., H. Y., 1966) 

52. R. A. Cowley, Adv. in Phys. 12, 1*21 (1963) 

53. A. A. Maradudin, Ann. of Phys. 30, 371 (1964) 

5k.    Y. A. Izyjuov,  Adv. in Phys. lU, 569 (1965) 

55. R. J. Ellictt and D. W. Taylor, Proc, Roy. Soc. A296. l6l (1967) 

56. A. A. Maradudin, in Astrophysics and the Many-Body Problem (W. A. 

Benjamin, Inc., N. Y., 1963); in Phonons and Phonon Interactions, 

edited by T. A. Bak (W. A. Benjamin, Inc., N. Y.t 196U) 

57. A. A. Maradudin, Rept. Prog, in Phy?. 28, 331 (1965) 

58. R. J. Elliott, in Phonons in Perfect Lattices and in Lattices with 

Point Imperfections, edited by R. W. H. Stevenson (Plenum Press, 

Inc., N. Y., 1966) 



-20U- 

59. R. J. Elliott, Argonne Nat'l. Laboratory Report AHL-T23T (1966) 

60. R. J. Elliott, in Proc. of the Internat'1. Conf. on Lattice Dyna- 

mics, Copenhagen, 1963 

61. G. J. Ko3ter and J- C.  Slater, Phys. Rev. <3£, 116? (1951*); 2i. 

il+36 (195^); 26, 1203 (195*0 

62. P. A. ifolff, Phys. Rev. 12k>  1030 (1961) 

63- A. M. Clogston, Phys. Rev, 125, 1*39 (I96l) 

6k.    J. Kanamori, J. Appl. Phys, 36, 929 (1965) 

65- J- Friedel, Huovo Cimento 2 (Suppl.), 28? (1956) 

66. P. G. Dawber and R. E. Turner, Proc. Phys. Soc. 88, 217 (1966) 

67. F. Gautier and P. Lenglart, Phys. Rev. 139A. 705 (1965) 

68. M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 8^., 621 (1952) 

69. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (3 958) 

70. F. Nakano, Prog. Theor. Phys. 1£, 77 (1956) 

71. R. Kubo, J. Phys. Soc. (Japan) 12, 570 (1957) 

72. S. F. Edwr.rds, Phil. Mag. 3, 1020 (1958) 

73. R. Kiau-;er, Ar  of Phys. 1^, k3  (l96l) 

7k.    T. hatsubara and Y. Toyozawa, Prog. Theor. Phys. 26, 739 (196.1) 

75- F. Ycnezawa, Frog. Theor. Phys. 31, 357 (1961+) 

76. F. Ycnezawa and T. Matsubara, Prog. Theor. Phys. 31, 357 (1966) 

77. J. Bf>eby, Pre-. Roy. Soc, A279. 82 (I96U); S. F. Edwards and J. 

Bseby, Proc. Roy. Soc. A2jkt  395 (1962) 

78. S. F. Edwards, Proc. Roy. Soc. A267. 518 (1962) 

79. P. Soven, Phys. Rev. 15_, 539 (1966); 1^6, ^09 '1967) 

80. I. M. Lifshitz, Adv. in Phys. 13, kQ* {196k) 

81. E. A. Stem, Phys. Rev. 168, 730 (1968) 



-205- 

82. B. Velicky, S. Kirkpa-crick, and H. Ehrenreicb, Phys. Rev. 175 > 

Ihj  (1968) 

83. T. Wolfram and J. Callaway, Phys. Rev. 130. 2207 (1963) 

81». D. Hone, H. Callen, and L. R. Walker, Phys. Rev. ikh,  263 (x^66) 

85. S. Takeno, Prog. Theor. Phys. 30, 731 (1963) 

86. Y. Wang and H. Callen, Phys. Rev. l60, 358 (1967) 

87. Y. Izyumov, Proc. Phys. Soc. Sj., 505 (1966) 

88. D. Hone (to be published) 

89. S. W. Lovesey, Proc. Phys. Soc. gl, 658 (1967); J-  Phys. Chea.: 

Proc. Phys. Soc. 1, 102, 118 (1968) 

90. A. Oseroff and P. S. Pershan, Phys. Rev. Lett. 21, 1593 (1968) 

91. L- F. Johnson, R. E. Dietz, and H. H. Guggenheim, Phys. Rev, Lett, 

IX, 13 (1966); A. Misetich and R. E. Dietz, Phys. Rev. Lett. IJ., 

392 (1966); P. Moch, G. Parisot, R. E. Dietz, and H. J. Guggenheim, 

Ph^s. Rev. Lett. 21, 1596 (1968) 

92. W. J. L. Buyers, R. A. Cowley, T. M. Holden, and R. W. H. Steven- 

son, Solid State Commun. 6, 1^5 (1968) 

93- M. Motokawa and M. Date, J. Phys. Soc. (Japan) 23, 12i6 (1967) 

9k.    M. V. Klein, Phys. Rev. 131, 1500 (1963); lklt lib  (1966) 

95- G. Benedek and G. F. Nardelli, Phys. Rev. 155. 100»+ (1967) 

96. M. Wagner, Phys. Rev. 131. 2520 (1963); 133. A750 (196U) 

97. G. Blaesser, J. Peretti, and G. Toth, Phys. Rev. 171, 665 (1968) 

98. G. Lehman and R. E. de Wames, Phys. Rev. 131, lOOB {1963) 

99. I. M. Lif&hitz, J. Phys. USSR 7, 211, 2U9 (191*3); 8, 89 (ly1*1*); 

Zhur. Eksp. i. Teor. Fiz. JJ, 1017, IO76 (19't7); 18., 293 (19I*8); 

Suppl. Nuovo Cimento 3, 7l6 (1956) 



£ÜD- 

100. E. W. Montroll and R. B. Putts, Phys. Rev. 100, 525 (1955) 

101. R. E. Shemu, W. M. Hartmann, and E. L. Yasaitis, Phys. Rev. 170, 

822 (1968) 

102. I, G. Holt, R. A. Westwig, R. W. Alexander, and A. J. Sievers, 

Pnys. Rev. 151, 731 (196?) 

103. R. Brout and W. M. Vissc! .r, Phys. Rev. Lett. £, 5k  (1962) 

101*. w. M Visscher, Phys. Rev. 122., 28 (1963) 

105. R. J. Elliott and D. W. Taylor, Froc. Phys. Soc, 8^, 189 (1961t) 

106. Y. M. Kagan and Y. A. losilevskii, Zhur. Eksp. i. Teor. Fiz. 1*2, 

259 (1962); Fngl. Trans., Goviet Phys.-JETT 15_, 182 (1962) 

107. S. Takeno, Prog. Theor. Phys. 2±,  191 (1963); 28, 33 (1962); 22., 

328 (1963) 

108. B. Mozer and A. A. Maradudin, Bull. Am. Phys. Soc. (II) 8, 193 

(1963) 

109. P. G. Dawber and R. J. Elliott, Proc. Phys. Soc. 8l, 1+53 (1963); 

Proc. Roy. Soc. A273, 222 (1963) 

110. J. A. Krumhansl and J. A. D. Matthew, Phys. Rev. 166, 856 (1968) 

111. J. Van Kr&nkendonk and J. H. Van Vleck, Rev. Mod. Phys. 30, 1 (1958) 

112. E. Merzbacher, Quantum Mechanics (John Wiley, Inc., N. Y., 196l) 

113. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., H. Y., 1965) 

111», r'. G. Bass and M. I. Kaganov, Zhur. Eksp. i Teor. Fiz. 37, 1390 

(1959); Engl. Trans. Soviet Phys. - JETP 10, 986 (i960) 

115- R. J. Elliott and R, Loudon, Phys. Lett. 3, J.89 (1963); P. A. Fleury 

and R. Loudon, Phys. Rev. 166, 5i«t (1968) 

116. J. T. Hougen and S. Singh, Phys. Rev. Lett. 10, 1*06 (1963); Proc. 

Roy. Soc. A277. 193 (196U) 

117. Das Gupta, Phys. Rev. Lett. 3., 38 (1959); Phys. Rev. 126, 2i8i (1962) 



118. I. I. Sobel'man and E. L. Feirberg, Soviet Phys.-JETP 3}^,  339 (1958) 

119. R. Loudon, Adv. in Phys. 13, 1+23 (1964) 

120. L. N. Ovander, Soviet Phys.-Solid State 3, 1737 (1962); k,  1078 

(1962); 6, 290 (1964) 

121. R. Loudon, Proc. Roy. Soc. A275. 218 (1963) 

122. R. Loudon, Proc. Phys. Soc. 82, 393 (1963) 

123. V. L. Strizhevskii, Soviet Phys.-Solid State 3, 2ll+l (1962) 

12l+. M. Lax and E. Burstein, Phys, Rev. 21» 39 il955] 

125. M. Born and M. Bradburn, Proc. Roy. Soc. Al8P   1 (19I+7) 

126. F. Stern, in Solid State Physics, edited by F. Seitz and D. Turn- 

bull (Academic Press, Inc., K. Y.), 1^., 299 (1963) 

127. D. E. Martin, Adv. in Phys. Ik,  39 (196U) 

128. R. Kubo, in Boulder Lectures in Theoretical Physics (Academic 

Press, Inc., N. Y., 1958), Vol. 1 

129« H. Bilz, in Phonons in Perfect Lattices- and in Lattices with Point 

Imperfections, edited by R. W. H. Stevenson (Plenum Press, Inc., 

N. Y., 1966) 

130. T. P. Martin, Phys. Rev. l60, 686 (1967); 2.70_, 779 (1968) 

131. R. S. Wilson, W. T. King, S. K. Kim, Phys. Rev. 175. 1161+ (1968) 

132• F. J. Dyson, Phys. Rev. £2, 1331 (1953) 

153- R. Bellman, Phys. Rev. 101, 19 (1956) 

131*. J. des Cloizeaux, J. Phys. Rad. 18, 131 (1957) 

135. R. Englman, Nuovo Cimento 10, 615 (1958) 

136. H. Schmidt, Phys. Rev. 105, 1*25 (1957) 

137. R- L. Agacy, Proc. Phys. Soc. 03, 591 (196U) 

138. J. Hori and T. Asahi, Prog. Thtor. Phys. 17, 523 (1957) 



-208- 

139. J. Hori, Prog. Theor. Phys. l8_, 36? (1957) 

litO. J. Mahanty, Nuovo Cimento l£, ^6 (1961) 

Ikl.    A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. W'iss, Rev. 

Mod. Phys. 30, 175 (1958) 

lk2.     C. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Phys. 

Chem. Solids 3, kl9  (1959); Phys. Rev. 115, 18, 2k  (1959) 

1U3. P. Dean, Proc. Phys. Soc. 73, '♦IS (1959); Proc. Roy. Soc. A25U, 

507 (I960); A260, 263 (1961) 

Ikk.    P. Dean and J. L. Martin, Proc. Roy. Soc. A259, ^09 (i960) 

1U5. P. Dean and M. D. Bacon, Proc. Phys. Soc. 8l, 61+2 (1963) 

1U6. J. L. Martin, Proc. Roy. Soc. A260, 139 (196l) 

1^7. M. D. Bacon, P. Dean, and J. L. Martin, Proc. Phys. Soc. 80, 17^ 

(1962) 

1^8. H. B. Rosenstock and R. E. McGill, J. Math. ?hys. 3, 200 (1962) 

1U9. D. N. Payton, III, and W. M. Visscher, Phys. Rev. 15k,  802 (1967); 

156, 1032 (196?); 175., 1201 (1968) 

150. J. S. Langer, J. Math. Phys. 2, 58U (1961) 

151. H. Poon and A. Bienenstock, Phys. Rev, ll*l, 7105 (1966); 1^2, 

Ub6 (1966) 

152. P. L. Leath and B. Goodman, Phys. Rev. lU8, 968 (1966); 175. 963 

(1963) 

153. S. Takeno, Prog. Theor. Phys. 2^,  102 (1961); 23, 33 (1962); 22, 

326 (1963) 

151». R. Kubo, J. Phys. Soc. (Japan) IJ.» ^-00  (1962) 

155. P. S. Pershan and W. B. Lacina, Phys. Rev. 168, 725 (1968) 

156. R. W. Davies and J. S. Langer, Phys. Rev. 131. 163 (1963) 



157. D. W. Taylor, Phys. Rev. 156, 1017 (196?) 

158. P. L. Leath, Phys. Rev. 171. 725 (1968) 

159. R. J. Elliott, R. N. Aiyer, and P. L. Lenth (to be published) 

160. I. M. Lifshitz, Zhur. Eksp. i. Teor. Fiz. kk,  1723 (1963)S Engl. 

Trans., Soviet Phys.-JETP l^, 1159 (1963) 

161. C. V. Raman, Ind. J. Phys. 2, 387 (1928) 

162. E. Rumpf, Z. Physik. Chem. (Leipzig) FJ., ikB  (1930) 

lo . E. Beck, Metallurgie 5., 51^ (1908) 

161*. E. G. Chernevskaya and G. V. Anan'eva, Fiz. Tverd. Tela 8_, 216 (1966); 

Engl. Trans., Soviet Phys.-Solid State 8, 169 (1966) 

165. S. Ganesan and R. Srinivasan, Can. J. Phys. Uo, 7^ (1962); j+O, 91 

(1962) 

166. R. Srinivasan, Proc. Phys. Soc. X2, 566 (1958) 

167. D. Cribier, Ann. Phys. h_,  333 (1959) 

168. T. Shimanouchi, M. Tsuboi, and M. Miyazawa, J. Chem. Phys. ZZt 

1597 (I96l) (these authors do not consider the Coulomb field) 

169- J. D. Axe, Phys. Rev. 139. A1215 (1965) 

170. W. Cochran, Adv. in Phys. £, 387 (i960); Proc. Roy. Soc. A253.260 (1959) 

171. R. A. Cowley, Proc. Roy. Soc. A268, 109, 121 (1962) 

172. A. D. E. Woods, W. Cochran, and B. N. Brockhouse, Phys. Rev. 119. 

980 (I960); R. A. Cowley, W. Cochran, A. D. B. Woods, and B. N. 

Brockhouse, Phys. Rev. 131. 1030 (1963) 

173. B. R. A. Nijboer and F, W. De Wette, Physica 23, 309 (1957); 2U, 

U22 (1958); 2k,  1105 (1958); F. W. De Wette, Physica 2^t  1225 (1959); 

Phys. Rev. 123, 103 (1961) 

171*. K. Huang, Proc. Roy. Soc. A208. 352 (1951); E. R. A. Report L/T 

239 (1950) 



-210- 

175. R. H. Lyddane and K. F. Herzfeld, Phys. Rev. 5^, 846 (1938) 

176. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 5£, 673 (19^1) 

177. W. Cochran and R. A. Cowley, J. Phys. Chem Solids 23, kkt  (1962) 

178. W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, Phys. 

Rev. 121, 1950 (1962) (CaF2) 

179. D. R. Bosomworth, Phys. Rev. 157, 709 (1967) (Ca, Sr, Ba, CdF2) 

180. J. D. Axe, J. V,7. Gaglianello, and J. E. Scardefield, Phys. Rev. 

139. A1211 (1965) (CdF2) 

181. L. V. Berman and A. G. Zhukov, Opt. i. Spektroskopiya 1£, 783 

(1965); Engl. Trans., Opt. Spect. 1£, 1*33 (1965) (CaF2) 

182. A. Hadni, Ann. Phys. (Paris) £, 9  (I96U)  (CaF2, SrFg) 

183. D. R. Hufftnan and M. H. Norwood, Phys. Rev. 117, 709 (i960) (CaF2) 

18»». D. Gerlich, Phys. Rev. 136. A1366 (1961+) (SrF2) 

185. B. Gerlich, Phys. Rev. 13^, A1331 {196k)    (BaFg) 

186. W. E. Bron and M. Wagner, Phys. Rev. 167, &kl  (1968) 

187. K. Lakatos and J. A. Krumhansl, Phys. Rev. 175. 8^1 (1968) 



ACKNOWLEDGEMENTS 

I wish to thank Professor Peter Pershan for his helpful jupervision 

of this work from its conception to its completion, and for many stimu- 

lating conversations during my research tenure.    I havi- appreciated 

his continuing interest in my project,  and his ready willingness to be 

available for helpful discussions whenever I needed assistance. 

I am indebted to Dr.  Richard Chang and to Dr.  Geoffrey Brooker 

for giving me much helpful advice on experimental techniques; to Mr. 

Robert Callender for collaboration in taking some of the low temperature 

data (Argon laser and Spex system); and to Mr. Howard Goldberg for 

his work related to the problem of spectrometer slit convolution. 

Dr. Hargreaves of Optovac, Inc.  supplied all of the crystal samples 

used in this study, and kindly loaned us some of the samples during the 

initial stages of the investigations. 



Unclassified 
St'vunU  ClüHKifiration 

DOCUMENT CONTROL DATA R&D 
ilauKiiic&tiVh ai   'tie. boe/j  ..fab ,tt t;>tt*t f'f L'lii 

! N A T i SiO   AC r v  r i'nrp-irafe Hit.'tmti 

Division of Engineering and Applied Physics 
Harvard University 
Cambridge,  Mass.    02138 

a. H L f-' a ft T 5E C u fin 1" v  c u ASS) (-1C A Tl 

Unclassified 

a     NCPORT   TITLE 

PHONON   OPTICAL   PROPERTIES   OF   MIXED   FLUORITE   SYSTEMS:   RAMAN 
SCATTERING   FROM   Ca,     Sr F,   AND   Ba,     Sr F, 

1-x     X   c 1-x     X    C, 

4.  DCSCR>PT!VE NOTES (Type tyf report and,inclusivr dates) 

Interim technical report 
5    AUTMORiSl (First name, middle tnitial. last namrj 

William B radley Lacina 

«.   REPORT   DATE 

March I9b9 
fS.    TOTAL    NO     Of    PAGES .'h.   NO.    OF   REF5 

217 187 
•a.   CONTRACT OR  GRAMT NO. 

ARPA SD-88 
6.  PROJEC T NO. 

Q'f    0«tc;iNATOR*S  RTPO^I    MUM BE HIS) 

Technical Report. No. ARPA-36 

at. oTHrn RLPOHT NOISI (Any olhet numbmta that muy br assigned 
this report} 

tO.   DISTHIBUTION STATEMENT 

Reproduction in whole or in part is permitted by the U.  S.   Government, 
Distribution of thie document is unlimited. 

II-   SUPPUEMENTAHY   NOTES 12.   5PONSOHING  MILITARY   ACTIVITY 

ABSTRAC T 

The general problem of the effects of impurities on the vibrational,  electronic, 
and magnetic properties of crystalline solids has currently attracted much interest. 
One aspect of this problem has been the study of random disordered systems,  and 
in recent years,  there have been numerous experimental and theoretical investiga- 
tions of the phonon optical properties of mixed crystal systems.     We have studied 
experimentally the Raman scattering (at '^-40K,   770K,  and 300oK) from the mixed 
fluorite systems,  Cai-cSrcF2 and Bai-cSrcF2,  using laser excitation and a photon 
counting detection system.    Analogous work on the far-infrared reflectivity spectra 
for these systems has been carried out by Verleur and Barker. 

The Green's function methods whi^h have been extensively employed for the 
isolated defect and random disorder problems are reviewed,  and it ij shown how the 
phonon optical properties can be expressed using this formalism.    These techniques 
have been very useful for qualitative and quantitative understanding of impurity 
effects,  although they usually involve cumbersome computational difficulties for 
physically' realistic models of the impurity and the host lattice.   A low concentration 
theory for Raman scattering and infrared absorption in mixed crystals, based on an 
average Green's function <G>,  is described and appliet' to the Ca|_cSrcF2 system; 
theoretical calculations are presented and compared with experimental measurement^ 
The "proper self-energy" functions which arise in this formalism are calculated to 
iirst order in the concentration c,  and involve certain unperturbed phonon Green's 
functions GSjClK, f'/C^u HE),  which have been computed numerically for a rigid ion 
model ol a Harmonic fluorite lattice.    These Green's functions,   which would be usefu 
^i.r i^apv other studies of phonon impurity properties in CaF?.  are included in an a IJDJ endix. 

00.^1473 
S/N   0101-807-661 1 

(PAGE   1) 
Unclassified 

Stutily Classification 



Unclassified 
Sfdlfiiy   C-'HSSlf Kation 

KEY   WORDS 

Phonon Optical Properties 
Mixed Fluorite Systems 
Green's function 
Raman Scattering 
Disordered Systems 

DD /r J473  ^cK) 
"■   01Ö1-S07-««-j 

"OLE ft T 

Unclassified 
Rcr.iritv C's5$:Seatiöi 

«oi. t » T 

i      I 


