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ABSTRACT

The general problem of the effects of impurities on the vibrational,
electronic, and magnetic properties of crystalline solids has currently

attracted much interest. One aspect of this problem has been the study

of random disordered systems, and in recent years, there have been
numerous experimental and theoretical investigations ,f the phonon optical
properties of mixed crystal systems. We have studied experimentally the

Raman scattering (at ~4°K, 77°K, and 300°K) from the mixed fluorite

systems, Ca.l ,.SI'-FZ and Ba Srch, using laser excitation and a photon
-t 2

1-c
counting detection system. Analogours work on the far-infrared reiflecti-

E vity spectra for these systems has been carried out by Verleur and Barker.

j The Green's function methods which have been extensively employed

L for the isolated defect and random disorder problems are reviewed, and

it is shown how the phonon optical properties can be expressed using this

formalism. These techniques have been very useful for qualitative and

quantitative understanding of impurity effects, although they usually in-

volve cumbersome computational difficulties for physically realistic models
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of the impurity and the host lattice. A low concentration theory for

Raman scattering and inirared absorption in mixed crystals, based
on an avarage Green's function <G>, is described and applied to the

Cal_cSrcF2 system; theoretical calculations are presented and com=

pared with experimental measurements. The "proper self-energy"

functions which arise in this formalism are calculated to first order
in the concentration c, and involve certain unperturbed phonon Green's
functions G;)ﬁ(lK, £'K';w + i€), which have been computed numerically

fo- a rigid ion model of a harmonic fluorite lattice. These Green's

functions, which would be useful for many other studies of phonon

impurity properties in CaFZ, are included in an appendix.
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I. INTRODUCTION

The study of the physical effects that iumpurities have on the vi-

brational, elentronic, and megnetic properties of a crystal lattice has

recently attracted much experimental and theoretical interest. The work

in this field has nad a variety of objectives, which can be broasdly char-
acterized as: 1) a study of new effects, such as local and resonance
modes, which can arise when suitable impuriiies are present, 2) the use
of impurities to induce new effects, through a breakdown in the selec-~
tion rules applicable to a perfect crystal, 3) the study of dynamical
properties of the impurity itself, 4) the study of the modification of

existing properties with the addition of defects. Furthermore, there

has been & wide range of experimental techniques which have been employed
for these investigations. Such work has included Raman and infrared
spectroscopy, the M8ssbauer effect, neutron scettering, measurement of
thermal and electrical conductivity, etc.

The literature in this field has been expending so rapidly that it
would be futile to attempt to cite all cf the work that has been done.
An excellent and extremely thorough reviaw article on the effects of
point defects and disorder on lattice vibrational properties has been
given by Maradudin(l). Although the emphasis in the present vork shall

be specifically on the phonon problem, some further references to work

on the electronic and megretic impurity problems will be given at appro-

priate places later. Many of the review articles can often be consulted

for numerous references on specific aspects of this general field.
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The mathematical techniques which have been most useful for describ-
ing and understanding impurity effects in erystalline solids involve
Green's function methods, analogous to those used in wmany-body problems.
These techniques, which can be used to relate the properties of an im-
perfect crystal lattice to those of a perfect lattiice, are . .nvenient for
analyzing the "isolated impurity" problem, and can be successfully applied
whenever the perturbation caused by the defect is spatially localized.
Because of their generality, Green's function techniques can be used %o
describe a wide variety of impurity effects on the physical properties of
solids. The underlying unity that characterizes these methods allows the
mathematical formulation of many physically diverse phenomena to be car-
ried out in essentially the same way. We shall discuss some of the basic
aspects of the _reen's function formalism in a later chapter.

Because the problem of a single impurity is now ressonably well un-
derstood, qualitatively and quantitatively, much of the current interest
in this field has shifted to studies--both experimental and theoretical--
of mixed crystal systems. The most extensive (analytical) theoretinal
work on random disordered crystals has consisted of attempts to extend
those methods of Green's functions which have proved so successful for
describing the isolated local impurity problem. These "average Green's
function" techniques have been fruitful for explaining many of the fea-
tures of a disordered system, although they are often limited by the ap-
proximations that must be imposed for even the simplest models. In some
respects, these approximations have not been completely satisfactory; for
exemple, they are iradequate to explain or predict many of the compli-

cated "spike" effects which exact machine solutions have shown can exist
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(in the density of states) for even the simplest systems. These aiffi-
culties may be related either to the limitations of the rumerical approxi-
mations, or possibly even to the inedequacy of the assumptions made on

the analyticity proberties of the averagn Green's function as a function

of the concentration . Furthermore, even in situations where these

methods have been applied with reasonable assurance of validity, they

usually involve tedious numerical calculations for realistic models of

the lattice and defect. Nevertheless, despite some of the shoricomings

in certain pathological cases, or the problems of computational diffi-
culty, these techniques have had great success in describing meny of the
impurity effects observed in physical systems. The method of Green's
functions as applied to the study of a random disordered crystal will be
discussed more fully for the vibrational problem in a subsequent chapter.
At that time, we shall also give a survey of tae variety of other (non-
Green's function) approaches that have been taken to analyze this prob-
lem, and some of the results that have been obtained.

One aspect of this general problem is the investigation of the ef-
fects of disordering on the behavior of the long-wavelength optical vi~-
brations of mixed crystals. There has recently been numerous exﬁerimen-
tal work on Heman scattering and infrared absorption from phonons in a
wide variety of mixed crystal‘systems. The present work is concerned with

t LT
& study of the mixed-fluorite systems, Ca, ,Sr F, and Ba,  Sr F,. We-have

-investigated experimentally(z) the first order Reman scattering from these

systems, and Verleur and Barker(3) have done analogous work on the infra-

red reflectivity. The 'work to be reported here is an attempt to discuss,

qualitatively and quantitatively, the observed experimental effacts of

by bbb b
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disordering on the optical vibration modes fcr the mixed--fluorite systems.

The experimental litierature on phonon optical properties in mixed
crystal systems is extensive; several exampies of other systems that have
{1
been studied by Raman and infrered spectroscop; include GaAsl_ bek4),

Nil-xcoxo(S)’ an_xcaxs(G), znse, _ 1e (T), Nal_xKxC1(8), KCll_xBrx(g),

Ko f0, 01, g wi p (30) si ce 1) pap as %), apas (33
1), cas,_ se (157171, zns, _ Se, (16), Nac:3? 2137 (19) LiHl-xDx(zo)'
There would be many more examples if the list were enlurged to include
vork on other than phonon optical properties. There are also some gen-
eral articles which are a useful review of the experimental results on

mixed crystal systems(el) and a discussion of the btehavior <r the long-

wavelength optical modes(zd).

Ex;erimental observations on Raman scattering and infrared absorp-
tien froﬁ such crystals has yieided, basically, two characteristic types
of behavior. Assume that a mixeJd crystal Al-xBxC can be formed from AC
and BC, each of which are characterized by one optically active mode,

with frequency Wy and g respectively. Then in the first (Type I) bena-

vior, the mixed crystal A, _xB,C continues to exhibit(z-lO) a §j'£gg_§ “v 0
cptic mode vwhich shifts linearly with the concentration x from the fre-
quency w, (that characterizes pure AC) to wp (that for purs BC). The
intensity of the mode remains epproximately constant, and the linewidth
increases and peaks near the center (x »~ .5) of the mixture. For the se-
cond (Type II) behavior(ll°19), the mixed crystel exhibits two modes which
are zloge to those which characterize pure AC and pure BC. The intensity

of these modes varies in approximate proportion to the fraction of each

component present. As the (molar) concentration x increases, the inten-

~ recioi BT R VOO PTT TSP TNTITRVI TR RLN Y
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sity of the 8C mode increases, while that of AC decreases, with both

shifting siight.iy.
The experimental observations on Raman scattering from the mixed- 5
fluorites(z) represents & good example of Type I behavior, and since this
system constitutes the subject of the present atudy, these results will
be described in more detail later. A good example of Type II behavior is
represented by the Raman spectrum of Sil_xGex, shou2 in Fig. 1.1 (taken
from the work of Feldman, Ashkin, and Farker, Phnys. Rev. Lett. 17, 1209

(1966), Ref. 11), and the infrared reflectivity spectrum of Cas, _,Se, .

shown in Fig. 1.2 (taken from the work of Verleur and Barker, Phys. Rev.
155, 750 (1967), Ref. 17).
It is possible for some modes of a crystal to exhibit a behavior

intermediate tetween types I and II, and it is also jossible for differ-

s

ent modes of the same mixed crystal system to display different behavior

(10’18). The theory for the optical phonon properties of a mixed erys-

n...).»hmmlmll_lfflu%hnm

tal will be formulated ia terms of "average Green's functions," which

i

will be described later, and then applied later to calculations for the
mixed-fluorite systenm, Cal_xerF?. These methods, althougn formidable

to apply, are useful for both a qualitative and quanctitative understand-

:

ing of the effects of disordering on the optical nroperties. They pro-
vide a criterion for the 'virtusl crystal approximation" that charactier-
izes the linear shift (type I) behavior. and are also capable of explain~
ing the "local mode" behavior that cheracterizes type IT spectia.

A brief outline of the presentation of material to follow should be
helpful to define the scope of the preseni study. In Chapter II, some

elementary topics related to crystal siruclure, space group symmetry, ‘he
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Fig. 1.1:

56 450 400 350 300 ™
Frequency Shift cm 1)

Raman spectra of germanium-silicon alloys for several compo-
sitions (Tak.:n from the work of Feldman, Ashkin, and Paiter,
Phys. Rev. Lett. 17, 1209 (1966), Ref. 11.)
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Experimentally determined far-infrared reflectivity
spectra of CdsS,_,Se, at 159K, with E Hic-axis. A
smooth line was drawn through experimental points.
(Taken from the work of Verleur and Barker, Phys.
Rev. 155, 750 (1967), Ref. 1T.)
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recipropal lattice and Briliouin zone, e*c. will be reviewed, with the
fluorite lattice as an illustration. The normal modes of a crystal lat-
ticé in the harmonic approximation will be discussed from a phenomenolo-
gical viewpoint, in order to provide a foundation for the work to follow.
A.brief qualitative discussion of anharmonic effects and mode broadening
will conclude this chapter. Chapter III will be devoted tc a development
of the (classical and quantum mechanical) Green's function methods that
are useful for treating the vibrational impurity problem. 7The interest-
ing "local mode" and "resonance mode" phenomena serve to illustrate the
usefulness that Green's function methods have for defect lattice dynami-
cal problems. The formal properties of Green's functions are review .,
and their physical significance illustrated; it will be shown how they
arise in the expression for thermodynamically averaged correlation fuac-
tions. 1In Chapter IV, it will be skown how the phonon optical proper-
ties--Raman scattering and infrared absorption--can be related to phonon
green's functions. Some of the general aspects of these processes, e.g.,
celection rules, will alsoc be discussed. In Chapter V, we shall take up
the subject of disordered systems, with a brief survey of the variety of
methods that have been attempted for this type of problem. A reascnably

complet:z discussion of the failures, successes, and usefulness of a num-

ber of approaches will be presented, and a number of the results reviewved.

The description of disordered systems in terms of average Green's func-
tiors is developed, and the relatively cumbersome diagrammatic techniques
that have been used by many authors tc calculate these average Green's
functions is replaced by a simpler differential techninue. We are ulti-

mately interested in describing the effects of disordering on the long-

asdli
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wavelength vibretional properties of a random, mixed crystal. This will
require the calculation of phonon ''proper self-energy" functions, as well
as certain unperturbed phonon Green's functions for the perfeat lattice.
Finally, in Chapter VI, we present the experim&ntal observations that we
have obtained for Raman scattering for the mixed-fluorite systems. Baseq
on the formalism developed in Chapter II-V, thsoretical calculations are
carried out (using the average Green's furction) for the Cal_xSrmia sys-
tem and compared with experiment. Thesc calculations are bdased on a rigid
ion model for CaF, which is discussed thoroughly in that chap'er. Some of
the computational aspects of this type of calculation are scsevhat tedi-

ous, and the (grutbier) details (and some of the computer program iistings)

L

are relegated to the appendix.
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I1I. NORMAL MODES OF A CRYSTAL LATTICE

2.1 Introduction

A brief discussion of lattice dynamics in the harmonic approximation
will be given in Sec. 2.2, and some of the notation that will be useful
for describing lattice structure is introduced here. Since the fluorite
structure is the object of the present work, it shall serve as an illu-
stration.

A peifect crystal lattice is considered to be composed of an infi-

nite number of primitive cells, each of which is a parallelopiped btounded

—- -

-
by three non-coplanar vectors %1, to, and t3, called the primitive trans-

lation vectors. Each primitive cell will be assumed to contain r atoms,
. . -

labeled by a basis index K =1,2,3, ..., r. If R, denotes the rela-

tive location of atom K within the cell, then the equilibrium position

of any atom can be expressed as

- -» -
Rgu = By + R, (2.1)

=
where RL is a lattice vector consisting of integral numbers of primitive

translations from some (arbitrary) origin,

=

— -
Ry = L%, + L1, + L2, (2.2)

L represents a triplet of integers, £y, L5, 13). The crystal can be de-—
scribed as corsisting of r interpenetraiing sublattices, each of whiqh
possesses translational periodicity under the lattice vectorstgl. Two
atoms of a lattice will be said to be equivalent if they are separated

-—p
by some lattice vector Ry --i.e., if they have the same basis index % .

(N‘ T G W il R R LB MY
|
-
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Of course, idertical atoms can have different basis indices, as, for ex-

ample, the two fiuorines do in the CaF2 structure.

The rotational ang iranslational symmetries of a perfect crystal form

the operations of a Space group. Space groups are specisl cages (i.e.,

subgroups, of the general group of linear, inhomogeneous coordinate trans-

formations,

-I!' = «0? + ;;
and this operation is conveniently denoted by (x| V). The group‘of trans-

formations (o | V) has two general properties: (1) the matrix parts  of

the operations (o | V) themselves form a group, and (ii) the pure trans-

lations, which are of the form (1 [¥). form an invariant subgroup. A

Space group is a subgroup of these general coordinate transformations, and

consists of all operations (S r?) that obey further restrisctions. First

of all, the rotational operations S must be real, orthcgonal matric:s.

Secondly, a Space group is characterized by the property that i+ mist pog-

Sess a particular Lype of invariant subgroup: all of the bure transla-

tions (1 lt) must be of the form (1 Iﬁ}), vhere 3; is a lattice vector de-

fined by (2.2). Of the Several consequences implied by these two restrie-

tions, one f the most important is the fact that the rotational parts §

of a space group must form one of the 32 point groups.

For the fluorite gtructure, the space group is OhstmBm. The crys-

tal consists of three interpenetrating face-centercd cubic lattices, and

can be alternaiively Pictured as a cubic lattice of fluorine ions with

metal ++ ions in every other body-centered pesition. The lattice struc-

A A
ture is shown in Fig. 2.1.

A
In terms of caitesiap unit vectors i, Jy k,

the primitive translation vectors are Ziven by

UL L

| HALH s 4

A4 ol
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Lerlie k), Emriek), tye=r i+ (2.3)

which defines a face-centered cubic lattice. Thu unit cell contains r = 3

basis ions--two (inequivalent) fluorines, and one calcium. We can arbi-

trarily cloose the basis vectors to be

Ca: K =1, R, = %ro(1 + 3 + k)
Fy: K =2, R2 =0 (2.4)
FR: K =3, R3 = roi

where r_ = &/2, and a is the "lattice constant" (cf. Fig. 2.1).

Fig. 2.1: Crystel structure of the (fcc) CaF latiice, with
the primitive trenslation vectors 1+ Yoo t3 shown.
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The reciprocal lattice is defined in the usual vay, in terms of a

get of vectors,

- td a A
by = 2nl2 Xty o T 2 + 3+ k)

To
Va

B,= 2ni3Xt . f-3+5
Va Ty

(2.5)

€3= a1 X2 2 mia 5ot
Va rO

where v_ = 2r°3 = (E; x ;2):?3 is the volume of the primitive cell. The

reciprocal systems of vectors satisfy ;*:‘J = 2'r813‘ A general rec.-

procel lattice vector,

KA » 18 defined to be the sum of integer multiples

-—
¢f the vectors bi:

—p - g -
By = A, + 2,5, + a,8, (2.6)

wnere A denotes g triplet of integers, ( A1 Ao, lq)-

If we introduce the ¢yclic Born-von Karmen boundary conditions, and

assume that the infinite crystal has a periodicity of G for each of the

-

primitive translations ;1 t2, origé, then there will be g tdfal of N =

.L,

GxGxG=g3 primitive cells. In the usual way, the general wave-vec-

tors k which label the irreducible representations of the translation

aroup for the lattice are defined by

- 1
L A R Agbs) (2.7)
vhere ( ll’l2’.>\3) are integers., The firat Brillouin zone is defined to

be the symmetrical cell in reciprocel space which contains, ir and on its

surface, the N (=G3) values of i vhich label the distinet and non-equiva-

B LTI S
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lent representations. The.e are two relations which are often useful;

l -El E—é'\
S etk (R Yo S,y

N y = (2.8a)
k
and
i Z L(g— E‘)’El
N & © = %% (2.8b)
j/

For the latter relation, we have tacitly assumed that % and k' both lie

in the first Brillouin zone; in general, the right-hand side of (2.8b)

would be Sg A where K is some reciprocal lattice vector of the form
» K

(2.6).

For the fluorite structure, a f-vector in the first Brillouin zone -

can be written

< T
K = E‘r—(sz Ky, KZ)’
o
where
i) KX, Ky’ Kz are integers

ii) Ky, Ky, K, are all even, or all odd
11 K, %), K| €6

iv) (|K | + IK.yI + X, 1) & 36/2

The first Brillouin Zone is taken to be the familiar truncated octohedron

that characterizes a face-centered lattice, and is shown in Fig. 2.2. Var-

ious points and lines of high symmetry have been labeled according tc the
standard notation. The details of the Brillouin zone structure are very

important in later calculations of phonon Green's functions for pure CaF

5*
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Fig. 2.2: First Brillouin zone for the (fee) CaFp lattice, with
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2.2 The Harmonic Approximation

There are many good sources(23-26) on the general topic >f lattice

dynamics, but a short summary will be useful as a background for the la-
ter discussions. The treatment here will be phenomenological, with no
attempt to describe the fundamental electronic interactions which are re-
sponsible for the "force constants" that bind the lattice together. This
would involve a discussion of the Born-Cppenheimer approximation, which
is covered in more detail in the book by Born and Huang(es).

It will be assumed in the subsequent development that the int:oduc-
tion of impurities does not distort the lattice. This is not strictly
true, of course, but the assumption can be Justified--or at least made
plausible--by pointing out that lattice distortion effects will e impli-
eitly incorporated into any realistic model of the lattice and defect site.
For the discussion of dynamical properties of the crystal, the force con-
stants are the fundamentally important quantities, and lattice spacings
do not appear explicitly in the results. The new force constants that re-
sult when an impurity is introduced will depend on both distortion and on
a possible change in the fundamental interactions that characterize the
impurity. In any case, both of these effects are implicitly incorporated
when the force constants are determined from experimentally measured quan-
tities. This assumption is, in fact, always made for this type of prchlem,
since it desireable to be able to continue to describe the lattice at equi-
librium by a set of vectors f(’b(_ 0

If the atoms of a general lattice (perhaps containing impurities)
are subjJected to displacements ﬁ(,ﬁx) from their equilibrium positions,

the total potential ¢ {which depends upcn all of tne electronic and nu-




i

clear coordinates of the system) will changef:

¢ = 0tp ) Bk L) LU 4
L, 'w
where

Qxﬁ(l"a”"') o= O ' \
Qg Rx)dup '), 12.10)

are the second derivatives of ¢ evaluated for the equilibrium configu-
ration. There is no linear term in \'I(R.n), since its coefficient would

be d¢/dultk) io' which must vanish in the equilibrium configuration,

since it represents the force on atom (k). The first term for ¢ is
1.

an unimportant constant which can be discarded. If only the quadratic

terms in the displacement are retained, the vibraticnal Hamiltoniun for

a general crystal lattice can be written

X = %ZMHT{I.(L&)‘ 4 % Z L (Ae)e B (2, L) B Y (2.11)
§ 33 Ix, Li! ‘

This 18 called the harmonic approximation, and leads to linear equations

of motion for the displacements,

Mg.‘i _J.(I.x‘-t) + Z E(XK,I'K')-;L’([K',{) = 0 (2.12)
ott o

There are several general properties that the force constants Qas(!.x,z'x‘)

must possess(as). The invariaice of the potential energy ¢ under rigid-

body translations and rotations imposes two conditions for a general lattice-

Z @,’, (R, AK') = O . (2.13)

Ly

i

|2

| 3 -
|

|

+ Dyadic quantities will be denoted by a wiggly line; e.g. § represents
a dyad (or second rank tensor) with (csrtesian) components SGB'

T T
)

[
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LZ‘“ §°‘ﬁ (L, 2%") Ry('v) = ,lZ QO‘Y (Lx, ') Rg(£'x") {20t
K vy

It follows immediately from the formal expression (2.10) for the coeffi-

cients P_,( @k ,L'x’) that there is a symmetry under interchange of sites:
op

@fx/a (26, 4'6") = Do 'K, LK) (2.15)

It is convenient to introduce a matrix notation; the quantities uy{f«),
Mln N @mﬁ( I.K,E'K.') can be regarded as the matrix elements of matrices u,

M, and ® in & crystal lattice-site representation, with "basis vectors"

| Lo :
M= Z [Lxa> My, 4 Lral (2.15)
Axa '

¢ = Z | bkay Bog (i, £'x) LA (2.17)

Lux

Le'g
Yy = Z ua((!ix)il,m(\) {2.18)

Rwex

The basis vectors IR&«) for this matrix representation satisfy

(e | L'y = S,gz’gnx'ga,g (2.19a)
L s> el = 1

AR 12.19b)
The Hamiltonian (7.11) become:

T - LML 4+ ~utdu (2.20)
2 2

WAV

TPV PTY T TP PFINTPTPVPTRFITI LI STV PN

LD Al ekl
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and the equation of motion (2.12),

This equation characterizes a system of harmonic osciilators, and & trial

solution of the form u(t)~. Iz'o o~ lwt will lead to an eigenvalue problem

that defines the normal modes of the system. The eigenfreouencies are

determined frox a seculsr equation,

det |[Mw’'— 3| = 0 (2.22)

which can be written in terms of the "dynamical matrix", D = M-k QM'A’ as

det ‘ w? D‘ = 0 (2.23,

In terms of the dynarical matrix DO = Mo';’ t’é_.\do'g'i and a column vector,

Q= Mo;ﬁx, the unperturted Hamiltonian (2.11) for a perfect lattice can be

wiitten in matrix fcrm as

(2.24) .
and the equation of motion,
e °
Q+DQ=0 (2.25)

For a perfect lattice, there are several further restrictions on the

$ oat #x,2x’) that are imposed by the invariance of the lattice under

operations of the crystal space group. Iavariance under primitive trans-

lations implies that &

.,;(l.n.,l'n’) can be & function only of the differ-

3
]
:
4
3

[T




[T

~20-
ence (EL = ﬁll):
§;5(LK" E/Ki) = @:B(f,-—i'; K.".') (2.26)

There are also restrictions on Q:ﬁ( Lx . 4'k') imposed by the more gersral

-
rotation operations (& |t} of the space group. Under such an operatioa,

every lattice :ite (Ix) is taken into some similar site (LK):

Ra{LK) = ;5% Ro(x)+1t,.

-
The operation (S| t) induces a trarsformation of the displacements,

u— Ju,

where J is a large (3r¥ x 3rN) matrix that describes the permutation of

sites and rotation of vectors produced by (S I'{) Ir J is pictured as

partitioned into boxes, then 3 x 3 orthogonal rotation matrices S will

occur once, and only once, in every row and column labeled by the site

indices (Ix). That is, if site (Lx) is taken into site (LK) under the

operation (S l_{), then <LK(X’ J | LK,B) = Supg » but is zero cotherwise.
The transformation properties that the matrix elements Q:@( Le, 4'x')

have under an operation (S [-1;) ar > derived from the requirement that the

potential energy must* be invariant, both as to value and form, under such

operations. The potential energy in the harinonic approximation is 8 quad-

ratic form, 3ul-&° u, and its invariance under the space group of trans-
- . . . . - 4 s t ’
formations (3 ] t) impliec that the coeflicients Qup\ Lk, I'k’) must trans-

form iike a second rank tensor. Under (S| %),

lzu.T@ou — (E LTS w, ’
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and since the displacement ecolumn vector u can be regarded as arbitrary,
dTd = B°
Thus, if sites (L, k,) and (£, K;) are taken into (L;K;) ana (LQKQ).‘ then
@:P (LeKy, LaKy ) =Zsap. Q;v ik, LK) Say. (2.28)
RV

In order to carry out the reduction of a specific force constent
tensor, it is necessary to consider the subdbgroup 5 of operations that

(1) leave the crystal invariant, and (2) leave a pair of sites (L,k,) and .

il
;

(L4Ks) invariant For operations (s|) e & , the following interrela-

g

LT

tion among the element- Q.fp(l,x,,l,;q) is obtained

é:p(l-c K, LaKe ) = Z 5«,1. Sp'v §;v("'l L KZ)- (2.29)

il

These conditions are useful later, when they are invoked to simplify the :-‘

general form that certain force constant matrices are required to assume
for a rigid-ion model of CaF,. In some cases, other physical considera~ %

tions that are independent of the symmetry group 5 might lead to further

simplifications.

The determination of the eigenfrequencies from the secular equation,
det |w*~ p°| =0 (2.30)

involves the diagonalization of the 3rN x 3rN matrix D9, but the exploi-

tation of group theory can provide a considerable reduction in complexity.

The total number of solutions to (2.30) is equal to the total number of
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degrees of freedom, 3rN, but a ¢’ gnificant simplification results from
the fact that the eigenstates of a physical system must transform accord-
ing to the irreducible representations of the symmetry group for that sys-
tem. For a perfect lattice, the symmetry group is the crystal space group,
which coatains an inviriant subgroup of pure iranslations through the lat-
tice vectors ﬁl'

For the present, we shall restrict cur a‘tention to the consequences

of translatioral periodicity alone. As is well known(27—3o)

, the repre-
sentations of che (abelian) group of pure lattice vector translations

(1 lﬁl) are one-dimensional phase “actors, exp(iﬁ.ﬁL), where the wave-
vectors K are defined by (2.7) over the reciprocal lattice. A reflection
of this fact is the general rule that the eigenstates of a translation-
=lly invariant cystem consist of wave-like excitations. In the present
case, these eigenstates are the phonons, and the parameter ¥ hac the phy-
sical significance of representing the phono. momentum. The mathematical
operation of Fourier transformation can be regarded, group-theoretically,
as constituting a projection onto *he representations characterized by
the wave vector k. The operation of Fourier transformation will have the
effect of partially diagonalizing the Hamiltoernian JQ,for the perfect crys-

tal, and it will reduce the secular equation (2.30) to a block iorm in

which orthogonal subspaces labeled by different values of X are separated.

The reduction to block form greatly simpliries the eigenvalue problem,
since it is then only necessary to diagonalize a 3r x 3r matrix in cach
of the subcpaces labeled by the N distinct K-vectors in the first Pril-

louin zone. Define a projection operator,
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Lo iRV R,
P = N ji = L
L (2.31)
where TL is a unitary operator which translates the lattice sites through

the vector RL. In the crystal lettice site representation, TL can be de-

fined by the relations
Tl leed = | 4+ L, kad

T =T, 7 ko> k] = e+ L,y hwcot |
o Ak (2.32)
TL| TL‘L = T-L,-q—Lz

T ' =Tt = T

L -

It is easy to verify that the operators Pﬁ satisfy the usual rules for

projection operators,

PP = SR g R (2.33a)
> Pr =1 (2.33b)
R
Fﬁ;* = P (2.33¢)

The relation (2,.31) cen be inverted, using (2.8a),

—ik.R
T, = 2 e “Pg (2.34)
X

and expresses the decomposition of the unitary operator TL into a sum of

projections onto the orthogonal subspaces labeled by K. The eigenvalue

fii

Wl

TR
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of T, in the subspace K is exp(-ii-ﬁi), and this can be expressed as

TLPk = exp(—iﬁ-ﬁL) Pg. In the crystal lattice-site representation,

) i*.E
Pe = = 2 bl e®Re g (2.35)
%f«

which can be written

Pe = Z R, kDR, k|, (2.36)

where we have defined a set of vecto:s

. s ik-Ry (2.37a)
‘h»K“>=—l'ekR"Ze H.KO(>
VN 7
ik R
= VR EF R Pz ok (251

These vectors satisfy an orthonormality condition,
Y g \ - — .
<k,KU~l Q,K.'ﬂ/ = Skk‘SKK' o R (2.58)

Thus, each of the orthogonal 3r-dimensional subspaces labeled by X can
be spanned by the orthonormal set of vectors ] E,Ko(>. The phase factor
exp(iiiﬁx) was includeé arbitrarily in the definition (2.37) to conform

with usage in the literature. The statement of dynamical invariance of

the lattice under a translation (1\‘§L) cau be expressed nathematically as

Ty, D° 171 = DO (2.39)

This is just the condition Dgp(itc,ikf = Dgp( L+L,x; L+L,K). Thus, the

dynamical matrix D° commutes with the operators TL:
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T DO = po Ty, (2.40)

—

L’

By multiplying (2.40) by exp(ii-ﬁL) and summing over all lattice siten

we obtain

° _ o
P+D =D PR. (2.41)
anl i* follows from (2.33a) ang (2.33b) that
o _ (o}
D = Z Pz D P (2.42)
[

Thus, D° can also e decomposed into & sum of projections onto the N dis-

tinct, orthogonal, 3r x 3r subspaces labeled by the wave-vector k.

Eq.
(2.42) vecomes
D° = Z z [ R, ko> Deg (R 1xr)CE, ] (2.43)
Y K
K'g
where we have defined
Dy (R 1k = (R,xa| D[R, k> (2.L4)
gg(ﬁlicK’) is Just the Fourier-transformed dynamical matrix,
—E'(ﬁ —-R";.") o [ , L
D‘:P(E;'KK') — Z € ‘ I t qu(z“we"( ) (2.435)

L’

These equations have shown that D° hag eigenstates ] E:.

-.» which can be

partially labeled by the momentum ¥. The reduction cf D° to vlock form

(2.42) makee 1t possible to factor the secular equation,

iLil

TRt

(4




det [ 1= 2] = TToet[1- BeDPe] o (2.6)
k

There are also rotational symmetry operations for DO, and a further char-
-»

acterization of the states Ik,...> could be discussed in terms of the

representations of the full space group. This would involve a considera-

tion of the group of the k-vector, é?*, which consists of all operations

which keep'i invariant. The task of constructing the representations of
the space group is equivalent to the problem of finding, for each wave-
vector f, all of the irreducible represertations of “he factor group,
j-);/z-};, where Gy is the group of all translations (1 | <) for which
RJE is a multiple of 21r(31’32). Wnen X = 0, this factor group becomes
the point group ©f the crystal class, and it will be shown later how group
theory is used to classify the symmetry of the K = C modes for CaFe.

For Can, the space group is Ghs-Fm3m, and the properties of the ge-
neral repi‘esentations throughout +*he Brillouin zone have been worked out
in detail by Chen, Berenson, and Birman(33’3h), using techniques deve-
loped earlier by Birman(35) for symmorphic space groups. We need not go
into the involved subjJact of these representations here; it suffices to
notice that, for every wave-vectorlﬁ, the subspace of ¥ it 3r-dimensional,
and the eigenstates of D° can be denoted by !§,0>>, =1, 2, ..., 3r.
The additional knowledge that these modes must transform according to
specific space group irreducible reprecsentations has no further useful-
ness for the general discussién at this point.

For a more complete discussion of gpace groups and thei-~ representa-
tions, reference can be made to an excellent review article by Koster(32).

A very thorough treatment of the symmetry properties of the normal vibra-
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tions of a perfect crystal has recently eppeared in review articles by

Maradudin and ‘iosko(36), and by Warren(37). The present discussion is

limited to basic resulte that are dirc:*ly relevant for this work.
Thus, the basis vectors in each of the N distinct and orthogonal k-

subspaces are chosen to be those which diagonalize the dynemical matrix

in thcse subspaces:

— 1 —
D°lked> = wg, |ea)
(2.47)
{Reo| D° = wg_ kel

This equation defines the phonon eigenmodes, which are characterized by
a momentum i. and a branch index 0 =1, 2, 3...., 3r. In terms of the

g 2
states Ikcr), we can write

D° = Z | ke w;:,(l%'(rl (2.L9)
and

v Tr . - - q |
(ke | ko) = Sgk. Ve (2.50)
Let us define the relationship between the se* of eigenvectors ﬁ(’«)
and the set of vectors |Tc',mx> encountered earlier (and which also span

-
the subspace k). If we use (2.36),

[Re) = Pglke) = Z IQ,K«‘)(E.WIEG) = Z wAnli'«)lE,xa) (2.51)
e o .

!l e il

i




where we define

Wo (ki Re) = (k| KO(IEG'> (2.52)

The quantities wu(K. l-ﬁd) represent the coefficients that allow the

eigenstates ]i’«) to be constructed as a linear combination of -k.,K(X\/ in

the subspace k. From (2.51),

D°1Re) = Z O°Ik, x8) Wa(K' | Re) = w,—ty, | ko) (2.53)
KA

Multipiy by (E,xal on the left, and use the definitions (2.44) and

(2.52) to obtain
Z D;p(—k" KK')WA(K"HU‘) == w%a_ Wy (k | Ra) (2.54)
Kp

Equations (2.36), (2.48), and (2.49) can be used to give

*

é)

2

2. WrkIRe) WK | Re) =

e~
-

(KIRe) o W (K|Ro') = §oq (2.55)

B>

$ont (2.56)

A — - 2 ¥* e
Dog (Rixe) = %Wa("‘k“)wﬁawﬁ {(K|ke) (2.57)

Ail that remains is to determine the transtcrmation properties tetween

the basis vectors |Lx«) of the crystal lattice site representation, and

the basis vectors \-}Eo-) of the momentum space representation:

1Red = 2, [luw ¢ Lrs | Bod (2.58)
Lo




The transformation funetion {fka I'Eo-,\ deperds upon R 4 only through a

Phase factor:

) - 1- - i-k.--R’ -\
(hexiRod = (oka [T 1Re) = @ foku Rey (2.59)

and (2.37b) can be used to give
(E,Kul Eo-)-_- VN e‘ik'R“<0Ka|Ev> (2.60)

By definition, the left hard side of (2.60) 1s equal to w (x| Re), so
the transformation function {Ixa|Re> vecomes

-R i
Rk Wy (K | Ror) - (2.61)

e
- i ™
{lkx | Re ) = e
\—/N
Formally, the relationship between the two choices of matrix represen-
tation can be sumarized by a set of equations that define the linear

transformation between the basis vectors:

ll"“> = J‘ﬁ Z e vRe Rae w:(K(E'o-) |Ecr> (2.62a)
ko

- | iE' EIK —

1Be> = = Z;u e e | Rer) | £iocy (2.62)

In effect, we have carried out a linear, unitary transformation of
the basis vectors [ 4xe) of the "erystal lattice site" representation,
to a set of basis vectors (T:o') that diagonalize the dynamical matrix D°
and define the "momentum apace" representation. The Hamiltonian (2.25)

for the perfect crystal can be written
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15y Qo) + o @ E)Q(Es) |

(2.63)

vwhere ve have defined G(ke) to be tne matrix element (ﬁi«i Q of tue (coi-

umn) matrix Q in the momentur spacs representation,

= b
N -t

Q)= (Fola = = 7 e MR (kB0 (e | Q (2.64)

fxa

Recall that we dafined Q = M;2 u, so that (Luotl Q= M:z u“(lk). By

making use of the inverse relation, (2.62a), it is possible to express

the displaccments uﬁilkj in terms of the phonon normal mcde coordinates,

Qlko ):

-—

1 k. RlK — -
; € W (KR R .6
(NMK)A Z. (K‘ U) Q( O) (2 5)

uu(‘—&) =

If we take the matrix element (i&r‘of the matrix equation of motion (2.26),
we obtain immediately the femilisr harmonic oscillator equations for the

phonon normal mcde coordinates,

.C:)(?aa—) + w%q Q(ke) = O (2.66)

Equations (2.61) anc (2.62) will be very useful throughout this work for
facilitating the transformation to momentum space.

Since it is the lcng-wavelength optic modes of a crystal that are
important for light scattering, we shall discuss here the determination

of the symmetries of tne k = O modes, with CaF2 n8 an iliustration. At
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At

% = 0, all of the primitive cells of a perfect crystal lattice vibrate

in phase, so any two atoms which are equivalent (i.e., separated by some
lattice vector ﬁl) must have the same instantaneous displacements in those
modes. Thus, the most general i = 0 4isplacemesnt can be comp’-~tely de-
scribed by r vector aisplacements, ;l’ 72, ;3, "".;r’ corresponding to
the r basis indices for a primitive cell. Thece displacements will be

periodically repeated throughout the crystal. The 3r-dimensional column

vector,

can be used as a basis function for the 3r x 3r reducible representation
that determines the most general form that the %k = O modes can have under
the point group symmetry of the crystal.

This representation is easily constructed. For every operation of
the point group, similar atoms are transformed into each other, but the
set of basis indices kK =1, 2, 3, ..., r can, in general, undergo a per-
mutation. (For example, there are two inequivalent fiuorines in the pri-
mitive cell of Can, and under some operations of the 0h point group, the
fluorine basis indices can be permuted.) Furthermore, all of the diic-
plecements will be rotated by a three-dimensional, orthogonal matrix S.
Thus, for every operation of the point group, a 3r x 3r matrix 13 is con-
structed by placing 3 x 3 metrices S in boxes that are defined by the per-

mutation induces on the basis indices. For example, under any one of the
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six C) rotations for CaFa, Ca—Ca, Fl—u-F2, F2'_'Fl’ and the matrix

that represents this operation is

scy) i o 1 0
S IR LI T (2.67
o islg) i o

The set of matrices J form a 3r-dimensional reducible representation
that defines the transformation properties of a general displacement P
with X = 0. The character of some operation S in this representation T
will be determined by the number of times a 3 x 3 rotation matrix S ap-

pears as a diagonal block. I.e., if n, is the number of basis atoms that

remain invariant under the point group operation S, then the character of

the representation I will be given by
r
X(S)= Trd = npTrS = =% ne (| + 2cos 8) {2.68;
where € is the rotaticn angle of S, and * is used according to whether
the rotation is proper or improper. This character can be decomposed by

the standard methods of groug theory(27"3o); the number of times an irre-

ducible representation o occurs is given by

ne = L L XT(s) X% (s)* (2.69)
S

where h is tle order of the group. (Thc method described here is tased

AL s
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or an original work of Wigner(Ba), who first discussed the -ormal modes
of symmetrical systems.)
Fig 2.3 summarizes the chcracter of the i = ( displacements for

CaF,; its decomposition into the irreducible reprcsentations of the 0h

group leads to

I' = 27, + Fy (2.70)

E 8, 3¢, 6C, 6C, I 885 30 6d 6Sy,
n, 3 3 3 1 1 1 1 1 3 3
Tr{8) 3 0 -1 -1 1 -3 ) 1 1 =5
Y(s) 9 0 -3 =1 1 -3 0 1 3 -3

Fig. 2.3: Character table for k = O modes in CafF,
&

One of the Flu representations corresponds to the acoustic phonon dranches;
the other six degrees of freedom correspond to opiic modes. Under inver-
sion, Ca—Ca, F,~— F,, und F,—~F.. Fence, for the ecven F28 mode, the

calciuns remain stationary, while the two fluorine sublattices vibrate
against =ach other. For the odd Flu optic mode, the fluorines all have
the same cisplacement, and that of the calcium can be obtained by requir-
ing the cen%er of mass to be stationary in such a mode. The (unnormalized)

. -l
mode vectors at X = 0 are

LGt

i

it
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Although selection rules will not be discussed un'il later, we men-
tion here that the (triply degenerate) F28 mode is Raman-active, and the
transverse optic Flu mode is infrared-active. Th=2 infrared Fl mode is
s5plit at k = 0 into longitudinal and transverse branches, due to the ef-
fects of long-range electrostatic forces(25’39‘119). This phenomenon is
connected with the macroscopic polarization field which accompanies a po-
lar vibrational mode, and will be the subject of further r-marks in Chap-

ter VI, where the problem of constructing a model to describe the phonon

spectrum of CaF2 is discussed.
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2.3 Anhurmonic Effects

It is possible that the harmonic approximation .+ill not be a good

description for a perfect crystal, although it shall be used throughout

o Aiddkisandd & adladil

this work and for the caiculations to be carried out later for the mixed

fluorite systems. The phonon normal modes have been obtained from the
assumption that the pn*ential energy is strictly quadratic in the dis-
placements from equilibrium of the atoms; they are thus exact states

of the Hamiltonian in the harmonic approximation, and are therefore inde-
pendent and nou-interacting. As was shcwn above, this approximation

leads to well-defined dispersion relations between the frequency and

momentum of the normal modes of vikration. For a given vave-vector.i,
the frequency w of an excitztiun is infinitely precise, and is given by
one of *“he phonon branch freguencies Wi that is, the spec€ral con-
tent A(K,w) of an excitation with momentum X is & del:a-function,
d(w- wﬁ‘). For the harmonic crystal, & normal mode which is excited
could nevear decay, and would thus have an infinite lifetime.

If anharmonic interactions are present, these phonon normal modes
no longer represent the exact eigenstates of the vibrational system.

However, if the anharmonic forces are small, it is still meaningful to

describe the lattice in terms of these modes, although they become
coupled by the anharmonic interactions and are no longer independent. I
Anharmonic coupling can thus provide a mechanism by which energy can be

exchanged between the modes of the harmonic lettice--i.e., modes can

decay intc each other, and thus &acquire a finite lifetime. The creation
of an excitation with precise wave-vector % in such a system will con-

tain contributions from all of the exact eigenstates of the system, and
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will be distributed over a spectrum of frequencies. Thus, in an anhar-
monic crystal, there is no lcnger s precise and well-defined dispersion
relation that relates frequency to momentum. Even with =nharmonic in-

teractions, the perfect crystal possesses translatiocnal periodicity, so

TR

=
it remeins possible to characterize the excitations with a wave-vector k.

T IR i

However, the frequency oi & "phonon mode" with momentum k becomes "fuzzy,"

"t

and in situations where =nharmonic forces are very large, the concept of

phonon nodes may even become mearingless. In that case, the problem

THHIAH M1 et H ity

would nave to be formulated in terms of a spectral density function A(R,W)

aE

for each wave-vector k. Loosely speaking, if the spectral aaplitude of

it

an exnitation with momentum k is peaked at some frequency wg with a

- vell-defined (full) width T-K’ it is possible to retain the concept of

"phonon" as developed above, by incorporating the width rt/z with we

to form a complex fre juency Wg * i r;/z.
In genera:, the most elegant mathematical description of the exci-
vations of a many-body system makes use of guantum mechanicel Green's
o)

function techniques, and Gillis, Werthamer, ard Fredkin(b" have attemp-

ted to formulate & gquantum many-vody thecry of lettice dynamics in that

way. A simple discussion of how the spectral amplitude A(K,u)) of the
excitations of a system can be related to the Fourier transforms of cer-
tain Green's functions is given by Nozieres(bl). In the simple case of
a harmonic lattice that we shall use here, the phonon modes of frequency
lﬂg‘ and momentum k are non-interacting, and car. be characterized as the
singularities of the (k,w) Fourier transform of a classical Green's

function. In general, the methods of Green's functions span a wide range

of sophistication, and in many applications, can become guite formal(bo_hs).
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To include arharmonic fcrces in the treatment of lattice dynamics is a

difficalt task for realistic physical probiems, and generally represents

a difficuilt many-boly cal-ulation. Although it can provide no informa-

tion about the broadening of the modes, the harmonic approximation can

usually give a reasonably good description of the vibtrational frequen-

cies of typical crystal lattices. Some of the simple:r a=z .cts of the

Green's function method that are useful for = discussion of the optical

properties of mixed crystals will be developed in subsequent chapters.
There are many properties of a perfect crystal which are not ex-

plained by the harmonic appreximation at all--e.g., lifetimes of modes,

thermal expansicn and conductivity, temperature dependence of some phy-

sical quantities, etc. On the other hand, some effects may depend for

their existence upon the assumpticn of anharmonic forces, but in fact re-
flect properties of the crystai whick are well described by the harmonic
approximation-~-e.g., the pnonon sidebands on the local modes induced by
U-centers in crystals. (Uf course, the latter effect can also arise frrm

a higher order coupling between light and the elecironic structure--e.g.,

the second-order electric moment.(l’hT'So’sg))

2
Cowley(gl’5 ) has discussed the effects of snharmonic interactions

on the lattice dynamics of & crystal; in these review .rticles, the mathe-

matical techniques are ¢-veloped end applied to a veriety of optical, ther-

mel, electrical, and mechanical properties. Maradudin(53) has discussed

the anharmonic broadening of a local mode induced by 2 defect. Other

references to work on defects in anharmonic crystals can be found in the

review articles by Maradudin{l) ana E11i0tt(59),

O




Ii.. THE METHOD OF GREENR'S FUNCTIONS

3.1 Introduction
In this chapter, we shall develop “he basic theory of classical pho-
non Green's functions (and their relation to the guantum mechanical, dou-

ble-time Green's functions) for the lattice vibrzotional problem. There

(1,

are numerous excellent review articles on the Green's function method

54-60) for impurity problems. Although most of these(l’ss_so)

(54)

are re-
stricted to the vibrational problem, Izyumov has discussed the impu-
rity problem with the more general cbjective of showing the unity that
these techniques provide for vibrational, electronic, and magnetic sys-
tems. There ie an extensive literature on th2 application of Groen's

61-82) £3-89)

function methods to electronic( and megnetic(

impurity prob-
lems.

The formulation of the phonon problem in the huarmonic approximation

in terms of classicel or guasntum mechanical Green's functions is eguiva-

ient, tecause the equations of motion for a harmonic cscillator are the
same in classical or quantum mechanics. The classical Green's function
approach for the phonon problem is limited to the harmonic approximation,
since thne classical Green's function methods are typically formulated for
systems which satisfy linear equations of motion. For calculations that
involve anharmonic effects, the guantum mechanical formalism is more rea-
dily spplied. The quantum mechanical formalism is also especially con-
venient, for it provides a relation between thermally-averaged correlation
functions and Green's functions. In processes such as Raman scattering

or neutron scattering, the physically observable scattering intensity or

cross section can be related directly to such correlation functions.
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As we shcll see later, an essential condition that is necessary for
the practical application of the Green's functicn method to lmpurity prob-

lems is that the perturbation caused by the cefect is spatially localized.

When the theory of phonou optical properties is formulated in terms of
specific Green's funotions, it will become clear that there are often two
separate aspects to such an assumption.

For vibvrational properties, the assumption of oniy a simple wmass
change for the Jdefz2ct is often inadequate to correctly explain experimen-
tal results, and changes in force constants must also be included. For an
isolated point defect, the totality of sites that are affected by mass and

force constant changes shall be called the impurity subspace. The diffi-

culty of carrving out quantitative calculations for an actual crystal
lattice incrcases rapidly as the size of the impurity subspace increases,
so it is often desireable and usually neceszary to restrict the assump-
tions on force constent changes. In order to make a problem manageable,
compromises have tc be made that will provide s physically realistic model
of the impurity and host lattice, and simvltaneously keep the defect snace
as small as possible. The exploitation of symmetry by the techniques of
group theory can often vrovide great simplifications, but even then, the
inclusion of more than nearest-neighbor force constant changes generally
makes the computational problems incredibly difficult. Thus, only a
small number of force ccnstant changes are admitted.

A further assumption on localizability i: invoived when physically
observable quantities are expanded in terms of Green's functions--e.g.,
by means of coefficients that couple light to the lattice. It is often

necessary to make the assumption that these coefficients do not change,

b il st oiasailitisane \
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or change only locally with the introduction of an impurity. This will
be discussed further in Chapter IV, where the theory for Raman scatter-

ing and infrared absorption is given.

3.2 General Theory

In the harmonic approximetion, the free vibrations of a crystal lat-
tice not driven by external fields satisfies an equation of motion given
by {2.12). It is convenient to introduce ~ classical Green's function G,
which is defined “y the equation of motion

2
z [ MlKSll"SKK"gdy %1 + @«r(f-K,l"K”)] Gyp(luxu’ L'K") t)
L'y

= — 5(t) Sup 22" bunr {3.1)

In matrix notation,

[M&-:-;+ @]G=—S(t)1 (3.2)

Where it exists, the Fourier transform

G(w) = jr dt 't G () (3.3)
is given by
G(w)—' = Mw*-® (3.4)

The eigenfrequencies Wg for the normal modes of vibration are determined

rom & secular equation,

det [w?— D] = det G'(w)/det M = © (3.5)
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and for a finite crystal, appear as simple poles of G along the real axis

in the (complex) frequency plane.

So far, no boundary conditions have been imposed on this Green's

function. A retarded (or causal) Green's function Gr(t) is defined to

satisfy the equation of motion (3.1) subject to the boundary conditions,

6(t) = L6 (¢) =0, v <0 (3.6)

Likewise, it is possible to define an advanced Green's function with

boundsary conditions analogous to (3.6) for t > 0. For a system with

time-reversal invariance, Gr(t) = Ga(-t).

Formally, the inversion of the Fourier transform (3.4) is given by

(3.7)

Git) = ;:-tfdw e-.‘wt(Mw”—QY'

However, G(w ) has simple poles on the real axis, and in order to carry

out this inversion, it is necessary to make some prescription for integra-

tion eround these singularities. The choice of integration contour that

is made is related to the boundary conditions imposed on G(t). Forra de~

scription of the sys“em in terms of retar" ' ™ een's functions, Gr(t)

vanishes for t ¢ 0, and for advanced Green's functions, Ga(t) vi. ishes

for £t > 0. For the former description, it is necessary to integrate

above the poles of G(w), and for the latter, below ihe poles. Thus, for

example,

= L
G, (&) = A ¢ —oF AT

s dw e-;th(u)) = lim i s\ dw @,_ith(u)q-ig)
T on

(3.8)

MR
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where the conto.r T' is shown in Fic. 3.1 below.

Fig. 3.1: Integration contour for Gr(t)

A similar result holds for the advanced Green's function Gy(t), for which

G{w-ie ) appe rs. These rules are conveniently summarized: G(wtig ) is

us.d for G, a(*), respectively, when the transform (3.4) is formal.; in-
1)
verted. It is, of course, always tacitly understood that the limit g — 0%

is no he taken in all of the final results.

For a la.tice driven by an external force, F,( £k,t), the equation

of motion is

d* N ey
[M;t-,_ + & I u(t) = F(t) (3.9)

PSR

The response of the 2 ttice can be expresszed directly in terms of the

Green's function:

wit) = - {M'G(b-—t') Fit') {2.10)
J

The use of the retarded Green's function is, perhaps. the most natural,

since this description preserves the cause-and-effect order of stimulus
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and response: 1o excitation occurs at times beforee driving force is

applied. In that case, the lattice response is given by

U(t) = -

at' G, (t-t') F(t") (3.11)

t——

The causal Green's function Gr(t) shall be used in most of the subsequent
development. No consequence of physical importance can depend upon this
completely arbitrary choice of description. Trfor a coherent driving ferce

of the form
o

F(t) = folw e~ twt Fw) (3.12)

the lattice response is, from the rule suggested atove,

. °; —wwt
uWt) = - lim | dwe Glw+ig): F(w) (3.13)
€—» 0% J

The ie artifice in Eq. (3.13) is, of course, just a symbolic way of
stating that the w-integration is t¢ bLe carried out along a contour
slightly above the real axis. Note that, along such a contour, F(t)— 0
88 t— -, 80 that the causal description is conzistent wich an "adiabatic"
{i1.e., slow) switching-on of the interaction in the distant past.

For the harmonic luttisne (to whi.h we shall limit the present work),
it vas possible to obtain a simple, explicit form (3.4) for G{w) that
was anaiytic everywnere except for roles on *he rerl axis. The signifi-~
cance of that statement can be made mors precise, if we define, for com-

Piex z,

LTI RO SOOI TR TTENTY: S0P
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Gralz) = [ at e'*t Gy o (t) (3.14)

If we assume that the inversc tr~-sform G, Jfw) exists--i.e., that Gr
bl 8

exists for all z on a contour (above or below) and infinitesimally clcse

to the real axis--then we are led to the general property that Gr(z) is

analytic in the upper half-plane, and Ga(z) in the lower half-plane. In

general, if G(t) is defined &s

r ,
Gr(t), t
G{t) = (3.15)
G {t), t <0
a

N
<

then the Fourier transform,

Gr(Z)’ Imz >0

W)
;—l
o~
~——

Ga(z). Imz <0

is analytic throughout the entire complex frequency plere, except Tcr the
real axis. In more coumplicated probvlems ianvolving anharmonic forzes, Eq.
(3.4) no lenger holds, although these general analyticity properties con-
tinue to ve valid. If the modes bpecomed damped by snharmonic fcrces, the
singularities for Gr(z) will be moved off of the real axis into the lower
half-plane, and those for Gp{(z) to tie upper half-piane.
There are some uscful relations that e.ist for G, ,(z). First of

all, the rule developed earlier for specifying the contour of integration

can he expressed symbolically as

Gr giw) = lin Glwiie) (3.17)

€-aot

(z)

AT Y
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For & general system,
6, (z) =6, (-2") " (3.18)
and feor a system irvarisnt under time-reversal,

Gp alz) = Ga,r('Z) (3.19)

The latter relation and the definition (3.16) lead to G(z) = G(-z) for

systems that are invariant under time-reversal. Notice that the result

(3.4) for the harmonic lattice obeyed this requirement. For real w ,

(3.18) and (2.19) can be specialized using (3.17) to give

G(-wtie) ¥ (3.20)

Glw+ie )

Glw+ie ) = G(-w+ie ) (z.21)

which arc the Jorms encountered most frequently in the subsequent work.
As a simple example thet will motivate trhe use of Green's functions

for later discussions of phonon optical properties, consider & classical

linear system driven by a randcm, fluctuating force F(t). The average

pover absorbed in such & system can be expressed as

P=(Fit) uit)d= -J' dt' (FOFEND- £ Glt-t)  (3.22)

vheve the drackets { ) represent an average over s statistical ensemble

of systems. For the variables F(t), u(t) it is not meaningful to intro-
duce the Fourier tresnsform, but it is possible to define the Fourier trans-

form of the correlaticn function R(t',t) = { F(t')F(t) > for stationary

random processes. In that situation, the correiation functicn R depends

il
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only upon (t' - t), and if we define
R(w) = [ av e™T(FEIF()) (3.23)

"
(]
e |

the pos can be written

21

_‘_[ dw (iw) [ A e TR FE)D) - Glwrie)

= dos (w) R(w) - G(w+i8)

L
2w

P —1

Since R(-w) = R(w), G(-w+ie ) = G*(w+ie ),
){ Adw w R(w) Im G(w+:€) (3.24)
-]

and the spectral power density vecomes

P(w) = -~ 2L lim R(w)Im G(w+ig) (3.25)

T €06

This simpie classical example is an illustration of the usefulness that
Green's functions have for the calculation of power absorption spectra
in physical systems.

Another simple example is provided by the phonon density of states,
which can also be expressed in terms of the imaginary part of a Green's
function evalua*ted as w approaches the real axis. It is easy to verify
that, if a new {(Green's) function H{t) is defined as h{t) = M aG/ét, and

thus,

Hw) = — iw MG(w) = — iM~E_L__Mm™" (3.26)
w D

1Y
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the density of phonon states will be given by

\ 2w A
plw) = 3N Z_ S(w—ws) = 3KY.JTY{M Im G(w-e-cs)}

. 2
3wr N

Re Tr H(w+i€). (3.27)

When a more general approach is introduced later to develop the Green's
furction formalism quantum mechanically, the "conjugate' Green's function
H will achieve more significance.

For a perfect lattice with translational invariance, the Fourier

transformed Green's function is
G W) ' = M,w'— 3°. (3.28)

In terms of the dynamical matrix D° = MQ";i $° Mo";ﬁ. defined in the earlier
discussion of the phonon modes of the perfect lattice,

Va 4 ~ 2,

(-]
L‘Ji-— DO

G (w) = M, (3.29)

If we make use of (2.33b) and (2.48), the unperturbed Greeu's func“ion

G° can be written in spectral form,

Go(wy = M* ) Rad<kol o (3.30)

L
Re W — Wi,

Then

(RKMIG-°(w3'\£'x'g> = M:hz (el koY Ral '8 Mo

.2 s X -
— W — W3R, (3.201)

which becomes, after iaserting the expression (2.61) for the transforma-

tion functions {ixx| ke,




G:p(lx,l‘n' . w) =

’

\ Z e““(kh‘gl'*') Wo (k{Re) Wat (k' IRe) )

T [7.Y
N M;h K‘ wl— w‘id’ MK‘

(2.32)

For a finite lattice, the Green's function G° has poles along the
real axis which become densely spaced as N-+o® . In an infinite cryctal,
G°(w ) will thus be analytic throughout the entire complex frequency plene
except for branch cuts along the portions of the real axis corresponding
to the (positive and negative) frequency bard(s) of the crystal. Tais is
iliustrated in Fig. 3.2 below for a crystal that contains only one phonon

band.

Complex w ~-plane

- Wi Wen

Fig. 3.2: Branch cut for G°(z) in an (infinite)
crystal conteining one phonon band.

Specifically, if w ( > 0} is in one of the vibrationzl frequency bands
of the lattice, then the Green's function G°(z) will exhibit a jump dis-

continuity as z crosses the real axis from w+i€¢ to w-ieg
G’ (wxie) = h(w) Tth®(w) (3.33)
vhere the matrix h(2)(w) is given by

R (w) = 1 M]3 (wie D) M (3.3L)
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with the matrix § (w?- D°) defined in terms of its spectral representa-

tion,

- 1 e 2 -
S (w*—0D°) = /. ko) ¥(wi— wg ) Re) (3.35)
ko
The real part, h(l)(U)), is given by a Hilbert transform,
h*) (w’)
| kA
h (w) = — Pf Ao 3 (3.36)

BANDS

. The matrices h(l){u)) and h(e)(u:) can also be expressed in the crystal
1

lattice site representation | Axa) , by the rule (2.61) given earlier.

Thus, for example,
hi::‘(lx, L'y w) = <£Ku | h® (W) I l'u'p>

S 2z o iR (EIK-’EI'K') -
= N(MKMK’)'/‘ Zo S(w -«-wkd‘) e wu(K‘k«)w:(Kliko')
-4

(3.37)

Clearly, if w lies outside of the phonon frequency vands, the imaginary

part h‘a)(ug) of the Green's function will vanish, since the delta-func-

\ tions can only mske a contribution when w is in a band of phonor frequen-
13

cies. Eq. (3.33) shows “hat the imaginary part of G°(z) changes sign as '

the branch cut on the real =2xis is crossed. 3
‘ So far, all thet has been empnhasized is the usefulness that Green's E
functions hsve for .escriting the respciase of a lattice to an external
force.

However, the Green's function formalism also arises naturally as

the most converient mathematical framework for studying the perturbation

on the lattice dynamics ol & crystal containing defects.

Their usefulness

I
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for expressing concisely the coupling of an impurity site with the rest
of the lattice will become apparent shori.ly. These techniques are, there-
fore, ideally suited to the study of optical properties of defects, since
Green's functions contain, implicitly, the complete information about the
perturbed eigenfrequency spectrum, and represent the response of the lat-
tice to external electromagnetic fields as well. In principle, the de-
termination of the normal modes of the perturbed lattice would provide

a complete solution to the impurity problem, although such detailed in-
formation (even if it could be obtained) would not usually be of direct
usefulness for discussing the physically observable properties. As the
simple examples above have suggested, many quantities of physical inter-
est (suéh as Raman and infrared spectra, phonon density of states, etc.)
can be related directly to certain Green's functions. In the next sec-
tion, it will be shown how Green's function methods can be used (in the

barmonic approximation) for the vibraticnal impurity problem.

3.3 Lattice Dynamics of Defects

The Green's function G{w ) for a general lattice containing an ar-
bitrary configuration of substitutional impurities was given by (3.k),
and this can be related to the Green's runction G°(w ) for the unperturbed,

perfect lattice, Eq. (3.28), by
Glw)'= 6°tw) '+ v (3.38)

where the defect matrix V is defined hy

= (M=t w* — (§—3°) (3.39)
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it

Thus

G(w) = G (w)— G (WY VG (w) -

Gw) = [1 + 6°(wWV] 6°(w)
= 6*(w) = G () V[ 1+ e (V] 6°w) (3.51) :-

Klein(gh) and Benedek and NardelliigS) have discussed the defect problem
from the point of view of phonon scattering and the T-matrix (the T-matrix
in (3.41) 18 V(1+6°V)™1 ). 1In principle, Eq. (3.41) represents the solu-~
tion of the problem of an arbitrary configuration of impurities, although
for a general defect matrix V, it has little practicai usefulness for
providing any explicit knowledge of the nature of the perturbed modes, - ‘f
or for changes in actual physicel quantities. However, if we restrict :

our attention to the problem of a single isolated substitutional defect

in an otherwise perfect lattice, it is possible to obtain several useful
results from this formalism. Since the use of Green's functiont for im- E
purity effects on lattice dynamics has been thoroughly discussed in *le
litzrnilure, particularly in several excellent review articlee(l‘sk-so), ?
only a brief account will be given here.

For the vibrational problem, the introduction of a substitutional
point defect will involve changes ir the zass and force coastants. The :f
situation is, of course, more cruplicated for def-cts such es molecular
impurities, or interstitial impurities, sincc extra degrees of freedom
are Added to thz prcblcm{57’96’97). The transistional symmetry of the
perfect luttice is destiroyed, and the normel modes can no longer be i~

beled vy a wave vector K. The great simplificatious thnat trarslational




4 S8 8 AR 5 S ST S e s i

~52-

invariance provided for the reduction of the secular equation to the 3r x
3r form (2.54) no longer obtain, and all ihat remains at our disposal is
the point group symmetry that characte:rizes the impurity site and the sur-
rounding lattice. For the problem of a single substitutional impurity,

the exploltation of defect site symmecry and the use of matrix partition

(57,95,98)

techniquecr makes it possible to obtain several useful, guanti-

tative results from the basic equetion (3.L1), provided that the space

affected by the defect is not large. Define

[ 1 . C
& | %12 Vo O g% 16ip
' )
I I S DU o e
¢ : ’ Y : 2 GO = 0 :L o (3-)42)
G21 1 G2 O 4 O G21 | G22

where the first set of rows or columns in each partition refers to the
impurity subspaca. If there are a total of n sites affected by the intro-
ductinn of an impurity, then the matrices g, go, and v, will be 3n x 3n.

From (3 40), (3.L1), one can shcw that

glw) = [14 ¢wIve ] g%w) (3.143)

The frequencies of the perturbed spectrum, which are the discrete poles

of G for a rinite lattice, are given by the secular equaticn, (3.5). Since

-4 TT(w-L—'—- u)’l.)
det {1-%- gV |= S0 DI >

det G°(w) det Mo TT (w'—wg,)

Ro

it follows from (3.5), (3.42) that the solutions to the equation

et [ 1 gorv] = o (0
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will give the frequencies of those nodes wai 2 ure perturbed by the intre-
duction of the impurity. ‘faus, for a localized defect described Ry T
the p-otlem can Ze reduced to a form in which only those Green's functions
defined for the (small) impurity subspace are involved. The way in which
e. defect is coupled to a pure lattice is thus expressed concisely in

terms of the Green's function forralism. There is an extensive litera-
ture on the nature of the solutions for {3.%4), and no attemp: will be
made hgre to duplicate the excellent accounts elsnwhere, except for a few
brief remarks.

It has bYeen well known, since the early work of Lifshitz(99), Mon-
troll and Potts(loo), and others(l’IOI’loz) that one striking consequence
of equation (3.44) is the possibility of obtaining "local moie" (or "gap
modé“) solutions that have frequencies outside of the band(s) of fre-
quencies allowed for the verfect lattice. When a defect atom of differ-
ent mass, and perhaps characterized by different "spring constants," is
introduced substitutionally into n perfeci lattice, it may have vibra-
tinnal propert;es considerabiy Aifferent from those of the hos{ atom it
replaces. As a simple example, when a light defect mass replaces a heavy
mass in a one-dimensional chain, & mode can split off of the top of tae
vibrational continuum to produce & local mode. Because modes with fre-
quencies outside of the band(s) are not prcpagated by the nerfect crystal,
these so-called "local modes" are actually characterized by a high 3degree
of spatial localization around the defect, and the vibraticns of the atoms
in such a mode fall off rapidly with distance away from the defect aite.
Similar effects result from changes in the force constants. In three di-

mensions, there is generally a critical value for the mass or force con-

it
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stant change tha must te exceeaed in order to produce these effects.

The in-vand modes will bLe perturbed cnly s»lightly, with frequency shifts
of order 1/N in the quasi-continuum. As ~ -» oo , the change in the band
frequencies will approach zero, and in thatv limit, g {w ) will become &
principle part integral (which is just Re g°( w+i€ )). Since its solu-
tions descrive orly the perturbed modes, Eq. (3.4L4) will have a solution
only at the local mode frequency in that limit.

In addition to local modes outside of the band, there are alsc inter-

1,153-110)

esting resonance phencmena( that can occur inside of the band.

The expression for many physical quantities (that can be related to the
Green's function ) will contain an inverse, (1 + g (w+ig )vo)'l. In-
side the Pand, the imaginary part of go(co+i8-) is, in general, non-zero,
end if there is some frequency w, inside the band for which the.real part

of detil + go(uk+i€,)v01 vanishes, this can lead tc a resonant behavior

at that frequercy with a "width" related to the imaginary part ol g°(w+ig)v_.
) o

For example, if & sufficiently heavy defect is introduced into a par-
fect lattice, it will prefer to vibrate at & lower freguency than the ty-
pical host atoms, and this can resuit iu a low-freguency, in-band reso-
nance. BSuch "resonance modes" have often been loosely characterized as
being at frequencies where a local mode would like to exist, but cannot,
since the phonon density of states for the pure ciystal is non-vanishing
there. Such a ("quasi-local", or "virtual") mode would be atle to decay
into the continuum of neighboring band modes, and this mechaaism would
make the lifetime finite (or equivalently, give a "width" to the resonance).

Ir contrast, of course, a true local mode that lies in a gap or abcve the

| maximum frequency of the unperturbed lattice is all by itself, and is un-

|
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able {in the harmonic approximation) to decay into any of the other mcdes
of ‘he lattice.
Similar phenomena, such as lovel and resonance mode vehavior, have

(83) 86) yone(88)

been discussed by Wolfram and Callaway , Wang and Callen( , Hone
and others for single impurities in magnetic systems. ¥ impurities are
introduced into ferro- or antiferromagnets describzd by a Heisenberg hamil-
tonian, the situation is analogous, in many respects, to the lattice vi-
brationel problem in the hermonic approximation. At low temperatures,

the system is described by nmon-interacting spin waves (magnons) which play
the part of phonons. The magnons reprr:sent wave-like spin-deviation
stutes frem the ground stete, Just a3 we cen consider phonons to repre-
sent vwave-like displacements of atoms from an equilibrium configuretion.
(Spin waves are discussed in Kitte1(39) and in a review article by Kran-
kendonk and Van Vleck(lll).) The ferro- or antiferromagnet consists of a
system of spins localized at fixed lettice sites, and coupled by pairwise
exchange interactions. For the perfect system (Just as fcr tke phonon
problem) the normal modes are a set of magnon states described by disper-
sion curves giving energy versus'i. Once again, defects are considered

in the approximation that the perturbation they produce is spatially lo-
calized. In the lattice site representation, this means that the change
induced by the impurity on the exchange coupling constants (which are ana-
logous to "force constants") must be localized ncar the impurity site.
Furthermore, a general substitutional impurity can also involve a change
in the spin. Although the formulation of the spin problem requires the

quantum mechanical Green's funct'!on formalism, all of the results discussed

above for the lattice dynamics of defects have their counterpart in magne-
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tic systems. As would be expected, it is possitle to obtai.. for &ppro-
priate defect parameters, localized modes outside of the (magnon) bands
of the perfect lattice; it is also possibie to observe "virtual" or "reso-
nance" modes, with finite lifetimes, within the band(s)(90~93).

The electronic impurity problem for a substitutionsal def'ect was first
treated by Koster and Slater(sl), and it has alsc been discussed by Wclff(622

(63), Friedel(65) and others. For this type of problem, we are

Clogs*on
interested in the effects of & highly localized impurity potential on the
wave function of an electron in an otherwise perfect, translationally
periodic, crystal field. By expanding wave functions and operators in
terms of Wannier functicns (states which are highly localized about atomic
sites) it is also possible to treat the electronic impurity problem by
Green's function methods analogous to those fo: lattice vibrations. If
th2 perturdation is sufficiently large, .lectroaic bound states analo-
gous to local modes can appear outsicde of the emergy band{(s) for the pure
crystel. Eﬂliott(sg) has given a good simple example to iilustrate the
electron impurity problex: Surpose a single defect is introduced st the
origin of &n "empty lattice", dascribed Dy & single tand of free electrons
with energies E(K) = £%%%/2n. Tre single impurity problem then consists
only of the defect potential at the origin, and al) that is reguired are
the solutions for the electron wave function in a potentisl well. Con-
sider an impurity potential such as that illustrated in Fig. 3.3 below.
The positive energy solutions correspond, by analogy, to the continuum
band modes of the vibrational problem, and except for an asymptotic phase

shift at large distances, their wave functions are not appreciahbly altered

from the free, plene-wave solutions, except in the vicinity of the defect.




If the well is sufficiently complex that it attempts to form a bound

3 state at an energy of one of the continuum states outside of the well,

: then a virtual or resonance state will form which can decay, with finite
E probability, through the barrier and into the potential-free region. The
rTobability density of o state with energy E1 will be resonantly enhanced'
F 1.. che region of the defect well. Likewise, if the well is deep enough,

it can form true bound states, with an energy Eo outside of the continuum

energy band; such a state is analogous to the vibrational local mode.

[

Fig. 3.3: One-zlectron impurity potential for the "empty lattice"
with a single, substitutional defect at the origin. E
repres:nts a true bound state, and E; a virtuai state.

(e}

For further details concernii gz the electronic and magnetic impurity

problems, reference can be made to the litereture, and especially c¢o the
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review article by Izyumov(sh).

Let us now return to the lattice vibratior prcblem. The introduction
of a single isolated defect can, under favorable conditions, cause one of
the modes of the perfect lattice to split off from the continuum and form
a localized vibrational mode. Whren many impurities are present, they can
interact (even.if only indirectly through tue intermediate coupling with
other host at.ms) and it is possible to produce a more complicated local
mode spectrum. For small concentrations, the defects will be far apart,
and the results for the isolated impurity problem will be adequate for
many purposes. However, depending upon the configuration of the impuri-
ties, the multiple impurity prcblem can, in general, become very complex.
For example, the localized mode structure may contain many components from
"islands" of adjacent defects, end these localized cluster effects can
beccme important for some problems if the concentration of defects is not
small. Many authors have studied the local mode structure for the multi-
ple-impurily problem exactly for simpie models in conjunciion with the
random crystal problexm. This topic is, therefore, properly poStponed

until Chapter V, where we will discuss disordered laiiices.

3.4 Quantum Mechanical Double-Time Green's .anctions

Zubarev(hé) has given an excellent review of the theory of quantum
mechanical double-time Green's functions, which have recently beer used
in a variety of statistical mechanical, impurity, and many-body problems.
As we shall see, one of ithe basic, simplifying features of the harmonic
approximetion makes it possible to use, equivalently, either a classical
or quantum mechanical formulation for tle lattice vibration problem. How-

ever, the quantum mechanical framework is far more versatile, in general,
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and it is unecessary for extending Green's Tunction methods to magnetic
and electronic systems, which carnot be Jescribed by classical equations.
Even for the lattice vibration problem, where a classical description
could suffice, the gquantum mechanical formuletion hes many advantages,
for it expresses results as thermally averaged correlation functions.

In the harmonic approximation, a certain quantum mechanical Green's
function will turn out to obey the same equation of motion as the classi-
cal function G, introduced eariier in Eq. {3.2). When anharmonic inter-
actions are included, the clussical differential equetions of motion for
the lattice displacements becomes non-linear, aid a description of the
system in terms of the classical Green's function G(t) is not availsble.
It then becomes necessary to resort to the more general quantum mechani-
cal formulation of Green's functions.

Withir the harmcnic approximation, a simple, linear, second-order
differential equation, in closed form, describes the time evoiution of
the classical Green's function G(t). This led to a simple, explicit form
for the Fourier transtorm G{w ), given by (3.4). The preserce of anhar-
monic interactibns, whick requires the quantum mechnnical formalism, leads
to the necessity of defining en infinite heirarchy of Green's functions,
coupled by an infinite sequence of equations of motion. For the quantum
zechanical Oreen's function G{t) that is anal.zous to the cl ssical one
in the harmonic approximation, there would no longer be a simple equation
of motion in closed form, and it would no longer be possible to obtain,
aimply, the Fourier transform G{w ). Further remarks shall be made at

the appropriate places below.
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The retarded and advanced Green's functions (at some finite tempers-

ture T) for two Heisenberg operators ..(t) and B(t') are defined by

Gy (t—t) =

G (t-t) =

and

Low-t) ( [A®. BN ), (3.458)

—oe-e)([AW), B&H] ) (3.45D)

AB
(Gr (t), t>0

t) = (3.lLs5e)

GaAB(t), t 40

GAB (

where 6(t) is the unit st p-function, defined by 8(t) = 0 for t ¢ O,

and 8(t) = 1 for t >0.

The brackets >T represent an average over

a thermodynemic ensemble defined by a density matrix Po= é-ﬁjc, where

"

T is the temperature and p = 1/kT.

I.e., for «n operator A(t),

(Atry = Te (paA®)) _ T [e F¥aw)]

Tr pa Tr(e"px)

In order to motivate the quuntum mechanical definition for the G.een's

function givea above, it is instructive to show it arises naturally in

expressing, to lowest order, the driven response of a system, in thermo-

dynamic equilibrium &t teaperatur~ T,

to an exterrally applied field. IlLet

the unperturbed system be defined by *the hamiltonian ¥, and suppose that

an external perturbation is applied, which couples a driving force F(t)

to some operator B. I~

“te Schr8dinger picture,

H = 2 4+ B-Fi&)
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In the Schr8dinger picture, the state of the system (in this case, e.g.,
described by & density matrix P ) evolves in time, whereas in the Heisen-
berg picture, the state is regarded es remaining constant (i.e. p,), and
the dynamics is described by time evolution of the operators. The evolu-

tion in time for an operator A(t) is described by a unitary trensformation,
ate) = u(t)t A u(e) (3.46)

vhere

t
UR) = exp(—tatt) ( exp — i g dt’ B(t) F("'))+ (3.47)

The erpression on the right contains a time--ordered exponential, (exp...)+,
which is defined formelly in terms of its expansion by & rule that states

that all operator productc are to be ordered in such a wey that later times
t(llE)_

occur on the lef The operator B(t) is given bv

BU)= erp(1t) B exp(—13t) (3.48)

which defines the interacticn representation for the complete system

(including the perturbation). Note that B(t) is Jjust the Heisenberg
operator for the system without the perturtation.

Then, if it is agssumed that there is no static contribution from
Tr(poA), the response in the operator A due to thz coupling of B with an

external driving force F(t) is, to lowest order in F,

t
(AR = - i Ir at’ (A, Bt ) Ft)
= j At G-t FiY)

(3.49)




If the time-ordered exponential in (3.47) had been expanded further, higher

order terms which are non-linear in the driving for-ce F would result. Such
terms would be useful, for example, in obtaining quantum mechanical expres-
sions for the non-linear susceptibilities in optics(ll3 c

For the case of an external field of frequency w that is switched on
"adiabatically" (i.e., slowly) in the distant past, given by the real part

of

Fw(t) = exp(-iwt +gt),

the response becomes

A, = X (w)- Rol) (3.50)
where

XA (w) = G*®*(w+ie)

(3.51)

The linear susceptibility is, therefore, Just tne Fourier transform of a

double~time Green's function.

The equation ¢f motion for the Green's function GAB(t) can be obilained
by invoking the equations of motion for the operators A(t), B(t, which, by
definition, evolve in time as Heisenberg operators of the unperturbed

system, viz.,

A(t) = o2ty 1T (3.52)

Then

:a/at Aty = [ate), 7, (3.53)

which is the familiar Heis-=nberg equation of motion for the unperturbed
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system (i.e., with no external driving fields). The equation of motion

A Y,
for G“"B(t} becomes

L 26w = S ([am, BT,

+ oy ([ [aw, ], B(e)]) (3.54)
My

The presence of the 3 (:) allows the first term in (3.54) tc be written

as an equal-times commutator, S(t)( [ A(0), B(0) ] >T' The second term
on the right is a new Greea's funciion, and this is a genern) characteris-
tic of the quantum mechanical theory: successive difrerentiations will
continue to generate new Green's functicns on the RHS, leading to an infi-
nite heirarchy of coupled equations.

By specializing the operators A, B, the quantum mechanical formalism
could Ve applied to vibrational, magnetic, electronic, or other systems.
(For the electronic Green's functions, anti-commutators must be used.)

In the present case, we wich to discuss the vibrational problem. For an

arbitrary crystal lattice, we can define a (retarded) displacement-dis~

placenent Green's function G, and a momentum-displacement Green's func-

tion H as

G«ﬂ(LK, L’K"‘ t\ =

1 . N\
= 08 ([ualti,t), upt, )] (3.550)

Hopg (K, 2k’ t) = -;—9(*)([‘7«(2"-{5). uﬂ(’e""’o)])r (3.55t)

where Rx(l'(’t)'= M‘lxdud(,lu,t)/dt is the conjugate momentum operator.

By differentiating once,

3
E
:.’3:3
= L
=
=
§J
3
=
=

it
L

H
Lo iialut Wt Ul el

+

1Lidh
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d L} \
_—dt MlKGNp(ZK,lk;t) = Haﬁ(lg'l',";t) (3.56)
and

Tt (et ) = 13 [hate0), uallei0)])

-0 ([ [patarit), BT, wecrn, 0] (aosm)

The right herd side of (3.56) contained a term with 3(t) which vanishes
because it included a [u,u] comnutator. In the harmonic approximation,
the right nand side of (3.57) does not generate any new Green's function;
in fact, it reproduces the original Green's function G. By invoking the

equal~time commutator relations,

[ P (i, £), ug u'x',t)] = L Sun Sue S (3.58)

it follows, in the harmonic approximation, that

}
[pultn.t), ] = T;, Cuy (0, Xk U (LK, ) (3.59)
Ky

Eq. (3.58) and (3.59) can be used to simplify (3.57), which becomes

d N ', = ,
aszf.:(nK,lK;t) = - a(t)SMSK.Usu

L
—-— ‘Q L” o — . ooy g\ .oy
2 Fa, (e, %) D O@([uy('8), up (L, ) ]y

By
(3.60)
The original Green's function G has reappeared cn the right hand side.

In metrix notation, (3.56) and .3.60) become

MEG = H (3.61)

.
At
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E%-H = —-—3G - §@#)1 (3.62)

By differentiating (3.61) and using (3.62), we obtain finally

d* - _ (3.63)
(Md—_;—z—’r Q)G $Ct)1

whizh is identiecal to the equation of motion (3.2) for the classical
Green's function G introduced earlier. Recall that H(t), the “conjugate"
Green's function, occurred earlier in connection with the phonon density
of states (cf. Eq. {3.26), (3.27)).

With the inclusion of anharmonic forces, the simple form (3.59),
(3.62), and (3.63) no longer hold. The presence of anharmonic terms is

the hamiltonian,

1 5
VA = "6—' Z @d.dtua (llKl 3 LLK1)13K3) ud' \LlKl)uuz(o(IXQ.) ‘u’dg(lSKS)

ik,

Ly Kooty

Ly katty Al Z @(:,z,sﬂ)uh)u'@)u(s)u@)+,,,
24'5u;4

(3.64)

will modify the commutation relation (3.59):

[Pulli,4), 2] = LZ D o, (LK, 40k 2wy, (LK, ¢)

Y Lixa,
! q N
+ — Z ‘iu"x‘(&x, Lik,, Roke) U, (LR E) U g, (a Ka ) + ..

(3.65)




The equation of motion (3.63) is now replaced by

- 2
§_‘ [ l\A Ak Su‘ Sy_K. Sm' ;tz + @uql (x-l(; L| K-)]Gu'p(l.l(.,ﬂx'jt) =
Lixa,

-~ S(t) S“p %u’ SKK' - i,' Z @o(u.uq_ (zh, 2\ Ky, ‘ez.‘(z) X

LK,
,,-1, Kty

00 ([ e e, wp ]
(3.66)

and nev Green's functions occur on the RHS. The calculation has imme-
diately become a more complicated many-body problem, and requires some
sort of truncation approximation to terminate the equatioﬁs. Since the
simple closed form (3.63) for G(t} is no longer valid, it is no longer
possible to use the simple form (3.4) for G{w) if the harmonic approxi-
mation is abandoned.

Frequently, the Fourier transform of certain thermally averaged cor-

relation functions of the form RAB(t - t') = CA(L)B(¢")D T appeer in

the treatment of physically observable quantities. The spectral density

function,
oK
J'AB/ r .-.uf 4 A sy r-,/.‘\\ (3'67)
w) = J dt e QA‘)D\'//T. :
- oD

can be expressed in terms of the Green's functions GAB(cu) in & relatively
simple way. Since A(t) = exp(i®t) A(0) exp(-i%t), it is possible to
exploit the formal similarity between time and temperature dependence in

the thermal average,
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(BOAWY) = % Te{ € B(o)e ®t a(oy &1 } (3.68)

where Z = Tr(e'pm) is the partition function. Simple rearrangement,

using the cyclic property of the trace, leads t

(BOAMWD_ = (A(t-ip) B(o)) (3.69)
so that
f dt eiwt<[A(t),B(°)]>T = (*—e ,T"w) (3.70)

Again, the i& artifice can be used to express

(- -]

GAB(‘U:‘t ie) = f dt ei“tGQ:(t) (3.71)

Ll - -

Subtraction of the (two) equations (3.71) gives

i[ G‘“(m+;e)_G’“°(w_.;e)} - fd:(: e"“’t<[A(t),B(o)]>1_ (3.72)

where the relation [8(t) + 8(~t)] = 1 has been used. Combinetion of
73.70) and (3.72) leads to a final result which is a useful relation(hs)

expressing the spectral density of the correlation function <A(t)B(O)>T

in terms of the Green's function GAB(w):
J(w) = & [1 + n(w)] bim [GAB(uH-i,z)- GAs(w-ie)] (3.73)
€-» 0ot

where n(w) =[eP® — 1]-1 i: the Bose distribution function. It is pos-

lh'\

i
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sible to express each of the Green's functions GrAE(uJ) separetely in
k]
terms of the spectral distribution JAB(w) vy meking use of a convenient

representation of the 8(t) step-ifunction,

6 (t) = ."_j dw' ¢ (3.74)
2 w4 e
Then
-3 -]
ARy 1| B0 g e (CF Y TAw, B(0)]
G""‘(w) T T ax g w4 ie f < >T (3.75)
- 00 - 00

which can be reduced, by means of {3.70), to yield

ey o | (| ey T 6
GY.‘L()_ 2 J (\ < )m (3.76)

The formal rule

;_:;_i;.. — P(—_}-):F i d(x)

can be invoked to express {3.76) explicitly:

Y, & w — w'

s AB ' . AW
G*® (u,)r.;_wp[ dw’<1_e—pw) J A% (w') = %(1—-9_” )J—Aa(w)

(3.78)
The displacement-displacement Green's function G defined in {3.55) can be
used to evaluate the Fourier transform of a certsir correlatior function
that will occur later in the theory of first-order Ramen scattering from

phorons:

,[ al e;“’t<uu(2.¢,£)up (l’x',D)>T = _z[tn e"“"]'1 Im G,, (te,2'x'; wie)

(3.79)
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IV. THE PHONCN CrIICAT, PROPERTIES

4.1 Raman Scattering

The Raman effect is an inelastic scattering process in which light,
interacting with matter, can transfer energy to (or receive energy from)
the material system. 1In the present case, we shall be concerned with
Raman scattering from lattice vibrations, which involves the creation or
destruction of phonons when light interacts with a crystal. Raman scat-
terinq from other excitations--e.g., spin anes(llhills), electronic

(*16’117), and perhaps plasmons(lla), etc.-~is also possible.

states
An electromagnetic wave can be coupled to the prhonon modes in a
crystal by means of the electronic polarizability, and the scattering me-

chanism is the fluctuations in the polarizability that are induced by the

lattice vibrations. Classically, the effect can be pictured as radiation
from sn electric dipole that was induced by an incident light wave, and
vhich is mcdulated in time because of the coupling of the electrcnic mo-
tion to the lattice mode oscillators. If we neglect the effects of reso-
nant enhancement that can result when the incident frequency wj; is near
an electronic absorption band of the crystal, then the Ramean effect is

not sensitive to the frequency wj. Loudon(llg) has recently given a com-
prehensive review of Raman scattering, and severai other authors have
treated(120'123) specific aspects of the theory of RS from phonons. Ex-
cept for some of the more basic details, it will not be our pu'pose here
to develop the theory of RS. It will be shown how the scattering inten-
sity from lattice vibrations can be related to certain phonon Green's
functions.

Since energy must be conserved for the totael system of radiation

and matter in the scattering process, the frequency of the scattered light
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is either decreased (Stokes component) or increased (anti-Stokes compo-

nent) by an amount W,

where fiw, is the energy gained or lost by the lattice. The present work
shall be restricted to the first-order Raman effz2ct, in which a single
phonon is created or destroyed in the scattering process.

The wavelength of light is very long compared with typical lattice
spacings, and the conservation of momentum implies that the phcnons ex-
cited in the first-order Raman effect will have a very small wave-vector
X relative to the allowed momenta of the first Brillouin zone. The ap-
proximation can be made that .ﬁzo, and the first-order Raman spectrum
will exhibit a series of lines that correspond to certain optical phonon
frequencies at the center of the Brillouin zone. There are also selec-
tion rules involved, and only lattice vibrations having certain types of
symmetry can give rise to first-order Raman scattering.

Group theory(eg) provides the selection rules by which one decides
vhich modes are Raman-active, infrared-active, or ncither ("silant modes").
Raman-active modes must transform, under the operations of the crystal
point group, like a second rank tensor (i.e., according to representa-

2, y2, Xy, ete. basis funetions). For Raman scattering from

tions with x
phonons, one can usually assume the second rank tensor to be symmetric.
IR-active modes must transform according to the representaticns for a
polar vector (x, y, z basis functions). If every atom of the lattice is

at a site of inversion symmetry, all X = 0 phonons will have odd parity,

and there can be no first-order Rawan-active modes. If the point group
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does not contain inversicn symmetry (at auy site), modes can be simulta-
neously Raman- and IR-active, and special complications arise because of

the long-range electric polarization field(25’39’119).

These complications
do not occur in crystals with a center of inversion symma2try, for which
Raman- and IR-active modes are complementary and have definite parity.
Firally, there can be situations where it is possible to have modes which
are silent--i.e., neither Raman- nor IR-active. Loudon(llg) has listed
the forms of the polarization tensors for phonons of given symmetries that
can be used to determine the effect of geometry on scattering intensity.
For the Oh point group, the components of a symmetric, second rank
tensor transform according to (Alg + E8 + F2g)’ and those of a polar vec-
tor according to Flu' Thus, the FZg and Flu optic modes, found in Sec.
2.2 for CaF2 at k = 0, are respectively Raman and infrared active. A ri-
gorous quantum mechanical treatment of the combined system of radiation,
electronic, and vibrational degrees of freedom is difficult, and not al-
ways very fruitful for obtaining practical results. Loudon(llg) and Lax

and Burstein(lah)

have discussed Raman scattering from crystal lattices
in terms of the coupled system of photons, phonorc, end excitons, but
since explicit knowledge of the eiectronic states is impossible, most of
these treatments are only useful for a formal understanding of the prob-
lem. For the first-order Raman effect, involving the creation (or de-
struction) of one phonon, there are several combinations of intermediate
interactions between these three coupled systems that can contribute to
the scattering; it is only of academic interest to examine the elementary

processes individually. For most purposes (including the present work)

it is possible to adopt a semi-classical approach in which the incident




light field is regarded as s classical source, and the qetails of the
electronic states of the system are lumpsd into certain phenomenclogicel
constants that charactecize the pelarizability. The description of Raman
scattering in terms of the polarizability is based on the early work of
Born and Bradburn(IQS) » &and has been expanded into a ve useful formal-
ism by xinn(47),

An incident light field of frequency u)i will induce a polarization,
—iw;t
Ma(t) = 2. R ({T)}; wi)Ep(wa)e (4.1)
A

vhere the electronic polarizability tensor Pdﬁ depends upon the positions
of the ions E}(t), and upon the frequency w, . It is tacitly assumed that
the frequency of the exciting light W; 1is much less than the electronic

transition frequencies, so that E;p will be approximately independent of

u)i(QE’hT). (E.g., a 6328 X helium-necn laser correspends to an exciting
frequency of Wy ~ 1.96 ev., compared to about 6 ev. for the band gap u
CaFa). Furthermore, since the frequencies of electronic motion arz so

high, it is possible to regard the polarizability as a parametric function

of the instantaneous rositions of the nuclei. This "aaiabatic approxima-

tion" is reasonable, tecause the vibrational frejuencies are so iow that
the electronic system always sees, erfectively, 2 static lattice with the
ions in their instantaneous positions. Classically, it can be seen that
the lattice vibrations will induce a frequency-mixing in the polariza-~
tion M (Eq. (4.1)) when Pm‘s is expanded in terms of the displacements
G(Ln,t), which were given by (2.65) in terms of the normal mode oscil-
lators. 1In the treatmeat to be presented below, the vibrational part of

the system shall be treated quantum mechanically.
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The intensity per unit solid angle of the scattered radiation is

given by(as’ﬁV),

4 .
T(w) = 2 Z Mo Np Luy,p5(w) EfES (4.2)
2we® 575

where N is a unit polarization vector of the scattered radiation, and E
is the (complex) amplitude of the clectric field for the incident radia-
tion. 'The scattering tensor idx ﬁs(cv) can be expressed as a Four-

3

ier transform of a correlation function of the electronic polarizability,

Ic

Lay, g5 (0) = j at e " { Pps(t) Puy(°)>_r (4.3)

where Pag (%) is a Heisenberg operator. If P,,(t) is expanded in terms
Ad ap

of the nuclear displacements,

p"‘F (f) = Exp + Z Pag,f.L (1") 'U.'u(ln,_t}-{_ (L.4)
Lxp

and substituted into (4.3), the first term of (4.4) will contribute to
Rayleigh scattering, the second term to one-phcnon Raman scattering, the

next to second-order Raman scattering, and so on. For first-order RS,

Lay,ps (w) = Z P"N‘ () T v (x, Lk w) Pss.v (£'x") (4.5)
Lrp
L'x'v

where

I‘AV('LK! L.K", W) == —2-‘Tt s\dt e.mt<u’L (lK"b) u\’ (L'K"O)>r (L-é)
0
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and has been evaluated earlier {cf. Eq. (3.79)). Thus, the Rauiin scatter-
ing intensity I(w) can be related, by means of the coupling cozfficients
Pu.p H_( £x ), to the phonon displacement-displacement Green's function G,

discussed earlier:

I(w)'\’[n(w)+lllzl. ,P“Y»f‘(“‘)lm Gpu(z“‘ll"'§ w'*"ie)PﬁS,v(x"K’) 'h.7)
XY o
agy$ X Neng Ey E;

Eq. (4.7) is a general result, valid for an arbitrary lattice, and if we
define a column vector p"( Le) = ng Pugp, ,‘( L) Eg, it can be expressed

in matrix no*ation as

T(w) ~ p ImGlw+ie) p (4.8)
For a perfect crystal, the coupling coefficients PZP #(ln) are

independent of the cell index £, and will have certain symmetry proper-
ties determined by the grou, of operations that leave the crystal and the

site x invariant. The symmetry of each site KX determines the form of

the tensors Poup f"'( X ), and provides one point of view for obtaining the
3

selection rules for the first-order Raman effect. Since Pg‘p’,u( k) is

& third-rank tensor, it follows that P° (k) will vanish if K is at

xB,

a site with inversion symmetry. 1In particular, if every atom of a par-

fect crystal is a site of inversion symmetry, then all of the first-order

(o]

bt Y o

order sllowed Raman spectra.

coupling coefficients P (x ) must vanish, and there can be no first-

For a perfect crystal, the sum over all cell indices £, £, in (4.7)

=
will serve to project onto the k = 0 modes. Furthermore, it is only the




Raman-active mcdes that are selected, because of the structure of the
coefiicients Pzp”*(n }. To see this, we shall elaborate somewhat.

In order to treat & slightly more general situation, suppose that
impurities are introduced intc the crystal that doc not significantly
change the Po—coefficients, but which do perturb the lattice dynamics;

the phonon spectral density will then be characterized by a Green's func-

ticn G. Then
L(0) ~ p°ImG(w+ie)p" = Im p"1G(wric)p” (49

where we have inserted the unit operator, 1, between p°® and G. If we use

the jdentity

—

4 ___ _1_ ..E'Rz,‘ = =
“ =T 2. | akpd e Wy (k| ke ) {Re | (4.10)
Re

then we obtain

— =
tR- Reg - ° -

T(w) ~ Z e Wulklke) P Aepy (Rer| Im G(w+)p°

Axp

Be (L.11)
Since the coefficients po|lekpd= p‘;"( X ) characteristic of a perfect lat-
tice are independent of the cell index, the sum over A in {4.11) can be
carried out to precduce Si’ 0° which confirms the above assertion that there

L]

is & projection onto i(' = 0. (Of course, the same thing happens on the

RHS of G if a similar expression is inserted between 5 and p®.) Hence,

T(w) ~ Z { Pa (k) w,‘(xﬁz'-o,u')} (Tz'-o,a-\Im G(w+ie)p®
Kpa
(k.12)
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When the sum over ¥ is taken, the quantity in brackets will vanish for
all but the Raman-active modes. Ve shall illustrate this for CaFe, which
has only the one Raman-active F2g mode. Since Ca—Ca, F1~—F2, and F2"F1

under inversion (about a Ca site), it follows that

QO
P {Ca) =0
[- 4 38
Ak (4.13)
P (F,) = ~P°. (F.)
a1l T Tapa 2

For the X = 0 Flu modes in CaF2, the fluorines all have the same displace-
ments; for the F2g Raman-zctive mode, the two fluorine sublattices have
equal and opposite displacements. The K -sum in (4.12) will therefore

project only orto the i =0 Feg Raman mode. In a crystal such as CaFe,

for which there is only one first-order Raman-active mode,
d . —
I(w) ~ <k=0>c-g l Im G(w+u.e)\ k=o’crk> (L.14)

This equatior applies to situations where the impurities do not change

the P-coefficients. For an imperfect crystal containing defects that 4if-
fer considerably {in electronic structure) from the host atoms the re-
place, the coefficients Pap,,L(LK) will not, in general, be the same as
those for the pure lattice. In particular, they need no longer be indepen-
dent of the cell index £. Because transiational symmetry is destroyed,

it becomes possible to induce scattering from modes other than those at

k = 0. For example, this will be pcssible when impurities are added to a

pure host which has nc first-order allowed Raman effect. In the alkali

(o}

halides, crys’al symmetry demands that &1.11'[’mA p

{x ) vanish, because
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every atom K is at a center c¢f inversion--there is thus no first-order
RS allowed. The introduction of a defect--e.g., a U-center--will lead

to a new set of quantities P (Lk) which depend upon £, since trans-

B, K
letionel symmetry has been destroyed. for every site except for that of
the impurity center.

To calculate the RS intensity fiom a single defect by means of (4.T)
would require knowledge of the perturbed Green's function G(w+i € ) for
every pair of lattice sites in the crystal. For a general defect problem,
it would do little good to assume that the defect matrix Vo is highly 1o~
calized if no restrictive assumptions are made for the polarizability
coefficients Pup,,&““‘ ). Xinh(hn has treated the problem of RS from
U-centers in alkali halides by assuming that the defect induced P-coeffi-
cients are non-.ero only in the localized subspace of the impurity, so
that the sums over (Lx) and ( L'k’) ir (L4.7) extend only over sites af-
fected by v, Then, &1l that is required is g{w+ie ), given by (3.43).
For a perfect latticz containing only a small number of such impurities,
there will be approximate local symmetry about a defect site. It is then

possible to simplify the P (Lk) to some extent by applying a reduced

*%B8, B
symmetry group of operations that leave the crystal, the defect, and the
(nearby) site ( fx) invariant. For a good discussion of the simplifica-
’ - @
tion ot 1uy,ps( ), P"‘ﬁ'f“

metry considerations, reference can be made to the work of Xinh

(£x }, ard other analogous guantities by sym-
(b7)
For a host in which there is a first-order allowed Raman line, the

coefficients P%Lp, (k) will not vanish, but will have a structure which

’-‘
projects onto the X = O Raman mode. The introduction of impurities into
such a crystal again may elter the structure of the P's in the vicinity

of a defect, but the strongest part of the spectrum will continue to be
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a centrallif\-o line. If we define p = p° + dp, then in addition to the
contribution (L.¢) that results in a k=0 projection due to p°, there may

also be induced scattering from the fluctuation term $p:

I(w) ~ Im l- p° G(w+i€)p° 4 p°G(w+ie)dp

Sp G(w+ie)p’ + 5pGlwrie)Sp|  (b.15)

The important thing to be emphasized is that the spectium of Raman
scattering from phonons depends upron a combination of effects--lattice
vibrational characteristics, and electronic polarizability. If the im-
purities differ mainly in mass or "spring constant" characteristics, but
are not very different in electronic structure, it is reasonable to as-
sume that the polarizability coefficients will not change, or will change
only slightly. In any case, some assumptions about the electronic coup-
ling of defects {in addition to those about the mechanical vibrational
characteristics) must always be made if the Raman effect is to be used

as a probe of the lettice dynamics of crystals containing impurities.

4.2 Infrared Absorpt:ion

There are several excellent references that treat ithe dielectriz
prcperties of matter. Stern(lgé) has given a review that covers the gen-
eral field in great delail, and Martin(l27) has discussed, in particular,
the study of ietitice vidbrations by far infrared spectroscopy- Kubo(lge),
Cowley(sl’sg), Maradudin(l), Bilz(129), and many others(18’130’13l) have

used the Green's function point of view to treat the complex dielectric

constant e{w), fror which the absorption, reflectivity, and other quanti-
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ties may be calculated. The review article by Maradudiu(l) can be con-
sulted for many references to vwork on impurity-induced infrared lattice
absorption in crystals.

In the present situation, we are interested only in the infrared
absorption from optical phorons, and shall nnt be concerned with elec-
tronic or other effects. We shall show how it is possible to express
the frequency-dependent dielectric constant e(w) in terms of the phonon
Green's function discussed earlier, just as was done for the Raman scat-
tering intensity in the previous section. The reflectivity at normal
incidence ie usually the experimentally measured guantity, unless very
thin semples are available for avsorption measurements. The reflecti-

vity can be obtained from

g (L.16)

When far infrared radiation impinges on a crystal, it interacts
strongly with only those transverse optical phcnon modes near K =0
which posse s an electric dipole moment. Alithough en accurate treatment
of the interaction requi-es & redefinition of the normal modes of the
total system of vibratiois and radiaticn (ef. discussion in See. 6.2,
§3) we can begin to i .cucz the problem in the limit that the electric
dipole moment fcr these modes is vanishingly small. In such a process,
energy is concerved, and the ubsorption of light energy is accompanied
by the excitation of a phonon, but with no change in the electronic state

of the system. The kK~ o0 selection rule will be relexed if impurities
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are introduced into the c¢rystal, and then light will be able to interact
with other polar modes of the (imperfect) lattice. For a perfect crys-
tal without phonon damping processes (i.e., in the harmonic approximation)
the so-called reststrahlen bands are §-functior absorption peaks at the
i = 0 TO modes whici have vectnr-like symmetry.

Assume that a (long-wavelength) light field, tarned on adiabatically,

interacts with the clectric dipole roment. Mof a crystal lattice:

>
H' = - M-E exp{-iwt+et). (L.17)

This perturbation is of the same form as that considered in Sec. 3.L,
and leads to a response function Xae(”) for < M_(t) > vhich can be ex-
pressed (cf. Eq. (3.50), (3.51)) as the Fcurier transform of the Green's

. MM 3 -
function Gr (t) vetweer twe M-operators:

< Ma(t) >T = g Xgalw) Eg exp(-iwt+et),

where

Ko (w) = o X at <IMLEY, Ma(0) ] > expli(wrie)t] (k.18) :

o
The ejectric dipole moment M can be expanded in terms of the ionic dis-
placements,

M (t) = Z "%a,p(f”() uﬁ(ix.t) +
Lrep

’% Z, Mu,w(lx,l,'x") uﬁ(lx,t)uu(l.'x',t) 4+ ... (4.19)
IK,‘

L'x'v
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The first order coefficient (for the linear term) hus the significance

of representing an effective charge tensor, and for one-phonon absorption
processes, this is the important term. Just as for the force constants
P,8(Rc,2'¢") and the electronic polarizability coefficients Pas’u(lx), the
coefficients Jla’u(zx) for the first order electric moment induced by lat-
tice displacements will satisfy various symmetry conditions(hT). There
will be the rigid-body conditions analogous to (2.13) and (2.14) for an
arbitrary lattice, and the more stringent tensor transformation relations
analogous to (2.28) for a perfect lattice. In some cases, it is also pos-
sible to invoke site symmetry about a defect, just as for the P-coeffi-
cients. If only the first order electric moment is retained, then inser;
tion of (L4.19) into (4.18) gives the one-phonon contribution to the far-

infrared dielectric constant. The susceptibility xqg{w) becomes

Xuﬁ(w) = Z ‘Ma‘#(tx)<ix;&IG(w-f-ie)‘l'x'V>o‘lp,,,(L'x') (k.20)
y 3
£'x'v
For the perfect crystal, the coefficients J‘u,u(‘) are independent of the
cell index £, and because we have again summed over 2, £' (Just as in Eq.
(4.7) and following discussion) the erpression (4.20) will lead to a pro-
Jection onto the kK -+ 0 modes. However, the limit as K + 0 of the phonon
Green's function is not uniquely defined for modes that have an electric
moment (this is related to the fact that DO(E) has a term tiat looks like
>
(3 };—g - 1) as K + 0, vhich will be discussed in Sec. 6.2, §3). There will
be a dependence upon the direction of appruach, but only insofar as this
direction fixes the definition or "longitudinal" and "transverse." The

limiting singulerities of G are well-defined, of course, but they are split
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into transverse and longitudinal branches because of the macroscopic elec-
tric field that is associated with the longitudinal wave (this phenomenon
is discussed in more detail in Sec. 6.2, §3). The susceptibility qu(K+O,w)

(1)

can, in fact, be expressed as

Xag (B—0,0) = Rukg X"(w) + [Sup — huks] A7)  (1.2)
There are, therefore, two scalar susceptibilities, XT(m) and XL(w), which
measure the response of the lattice tc transverse and longitudinal elec-
tromagpetic fields, respectively. It is the former quantity that is of
interest for the optical properties, since the electric moment vector ﬁ
is coupled to a transverse electric (radiation) field in (L4.17). Tt is
only the transverse optic phonon modes that can contribute to the lattice

absorption,

e

n =
A
les]3
v

=6 Inm x2(w) ig(w)le

and it will, moreover, be only the transverse lattice susceptibility xT(w)
that contributes to the optical dielectric constant c(w), which is used 1in
(4L.16) to calculate the reflectivity. In matrix notation, (4.20) would be
written as xaB(w) = quG(m+ie).A£B, where the first order coefficients have
been made into a column matrix ,#A, with < 1‘”'““& = ,Ka’u(lx). For the
situation where the coefficients JK:’H(K) are those of the perfect lettice,
it will be only the transverse IR modes (as we would expect) thet are se-

lected by the sum in (4.19); we can insert a (matrix) factor Mo—;é-l-M;i

between J‘g and G,
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Xagl®) = A2 Mc,";é-l-Mo’5 Glutie) Mg

and again use the identity (4.10) to obtain

N -1/, :-E - [

'me(w) f\/lz_ Mo M [ lkpd @ T Wk [Ra ) Ro | M;:ZG(w.‘.is)J(;_
Kp
Ro

Because th Mo'%lﬁru > = ,4(2,‘J(|<)/M;5 is independent of the cell index,

we can again sum over £ to obtain a & o> Which accounts for the (LHS)
b

projection onto ; = 0:

1 - - 9 (]

x«p(u)) ~ Z { VRTK Wr,,(’(l k=oa¢)M:,"(K3}< k=0,o’ ‘ M;zG'(w“'LE)tMF
KFO'

(k.22)

When the sum over % is taken, the structure of the coefficients Jlg,u(x)
will have the effect of cancelling all but the optic modes with polar
symmetry, since the expression in brackets is Just the dipole momeut of

a unit cell generated in mode o. The situation is, therefore, completely
analogous to that for Raman scattering, where the sum (4.12) led to a
projection onto the I = 0 Raman mode. We shall again illustrate fcr Can.
Under inversion (about a Ca site), Ca + Ca, Fy » F,, and F, » F;, and

gince JLS u(uc) ie a second rank tensor, it will be even under inversion.
>

Thus,

Mg W(F1) = AQ L (FR) (4.23a)

and the t2nsor for Ca can be obtained from a relation that is the counter-

part of the translation condition (2.13),
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My (C8) + 247 (F) =0 (b.23b)

Eq. (4.23) is easily seen to hold ii' the effective charge tensors are as-
sumed to be scalars--e.g., 2Ze ‘or Ca, and -Ze for each F. (This is, in
fact, what we shall assume in a rigid ion model to be discussed later for
CaFp.) In any case, Eq. (L.23a) demonstrates that the F2g Raman mode does
not contribute to (4.22), since for that mode ((a stationary, and F, and
F, with equal and opposite displacements), the expression in brackets in
(4.22) vanishes. Likewise, (4.23b) shows that the acoustic mode (all dis-
placements equal) cannot contribute either. (Cf. Eq. (2.71))

Notice that an extra (matrix) factor Mo;é had to be included for the

IR results--this is a consequence of the fact that the displacements in

the E = 0 modes are related to the vectors G(K|§o) by ar extra fe~tor of
MK'%. Tt is actually the vector Mo'%,MQ (end not just M°) that pro-
Jects onto the appropriate i = 0 IR mode. 3triccly speaking, for the same
reason it wcull be necessary to include such a factor in the discussion
of the Raman effect; however, it vas omitted there because of our tacit
intent to apply the formalism to the fluorites, for which MO%‘E=0s°R>=
mF%|-1E=O,oR >. (This reletion is & consequence of the fact that only the
fluorine masses are involved in the Raman mode for CaF2.) For s more com-
plicared structure, a factor Mo% would have to be included for the Raman
result as well.

Eq. (L.20) is general, and holds for the phonon susceptibility for
an arbitrary lattice. Much of the discussion that was given for the P-
coefficients in Sec. L.1 fur RS epplics here also. Fc» example, if impu-

rities are added to 2 perfect crystal lattice which has no one-phonon
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absorption allowed, the relaxation of the ; = 0 selection rule Ly the de-
fects can lead to induced infrared lattice absorption, if the defecte have
significantly differeai effective charge characteristics. To treat =uch
problems, assumptions of localizability must agsein be made on the WM-coef-
ficients as well as on the mass and force constant characteristics.

In addition to the T0 optical phonon contributions tc the dielectric
constant e(w), there will also be contributions from ultraviolet (elec-
tronic) absorption processes. In the far-infrared region, the frequency
w is so low that the latter processes contribute only a constanc value,

X® v (g4, - 1)/Um to the total susceptibility (x® is the electronic sus-
ceptibility, and ¢, the high frequency dielectric constant). Thus, for
crystals with only one IR-active mode, if we assume that “he first order

electric monment coefficients do not change,
- 1 }5 +
e(w) - e, ~ < k=0,T0| M_~ G(w+ie) M * |k=0,T0 > (k.24)

We can verify that the result (4.24) holds for the perfect crystal if

we insert the unperturbed Green's function, Go(w+ie), which gives

. s 4 - K
E(w)—€Ew = K (k=070 R=0,TO) ==
S < (w18)?_ D°\ > wia u).:o+ i€

The constant K can be expressed as K = - “fo(eo - £,), where e(0) = G

is the static dielectric constant. Thus, We obtain

Eo— Eeo

e
. w
TO
L S .
W — Wy + €

E(u)) = Bo —

which 1s in agreement with the well-known result(25’179) for the disper-




sion of a (harmonic) lattic: with one TR mode. Eq. (4.2h)

becomes, finally,

(1= ) wi (R=0,70 | Mo Glw+ie) MYT| =0, TOD (k.z¢)
€co
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V. DISORDERED SYSTEMS

5.1 Introduction

When a pure crystal lattice is altered by the introduction of a
single substitutional impurity, many qualitative and quantitative re-

sul.s can be established with the Green's function techniyues, provided

that the "defect matrix" v, for the impurity is localized. For many pur-

poses, those effects which are induced by a small concentration ¢ of
point defects (e.g., impurity-induced RS or IR absorption) can be inter-
preted in the context of the isolated impurity problem. Xinh(hT), Mar-
tin(13o), and many others (cf. Maradudin(l)) have trested such problems
by multiplying the results obtained for a single defect calculation By
cN, the number of impurities present. For properties which exist ori-
ginally in the perfect crystel, but which are mccified by the addition
of imprrities, the 3ituation is generally more complicated. ¥F- example,
the effects of frequency shift or broadening of (existing) Reman or IR
modes that results when a small finite concentration of impurities is in-
troduced, cannot be expleined so easily.

In many ceses--e.g., the systems(z'ez) that were discussed ia Chap-

ter I--two similar isomorphs which are mutually solvole and able to form
homogeneous mixtures at large concentrations have teen studied experimen-
tally. In other cases, particular impurities me - have electronic or

chemical properties significantly different trom those of the host atoms
they replace, and it mey not be possible to grow crystals with more than
a8 trace amount of such impurities. For a situation where the concentra-

tion of impurities cen be increased to finite amounts to form disordered

crystals, the theoretical problems become more difficult. Many of the

v
bl L e e
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properties of such mixed crystal systems will display features which can-

not be simply explained by extrapola*tion from results for the single im-

purity problen.

When a finite concentration ¢ of impurities is added to a host crys-
tal, they will be distributed in some unknown way over cN sites through-

ocut the lattice. Thne easiest mathemacical assumpticn to make for the mixed

crystal problem is that a random, disordered lattice is formed--i.e., that

the probatility that a given site contains ar impurity atom is c, and a

host atom, (1 - ¢). The impurities are regarded as .>placing hosts in a

perfectly random way, with the probabil.ty for the occurrznce of an impu-

rity (on any given site) that is unccrrelated with the presence of speci-

fic atoms on the neighboring sites. This assumption has been made in al-

most all of the theoretical work that has been done in this field.

Since Raman scattering and IR absorption can be related directly to
certain Green's functions, the most logical approach to a theory of these
effects in mixed crystals would be to extend the previcus results to an

average Green's functicna formalism.

The average Green's function <G>

for concentration ¢ can be d2fined a5 a statisticel ensemble average of
tne Green's function G (for cN impurity sites, given oy {(3.L1;), over all
possible configurations of a host lattice containing ¢i impurities. Wwe

shall pursue the average Green's function formalism further, after we give

& brief survey of some of the other work in this field. For the study of

the frequency spectrum (i.e., density of states) of a disordered lattice,

there have been numerous other theoretical approaches, some of which have

been quite different in their directicn < attack.

Maradudin(l) has re-

viewei many of these other methods in sore detail. There hes also been
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nmuch work on the application of the average Creen's function methed to
electronic(se'aa) and magnetin(83‘39) systems, although we shall not dis-
cuss these topics here.

Tie en~lieat work on the frequency distribution of a disordered lat-
tice was done by Dyson(l32), who obtnined a result (fo>r a simple linear
chain) in the form of a functional integral equation. His work was ex-
tended end simplified by Bellman(l33), des Cloiseaux(l3h), end Englman(IES),
but these methods are formidable to apply, and unsuitable for numerical
calculations. Schmidt(136) originuted another method which also led to
a solution ipn the form of & functiocnal equation, tut was unable to solve
it except for certain limiting cases. Agacy(lST), Hori and As&hi(138)
Hori(139), and Mahanty(lho) have =also used Schr.idt's method, and results
have been obtained for a simple linear chair that agree with spectra com-
puted by numerical methods. However, Schmidt's technique has not beer
extended beyond one dimension, and it has little usefulness for realis-
tic problems. A "moment-trace” method has been developed by Maradudin
g&_glﬁlhl). an? by Domb g&_glﬂlha), but because it is based on the assump-
tion of a smooth spectram, it is unable to account for some of the compli-
cated effects that can occur &t high frequercies.

Dean(1b3"5), Bacon(lh5’1h7), Martin(lhh"lhé), Rosenstock and MeGill
(lh8)’ and Payton ané Visscher(lhg) have carried out exact (mechine) cal-
culations for simple models of 1-, 2-, and 3-dimensional lattices that
wvere generated in 2 random manner. Their work has provided much uscful
information, both qualitative and quantitative, about certain striking

features in the frequency spectrum of a disordered lattice. This work is

valuable, beceuse it can be used for a comparison of the exact results
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(for a particular lattice) with those obtained by the average Green's
function cslculetions. The latter are often limited in their validity
because of the necessity of certain approximstions, and the possibility
of comparison with exact results in simple examples gives some general
indications of where these approximations may be inadeguate. The ap-
proach of these authors to the calculation of frequency spectra uses
theorems abcut the roots of polynomials in & Sturm sequence; the re-
sulting spectra are exact, and often reveal complicated structure at the
high frequency ends. An example of this behavior (taken from P. Dean,
Proc. Roy. Soc. A25L, SOT (1960)) is shown in Fig. 5.1 for & 50-5C mix-
ture of atoms, with a mass ratio of two, on a linear chain (of €4,000
atoms) with nearest-neighbor forces. The fine-structure can be inter-
preted as impurity bands corresponding to localized mode frequencies
that characterize various types of clusters of the lighter atoms(lh3'5).
This figure also shows a comparison between the exsct spectrum, and the
results of a moment-trace calculation for the same system using the ne-

i
(1‘2). Dean(lh3) has rt.vm how short-range cor long-

theds of Domb et al
range order can be incorporated into the machine calculstions for the
simple linear chain; althcugh *the high frequency local mode region of
the spectrum can be sensitive to a degree of order (compare the solid
and dotted lines in Fig. 5.1), the low frequency end and the middle of
tkLe band are appreciably less sensitive, and depend mostly on the per-
centage composition. Rosenstock and McGill(lha) and Dean and Bacon(th)
have studied the form of all the exact normal modes of a short, randomly

generated, linear chain, and have confirmed that the lower frequency

modes are wave-like, and the higher frequency modes highly localized in
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Fig. 5.1: Frequency distributiovn for isotopic, iwo-component linear
chains (with mass ratio 2, and 50-5C mixture). Tbe solid
curve is for a completely disordered chain /gener-ted for
64,000 atoms in a completely random manner), and was ob-
tained by the machine calculations of Dean. The dashed
surve represents a moment-trace calculation for the same
system; the dotted curve is the distribution for an or-
dered linear chain. (This figure was taken from the work
of P. Dean, Proc. Roy. Soc. A25L, 507 (1960), Ref. 1u3.)

spatial character. Although all cf these alternate approaches to the

disorder problem have been involved only with the frequency distribution,

they do suggest, if oniy quelitatively, the situations where caution may
be necessary in the application of the average Green's function method,

which will be described in more detail below.
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The T'ormulation of the theory of average Green's functions shall,

in prineciple, be applicable for any concentration. In practice, hovever,

the calculation of the proper self-energy function which arises presents
a formidable obstacle, and except for rather simple, idealized problems,

the best efforts to date have produced numericsl results only to lowest

order in the concentration c. Many avthors have discussed problems of

this kind using diagrammatic methods that are analogous to those used in

field theory or in many-body problems. Langer(lso), Poon and Bienen-

‘
stoch‘lsl), Leath and Goodman(lse), Takeno(153), Yonezawa and Matisubara
(76)

,» and others have approached the problem by expanding G in terms of
G° and V (cf. Eq. (3.41)); they obtain {(G) as an expansion of "configu-
ration averages' of the form (GOVGOVGO...VG°> , and represent the terms

in these summations pictorially by diagrams. The methocd of calculating

the configurational averages is based on the cumulant expansion methods

of Kubo(lsh), and involves the so-calied "multiple occupancy" polynomials

’ . qq T .
Pn\c), discussed in detsail by some of these authors(’6’152). These dia-

grammatic techniques are often cumbersome, usually requiring a degree of

"bookkeeping'" skill, and have been applied only to simple lattice models.

The average Green's function { G ) can, however, be obtained without re-

course to diagrammatic methods(55’155’82); in practice, it is much more

straigatforward to make use of the general expressions for ((3). These

approaches clearly demonstrate the relation between the random impurity

problem and the isolated impurity problem. A number of results for simple

models, which were obtaincd vy previous authors using diagremmatic sums,

have been obtained more easiLy(lSS).
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Except for methods that attempt to introduce "“self-consistency,"
the tacit assumption in all of the iumerical calculations that have been
done is that it is possible to expand the proper self-energy for the
average Green's function in a power series in the concentration c. Be-
cause of the mathematical difficulties iavolved, even for non-'"'self-con-
sistent" approaches, it is generally very tedious {even for simple models)
to carry ou’ calculations beyond first order in c¢. There have been some
attempts to develop self-consistent theories that would be valid for
treating problems with large concentrations of iwrnurities. Yonezawa and
Matsubaru(76) have developed a self-consistent approximation suggested
by diagrammatic considerations {(replacing an unperturbed propagator by
the actusl propagator in a certain class of diagram sums). This method
leads to an integral equation involving complicated matrix exporentials.

(156)

Davies and Langer apreal to general analyticity properties, and me-
dify the original first order results of Langer(lso) in an ad hoc way,
again by replacing an unperturbed propagator by the actual propagator.
Taylor(lST) has recently developed a method, based on the multiple-scat-
tering formalism of Lax(sa), that leads to an infinite heirarchy of "con-
ditional average'" equations that must be terminated by an approximation.
The average Green's function is expressed in terms of the propagator of
an "effective field", rather than G°; after an approximation is made to
terminate the set of equations, the scattering matrix is set equal to
zero as the criterion for the "best" approximation to the proper self-
energy function. Velicky, Kirkpatrick, and Ehrenreich(82) have aiopted

a8 similar approach for a self-consistent theory for the electronic prob-

lem. All of the self-consistent theories for the vibrational protlem




share the common disadvantage that their usefulness is limited to the
simplest possible systems with mass changes only. When force constant
changes must be included to adequately describe the defects, it becomes
questionable whether it would be practical to develop the theory beyond
first order in the concentration. Even to first order in c, calculations
for the (relatively simple) Ca,_  SrF, system present a cumbersome com-
putational task.

Taylor's calculations for the frequency spectrum of isotopically
disordered three-dimensional systems at large concentrations are in good
agreement with the results of machine calculations by Payton and Vis-
scher. However, for small concentrations of light impurities, Taylor's
method is not able to produce the spike structure at high frequencies
that are attributable to local modes of defect clusters. As ths concen-
tration increases beyond certain finite amounts (the "ecritical percola-
tion concentration"), one no longer has "isolated defact clusters." The
spike structure displayed by the machine calculstions tends to smooth
out in the region of larger concentrations, and Taylor's results achieve
better agreement. For low concentrations of heavy defects, Taylor's re-
sults agree well; the modes of defects and defect clusters are not iso-
lated, and there is no complicated high frequercy spike structure. His
method is also somewhat better than that of Davies und ..nger, for it is
able to predict an impurity band (for light defects) that lies astride
the local-mode fregquency of a single mass defect. Although it is by no
means obvious, some of the various self-consistent theories are related
or equivalent. The connection between Taylor's method and that of Davies
(158)

and Langer has been discussed recently by Leath He shows how these

w0 methods can be viewed in terms of diagrams, and that although the two
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methods sum the same diagrams, the latter authors' treatment does not
prcperly compensate against multiple occupancy of sites by defects. A

general discussion of these complications has also been given by Elliott

82)

g&_gl‘lsg), Velicky et g;( compare some of the self-consistent methods

that have been applied to electronic properties of mixed crystals. Since

we shall not be concerned with self-cornsistent methods in this work, we

shall not discuss theve topics further.

5.2 The Average Green's FTunction

We turn now to & discussion of the average Green's function forma-

lism(ISS). Yor a lattice with an arbitrary configuration of impurities,

the Green's function G was expressed by (3.41) in terms of G° and the

defect matrix V,
6(w) = 6%(w) - G2(w)V[1 + 6%(w)V]™ GO(w) (3.41)

and for a single isolated defect located at some site i = (EO, KO), this

becomes

G, = G° - Govi[l + Govi]'l G°

where

~
"
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represents the defect matrix for the ith impurity subspace, and has the
form v, that characterizes a single isoleted defect.

Consider now the case where 3 single impurity is added not to a per-
fect lattice, but to one which already contains n = cll defe=ts, all of
the same type. If the Green's function for that particular distribution
of cN impurities is denoted by G(c,y), where "y'" specifies the particu-

lar configuration of impurities, then

Gle,y)™ = (6%)1 + v(y) (5.1)

If another impurity is added at a new site i, consistent with y, then

the Green's function for the lattice with e¢N + 1 = (¢ + 1/N)N defects

becomes

Gle+l/N, v')™F = (6°)7L + v(y") = Gle,y)™L + &V(y,i) (5.2)

where y' is the new configuration that results by adding a defect at site
i to the existing configuration y, and §V(y,i) is the change produced in

the defect matrix. This equation can be written

G(e+1/N, y')7t =

Gle,y) - Gle,y)8V(v,1)[1 + Glc,v)6v(v,i)] L cle,y)

If a "configuraticn average" is taken over all y .- < i wh'ch are consis-

tent with each other,
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<G(C+-;T)> | <G(C)> - —NL <G(c)> {-(c)<G(c)> (5.3)
vwhere

f(c) = N <G<c>>“<6<c.y>sv<y,i>[1+occ,mvw,a)]’b(c.y)><e(c>>"

(5.4)
This average can, in principle, be carried out, although it has no use-

fulness for actual computation. As N +» o, (5.3) becomes
d_d€<G(c}> = = <G(e)> f(e){G(e)D (5.5)

which can be immediately integrated to cast the result for < G(c) > into

& standard form,

(G()Y" = (6°) "+ F(c) (5.6)

where e

F(c) = Jdc (o) ‘ (5.7)

L]

is called the "proper seif~energy."” This {s the qua..tity that arises for-

mally in many-body theory from a Dyson equation, which relates the ectual
propagator to the unperturbed propagator. Note that all of these quanti-
ties are a function of w, but this dependence has been suppressed to sim-
plify the notation.

The tacit assumptions have been made that « Glc) > is differentiable,

and that f(c) is integravle. Thesa assumptions are alsc inherent in the
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(equivalent) iterative technique of diagram summation, since all the re-
sults for < G > obtained by that method are also expressed as power series

in ¢. The assumption is generally made that F(c) has a power series ex-

pansion about ¢ = 0. (This need not necessarily be true--perhaps F(c)

ve(l - c¢), for example.)

Assuming that F(c) is analytic at ¢ = 0, and

using the tact that F(0) = 0, we can expand

F(c) = cf(0) + %c2f‘(0) + ... (5.8)

Eq. {5.5) can be used to express successive derivatives of f(c) in terms

of the derivi.ives of < G(c) >. Since < G(0) > = G°,

CaN

cC=0

£0) = —(6°)" (6t

flo) = - (6" 25 (6 | __ (67" (5.9)

2 o] (@ o] @

etc. The relationship between the multiple-impurity problem and the ran-
dom disorder problem becomes apparen. when the derivatives of < G(c) >

are automatically defined through the following heirarchy of expressions:

%(G(c)>!° = hm N[(G‘,\) - Go]

N — 00

. (5.10)
%(G(c)>‘ = lim NZ[<G2>——Z<G.>+G°]

N — oo
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etc., where < G, > is the multiple-impurity Green's functjon of (3.41)

averaged over all possible configurations in which n impurities are pre-
H

sent. Thus, for example,

| (G,>—-G" = - G°{—1—Zvi(1+(}°v;)"}6°

N &
l

(5.11)
° -] 2 o -t -]
(G2 -G =-G {—"———Z Vi (14 6°v;) }G
4l

N(N=1)

etc. To lowest crder in the concentration, the proper self-energy for

< G(c) > becomes F(¢) = cF(l)(c), where

L

Note that the sum over sites i is usuelly Just a sum over the cell index

|

'l

| Fie) = ) vyt + o¥,] (5.12)
l

|

[

2 with a fixed basis index Ko Of course, if some particular type of de-

fect replsces ap aton which can have several different basis indices (e.g.,
if an H replaces an F~ in JaFe), a sum over x, will also be required. The

equations to be developed are thus easily modified for that case.

" There is an analogous equation for the proper self-energy associated

with the average conjugate Green's function, < H(c) >, ana in general,

these proper self-energies are not the same. The corresponding "defect

matrix" for H is given by w, = (i/w)(@oMo'l - @M'l), and does not always :
"{mpurity subspuce” that ccincides with that for v,- This will
become apparent when a simple example is considered later.

l

1

|

% have an
I

1

l The average Green's function < G(c,w) > can be written
l

l

l

1

|

|
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16l ) = G4 F(e) = Mowio 304 F(c)

1 ° L8 _ '
= Moz[wz__ D"+ M, /zF(C)MOW‘] Moh' (5.13)

s¢ that

~ =t

MBI M = [ @i Do MR M ] (5.14)

Ve shall be interested in the function

Fley = MV F(IM” (5.15°

vhich can be expressed in momentum space using the reiation (2.62L) given

earlier. The sum over all sites % in the expression {5.12) makes it im-

mediat:1y otvious that the first order term in the proper self-energy will
c L < . 5 ‘o

be diagonal in k. Denote the Jefect matrix vy oy Vo\n,(o), and ass e

thet the substitutional impuri+vies under consideration correspond .o one

(fixed) value of x_,. Then the first orcer result 3'(1)((») is given by

(‘) r ~ -1 ) J') =, 0
F (w)Ec,E'a" = {Ro| Mg /"F“(w)Mohl R'a">

| 2 ’ii‘ﬁl: 1 w¥ - \ ;'E' th"z ™y _1
= -— 0'se wg (K| K
Nl 5] [—M‘ (3 (K.Hzo',e ﬁ( 1' G)/Mx;
K !
Laxap

x ) <o | Vo (L ko) 1+ 610w (L,k)] [ Lexap
L

(Ko Gixed) (5.16)
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The matrix element on the right is, of course, unaltered by & uniform
translation of the site indices il, 22, and £ by a lattice vector §L;

in particular, we can translate by - ﬁl to obtain
<z.<alv(z<)[1+c°v(n.<)'liz.<8>
171 oo 0" o 22

-
-1
< Rl-i,zlul vo(ro)i-l + G°vo(.<c)] “2'2-"28 >,

v°(<°) is Just the defect matrix for an impurity in the £ = 0 cell, and

we shall abbreviate it as Vg- t then follows, from & uniform transia-

tion of the &, and i, summation indices in (5.16) vy - H

5 trat

2!

—t -.-—-.‘ 'E = i -
<gdl 3'(0(“))‘2,0,) - e (R—k*) l(kd”?()(w)‘k’q’>

L1
which impi.es that < §o|;¥(l)(m);§'o' >= 0, unless k = k'. Hencs,-*( )
is diagonal in k, and we can write < 20!51(1)(w)lﬁ'c'> = 5;;} gﬁ(l)(ﬁ,w)oo,.
The sum over £, which has not yet been taken, ‘'ust cancels the factor N,

since the translation of the 21 and 22 sumrmation indices removed all of

the f-dependence. Hence,

G’-"’(H,w)“' _ Z e—ik-(Rln—-Rl.'n')w‘:('(\-k'o_) Wp(x'li'o")
| B°7¥
l’xlﬁ 1 o _1 . s 1
3 £K¢X Vo 1+ ((D)Vo L Kﬁ _...._(

5.17)

Inspection of the expressions (5.9;-(5.11) shows that the proper self-

K3 - -
energy is di~gonal in k t¢ all orders in the concentraticn c, and since

LK
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G° is diagonal in E, the average Green's function < G{(c,w) > will also be
diagonal. The mathematical process of averaging over all configuraticas
has the important effect of restoring K as a good "quantum number," in a
certain sense. The fect that < G{c,w) > is d'agonal in K is an expression
of the translational invariance that an "average crystal' would be expec-
ted to pcssess; in fact, < G{c,w) > will have all of the space group sym-
metry of the empty lattice. This is not to say that there are eigenmodes
of the perturbed system with well-defined momentum K; the random disor-
dered crystal is defined by a configuration average cver a large ensemble
of systems, each of which is not periodic. An experiment which probes the
crystal by exciting a disturbance of well-defined momentum § will, there-
fore, yield a spread in frequencies. Mathematicaliy, this will be de-
scribed by the imaginary part of the proper self-energy.

To illustrate the eguivalence of the results of the differential and
the diagrammatic techniques, and to demonstrate the relative ease with
vhich (5.17) can be applied, we shall consider a simple example. Langer
(150) has treated (using diagrsms) the probler of a random, disoriered
chain of atoms with isotopic mass defects, bound by nearest-neighbor force
constants. For the average Green's functiocn < § >, the defect matrix is
& simple scalar, v_ = (m' - m)wg. The [one-dimensional) impurity subspace

thus involves only one unperturbed Green's function,

g0 Ly !

mN Lk- w2 L;E

a..d the first crder prcoper self-energy car be immadiately calculated from

(5.17) to give

~




}(.)(R,Ub) = —1—\/0{

m
= {1 _
\m
which is independent of

energy associated with +

In that case, the form ¢

~103-

1+ g°(w)vo}-'

2 m’y w? { -
i (-myey 1
) +(1- %)% kw;_wz}
k. Langer, however, calculates the proper self-

he average conjugate Green's function < H(c) »>.

f the "defect matrix" is

wo = (t/w) 8°[M7'= M~ ]

and even though oniy a simple mass change is involved, wo is not a simple

scalar, since the force-constant matriy ¢° that appears on the left

ccuples the nearest-neighbor sites. The impurity subspace for w

thus three-dimensional.

oIS

However (Mo_l -v Y = (1/m - 1/m')|0><0| pro-

Jects only onto the impurity site "0", and

1 i
wo[1+H°w°]'1=£§°lo><o}j (W‘_W)

i

EETEm AR

m wm

where we have used (i/uw)i%(y) = MoGo(w). The proper self-energy for < H

becomes

% FO(k,w) = { =

} ) &t e oy

w = w) {0IM68° [0} ] 5

The matrix element <0{MOG°®°,0> is obtained by multiplying




-1 i =

[2a - 0 } (€, & &
8° = -0 22 -a and ¢ = g &g 8y |
0 ~a  2a J 8> 8 8

where a is the spring constant (for nearest neighbors), and

fo= ——)

Fl
mN R W Wy

2 i Z cos k'a
T mN o wio we

The dispersion relation for the unperturbed chain is given by

w:: in—u((__coska,)= ‘%’(-smz%g
and can be used to obtain
Z Lkl<£|@‘0>- mwk
{
1
—{0|M,G°8°|0) = —wzzw—z_‘—;’;. -

k'

After minor manipulations, the PSE associated with { H ) becomes

and agrees with the result of Langer's calculation. It is also possible
to deronstrate that the second order calculation to order c¢@ (using (5.11b))

agr«es witn that of Langer; since it involves slightly more algebra, it




will be omitted here. It is also possible to use this method to obtain
(155) the one- and two-dimensional results of Poon and Bienenstock(lsl)
for random spring constants.

Except for some of the self-consistent techniques, the numerical
application of thesc average Green's function methuds have been confined,
even for the simplest models, to the approximation that the PSE can be
expanded to the lowest order in the concentrution c¢. For the freguency
distribution function, comparisons can be made with the exact results ob-
tained by Dean and otkers(lh3‘lh9) in order to obtain some criteria for
vhere the average Green's function approximations are valid. Howeve.',
the complete gpectral function < G(c;?,m) > obviously contains much more
information than the density of states, <p(w€)> ~ Im Tr{<MG(w+ie)>} ~
Im ch <§o|<MG(m+is)>|§c>. Since there have been no exact machine cal-
culations (even for simple models) of the more detailed information con-
tained in < G(c;g,w) >, no comparisons with exact results are pcssible in
tuat case. Thus, the validity of mary of the approximations that are re-
quired in practice to evaluate the average Green's function < G{c;k,w) >
are speculative, and there remain many open questions. However, it is
possible to proceed with caution in order to avoid applying these approxi-
mations to situations where they are krown to be inadequate for the cal-
culation of the density of states. For exampie, an expansion of the PSE
to first order in the ccncentration ¢ would probably be a bad approxima-
tion in the vicinity of band edges, or in regions where there are local-
ized mode impurity bands. Since the resu’ts to order c are related to
the single impurity problem, those to order c2 to the two-impurity nrob-
lem, etc., it is possible that the exotic behavior that is knovwn to charac-

teriz= the density of states (and presumably, also the complete Green's
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function < G(ecj;k,w) >) could be properly described it it were possible to
carry out the PSE sum to alil orders in ¢ However, it is also possitle
(and indeed, more likely) that there may be a non-analytic dependence on
¢ in these frequency regions, and that expansion in powers of ¢ is not pos-

IR m . B Lo (lh2C) s
sible at sll. There has recently been some work by Domb and Lif-

shitz(805160)

for certain artificial limiting cases in simple models (and
again, only for the frequency distribution function) that suggests a non-
analytic dependence on c.

The first order approximatior in ¢ is probably the most reiiable for
sm2ll cencentrations of impurities that do not give rise to local modes.
For defects that can produce these complicated impurity bands, the machine
solutions show that an exvansion in powers of ¢ may be adequate to describe
the behavior in low and intermediate frequency regions. HNevertheless, the
validity of the expansion of the PSE to lowest corder in c has often been
assumed to apply for the entire freguency region. For disordered systems
that do not involve changes in the P- or M-coefficients, Raman scattering
and IR absorption are related to certain projections onto the average
Green's function < G(K = Q,wtie) >, according to the results ~f Chapter IV.
(Cf. Eq. (L.1k) and (L4.2L4).) Thus, we can discuss both effects in e paral-
lel way, and the general semi-qualitative remarks that follow could apply
equally well to RS or IR. 'The evaluation of the average Green's function
requires the PSE, which (to lowest order in c¢) will involve {according to
{5.17)) certain prolections onto cvo[l + go(w+i:)vo}‘1. If the first order
PSE (different for RS and IR, of course) is denoted by cl(py(w) + iPy(w)],
then the denominator of the relevant <« G(i = 0) > Green's function will

have a structure of *he form [ we =~ ﬂg + c{Py{w) + iP,lw)} ], where Qg
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represents the K = ¢ keman or IR mode frequency for the pure crystal. Thus,

there will be a singulerity at s frequency Ql’ given by

2 ., gl _
Ql " Qo cPl(Qo)

and {; will be shifted from 2, by “ 3cPy(2,)/0,, and broadened by che(no)/no.
In addition, < G(c;§=0,w+ie) > may also exhibit a singularity near any local
node (or resonance mode) fregquency w, produced by the OL} + go(w+ie)vo]—
structure of the first order PSE function. Fig. 5.2 shows a schematic
exemple of a situation where the rzal part Pl of the PSE becomes infinite

at a local mode frequency wys if it is assumed that the expansion of the

PSE to first order in c is valid for all frequencies (in the low concentra-
tion limit), then the local mode frequency that shows up for the single
impurity problem will also occur (slightly shifted) as a singularity in

< G(c;§=0,w+ie) > at wy. For very small concentrations (c« 1), this sin-
gularity at wy; (cf. Fig. 5.2) is approximetely the local mode frequency, &s

would be expected. However, such a theory cannot predict a width to the

Re F(l)(w+ie)

————— . = e

Re F(l)(w+ic)

Fig. 5.2
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mode at Wy, since the imaginary part of the PSE, Pc(w), vanishes outside
of tle unperturbed bend of frequencies. In a self-consistent treatment,

this would not be the case; self-consistency is able to provide the cor-

rect analyticity properties Tor the PSE--viz., a branch cut along the per-

turbed band, and along the impurity bands that form ocutside of the unper-

15€-8)

turbed band( Xinh(hY) and Maradudin(l) have done calculations on
RS and IR absorption using a first order PSE that they assume to be valid
in the local mode region, and also obtain singularities of the wy-type.
This type of spectral behavior would thus seem to apply to the two-mode
behavior observed in some mixed crystal systems(ll'go), although the ma-
thematical Justification for assuming the validity of the first order ap-
proximation to the PSE in the high-frequency local mode region is unsub-
stantial.

For situations where local modes do not occur, and where govo can be
neglected compar>d to unity, there will be only the LL singularity for
< G(c;§=0,w+i€) >, In that case, we obtain the "virtual crystal approxi-

(2-10) . . g
mation" which accounts for the one-mode behavior‘2 i) in which a single

optic frequency shifts linearly with concentration.

hiaddbiaidd
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VI. THE MIXED-FLUORITE SYSTEMS

6.1 Introduction

For many yea.s since 1928, when Raman scattering was first reported
by C. V. Raman(l6l), experimental work in this field has been carried out
using mercury discharge lamps for the exciting radiation, with photo-
graphic detection of the spectra. Because Raman scattering intensities
ere typically very low, intense lignht sources are required, and long ex-
posure times necessary. The nuwnerous experimental difficulties involved
made this type of work somewhat unappealing, and placed some limitations
or. the type of effects that could be studied. The development of laser
light sources, which have the advantages of monochromaticity, high inten-
sity, high collimation, and plane polarization, provided exactly what
Reman spectroscopy badly needed and has led to a rebirth of interest in

this field in recent years. The use of lasers mekes it possible to study

low-temperature effects and polarization effects easily. A further impe- 1
tus for the renewed experimental interest in Raman scattering has been
provided by modern electronic developments that have made it possible to
streamline the detection sysiem; we shall presently describe what we be-
lieve *to be a relatively sophisticated photon-counting technique (using

a multi-channel anaiyzer) that we have used to measure the spectra. When

this work was originnlly reported(e), it was the first time that such a

]
detection system had been used for Raman spectroscopy, although others have |
most likely used similar methods in allied fields. i

We have studied experimentally(e) the Raman scattering from the mixed ;
crystal systems Cal_xerannd Bal_xerF2 for a variety of concentrations
5
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from x = 0 to £ = 1. These crystals, which have long becen known to form

(162-L)

continuous so0lid solutions , were obtained from Optovac, Inc. A block
diagram of the basic setup which we used to messure right angle scattering
in these systems is shown in Fig. 6.1. All of the major equipment, except

for a low~temperature He-dewar and an electronic control device that was
used to regulate the spectrometer scan {described below), was obtained com-
mercially. The light source used was a Spectra Physics Model 116 helium-
neon gas laser, which we operated at 6328 X, with a typical power cutput
of v 25 milliwatts. The laser light source was {ocused at the center of
the crystal sample, and a dielectric-coated spherical mirror with high re-
flectivity et 6328 X was used to reflect the emergent laser light back
through the crystal. This forms an "external cavity" with the laser, and
the purpose of this trick was to increase the effective light intensity in
the sample by using multiple passes of the beam. Ir practice, this in-
creased the output intensity of the scattered radiation by about a factor
of two. The use of this method is not possible 1f it is desired to make
high precision polarization measurements, since the several reflections

would probably destroy the plane polarization characteristic of the exci-

ting radiatior. into the sample. A double prism arrangement (cf. Inset,

Fig. 6.1) proiuced a vertical line source, which is imaged onto the en-
traunce slit cf a l-meter Jarrell Ash, Model TB-420 spectrometer. EBecause
the systems ‘nut we studied exhibit first order Kaman frequency shifts on
the order of v 300 cm'l, the separation from the laser line is far enough
tir b the problen of extraneous scuttering in the spectrometer can be eli-

minated using « dielectric interference filter at the entrance slit to re-

o
Ject the laser light. We used a step-function filter that rejected 6328 A

Ldﬂﬁgw#w s
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‘ig. 6.1: Bleck diagram showing experimental setup for measurement of
right-angle Raman scattering.
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iight by ~ 10_3, and passed at ~ 80%, with essentially [lat response.
light shifted by > 250 em™t.

The method of detection involved photon counting; an Ampere:x XP1002
phototube (which has an S-20 respcnse; was used at the exit slit of the
Jarrell Ash. Signal pulses from tha phototube were fzd into a Nuclear
Chicago RILL Model 3L-125 multi-channel snalyzer. This instrument is used
in the "time base" mode of operation: all of the pulses that arrive from
the phototube, in a selected Intervel of time, are counted and stared
sequentially in Ur. channels. The spectrometer is equipped with & motor
drive that is capable of scanning the spectrum at selected discrete speeds,
and the RIDL channel width is elso variable with discrete values {typi-
cally, we used a channel width of 1 or 2 seconds;. The phototube was
} used in an assembiy that permitted it to be cooled to a low temperature
by blowing cold N, gas, boiled off from a liquid nitrogsn dewar, over the
c~*thode. Operation of the tube at lower temperatures decreases the prob-
-~4a5 of dark current from thermionic emission.

In order to improve signal-to-noise characteristics, it is coften de-
sireable tc sc.n the same spectral range over and over, and add up the re-~
sults. Tkis can be done easily with the RIDL, since it is capable of add-
ing a new spectrum tc one already ztored in its memory. san electronic and
mechanical ccntrol ..vice {designed at Harvard) was used to regulate this
multiple scan feature. The details of this mechanism are rather involved,
and it is unnecessary tc give more than this operational description of
how it worked. With miltiple scanning of & spectrum, it was pcssible to
optrin very gocd signel-to-noise; Fig. 6.2 shows a typical Raman spectrum

(in this case, taken fo: Ca ) Sr 6F2) takern at room temperature. ¥ith ten

e

ol e

L —




[

nel anelyzer for detection

— , 0Lb9
o L
1L S :
® zd *
o -t
<2[ b ; 8943
«Q N
o Fi
z W e ¢ —1b949
o ac
+ 3 Sg I
i
o ! —29b9
@y |
“3 /s
4 <—1 0959
- ,. bt ()
5 L
e % "rl
! —1 8959
A ‘f'.
'{..
- /.,u o "“99”9
€ ot =
S, Ug ,"' 9
£ * ~105t5
o '.' " g S
L = ~
- J —T5h9
F e
- 8 — 05b9
1, \\S.
N
—t 8bb9
T \L
£ }
[
R K, 19049
_—
Yoo
y o =hbs
1
2 $
~ '} — beg
. ?'
| . | 0949
s 3 = = = =
Ol ¥ SINNOD
£. 6.2: £ typicel Raman spectrum (in this case. for Ca/Sr
= €0/L0, &t room t h

3
mperature) using the multichan-
(ten sweeps).




i el

11be

passes over the spectral range. The use of & multi-channel analiyzer and
the photon counting technique provides a metuod by which very clean data
can be obtained. Furthermore, tke ‘ine required to produce a spectrum
such as that shown in Fig. 6.2 .with ten passes) would be only about two
hours {assuming 2 second widths for the RIDL). Compared with the long
exposure times required by photographic techniques, this is & definite
advantage. However, the usefulness of this method i:s decreased if it is
necessary to observe a spectrum over large wavelength intervals, for which
correspondingly more time would be required. Fig. 6.2 covers a tctal
o
range of ~ 30 2 or ~ 75 em™t (at 6328 A). The lcw temperature measure-
N

ments carried out at 6328 A were obtained using a (Harvard built) cold-
finger He dewar.

Later measurements were taken on a similar setup, which included a
Spex model 1400 double monochrometer, an ionized argon laser (opsrated at

0
4889 A with ~ 200 mw.) built at Harvard, and a Janis Super Vari-Temp (Mo-
del 10DT) He gas-cool dewar. The phototube, which was again ccoled, was
an EMI 9558, with an S-20 response. The Spex double monochrometer signi-
ficantly reduced the problem of extraneous s-attering, so it was not ne-
cessary tc use a dielectric filter for eliminating the laser line when this
apparstus was used. Furthermore, the multiple-reflection cavity was not
used in this case, since the argor laser intensity was signiricantly higher
than that of the helium-neon laser.

The experimental results 1or the Ca erF

1-x and Sry_. Ba 5 mixed
- £4

P
. - . - : e

crystal systems are shown in Fig. 6.4 and Fig. 6.%; the first order k ~ 0

Raman line shifts iinearly with concentration, with an integreted inten-

ity that remains epproximately constant, and with a linewidth that in-
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creases and peaks near the 50-50 mixture. Because Taman scattering Is
such a weax effect, it was necessary to use relatively large spectrometer
slit openings for studying these systems. (For the Jarrell Ash spectro-
meter ~n: 6328 2 laser, ~ 3.9 cm'l, and for the Spex spectrometer and the
Lg80 2 Laser, ~ 1.6 cm‘l.) In order to obtain linewidth results, it is
then necessary to convolute the observed line profiles with the "slit
function", which can be irnferred from an observation of the laser iine
with the same slits. Theoretically (for curved slits, or for straight
slits with small vertical aperture) the slit function should be a tri-
angle. In practice, the slit function fcr the Jarrell Ash data had a
small top, and that for tre Spex (with straight slits) had a small tail
un one side. Assuming that the slit function is approximately trape-
z0idal, as shown in Fig. £.3 Telow, the convolution of the slit functien

S(w) with a Lorentzian lirne,

.ﬁ( _ r [d ’ s(w:)
“lw) = g Y (e_wyy Ta
becomes
where

?(w\ = ;:—{ fOn_'l(%g& 4+ tan™ _ZF“_’_ un

(1_ wgﬁ.)[{mn-' Z(A-{;’B—wl n ta.n-'.z’g-:::-A—)-]}

T s (A+B-w)T%
4n 3 5 (A—w) + M4
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A A+B

Fig. 6.3: Trapezoidal slit function, S(w)

For any selected values of A and B, one can corpute, numerically, a
table of observed full-widths versus I', which represents the "true width"
for (an assumed Lorentzian) process. It is important to note that it is
not possible to merely subtract the instrumental width from observed widths
when the slits are opened wide.

The low temperature (~L4° X) linewidth data was taken using both the
6328 g and 4880 & lasers, and after the appropriate convolutions, the re-
sults of the two sets of measurements were reasonably consistent (cf. Fig.
6.5). Taking into accourt the experimental error involved in reading the

date, as well as that for the convolution process, these values are pro-
bably accurate to about * .3 cm-l, with a systematic discrepancy of ~ .3
cm_l in the two sets of measurements. Taking into consideration the fact
that the two sets of data were taken at lifferent times and with completely
different experimental equipment, a systematic error of that magnitude

does not seem too large. However, the source of that systematic error is
rmost likely in the assumptions made for the shape of the slit function,

which could easily lecad to a systematic error of that magnitude wher the

two sets of data are reduced by convolutionc with different slit functions.




Although it is possible that excitation with 4880 X or 6328 X could pro-
duce different linewidth results, i- is unlikely that this discrepancy is
8 real effect. H. Goldberg (private communication) has carried out the
convolution for the 6328 R measurement of Ca.QSSr.02F2 by an independent
procedure, and obtainz ~ 1 6 cm"l, hich is consistent with the present
results. These considerationsg suggest that the origin of the systematic
error is probably related to the convolution process.

Some data was also taken at liquid nitrogen temperature, and within
the experimental error, the results for the shifts and linewidths were
about the same at » 49K and ~ 77°%.

The theory of the Cal—xser2 mixed crystal that is discussed later
in this work is only able to predict the contribution of disordering to
the linewidth; since it is only the change in linewidth with concentra-
tion that concerns us here, the possible discrepancy of ~ .3 em™t between
the two sets of data (at hOF, is not relevant. The dashed line of Fig.

6.5 is the result of a numerical calculziion to Le described later.

e B
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FULL LINEWIDTH (AT HALF MAX) om™

{ ~ 300°K)
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Fig. 6.5:

G .20 20 40 50 60 .70 80 90
x = CONCENTRATION

Experimental and theoretical (full) linewidths (at half
max) for the Cal—xserQ system. Experimental points are
the actual widths after convolution; dashed line is theo-
retical. Open circles orrespond to L4880 f, Spex data,
and closed to the 6328 » Jarrell Ash measurements.
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6.2 Tne Rigid lIon Model for CaF,

In order to calculate the phonon Green's fun~*ions that were involved
in the preceding mathematical treatment of the isolated defect or random
disorder problems, it is necessary to have knowledge of the phonon eigen-

-

frequencies w5 and eigenvectors w(xlko) throughout the firs: “rillouin

zone for the unperturbed (perfect) lattice. These quantities shall be
evaluated using a "rigid ion" model, due to Ganesan and Srinivasan(lés),

for the fluorite lattice. In this idealized model, the (ionic) CaF2 crys-
tal is regarded as consisting of a lattice of rigid, non-polarizable ions
which interact through long-range electrostatic and short-range repulsive
forces. The short-range interaction terms, whose physical origin is a re-
pulsion between overlapping electronic distributions, fail off rapidly

with distance, and are included only for nearest neighbors in this model.
The Coulomb forces between ions are assumed to be electrostatic inter-
actions between rigidly spherical charge distributions (i.e., "point"
charges) that are multiples of an effective electronic charge, Ze. The
polarizability of the ions cannot he properly taken into account with this
model, however.

It would, perhaps, be more sophisticated to use a "shell model"(169-72)
for the calculations; in that case, the icns of the lattice would be as-
sumed to consist of positively charged massive cores surrounded by mass-
less and negetively charged spherical shells. In the simplest approxima-
tion, the cores and shells would be assumed to be coupled by & scala:, iso-
tropic force constant. As the lattice vibrates, the shell and core wou.r

be assumed to retain their rigid spherical shapes, although it would be

possible to generate a dipole moment on the ion when the shell and core

i iaia il
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are relatively displiaced. Two equations of motion would be necessary

for the (coupled) system of cores and shells, and the computational labor
would be increased. Alternatively, the rigid ion model wculd probably be
improved by the inclusion of more than nearest-neighbor short-range forces.
In addition to increasing the computational difficulties, both of these
attempts to improve the model have one common disadvantage: thiey require

an increase in the number of force constant parameters, and there is only

a limited amount of experimental data available that can be used to fix
these phenomenological constants. A more complete description of the
physics of the rigid ion rodel, and the successes it has for predicting
verious experimental quantities, can be found in the original sources(l65-8).
Many of the formal details that are relevant zo the present calculation of
phonon eigenfrequencies and eigenvectors are omitted in the work of Gane-
san and Srinivasan(l65), and shall be describted in more detail here.

The ultimate aim--the numericel calculation of some c¢f the phonon
Green's functions Ggs(lm,b'm';w+ig) given vy (3.32) - (3.37), requires a
good model for the pure CaF, lattice dynamics. The accuracy of these cal-
culations may be impaired by one difficulty that cannot be simply remedied
in either the rigid icn modsl or the shell model. Namely, the harmonic
approximation itself may be inzdequate to describe the unperturbed modes
of pure CaFp no matter which ¢f these models is used, or how detsailed the
force conscant assumptions may be. It is possible that anharmonic inter-
actions are not completely negligible, and that each of the modes of the
pure lattice will have & broadened fregquency. This could have the effect
of smearing out some of the structure in G%(w+ie), or perhaps even of al-

tering the results more drastical’y. There are, in fact, indications from
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the irdrared reflectivity spectra of pure CaF, that the harmonic approxi-
matior. i{s 1ot completely adequate to describe the modes of CaF, accurately.
The inclusion of the effects of anharmonic broadening would require that
we absndon nest of the simplifying features of the harmonic approximation,
and would lead to a complicated many-body problem. To make this improve-
ment in the formalism would not be a triviel matter; to include anharmonic
effects properly, it is necessary to work with a coupled heirarchy of
Green's function equations, as we mentioned earlier. Phenomenologically,
we could, perhaps, extend Eq. (3.28) by including a damping term in the
equation »f motion (2.12) for the pure lattice dynamics. I.e

‘9

M ‘., ,“dl - K ', d ua x v .-o o _ o -
E'Zk'[ Ki’i_l, Dk 1&;‘,"*‘ I, (1 .XK)IE + ®°(2 .IK}] w(tk\t)= 0

(6.

3\
/

(=]

which wounld lead to
-1 ° . 5 0
G:(w) = (Mowz— $ ) + (wl, (6.2)

The resulting secular eguation,

£ (0= 03 ) S0e + iy w ] = 0,

aes

o
(WS}

where

Yoo (B) = <E<r I M;Vzl"o M;VZ \ Ro') (6.4)

is & 9 x 9 matrix that would define the broadening of the phonon modes 2t
=
any wave vector k. There is, however, no obvious way of obtaining the form

of y from data available for the crystal; the experimentally available




parameters give very little detailed information about the broadening of

phonon modes throughout the Brillouin zone. Without going into detail,
it is iunstructive to make the observation here that a formel quantum mecha-
(52)

nical treatment of the anharmonic crystal cculd be represented by a

Dyson equation that relates the aciual Green's function (propagator) of
the pure crystal to the harmonic Green's function and a proper self-energy

function N(w):

o _ nO _ A0 R .
Gactual - Gharm Gharm M{w) Gactual (6.5)
or
Go’w)-l = (Mow2 - 49) + I(w) (6.6)

This is completely analogous to the {ormal result cbwaired in the treat-
ment of averaged Green's functions for the disorder probviem (Eg. (5.6)),
although the "proper self-energy" in the two cases are not the same. The
proper self-energy [(w) will have both real end imaginary parts, and in
eddition to adding a damping to the medes, it will also renormalize the
frequencies(se). The renormalized frequencies are, of course, those that
would be observed experimentally (e.g., in neutron scattering, optical
spectroscopy, etc.). Note the similarity between (5.6) and the phenome-
nological form (6.2).

Because of the severe complications that would be involved, nc at-
tempt will be made to include dbreoadening in the model for pure Cafp. The
harmonic approximation permits the calculstion of the pure Green's func-

tions from the spectral forms (3.32)-(3.37). The neglected effects of

Ty

il
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anharmo:.ic broadening probably represent a more sericus limitation on the
accuracy of the calculated Green's functions than the choice of model %o
be used here. At low temperatur ., where the vibrations of the nuclei are
simall, the anharmonic interaction effects are reduced, anda we zan, there-
fore, hope to minimize those effects by carrying out the calculations tor
low temperatures (~ LOK).

Later, when the averaged Green's function methods are applied tc¢ the
optical properties of the mixed fluorites, it will be necessary to include
(in a somewhat sloppy way) an intrinsic width for certain ﬁ = 0 optic
modes ir pure CaFQ. This can be done, as remerzed above, by including an
imagirary part y/2 with the phonon frequency Wy The earlier discussion
of analyticity oproperties specifies that this phenomenological damping
shculd be represented by a pole in the lower half-plane for the retarded
Green's function Gescription; i.e., the broadened mode should be repre-

sented by the complex frequency (uy - iy/2).

1) Short-Range, ¥on-Coulombic Contributions

The present model includes short-range forces between nearest-neigh-
bor fluorines, nearest-neighbor -calcinmes, and between a given calcium and
its nearest-neighbor fluor. nes. Symmetry techniques cau be used to deter-
mine the general forms of the nearest-neighbor force constant matrices.
The reduction is carried out by examining the interrelation between the
elements ¢88(2x,2‘x') expressed by (2.29) for the group & of elements
that: 1) leave the crystal i.variant, and 2) leave the pair of sites (ix)
and (2'x') invariant. For the ©cllowing discussion, we shall label the

-> ->
arguments of the force constant matrices ¢° as ®28(Rw£-REK;K’K')’ and
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shell express the components of the vector (ﬁz'x’ = ﬁkx) in dimensiorless
units for which T the F-F separation, is taken to be unity (cf. Fig.2.1).
The group T of symmetry orerations for the nearest-neighbor calcium-
fluorine interaction is C3v, coneisting of E, 2C3, and 3¢, The two C3
operations are the £120° rotations about & (111)-axis jcining Ca and F,
and the three reflection planes ure the (110)-planes. From these opera-
tions, it can be shown that 038(%,%,¥;Ca,F) contains only two independent
constants, and all of the other force constant tensors pertaining to the

neerest-neighbor Ca-r short-range interaction can then be cbtained from

30(%,%,%;Ca,F) by using (2.28) with appropriate rotation operations:

i B 'Bli

40(-%, %, 35;Ca,F) = - . B, o -elg = 8°( %, %,-%;Ca,F)
| -8, -8 oy!
: ,
S B get

0%, %, ¥5ca,F) = - | -g ap Bl = 3°( ¥,%,:cae,F)
§ =81 B °1§

(6.7)

o) By 81

°( %, %, %;ca,F)

|
|
i
-
Bl Ql Bl: = ¢o("%,—‘1§,';§;ca,F)
i
|
|

B B
| i
P TR By
pos, 1 ~—
QO( 35,_35, %;C&;F) =L E-Bl al -Sl= = ¢O(—;§, ;5.-";5§Ca,F)
; i
| 1
1 |




%°( 1, 1, 0;Ca,Ca)=

%°( 1, 0, 1;Ca,Ca)=

‘60( o, 1, 1;0a,Ca)=

°( 0,-1, 1;Ca,Ca)=

%°( 1, 0,-1;Ca,Ca)=

$°( 1,-1, 0;Ca,Ca)=

sulting force constent matrices are

For the nearest-neighvor calcium ions along thz2 (

the symmetry group is Coys with the operations i3 Ca, var Oy

L

%9(-1,-1, 0;Ca,Ca)

¢°(-1, 0,-1;Ca,Ca)

#°( 0,-1,-1;Ca,Ca)

?°( 0, 1,-1:Ca,Ca)

$°(-1, 0, 1;Ca,Ce)

%°(-1, 1, 0;Ca,Ca)

110)-directions,

The re-

(6.8)
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Finally, for tl nearest-neighbor fluorines the symmetry group is

Coys and leads to the following forms:

53 0 o
e ST | | e
¢ (l;O’OQF,F) S o= : 0 83 0 := P (‘I’O’CBF’F)
1 |
| |
10 0 B3
| |
o 0 |
- y i i v
$°(0,1,0;F,F) = - ! g ag 0 {= ©°(0,-1,0;F,F) (6.9)
i i
i i
| !
' B3 0 0 i
> i I ~
8°(0,0,1;F,F) = - 1 0 B3 0= 9°(0,0,-1;F,F)
) i
{0 0 o

The "self" force ccensiant metrices EO(O,O,O;Ca,Ca) and ¢°(0,0,0;F,F) can
be calculated from the conditi:n (2.13) that resulted from invariance

under rigid-body treuslation:

ﬁo -~
¢ (0,0,0;Ca,Ca) = 4. Lt 28, + ae)-l

(6.10)

¢°(0,0,0; F, #) = 2(20) + 285 + a3)-1
They nre multiples of ‘'e unit watrix, which we would expect, since the
vector (0,0,C) has tha full 0,, symmetry. The short-range force contri-

butions to the Fourier-transformed dyna ical matrix, Fgq. (2.45), become
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. i “
Di;(k;l,l) = EE;’[ch + 82(2 - con ky cos k, - cos k  cos x,)

+ an(l - cos ky cos kz)]

., > I
Day(kl1,1) = ==y, sin k_sink

" Ca Yy
E D (R]1,2) = - 01 i
- x 42) = = [cos %kx cos ky cos %kz +
mCamF
i sin %kx sin %ky sin %kz]
DET(R11,2) = L [sin i .
Xy k{l,2) = _;r____ [oln x Sin %ky cos %k, +
caF
i sin %kz ces %kx cos %k)]
D2 (K|2,3) = - 2 o, ces x, + B,(c + x,)
%x ’ mF la3 x 3 os ky cos X,
DJT(kl2,3) = o
Y (6.11)
: sr > = ST *
Dqs(kll,3) DaB(xll,Q) ,
: Sr,>»> — nST /> . 2
E D.g(k|2,2) = DJL(K]3,3) = e (ag + 285 + 2a,)
E

with all other :lements determinec by cyclic permutation of x, y, aand z.
-
The components cf the k-vector appearing in (6.11) are exprassed in the

dimensionless units for which r, (the F-I separation) is chosen to be unity.
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2) Long-Range Coulomb Contributions

In the harmonic approximatior the quadretic truncation of the (1/r)
Coulomb forces leads to a sum of dipole-dipole interactions distributed
over the entire lattice. In the present model, the charges on “he rigid,
non-polarizable ions are assumed to be +2Ze for the calciums, and -Ze for
the fluorines, where Ze is an effective charge which(along with the other
constants ay, By, ap, By, Yo, a3, and 83) will later be determined from

experimeitally observed parameters. Cince the ions are assumed to be ri-

gid and non-polarizable, the dipole moments arise purely from mechanical °

displacements from equilibrium. From the expansion

! - e d -
peeut - 1 Z _Q,‘Q"_, » A = R; + 2,
i l/c;—/ajl
vk j

as

2
.“J
iy
{ _R.i“_.' EQ“ﬁ, - -~
-*3{3( _.J)(_‘ z)_i}.(u"‘-uj>
218 K, R—R | f

(6.12)
in the harmonic epproximation. Here, i and J refer to ion sites, and Ki

and ﬁj represent displacements from the equilibrium positions gi and ﬁj.

Bt |




R

~130-

The Coulomb energy must be expressed as a quadratic form in the displace-

ments,

1
(Pcnd — .
2 .

and comparison with the expansion (6.12) yields

o

B (1) = — —& {3 (Ri— R, )R =)D _1} (i=k3)
| IR --R; |*

Ri—R;[®

- (6.13)
dL(iiy=0

Thus, the Coulomb exirgy in the harmonic approximation is formally eaui-
valent to a sum of r\pole-dipole interactions between dipoles Qiﬁi and
QJEJ at sites i and j:

-
[

37{3Sfﬁ—1f-0%ﬂ) (6.14)
R21” R:

Y

coul 1 ! —-
(P = - E Z (Q;u;). .
L

The ulomb contribution to the Fourier-transformed dynamical matrix (Eq.

(2.45)) becomes

=, r =ik (Ry4Tun)
; Q , e ™! L Trx
[>cau1(';| K,Kf) - k Qk = :E: _ — X
(Mn Mx,'> yA |R2+rm<"
l‘al ~+ F;K'lz
where ?(K, = (§K—§K,), and where the ' on the sum means thr..t terms for

-
which {Rl + ?KK.] = 0 are to be omitted. The swamend fall: off as 1/R13

at large distances, but since the area of a spherical ste.1l goes &s Rze,




T

the sum falls off only ~ l/Rl' However, the convergence is assisted by
the phase factor, exp[—ii-(ﬁi + ?KK')], which oscillates rapidly as RE
increasss, and by the dyadic expression in curly brackets (en angular
factor which has Y2,m symmetry) and whose contributjion over a large sphere
tends to average to zero. The convergence of (6.15) is extremely slow,
and as k + C, the sum is only conditionally convergent and depends, in a

limiting way, on the direction of approach to the origin. We shall re-

turn to this point later, when we discuss the ¢plitting of the Flu K=o0
modes of CaF2 into longitudinal and transverse bra-ches.

In order to evaluate the Coulomb contributicn (6.15) to the dynami-
cal matrix.EO(i!Kc'), it is convenient to use technigues formulated by
Nijboer and De Wette(l73) I>r a general class of lattlce sums. These
are, essentially, the Ewald sum methods, and are necessary for converting
the slowly converging series (6.15) into a form suitable for numericel
computation.

No attempt will be made nere to elaborate on the generality of the
techniques, nor to provide complete motivation for all of the steps in
the derivation, since excellent discussion is available in the original
source(l73). The development below will contain cnly those steps that

are relevaat for an evaluation of the specific type of lattice sum that

arises in the expression (6.15) for‘Bcoul(QSKK'). Consider the sum

= 1= B (Ry V) Ry
S(Riw)= ) 2 is (Rt T Ryt o) ‘L} (6.16)

L lEL -+ ?KK' ‘3 ‘ Eﬂ A ?xu'lz /

“nich can bz iritten
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W e W(F,?;) ?\;
Y = dy 3 -1 (6.17)
S(k—."KK) J‘ l?‘g { I-Y-o‘z, }

w here

b3

Van
=<}
N

il

™M
®
‘.
L
2y
% ]
rams
)
|
X
[

{
K-‘l
X
S’

(6.18)

with the primes on the sums again indicating that a term is to be omitted
-

if (RE + rKK,) = 0. Since the vector ;KK. has the physicel meaning of a
relative displacement of tws icrs %, «' within a unit cell, it is clear

- -
thav no primitive translation vector Rg can make (R2 + ?KK.) = 0 unless

?KK. =0 (i.e., k = «'). The primes on the sum thus refer only to that

wa

case. (Note that the function S(ﬁ,FKK.) is a dyadic quantity.)

Introduce an awxiliary function H(Z), and split the sum §(f,?KK )

into two teims:

S (R, T = jav‘ w(7,R) {3-‘ -1}9&(?)

{

~i

L] _’. A} - ~ e 2 L] E
The functicn F(r) shall be chosen o humee i Ziiloving properties, and 4

the necessity for these should become apparent as the derivation projresses: 3

i) Z(F) is a rapidly decreasing function of |f],
i1) G(¥) is finite at the origin,
1i1) (2 - (D) )/r3 is slowly varying at the origin,

iv) (¥) is otherwise arbitrary.

Further cousiderati s discussed subsequently will lead %o s convenient
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-
ultimate choice for the function F(r). In the separaticn of S(ﬁ,rKK.

above, the firs* term in (6.19)

- ’ “;g-(ﬁt*'?xx') -+ o
51 — e _ _ ; { (R.l+ rKK)(Rg“T‘YKK) 1}8’(El+r'ﬂ(')
2 ’Rl'+ rkk'\ ‘RL 4—“« }

(6.20)

il

will converge rapidly, because of the fector Sﬁ(?), while the second tesrm,

g - Z, e—‘k ) (Rl + Tw') 3 (Et*—FKK'XEl-}- ?KK')
2 - — — —t -
1 l RL""‘?\(K‘ !3 A IR2+ Y.‘g‘lz

- e ]
(6.21)

will converge no faster than the origiral expression for S(P £ ). How-

u‘,

KK

ever, we can exploit Parseval's theorem {for a discrete lattice) to trens-
form the sum SQ, which is slowly convergent over ihe real lattice, to »

form which c¢onverges rapidly over the reciprocal lattice. The general

philosophy of this technlque is based on the property thet the Fourier
transform of a smooth, slowly-varying function will decay rapidly in "mo-
mentur: space". The ultimate choice for the function F(¥) will thus be

based on the objective of making the Fourier transf rm or

1 (RL + YKK X?z*' V! )
'—R.t ""FKK'Is t ’ Rl -+ rxn'l

1) 11 - 3Ryt 7]

decrease as rapidly over the reciprocal lattice as the surmand of Sl de-

creases over the real lattice. The second term

3 - w(i,a_){s 7 __1} [1— (] {6.22)
) fr| v -

can be written as an integral over momentum space by using Parseval's

tlieorem. If we define
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w(F.R) = (%—)S-Jm e T W(RE) (6.23)
T
3(R) = | ave ™1 g fr Ty (6.2L)
g(h) [ = — 1}{\ H(T)

then Parseval's theorem states that

o
o
S
~

C rd =y W -
The form of the Fourier transform of w(?,ﬁ), which will be derived helow,
makes explicit the connection between Parseval's theorem and the duality
tnat allows a sum over a discrete lat‘ice to be transformed into a sum
over its reciprocal lattice. It is convenient to define a new functic.
R
w(r,k) by

—

\TV(?\-E) — e_lk'r {:—' S(T—Ry—Tew) = WORR)+ 8w 8(7)
(6.26)
Note that (6.2€) here contains no ' o4 thz suz, as (6.18) did. Then,

since

e R HERY = ) 8(F- Ry= V) (6.27)
2

is a periodic function of 7 over the lattice, it can be expanded ir a

Fourier series as

- —

. _-. - = - e ‘lh ° Y
e ® TR (R ) = Z Aull, Tpe)e F (6.28)
P.
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where the vertors hu are lhe reciprocai lattice vectors, defined by (2.6).

IT this expression is multiplied by exp(~igA-;) and integrated over ttre

total volume . the crystal,

- — { — - E‘E \"_\" ) —'r'l. "; - -t
ZAH(h,rKK.)} a7 ¢ iy 5 Jd? e ST R, ~Ter)
L
a crystal| U

then by using the relation

[d? g mmheder

= Q5,,
evystal
we obtain
—f —h —_1 [ o — - —3
Ax(k, rm(') == 6 é J ol?e A S(!‘—-R‘—‘.’KK.) (6.29)
crystai

where Q is the volume of the crystal. The coefficients AA(E‘;K «; reduace

to
A ('E’ - x Z e‘—;;;A- (EL‘"?KK'> N -;ﬁA. ?KK'
l‘ Y‘ ‘ _r = — e
A [ 8.4 Q l _Q
{ T -
= — exp(—ih,. Vi) (6.30)
Ya,

. N > ry
Thus, the function w(r,k) ccn be expressed as a sum over the reciprocual

lattice,

W(r k) =

-

LR Z exp [ thys (Y= rec ] (6.31)
U, x

NRITITINT
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and the Fourier transform, w(F,k), can also be expressed as a sum over

the reciprocal lattice,

- = —_ = - —c;\.,‘-—'
GREY= L2 aFak-h)e ™
a A

(6.32)

From this expression frr ?(ﬁ,ﬁ), il is apparcat from (6.25) that the term

82 can be transformed into & sum over the reciprocal lattice of the crys-

tal. 1If the function & (¥) is chosen to be a function of |T|

only, then

the transform functionlg(ﬁ) defined by (6.2L) can be further simplified

by carrying out the angular part of the integration with the aid of the

addition theorem for spherical harmoniecs. The seperation of the integ.a-

tions,

§(ﬁ>=Jdr v Lli-3m] | ags P 3T 4]

J

involves the evaluation of an "angular part",

.":-‘: - -
pud ! =04s YY
— - - | m—
I(k.r>=—fdﬂv e (s %)

YS

which can be expressed i the form

-

- 2 —ik.T
I(ZL?) ==—;E__ J dglv —T%;+ F

-

p=o

v

Expand

ol T ) V(2841 35 Chey Py (RW 1)
A

(6.34) |

(6.35)
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and
! Y pt .
= = £ (-1 1'+a Pe (- 5)
o+ 9 [ L

-
for Ipl < r. Then

s-l
-]

3

j'dQ;' &

\¥

pl

+ P
Z(—\) ¢
L

r 3 R P
fhr\' 7%(ﬁ-r)8.(r.,‘))

which can be simplified, with the aid of the orthonormality relation

{dﬂ* F(h.v) P, Yop) = 22+1 Pz(f\-ﬁ (6.
to give
-—L-ﬁ? - [
dQr — = RS A hep
4wf 7+ 7] }z( ce 32(he) B (hep)

Expansion to 0(p2) yields

1 —i;‘l.-;. . -
—|dQy & 2. h
*f,( Fapl = U = H i)

Qz(h")f’ ( hhh — )-F+

and with (6.35), leads to the result that

Pl H Rl e

R U

‘\‘
|
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@
5(;1') = — 4x (3% — J_) J’ dr T'jz(hr)[1— }(r)] (6.38)
' 0
A Judicious choice for F(7) = F(r) is the "incomplete gamma function,’

FOY = T (5/2; «v**)/T(S/z) (6.39)

where

T(n;x) = | dt et

Re—1 g

This form for F(r) will be shown to have the desirable properties that
) both H(r) and the integral arising in (6.38) are rapidly decreasing func-
tions of their arguments. The constant a is completely arbitrary, and can

be conveniently chosen to make convergence in the two sums §l and 52 equal-

ly rapid. The integral in (6.38),

- — xr? !
dr - _ - dvr . . ! | dt -t 3/2
[ 4 50w 1= 3] f.;-;z(h >r(%)f et

can be rewritten with a change of variables, p = hr and t = ar2u2, as

«© _ 2 hz.
%fd?gd“ prut e LA
3%V )
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I du w4 (‘u.)é*-mz ACK N \/f—
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to obtain, finally,

- 4 — h¥Y4u ';‘T
3(&:) = — 5 (3_“’1'_ — 1) (6.30)

The sum gé becomes

5, = [ aF @(RR)0) +
S [ 47 5 & [1- 3] (3E-1)

Since

{ 2
Slr-3n] ~r?

as ¥ » O, the =second term with GKK' vanishes, and‘§2 becomes, upon sub-

stitution of (6.32) and (6.40),

- Ry —IT=R Y4 h—R)h.-R
3 4+ Ze‘*“e > o 3(x k)(;k) — 11 (6.11)
A

2 = = = 2
3V¢L “".\—'E‘
J(r) can be expressed in terms of the "complementary error function,”

F(r) = Erfc (rf&') + 2r e_urz\/-g“,_: (1 ~+ %O(Yz> (6.42)
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and we ovtain, finally,

e e~ 1R (Ry+7y) (§l+;'“,)(§l+;;n,) ()
S(h.rm’)’: Z = = 3 3 = ., = il X
1 |R1+rxx'l lRL+ rxn"

[EY‘FC( !R2+Y,‘K l)-f—?.‘Ql"‘rm: ‘\/—— —MIR£+TKK,I( [R1+ x‘)]

~ (- T = [y —RIY h,—r)h.-k
_4_"2 g tha-Tiud=ha 4“{3“‘* k)(f*lk) ~1b (e
3y & { | —R|

The sum .‘é(_};,;“.) is thus expressed as two sums, one over the real lat-—
tice, and the other over the reciprocal lattice, and both Sums are rapid-
ly converging. 1In order tc make the two series converge about equally
rapidly, a value of g = m/2 was chosen for actual computer calculations
(the details of which can be found in an appendix).

The Coulomb contributicn to the dyramical matrix involves only three

lattice sum functions S(I?,?“, IE

Deoul(¥|1,1) = - S(k,{000})

o8]
[(]

% (k[2,2) = -

Deou(%]1,2)

2 T B(E,00) = 5OUE)0,)" (gl

coul(k'l ) = D°°“l(kl3 1) 'Bcoul(i;lg,l)

2 2
%% (2]3,2) = - f-— S(%,{100}) = DeOUL(R|5 4)"
F
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We have, by meeans of (6.11) and (6.4L4), obtained the complete ex-
pression for the Fourier transformed dynamical matrix Bo(ilnn')- The
phonol eigenfrequencies W and eigenvectors ﬁ(xl?o) can be obtained for
any wave vector k by means of (2.54). All that remains is the determi-

nation of the mode. parameters.

3) Long-Wavelength Optic Modes

At this point, it is instructive to examine the form of the k=0
modes in more detail, in order to illustrate the remarks made earlier
about the splitting of the degeneracy of the optic Fiy modez into trans-
verse and longitudinal branches by the long-range Coulomb field. If we
split off the term for whien A = (0,0,0) in expression (§.43), then as
K + 0, wve will be left with two absolutely (and rapidly) convergent sums
that each epproach zerv. (This is a consequence of the fact that both
sums contain an angular fector of Yz’m symmetry, and there exists uo

linear combination of the spherical harmonics Y2 n that has cubic sym-
y RS

metry.) Thus, as k + 0, only the A = (0,0,0) term remsins, and (6.43)

becomes

5 Ny >
lim 3(k,rKK.)

~(bn/3v ) 135 -1 (6.145)
k+0 8[2 J

and this dyad clearly depends upon the directicn of approach zs Wwe take
the 1imi*t k - O. Therefore, the Coulomb contribution to the dynamical
matrix DO(E*O‘KK') will also displey this property as i becomes small,
Howzver, the eigenvalues wiz do not depend upcn the direction of approach

e

(it would be shocking if they did!). The dyad (3 E% - 1) can be taken to
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3 define a set of axes with one iongitudinal vector parallel to kK, and two

{arbitrarily selected) transverse, orthogonal vectore that are perpendi-
cular to k. In that cartesian gystem, the dyad is diagonal, with eigen-
values respectively 2, -1, -1. The dynamicsl matrix BD(K+O|K<') splits

into three Independent blocks, when it is partition ' into boxes accord-

ing to the longitudinal and transverse vectors defired in the above way:

10 TO, TO,

i
i
.o dl :
PO i
lim D°%(k) = TO b d, ! {6.46)
g 1 P2
®+0 $————— T —————
TOZ ! d
I3

The matrices dv(nn'), v=1,2, 3, are a1l 3 x 3, with rows and columns

labeled by the basis indices x, x' = 1, 2, 3. They are given by

' 4’<V ‘7-(11 _ZCV
L2 ' Y2
M™ dy (k)M = | 20, E+7, 1,-¢% (6.u7)
—Z(V Iv"'z §+§V

where

Ty = (zo‘l + 2 ()

f.)

E = Z(d,—{— o3 -+ 2}*3)

(6.48)

and where A{v) = 2, -1, -1 for v = 1, 2, 3 are the eigenvalues of the

prewy
dyad (3 E% - 1). Because the dynamical matrix has split into three inde-
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pendent blocks, it can be diagonalized separately for each of the three
"subspaces." Clearly, since the metrices d2 and dg are identical, the
elgenfrequencies for the two transverse polarizations will be the same.

1< is straightforward to obtain the secular equation,

w"(wz—:—F§)(w1—z[—r;—;+,:m]Iv>=0 (6.49)

from which we can obtain the eigenfrequencies of the optic modes:

we = ;%;(0‘4+ %3 + 28a) (6.50a)
Wro = 2] + — ] (24, - ix 7%e) (6.500)
wi = [—— + ——'l (24, + 2 ) (6.50¢)

wR is the frequency of the triply degenerate, Raman-active, F2g mode;(uTO
is the frequency of the double degenerate, IR-active, transverse Flu mode;
and Wrq 1is the frequency of the longitudinal Flu mode, split from “@0'
These expressions could have been obtained from (6.47) directly by using
the vectors.;(§=0,c) for the k = 0 modes given earlier by (2.71). Eq.
(6.50) for these three frequencies supplies three relations that can be
used later to help determine the parameters of the rigid ion model. The
above demonstration has been somewhat formal, and does not really illus-
trate the physics involved, which we shall discuss below.

The {harmonic oscillator) equations of motion for the ioas are
coupled to the Maxwell equations for the eleciromagnetic field, whenever

there is a macroscopic polarization field induced by the lattice vibra-

tions. Even in the electrostatic approximation, for which the Coulomb
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interaction is treated as instantuneous, the existence of an induced po-

larization for any mode will lead to & splitting of the degeneracy between
the longitudinal and transverse branches of that mode. It is the exis~
tence of cueh an er~~ompanying polarfzation field that is responsible for
the splitting of the k = 0 Flu optic mode in CaF2 wnich was described
earlier. For the Raman-active Fgg ncde, for which no polarization is
established, no extra complication of this kind arises. One of the con-
veniences of studying first order Reman scattering from crystals with
inversion symmetry is that +he Raman-active modes in such substances are
not complicated by the presence of such an electric polarization field.
Let us shov how the splitting of the degeneracy as ; + 0 crises in the

electrontatic eppr ximation, for which only part of the Maxwell equa-

tions are retained, viz.,

+ >
V.(E + 41P) = 0

(6.51)

These two equations imply, respectively, that k-(E + h:P) = 0, and

L]

k x E.= 0, for wavelike solutions (in the Present case, we are interested

in the long-wavelength solutions, K-—»c). Thus,

-
E=0 ftransverse waves)

(6.52)
E

~knP (longitudinal waves)

For an Flu mode in CaF2, the equation of motion for the icnt can be writ-

ten as
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Mea Uea + 5o, (Uea — de) = 2Ze E;
(6.53)

.
B

Mg Ue ~+ 4o, (aF~.lICQ) == —ZeEL

where we have invoked the fact that the two flucrine sublattices have the
seme displacement (EF) in such a mode, and where Ei is the internal elec-
tric field developed by the deformation. In the rigid ion model which we

are using, the ions are non-polarizable, so electronic effects are ne-

glected. The polarization will be given by

P o 2Ze (T, ) (6.54;

a
and for systems with cubic (or higher) symmetry, the internal field is
-> -+ ->
E, = E+ (bn/3) P (6.55)

Thus, from (6.52),

Ei = (Ln/3) P (transvers: wave)

(6.56)
> . ->
Ey = -(81/3) P (longitudinal wave)

If we define ¥ = (aCa - EF), the twu equations (6.53) can be manipulated

to give

v . - 2 i \ 41 2 7.\ -
5
v z ’ :, Tt kY —

We can immedistely identify the LO snd TO frequencies from this equation,

L%
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and these agree with the earlier result (6.50). This derivation shows more
clearly that the splitting is an electrostatic effect, and =that the origin
of the frequency difference for the LO and TO branch is the non-vanishing
electric field (cf. Eq. (%5.52)) associated with a longitudinal mode.
Actually, the preceding remarks about the long-wavelength optic modes
hav: not been coumpletely accurate, for the discussion up to this point has
been based, essentially, only upon the equations of electrostatics. Al-
though the lattice vibrations have been treated in u dynamical way, all
of the time dependent equations of the electromagnetic field have been
suppressed, and these must be included in a rigorous trzatment. The tacit

assumption in the development has been that there is an instantaneous

static Coulomb interaction between the vibrating icns, and only lattice

equations of moticn were considered. In reality, of course, the Coulomb
field does not act instan’aneously, and a more complete descripticn ol the
lattice modes'in an icnic crystal requires that all of the equations of
the electromagnetic field be included on an e-ual basis, in order to de-
scrit > the effects of retardavion. These consideratioins lead to some im-
portant phenomena for * = 0 in ionic solids, and we shall summarize some
of the important aspects here.

In addition to> a splitting of frequencies for vector-like modes, the
situaticn near-i = 0 is further complicated because of retardation effects.
The two electrostatic equations really describe only the lcngitudinal part
of the electromagnetic field, which is derived from the instantaneous
charge sources (i.e., the instantaneous Coulomb field). The remaining
Maxwell equations, which must be reinstated in order to describe impor-

tant phenomena near k= 0 thet electrostatics is incapable of explaining,
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constitute dynamical equations “or the transverse radiation field (i.e.,

the photon field) which has been neglected so rar. In a region near K = 0,
when the dispersion relation of photons and phonons brings the frequencies
of these two systems near resonance with each other, there can be a strong
interaction between transverse mechanicel waves and radiation. The exact
solutions to the equations of motion for the coupled system of vibrations
and the electromagnetic field are a complicated mixture of photon and pho-
non ("polaritons”) in tuat region of ﬁ-space. A simplified sketch of the
situation for a diatomic lattice is shown in Fig. 6.6. This behavior is
discussed in much more detail by Born and Huang(25) and others(39‘llg’l7h'7),

and leads to the famous Lyddane-Sachs—Teller(l76) formula,
Wio = Wio(Eo/Em )™ {Badtsl

where €, and £, are the static and high-frequency dielectric consteats.

It is shown by Cochran and chley(l77) and by Loudon(llg) how these re-

sults can be extended to more complicated crystals--e.g., many infrared-
active branches, uniaxial crystal structure, etc.

For Raman scattering in crystels lacking inversion symmetry, the
first order Raman-active modes will display these complications as K* 0.
However, typical light sources usc¢d in Raman scattering have k 20,000
cm™L. The phonons involved in right angle Raman scattering will have a

" .
momentum k ~ 0 relative to the Brillouin zone edge (™ 108 em™1), but it

will be {ar to the right of the polariton mixing region shown in Fig. 6.€.

I IR TV

-
ORI

T R TITIIIT




1 T4

Fig. 6.6:
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Wro

- R

~10% cm™

Dispegsion curves for optical waves in a diatomic lattice
near k = 0. The dashed lines represent phonons and pho-
tons without interaction; the solid lines de:_ribe the
coupled system of lattice vibrations and radiation.

k) Determination of the Model Parameters

The rigid ion model adopted in this work contains eight

constants,

z, ay» Bl, as, Be, Y2 235 and 5. In order to determine these parameters,

it is necessary to relate them to experimentally mens

(6.50) for the k =

others are

ured quantities. Eq.

0 optic frequencies provides three relations, and three

supplied by the expression for the elastic constants(IGS):

7%’ ’

% 4 2By + a3 4 3 " ] {6595
L a
7 12
_Qpc—2Yz~“|—2a2‘ﬁ2—33“ize (6.5

r 7%t
o+ 2“2+ﬁ1+ﬁ3—-3 Ve

a

_ (=B + 57%Yv. ) ] (6.59¢)

%y + Oy 4 28,
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Following Ganesan and Srinivasan(IGS), we can reduce the number of para-
meters from eight to six by making the assumptions that e, and 63, the
force constants for displacement of two calciums or two fluorines perpen-
dicular to the line Joining them, is zero. The six remaining constants,
Z, a1, 81, 82, Yo, and u3, can then be obtained from experimental know-
ledge of w,, W » Wros Cll’ C12, and Chh' The Lyddane-Sachs-Telier for-
mula (6.58) is usually used to obtaii the LO Irequency from the experi- 1
mentally measured TO frequency. There are several references to experi-
mental work on the optical(178_182) and elustic(183_185) constants of the
fluerites in the literature. The table telow gives the values of certain
parameters for Ca.F2 at low temperature (~ LK), with the resulting force
constants @y, By, 8o, Yo, and ag (in units ¢ ee/ro3, where r, = F-F se-

paration, as shown in Fig. 2.1) and effective charge 2.

T o ¥
i [} ]
wp (em=1) E 326 ﬁ z2 E .609 .
] n ]
=1 I a 1] ) .
W, (em™t) i 267 TS 1 1.537
0 ; P
wo (em™h) 1 bro® :'; N 5 2.707
] n ]
g, E 6.38% 5 By '{ .315
I 1] 1 i
1 a U 1
£, ;I 2.047 l::l Yo ': .27h
¢y, (dyne/:m®) 1174 x 1011 ® ; ay i 1.079
] 1] ]
Cys (dyne/cm?) é 5.6 x 1071 P ﬁ 5
! . " !
Cuy (dyne/cm?) g 3.59 x 16™* B ¥ g
I
o] ] ] ]
r (A) 12,725 i i
] fl ]
1 il ]
! . | 1

(®) Reference 179; (P) Reference 183

bbb
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6.3 Theoretical Calculations: Cay_ Sr F,
-x7t 02

In addition to a physically realistic m del for the pure CaF2 lat-
tice, a good model is needed to describe the effects of a substitutional
Sr*+ impurity. The calculation of the proper self-energy, to lowest or-
der in the concantration x, can be carried out for the mixed-fluorite
system Cay_,Sr Fy by using Eq. (5.12). However, in order to make the com-
putational aspect of the problem manageable, assumptions heve to be made
on the force constant changes (inducvd by & srtt impurity) that will keep
the defect subspace as small as possible.

In the model of the defect to te adopted here, we shall assume that
the long-range Toulomb forces are not effected, and that trere are no
force ¢ unstant changes associated with the short-range interasction be-
tween the ++ ions. The defect matrix, v, = (M - Mo)w2 - (® -39),shall

be constructed from the following assumptions:

1) The mass of the ++ metal ion changes (Sr** replaces catt),
2) The effective charge Z deoes not change,
3) A1l nearest-reighbor short-range intercactions (except for

that between ++ ions) may change.

These requirements lead to a defect Space that contains nine atoms: it is
an XY¥g complex, censisting of the ++ impurity and its eight nearest fluo--

rires, as shown in Fig. 6.7. The calculation of thke proper self-energy

requires the evaluation of
\ [l + g%w+ic )v ]-l
o ol °

which is of order 27 x 27. Even with the present simple assumptions, the
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dimensionality of the impurity subspace is quite large. Clearly, without
the simplifications that point symmetry can provide, the calculation would

be a formidable task.

Fig. €6.7: Impurity subspace.

The matrix go is the Green's function (imbedded) in that subspace,
for the unperturbed lattice. Even though it is here confined to the de-
fect subspace, g° has the tull symmetry of the perfect lattice--i.e., 0h
poirt group symmetry, and also, tranclation symmetry. The simplifications
that group theory provides are tremendous: instead of the 378 independent
elements that a general (symmetric) 27 x 27 matrix possesses, go can be

shown to have only 13 independent elements. The transformation properties

for gze(ix,z'x';w+ic) are the same as those expressed by (2.28) for ¢°,
and the reduction of the 27 x 27 matrix g° is a laborious manipulation of
rotation operations. The details are omitted; the fiaal result is dis-

played in Fig. €.8, which shows the most general form that go can have in
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the impurity subspace. The notation 0, 1, 2, ..., 1, 2, ... etc. refers
to the site lsbels introduced in Fig. €.7. The numerical calculation of
the 13 Green's functions A, B, ..., U, V is described in the appendix, and
the real and imaginary parts of these functions are displayed grsphically
there.

The defect matrix v., and also vo[l + g°(w+ie)vo]'1, has the site

o°?
symmetry of the XYB complex, i.e., the L8 operations of the Oh point group.
There will be one mass change, (er - mCa), and ihree force constant changes,
Say, 681, and 6a3 involved in the defect matrix v, (refer to the notation
used for the rigid ion model). The change in a; is calculated from (6.50)
using the (assumed unchanged) value of Z2 = .609 and the value(‘rg) of
wpg = 225 em~1 for SrF, (at ~ 4OK); the change in B, is obtained from

(184) of oll dynes/cm2

(6.59b) using the experimental value Cip = .75 x 1
for Srf, (at ~ 49K); and the change in a3 comes from (6.50a) using the
experimental value of wg = 290 em~! for SrF, (at ~ L9K). The masses ¢f
Ca =nd Sr (relative to the fluorine mass) are, respectively, 2.109 and
L.612; the change is thus ém = 2.503. Since every nearest-neighbor F-F
pair shares the subspace for two possible impurity sites, the average a3
force constant is used for two F ions located between a Sr** defect and
a ca** host atom. This is equivalent to associating a change of %6u3 in
tne F-F matrix elements for the defect matrix Vs that describes a single
sr¥t impurity. The complete form of the matrix v, over the 27 x 27 di-
mensional impurity subspace is displayed in Fig. 6.9. 7he "self" force
constant changes in Fig. 6.9 were determined from the translation condi-

tion (2.13), which is valid for an arbitirary lattice.

Under each of the 48 operations of the 7y group, & matrix X defined
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over the sites of the XY8 impurity subspace will be subjroted to a 27-

. . -1
dlmensional similarity transformation d : x-—pl XJ + If X has the sym-
metry of the XYq "defect molecule", then it will be invariant under all
of these similarity transformations, and X will commute with each of the
L8 27-dimensional mat ices {d . The ¢7-dimensional (reducible) represen-
tation formed ty these similarity transformations can be shown to reduce

to

r(xyg) = a3, + Eg ¥ Frg v 2Fpp + Ay  + by + 3F, + Fou (6.60)
With some intuition, it is possible to construct 27-dimensional column
vectors with the appropriate symmetries thet can be used as "basis vec-
tors" to reduce the matrix ¥ into block form, corresponding to the de~om-
position (6.60) into orthogonal subspaces witn Alg' Eg’ Flg’ ce.y BtC.
symmetry. These (unnormalized) basis vectors are displayed in Fig. 5.10,
and are, oy coﬁrse, not unique; all that is claimed for them is that they
have the symmetry stated Thery have been ccnstructed so that the equiva-
lent polarizations (e.g., in a 3-¢imensione. representation such ag Fgg)
are orthogonel. However, since they were obtained purely by geometrical
irtuition, it will be only accidental if they diagonalize a given matrix
X completely. All of the simplification that group theory can provide 1is
contained in the decomposition (6.60), and since some representations
(e.g., F2g and Flu) occur more than once, complete diagonalization in
those subspaces cannot be accomplished ty (Oh) symmetry considerations
alone. Aside from the fact that there are three equivalent polarizations,

the reduction of a matrix X with the symmetry of the XYg "defect molecule"
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Fig. 6.11: The unperturbed Green's function matrix G° and the defect

matrix vy in the Fp, and Fp,

symmetry subspaces &s deter-

mined by the mode vectors of Fig. 6.10.
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will lead to (three) 2 x 2 Fpg blocks, and (three) 3 ~ 3 Fy, blocks. The
diagonalization of these blocks will determine the linear combinatiors of
Fpg and Fyp, vectors (given ia Fig. 6.10) that diagonalize a particulur ma-
trix X completely. The elements of the unperturbed Green's function ma-

trix g° and of the defect matrix v, can ve calculated for each o:! the sym-

metry subspaces by using Fig. €.8, 6.9, and 6.10. These calculations are

rather tedious, and have been carried out for the ng and F subsnazes,

lu
with Lhe results shown in Fig. 6.11. These matrices are necessary later

for .he evaluation of vo[l + go(w+ie)vQ]'l (which occurs ian the first or-
der proper self-energy) as a function of freque.icy in the FJS and Flu sub-
spaces. ({The constants p, q in Figz. 6.8, 6.9, €.10, and 6.11 are related

by p = 1/q, but are otherwise arbitrary; it shall prove convenient for

the later infrared calculetions to choose p = mCa/mF'

1) Raman Scattering

It may be reasonable tu assume that the formation of a mixed crystal

from two simila: isomorphs, such as Ca; _,Sr Fsor Ba, _.Sr. F,, will not in-

(o]

vulve any appreciable changes in the PaB y
’

(k) coefficients that charac-
terize the electronic polarizability structure. Evideuce for this assump-
tion could be taken to be the fact that significant changes in these
quantities would mos®{ likely lead to induced scattering from impurity

ng ry . . . .
mndes, other than the & ~ U excitation. Since this is contrary to our
cbservations of a single peak which shifts linearly, and broadens wit®
concentration, we shall assume that the dominant scattering mechanism

~omes from the first ter. in (4.15), which was expressed by (L.1h). Using

that resuit, we can write tht scattering intersity as
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(6.61)

where the proper self-energy hes been expanded only te the lowest order
in c¢. We have also included, phenomenologically, a broadening to the

1 = 0 mode of pure CaFp by adding a term —iyR/2 to Wp where YR repre-
sents a full width. From (5.17), it is evident that, as i + 0, the pro-
per self-energy term in the denominator of (6.61) is just the projection
of vo[l + go(w+ie)vo]‘l onto the mcde defined by the second set of FZg
vectors listed in Fig. 6.10. Calculations have been carried ~+t “or the
first order PSE that occurs in expressio: (6.61) for the RS intensity,
and the res 'ts are shown in Fig. %5.12 (with details in the appendix).
These calculations have verified the validity of the conjecture that g°vo
is negligible compared to unity for the Raman mode. This leads (accord-
ing to the discussion in Sec. 5.2) to the "virtual crystal approximation"
for the ¢ irst order Raman line, as observ=d; this behavior is related to
the real part of the PEE. The linewidt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>