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ABSTRACT 

This document describes a FORTRAN IV subroutine named CAVAP 

(an acronym for conCAVe Assignment Problem) which uses a branch 

and bound method to solve a variant of the assignment problem in 

which the objective to be minimized is concave. It is assumed 

that m tasks are to be performed and n different kinds of 

machines have been defined for possible use in performing them. 

In general a task may be performed by several machines of one 

type, or a different number of machines of another type, or 

possibly only by certain combinations of machines. It is assumed 

that total cost, which Is to be minimized, is the sum of costs 

for each kind of machine, each of which Is in turn a concave 

function of the number of machines of that type required. > A 

detailed mathematical treatment of the problem and the solution 

method has been given elsewhere. CAVAP has been used to solve a 

space fleet selection problem with 20 space missions (tasks), 

40 booster and spacecraft components (machines), and a number of 

alternative launch vehicle configurations and combinations for 

each mission.  Running time was under 20 minutes on an IBM 360 

model A4 with one disk. 
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1.0 GENERAL INFORMATION 

This document describes a Fortran IV subroutine named CAVAP 

which solves a variant of the of the so-called assignment problem 

in which the objective to be minimized Is concave. CAVAP Is an 

acronym for conCAVe Assignment Problem. The method of solution Is 

by brancn and bounds. A mathematical treatment of the problem and 

solution method Is given In [2]. For an example of the use of this 

subroutine, see the description In [1] of the routine for computing 

a minimum cost mixed space fleet from given vehicle designs when 

the fixed costs and learning curves give a concave cost vs. quantity 

relationship. CAVAP has been run as a subroutine to the program In 

[1] on an IBM 360 model 44 computer equipped with one disk. All 

limitation and running time data presented are taken from this 

context. 

1.1 Purpose 

1.1.1 Mathematical statement of the problem 

Suppose m tasks are to be performed and n different kinds 

of machines have been defined for possible use in performing them. In 

general a task may be performed by several machines of one type, or a 

different number of machines of another type, or possibly only by 

certain combinations of machines. For each 1, 1 <_ 1 £ m, it must 

be possible to write out all the alternatives to be considered for 

performing task number i. Let k(i) denote the number of such 

alternatives.  For each value of h,  1 .1 h <^k(i),  the h  alternative 

for task i can be given as a vector 
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Ih  , ih ih     ih. 
X  ■ (X.    »Xj »• • • »x ) 

where each x.  is the number (positive or zero) of machines of 

type J required in alternative h for performing task 1. There 

is no requirement that the alternatives for different tasks are in 

any way related.  For the application given in [1], the tasks are 

space missions* perhaps 20 in number; the machine types are booster 

and spacecraft components, perhaps 40 in number; and each alternative 

consists of the numbers of components of different types needed to 

build the number of launch vehicles of a particular configuration 

required to perform one mission. 

A feasible (not necessarily optimal) solution of a problem 

consists in selecting exactly one alternative for each task, i.e. 

numbers h(i).  It is assumed that a machine to be used on one task 

cannot also be used on another, but different machines of the same 

type may be.  Thus the number x(j)  of machines of type j  required 

by a particular feasible solution is the sum of the numbers of machines 

of type j included in the selected alternatives, I.e. 

ih(i) 

^1=1 J 

Next suppose the total cost of design, production, etc., of x(j) 

machines of type j  Is given by a cost function 4)(j,x(j)).  This 

implies that the cost of x(j) machines of type j  is completely 

independent of the numbers or kinds of other machines produced.  Thus 

in the problem given in [1], a complete vehicle cannot be considered 

Ib-L 
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a machine if for example It has a stage in common with another vehicle. 

It is also assumed that for each J the graph of <Kj.x(j)) is concave, 

that is, the cost of an additional machine of type J decreases as the 

total number of machines of type J increases.  Figure 1 illustrates 

acceptable and unacceptable functions $.  In most practical applications 

it is to be expected that $    will be zero for x ■ 0 and positive 

increasing for x > 0 as in Figure lb, but this is not essential to the 

method of solution.  Since no alternative can specify a negative number 

of machines of any type, it Is Immaterial what value. If any, 4» gives 

when x(j) is negative. 

x(j) x(j) 

a. concave b. concave 

- x(j) 

nonconcave 

Figure 1 

The total cost of performing all tasks using a particular feasible 

solution is 

n 

The problem solved by CAVAP is that of selecting the feasible solution 

(i.e.  an alternative  for each task or    h(l)     for each    1) which will 

minimize    Z. 

* — tuaauaMfiuM 
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1.1.2    Need for a special algorithm 

The method of complete enumeration Is an obvious and very simple 

one for determining the least cost solution of any assignment problem. 

This Is  the method which computes the cost of each of the possible 

combinations of alternatives and retains the combination with the 

least cost.    This method requires the examination of 

s - k(l)'k(2)'...'k(m) 

different feasible solutions.  For one of the problem?, of the type 

described in [1], m " 20, n - 38,  and 

s - 5»l'5«3*12'5«ll'2«6'7'5'6»15*6'15'6«6'3'7-7 * lO1^. 

Even if the cost of each feasible solution could be computed in 1 

microsecond, it would take more than 30 years to examine all 10 

of them.  By comparison the same problem was solved using CAVAP in 

approximately 20 minutes on an IBM 360 model 44. 

1.2 Limitations 

The method of solution used by CAVAP belongs to a broad class 

called "branch and bound" methods.  As a class these methods suffer 

two inherent limitations. First, as the size of the problem increases, 

th«> amount of computation time required Increases exponentially. This 

means that there Is a fairly well defined bound on problem size above 

which computation time is impractically large. The better the procedure, 

the higher this bound.  Second, branch and bound methods make use of a 

list of partial solutions.  In order to save recomputing time, the 
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amount of information saved with each item of the list is large. 

Thus auxiliary memory is usually used.     Since the length of the list 

grows exponentially with the size of the problem,  there is also a 

rough limit on problem size above which the list is too long even for 

auxiliary memory. 

For the application discussed in [1]  it was found that the 

limitation on problem size was the size of the scratch area on the 

only available disk, namely, 500 blocks of 180 words each.    The 

largest problems which did not exceed this storage requirement ran 

about 20 minutes.     For several scratch disks  the limitation would 

become computation time. 

Presumably with large problems round-off errors could become 

serious.    In many computer programs the effect of round-off errors 

is to cause a fairly steady deterioration of accuracy as  the amount 

of computation Increases.    The nature of the algorithm used by CAVAP 

is such that with Increasing size of problem there will be little 

effect on the precision of answers until at some point round-off 

errors cause the process to go wild.    It is unlikely that this would 

result in undetected errors.    The most likely result would be an 

immediate error exit or an endless loop which would eventually fill 

up available disk storage and result In an error exit.    Results with 

the problems of  [1] suggest that the limit due to running time will 

be met before round-off becomes a problem. 

As written,   CAVAP will handle in theory up to AA machines, up 

to 100 tasks,  and up to 500 auxiliary memory items.    These  limits are 

i 
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easily  alterable.    The only real limitations are  the amount of running 

time and auxiliary memory  available. 

2.0    PROCEDURE 

The naming of variables in the subroutine follows closely the 

notations found in  [2] and in paragraph  (1.1.1). 

The method of solution is given in considerable detail in [2]. 

The deviations are minor and of a programming nature.    The subroutine 

contains an initial section in which the input parameters and data are 

subjected to a complete check to insure that they meet the requirements 

set fourth in paragraph   (3.0) below. 

In addition to the normal return there are two abnormal returns 

from the subroutine.    If the normal return occurs,  a feasible solution 

has been found which has a cost which differs from the minimum cost in 

about the 5      decimal place.    Abnormal return 1 occurs if the input 

data is improperly given.     If the program must be abandoned for any 

reason before finding an optimum solution, a feasible solution and its 

cost are given.     It may very well happen that the  feasible solution in 

this case is actually optimum, but the subroutine has not yet succeeded 

in proving this fact.    Three likely causes of the subroutine being 

abandoned are:    exhausting the disk storage, finding that one of  the 

cost functions given by PHI is not concave, or the accumulation of 

round-off errors. 
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3.0 INPUT AND OUTPUT DESCRIPTION 

The calling sequence Is 

CALL CAVAP(M,N,PHI,JIN,XIN,ZEEST,HTBEST.XBEST,NITE} ,MAXITM.&a.6b) 

where 

M 

PHI 

JIN 

XIN 

ZBEST 

HIBEST 

XBEST 

Type 
Integer 
or Real 

I 

I 

R 

I 

R 

R 

Description 

<Input) 

number of tasks.    Must be betwon 1  and 100. 

nuaber of aachlnes.    Must be between 1 and 44. 

transmit ted name of a function sub rout int. 

PHKJ.X)    which returns the cost ot   X 

machines of type   J.    This function t'.-st 

be concave over the range of values of   X 

for the given problem.   The function need 

not be defined for negative    X. 

input arrays described below. 

(Output) 

cost of the best feasible solution found.    Set 

to    infinity if the input data is improper. 

,lh an array whose i      element is the number    h 

of the alternative selected for task    i    in 

the best feasible solution found.    This array 

should be of length at least    100 H. 

.th an array whot>e J      element is the number of 

machines of type    J    required in the best 
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feaslble solution found.    This array 

must be of  length at  least    N. 

NITER I number of iterations performed. 

MAXITM I maximum number of  items on disk at any time 

during solution of current problem. 

(Error returns) 

a statement number of return if input data is 

improper, 

b statement number of return if solution is 

abandoned. 

The input arrays JIN and XIN contain Ihe descriptions of the various 

alternatives for each of the tasks arranged in a compressed form.    The 

first element of JIN must be    -1.     The second element of JIN must be    0. 

There must  follow a string of from    1    to    N    distinct positive integers 

less than or equal to    N.    These are the numbers of the machines used in 

the first alternative for the first task.    In the corresponding locations 

In XIN must be the "numbers" of these machines required.    These numbers 

must be floating positive numbers;   they need not be floating integers. 

The first   location of JIN following this string must contain    0    or    -1. 

If the entry is    0,    another string describing a second alternative must 

follow.    Any number of alternatives may follow, each one preceded by a 

0    in JIN.     If the entry following the description of an alternative is 

-1     the description of the alternatives for the next  task must  follow. 

Again the  first alternative must be preceded by a    0    entry  in JIN.    The 

first  entry  in JIN following the  last alternative of  the  last  task must 

be    -2.     Each task must  have at   least  one alternative and  the number of 
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tasks described (number of -1 entries In JIN) must equal M. An 

example of an acceptable set of values for JIN and XIN Involving 2 tasks 

with 1 and 2 alternatives respectively is shown below. The value of N 

is A. The values marked * are immaterial. 

JIN XIN 

-1 * 
0 * 

1 2.0 
4 1.5 

-1 * 
0 * 
2 3.0 
0 * 

3 1.2 
2 .05 
4 5.0 

-2 * 
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FORTRAN   IV MODEL   44     PS VERSION  9,     LEVEL   2 

SUBROUTINE   CAVAP   IM,N,PHI,JIN,XIN,ZBESTtHlBESTfXBEST, 
I NITER.MAXlTMf*,«) 

C FOR   A  OESCRIPriON  OF   THIS  SUBROUTINE«   SEE 
C «CAVAP*   A  FORTRAN  SUBROUTINE   FOR   SOLVING  AN  ASSIGNMENT 
C PROBLEM  WITH   CONCAVE  OBJECTIVE*,   BY   D.   HALKUP, 
C MATHEMATICAL   NOTE   NO.   529,   BOEING   SCIENTIFIC   RESEARCH 
C LABORATORIES,   SEPTEMBER   1967. 
C FOR   A  MATHEMATICAL   TREATMENT  OF   THE   PROBLEM   AND  THE   THEORY  OF   THE 
C ALGORITHM USED,   SEE 
C •ON  A  BRANCH-AND-BOUNO  METHOD  FOR   SEPARABLE  CONCAVE 
C PROGRAMS*,   BY   D.   WALKUP,   MATHEMATICAL  NOTE  NO.   527« 
C BOEING  SCIENTIFIC RESEARCH LABORATORIES,   SEPTEMBER   1967. 

IMPLICIT   INTEGER   (H-N) 
EXTERNAL   PHI 
DIMENSION  JlN(n,XINtn,HlBEST(l),XBEST(U 
DIMENSION  HILIN(100),XLIN(44),2(44),ZLINIT(500I,LOCITM(500I 
DIMENSION   INF0(180>,P(44),Q(44),CU4),D(44) 
EQUIVALENCE   f INFOd) «Pd) M 1NF0(45) «011)) « 

1 (INF0(89)«C(in,(INF0(m),D(m«nNF0(177),DSUM), 
2 (INF0(17BI,JBK),(INF0(179),XBK),IINF0(180),ZBK) 

DIMENSION  XlHt44),XIMAX(44) 
EQUIVALENCE   (P,XIH),IXLIN,XIMAX) 
DATA  FINF/27FFFFFFF/ 
DEFINE  FILE   1(1300«90«U« IX) 
XEPS  >   .00001 
OMEPS  »  .99999 
MMAX   «   100 
NMAX   -44 
ITEMAX  «   500 
LINFO  -   180 
NITER  ■  0 
NITEMS  >  0 
MAXITM  >  0 
ZBEST  «  FINE 
L   ■  0 
IF((M.LE.0).OR.(M.GT.HMAX).0R.(N.LE.O).0R.(N.GT.NMAX))   GO   TO   900 

C CHECK   INPUT   LISTS  JIN   AND XIN  AND  FIND  UPPER  BOUNDS  OIJ)   ON 
C THE   SOLUTION. 

00 105  J   «   1,N 
105  QU)   ■  0. 

1 • 0 
L • I 
IFU1NIL).NE.-1)   GO   TO   900 

110   I   «   I   ♦   1 
IF(I.GT.M)   GO   TO  900 
DO   115  J   «   1,N 

115   XIMAX(J)   •   0. 
H   «   0 
L   »   L   ♦   I 
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IF(JIN(L).NE.O)   CO   TO   900 
120  H   «  H   ♦   I 

DO 125 J « l,N 
125 XIHIJ) » 0. 

lF(J!N<L*n.LE.OI GO TO 900 
130 L « L ♦ I 

JJ « JIN(L) 
IFUJ.LE.O) GO TU 1A0 
IF((JJ.GT.N).OR.(X1N(L).LE.O.).OR.(XIH(JJ).GT.O.)) GO TO 900 
XIH(JJ) « XIN(L) 
GO TO 130 

140 00 HI J « 1,N 
CMF(XIH|J).LE.XIMAX(jn GO TO 141 
XIMAX(J) s XIHUI 

141 CONTINUE 
145   IF(JJ.EQ.OI   GO  TO   120 

00   150   J   »   1,N 
150   0(J)   «   Q(J)    ♦   XIMAX(J) 

IF(JJ.60.-n   GO   TO   110 
IF(I.NE.M)   GO   TO  900 

C CHECKING  OF   INPUT   LISTS   JIN  AND   XlN COMPLETE.     USE   OF   XIH  ANO 
C XIMAX   FINISHED. 
C STEP   I.     FIND  FIRST   LINEARIZED   SOLUTION. 
C COMPUTE   INITIAL  LINEARIZED  OBJECTIVE  FUNCTIONS. 

OSUM   «  0. 
00   160  J   *   ltN 
PU)   «   0. 
ZP   «   PHKJtO.) 
0(J)   «   ZP 
OSUM   =«   OSUM   ♦   ZP 
C(JJ   >   0. 
IF(0(Jl.EU.O.)   GO  TO   160 
zo * PHHjfQun 
C(J)   «   (ZQ-ZPl/QCJJ 

160  CONTINUE 
C INITIALIZE   OISK  LOCATION   LIST 

DO   170  L   *   I.ITEMAX 
170   LOCITM(L)   «   2*L-1 

C SOLVE   INITIAL   LINEARIZED   PROGRAM   AS  A   SPECIAL   CASE   OF   STEP   4. 
NCASE   *   2 
GO TO 240 

C     STEP 2.  SELECT ITEM FROM DISK. 
C     (REMOVAL OF ITEMS FROM LIST IS ACCOMPLISHED AS PART OF STEPS 1 
C ANO 4 AT STATEMENT 248 BELOW.) 

200 IF(NITEMS.EO.O) RETURN 
LR « LOCITMll) 
READ   (I'LR)    (INFOIDtL'lf LINFO) 
NITEMS   =   NITEMS  -   1 
IF(NITEMS.EO.O)   GO   TO   225 

JU^mmm^ 
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C     PUSH DOWN LIST. 
DO 210 L > ItNlTEMS 
ZLINIT(L) > 2LINIT(L*n 

210 LOCITH(L) « LOCITMCUl) 
LOCITM(NlTEMS^l) ■ LR 

C     SAVE DATA FOR STEP 4. 
225 XBKS « XBK 

OS « Q(JBK) 
ZBKS • ZBK 
CS ' C(JBKI 
ZPS « DUBK) 
DSUMS > OSUM 
JBKS * JBK 

C     STEP 1   INITIALIZATION. 
NCASE - 1 
Q(JBK) « XBK 
C(JBK) « (ZBK-ZPS)/(XBK-P(JBK)) 
GO  TO  2M) 

C STEP  4   INITIALIZATION. 
235  NCASE   «   2 

PUBKS)   •   XBKS 
QUBKSI   «   OS 
ZQ  ■   PHKJBKS.OSI 
C(JBKS)   ■   tZQ-ZBKS)/(QS-XBKSI 
OIJBKSI • ZBKS 
OSUM « OSUM - ZPS ♦ ZBKS 

240 NITER ■ NITER ♦ 1 
C    FIND OPTIMUM SOLUTION ASSUMING LINEARIZED COSTS. 

300 DO 305 J ■ liN 
305 XLIN(J) » 0. 

I • 0 
L ■ 1 

310 I • 1 ♦ 1 
ZI « FINE 
H « 0 
L » L ♦ 1 

320 H ■ H ♦ I 
ZIH » 0. 
LIH1 ■ L ♦ 1 

330 L ■ L ♦ 1 
JJ • JIN(L) 
IF(JJ.LE.O) GO TO 340 
ZIH « ZIH ♦ XIN(L)*C(JJ) 
60 TO 330 

340 IF(ZIH.GE.ZI) GO TO 345 
Zl « ZIH 
HI « H 
Lll « LIH1 
LI2 » L - 1 
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345 IMJJ.EQ.O) GO TO 3?0 
HILIN(I) « HI 
00 350 L350 * LIl,LI2 
J350 » JIN(L350) 

350 XLIN(J350) » XLIN(J350) ♦ XIN<L350) 
IF(JJ.EQ.-l) GO TO 310 
COMPUTE LINEAR COST ZLIN AND TRUE COST ZMIX OF THIS SOLUTION. 
ZLIN * OSUM 
ZMIX » 0, 
00 2AI J *   l,N 
ZLIN ■ ZLIN ♦ (XLIN(J)-P(J))*C(J) 
ZU) » PHKJ.XLINU)) 

241 ZMIX * ZMIX ♦ Z(J) 
IF(ZMIX.GE.ZBEST) GO TO 250 
IF THIS IS A BETTER SOLUTION THAT THE BEST SO FAR, REPLACE IT. 
ZBEST = ZMIX 
DO 245 I » l.M 

245 HIBFST(I) « HlLIN(I) 
DO 247 J » l.N 

247 XBEST(J) = XLINU) 
CHECK LIST ZLINII FOR REMOVABLE ITEMS. 

248 IF(NITEMS.EQ.O) GO TO 250 
IF(ZLlNIT(NITEMS).LT.OMEPS*ZBEST) GO TO 250 
NITEMS • NITEMS - 1 
GO TO 248 
DETERMINE IF THIS CASE SHOULD BE PUT ON THE LIST OR IGNORED. 

250 IFCZLIN.GE.ZBEST*OMEPS) GO TO 260 
DETERMINE INTERVAL TO BE BROKEN FOR THIS CASE. 
EMAX « 0. 
DO 255 J » l,N 
E « in)   - D(J) - C(J)*(XLIN(J)-PUn 
IF(E.LE.b'MAX) GO TO 255 
EMAX « E 
JBK « J 
XBK « XLINU) 
ZBK « ZU) 

255 CONTINUE 
IFIEMAX.EQ.G.) GO TO 1100 
IF(XBK.LE.PUBK)*(l.fXEPS).OR.XBK.GE.Q(JBK)*( l.-XEPS)) GO TO 1100 
SORT THE VALUE ZLIN INTO THE LIST ZL1NIT, SAVE THIS CASE ON DISK. 
IFINITEMS.GE.ITEMAX) GO TO 1000 
NITEMS « NITEMS ♦ I 
IF(NITEMS.GT.MAXITM) MAXITM = NITEMS 
LW » LOCITMINITEMS) 
IT « NITtMS 

256 IFlIT.LE.l) GO TU 257 
IFIZLINITMT-D.LE.ZLIN) GO TO 257 
ZLlNITtm * ZLINITI IT-1) 
LOCITM(IT) = LOCITMlIT-1) 

L 
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IT « IT - 1 
GO TO 256 

257 ZLINITCITl » ILIH 
LOCITM(IT) « LW 
WRiTt (I'LWI (INfO(L)|L«ltLINFO) 

260 IF(NCASE.EQ.2) GO TO 200 
GO TO 235 

900 WRITE (6*901) M,N,L 
901 FORMAT»• SUBROUTINE CAVAP ENTERED WITH IMPROPER 

1 », N »M4»,LASr LOCATION IN INPUT LISTS JIN 
2 15) 
RETURN 1 

1000 WRITE 16,1001) NITEMS,NITER 
1001 FORMAT!• SUBROUTINE CAVAP DISK 

lfcR»l6« ITERATIONS.*) 
RETURN 2 

1100 WRITE (6,1101) JDK,NITER 
1101 FORMAT!• SUBROUTINE CAVAP. 

115» ITERATIONS.•/• MAY 
2CAVITY OF FUNCTION PHI.«) 

RETURN  2 
END 

DATA.VIOX'M   ««K 
AND  XIN  CHECKED   «• 

STORAGE   OF   MS«    ITEMS   EXHAUSTED  AFT 

ERROR   DETECTED   IN   COMPONENT • I 3«   AFTER» 
BE  CAUSED  BY  ROUND-OFF   ERRORS  OR  NONCON 

TOTAL   MEMORY   REOUIREKENTS  00270A   BYTES 
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