

r.'Ä. '-■•■^ . ■■- si

Dl-82-0854

CAVAP, A FORTRAN SUBROUTINE FOR SOLVING

AN ASSIGNMENT PROBLEM WITH CONCAVE OBJECTIVE

by

D. W. Walkup

-

Mathematical Note No. 529

Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

June 1969

^aeaammmmaammmim^jmmszss^sa

ABSTRACT

This document describes a FORTRAN IV subroutine named CAVAP

(an acronym for conCAVe Assignment Problem) which uses a branch

and bound method to solve a variant of the assignment problem in

which the objective to be minimized is concave. It is assumed

that m tasks are to be performed and n different kinds of

machines have been defined for possible use in performing them.

In general a task may be performed by several machines of one

type, or a different number of machines of another type, or

possibly only by certain combinations of machines. It is assumed

that total cost, which Is to be minimized, is the sum of costs

for each kind of machine, each of which Is in turn a concave

function of the number of machines of that type required. > A

detailed mathematical treatment of the problem and the solution

method has been given elsewhere. CAVAP has been used to solve a

space fleet selection problem with 20 space missions (tasks),

40 booster and spacecraft components (machines), and a number of

alternative launch vehicle configurations and combinations for

each mission. Running time was under 20 minutes on an IBM 360

model A4 with one disk.

.1 I •■*

1.0 GENERAL INFORMATION

This document describes a Fortran IV subroutine named CAVAP

which solves a variant of the of the so-called assignment problem

in which the objective to be minimized Is concave. CAVAP Is an

acronym for conCAVe Assignment Problem. The method of solution Is

by brancn and bounds. A mathematical treatment of the problem and

solution method Is given In [2]. For an example of the use of this

subroutine, see the description In [1] of the routine for computing

a minimum cost mixed space fleet from given vehicle designs when

the fixed costs and learning curves give a concave cost vs. quantity

relationship. CAVAP has been run as a subroutine to the program In

[1] on an IBM 360 model 44 computer equipped with one disk. All

limitation and running time data presented are taken from this

context.

1.1 Purpose

1.1.1 Mathematical statement of the problem

Suppose m tasks are to be performed and n different kinds

of machines have been defined for possible use in performing them. In

general a task may be performed by several machines of one type, or a

different number of machines of another type, or possibly only by

certain combinations of machines. For each 1, 1 <_ 1 £ m, it must

be possible to write out all the alternatives to be considered for

performing task number i. Let k(i) denote the number of such

alternatives. For each value of h, 1 .1 h <^k(i), the h alternative

for task i can be given as a vector

-2-

Ih , ih ih ih.
X ■ (X. »Xj »• • • »x)

where each x. is the number (positive or zero) of machines of

type J required in alternative h for performing task 1. There

is no requirement that the alternatives for different tasks are in

any way related. For the application given in [1], the tasks are

space missions* perhaps 20 in number; the machine types are booster

and spacecraft components, perhaps 40 in number; and each alternative

consists of the numbers of components of different types needed to

build the number of launch vehicles of a particular configuration

required to perform one mission.

A feasible (not necessarily optimal) solution of a problem

consists in selecting exactly one alternative for each task, i.e.

numbers h(i). It is assumed that a machine to be used on one task

cannot also be used on another, but different machines of the same

type may be. Thus the number x(j) of machines of type j required

by a particular feasible solution is the sum of the numbers of machines

of type j included in the selected alternatives, I.e.

ih(i)

^1=1 J

Next suppose the total cost of design, production, etc., of x(j)

machines of type j Is given by a cost function 4)(j,x(j)). This

implies that the cost of x(j) machines of type j is completely

independent of the numbers or kinds of other machines produced. Thus

in the problem given in [1], a complete vehicle cannot be considered

Ib-L

-3-

a machine if for example It has a stage in common with another vehicle.

It is also assumed that for each J the graph of <Kj.x(j)) is concave,

that is, the cost of an additional machine of type J decreases as the

total number of machines of type J increases. Figure 1 illustrates

acceptable and unacceptable functions $. In most practical applications

it is to be expected that $ will be zero for x ■ 0 and positive

increasing for x > 0 as in Figure lb, but this is not essential to the

method of solution. Since no alternative can specify a negative number

of machines of any type, it Is Immaterial what value. If any, 4» gives

when x(j) is negative.

x(j) x(j)

a. concave b. concave

- x(j)

nonconcave

Figure 1

The total cost of performing all tasks using a particular feasible

solution is

n

The problem solved by CAVAP is that of selecting the feasible solution

(i.e. an alternative for each task or h(l) for each 1) which will

minimize Z.

* — tuaauaMfiuM

-4-

1.1.2 Need for a special algorithm

The method of complete enumeration Is an obvious and very simple

one for determining the least cost solution of any assignment problem.

This Is the method which computes the cost of each of the possible

combinations of alternatives and retains the combination with the

least cost. This method requires the examination of

s - k(l)'k(2)'...'k(m)

different feasible solutions. For one of the problem?, of the type

described in [1], m " 20, n - 38, and

s - 5»l'5«3*12'5«ll'2«6'7'5'6»15*6'15'6«6'3'7-7 * lO1^.

Even if the cost of each feasible solution could be computed in 1

microsecond, it would take more than 30 years to examine all 10

of them. By comparison the same problem was solved using CAVAP in

approximately 20 minutes on an IBM 360 model 44.

1.2 Limitations

The method of solution used by CAVAP belongs to a broad class

called "branch and bound" methods. As a class these methods suffer

two inherent limitations. First, as the size of the problem increases,

th«> amount of computation time required Increases exponentially. This

means that there Is a fairly well defined bound on problem size above

which computation time is impractically large. The better the procedure,

the higher this bound. Second, branch and bound methods make use of a

list of partial solutions. In order to save recomputing time, the

■T" " . «]&.■

-5-

amount of information saved with each item of the list is large.

Thus auxiliary memory is usually used. Since the length of the list

grows exponentially with the size of the problem, there is also a

rough limit on problem size above which the list is too long even for

auxiliary memory.

For the application discussed in [1] it was found that the

limitation on problem size was the size of the scratch area on the

only available disk, namely, 500 blocks of 180 words each. The

largest problems which did not exceed this storage requirement ran

about 20 minutes. For several scratch disks the limitation would

become computation time.

Presumably with large problems round-off errors could become

serious. In many computer programs the effect of round-off errors

is to cause a fairly steady deterioration of accuracy as the amount

of computation Increases. The nature of the algorithm used by CAVAP

is such that with Increasing size of problem there will be little

effect on the precision of answers until at some point round-off

errors cause the process to go wild. It is unlikely that this would

result in undetected errors. The most likely result would be an

immediate error exit or an endless loop which would eventually fill

up available disk storage and result In an error exit. Results with

the problems of [1] suggest that the limit due to running time will

be met before round-off becomes a problem.

As written, CAVAP will handle in theory up to AA machines, up

to 100 tasks, and up to 500 auxiliary memory items. These limits are

i

«''• ■ •ttmmmmmmmmmMmtaBammamiautMxxsmammimmtammmimtiä

-6-

easily alterable. The only real limitations are the amount of running

time and auxiliary memory available.

2.0 PROCEDURE

The naming of variables in the subroutine follows closely the

notations found in [2] and in paragraph (1.1.1).

The method of solution is given in considerable detail in [2].

The deviations are minor and of a programming nature. The subroutine

contains an initial section in which the input parameters and data are

subjected to a complete check to insure that they meet the requirements

set fourth in paragraph (3.0) below.

In addition to the normal return there are two abnormal returns

from the subroutine. If the normal return occurs, a feasible solution

has been found which has a cost which differs from the minimum cost in

about the 5 decimal place. Abnormal return 1 occurs if the input

data is improperly given. If the program must be abandoned for any

reason before finding an optimum solution, a feasible solution and its

cost are given. It may very well happen that the feasible solution in

this case is actually optimum, but the subroutine has not yet succeeded

in proving this fact. Three likely causes of the subroutine being

abandoned are: exhausting the disk storage, finding that one of the

cost functions given by PHI is not concave, or the accumulation of

round-off errors.

~T-m»BB»

-7-

3.0 INPUT AND OUTPUT DESCRIPTION

The calling sequence Is

CALL CAVAP(M,N,PHI,JIN,XIN,ZEEST,HTBEST.XBEST,NITE} ,MAXITM.&a.6b)

where

M

PHI

JIN

XIN

ZBEST

HIBEST

XBEST

Type
Integer
or Real

I

I

R

I

R

R

Description

<Input)

number of tasks. Must be betwon 1 and 100.

nuaber of aachlnes. Must be between 1 and 44.

transmit ted name of a function sub rout int.

PHKJ.X) which returns the cost ot X

machines of type J. This function t'.-st

be concave over the range of values of X

for the given problem. The function need

not be defined for negative X.

input arrays described below.

(Output)

cost of the best feasible solution found. Set

to infinity if the input data is improper.

,lh an array whose i element is the number h

of the alternative selected for task i in

the best feasible solution found. This array

should be of length at least 100 H.

.th an array whot>e J element is the number of

machines of type J required in the best

-8-

feaslble solution found. This array

must be of length at least N.

NITER I number of iterations performed.

MAXITM I maximum number of items on disk at any time

during solution of current problem.

(Error returns)

a statement number of return if input data is

improper,

b statement number of return if solution is

abandoned.

The input arrays JIN and XIN contain Ihe descriptions of the various

alternatives for each of the tasks arranged in a compressed form. The

first element of JIN must be -1. The second element of JIN must be 0.

There must follow a string of from 1 to N distinct positive integers

less than or equal to N. These are the numbers of the machines used in

the first alternative for the first task. In the corresponding locations

In XIN must be the "numbers" of these machines required. These numbers

must be floating positive numbers; they need not be floating integers.

The first location of JIN following this string must contain 0 or -1.

If the entry is 0, another string describing a second alternative must

follow. Any number of alternatives may follow, each one preceded by a

0 in JIN. If the entry following the description of an alternative is

-1 the description of the alternatives for the next task must follow.

Again the first alternative must be preceded by a 0 entry in JIN. The

first entry in JIN following the last alternative of the last task must

be -2. Each task must have at least one alternative and the number of

■^W!«^
^m*mmr*mm~*m~*

-9-

tasks described (number of -1 entries In JIN) must equal M. An

example of an acceptable set of values for JIN and XIN Involving 2 tasks

with 1 and 2 alternatives respectively is shown below. The value of N

is A. The values marked * are immaterial.

JIN XIN

-1 *
0 *

1 2.0
4 1.5

-1 *
0 *
2 3.0
0 *

3 1.2
2 .05
4 5.0

-2 *

r

SKP.ri1.

-.10-
j

FORTRAN IV MODEL 44 PS VERSION 9, LEVEL 2

SUBROUTINE CAVAP IM,N,PHI,JIN,XIN,ZBESTtHlBESTfXBEST,
I NITER.MAXlTMf*,«)

C FOR A OESCRIPriON OF THIS SUBROUTINE« SEE
C «CAVAP* A FORTRAN SUBROUTINE FOR SOLVING AN ASSIGNMENT
C PROBLEM WITH CONCAVE OBJECTIVE*, BY D. HALKUP,
C MATHEMATICAL NOTE NO. 529, BOEING SCIENTIFIC RESEARCH
C LABORATORIES, SEPTEMBER 1967.
C FOR A MATHEMATICAL TREATMENT OF THE PROBLEM AND THE THEORY OF THE
C ALGORITHM USED, SEE
C •ON A BRANCH-AND-BOUNO METHOD FOR SEPARABLE CONCAVE
C PROGRAMS*, BY D. WALKUP, MATHEMATICAL NOTE NO. 527«
C BOEING SCIENTIFIC RESEARCH LABORATORIES, SEPTEMBER 1967.

IMPLICIT INTEGER (H-N)
EXTERNAL PHI
DIMENSION JlN(n,XINtn,HlBEST(l),XBEST(U
DIMENSION HILIN(100),XLIN(44),2(44),ZLINIT(500I,LOCITM(500I
DIMENSION INF0(180>,P(44),Q(44),CU4),D(44)
EQUIVALENCE f INFOd) «Pd) M 1NF0(45) «011)) «

1 (INF0(89)«C(in,(INF0(m),D(m«nNF0(177),DSUM),
2 (INF0(17BI,JBK),(INF0(179),XBK),IINF0(180),ZBK)

DIMENSION XlHt44),XIMAX(44)
EQUIVALENCE (P,XIH),IXLIN,XIMAX)
DATA FINF/27FFFFFFF/
DEFINE FILE 1(1300«90«U« IX)
XEPS > .00001
OMEPS » .99999
MMAX « 100
NMAX -44
ITEMAX « 500
LINFO - 180
NITER ■ 0
NITEMS > 0
MAXITM > 0
ZBEST « FINE
L ■ 0
IF((M.LE.0).OR.(M.GT.HMAX).0R.(N.LE.O).0R.(N.GT.NMAX)) GO TO 900

C CHECK INPUT LISTS JIN AND XIN AND FIND UPPER BOUNDS OIJ) ON
C THE SOLUTION.

00 105 J « 1,N
105 QU) ■ 0.

1 • 0
L • I
IFU1NIL).NE.-1) GO TO 900

110 I « I ♦ 1
IF(I.GT.M) GO TO 900
DO 115 J « 1,N

115 XIMAX(J) • 0.
H « 0
L » L ♦ I

Jl.J.UJUJMU

I

-11-

IF(JIN(L).NE.O) CO TO 900
120 H « H ♦ I

DO 125 J « l,N
125 XIHIJ) » 0.

lF(J!N<L*n.LE.OI GO TO 900
130 L « L ♦ I

JJ « JIN(L)
IFUJ.LE.O) GO TU 1A0
IF((JJ.GT.N).OR.(X1N(L).LE.O.).OR.(XIH(JJ).GT.O.)) GO TO 900
XIH(JJ) « XIN(L)
GO TO 130

140 00 HI J « 1,N
CMF(XIH|J).LE.XIMAX(jn GO TO 141
XIMAX(J) s XIHUI

141 CONTINUE
145 IF(JJ.EQ.OI GO TO 120

00 150 J » 1,N
150 0(J) « Q(J) ♦ XIMAX(J)

IF(JJ.60.-n GO TO 110
IF(I.NE.M) GO TO 900

C CHECKING OF INPUT LISTS JIN AND XlN COMPLETE. USE OF XIH ANO
C XIMAX FINISHED.
C STEP I. FIND FIRST LINEARIZED SOLUTION.
C COMPUTE INITIAL LINEARIZED OBJECTIVE FUNCTIONS.

OSUM « 0.
00 160 J * ltN
PU) « 0.
ZP « PHKJtO.)
0(J) « ZP
OSUM =« OSUM ♦ ZP
C(JJ > 0.
IF(0(Jl.EU.O.) GO TO 160
zo * PHHjfQun
C(J) « (ZQ-ZPl/QCJJ

160 CONTINUE
C INITIALIZE OISK LOCATION LIST

DO 170 L * I.ITEMAX
170 LOCITM(L) « 2*L-1

C SOLVE INITIAL LINEARIZED PROGRAM AS A SPECIAL CASE OF STEP 4.
NCASE * 2
GO TO 240

C STEP 2. SELECT ITEM FROM DISK.
C (REMOVAL OF ITEMS FROM LIST IS ACCOMPLISHED AS PART OF STEPS 1
C ANO 4 AT STATEMENT 248 BELOW.)

200 IF(NITEMS.EO.O) RETURN
LR « LOCITMll)
READ (I'LR) (INFOIDtL'lf LINFO)
NITEMS = NITEMS - 1
IF(NITEMS.EO.O) GO TO 225

JU^mmm^

W——— LI , .. J. -;. a ...

-12-

C PUSH DOWN LIST.
DO 210 L > ItNlTEMS
ZLINIT(L) > 2LINIT(L*n

210 LOCITH(L) « LOCITMCUl)
LOCITM(NlTEMS^l) ■ LR

C SAVE DATA FOR STEP 4.
225 XBKS « XBK

OS « Q(JBK)
ZBKS • ZBK
CS ' C(JBKI
ZPS « DUBK)
DSUMS > OSUM
JBKS * JBK

C STEP 1 INITIALIZATION.
NCASE - 1
Q(JBK) « XBK
C(JBK) « (ZBK-ZPS)/(XBK-P(JBK))
GO TO 2M)

C STEP 4 INITIALIZATION.
235 NCASE « 2

PUBKS) • XBKS
QUBKSI « OS
ZQ ■ PHKJBKS.OSI
C(JBKS) ■ tZQ-ZBKS)/(QS-XBKSI
OIJBKSI • ZBKS
OSUM « OSUM - ZPS ♦ ZBKS

240 NITER ■ NITER ♦ 1
C FIND OPTIMUM SOLUTION ASSUMING LINEARIZED COSTS.

300 DO 305 J ■ liN
305 XLIN(J) » 0.

I • 0
L ■ 1

310 I • 1 ♦ 1
ZI « FINE
H « 0
L » L ♦ 1

320 H ■ H ♦ I
ZIH » 0.
LIH1 ■ L ♦ 1

330 L ■ L ♦ 1
JJ • JIN(L)
IF(JJ.LE.O) GO TO 340
ZIH « ZIH ♦ XIN(L)*C(JJ)
60 TO 330

340 IF(ZIH.GE.ZI) GO TO 345
Zl « ZIH
HI « H
Lll « LIH1
LI2 » L - 1

-13-

345 IMJJ.EQ.O) GO TO 3?0
HILIN(I) « HI
00 350 L350 * LIl,LI2
J350 » JIN(L350)

350 XLIN(J350) » XLIN(J350) ♦ XIN<L350)
IF(JJ.EQ.-l) GO TO 310
COMPUTE LINEAR COST ZLIN AND TRUE COST ZMIX OF THIS SOLUTION.
ZLIN * OSUM
ZMIX » 0,
00 2AI J * l,N
ZLIN ■ ZLIN ♦ (XLIN(J)-P(J))*C(J)
ZU) » PHKJ.XLINU))

241 ZMIX * ZMIX ♦ Z(J)
IF(ZMIX.GE.ZBEST) GO TO 250
IF THIS IS A BETTER SOLUTION THAT THE BEST SO FAR, REPLACE IT.
ZBEST = ZMIX
DO 245 I » l.M

245 HIBFST(I) « HlLIN(I)
DO 247 J » l.N

247 XBEST(J) = XLINU)
CHECK LIST ZLINII FOR REMOVABLE ITEMS.

248 IF(NITEMS.EQ.O) GO TO 250
IF(ZLlNIT(NITEMS).LT.OMEPS*ZBEST) GO TO 250
NITEMS • NITEMS - 1
GO TO 248
DETERMINE IF THIS CASE SHOULD BE PUT ON THE LIST OR IGNORED.

250 IFCZLIN.GE.ZBEST*OMEPS) GO TO 260
DETERMINE INTERVAL TO BE BROKEN FOR THIS CASE.
EMAX « 0.
DO 255 J » l,N
E « in) - D(J) - C(J)*(XLIN(J)-PUn
IF(E.LE.b'MAX) GO TO 255
EMAX « E
JBK « J
XBK « XLINU)
ZBK « ZU)

255 CONTINUE
IFIEMAX.EQ.G.) GO TO 1100
IF(XBK.LE.PUBK)*(l.fXEPS).OR.XBK.GE.Q(JBK)*(l.-XEPS)) GO TO 1100
SORT THE VALUE ZLIN INTO THE LIST ZL1NIT, SAVE THIS CASE ON DISK.
IFINITEMS.GE.ITEMAX) GO TO 1000
NITEMS « NITEMS ♦ I
IF(NITEMS.GT.MAXITM) MAXITM = NITEMS
LW » LOCITMINITEMS)
IT « NITtMS

256 IFlIT.LE.l) GO TU 257
IFIZLINITMT-D.LE.ZLIN) GO TO 257
ZLlNITtm * ZLINITI IT-1)
LOCITM(IT) = LOCITMlIT-1)

L

LiLLjjHj—■ggaggcggsa —a ra ' ■- T^KBKBS ..»>...-V

-14-

IT « IT - 1
GO TO 256

257 ZLINITCITl » ILIH
LOCITM(IT) « LW
WRiTt (I'LWI (INfO(L)|L«ltLINFO)

260 IF(NCASE.EQ.2) GO TO 200
GO TO 235

900 WRITE (6*901) M,N,L
901 FORMAT»• SUBROUTINE CAVAP ENTERED WITH IMPROPER

1 », N »M4»,LASr LOCATION IN INPUT LISTS JIN
2 15)
RETURN 1

1000 WRITE 16,1001) NITEMS,NITER
1001 FORMAT!• SUBROUTINE CAVAP DISK

lfcR»l6« ITERATIONS.*)
RETURN 2

1100 WRITE (6,1101) JDK,NITER
1101 FORMAT!• SUBROUTINE CAVAP.

115» ITERATIONS.•/• MAY
2CAVITY OF FUNCTION PHI.«)

RETURN 2
END

DATA.VIOX'M ««K
AND XIN CHECKED «•

STORAGE OF MS« ITEMS EXHAUSTED AFT

ERROR DETECTED IN COMPONENT • I 3« AFTER»
BE CAUSED BY ROUND-OFF ERRORS OR NONCON

TOTAL MEMORY REOUIREKENTS 00270A BYTES

-15-

REFERENCES

[1] D. Walkup, A Fortran program for finding a minimum cost fleet

of space vehicles. Mathematical Note No. 530, Boeing Scientific

Research Laboratories, in preparation.

[2] D. Walkup, On a branch-and-bound method for separable concave

programs. Mathematical Note No. 527, Boeing Scientific Research

Laboratories, September 1967.

n

