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I.   INTRODUCTION 

The self-defocusing effect Is a phenomenon in which energy is absorbed 

by the air from an intense laser beam traversing the atmosphere, with a 

resultant decrease in the local refractive index. The region of decreased 

refractive index is, in effect, a lens, and may cause the beam to defocus. 

In a previous report a study of the self-defocusing effect was 

initiated. It was pointed out that there exists the possibility of shaping 

the power profile of the laser beam in such a way that, at least initially, 

the beam self-focuses instead of self-defocusing. One of the goals of the 

study, then, was to determine in detail how the shape of the initial power 

profile affects the development of the beam as it progresses through the 

atmosphere. 

The problem was formulated mathematically in terms of a nonlinear, 

partial differential equation, whose solution describes the trajectories 

of the rays comprising the beam. In this report we present an approximate 

solution to the equation, and obtain from it some qualitative and semi- 

quantitative features of the ray trajectories. 

The complete nonlinear, partial differential equation has the horizontal 

displacement of any given ray as its dependent variable, and contains three 

independent variables: time, height, and one horizontal position coordinate 

(assuming cylindrical or planar symmetry). The analysis to be discussed here 

is in terms of an approximation to the true equation in which the time 

appears as a trivial parameter, rather than as an independent variable. 

Physically, the approximation is as follows. The change in the refractive 

index at any point in space is proportional to the amount of heat deposited. 



which in turn is proportional to the energy flux at that point integrated 

over time. We have approximated the time integral by the product of the 

instantaneous flux and the time. The model is now equivalent to a steady 

state situation in which the refractive index has an incremental term pro- 

portional to the flux; the coefficient of the incremental term contains the 

time as a parameter. The model equation is somewhat simpler than the original, 

but still contains all the features of mutual feedback between the beam and 

the refractive index. 

In reference 1 it was pointed out that the beam's initial power profile 

may be shaped as in Fig. 1 so that the rays of the inner region, r < R, 

initially converge, because the gradient of the refractive index generated 

by the beam itself will be inward; however, the rays of the outer region, 

r > R, will initially diverge because the gradient of the refractive index 

then will be outward. As the rays of the outer region diverge farther with 

increasing height, the power density decreases, so that the region of out- 

ward gradient can be expected to eat its way into the interior region, and 

eventually cause the entire beam to spread. 

In this report we shall be concerned with evaluating the rate at which 

the divergent outer region of the beam eats its way into the interior. To 

study the phenomenon we have considered an initial flux distribution having 

the shape indicated in Fig. 2. Here, since we are basically interested only 

in the behavior of the edge of the beam, we have chosen a planar geometry 

(for which the equations have a somewhat simpler form) rather than the more 

realistic cylindrically symmetrical geometry. The initial power profile is 

taken to be uniform along the negative axis, and to fall off exponentially 



along the positive axis. Since it follows from geometric optics that the 

rays deflect in the direction of the gradient of the refractive index, we 

expect that initially the rays along the positive axis will deflect to the 

right, but the rays along the negative axis, which represents the interior 

of the beam, will not be deflected at all. In this case the oegradation of 

the beam will be due solely to the outer edge's eating its way in. 

We have obtained an approximate solution to the model equation, which 

shows that the interior rays (the rays originating along the negative axis) 

go up undeflected to a certain height, then begin to deflect outwards 

(towards the positive axis) parabolically with height. This behavior is 

indicated in Fig. 3. The solution is valid only in certain regions of space, 

but for any ray it is quite accurate up to and including the point at which 

.he ray starts to deflect. Therefore, it provides a first order description 

of the desired rate at which the beam edge eats into the interior. Specifi- 

cally, the height at which any ray begins to deflect is at any time pro- 

portional to its original distance in from the edge, and is inversely 

proportional to the square root of the energy per unit volume deposited up 

to that lime along the ray path. Furthermore, once the ray begins to deflect, 

the sharpness with which it does so depends both upon the energy per unit 

volume deposited and upon the steepness with which the original (exponential) 

outer edge descends: the greater the deposited energy density is, and the 

steeper the outer edge is, the more sharply the ray deflects. 

—* irmmmi, 



2.   THE MODEL EQUATION 

In this section we shall derive the model equation, making use of some 

of the relationships developed in reference 1. We assume a planar geometry 

with z denoting the height coordinate and x the horizontal coordinate, and 

all quantities being independent of the third coordinate. The eikonal 

equation, which describes the ray trajectories in a medium of refractive 

index n, may be written in the form 

(|2i)$ • v„ . (2.,) 

where the unit vector a is tangent to the ray path at any point, o is the 

path length along a given ray, and s is the value of the horizontal co- 

ordinate of any ray at z = 0, that is, x(s,z = 0) = s. The projection of 

Eq.(2.1) along the horizontal axis is 

an sine I  _ /an i (2 2) 
3o     '     19X 

S £ 

where e is the angle between a and the vertical axis. It will be convenient 

to use, instead of the (x,z) coordinate system, one defined by the planes 

of constant z and the surfaces generated by the ray paths (surfaces of 

constant s), which are the solutions to the problem. When transformed to 

the (s,z) coordinate system (2.2) takes the form 

/ an sinei „_ _ /3ni faxf . /0 ,. \-z ) cose = lä?) la?)  ; {2-3) 



we have used the relation (3a/3z)    = coso, which can be seen readily from 

Fig. 4. 

The requirement of conservation of flux (assuming negligible absorption 

losses in the atmosphere) is given by 

[ Fa-dX   ■   0 , (2.4) 
'A 

where dA is a surface element, the integration is over any closed surface A, 

and F denotes the magnitude of the flux. Taking a surface of the form Il- 

lustrated in Fig. 5, in which the sides are surfaces of constant s (since 

these are everywhere tangent to the ray paths, no flux escapes through them, 

i.e., a«dÄ = 0), and the top and bottom are line elements dx and ds, we have 

from (2.4), 

F(s,z,t)cose dx = F0(s,t)ds , (2.5) 

where F (s,t) T- F(s,e,t). Now using the relation dx = (ax/as) ds, we obtain 

from (2.5) the flux conservation equation, 

Fn(s,t) 

^'^ = (ax/as)zcos9 
(2 6) 

Next we need the relation between the flux and the refractive index. The rate 

of change of refractive index is proportional to the rate of change of the 

density, which is proportional to the rate at which heat is deposited in the 

atmosphere; the latter in turn is proportional to the flux. The relation Is 

given explicitly in Ref. 1 as 

J($.2.t) . ■ <r')^-m F(s.z.t) . (27) 

I 
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Here y  is the ratio of specific heats, k is the effective absorption coefficient 

for heating, and P is the ambient pressure, n is the time rate of change of 

the index at a fixed point in space, i.e., at fixed x,z. 

n =  TJI" n[s(x,z,t),z,t]x . (2.8) 

Therefore, the time integral of Eq.  (2.7) is 

(Y-l)(n?-l)k 
n(s,z,t) - n 77?raf F[s(x,z,t),z,t]dt , (? 9) 

x,z 

where n is the ambient index, and the integral is to be evaluated at fixed x,z 

Since, as noted in Ref. 1, the fractional change in refractive index is much 

less than unity, we have replaced n in (2.7) by the constant value n , and a 
2        9 

removed the factor (n -l)/n = (nf-lVn, from the integral. a   a 

Now we make the principal approximation which characterizes the model 

equation, viz., we replace the time integral of the flux by the product of 

the instantaneous flux and the time. 

F[s(x,z,t),z,t] dt - F(s,z,t)t . 
x,z 

(2.10) 

Strictly speaking, as the beam contracts or expands with time, the flux F 

increases or decreases with time accordingly. Therefore, even if we assume 

that the flux leaving the laser face F (s,t) is constant in time (as we shall, 

in fact, do below), F at any other location is not time independent, and the 

replacement (2.10) is not strictly valid. However, it does significantly 

simplify the mathematical system by decreasing the number of independent 

variables from three to two. Furthermore, the resulting simplified relation 

I 



between the index and the flux*, 

(Y-l)(n^l)kt F(s,z) 

still has the same gross time dependence as (2.10), and still maintains the 

basic linear relationship between n and F. 

We now have the three fundamental equations: the ray Eq. (2.3), the 

flux conservation Eq. (2.6), and the equation of coupling between the index 

and the flux (2.11). The flux may immediately be eliminated from (2.6) and 

(2.11) to provide an expression for the index at any point in space in terms 

of the (known) index at the laser face , 

n(s,0)-na 
n(s»z) " nS 

= (ax/as) cose ' (:- 2) 

where 

(Y-lHnf-Dkt Fn(s) 
n<s'0>-na = 50       • <2-13) 

F (s) is the flux emerging from the laser face, which we now take to be con- 

stant in time for t > 0, and zero for t < 0. Since F (s) is assumed to be 

known, n(s,0) is also known. 

It is observed in Ref. 1 that the deviation of any ray from the vertical 

can be expected to be quite small, i.e., e << 2ir. Therefore, we shall use the 

ray Eq. (2.3) in the small angle approximation, 

* In all expressions below the explicit t-dependence will be suppressed, 
since t now appears only as a trivial parameter. 

** Hereafter only the s,z coordinates will be used, with x being a dependent 
variable. Therefore, it is no longer necessary to indicate explicitly 
which coordinates are being held fixed in the partial derivatives. 



Since the variation in index is very small compared to n itself, the term 

e9n/9z is of second order in small quantities, and we drop it. Similarly, 

because of the small variation in index, we replace the n in nae/az by n . 

Finally, noting that in the small angle approximation e is given by 

0 ■ 3x/3z, we have 

,2 ^  n -n dX 3  X -    JJ n \     - 3    a 
9S 7? 3s n. 3s    n. 3Z 1 a' a 

(2.15) 

We now define the dimensionless and positive function 

n -n(s,0) 
f(s)    £   -ä-  , (2.16) 

a 

so that from (?.12) we have (e << 1) 

n.     3X/3S  • 
a 

(2.17) 

and from (2.13) we have 

(Y-l)(nf-l)ktF0(s) 
f(s)    -    S 5    . (2.18) 

Inserting (2.16) into (2.15) we finally obtain the model equation, 

lfj--^[i^]- «■") 

8 



The boundary conditions are 

x{s,0)    =   s, (2.20a) 

e(s.O)    =   |f (s.O)    =   0 . (2.20b) 

Equation (2.20b) states that all rays emerge vertically from the laser face. 

The function f(s) is proportional to the flux at the laser face, and there- 

fore has the same shape as the initial flux distribution F (s). It may be 

regarded as a reduced initial flux distribution. 

3.    THE METHOD OF SOLUTION 

Performing the derivative operation in (2.19) and reassembling terms 

leads to 

/ax»3 32x  x a2x . df 3x _ n ,- u 
lisl ^7- f^7 + a?3T - 0 • {3-]) 

We now define 

x   =    s + x1   , (3.2) 

where x, is the horizontal displacement of any ray from its original  location 

s (at z = 0).    The boundary conditions are now 

x^s.O)    =   0 (3.3a) 

3X 
ä^s.O)    =   0 . (3.3b) 

and the Eq.  (3.1) clearly becomes 

f       ax,)3 a^, i\     I       d*Adf 



Shortly, we shall drop sx./as relative to unity.    First, we transform from 

the independent variable s to the new indepenutnt variable p by 

d£ 
ds /f(s) 

(3.5) 

To avoid notational confusion caused by the transformation we define the 

functions S and P, s/_\ 

ds' 
P    = 

.'f(s') 
(3.6a) 

'S 

P($) 
ds' 

f(s') 
(3.6b) 

where b is arbitrary.    The transformation and its inverse are then, res- 

pectively. 

s    ■    S(p),      p    -    P(s)  . (3.7) 

In addition we define 

X^p.z) x^s.z) (3.8) 

Now, by transforming selected terms in (3.4) we may convert it to the 

form 

3 2    2 

as    ,2   „2     2 »s 
;*Z      tp     ' 

df = 0 (3.9) 

10 



then we assume 

8X, 

as 1 . (3.10) 

so that 

3 Xl  3 Xl A df   n 

az   ap 
(3.11) 

It will be seen that useful semiquantitative Information concerning the ray 

trajectories can be obtained in the region for which (3.10) is satisfied. 

Next we transform the last term in (3.11) as fellows, using (3.5), 

df 
3? 

d/f ■ n'M ■*%■*& 
=    2 d  ds 

3p 3p 

/f 

2d!sipi 
dp2 

(3.12) 

so that 

 I      " + o d S   _   n 
 T 7     z —?   "   u 

az sn dp 
(3.13) 

Finally, we define 

y X,  - 2S (3.14) 

to obtain 

2 2 

H-H - 0 • 
az      ap 

(3.15) 

11 



The solution tc (3.15) is well known to be 

y(p,z) = A(p + z) + B(p - z) , 

where A and B are arbitrary functions. Consequently, we have 

X^p.z) = 2S(p) + A(p + z) + B(r - z) 

(3.16) 

(3.17) 

A and B are readily determined from the boundary conditions (3.3) with the 

result 

X^p.z) = 2S(p) - S(p+ z) - S(p - z) 

In terms of the original independent variables, then. 

(3.18) 

x^s.z) = 2s • S[P(S) + z] - S[P(S) - z] .        (3.19) 

To cast the S functions into a more convenient form we note that from the 

definition (3.6b) of P(s) we have 

P(s) + z 
ds' 

+ z , (3.20) 

and from the definition (3.6a) of S(p), 

P(s) + z = 

fS[p(s) + z] 

ds1 

W) 
(3.21) 

12 



Subtracting (3.?0) from (3.21) yields 

fS[P(s)+z] 

ds' 

/fü7) 

Finally, defining 

g(s.z)    i     S[P(s)+zl. 

we have the solution 

x^s.z) 

where g(s,z) is defined by 

2s-g(s,z)-g(s,-z) , 

g(s,z) 

ds' • 

Because of the boundary condition (3.3a) we have 

z = 

3X 

as 
1 (s.O) = 0 . 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Therefore [see (3.10)1 (3.24) satisfies the model Eq. '3.1) and its boundary 

conditions exactly at the z = 0 boundary plane. 

13 
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4.    SPECIAL CASE 

We consider now the special case for which f(s), the reduced initial 

flux distribution, is given by 

ra2, s ^ 0 

f(s)  - < . (4.1) 

la2 e-2^ . s > 0 

This is illustrated in Fig. 2, which shows F (s), to which f(s) is propor- 
2 

tional. The dimensionless constant a can be expressed in terms of the 

relevant physical parameters directly from Eq. (2.18). 

The region of negative s represents the interior of the beam, which 

in reality of course, will have cylindrical rather than planar symmetry. 

In this region the initial flux distribution is uniform, so that the re- 

fractive index will initially be constant. According to the ray Eq. (2.1), 

the rays deflect towards the direction of the gradient of the index. Here 

the gradient vanishes, so we can expect that, at least at first, the rays 

will go up vertically, undeflected. 

The edge of the beam begins at s = 0, and the intensity falls off 

exponentially for s > 0. The heating rate, then, will be greatest along the 

positive axis near s = 0. Consequently the index will be srr-dllest near 

s = 0, and the gradient will be in the positive direction for s - 0. Thus 

all the rays in the beam's edge can be expected to deflect outwards (in 

the positive direction). We are interested in seeing when and how the rays 

of the interior region (s < 0) first begin to deflect. 

14 



The function g(s,z) can be calculated straightforwardly from (3.25) 

and we find for the ray trajectories, 

' 0 , s ;  -az 

^(s.z)    =   { 
s+az-) log (1+s/x+az/x)  , -az < s „< 0 

2s+>+az-Aes/A- > loge(az/>+es/x)  ,0s-  \ loge(l+az/x) 

^2s->loge(e2s/l-a2z2/x2)  ,   x loge(l+az/0  < s 

(4.2) 

ax. 
-(s.z) 

r 0 , s ; -az 

az+s 
A+az+s , -az < s < 0 

2-eS/X(l +  ■ TTTI. 0 < s < > logp(Uaz/x) 
1       l+az/x+es/x/ e 

l-(az/x)2e-2s/xJ 
, x log0(l+az/0     s 

(4.3) 

It can be seen immediately that in the region s - -az, the solution is exact, 

since here we have ax./ss = 0. Furthermore, in this region the rays are 

undeflected. For s* -az, but az -|s| << 1, we see that ^x./ss is very small, 

and the solution is again quite accurate. From (4.2) we see that under these 

conditions the ray trajectories are 

Xjfs.z) = ^-(az+s)2 
1 

7\ (az - |s|)' (4.4) 

Therefore, we find that the outer edge of the beam (the region of 

diverging rays) eats into the interior region (the region of initially uni- 

form flux distribution) along the curve s = -az. That is, for any negative s, 

the corresponding ray goes up undeflected until it reaches a height z = -s/a; 

15 
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then it begins to diverge parabolically according to (4.4). This behavior 

is illustrated in Fig. 3. It should be noted that the height at which an 

interior ray first begins to deflect, z = -s/a, does not depend on the 

steepness of the beam's original edge shape. However, once the ray begins 

to deflect, it does so more rapidly for a more steeply descending beam edge; 

more precisely, we see from (4.4) that the ray displacement Xj is proportional 

to 1/A, where A is the scale length for the exponential fall-off of the beam 

edge. 

The dimensionless constant a is immediately found from (2.18) to be 

(4.5) 
(Y-l)(nJ-l)ktF0 

zmfp 

Consequently, the height at which an interior ray first begins to deflecv, 

z = -s/a, is seen to be inversely proportional to the square root of ktF , 
o 

the amount of heat per unit volume thus far deposited along the ray path. 

In addition, we see from the appearance of a in (4.4) that the more heat per 

unit volume deposited the more sharply the ray begins to deflect. 

Now, If we denote by z0 the target height, and by s the maximum 

distance which we can tolerate having the beam's edge eat into its interior, 

then from 

zo = so/a (4-6) 

and (4.5) we can solve imnediately for the maximum tolerable absorption 

coefficient k. Taking s0 = R/2, where R is the initial radius of an equivalent 

16 



cylindrically shaped laser beam, we find 

Yn
2 PR2 

k    =    a         . (4.7) 

This expression, except for a factor of two, is the same as that found by 

2 
Brueckner, et al . It should be noted, however, that qualitatively the 

pictures are considerably different. In the latter analysis no specific 

consideration is given to the initial shape of the power profile, so that 

all rays are treated as equivalent and are implicitly assumed to begin de- 

flecting as they leave the laser face; the criterion for determining k is 

that the beam may not be permitted to more than double its initial radius 

when it reaches target height. By contrast, in the present analysis we 

find that for the specific power profile chosen the interior rays do not 

deflect at all until they reach a certain height, and the criterion for 

determining k is that rays originating in from the edge by more than 

half the initial beam radius R may not begin to deflect until target altitude 

is reached. Thus, for conditions under which the effective absorption 

coefficient for heating is given by Eq. (4.7), the present study would 

indicate that the beam power is somewhat less diluted at target altitude 

than is indicated by the results in Ref. 2. 

17 
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5.    SUMMARY 

A solution has been found to a model equation, which approximates 

the true equation describing the ray trajectories. The approximation occurs 

in an expression for the amount of energy per unit volume deposited at any 

point along the ray path by the laser beam; it consists of replacing a time 

integral over the laser flux by the product of the instantaneous flux and 

the time. As a result, the time appears only as a trivial parameter in the 

model equation, rather than as an independent variable, as in the true 

equation. 

The model equation has been solved for the special case of the initial 

flux distribution illustrated in Fig. 2; here the geometry is planar and the 

flux distribution is uniform in the region representing the interior of the 

beam (the negative axis) and descends exponentially in the region representing 

the edge of the beam (the positive axis). It is found that the rays of the 

interior region behave as illustrated in Fig. 3. That is, they go up un- 

detected to a height z = |s/a|, where |s| is the original distance of the 

* ** 
ray in from the edge, and the dimensionless constant a is given by 

* Stated conversely, at any height z the exterior region of diverging 

rays has eaten its way in from the original edge by a distance 

|s| = az. 

** In this expression y  is the ratio of specific heats, y  = Cp/cv, n 

is the ambient refractive index, P is the ambient pressure, k is the 

effective absorption coefficient for heating of the atmosphere by the 

laser light, t is the time, and F is the energy flux leaving the laser 

face in the interior, or uniform region. 

18 
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a = 
M)(na-l)ktF0' 

2Yna
2P 

then they begin to deflect outwards (toward the positive axis) according to 

XjU.z) ^ |-(z-|s/a|)Z , 

where x, is the displacement at height z of any ray from its original hori- 

zontal coordinates. 

Thus it is seen that at any time the height at which an interior ray 

first i „Mjins to deflect outwards is proportional to its original distance in 

from the edge |s|, and is inversely proportional to the square root of ktF , 

the amount of heat per unit volume deposited along the ray path up to that 

time. Furthermore, once the ray begins to deflect outwards, the horizontal 

displacement per unit height is proportional to ktF . It is also inversely 

proportional to A, the scale length for the exponential fall-off of the beam 

intensity at its outer edge. Thus, the more sharply the beam edge is shaped, 

the more sharply the interior rays will deflect, once they begin to do so. 

The solutions from which these conclusions are drawn are not valid 

in ail regions of space. They are, however, exact solutions to the model 

equation in the region in which the interior rays are undeflected, and are 

quite accurate in a very small region about which they first begin to deflect. 

They are not accurate elsewhere, so that it is not possible to ascertain 

from them the actual extent to which the interior rays a e displaced as a 

function of height. 

19 



Fig. 1. Radial distribution of flux F (r) at the laser face for which 

the gradient of the refractive index points inward for r < R 

and outward for r > R. In this case the rays in the outer 

region r > R will diverge, but the rays in the inner region 

r < R will converge initially. 

F0(.) 

Fig. 2.    Uniform distribution of flux F (s) emanating from a semi- 

infinite laser face (s < 0), with an exponential fall-off 
at the edge.    The rays originating in the uniform region 

along the negative s-axis are initially undeflected. 

Those originating along the positive s-axis are immediately 

deflected to the right. 

20 



Fig. 3. Trajectories of rays emanating from the region of uniform 

flux distribution (s < 0) depicted In Fig. 2. The rays 

go up vertically until they Intersect the dashed line, 

then they begin deflecting to the right parabolically 

with height z. The slope of the dashed line Is Inversely 

proportional to the square root of the energy per unit 

volume deposited along the ray path. 

21 
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Fig. 4. Typical ray trajectory, showing the angle e and the incremental 

quantities dx, dz, and do at fixed s. 

ds 

Fig. 5. Neighboring ray trajectories separated by an infinitesimal 

radial distance ds at the laser face, and by a corresponding 

radial distance dx at an arbitrary height z. 
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An approximate solution is found to the nonlinear, partial differential equation 

describing the thermal self-defocusing effect. The solution is for the special 

case of a flux distribution leaving the laser face, which has planar symmetry, is 

uniform over a semi-infinite region (simulating the interior of the beam) and 

falls off exponentially at the edge. The rays originating in the interior region 

are found to go up undeflected until they reach a height proportional to their 

original distance in from the edge and inversely proportional to the square root 

of the amount of heat per unit volume thus far deposited along the ray path. 

Then they begin to deflect outwards parabolically, more sharply for a larger heat 

density so far deposited, and also more sharply for a more steeply descending edge 

of the initial flux distribution. 
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