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NOTATION

Small cross-sectional area of a water column

Shock wave velocity (= 5000 fps for sea water)

Base of natural logarithms (= 2,7 1828)

Deceleration due to gravity (= 32,2 ft/sec?)

Nondimensional deceleration due to gravity

Depth below surface

Depth below surface (A 2 4° 2 ()

Exponential depth decay constant

Pressure of incident shock wave at a given time after arrival
Pressure in the slab just above the cavitated zone

Air pressure (= 14,7 psi)

Peak pressure of shock wave

Time after arrival of the incident shock wave

Time at which the surface slab has grown to a given thickness
Time after kickoff (¢ 2 ¢*2 Q)

Closure time

Time at which y =

Nondimensional time at which the surface slab has grown to a given
thickness

Nondimensional closure time

Kickoff velocity of the water at a given depth
Kickoflf velocity of the water surface
Velocity of the water surface at a given time

Velocity of the water surface at a given time without the effect of
gravity
Nondimensional velocity of the water surface at a given time

Nondimensional velocity of the water surface at a given time without
the effect of gravity

Thickness of the surface slab at a given time
bepth below surface (y 2 y’ 20)

Depth of water particle which falls back to its initial position before
joining the surface slab



The closure depth

Nondimensional thickness of the surface =lab at a given time
Nond mensional closure depth

Depth of upper bound of the below surface slab

Depth of lower bound of the below surface slab

Depth below surface

Angle which a plane wave makes with the surface

Surface displacement

Surface displacement without the effect of gravity
Nondimensional surface displacement

Nondimensional surface displacement without the effect of gravity
Density (- 2 slugs/ft3 for sca water)

sSurface cutoff time at a given depth

Expor.ential time delay constant



ABSTRACT

A theory of bulk cavitation is presented in which an equation governing
the motion of the water surface is derived. This equation is found to have a
simple exact solution with which calculations can be performed without a
computer. This solution not only yields the resu!ts of Walker and Gordon for
the closure depth and time, but also predicts the complete surface velocity
history rather than just a straight line model of the surface velocity history.
Simple exact equations for the surface slab thickness history and the sur-
face displacement history are also derived, The theory is found to be
physically plausible and is in reasonable agreement with the experimental
data of Walker and Gordon.

ADMINISTRATIVE INFORMATION

The work of this report was funded under Defense Atomic Support Agency Subtask
NB004 (3089).

INTRODUCTION

When a shock wave caused by an underwate: explosion reaches the surface, it is re-
flected as a negative pressure wave which is superposed on the incident positive pressure
wave. At a certain depth below the surface, the totai pressure may become negative. At
about this depth, the water cavitates since under the usual test conditions, water seems un-
able to withstand substantial negative pressures.! The cavitation may persist down to sig-
nificant depths and cause what is known as *‘bulk cavitation.’* A knowledge of this phe-
nomenon is necessary to determine the motion of the water and thus the effect of underwater
explosions on surface ships and submarines,

This report presents an incompressible theory of bulk cavitation in which en equation
governing the motion of the water surface is derived. This equation is found to have a simple
exact solution with which calculations can be performed without a computer., This solution
not only yields the results of Walker and Gordon! for closure depth and time, but also pre-
dicts the complete surface velocity history rather than just a straight line model of the sur
face velocity history. QOther theoretical details have been presented in reports by Cushing
et al.2:3 A more involved theory which includes the compressibility of the water is being
stndied and will be the subject of later work. [t is expected that the results of the com-
pressible theory can also be applied without the aid of a computer.

IReferences are listed on pege 11.



THEORY OF BULK CAVITATION

After a shock wave reaches the surface, it is reflected as a negative pressure wave.
At a given depth &, the time interval (k) between the passage of the front of the shock wave
and the front of the reflected wave is called the ‘*cutoff time.”’ If for all depths 4 the total
pressure of the water immediately after cutoff is positive, then no cavitation occurs. However,
if the total pressure is negative immediately after cutoff, then the water cavitates. In this
case, it is assumed that cavitation is present at all depths A just after cutoff. When the water
cavitates, the water particles at a depth 4 are ‘‘kicked off’” with a vertical velocity U (%)
which is called the ‘‘kickoff velocity.”” Using the results presented in this report, it can be
shown that the cutoff times of interest are much smaller than the times characterizing the
development of bulk cavitation. Therefore, it is assumed that the time of kickoff is the same
for all particles regardless of depth. A more detailed model will be considered in later work
on the compressible theory.

In the theory of the present report, the water is assumed to be incompressible. It is
also assumed that all the water has zero pressure just after cutoff; this assumption is justi-
fied because the pressure in the cavitated zone is approximately the water vapor pressure
which is negligible for cases of practical interest. Immediately after kickoff, air pressure
decelerates the water particles at the surface. The particles just below the surface then
join up with the surface particles. This is the beginning of the formation of the *‘surface
slab.”” Air pressure continues to decelerate the surface slab so that even more particles
below the surface join the surface slab. In this manner, the thickness of the surface slab
grows from zero initial thickness. Figure 1 shows a surface slab which has grown to a
thickness y at the time ¢

As expiained later, there is a ‘‘bottom zone’ (see Figure 1) in which the water °
motionless. At time ¢, this zone will have the depth y,. Since y, decreases as a function of
time, this bottom zone nioves upward. Because the thickness of the surface slab increases
as a function of time, there will be a certain time, called the *‘closure time,”’ at which the
surface slab meets the bottom zone. After closure, the water is assumed to have no further
movement.

KICKOFF VELOCITY
The impulse imparted by a shock wave to a column of water of small cross-sectional
area 4 above a depth 4 is J(’"(h) AP (T)dT, where P(T) is the pressure of the incident shock

wave at a time T after arrival. This impulse must be equal to the momentum of the column of

water which is f" p AU (h") dh’, where p is the density of the water. Equating these two
0

expressions, differentiating both sides with respect to %, and dividing both sides by p4 gives



P(r(A) dr(h)
[ 4

P/ (1)

UN) =

SURFACE DISPLACEMENT

Since the particles in the cavitatad zone are all at zero pressure, the only deceleration
they experience is gravity. Thus, at any time £°(where ¢ 2 ¢°2 ), the displacement of a
particle which was kicked off at a depth A is

[ 4 2
F VY A I ]
UA) 2

where g is the deceleration due to gravity. That is, *‘free fall** displacement will occur until
the particle joins the surface slab. At the instant this particle joins the sarface slab, it will
have the displacement

i
ume- o ¢

Since the water is incompressible, the thickness of the surface slab y must be equal to A.
Thus the displacement of the surface is

cue-La
Bt~ =t

(2)
.U(')‘ - % '3

Differentiation of Equation (2] with respect to ¢ yields the velocity of the surface

ds
Ve
dlU(y)
- — (3)
du(y) dy
'U(””T ol o (4



MOMENTUM EQUATION

Now consider the water in the surface slab at time ¢ having a thichkness y. At Kick-
off, all of thix water was undisplaced and had the kickoff velocity distribution U(y°) for

y 2 y°20. The momentum of a column of small cross-sectional arca A of this water was

{,’p-'ll'(y') dy’

However, in the time inteeval from kickoff (0 the tme ¢, the momentum of the column of water

of cross sectional area A has been reduced due to air pressure P and! gravity by the amount
P, At +p Agy!

If there is no momentum flux into (or out of) the sides of this water column, the momentum of

the column at time ¢ ix
Jo’ pAU(YVdy =P, At - pAgyt

which must be equal o pAVy. That s,
pAVY - [ bALLY Yy = Py = o

which is the momentum equation, The «ffect of momentum flux into (or out of) the sides of

the water column will be considered in later work on the compressible theory,

SURFACE SLAB THICKNESS

Substituting Equation (3] into Equation [5], dividing both sides by A, and adding
pgyt to hoth xides gives

diU(y !

a4 dt

-p{)’U(y’)dy'-l’,f (6]

It should be notea that y is independent of ¢ in Equation [6). This is expected zince the rate
at which the surface slab is being decelerated by gravity is the same as the rate at which the

particles in the cavitated zone are being decelerated by gravity.

t

pressure is negligible for cases of practical interest. In these cases, the small error produced by neglecting the
water vapor pressure tends to be counteracted by the small error caused by neglecting the increase in air pressure
due to the sudden upward movement of the water surface,

Actually the value of I'u should be the air pressure minus the water vapor pressure. However, the water vapor



Equation 6] can be written as

dU d
Oy ey YUy dy’ - yU(y) = (P, p)? (7

' — W
V' 3y @ T

y ' d 0- ] e , t
dy {)U(y) y = yU(y) -(P,/p)

= - (sl
de dU(y)
yt

dy

It will be shown later that for all cases of interest y is a monotonic increasing function of ¢.
Therefore, we can let ¢ become the dependent variable and y become the independent variable.
So, reciprocatio= of both sides of Equation [8) gives

di
yt U(y)
dt dy

dy {,’U(y’) dy’=-yU(y) =(P,/p)¢

Equation (9] relates the time to the surface slab thickness and consequently govemns the
motion of the water surface. [t can be easily verified by direct substitution that the solution
of Equation (9] for which ¢ =0 at y =0 is

t=2 % L Uy dy’ = U ) (10)

Differentiating Equation {10] with respect to y and substituting the resulting expression into
Equation [4] yields

4
V-Uy - %7 gt (11)

PHYSICAL CONSIDERATIONS

Equation [ 1] demonstrates that for most cases of interest U(y) is a monotonic de-
creasing function of y. Thus, using Equation [10), it can be shown that d¢/dy 2 0. That is,
y is a monotonic increasing function of t. If U(y) were not a monotonic decreasing function
of y, several slabs would form (seec Appendix). Also, at y = 0, dt/dy = 0, i.e., initially the
surface grows infinitely fast. This can be seen physically by remembering that initially the



surface slab is of zero thickness and is being infinitely decelerated by the air pressure.
Thus, the particles of water just under the surface will join the surface slab immediately.
Equation (1] also shows that as y + «, U(y) < 0 and [? U(y ") dy’+ constant lor all
cases of interest. Therelore, Equation [ 10] implies that as oy-o w, t < ¢ assymptotically,
i.o., as t < ¢_, the slab grows infinitely fast and gets infinitely thick.
It is now convenient to define the surface displacement withcut the effect of gravity
as (see Equation (2])

!
8‘-8¢3¢

(12]
Ut

and the surface velocity without the effect of gravity as (see Equation (11])

=V +gt (18)

P.
=U(y) - %

4

¥

It is seen from the above discussion that as y+ =, ,+0. So it is concluded (Equation [12])
that initially 8, rises from zero and eventually falls back to zetp at ¢t=¢_. Physically, the

air pressure eventually reverses the upward motion of the surface and forces it back down to
its original level. The fact that the final surface level is the same as the initial surface level
is consistent with the assumption of incompressibility. This implies (see Equation [13]) that
V‘ must decrease from its initial value U(0) to zero and become negative. Finally, at ¢=¢_,
Equation [11] shows that V, must be zero. This means that the acceleration of the surface
must be zero some time after the velocity becomes negative but before ¢=¢_.

Because the surface slab is assumed to be incompressible and of uniform velocity, the
pressure in the slab must vary linearly with depth from P, at the surface to P, just above the
cavitated zone. Thus, the total force per unit area on the slab is P, - P, - pyg which must
be equal to py dV/d¢, i.e.,

av

Y = =P, -P, -pgy (14)



which becomes

B t
P, vo— —— (15)
Lt dU)
v

by using Equations [10) and (11).}

Expanding U(y) in a Taylor series about y =0 and substituting Equation { 10] into
Equation [15], it can be shown that as y+g, P, <P, .’4. It can also be shown that P; <+« as
y-+~. Equation [15] demonstrates that P is always positive. [f this were not the case, the
surface slab itself would be a cavitated zone which is physically meaningless.

BOTTOM ZONE

It must also be assumed that if a particle which was kicked off at a depth y, falls
back o the same depth defore it joins the surface slab, then it has no further movement.
That is, it remains stationary after it returns (o its initial position rather than continuing to
fall. If this were not the case, the final water level would be different than the initial water
level. This assumption is consistent with the assumption of incompressibility. The time ¢
at which this particle returns to its initial depth is

2U(yy)
g

=

(18]

From this equation and the fact that U(y,) is a monotonic decreasing function of y, and that
U(yp)+0 as y, < for all cases of interest, it is realized that at any time ¢ there is a depth
below which the water is motionless. This decp zone of motionless water is called ‘‘the bottom
zone (see Figure 1). Initially, at a0, y, = «. Later, as ¢ increases, y, decreases.

CLOSURE

Eventually, there will be a time ¢, at which y, =y = y.. Thatis, ¢, is the time at
which the surface slab meets the bottom zone. After this time, all the water is assumed to
be motionless, The time ¢, is called ‘‘the closure time,’* and the depth y_ is called ‘‘the
closure depth.’” Substitution of Equation [16] into Equation (2], when y, =y=y ., shows that
the displacement of the surface at the closure time is zero. This is consistent with the

fAlternauvely. PL can be found by realizing that it is the momentum with respect to the surface slab which is
imparted to a unit area in a unit time, i,e., PL =p dysdt (U(y) - VS)' which can be shown to be the same as
Equation [15].



assumption of incompressibility. Equating Equations [10] and [16], setting y, -y -y, and
multiplying both sides by ¢ *2 gives

w
P

a

( {)" Uy dy’ -y Uyl = Uy, 117

which can be u=ed for detemining y_ and thus /. Equation [17] gives the same values of
y. (and ¢) as the model in Reference 1.

Since U(y,) = ¢t.’2, it is seen by using F.quation [11] that the velocity of the surface
slab at the closure time is <(g + P, ‘(py Nt ’2 which is also the same as that predicted by

the model in Reference l-' This completes the general exact solution of the hulk cavitation
problem for this theory.

EXPONENTIAL SHOCK WAVE

The most important special caxe of a shock wave exponentially dececasing with time

will now be examined. In this ca~e, the pressure history has the form
P(ny-pe T8 (18]

whero }:)

wave making an angle 8 with the surface, the surface cutoff time is

is the peak pressure and 6 is the exponential time decay constant. For a plane

9
T - ycos B [19]

where c is the volocity of the shock wave. Substituting Equations { 1s] and [19] into Equation
(1) yields

2 ycos f3

2’6 c 7]

L) = — cos e 120]
[
- L, ek [21]
where
'..’I:)

l(') _p'_ cos f3 [22]

1’A rough estimate of the closure pulse can be obtained by assuming that the problem is strictly one-dimensional,
The closure pulse is then a square wave which arrives at a point of depth = at the time { +|z =y |/¢, where ¢ is

the velocity of sound in water. The duration of the pulse is 22/¢ for 0 525 Ye and 2y,/¢ for = Ye- In thin
spproximation, z should not be too deep. Perhaps it should be less than about 3y The pressure of the pulse is
pc/2 times the absolute value of the velocity of the surface slab at the closure time,



is the kickoff velocity of the water surface and

0
PR (23]
2cos 8
is the exponential depth decay constant,
NONDIMENSIONAL VARIABLES
The nondimensional time ¢* is defined as
p
=t <= Uk (24]
(% )
and the nondimensional thickness y* is defined as
y* =y/k (25])
Using these definitions Equation [10] becomes
=21 =(14+y%)e"] [26)
for the exponential wave. Similiarly, defining the nondimensional velocity V' as
vt = v/, (27]
and the nondimensional gravitational deceleration as
g* = gpk/F, (28]
Equation [11] becomes
L]
V' = - -g 29
o [29]

for the exponential wave. Finally, Equation (2] determines the nondimensional displacement

(30]

for the exponential wave.



CLOSURE DEPTH AND TIME

Using Equation [17], it is found in the case of the exponential wave

P 1+yr+1/g* (31

where y2 = y _/k is the nondimensional closure depth.

Also, the nondimensional closure time is

P
=y, (F U, k)

()

£ (y2) (32]

2/ y*

Equations [31) and [32] for the closure depth and time are the same as the results of
of the model presented in Reference 1 as expected. This means that the simple model of
Reference 1 is just as good as this more detailed theory in finding the closure depth and
time. However, the surface slab thickness, velocity, and displacement histories are found
more accurately by using Equations [24] through [30] of this report. The experimental veloci-
ty and displacement histories in Reference 1 seem to verify this more detailed theory. Un-
fortunately the accuracy of these histories is not good enough to conclude that this theory is

significantly better for predictions than the simplified model in Reference 1.

CALCULATIONAL AIDS

As an aid to calculations. Equation {26] relating * and y* has been plotted in Figure
2. As explained before, y* grows infinitely faxt at ¢ 0. At ¢ 0.5285, the curve has an
inflection point. At (¥ = 2, the surface slab i agnin growing infinitely fast and is of infinite
thickness.

Figure 3 shows the nondimensional veloeity and dispincement without the offect of
gravity (i.e., V; v* 4+ g ¢* and 5‘: 8‘0((/' 2)* 4, viotted using Equations [29] and [30])
as functions of ¢ At ¢' 0, the deceleration of the <urfuee 1= infinite. Later, at ¢* - 0.715,
V; is zero and 5; has its maximum value, 0,204, Stll later, at 2° - 1661, V; has its minimum
value, -0.218. Finally, at o, l": and 6; ar s zero and the aceeleration is infinite, Fig-

ure 4 shows an enlarged view of the early part of Figure 3,

10



An example of the use of these graphs is illustrated in Figure 5. In this figure, the
velocity history resulting from the detonation of a 10,000-1b charge of HBX-1 at a depth of
100 ft and horizontal standoff of 400 ft is presented according to the theory of this report.
Also shown are the predictions in accordance with the theory of Walker and Gordon! and the
experimentally observed velocity history.! The curves are terminated at the time of arrival
of the very complicated velocity associated with the expansion of the explosion bubble in
this particular experiment, [t can be seen that the theory of this report gives a more realistic
characterization of the velocity history than does the theory of Walker and Gordon.! However,
there are other experimental velocity histories in Reference 1 to which the theory of Walker
and Gordon appears to give a better fit than the theory of this report at later times. The
accuracy of the experimental data is not sufficient to determine that the theory of this report
is significantly better,

SUMMARY AND CONCLUSIONS

A bulk cavitation theory which has a simple exact solution has been presented. The
solution is physically plausible and is in reasonable agreement with the experimental data of
Walker and Gordon.! Calculations can now be made for the complete surface slab thickness,
velocity, and displacement histories using Equations [10], [11], and [2] for any monotonic
decreasing kickoff velocity distribution. The most important special case of the exponential
shock wave can be treated with the aid of Figures 2, 3, and 4. All calculations can be per-

formed without the aid of a computer.
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APPENDIX

U(y) FUNCTIONS WHICH ARE NOT MONOTOWIT DECREASING

If U(y) were not nonotonic decreasing, a slab other than the surface slab would in-
stantly form starting at a depth y, shallower than the point at which U (y) begins to increase
and extending to some depth y, decper than the point at which U(y) is again decreasing (see
Figure 8). Since the water is incompressible, thix slab must be of uniform velocity and of
zero pressure. Because it must have the same momentum as the water in it had initially, the

1 2
velocity of this slab is e J' U(y’)dy’ which must be equal o U(y,) and w0 U(y,).
Y =4 )
The bulk cavitation problen: in this case can now be treated using the procedure in the main
Y2
I UyYdy = Uy ) =Ury,) fory, <y 33/2. When the

text by replacing U (y) by

Y=Y,
depth of the surface slab is y,, it will instantly grow to the depth Yo+ At this time, there will
be a sudden increase in the vertical velocity of the surface, If there is more than one such

increase in the U (y) function, these addit.onal increases can be treated in a similar faxhion,
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