Research and Development Technical Report ECOM 66-G22-F # ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS STRESS AND HEAT TRANSPORT IN THE ATMOSPHERIC SURFACE LAYER Ву C. B. Tanner and G. W. Thurtell April 1969 # Distribution Statement DECARAGED LED This document has been approved for public release and sale; its distribution is unlimited. # ECOM UNITED STATES ARMY ELECTRONICS COMMAND ATMOSPHERIC SCIENCES LABORATORY FORT HUACHUCA, ARIZONA Grant DA-AMC-28-043-66-022 University of Markey Orin University of Wisconsin Medison, Wisconsin | HOELS HE | | | | |----------|-------|------------|-------------| | | | | | | | | | | | 编研算 | | 17 | | | | 100 | | eum pyrt | | DISTANT | | UNIUT
T | tarita
T | | dist. | RATE. | wil/# | | | | | | | # NOTICES Citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced. The findings in this report are not to be construct as an official Department of Army position unless so designated by other authorized rocuments. Destroy this report when it is no longer needed. Do not return it to insoriginator. # ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS STRESS AND HEAT TRANSPORT IN THE ATMOSPHERIC SURFACE LAYER # FINAL REPORT Under Grant Number DA-AMC-28-043-66-G22 DA Task No. 1T061102B53A-17 # Prepared by: C. B. Tanner, Principal Investigator G. W. Thurtell, Co-investigator Department of Soil Science University of Wisconsin, Madison, Wisconsin For United States Army Electronics Command Atmospheric Sciences Laboratory Fort Huachuca, Arizona Distribution Statement This document has been approved for public release and sale; its distribution is unlimited. # TABLE OF CONTENTS | | Page | |--|------------------| | Preface | v | | Three-dimensional pressure-sphere anemometer | | | system G. W. Thurtell, C. B. Tanner, | | | and M. L. Wesely. | 1 | | Eddy correlation measurements of sensible | | | heat flux near the earth's surface | | | M. W. Wesely, G. W. Thurtell, and | | | C. B. Tanner. | 25 | | Evaporation measurements by an eddy corre- | | | lation method S. M. Goltz, C. B. Tanner, | | | G. W. Thurtell, and F. E. Jones | 45 | | A fast response thermometer for eddy corre- | | | lation measurements M. L. Wesely, | | | G. W. Thurtell and C. B. Tanner. | 61 | | Sensible heat flux measurements with a yaw | | | sphere and thermometer C. B. Tanner and | | | G. W. Thurtell | 73 | | Appendices | | | | | | Anemoclinometer equations and computer | m1 m10 | | program | P1-P19
R1-R10 | | Coordinate systems and rotations | | | Data listing | D1-D78 | | Distribution list | L1-L10 | #### **PREFACE** We became interested in the anemoclinometer as a possible three-dimensional pressure-sphere anemometer in 1961 when Professor H. Lettau called it to our attention. Several features were of interest; the small size which would enable measurements near the ground, the internal angular precision of construction, and the stability and ruggedness of the probe were all valuable attributes. Most importantly, however, the vertical velocity, which is the most critical measurement, is obtained from a pressure proportional to the product of the vertical and horizontal winds. Consequently, the vertical wind is contained in a term of large magnitude, which can be measured with precision, and is then obtained by division rather than by differencing, which also lends precision to the measurement. The early work, which validated the potential of the anemoclinometer as a three-dimensional anemometer, was supported under grant DA-SIG-36-039-62-G25 by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Fort Huachuca, Arizona (formerly the Department of Meteorology, U. S. Army Electronics Research and Pevelopment Activity, Fort Huachuca, Arizona). This work, which included tests on frequency response, sensitivity of the anemometer to angular rotation, and a limited comparison to wind profile measurements of shear stress, was reported 1/ for the above Thurtell, G. W. and C. B. Tanner. 1965. Momentum Transport Measurement in the Atmospheric Surface Layer with the Anemoclinometer. University of Wisconsin, Department of Soil Science, Madison, Wisconsin, Final Report 1962-1965. grant. The results also are presented by Thurtell $\frac{2}{}$. The use of the pressure probe hinged upon a pressure measurement with severe requirements of sensitivity, zero stability, sensitivity stability and frequency response. The only pressure transducer available at that time which appeared to meet our requirements was one made by Datametrics, Inc., as described in this report and the earlier one. Datametrics was most helpful in modifying the sensor and the electronics to meet our requirements, including smaller transducer volume, distant separation of the transducer from the electronics, and read out of electrical zero and full scale. Earlier experience with data-logging via a magnetic tape system $\frac{1.2}{}$ convinced us that the only feasible route was on-line computation. This was done in the experiments discussed in this report, and proved to be as valuable as we anticipated. Most of the results in this report were obtained as part of the 1967 Cooperative Field Experiment conducted at the University of California at Davis and sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Fort Huachuca, Arizona. The remaining data were gathered at the University of Wisconsin Hancock Experiment Farm. We wish to express our appreciation to Mr. T. A. Black, graduate student who worked with us on the Davis California experiment and helped also at Hancock in providing all of Thurtell, G. W. 1965. Momentum transport measurements in the atmospheric surface layer with the anemoclinometer. Ph.D. Thesis, Univ. Wis. (Pub. No. 65-11,179). 47 p. Univ. Microfilms, Ann Arbor, Mich. (Diss. Abstr. 1: 4017.). the energy balance data. We owe thanks also to Dr. C. R. Stearns (Department of Meteorology, University of Wisconsin), Dr. W. O. Pruitt (Department of Water Science and Engineering, University of California-Davis), and Dr. J. A. Businger (Department of Atmospheric Sciences, University of Washington), who participated in the 1967 Cooperative Field Experiment and provided data used for independent comparisons of shear stress and sensible heat flux density. G. W. Thurtell C. B. Tanner # THREE-DIMENSIONAL PRESSURE-SPHERE ANEMOMETER SYSTEM G. W. Thurtell, C. B. Tanner, and M. L. Wesely The state of s ### ABSTRACT A rugged and stable pressure-sphere anemometer system is described which provides an accurate measurement of wind velocity and direction within a meter of the ground. The horizontal wind velocity, $(u^2 + v^2)^{\frac{1}{2}}$, agreed very closely with cup anemometer measurements, indicating good accuracy in the measurement of the dominant term, u. Eddy correlation measurements of shear stress with the pressure-sphere agreed very well with Davis shear-stress meter measurements and satisfactory agreement was found with data obtained from wind velocity profiles and from wind measurements using a drag coefficient. Ratios of gw/u, during neutral periods were found to be in excellent agreement with values derived by Panofsky and Lettau, providing further indication of the accuracy obtainable with the pressure sphere system. ### 1. Introduction The basic mechanisms of turbulent transport in the layers of air within a few meters of the earth's surface are receiving increasing attention from researchers from many disciplines. Inadequate diffusion models are limiting research progress in meteorology, ecology, agriculture, water resources and air pollution since many of the critical problems in these fields are associated with the exchange of energy, gases and aerosols between the earth and its atmosphere. The testing and development of improved transport models requires accurate experimental data which is at present insufficient. Field measurements of turbulent mixing processes have been few and generally inadequate because of the stringent requirements for the instrumentation. wind velocity sensors must be accurate, stable under field conditions, fast responding, small for measurements near the ground, rugged, and must measure both the flow direction and velocity without seriously disturbing the flow. Sonic anemometers (Kaimal, et al., 1964; Kaimal, et al., 1968), bivanes (Gill, 1963; McCready and Jex, 1964; Cramer, et al., 1961), two types of heattransfer anemometers; (Miyake and Badgley, 1967; Dyer, 1960), fast-response cup anemometers (Frenzen, 1965) and vertical, propeller-type anemometers (Thornthwaite, et al., 1961 and Holmes, et al., 1964) have all been used in the atmospheric surface layer but each fails to meet one or more of the essential criteria mentioned above for measurements near the ground. The pressure sphere is well-suited to measuring the lateral and vertical wind components because they appear as products with the large longitudinal velocity in the basic pressure measurement. It is felt that the anemometer system to be described does meet these requirements to greater degree than do other available instruments and will thus aid research on turbulent diffusion processes. The basic sensor of our system is the anemoclinometer described by Martinot-Lagarde, et al., (1952) and made by the Institut de Mecanique des Fluides. The tests to be described were conducted at the University of California at Davis as part of the 1967 Cooperative Field Experiment sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Ft. Huachuca, Arizona. Wind velocity measurements made with our anemometer system were compared with cup anemometers. Eddy correlation shear stress measurements were compared both with wind profile data and with data from the large Davis shear-stress meter (Brooks and Pruitt, 1966). In addition measurements of the
standard deviation of the vertical component of wind velocity are presented for Davis and also some from Hancock, Wisconsin. # 2. Anemometer system The anemometer system consists of a spherical probe with pressure ports drilled into its surface. This particular design of sphere, called Philip I, can be replaced satisfactorily by other styles. The pressures developed at these ports are transmitted through small tubes and measured by pressure transducers. The ^{1/} Institut de Mecanique des Fluides de Lille, 5, Boulevard Painleve, Lille (Nord), France. electrical outputs of the pressure transducers can be analyzed to give the orthogonal components of the wind vector. # a. Spherical pressure probe We used both 3-cm and 8-cm pressure probes as described by Martinot-Lagarde, et al., (1952). The 3-cm probe, shown in Fig. 1, consists of a spherical head mounted on a supporting shaft. A drawing of the head, showing some of the ports, is given in Fig. 2. When in use, the probe is fixed with the sphere on the upstream end of the shaft. Twelve small ports are drilled into the spherical surface and a pitot tube is centered in a Venturi which is bored in the sphere on the axis of the shaft. Eight of the twelve ports on the surface of the sphere are located on a circle at an angle of 47.5° to the shaft axis and serve as reference ports for the pitot tube in the Venturi; these eight holes are connected to a common pressure-averaging cavity in the shaft. The other four holes lie at right angles in the x,z and x,y planes, and each hole is at 45° from the shaft axis. The x-coordinate is taken parallel and the y- and z-coordinates perpendicular to the probe shaft, with z in the vertical plane. The open end of the pitot tube in the Venturi is in the upstream direction. The pressure difference $$P_1 = P_t - P_m \tag{1}$$ between the pitot tube and the cavity common to the eight reference ports, is proportional to the dynamic pressure, Fig. 1. Spherical sensing head of anemoclinometer showing pressure ports. Fig. 2. Front and cross-section views of anemoclinometer head, with y- and z-coordinates shown on front view. $$P_1 = \frac{1}{2}a_\rho V^2 \tag{2}$$ where $$v^2 = (u^2 + v^2 + w^2) \tag{3}$$ where u, v, and w are the axial, cross-horizontal, and vertical wind components, o is the fluid density, and "a" is a constant of the probe equal to 1.015 according to data supplied by the manufacturer. The pressure difference between the two vertical ports (x,z plane) and that between the horizontal ports (x,y plane) are predicted reasonably well by $$P_2 = b_0 uw (4)$$ $$P_{3} = b_0 uv ag{5}$$ The factor, b, is a function of the Reynold's number but is relatively constant in the Reynold number range of 2,000 to 200,000. Calibration data supplied by the manufacturer indicated that for the 3-cm spheres, the pressure ratios P_2/P_1 and P_3/P_1 were linearly related to the angles F and G respectively by the equations $$F = c P_2/(P_1 \cos G)$$ (6a) $$G = c P_3/(P_1 \cos F)$$ (6b) where c is a constant and Fand G are the complements of the directional angles. Accordingly, $$w = V \sin F$$ (7a) $$v = V \sin G \tag{7b}$$ $$u \approx V(\cos F)(\cos G)$$ (7c) The components of the wind vector are described more closely by equations (3), (6), and (7) than by equations (3), (4), and (5). When using (6), an iterative procedure is used to solve for F and G which are then used in equations (7). # b. Pressure transducers Capacitive pressure transducers manufactured by Datametrics, Inc. $\frac{2}{}$ were chosen for the pressure measurement. The gains of the signal conditioners can be selected to provide full scale outputs (\pm 5.0V) for differential pressures of 10, 20, 30, 60, 100, 200, 300, 600, 1000, 2000, 3000, 6000, 10,000 dynes cm⁻². The transducer has a maximum nonlinearity of about \pm 0.1%, zero drift of 10^{-5} of maximum range per degree Celsius and sensitivity change of 2×10^{-2} %/C. ### c. Frequency response The frequency response and phase shift of a pressure transducer connected by tubing to a fluctuating pressure has been described by Iberall (1950), whose ^{2/} Datametrics Incorporated, 87 Beaver Street, Waltham, Mass. (Model 511-8 Barocel). analysis was basic to our system design. The response of the transducer is controlled by the size and length of the tubing and the effective internal volume of the transducers. The transducers used in our system were a special design which used a stiffer-than-normal diaphragm and a reduced internal volume of 1.6 cm³ to improve the frequency response of the system. The spherical probe was connected by approximately 43 cm of approximately 1.5-mm I.D. tubing to the pressure transducer; tests showed this tubulation optimized the system performance. The frequency response and phase shift of the system were checked by producing known sinusoidal pressure differences at various frequencies between appropriate ports on the surface of the pressure spheres and monitoring the amplitude and phase of the transducer output. stead of attempting to produce the pressure differences between ports on a single sphere, two identical spheres were placed in separate pressure chambers with tubing connecting appropriate ports to the pressure transducers. Equal pressure fluctuations, 180 degrees out of phase with each other, were produced in the two chambers by pistons which were closely coupled to the chambers. The pistons were dri en by a variable speed motor and the phase of the pressure fluctuation was determined by optically sensing the position of the Scotch yoke piston drive. Typical amplitude and phase shift characteristics of the 3-cm anemoclinometer and pressure transducer are shown in Table 1. The response was limited by the tubing used to construct the anemoclinometers and could be improved by redesigning the pressure sphere, tubulation, and transducer system for optimum performance. Table 1. Anemometer system frequency response and phase shift. | frequency
Hz | relative
amplitude | phase shift
(degrees) | |-----------------|-----------------------|--------------------------| | 1 | 1.00 | 0 | | 5 | 1.02 | 18 | | 10 | 1.05 | 48 | | 15 | 1.00 | 76 | | 20 | 0.84 | 100 | | 25 | 0.63 | 126 | | 30 | 0.47 | 145 | ### d. Field installation For field measurements, the pressure-sphere anemometer is mounted on a 2.5-cm diameter mast (Fig. 3) at the desired height. The anemometer is oriented with the shaft axis parallel to the anticipated direction of mean flow. The three pressure transducers are housed in a temperature-controlled (± 0.2C) box which is an integral part of the mounting assembly located at the opposite side of mast to the pressure sphere. The temperature control provides the required zero stability. The whole assembly can be moved to different levels on the mast or completely removed as one unit without disconnecting the pressure transducers from the pressure sphere. The pressure transducers are connected by 150 m of cable to their power supply and signal conditioners which are housed in a 2.5 x 6 m air-conditioned instrument trailer. The masts are on pivot points and supported higher up by guy wires attached to bearings. This arrangement Fig. 3. Anemometer assembly on its mast. allows the mast to be rotated so that the probe can be criented easily into the mean wind. When the data discussed below were obtained, the anemometer was rotated in azimuth manually into the mean wind; at the beginning of each half-hour run the crientation was adjusted to the position of the mean wind for the previous half hour. Since then, a motor assembly, controlled by the $P_3 = b_0uv$ output of the wind probe, has been used to continuously but slowly adjust the position of the probe into the wind. The orientation of the mast is monitored through the output of a potentiometer attached to the base of the mast and is included in the calculation of the components of the wind vector. # 3. Data handling Since the sensors respond to frequencies as high as 30 Hz, a large amount of data must be analyzed if the system is operated over extended periods of time. Storing large quantities of data under field conditions is costly and often results in a serious reduction in data quality. In addition it is highly desirable that some data analysis capability be available at the experimental site so that the experiment can be run efficiently and crumentation faults detected as soon as possible. After a careful study of the available alternatives we elected to drastically reduce, by digital on-line computation, the quantity of data to be stored to the point where it could be typed out in table form by a typewriter or stored on paper tape. In 1967, this amounted to a data reduction of approximately 18000:1. In 1967 the data analysis was performed on an EMR 6020 computer 3/ and later on the faster and smaller EMR 6130. The 1967 system included a Raytheon A-D converter, 6020 computer and model 33 teletype with paper tape reader with punch. The 6130 system includes an EMR 2701 converter, and a higher speed paper tape reader and punch in adultion to the model 33 teletype. Five channels of analogue data were obtained at each of three sites to give a total of 15 channels. At each site three channels represented the three pressure differences P₁, P₂, P₃ and the other two channels represented a fast response resistance thermometer (Wesely, et al., 1969) and a fast response barium fluoride relative humidity element (Jones, 1967). The velocity components of the wind vector were calculated using equations (6) and (7) and means, squares, and crossproducts of the five parameters (u. v, w, T, e) were calculated, where T, and e were the temperature and vapor pressure respectively. The complete operation (i.e. 15 channels of analogue to digital conversion and the data analysis) was repeated 40 times per second. At the end of each half-hour sampling period the necessary scaling operations were performed and the outputs were
teletyped. Approximately 2.5 minutes of each half-hour period were required for output and no data were collected during this time. This data system has proven to be a very efficient and powerful research tool and it is felt that the success achieved with the anemometer system would not have been possible if, alternatively, data storage equipment had been selected. ^{3/} Electro-mechanical Research, Inc., 8001 Bloomington Freeway, Minneapolis, Minn. # 4. Tests of anemometer system A complete description of the experimental area may be found in Brooks and Pruitt (1966). A plan of the field site is given in Fig. 4, showing the heights and spatial arrangement of our three anemometers with respect to the 6-meter, Davis shear stress lysimeter and the triangular array of masts installed by Dr. C. R. Stearns, University of Wisconsin Department of Meteorology. These masts carried cup anemometer and aspirated dry- and wetbulb thermometers. The surface was uniform alta fescue, 5 to 10 cm high, which was periodically mown. Wind velocity measurements with our pressure probe are compared with cup anemometer data and our eddy—correlation, shear stress measurements are compared with both shear stress lysimeter data and shear stresses obtained by Dr. Stearns' preliminary analysis of his vertical profiles of wind velocity and of temperature (KEYPS-type, diabatic profile analysis). In addition, a graphical description of the vertical fluctuations of wind velocity as a function of the stability parameter z/L is presented. # a. Comparison of wind velocity measurements The on-line computer program which was used to analyze our anemometer data included the calculation of the horizontal wind. $$\overline{V_{H}} = (\overline{v^2 + v^2)^{\frac{1}{2}}}$$ where u and v are the instantaneous values of the horizontal components of the wind vector. The value of $\overline{V_H}$ is primarily dependent upon P₁, as given in (2), and Fig. 4. Plan of the site of the 1967 cooperative field experiment. since u generally is much larger than either v or w, errors associated with the measurement of wind angles calculated from (6) do not seriously degrade the estimate of $\overline{V_H}$. The good agreement between $\overline{V_H}$ and cup anemometer measurements presented in Fig. 5, demonstrate the accuracy of pressure-sphere measurements of u. # b. Comparison of shear stress measurements Shear stress measurements obtained with the pressuresphere anemometer are compared with data from the shearstress lysimeter and from analysis of the wind profiles. The data obtained on May 2, 3, 4, and 5 are presented in Figs. 6 and 7. The pressure-sphere anemometer data represent the average of measurements available at the three sites. The shear stress data from the three wind profile sites also were averaged. The Davis shear stress lysimeter independently measures the north-south, and east-west components of the surface shear stress and the data used were computed by W. O. Pruitt as the vector sum of the half-hour means of these components. Agreement among the three methods is satisfactory even though the aerodynamic analysis generally provides somewhat larger values than the other two methods. This discrepancy appears unduly large on May 4 and 5. The average z_0 value computed from the wind profiles is 0.95 cm for May 2 and 3, and about 1.4 cm for May 4 and 5. For the latter two days new estimates of the shear stress were calculated via a drag coefficient using $z_0 = 0.95$ cm, a KEYPS diabatic correction and the cup anemometer wind velocity at 80 cm. The results of this calculation are more consistent with the comparisons on May 2 and 3. Calculations indicate that best agreement between drag Fig. 5. Comparison of horizontal wind measured with the three-dimension anemometer and with cup anemometers. Fig. 6. Comparison of shear stress measurements on May 2 and 3, 1967. Fig. 7. Comparison of shear stress measurements on May 4 and 5, 1967. coefficient and eddy correlation determinations would have been obtained by using $z_0 \approx 0.7$ cm. # c. Standard deviation of the vertical wind Ratios of the standard deviation of the vertical component of wind velocity to the friction velocity, u,, as measured at the two 1-m sites and one 4-m site, are plotted in Fig. 8. The comparison of horizontal wind measured with our anemometer system and with cup anemometers indicates that our pressure-sphere anemometer measures the u-component of wind velocity accurately. Accordingly the ratio ow/u, would vary as the square root of a constant percentage error in the measurement of w. This is not a very sensitive test of the measurement of the vertical component of velocity since the error in w would be twice that in w/u, but our value of 1.25 for ww/u, under neutral conditions is the same as that derived by Panofsky, et al., (1967) and close to the value of 1.33 predicted by Lettau (1968). Over one hundred additional data points were collected over snap bears ($z_{o} = 4$ cm) in 1968 at Hancock, Wisconsin. The data, averaged over stability ranges of z/L = -0.15 to 0.25, are also presented in Fig. 8 and are very similar to the Davis data. For ready comparison with the Panofsky (1967) and Panofsky et al. (1967) the curve $[1 - (z/L)/s]^{\frac{1}{4}}$ is plotted. Fig. 8. Ratio $\sigma w/u_*$ as a function of z/L. ### REFERENCES - Brooks, F. A. and W. O. Pruitt, 1966: Investigation of energy, momentum, and mass transfer near the ground, University of California-Davis, Final Rept., 1965, U. S. Army Electronics Command Grant DA-AMC-28-043-65-G12, 259 pp. DDC Accession # AD 635 588. - Cramer, H. E., F. A. Record, and J. E. Tillman, 1961: Studies of the spectra of vertical fluxes of momentum, heat and moisture in the atmospheric boundary layer. Ann. Rept., Meteor. Dept., Mass. Inst. Tech. 130 pp. - Dyer, A. J., 1960: Heat transport anemometer of high stability. J. Sci. Instr., 37, 166-169. - Frenzen, P., 1965: Determination of turbulence dissipation by Eulerian variance analysis. Quart. J. Roy. Meteor. Soc., 91, 28-34. - Gill, G. C., 1963: Data validation. Dept. Meteor. and Oceanog., University of Michigan, Publ. No. 79, Ann Arbor. 23 pp. - Holmes, R. M., G. C. Gill, and H. W. Carson, 1964: A propeller-type vertical anemometer. <u>J. Appl. Meteor.</u>, <u>3</u>, 802-804. - in instrument lines. U. S. Nat. Bur. Standards. J. Res. , 45, 85-108. - Jones, F. E., 1967: Study of the storage stability of the barium fluoride film electric hygrometer element. U. S. Nat. Bur. Standards J. Res., 71C, 199-207. - Kaimal, J. C., H. E. Cramer, F. A. Record, J. E. Tillman, J. A. Businger, and M. Miyake, 1964: Comparison of bivane and sonic techniques for measuring the vertical wind component. <u>Quart. J. Roy. Meteor. Soc.</u>, <u>90</u>, 467-472. - Kaimal, J. C., J. C. Wyngaard, and D. A. Haugen, 1968: Deriving power spectra from a three-component sonic anemometer. J. Appl. Meteor., 7, 827-837. - Lettau, H. H., 1968: Studies of effects of boundary modification in problems of small area meteorology. University of Wisconsin Ann. Rept. 1966-67. U. S. Army Electronics Command Grant DA-AMC-28-043-66-G24, 156 pp. - MacCready, P. B., and H. R. Jex, 1964: Response characteristics and meteorological utilization of propeller and vane wind sensors. <u>J. Appl. Meteor.</u>, <u>3</u>, 192-193. - Martinot-Lagarde, A., A. Fauquet, and F. M. Frenkiel, 1952: The IMFL anemoclinometer -- an instrument for the investigation of a fluctuating velocity vector. Rev. Sci. Instr., 23, 661-666. - Miyake, M. and F. I. Badgley, 1967: A constant temperature wind component meter and its performance characteristics. J. Appl. Meteor., 6, 186-194. - Panofsky, H. A. and B. Prasad, 1965: Similarity theories and diffusion. Int. J. Air Water Poll., 9, 419-430. - Panofsky, H. A., N. Busch, B. Prasad, S. Hanna, E. Peterson, and E. Mares, 1967: Properties of wind and temperature at Round Hill, South Dartmouth, Mass. Pennsylvaria State University Tech. Rept. ECOM-0035-F. U. S. Army Electronics Command Grant DAB07-67-0035, 95 pp. Thornthwaite, C. E., W. J. Superior, J. R. Mather, and F. K. Hare, 1961: The measurement of vertical winds and momentum flux. Pub. in climatology, 14(1), Centerton, N. J. # EDDY CORRELATION MEASUREMENTS OF SENSIBLE HEAT FLUX NEAR THE EARTH'S SURFACE M. L. Wesely, G. W. Thurtell, and C. B. Tanner ### ABSTRACT A three-dimensional pressure-sphere anemometer and fast thermometer system (P.S.A.T.) was used to measure vertical heat flux density in the atmospheric surface layer at one to four meters above alta fescue and snap beans. Good agreement with independent measurements was obtained, which shows that the P.S.A.T. is sufficiently small and has adequately high frequency response and accuracy for eddy-correlation measurements within one meter of the surface. Also obtained with the P.S.A.T. were (u'T')/(w'T'), $r_{u,T}$, $r_{w,T}$, and σ_{T}/T_{\star} and their dependence upon stability. When the atmosphere was thermally stable, slow wave motions frequently increased σ_{T} even though turbulent mixing was lacking. ### 1. Introduction The turbulent vertical heat flux, H, in the atmospheric surface layer over a horizontally uniform surface can be determined from $$H = \rho c_p \overline{w'T'}$$ (1) where $_0$ is the air density, $_{\mathbf{p}}$ is the specific heat of air, w is the vertical wind velocity, and T is the air temperature. The bar denotes a time average and the prime denotes an instantaneous deviation from the time-averaged quantity. The major difficulty with making eddy correlation measurements of turbulent heat transport is in measuring the vertical wind. This requires an accurate and stable anemometer that measures the wind components with a sufficiently high frequency response for use close to the surface where the fetch requirements are minimum. present, the most promising anemometers are sonic anemometers, either pulsed wave (Mitsuta, 1966) or continuous wave (Kaimal, et al., 1968), and
the pressure-sphere anemometer (Thurtell, et al., 1969). The pressure-sphere anemometer is smaller than sonic anemometers and thus can be used closer to the surface where eddies are smaller. This paper describes the measurement of turbulent heat transport with the pressure-sphere anemometer and a small, fast-response, resistance thermometer. Measurements of heat flux above alta fescue are compared with independent measurements made by others at the University of California at Davis as part of the 1967 Cooperative Field Experiment sponsored by the Atmospheric Sciences Laboratory, U. S. Army Electronics Command, Ft. Huachuca, Arizona. Also presented are measurements of heat flux made in 1968 over snap beans at the University of Wisconsin Hancock Experiment Farm. A summary of the standard deviation of temperature, $\sigma_{\rm T}$, divided by the dimensionless temperature scale, T_{\star} , and of correlation coefficients for wind and temperature also is given for measurements over the above two surfaces. 2. Equipment, sites, and comparison measurements. # a. Pressure sphere anemometer-thermometer assembly A fine-wire-resistance thermometer (Wesely, et al., 1969) was mounted parallel to the horizontal ports of the pressure sphere (Thurtell. et al., 1969), as shown for a 3-cm diameter sphere in Fig. 1. The closest edge of the thermometer was about 1.25 cm from the 3-cm anemoclinometer and about 2.5 cm from the 8-cm anemoclinometer. The thermometer was placed so that the sensitive element was slightly upwind of the leading edge of the pressure sphere; tests showed that this forward placement was necessary to prevent thermal modification of the air that flowed to the thermometer past the large thermal mass of the sphere. The thermometer was outside the angle of acceptance of the anemoclinometer and tests showed that the flow patterns around the sphere were not significantly affected. When the 1967 data were obtained, the anemometer was rotated in azimuth manually into the mean wind at the beginning of each half-hour run. During 1968, a motor assembly, controlled by the anemometer, rotated the mast to point the anemometer into the wind. The azimuth rotation of the mast was monitored with a potentiometer attached to the base of the mast and was included in the Fig. 1. Arrangement of thermometer with the anemoclinometer. calculation of the components of the wind vector. # b. Data handling The current through the thermometer was kept nearly constant at 0.3 ma by its bridge, which was located about 5 m from the thermometer. The bridge output was fed directly into a floating differential amplifier with a 1000 gain, to provide a signal with a temperature sensitivity of about $0.6 \, \text{c} \, \text{v}^{-1}$. The amplifier output was transmitted through 150 m of cable to the instrument trailer. The thermometer and anemometer signals were fed to a scanner-converter and an EMR computer as described by Thurtell, et al., (1969). The sampling rate was $40 \, \text{sec}^{-1}$ in 1967 and 150 $\, \text{sec}^{-1}$ in 1968. The outputs of the thermometer bridges were filtered in the amplifiers to match the phase shifts and response of the pressure-sphere anemometer and also to avoid high frequency noise. The response of the two systems are shown in Fig. 2. The curves for the anemoclinometers are roughly representative of the vertical wind component. ## c. Site description A description of the site of the 1967 Cooperative Field Experiment, and our instrument locations as well as the locations of other relevant instruments may be found in Thurtell, et al., (1969). The 1968 measurements at Hancock, Wisconsin were on a 100×160 m field of snap beans planted in rows spaced at 90 cm. The snap beans were about 30 cm high and provided about 50% cover over Plainfield sand. The fetch was 60 m to the north, 50 m to the east and west and 100 m to the south. Beyond these boundaries to the south was alfalfa extending for 150 m to a 15-m high Fig. 2. Frequency response and phase shift of the thermometer system and of the anemometer system. woods and to the west was an alfalfa field extending 100 m to a 10-m high shelter belt, to the northwest were low crops extending 200 m to a shelter belt, and to the east was alfalfa extending 300 m to a woods. The wind was predominately from the south and west during the tests. # d. Independent measurements of sensible heat flux During the 1967 Cooperative experiment, Dr. C. R. Stearns, University of Wisconsin, measured wind, temperature, and vapor pressure profiles at three locations in a triangular array. At the same locations, he measured net radiation and soil heat flux density for energy balance calculations. The sensible heat flux was calculated from the energy balance using Bowen's ratio, $9 = \gamma \Delta T/\Delta e, \text{ determinel from vertical temperature and vapor pressure differences measured over the same height intervals within 120 cm of the surface. An aerodynamic calculation of the sensible heat flux also was made using the wind and temperature profiles to find the shear stress with a KEYPS-type analysis and then using similarity (<math>K_{\rm H} = K_{\rm M}$) and the profiles to find the heat flux. Dr. Stearns supplied us data from both analyses. The University of California-Davis group measured the evaporation with a C-m diameter weighing lysimeter (Pruitt and Angus, 1960). In addition, they measured net radiation and soil heat flux near the lysimeter. The sensible heat flux density was calculated by differencing the energy balance terms as $H = R_n - G - E$. The Davis group also measured the sensible heat flux directly with an Evapotron (Dyer and Maher, 1965). Both measurements were supplied to us by Pr. W. O. Pruitt, University of California-Davis. The University of Washington group measured the sensible heat flux both with a one-dimensional sonic anemometer thermometer (Kaimal and Businger, 1963) and with a three-dimensional unit (Mitsuta, 1966). These data were supplied by Dr. J. A. Businger. The comparison data at Hancock, Wisconsin were obtained by differencing measurements of net radiation, soil heat flux density and evaporation. The evaporation was measured with a 2.1 x 5.5 m weighing lysimeter (Black et al., 1968), the net radiation was measured with a large Funk radiometer, and the soil heat flux was measured with soil heat flux plates (Fuchs and Tanner, 1968) and integrating soil thermometers (Tanner, 1958). ### 3. Heat flux density comparisons During the 1967 Cooperative Field Experiment, fetches were easily in excess of 100 m, except for small changes in elevation, since the wind was predominately from the south and southwest where fields had similar vegetation and roughness. Heat flux estimates by the pressure-sphere anemometer and thermometer system (called the P.S.A.T. hereafter) were averaged from two 1-m high units and one 4-m high unit to give the results shown in Fig. 3. There was no systematic difference of heat flux measured at the two heights except from 1615 to 2015 on April 27, when the data from the higher mast were discarded. Heat flux data from a three-dimensional, sonic anemometer-thermometer at four meters above the surface and one-dimensional, sonic anemometer-thermometer 2.2 m high agreed well with the P.S.A.T.; the scatter of estimates at our three different P.S.A.T. Fig. 3. Comparisons of heat flux density estimates at Davis, California for April 27, May 2, May 3, and May 4 and 5 of 1967. sites frequently is of the same order as the difference between our data and that of the sonic anemometerthermometer. The eddy-flux from the Evapotron is shown on Fig. 3 for May 4 and 5. The wide fluctuations may have been due to the averaging process to remove the mean wind and temperature terms since a time constant of only one minute is used in this system. Several indirect estimates of sensible heat flux are also shown in Fig. 3. The energy balance estimates obtained from differencing the energy balance H = R_n -G-E appear high during the day and low at night. Since $|R_n|$ and |E| are much larger than |H|, a small relative error in these terms could produce a large relative error in |H|. The results from the Bowen ratio energy balance and those from the aerodynamic method are the averages of heat flux data from three sites. These methods are nearly independent, but not completely so, because they use the same temperature profiles. Both methods show remarkably good agreement with the P.S.A.T. In Fig. 4 is shown the average of heat flux estimates at two P.S.A.T. sites. Both sites were 117 cm above the soil surface until 1030 when one site was moved to 210 cm above the surface. Since estimates of heat flux by the P.S.A.T. at 210 cm from the soil surface were not systematically different from the 117-cm high site, fetch was considered adequate. On another day, we compared measurements with one P.S.A.T. at 75 cm and the other at 117 cm and found no systematic differences. The energy balance estimate of heat flux leads the P.S.A.T. estimate in the morning. This was probably due Fig. 4. Heat flux density estimates over snap beans. to a time lag in the evaporative flux caused by unrepresentative heat storage in the lysimeter (Black, et al., 1968). This also could have caused an overestimate of the magnitude of the heat flux after sunset. The low value of 1015 was caused by an unexplainably large estimate of evaporative flux. ## 4. Temperature structure When the data used in this section were collected, H and τ were constant with height, within the accuracy of our measurements; thus we can use H and τ as scaling factors as described by Monin and Obukhov (1954). They define a dimensionless height ratio z/L where z is the height from the surface and L = $-u_{\star}^3 \circ_{\rm C} T/({\rm kgH})$ [$u_{\star} = (\tau/\circ)^{\frac{1}{2}}$ is the friction velocity; k = 0.428 is Karman's constant, and g = 980 cm sec⁻²]. The relationships obtained
between our measurements of z/L and our measurements of the correlation coefficients $r_{u,T}$ and $r_{w,T}$, and of the ratio (u'T')/(w'T') are given in Fig. 5. Fig. 7 shows the relation of z/L to a dimensionless standard deviation of temperature, $\sigma_{\rm T}/T_{\star}$ [$\sigma_{\rm T}$ is the standard deviation of air temperature and $T_{\star} = -H/({\rm koc}_{\rm D} u_{\star})$]. It appears that $(\overline{u'T'})/(\overline{w'T'}) \approx 4$ for z/L = 0.1 and ≈ 2.5 for z/L = -0.05. The large scatter indicates that more meaningful results might have been obtained from sampling periods shorter than the 30 min used. For instance, Zubkovskii and Tsvang (1966) obtain less scatter by using running means of the winds and temperatures from electrical filters with time constants of 100 sec and 80 sec, respectively. Fig. 5 shows that air temperatures are more closely coupled with horizontal winds than with vertical winds since $|r_{u,T}| > |r_{w,T}|$. Fig. 5. Correlation coefficients of wind and temperature and (u'T')/(w'T') as a function of stability. This is especially true for stable conditions. As shown in Fig. 6, the fluctuations of air temperature and vertical wind during unstable conditions are much larger and faster than during stable conditions; however, it has been observed that slow wave motion (not evident in Fig. 6) frequently occurs at night when the wind speed is low. Then the temperature at a stationary height in a highly stratified atmosphere fluctuates as much as 3C every 5C to 200 sec, the period of the slow waves. This oscillation substantially increases c_T and probably accounts for some small values of $r_{w,T}$ and $|r_{u,T}|$ for large positive values of z/L. In Fig. 7, $\sigma_{\rm T}/{\rm T}_{\star}$ is plotted against z/L and aprears to scale well for unstable conditions, except near z/L = 0, where ${\rm T}_{\star}=0$. A function suggested by Dyer (1965) is drawn following Panofsky, et al., (1967). Data from Russian sonic anemometers and resistance thermometers (Mordukhovich and Tsvang, 1966) and data from a one-dimensional sonic anemometer-thermometer (Rusinger et al., 1967) are also included in Fig. 7. The P.S.A.T. data agrees well with the Russian data, but appears lower than the data summarized by Panofsky et al., (1967). The large scatter for stable conditions may be caused in part by small absolute errors in τ and H, since both τ and H are about ten times smaller at night than during the day; however, slow wave motion may increase $\tau_{\rm T}$ without increasing the heat flux enough to keep $\tau_{\rm T}/T_{\star}$ from increasing whenever these large-scale disturbances occur. Since Mordukhovich and Tsvang (1966) use a running mean of temperature with a time constant of 80 sec, temperature oscillations with periods longer than 20 sec are substantially attenuated, causing their Fig. 6. Fluctuations of T and nuw for stable conditions at 2.0 m (bottom) above bare Plainfield sand at Hancock, Wis. Fig. 7. Standard deviation of dimensionless temperature as a function of stability. estimates of $\sigma_{\rm T}/{\rm T}_{\star}$ to have less scatter and be lower than our estimates. Measurements during stable conditions, when the wind speeds were at least 2.5 m sec⁻¹ at 1 m, have less scatter; mixing is probably adequate then to prevent domination by large-scale disturbances. #### REFERENCES - Black, T. A., G. W. Thurtell, and C. B. Tanner, 1968: hydraulic load cell lysimeter, construction, calibration and tests. Soil Sci. Soc. Amer. Proc., 32, 623-633. - Businger, J. A., M. Miyake, A. J. Dyer, and E. F. Eradley, 1967: On the direct determination of turbulent heat flux near the ground. J. Appl. Meteor., 6, 1025-1032. - Dyer, A. J., 1965: The flux-gradient relation for turbulent heat transfer in the lower atmosphere. Quart. J. Roy. Meteor. Soc., 91, 151-157. - Dyer, A. J., and F. J. Maher, 1965: Automatic eddy-flux measurement with the evapotron. J. Appl. Meteor., 4, 622-625. - Fuchs, M., and C. B. Tanner, 1968: Calibration and field test of soil heat flux plates. <u>Soil Sci. Soc. Amer. Proc.</u>, 32, 326-328. - Kaimal, J. C., and J. A. Businger, 1963: A continuous wave sonic anemometer-thermometer. J. Appl. Meteor., 2, 156-164. - Kaimal, J. C., J. C. Wyngaard, and D. A. Haugen, 1968: Deriving power spectra from a three-component sonic anemometer. J. Appl. Meteor., 7, 827-837. - Mitsuta, Y., 1966: Sonic anemometer-thermometer for general use. J. Meteor. Soc. Japan, 44, 12-23. - Monin, A. S., and A. M. Obukhov, 1954: Fundamental regularities of turbulent agitation in the ground layer of the atmosphere. Transactions of the Georphysical Institute of the Academy of Sciences, U.S.S.R., 24, 163-187. - Mordukhovich, M. I., and L. R. Tsvang, 1966: Direct measurement of turbulent flows at two heights in the atmospheric ground layer. <u>Izv. Atmos. Oceanic Phys.</u>, 2, 786-803. - Panofsky, H. A., N. Busch, B. Frasad, S. Hanna, E. Peterson, and E. Mares, 1967: Properties of wind and temperature at Round Hill, South Dartmouth, Mass. Pennsylvania State University Tech. Rept. ECOM-0035-F. U. S. Army Electronics Command Grant DAB07-67-0035, 95 pp. - Pruitt, W. O., and D. E. Angus, 1950: Large weighing lysimeter for measuring evapotranspiration. <u>Trans. Amer. Soc. Agric. Eng.</u>, 3, 13-15. - Tanner, C. B., 1958: Soil thermometer giving the average temperature of several locations in a single reading. <u>Agron. J.</u>, <u>50</u>, 384-387. - Thurtell, G. W., C. B. Tanner, and M. L. Wesely, 1969: Three-dimensional pressure-sphere anemometer system. J. Appl. Meteor., 8 (submitted). - Wesely, M. I., G. W. Thurtell, and C. B. Tanner, 1969: A fast-response thermometer for eddy correlation measurements. J. Appl. Meteor., 8 (submitted). - Zubkovskii, S. L., and L. R. Tsvang, 1966: Horizontal turbulent heat flow. <u>Izv. Atmos. Gceanic Phys.</u>, <u>2</u>, 1307-1310. EVAPORATION MEASUREMENTS BY AN EDDY CORRELATION METHOD S. M. Goltz C. B. Tanner G. W. Thurtell F. E. Jones $\frac{1}{}$ ^{1/} F. E. Jones is with Institute for Basic Standards, National Bureau of Standards, Washington, D. C. 20234 #### ABSTRACT Eddy correlation measurements of water vapor flux density have been made using a barium fluoride film humidity sensor. During morning and evening periods, good agreement was obtained between eddy correlation data and two independent methods. Serious disagreement between measurements occurred only when the humidity sensor was operating within a poorly defined portion of the calibration curve which was not suited to on-line calculations. The results indicate that the humidity sensor could be modified to allow operation at all times within well defined segments of the calibration curve and permit successful eddy correlation vapor flux measurements within one meter of the surface. (Key Words: Humidity sensor; eddy correlation; vapor flux) #### Introduction Of the micrometeorological methods currently available for determining evaporation, the eddy correlation approach is most satisfying since it requires the least number of basic assumptions. The equation which describes the evaporation as latent heat flux density, may be written as $$F_{v} = \lambda \left[\vec{q} \ \vec{w} + \vec{q'w'} \right] \tag{1}$$ where) is the latent heat of vaporization, q is vapor concentration (absolute humidity) and w is the vertical wind velocity. The overbars indicate time averages and the primes indicate fluctuations about the mean. The surface evaporation, E, will be equal to $$E = \lambda \left[\overline{q'w'} \right] \tag{2}$$ when \bar{w} is equal to zero. Although eddy correlation measurements of sensible heat flux have been made [Kaimal and Businger, 1963; Businger, et al., 1967; Wesely, Thurtell, and Tanner, 1969] evaporation measurements have been limited by slow humidity sensors. Dyer and Hicks [1967] and Goddard and Pruitt [1966], using fine-wire psychrometers, found that measurement at four meters was necessary where larger and slower eddies could be recorded by these relatively slow elements. At these elevations, however, storage and advection errors occurred unless there was a very long fetch. In order to work closer to the ground, we have investigated the possible use of a rapid-response barium fluoride film humidity sensor [Jones, 1967]. Bean and Florey [1968] report on the use of this sensor for measuring evaporation at two meters above Lake Hefner. However, their system was limited by the relatively slow response of an anemometer-bivane and not by the humidity element's response. We believe that in association with a fast response wind vector sensor the barium fluoride film humidity sensor can allow measurement of evaporation considerably closer to the surface. #### Instrumentation and Methods Barium fluoride film humidity sensor. The barium fluoride humidity sensor consists of a glass plate of approximately $10 \times 2 \times 0.16$ cm on which a 0.3μ -thick film of barium fluoride has been evaporated over closely-spaced, evaporated chromium electrodes. The electrical resistance is measured between the electrodes. Jones [1967] reports in detail on these sensors and their properties. The particular elements used in the present work are calibrated by determining their resistances over a series of known relative humidity solutions from 12 to 97%. Plots of the logarithm of sensor resistance against relative humidity consist of three linear segments. Unfortunately, sensor calibration is not stable for an unlimited time and degrades substantially over a period of several months. Calibration curves indicating changes over time are shown in Figure 1. In order to use relative humidity measurements in the eddy correlation method, a reference temperature must be measured. During preliminary tests at Davis, California Fig. 1. Calibration curves for a barium fluoride film humidity sensor showing changes with time. in 1967, we used the air temperature; the results showed that the sensor
film temperature should be used as the reference for converting relative humidity to absolute humidity and must be monitored. Accordingly, a 127μ micro-bead thermistor is cemented with a very small amount of clear epoxy to the center of the sensitized surface. A linearized bridge is used with the thermistor for the surface temperature measurement. The sensors also have electrical leads cemented to them. Vapors from the epoxy used to attach the leads and thermistors caused an immediate calibration shift, and it is possible that the drifts shown in Figure 1 were accelerated by the early exposure to organic vapors. Electronic circuitry. A block diagram of the circuit used with the barium fluoride humidity sensor and its associated thermistor is shown in Figure 2. The two most important features of the system are the logarithmic amplifier and the phase adjustment. The logarithmic amplifier provides an output voltage that is linear with relative humidity as shown in Figure 1. The phase adjustment is necessary because at low humidities, and with very high sensor resistances, there is significant capacitive react-The phase is adjusted to null the capacitive reactance while the sensor is at very low humidity over a desiccant: no further adjustment is required throughout the full humidity range. The capacitive reactance is associated with the linear segment at the lowest humidities of the calibrations curves of Figure 1. importance of this segment with its relatively flat slope and its shift to higher relative humidity ranges with time becomes a problem as discussed later. Eddy correlation system. The fluctuating wind vector needed in (2) is measured with the pressure sphere anemometer, Fig. 2. Block diagram of circuit used with barium fluoride film humidity sensor and its associated thermistor. details of which are reported by Thurtell, et al., (1969). The barium fluoride humidity sensor is mounted to the side of pressure sphere anemometer and a fine-wire resistance thermometer is mounted on the other side (Figure 3). The thermometer provides air temperatures which, when used in the heat equation analogous to that of (2), gives the sensible heat flux density (Wesely, et al., 1969). Figure 4 gives a plan view of locations of the various components. In addition, and not shown in Figures 3 and 4, a small sunshade was elevated 15 to 20 cm above the humidity sensor. The shade was used since radiational heating often caused sensor temperatures to rise as much as 10 C above air temperature, which, in turn, caused the effective relative humidity of the sensor to fall into its least sensitive, very dry, range (above or near knee in Figure 1). We anticipated that the spatial grouping of sensors was small enough and the sensors had sufficiently high frequency responses to measure transport occurring in small, high-frequency eddies found within one meter of the surface. Calculations were made on-line by transmitting analog voltages of relative humidity, sensor surface temperature, and anemometer pressures to an analog to digital converter and an Electro-Mechanical Research 6130 computer (8001 Bloomington Freeway, Minneapolis, Minn. 55420) housed in an instrument trailer. Sampling rate was 150 times per second with data acquisition for 28.5 minutes of each half hour and summary data calculations and typewriter output for the remainder of the time. A servo-mechanism rotated the instrument system assembly into the wind as wind direction changed. Therefore, Fig. 3. (<u>Upper</u>) Entire eddy correlation system. (<u>Lower</u>) Close view of sensors. Fig. 4. Plan of system components. data was acquired automatically, except for sunshade adjustment, gain adjustments, and equipment maintenance which were done during data printout. Field trial site. During September 1968, vapor flux measurements were made at Hancock, Wisconsin over snap beans (Phaseolus vulgaris), which were 30 cm high. A pressure where anemometer with humidity sensor was located 60 m south of the instrument trailer with a bean fetch of 60 m to the north, 50 m to the east and west, and 100 m to the south. A 100 m to 200 meter fetch of alfalfa-brome pasture extended beyond the beans to shelter belts which were 15 meters high. A second anemometer without a humidity sensor was located 10 m west of the previously described site. The instruments at the humidity sensor site were at an initial elevation of 1.17 m above ground surface. This elevation was maintained until 1030 on the 14th when it was raised to 2.10 m. The 2.10 m elevation was lowered to 0.75 m following 0630 on September 15. On September 20 the elevation was 1.17 m. The changes in elevations were used to try to detect the affect of eddy size and frequency on sensor response. Additional site instrumentation provided two other measurements of latent heat flux density for comparison with the eddy correlation data. One was evapotranspiration measured with a hydraulic load-cell lysimeter [Black, et al., 1969]. The other measurement was made using the energy balance equation $$E = R_n - G - H_a$$ (3) The net radiation, R_{n} , was measured with a Funk net radiometer, the soil heat flux density, G, was measured using soil heat flux plates in conjunction with thermometers, while the sensible heat flux density, H_a, was obtained from the average of the two eddy correlation measurements [Wesely, et al., 1969]. # Results Half-hourly values of latent heat flux density from (2), (3), and the lysimeter are compared in Figure 5 for September 12, 13, 14, and 20. On September 20 energy balance data were unavailable. This figure also shows half-hourly mean values of relative humidity as measured by the barium fluoride sensor and wind speed measured by a cup anemometer mounted at 1.32 m approximately 25 m southwest of the eddy correlation sites. Several conclusions can be drawn from these comparative data. First, there is excellent general agreement both in trends and in magnitude between the lysimeter and the energy balance data; this confirms the validity of our independent measurements used for comparisons. Secondly, for the most part, the eddy correlation data prior to 1000 and past 1600 on each day show good agreement with the other two sets of evaporation data, while during the mid-day period they are one-half to one-third the Thirdly, during data collection at elevations other data. of 1.17 m to 2.1 m, no apparent systematic differences could be detected in sensor response by comparison with the independent methods. Figure 5 presents no data for the 0.75 m elevation since only two hours of morning data were collected, but these limited data are also in good agreement with the independent measurements. fourthly, although wind speed is correlated with eddy Fig. 5. Diurnal trends of latent heat flux density from eddy correlation measurements, from energy balance and lysimeter data, and diurnal trends of windspeed and relative humidity. frequency, there was no association between periods of either good or poor agreement and windspeed. Finally, there is a strong correlation between periods of poor agreement and mean relative humidities, as seen by the sensor, of less than about 45 percent. In Figure 1 the August 31, 1968 calibration curve shows a sharp break in slope at 42 percent relative humidity. This critical value was determined by extrapolation, while the actual change was most probably a gradual one over a ARH range of 8 to 10 percent. slope of the calibration curve is one of the constants required for the on-line computer program, and during periods when the mean relative humidity was near the knee of the calibration curve, vapor flux density could not be satisfactorily computed. Figure 5 shows that all periods of poor agreement occur when the mean relative humidity was less than or only slightly in excess of the critical value, 42 percent. A portion of this decrease in sensor-perceived relative humidity during mid-day periods is attributed to radiational heating. Aswind direction and sun angle varied, the small sunshade in a fixed position relative to the humidity sensor frequently did not shade the sensor. Visual inspection of shade orientation and adjustment of its position were possible only in the 1.5-min intervals at the end of each half-hour, and not during data collection. The pressure sphere anemometer measurements associated with the humidity sensor gave a lower mean horizontal wind, and more negative ρ $\overline{w'v'}$ than those from the anemometer without a humidity sensor attached. We doubt that this was due to spatial heterogeneity of the row crop; it most likely was due to locating the barium fluoride element too far forward (see Figure 4) where it interferred with the wind flow when wind was from the side. Any errors in the cross-wind measurement affect the wind coordinate transform. #### Recommendations The field measurements indicate that the barium fluoride film humidity sensor has sufficiently rapid response to allow reliable eddy correlation measurements of vapor flux within a meter or less of the surface. Modifications to the present system should be: (1) The sensor configuration should be changed from a plate to a cylinder, with cooling tubes inside the cylinder to maintain the sensor at or below ambient air temperature. Such a change would permit temperature control of the sensor so that the operating point on the calibration curve could be kept away from any "knee". The cylindrical configuration also should affect air flow around the sphere less than the plate. (2) Since the sensor calibration is altered by contamination with time, BaF, films should be applied as close as possible to time of The BaF, should be coated on elements to which thermistor and leads have been attached previously. Films should be recalibrated frequently during field use. (3) Further tests should be made of the optimum sensor location with respect to the pressure sphere to assure minimum interference.
Certainly the forward end of the sensor should be behind the sphere. (4) Frequency characteristics of the sensor should be established to allow matching amplitudes and phase shifts to the wind measuring system. #### REFERENCES - Bean, B. R. and Q. L. Florey, A field study of the effectiveness of fatty alcohol mixtures as evaporation reducing monomolecular films, <u>Water Resources Res.</u>, 4, 206-208, 1968. - Black, T. A., G. W. Thurtell, and C. B. Tanner, Hydraulic load cell lysimeter, construction, calibration, and tests, Soil Sci. Soc. Amer. Proc., 32, 623-629, 1968. - Businger, J. A., M. Miyake, A. J. Dyer, and E. F. Bradley, On direct determination of the turbulent heat flux near the ground, <u>J. Appl. Meteorol</u>., 6, 1025-1032, 1967. - Dyer, A. J. and B. B. Hicks, The fluxatron -- a revised approach to the measurement of eddy fluxes in the lower atmosphere, <u>J. Appl. Meteorol</u>., 6, 408-413, 1967. - Goddard, W. B. and W. C. Pruitt, Mass transfer-eddy flux methods, 42-44, in Evapotranspiration and its role in water resources management, Conf. Proc. Publ. by Amer. Soc. Agr. Eng., St. Joseph, Mich., 1966. - Jones, F. E., Study of the storage stability of the barium fluoride film electric hygrometer element, J. Res. NBS, 71C, 199-207, 1967. - Kaimal, J. C. and J. A. Businger, A continuous wave sonic anemometer-thermometer, <u>J. Appl. Meteorol.</u>, 2, 156-164, 1963. - Thurtell, G. W., C. B. Tanner, and M. L. Wesely, Three-dimensional pressure-sphere aneometer system, <u>J. Appl. Meteorol.</u>, 8, (Submitted), 1969. - Wesely, M. L., G. W. Thurtell, and C. B. Tanner, Eddy correlation measurements of sensible heat near the earth's surface, J. Appl. Meteorol., 8, (Submitted), 1969. # A FAST-RESPONSE THERMOMETER FOR EDDY CORRELATION MEASUREMENTS. M. L. Wesely, G. W. Thurtell, and C. B. Tanner Eddy-correlation measurements of sensible heat flux close to the earth's surface require fast-responding, small thermometers; these can be made with fine resistance wire. Resistance thermometers with 13 µ diameter (e.g. McIlroy, 1955; Dyer and Maher, 1965; Hyson, 1968) have better frequency response and lower radiation errors than the commercially-available thermoccuples which are 25 μ wire and may have junctions larger than 25 μ. the resistance wire is less than 13 u in diameter, the frequency response and radiation error is still less dependent upon wind speed than with 13 µ wire, and radiation error decreases. Because very fine wire thermometers have small radiation error, they can be used to measure average vertical temperature differences without radiation shielding or aspiration; however, in this instance the rapidly fluctuating thermometer output is filtered electrically. The purpose of this note is to describe a fast, very fine wire thermometer which is constructed easily and which we have found useful for eddy correlation measurement within 0.5 to 1.0 m of the earth's surface (Wesely, et al., 1969). Description and construction of the thermometer The supporting structure of the thermometer, as pictured in Figs. 1 and 2, consists of the frame, the insulating plug, and the stainless steel supporting tube. The thermometer element consists of about 55 cm of platinum-coated, 5.6 μ-diameter, tungsten wire wound ^{1/} Sigmund Cohn, Mount Vernon, N. Y. (0.00022-inch diameter, with about 4 to 7% weight platinum coating). Fig. 1. Front view of the resistance thermometer. Fig. 2. Resistance thermometer details. on the frame as shown. # a. Thermometer frame The frame consists of three 0.16 mm (0.0063 inch) enameled Karma wires which were epoxied to two rings constructed from 0.66 mm (0.0253 inch) stainless steel wire. These rings are 1.9 cm in diameter and spaced 3.2 cm. The resistance wire is soldered to two inward extensions of the rings. The rings and their extensions serve as electrical connections and provide mechanical support. The rings are formed on a mandrel and spot-welded. The extensions are spot-welded to the rings and all the spot-weld joints are hard soldered. The extensions are pretinned, which requires acid flux; when once pretinned future soldering operations may be done with neutral and rosin fluxes. Following pretinning, the stainless steel and any parts exposed to acid flux fumes must be thoroughly cleansed with soapy water and rinsed in distilled water. ^{2/} Driver Harris Co., Harrison, N. J. ^{2/} Eutectic Welding Alloys Corporation, Flushing, N. Y., EutecRod 157; All-State Welding Alloys Co., White Plains, N. Y., #430 solder. #### b. Frame support The frame support consists of the stainless steel tube (9.5 mm 0.D. x 1.58 mm wall) and the insulating plug, which is held in the tube with a set screw. Two 0.66 mm diameter stainless steel leads are pretinned $\frac{3}{2}$, washed, and epoxied in holes drilled in the plug. The stainless wires extend inside the tube, where they are soldered to copper leads and covered by heat-shrink tubing. #### c. Winding the resistance wire Tungsten was chosen as a thermometer wire because of its high tensile strength, but due to the small wire diameter, a load of only seven grams will break it. wire is best seen against a dark background with proper lighting. When the resistance wire is wound on the frame, the frame is attached with clips to the end of a threaded arbor which has a pitch of 2.5 mm and which is fixed in a threaded nut. About 65 cm of the resistance wire is unspooled and cut with masking tape folded to the ends so it may be held. One end is soldered to one of the pretinned frame extensions and the other end, weighted with the masking tape, hangs free. As the arbor is turned the resistance wire is pulled through a stationary feed (needle with eye enclosure cut away) and wrapped around the frame, automatically spacing the windings at least 2.5 mm apart. Closer spacing may cause adjacent resistance wires to touch if the Karma wire flexes slightly. When ten windings are on the frame, the free end of the wire is soldered to the second extension. Before the wire is wound on the frame, the Karma cross - struts are coated either with epoxy or with a silicone-base contact cement $\frac{4}{}$ to prevent the tungsten wire from sliding on the strut. The platinum-coated tungsten resistance wire is soldered with a sonic soldering iron without flux to the pretinned frame extension using indium solder . If a sonic soldering iron is not available, either a cut-acid, zinc chloride flux or an All-State neutral 420 flux can be used with the indium solder; however, the fluxless joint made with a sonic iron is preferable since no electrolytes are introduced. Satisfactory solder joints cannot be made with tungsten wire that is not coated with solderable metals. To prevent misalignment of the fragile assembly after winding the wire, the frame should be attached immediately to the frame support. #### 2. Frequency response and radiation heating Chao and Sandborn (1964) show that a resistance wire thermometer responds to a temperature change as a first-order system. For first-order systems the amplitude ratios and phase shift angles, 0, with sinusoidally fluctuating air temperatures are: $$A/A_{0} = (1 + \omega^{2} \tau^{2})^{-\frac{1}{2}}$$ (1) $$A/A_{O} = \cos\theta \tag{2}$$ ^{4/} Mystik Tape, Inc., 1700 Winnetka Ave., Northfield, Ill. (Type A-117) ^{5/} Indium Corporation of America, Utica, N. Y., Indalloy solder #4, indium metal. where τ is the time constant, ω is angular frequency, and A_O is the output amplitude when $\omega=0$. Chao and Sandborn derive an expression for the time constant of a resistance wire, neglecting radiation exchange. $$\tau^{-1} = (k/_0C) (\pi/L)^2 + (4/D^2) (hD)/_0C)$$ $$- (k/_0C) (4/_\pi D^2)^2 I^2$$ (3) where k is the thermal conductivity of the wire, I the current through the wire, L and D are the wire length and diameter, o and C are density and specific heat of the wire, K is the wire resistivity, and $h = (k_a/D)N_u$ where k_a is the thermal conductivity of air. The Nusselt number, Nu, for air in transverse flow can be found from $$Nu = 0.3 + 0.51Re^{\frac{1}{2}}$$ (4) where Re is the Reynolds number. According to Grant and Kronauer (1962), the Nusselt number for our extremely fine, long wire would be slightly less than 0.3 in still air; however (4) is a sufficiently good approximation to calculate performance for field experiments. The first term in the right side of (3) represents internal conduction along the wire to the supports and is negligible for long wires. The second term is proportional to the convection from the wire per unit temperature difference and is much larger than the last term, which indicates how the temperature of the wire effects the time constant. When all of the values for our resistance wire are inserted into (3), it simplifies to: $$\tau = 1/(1530 \text{ Nu} + 5.8)$$ (5) For a given wind velocity, (5) can be used to calculate τ for the resistance wire; then (1) can be used to find the ratio of the amplitudes for a given frequency and (2) will give the phase shift. For the resistance wire used in the thermometer, the time constant was calculated to be about 1.5 msec in "still" air and 0.6 msec in 10 m sec⁻¹ winds. In a laboratory relatively free of air currents, the time constant of the thermometer was observed to be about 1 msec. Up to a frequency of 20 Hz, reduction in amplitude should be less than 2% and phase shift about 10 deg. Even at 50 Hz, less than 10% reduction is amplitude and a phase shift less than 25 deg is expected. The frequency response may be decreased and the phase shift may be increased by electrically filtering the analog signal from the thermometer bridge. This is necessary to match the response of a wind-measuring system when eddy correlation measurements are made or to average the signal when temperature gradients are measured. An advantage of the fine wire is that the effect of the wind speed upon r is negligible compared to the total phase shift and degraded
frequency response needed to match most eddy correlation wind systems. Solar heating of the fine resistance wire on the thermometer must be dissipated by convective transport. Neglecting other sources of heating, the steady state energy balance can be expressed as $$R_{s}(1-a_{s})DL = hD_{\pi}L(T-T_{a})$$ (6) where R_S is the solar radiation and a_S is the absorptivity for solar radiation. Since this equation is for the radiation being absorbed uniformly over the entire cross-section of the wire and no radiation losses, the calculated temperature difference will be an overestimate. Using an extreme value of 1400 W m⁻² for R_s and 0.5 for a_s temperature differences for the fine resistance wire are about 0.15C in still air, 0.09C in 0.5 m sec⁻¹ wind, and 0.05C in a 5 m sec⁻¹ wind. Thus, it is conceivable that radiation could cause the wire to heat up as much as 0.1C, but a wind gust would not change this offset by more than a few hundredths of a degree Celsius. This change is negligible for eddy heat flux calculations, and often is not significant when mean air temperature differences are needed, provided all the thermometers are exposed equally to radiation. #### 3. Bridge design criteria The temperature coefficient of resistance of the wire was determined by measuring the thermometer resistance in a temperature-controlled kerosene bath; it was found to be 0.360% C⁻¹ at 20C, and 0.350% C⁻¹ at 30C. The 55 cm of resistance wire wound on each thermometer spool had a total resistance of about 1550 ohms, which increased with temperature at the rate of about 5.5 ohms C⁻¹ at 25C. The thermometer is measured in a constant-current bridge, with the current low enough for negligible self-heating. Since the Nusselt number calculated by (5) for $5.6~\mu$ wire only doubles as the wind velocity changes from still air to a 5 m sec⁻¹ wind, the effect of convective heat transfer on self-heating is weak. In still air, the maximum current allowable for less than 0.01C temperature rise is 0.33 ma. This value increases to 0.35 ma in a 0.5 m sec⁻¹ wind, and to 0.50 ma in a 5 m sec⁻¹ wind. If the current were 0.30 ma, the temperature difference would be less than 0.01C and would change by about 0.004C as the wind changed from 0.5 m sec⁻¹ to 5 m sec⁻¹. In our bridge we use a 16.2 V mercury battery (two 8.1 V, TR-236R) across a 40 k ohm resistance in series with the thermometer. Fixed resistors of similar value and a potentiometer for balancing form the other half of the bridge. The bridge output is 0.60 C mv⁻¹. When two thermometers are used to measure vertical temperature differences for Bowen's ratio measurements the second half of the bridge also is a 40 k ohm resistance in series with the thermometer; the 40 k ohm resistance is comprised of a fixed resistor and a potentiometer to obtain balance. When used for measuring vertical temperature differences, the thermometers are mounted on a stand which interchanges their position periodically to obviate zero errors (Sargeant and Tanner, 1967). #### REFERENCES - Chao, J. L., and V. A. Sandborn, 1964: A resistance thermometer for transient temperature measurements. Fluid Mechanics Paper No. 1, Colorado State University, Fort Collins, Colo. - Dyer, A. J., and F. J. Maher, 1965: Automatic eddy-flux measurements with the evapotron. J. Appl. Meteor., 4, 622-625. - Hyson, P., 1968: The tungsten wire temperature sensor. J. Appl. Meteor., 7, 684-690. - McIlroy, I. C., 1955: <u>Australian J. Agr. Res.</u>, <u>6</u>, 196-199. - Sargeant, D. H., and C. B. Tanner, 1967: A simple psychometric apparatus for Bowen ratio measurements. J. Appl. Meteor., 6, 414-418. - Wesely, M. L., Thurtell, G. W. and C. B. Tanner, 1969: Eddy correlation measurements of sensible heat flux near the earth's surface. <u>J. Appl. Meteor.</u>, <u>8</u>, (Submitted) # SENSIBLE HEAT FLUX MEASUREMENTS WITH A YAW SPHERE AND THERMOMETER C. B. Tanner and G. W. Thurtell #### 1. Introduction A yaw sphere, shown schematically in Fig. 1, when directed into the wind flow, generates a pressure between the ports proportional to the product of the horizontal and vertical winds. If this pressure is measured with an electrical pressure transducer and if the analog pressure signal then is passed through a high-pass filter to drive a resistance thermometer bridge, the bridge output is proportional to $\bar{u}(w'T')$. The sensible heat flux density can be determined by integrating the bridge output and dividing the mean, $\bar{u}(w'T')$, by the mean wind speed measured with a nearby cup anemometer. The objective of this note is to describe this analog system for sensible heat flux measurement and to present some comparisons with independent measurements of sensible heat flux density. #### 2. Equipment description The description of the equipment is helpful to a discussion of the theory and is given first. #### a. Yaw sphere, vane, and pressure system The yaw sphere was made by drilling two 1.59-mm holes off-center through a 5-cm plastic sphere so that the included angle, 9, between radius vectors to holes on the sphere surface was 45°. The sphere was mounted on a 6.35-mm O.D. tubular stem inserted in the head of a Gill propeller vane where the propeller normally mounts, (Fig. 1). Two 1.59-mm I.D. polyethylene tubes were run through the stem and down the center of the hollow, rotating shaft in the Gill propeller vane that drives the azimuth potentiometer. These polyethylene tubes were Fig. 1. Schematic of the yaw sphere on a vane and of the recording system. brought out through the bottom of the vane housing and attached to a Datametrics, Model 511-8 Barocel capacitive pressure transducer. A 1-m length of 1.59-mm I.D. tubing was required to connect each sphere port to the pressure transducer. A fast resistance thermometer (Wesely, et al., 1969a) was mounted on vane head and located at the side of sphere as described by Wesely, et al. (1969b). The thermometer leads were run in parallel with the pressure tubing out the bottom of the vane housing to the thermometer bridge. Although Wesely, et al. (1969b) adjusted the frequency response of the thermometer bridge amplifier to match that of their pressure-sphere anemometer, this would have complicated our simple analog system; accordingly the yaw-sphere and thermometer have different phase and frequency response. The frequency response of the yaw sphere is indicated in Table 1. The thermometer relative amplitude at 20 Hz is about 0.98 with 1 m sec⁻¹ winds and the phase shift is about 10°. Details of the pressure transducer system and frequency response calibration methods can be found in Thurtell, et al. (1969). Table 1. Frequency response of the yaw sphere, tubing and Barocel. | Frequency, Hz: | 2 | 4 | 10 | 15 | 20 | |-----------------------|-----|-----|------|------|------| | Relative amplitude: | 1.0 | 1.0 | 0.83 | 0.63 | 0.46 | | Phase shift, degrees: | 5 | 15 | 35 | 50 | 60 | #### b. Electronics and recording The output from the Barocel and its signal conditioner is the electrical analog of the pressure, ΔP , between the yaw sphere ports. This signal is passed through a high- pass filter with a 17-min time constant and unity gain. The output of the high-pass filter is an analog of $(\Delta P - \overline{\Delta P})$. This signal drives the thermometer bridge so that the output is an analog of $\Delta T(\Delta P - \Delta P)$ where ΔT is the bridge temperature unbalance. If the bridge is set at a null temperature very different from the air temperature so that a large unbalanced offset appears in AT, the peak-to-peak range of the fluctuating bridge output is unduly large and may saturate the following electronics. To facilitate balancing the bridge, it can be switched from the high-pass filter to a battery. The output of the bridge is fed to a differential amplifier and thence to either an electronic integrator or a recorder with ball-and-disc integrator. The integrator is preceded by a 5-sec low-pass filter to decrease the transient response and dynamic range requirements. #### 3. Theory of operation The pressure distribution at points on a sphere in a perfect fluid with irrotational motion is given by Lamb (1932; sec. 92) as $$P = P_s + (\rho/2) V^2 [1 - (9/4) \sin^2 \psi]$$ (1) where F_s is the static pressure, v is the density of air, v is the air speed, and v is the angle between \vec{v} and the radius vector of the point. Schlichting (1960, p. 20) shows that in real fluids, the pressure distribution is that of ideal fluids for $v \leq 65^\circ$. If the yaw sphere is directed azimuthly into the wind, then the pressure difference between the ports of the yaw sphere is $$\Delta P = P_2 - P_1 = (90/8) |\vec{v}|^2 (\sin^2 \psi_1 - \sin^2 \psi_2)$$ This holds for winds within a vertical angle $\alpha = \pm (65^{\circ} - 16)$ where α is the angle between the wind vector and the bisect of the ports and θ is the included angle between the ports. Assuming that the vane directs the sphere into the wind, the components of the wind vector with respect to the x,2 plane formed by the ports and the stem are $$u = |V| \cos \alpha$$ (2a) $$\mathbf{v} = 0 \tag{2b}$$ $$w = |V| \sin \alpha$$ (2c) Since $\psi_1 = (\alpha + \frac{1}{20})$ and $\psi_2 = (\alpha - \frac{1}{20})$ $$\Delta P = (9/4) (\sin \theta) \text{ ouw}$$ (3) The electrical output of the pressure transducer is $$E_p = M(\Delta P) = bM\rho uw$$ where $b = (9/4 \sin \theta)$ and M is the transducer constant. The output of the high pass filter is $$E_{\mathbf{F}} = E_{\mathbf{p}} - \overline{E_{\mathbf{p}}} = M(\Delta P - \overline{\Delta P})$$ (4a) Substituting (3) into (4a), and using Reynold's notation $$E_{p} = b M_{0} (\bar{u}w' + \bar{w}u' + u'w' - \bar{u'w'})$$ (4b) Since $\Delta T = \overline{\Delta T} + \Delta T' = \overline{\Delta T} + T'$, where $\overline{\Delta T}$ is the mean bridge balance offset, the output of the bridge is $$E_{B} = BE_{F} \Delta T = BE_{F} (\overline{\Delta T} + T')$$ (5)
where B is the bridge constant. The amplifier output is then $$E_{O} = G E_{B} \tag{6}$$ where G is the amplifier gain. When E_0 is integrated we have from (4), (5), and (6), $$\overline{E_0} = bGBM_0 \left(\overline{u} \ \overline{w'T'} + \overline{w} \ \overline{u'T'} + \overline{u'w'T'} \right) \tag{7}$$ Assuming the last two terms in parentheses in (7) are negligible as compared with the first, the product of the sensible heat flux and the mean wind is $$\bar{\mathbf{u}}\mathbf{H} \approx \rho c_{\mathbf{p}} (\bar{\mathbf{u}} \ \overline{\mathbf{w'T'}} + \bar{\mathbf{w}} \ \overline{\mathbf{u'T'}} + \bar{\mathbf{u'w'T'}})$$ $$= c_{\mathbf{p}} \ \overline{\mathbf{E}_{\mathbf{0}}} / \mathbf{b} \mathbf{G} \mathbf{B} \mathbf{M}$$ (8) If a cup anemometer is run near the yaw sphere-thermometer assembly at the same height to find $\bar{\mathbf{u}}$, $$H \approx c_p [(9/4) GBM sine]^{-1} (\overline{E_0}/\overline{u})$$ (9) #### 4. Measurements Sensible heat flux density measurements were made with the yaw sphere and thermometer during three days in September 1968 at Hancock, Wisconsin. The yaw sphere was about 95 cm above a crop of snap beans. We integrated \mathbf{E}_0 with a ball-and-disc on a strip chart recorder which also gave a record of E₀. We used (9) to find the heat flux where $\theta = 45^{\circ}$ for our sphere. The mean wind speed was measured with a cup anemometer mounted at about the same height and located 15 m from the yaw sphere. We compared the results with eddy correlation measurements of sensible heat flux density made with a three-dimensional pressure-sphere anemometer in combination with a fast thermometer. We also compared the results with energy balance measurements, where the sensible heat flux density was found by subtracting measured soil heat flux density and evaporation from the net radiation. Wesely, et al. (1969b) describe the site, the pressure sphere anemometer and thermometer measurements and the energy balance measurements. All measurements are given in Fig. 2 for three periods. The fluctuation of the energy balance measurements is mainly due to the lysimeter, which is not well suited to measuring evaporation over periods as short as 30 min when peak evaporation is equivalent to 250 w/m². Also any phase differences in the three heat flux terms can make for large relative errors in sensible heat; this is particularly evident around 1800 hours. The yaw sphere-thermometer results generally are higher than the other two measurements. The difference between yaw sphere-thermometer data and that of the other methods corresponds more nearly to a zero offset than to a proportionality factor. A damaging zero offset could easily arise since the mean bridge output voltage was of the order of 80 to 120 µv during periods of high sensible heat flux. In the equipment, which we jerry-rigged hurriedly for this test, there were two possible sources of zero error: no particular precaution was taken to avoid thermal emf's in the bridge; also in the Fig. 2. Sensible heat flux density from the yaw sphere and thermometer system, energy balance measurements, and from the three-dimensional pressure sphere anemometer and thermometer system. constructing of the active, high-pass filter, no special attention was given to avoiding small d-c components in the output, and any d-c across the unbalanced thermometer bridge would result in a zero offset. These features of the system can be improved relatively easily. In view of the success of the preliminary tests of this simple yaw sphere-thermometer system, we believe it holds high promise for routine measurements of sensible heat flux density as close to the ground as one-meter where other eddy correlation systems are not suitable. #### REFERENCES - Lamb, H., 1932: Hydrodynamics. Dover, N. Y. 738 p. - Schlichting, H., 1960: Boundary layer theory. McGraw-Hill, N. Y. 647 p. - Thurtell, G. W., C. B. Tanner, and M. L. Wesely, 1969: Three-dimensional pressure-sphere anemometer system. J. Appl. Meteor., 8 (submitted). - Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1969a: A fast-response thermometer for eddy correlation measurements. J. 1. Meteor., 8 (submitted). - Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1969b: Eddy correlation measurement of sensible heat flux near the earth's surface. <u>J. Appl. Meteor.</u>, <u>8</u> (submitted). ## ANEMOCLINOMETER EQUATIONS AND COMPUTER PROGRAM The instrument, shown in Figures 1 and 2, consists of a spherical head, 3 cm in diameter, mounted on a supporting shaft. When in use the probe is fixed in the fluid, with the shaft axis parallel to the direction of mean flow and the sphere on the upstream end of the shaft. In the following discussion, all coordinate axes, planes, and the velocities are referenced to the ports in the anemoclinometer head and the anemoclinometer axis. The static pressures developed between small holes drilled in the spherical probe head are measured (Figure 2). The pressure difference between the two holes in the x-z plane is measured and also between the two holes in the x-y plane; each of these four holes is drilled at a 45° angle to the axis of the shaft. In addition to the above pressure ports an upstream opening in the spherical head leads into a Venturi centered on the axis of the shaft. A small pressure tube is placed in this Venturi, parallel to the probe shaft, with its open end in the upstream direction. The pressure difference is measured between the pitot and eight reference ports on the surface of the spherical head, which are located on a circle at an angle of 47.5° to the shaft axis. The instantaneous velocity component along the z-axis and normal to the shaft in the x-z plane of the two vertical ports (plane Z, Figure 2) is defined as w. The velocity components in the x-y plane of the two horizontal ports (plane Y, Figure 2), are u and v, with u as the component parallel with the shaft (x-coordinate) and v as the component normal to the shaft in the x-y plane (y component). The equations for the velocity vectors with respect to the anemoclinometer coordinates are Fig. Pl. Spherical sensing head of anemoclinometer showing pressure ports. Fig. P2. Front and cross-section views of anemoclinometer head, y- and z-coordinates shown on front view. $$u = |\vec{v}| \cos F' \cos G \approx |\vec{v}| \cos F' \cos G'$$ [1a] $$V = |\vec{V}| \cos F' \sin G = |\vec{V}| \sin G'$$ [2a] $$w = |\vec{V}| \sin F'$$ [3a] $$|\vec{v}| = (u^2 + v^2 + w^2)^{\frac{1}{2}}$$ [4a] where F, and G are the elevation and azimuth angles projected on the x,z and x,y planes and F' and G' are complements of the directional angles as shown in Figure 3. We can find $$F' = \arctan [\tan(F \cos G)] \approx F \cos G$$ [5a] The approximations in [la] and [5a] result in less than 5% error at angles equal to or less than 30°. Fig. P3. Definition of the components u, v, and w of the total wind vector $\vec{\mathbf{V}}$; the elevation and azimuth angles, F' and G', which are complements of the directional angles; and F and G, which are the projections of F' and G' on the x,z and x,y planes respectively. #### Anemoclinometer Constants (30-mm Sphere) The pressure $\mathbf{P}_{\mathbf{V}}$, measured between the pitot and the reference ports is related to the true dynamic pressure, $\mathbf{P}_{\mathbf{O}}$, as $$P_V/P_O = a$$ [6a] where $P_0 = (0/2)\vec{V}^2$ and where the first anemoclinometer constant, a, is close to 1.015 for the 3-cm anemoclinometer. When the centerline of the uw ports (anemoclinometer axis) is at an angle, F, with respect to the mean flow (G=0 in Figure 3) a pressure, P_F , is developed between the ports, where $$P_{\rm p} = b_0 u w$$ [7a] where b is approximately constant, and is near 1.70 for the 3-cm anemoclinometer when 2000 < Re < 200,000. The ratio of P_F/P_V changes linearly with angle $(F \le 20^{\circ})$ as shown in Figure 4. $$(P_F/P_V)/F = c = 0.057/deg = 3.266/rad$$ [8a] where c is the third probe constant. Note that equations analogous to [7a], and [8a], exist for the uv ports upon rotation through an azimuth angle, $G \le 20^{\circ}$, when F = 0 $$P_{ci} = b_0 uv$$ [Sa] $$(P_G/P_V)/G = c = 0.057/deg = 3.266/zad$$ [10a] Fig. P4. Variation of (P_F/P_V) as angle F is changed with angle G = 0, or of P_G/P_V as angle G is changed with F = C. The above F, G angle relations hold for the linear region of Figure 4 until the velocity vector is 20° off axis. Beyond 20° , the relation is approximated by $$F = c'_1(P_F/P_V) - c'_2$$ [11a] which can also be written as $$F_2 = c_1 F_1 - c_2$$ [12a] where $F_1 = (P_F/P_V)/c$. Similarly, $$G_2 = c_1 G_1 - c_2$$ [13a] where $G_1 = (P_G/P_V)/c$. In [12a] and [13a], c_1 and c_2 have values of $c_1 = 1.500$ and $c_2 = 10$ degrees = 0.1745 rad. Equations [12a, 13a] are shown by the dashed line in Figure 4. Other approximations can be used, but since accuracy at F_2 or G_2 greater than 30^O is poor, there is little basis for choice. #### Wind Component Calculations To find u, v, w using [la, 2a, 3a], we find V from [6a] and find F' and G' from calibration curves provided by the Institute de Mecanique des Fluides de Lille (IMFL) for their anemoclinometers (Figure 5). These curves give the variation of (P_F/P_V) and (P_G/P_V) for winds which are outside of the x, z and the x, y planes. IMFL does not specify whether the symmetric angles in Figure 5 are the angles F and G projected on the x,z and x,y planes or if they are F' and G', which are complements of the directional angles (see Fig. 3). We have assumed that F' and G' were the appropriate angles $\frac{1}{2}$. If F and G were the correct angles then [5a] would be used to determine the angles F' for use in [1a, 2a, and 3a]. We believe the choice of F' and G' is correct because if we had used F and G, the values of w and v at F = G = 30° would have been about 10% smaller than if F' and G' had been used and 5% smaller at F = G = 20°. Our calculations of shear stress
which used F' and G', never appear systematically large as would be the case if F were the correct angle. Fig. P5. Variation of (P_F/P_V) and (P_G/P_V) as both F and G vary. The experimental data for anemoclinometers shown in Figure 5 indicates that the (P_F/P_V) at any angle G' is related to that for G' = 0 as $$(P_F/P_V)_{G'} = \cos G' (P_F/P_V)_{G'=0}$$ Similarly, $$(P_G/P_V)_{F'} = cosf'(P_G/P_V)_{F'=0}$$ using [8a] and [10a] we have $$F' = (P_F/P_V)/c \cos G'$$ [14a] $$G' = (P_G/P_V)/c \cos F'$$ [15a] We find F' and G' by iteration: Step 1: An angle F'_1 is found from [8a]. Step 2: An F_2' is found from [12a] if $F_1' > 20^{\circ}$; if $F'_{1} \le 20^{\circ}$, $F'_{2} = F'_{1}$ Step 3: Using ccs F'_{2} , G'_{1} is found from [15a]. Step 4: A G_2' is found from [13a] if $G_1' > 20^{\circ}$; if $G_1' \le 20^\circ$, then $G_2' = G_1'$. Step 5: Using $\cos G_2'$, F_3' is found from [14a]. Step 6: An F_4' is found from [12a] if $F_3' > 20^\circ$; if $F_3' < 20^\circ$, $F_4' = F_3'$. Although further iterations could be made, F'_4 and G'_2 are within 1% of the values obtained by a third loop. #### Azimuth angle measurement: During 1968, the anemoclinometers were mounted on masts which were servo-driven with slow motors to maintain orientation into the wind with a dead-band of about 10°. signal from the anemoclinometers was used for sensing direction. The rotation of the masts was measured with a potentiometer. The azimuth angle used in the wind calculations was, GA, defined as $$G_4 = G_2' + (G_3 - G_{4P})$$ [16a] where \mathbf{G}_{γ} was the angle of mast rotation measured by the servo potentiometer, GAP was the mean GA for the previous half-hour, and G_2' is the azimuth angle with respect to the anemoclinometer as found by [15a] in the iteration procedure. #### **PROGRAM** #### Program Constants #### Thermometers: constants for tungsten wire air temperature thermometer and bridge where $T = B_1 + B_2V_4$, Celsius B_3 constants for thermistor and the linearized bridge for B_4 measuring the surface temperature of the B_aF_2 humidity sensor. $T_H = B_3 + B_4V_6$. #### **Heat:** $C_{\text{T}} = nc_{\text{p}} = 2.9 \text{ cal cm}^{-3} \text{K}^{-1}$, heat capacity of air #### Vapor pressure: C₀ = 6.108mb = saturation vapor pressure at zero Celsius C₁ = 7.5 constants in Teten's formula for calculating saturation vapor pressure, S, corresponding to a Celsius temperature, S (defined here and on Pl4) $S/C_0 = 10^{\left[C_1T/(C_2+T)\right]}$ $= antilog_{10}\left[C_1T/(C_2+T)\right]$ C_V = slope of the B_aF_2 humidity sensor calibration curve for operating range [(Δ relative humidity)/ Δ volts) $C_{p} = 4620 \text{mb cm}^{-3} \text{K}^{-1} \text{gm}^{-1}$, the specific gas constant for water vapor. #### Wind and stress: $$E_1 = 1.015 = a \text{ in } [6a]$$ $E_2 = 3.266 \text{ rad}^{-1} = C \text{ in } [8a, 10a]$ $E_3 = 1.5 = C_1 \text{ in } [12a, 13a]$ $E_A = 0.1745 \text{ rad} = C_2 \text{ in } [12a, 13a]$ E₅ Potentiometer constants to give (see [16a]) E₆ $$G_3 = E_5V_7 + E_6$$ [17a] M = range constant of pressure transducer which converts output to pressure $R = 1.2 \text{gm cm}^3 = \text{density of air}$ #### Channels | Channel | Signal | | Sensor | | Variable | ^ | |---------|----------------|--------------------|--|---------------|--|---| | 1 | v_1 | Pressure | transducer | #1 | $P_{V} = (a_0/2)V$ | , | | 2 | v_2 | 11 | ц | #2 | $P_{\mathbf{F}} = b_0 \mathbf{u} \mathbf{w}$ | | | 3 | v ₃ | ** | 11 | #3 | $P_{G} = b_0 uv$ | | | 4 | v ₄ | | ce wire the
for air tem | | T | | | 5 | v ₅ | Barium :
sensor | fluoride hu | midity | <pre>H = relative humidity</pre> | | | 6 | v ₆ | | flu oride se
ur e fro m a | | T _H | | | 7 | v ₇ | | gle from po
see [16a, 1 | tenti-
7a] | G ₃ | | #### Initialization Program The electronics of the pressure sensors have an electrical zero, \mathbf{V}_0 , and a full-scale, \mathbf{V}_F , voltage readout for any pressure range. The measured voltages must be normalized to $(\mathbf{V}_F - \mathbf{F}_0)$. In addition, a/tight chamber is placed over the anemoclinometer sphere to shut out the wind and short all the ports hydraulically; any residual signal, \mathbf{V}_S on any pressure range are due to sensor offset and this must be accounted for. Thus we have a normalized voltage from any transducer $$V_n = (V - V_S) / (V_F - V_O)$$ [183] During the initialization program, the $\rm V_O$, $\rm V_F$, $\rm V_S$ are read on each channel for 1 to 3 minutes, averaged, and stored as constants in the machine so that the normalized voltages may be calculated. #### Combined Constants Used in Program $\begin{array}{lll} D_{1} &= M_{1}/(V_{F1}-V_{O1}): & M_{1} \text{ is the range constant of pressure} \\ & \text{transducer #1 to convert } V_{n1} &= (V_{1}-V_{S1})/(V_{F1}-V_{O1}) \text{ to} \\ & P_{V}(\text{see [22a]}) \end{array}$ $D_2 = M_2/(V_{F2} - V_{O2})$: Similar to D_1 but for P_F $D_3 = M_3/(V_{F3} - V_{O3})$: Similar to D_1 but for P_G $A_1 = D_2/D_1E_2$ Note that $(D_2/D_1E_2)[(V_2-V_{S2})/(V_1-V_{S1})] = (P_F/P_V)/E_2 = F_1$ $A_2 = D_3/D_1E_2$ which, analogous to A_1 , is used to find G from $(V_3 - V_{S2})/(V_1 - V_{S1})$. $A_3 = (RE_1/2)/D_1$ Note that $(V_1 - V_{S1})/A_3 = V^2 = u^2 + v^2 + w^2$ #### ON-LINE COMPUTATIONS $$v_{1}^{-} v_{Si} = x_{1}$$ [1A] If \mathbf{X}_1 is negative, set to zero and record the number of times \mathbf{X}_1 was negative $$v_2 - v_{S2} = x_2$$ [18] $$v_3 - v_{S3} = x_3$$ [1c] $$F_1 = A_1(X_2/X_1)$$ [2] $\frac{2}{}$ If $|F_1| > 0.349$ rad (20°) , then $$|F_2| = E_3|F_1| - E_4$$ [3A] If $|F_1| \le 0.349$ rad then $$|F_2| = |F_1|$$ [3B] Sign of F_2 is the same as the sign of F_1 $$G_1 = A_2(X_3/X_1)$$ [4] If $|G_1| > 0.349$ rad, then $$|G_2| = E_3|G_1| - E_4$$ [5A] If $|G_1| \le 0.349$ rad, then $$|G_2| = |G_1|$$ [5B] Sign of G_2 is the same as the sign of G_1 . If G_2 exceeds 0.69rad (40°) set G_2 = 0.69rad and record If G_2 exceeds 0.69rad (40°) set G_2 = 0.69rad and record number of times $G_2 > 0.69$ rad. $$F_3 = A_1(X_2/X_1)$$ [6] If |F₃| > 0.349rad, $$|F_4| = E_3|F_3| - E_4$$ [7A] $[\]frac{2}{2}$ Eqs. [2] through [7] are from equations on page P8. If $|F_3| < 0.349$ rad $$|F_4| = |F_3|$$ [7B] Sign of F_4 is the same as the sign of F_3 . If F_4 exceeds 0.69rad, set F_4 = 0.69rad and record number of times F_4 > 0.69 rad. $$G_3 = E_5 V_7 + E_6$$ [8A] $$G_4 = G_2 + (G_3 - \overline{G}_{4p})$$ [8B] where $\ddot{G}_{4p} = \ddot{G}_2 + \ddot{G}_3$ for the previous run $(\ddot{G}_2 = \text{mean } G_2, \ddot{G}_3 = \text{mean } G_3)$. $$X_1^{\frac{1}{2}} \sin F_4 = A_2^{\frac{1}{2}} w$$ [9A] 3/ $$X_1^{\frac{1}{2}} \cos F_4 \cos G_4 = A_3^{\frac{1}{2}} u$$ [9B] $$X_1^{\frac{1}{2}} \sin G_4 = A_3^{\frac{1}{2}} v$$ [9C] $$T_{H} = B_{3} + B_{4}V_{6}$$ [10] $$S/C_0 = 10^{[C_1T_H/(T_H + C_2)]}$$ [11] $\underline{4}/$ $[\]frac{3}{}$ NOTE: In the 1967 program, since the mast was not rotated through G_3 , we used G_2 in place of G_4 in [9A, 9B, 9C]. See page P20 for alternate program equations $[\]frac{4}{}$ NOTE: Teten's equation (continued $\frac{4}{}$ page P14) | Accumulate sums and calculate averages of: | From | |--|----------------| | $N1 = (1/n) \nabla w A_3^{\frac{1}{2}}$ | [9A] | | $N2 = (1/n) \Sigma u A_3^{\frac{1}{2}}$ | [9B] | | $N3 = (1/n)\Sigma \vee A_3^{\frac{1}{2}}$ | [90] | | $N4 = (1/n) \sum (w A_3^{\frac{1}{2}})^2$ | [Ae] | | N5 = $(1/n) \Sigma (u A_3^{\frac{1}{2}})^2$ | [9B] | | $N6 = (1/n) \Sigma (v A_3^{\frac{1}{2}})^2$ | [9 c] | | N7 = $(1/n) \Sigma (w A_3^{\frac{1}{2}}) (u A_3^{\frac{1}{2}})$ | [9A],[9B] | | N8 = $(1/n) \sum (w A_3^{\frac{1}{2}}) (v A_3^{\frac{1}{2}})$ | [9A],[9C] | | N9 = $(1/n) \Sigma (u A_3^{\frac{1}{2}}) (v A_3^{\frac{1}{2}})$ | [98],[90] | | N10 = $(1/n) \sum [(u A_3^{\frac{1}{2}})^2 + (v A_3^{\frac{1}{2}})^2]^{\frac{1}{2}}$ | N5,N6 | $$S/C_O = antilog [C_1T_H/(T_H + C_2)]$$ S is the saturation vapor pressure corresponding to the BaF_2 humidity sensor Celsius temperature, T_H . C_O is the saturation vapor pressure at OC, and C_1 and C_2 are constants, as given on page P9. [Tetens, O. 1930. Uher einige meteorologische Begriffe. Z. Geophys. 6:297-309.] $[\]frac{4}{}$ NOTE (Cont.). Teten's equation is also written | $N11 = (1/n) \nabla (F_4)$ | [7A],[7B] | |--|-------------------------| | $N12 = (1/n) \Sigma (F_4)^2$ | [7A],[7B] | | $N13 = (1/n) \Sigma (G_2)$ | [5] | | $N14 = (1/n) \Sigma (G_2)^2$ | [5] | | $N15 = (1/n) \sum (X_1)$ | [1A] | | $N16 = (1/n) \% (X_2)$ | [18] | | $N17 = (1/n) \Sigma (X_3)$ | [1c] | | $N20 = (1/n) \Sigma (V_4)$ | Channel 4 | | $N21 = (1/n) \Sigma (v_4)^2$ | Channel 4 | | $N22 = (1/n) \sum (V_4) (w A_3^{\frac{1}{2}})$ | [9A],Channel 4 | | $N23 = (1/n) \pi (V_4) (u A_3^{1/2})$ | [9B],Channel 4 | | $N24 = (1/n) \sum (V_4) (v A_3^{\frac{1}{3}})$ | [9C],Channel 4 | | $N25 = (1/n) \Sigma (S) / (C_0)$ | [11] | | $N26 = (1/n) \Sigma[(S)/(C_0)]^2$ | [11] | | $N27 = (1/n) \Sigma (S/C_0) (w A_3^{\frac{1}{2}}) (V_5)$ | [11],[9A],
Channel 5 | | $N28 = (1/n) 7 (9/C_0) (u A_3) (V_5)$ | [11].[9B],
Channel 5 | | $N29 = (1/n) \gamma (S/C_0) (v A_3^{\frac{1}{2}}) (v_5)$ | [11],[9C],
Channel 5 | | $N30 = (1/n) \Sigma (V_6)$ | Channel 6 | | $N31 = (1/n) \Sigma (V_6)^2$ | Channel 6 | | $N32 = (1/n) \Sigma (^{\circ}3)$ | [AE] | | | | ention and and and the second | N33 = | (1/n) 7 (G ₃) ² | [A8] | | |-------|--|------------------------|---| | N34 = | (1/n) \(\tau_4\) | [88] | | | N35 = | $(1/n) \Sigma (G_4)^2$ | [88] | | | N36 = | $(1/n) \Sigma (X_2) (V_4)$ | [1B],Channel |
4 | | N37 = | $(1/n) \Sigma (w A_3^{\frac{1}{2}}) (u A_3^{\frac{1}{2}}) (V_4)$ | [9A],[9B]
Channel 4 | | | N38 = | (1/n) ¬ (V ₅) | Channel 5 | | | N39 = | $(1/n) \Sigma (V_5)^2$ | Channel 5 | | | N40 = | $(1/n)\Sigma (S/C_0) (V_5)$ | [11],Channel | 5 | | N41 = | $(1/n) \pi [(s/c_0)(v_5)]^2$ | [11],Channel | 5 | ## Output Calculations (averages and standard deviations): | Para-
meter | Avg. | Stand. dev. | |----------------|----------------------------|---| | $F4 = F_4$ | N11 | $[(N12) - (N11)^2]^{\frac{1}{2}}$ | | $G2 = G_2$ | N13 | $[(N14) - (N13)^2]^{\frac{1}{2}}$ | | $G3 = G_3$ | N32 | $[(N33) - (N32)^2]^{\frac{1}{2}}$ | | $G4 = G_4$ | N34 | $[(N35) - (N34)^2]^{\frac{1}{2}}$ | | υ = u | $(N2)/(A_3^{\frac{1}{2}})$ | $\{(N5)/(A_3) - [(N2)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ | | v = v | $(N3)/(A_3^{\frac{1}{2}})$ | $\{(N6)/(A_3) - [(N3)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ | | w = w | (N1)/(A ^{1/2}) | $\{(N4)/(A_3) - [(N1)/(A_3^{\frac{1}{2}})]^2\}^{\frac{1}{2}}$ | | TA = T | $(B_1) + (B_2) (N20)$ | $\{(B_1)^2 + 2(B_1)(B_2)(N20)$ | | | | $+ (B_2)^2 (N21)$ | | | | $- [(B_1) + (B_2) (N20)]^2$ | $$S = (M25)(C_0) \qquad \{ (M26)(C_0)^2 - \{ (M25)(C_0)^2 \}^{\frac{1}{2}} \}$$ $$TH = T_H \qquad (B_3) + (B_4)(M30) \qquad \{ (B_3)^3 + 2(B_3)(B_4)(M30) + (B_4)^2(M31) - \{ (B_3) + (B_4)(M30) \}^2 \}^{\frac{1}{2}} \}$$ $$V_5 \qquad M38 \qquad \{ (M39) - (M38)^2 \}^{\frac{1}{2}} \}$$ $$E = e, mb \qquad \{ (M40) - (M25)(M38) \} (C_0)(C_0)$$ NOTE: The relative humidity, H, is linear with the logarithm of the resistance. The electronics produces a voltage linear with H. $$H_{1}-H_{2} = H' = - k \log P' = C_{v}V_{5}'$$ $$V_{5} = \overline{V_{5}} + V_{5}'$$ $$S = \overline{S} + S' \qquad \text{as found from [11]}$$ $$\overline{SV_{5}} = \overline{S} \overline{V_{5}} + \overline{S'V_{5}'}$$ $$\overline{S'V_{5}'} = \overline{S} \overline{V_{5}} - \overline{S} \overline{V_{5}}$$ $$C_{v} \overline{S'V_{5}'} = \overline{S'H'} = C_{v}(\overline{SV_{5}} - \overline{S} \overline{V_{5}})$$ Since the vapor pressure E = Sh $$\overline{E} = \overline{SH} = \overline{S} \ \widehat{H} + \overline{S'H'}$$ $$\overline{E} = \overline{S} \ \overline{H} + C_O C_V [(\overline{S/C_O}) V_5 - (\overline{S/C_O}) V_5]$$ $$\overline{E} = \overline{S} \ \overline{H} + \{C_O C_V [(N40) - (N25)(N38)]\}$$ To find \overline{E} , \overline{S} is found in the above output; \overline{H} is found manually from \overline{V}_5 given in the output, using the calibration curve for the particular sensor; the term in braces is calculated above as an average. $$(E')^2 = c_V[(N41) - (N40)^2]$$ ### Output Calculations (averages only): $$J_1 = [(60)(B_2)][(N36) - (N16)(N20)]$$ SEE NOTE $\frac{7}{2}$ $$J_2 = [(60)(B_2)(C_T)/(A_3)][(N37)-(N7)(N20)]$$ $$q = e/[C_{R}(T + 273.2], T in Celsius$$ ^{6/} NOTE: The composition of the EU, EV, and EW terms are similar. EW = $\lambda q'w'$ is the vertical vapor flux expressed as latent heat, where (60) is included to give cal cm⁻²min⁻¹. In this equation $[\]lambda = [597 - 0.57T]$, T in Celsius to give cal/gm (latent heat) $q = e/R_V^T_K$, where T_K is Kelvin and R_V is the specific gas constant, so that NOTE: J_1 and J_2 calculate the heat flux term $({}_0c_p)[u w'T' + w u'T' + u'w'T']$ found by the yaw sphere and thermometer (Chapter 3). J_1 is based on values which are not corrected for pressure decreases with off-axis winds, whereas J_2 is corrected. #### COURDINATE SYSTEMS AND ROTATIONS In flow problems, the components of the flow velocity must be measured relative to some well-defined system of coordinates. In the atmosphere, unlike duct flow where the direction of mean flow is well defined, the coordinate system used can be selected arbitrarily. The wind velocity components are measured with respect to the instrument coordinates. At the beginning of an experiment, the instrument may be roughly aligned with respect to the direction of mean flow; however, the direction of the mean flow is not known precisely until the end of the experiment. The instrument also can be referenced with respect to gravity and some arbitrary against hal direction. ### Instrument Coordinate System Let the x_1 , y_1 plane be the plane of the two horizontal ports of the anemoclinometer, (plane Y in Figure P2), the x_1 , z_1 plane be the plane of the two vertical ports of the anemoclinometer, (plane Z in Figure P2) and the y_1 , z_1 plane be the plane perpendicular to both the x_1 , y_1 plane and the x_1 , z_1 plane. Since the relative positions of the ports are determined by precision machining, the x_1 , y_1 plane is probably perpendicular to the x_1 , z_1 plane to within a minute of arc, and we can assume the three planes are orthogonal. The anemoclinometer is aligned in the field such that the x_1 -axis is approximately the same direction as the mean wind vector, \overline{y} ; the y_1 -axis is approximately normal to gravity (although it could be aligned roughly parallel to a sloping land or canopy surface), the z_1 -axis is perpendicular to both x_1 and z_1 to form the third axis in a right-handed coordinate system. If the anemoclinometer is moved in the x_1 , y_1 plane during the measurement period to keep the angle between \overline{y} and x_1 -axis within the acceptance angle of the anemoclinometer Venturi, we can redefine the reference of the x_1 -axis, for example to be, true south, or we may also use as a reference the azimuth of the \overline{y} as determined during the previous measurement period. We elected the latter in the 1968 measurements. ### General Coordinate Transforms New coordinate systems can be defined by rotations of an angle η about the z_1 -axis, the angle θ about the y_1 -axis, or the angle θ about the x_1 -axis. The angle η is positive as the x,y plane is rotated counterclockwise as viewed from the z_1 -axis; the angle θ is positive as the x,z plane is rotated clockwise as viewed from the positive y_1 -axis; and the angle θ is positive as the z,y plane is rotated counterclockwise as viewed from the positive x_1 -axis. The coordinate system rotations are orthogonal transformations and can be represented in matrix form (e.g. Albert, A. A. 1949. Solid analytic geometry. Phoenix Books Science Series, University of Chicago Press). For instance, if the \mathbf{x}_1 , \mathbf{y}_1 plane is rotated about the \mathbf{z}_1 axis by the angle $\mathbf{\eta}$ to define new axes, \mathbf{x}_2 , \mathbf{y}_2 , and \mathbf{z}_2 , $$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = (Z_{\eta}) \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$ [1A] where $$(Z_{\eta}) = \begin{pmatrix} \cos \eta & \sin \eta & 0 \\ -\sin \eta & \cos \eta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ [1B] Similarly, rotations through the angles θ or θ can be done with the orthogonal matrices, respectively. $$(Y_{\theta}) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$ [2] and $$(X_{g}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$ [3] If more than one rotation is performed, the second rotation angle is defined with respect to the coordinates after the first rotation. A third rotation angle would be defined with respect to the coordinates after the second rotation. Sequential rotations are indicated by placing the matrix of the succeeding transformation to the left of the matrix of the transformation that preceded it. Natural wind coordinate system: A natural wind coordinate system may be defined as being a right-handed coordinate system in which the x-axis is parallel to the mean flow with x increasing in the direction of the flow; thus $\vec{w}=\vec{v}=0$, where \vec{w} and \vec{v} are the mean wind components along the z-axis and the y-axis, respectively. The transformation from the instrument to the natural coordinate system, requires the rotation through angles η and θ . Rotation around the x-axis by an angle θ will be considered later (p.R7), but for the present we shall assume that z-axis is normal to the land surface. The instantaneous wind components can be separated into mean values and deviations from the means due to turbulence and can be represented in Reynold's notation as $$u = \bar{u} + u'$$ [4] $$v = \tilde{v} + v'$$ [5] $$w = \tilde{w} + w'$$ [6] and \vec{w} are time averages where \vec{u} , \vec{v} /and \vec{u}' , \vec{v}' and \vec{w}' are the deviations along the x-, y-, and z-axes, respectively. Since the mean wind components \vec{w}_1 and \vec{v}_1 , as measured in the instrument coordinates, usually are not zero, we rotate through the angle η and then through the angle θ , where $$\eta = \arctan (\bar{v}_1/\bar{u}_1)$$ [7] $$\theta = \arctan \left[\bar{w}_1 / (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}} \right]$$ [8] Let (CE) = $$\cos \pi = \bar{u}_1 / (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}}$$ [9] (SE) = $$sirm_1 = \bar{v}_1 / (\bar{u}_1^2 + \bar{v}_1^2)$$ [10] (CT) = $$\cos\theta = (\bar{u}_1^2 + \bar{v}_1^2)^{\frac{1}{2}}/(\bar{u}_1^2 - \bar{v}_1^2 + \bar{w}_1^2)^{\frac{1}{2}}$$ [11] (ST) = $$\sin\theta = \bar{w}_1/(\bar{u}_1^2 + \bar{v}_1^2 + \bar{w}_1^2)^{\frac{1}{2}}$$ Then $$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} = (\mathbf{Y}_{\theta}) (\mathbf{Z}_{\eta}) \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{v}_{1} \\ \mathbf{w}_{1} \end{pmatrix}$$ [13] Therefore, $$u = u_1(CT)(CE) + v_1(CT)(SE) + w_1(ST)$$ [14] $$v = v_1(CE) - u_1(SE)$$ [15] $$w = w_1(CT) - u_1(ST)(CE) - v_1(ST)(SE)$$ [16] Equations [14], [15], and [16] can be written for the timeaveraged wind components or for the fluctuating components. $$\bar{\mathbf{u}} = \bar{\mathbf{u}}_1 (CT) (CE) + \bar{\mathbf{v}}_1 (CT) (SE) + \bar{\mathbf{w}}_1 (ST)$$ [17] $$u' =
u'_1(CT)(CE) + v'_1(CT)(SE) + w'_1(ST)$$ [18] $$v' = v'_1(CE) - u'_1(SE)$$ [19] $$w' = w'_1(CT) - u'_1(ST)(CE) - v'_1(ST)(SE)$$ [20] By the definition of A and η , $\bar{v} = \bar{w} = 0$. By performing the proper multiplications and averaging, [18], [19] and [20] can be manipulated to yield following relationships: $$(\overline{u'})^{2} = \overline{(u'_{1})^{2}} (CT)^{2} (CE)^{2} + \overline{(v'_{1})^{2}} (CT)^{2} (SE)^{2} + \overline{(w'_{1})^{2}} (ST)^{2}$$ $$+ 2\overline{u'_{1}v'_{1}} (CT)^{2} (CE) (SE) + 2\overline{u'_{1}w'_{1}} (CT) (ST) (CE) \qquad [21]$$ $$+ 2\overline{v'_{1}w'_{1}} (CT) (ST) (SE)$$ $$(\overline{v'})^{2} = \overline{(v'_{1})^{2}} (CE)^{2} + \overline{(u'_{1})^{2}} (SE)^{2} - 2\overline{u'_{1}v'_{1}} (CE) (SE) \qquad [22]$$ $$(\overline{w'})^{2} = \overline{(w'_{1})^{2}} (CT)^{2} + \overline{(u'_{1})^{2}} (ST)^{2} (CE)^{2} + \overline{(v'_{1})^{2}} (ST)^{2} (SE)^{2}$$ $$- 2\overline{u'_{1}w'_{1}} (CT) (ST) (CE) - 2\overline{w'_{1}v'_{1}} (CT) (ST) (SE) \qquad [23]$$ $$+ 2\overline{u'_{1}v'_{1}} (ST)^{2} (CE) (SE)$$ $$\overline{u'w'} = \overline{u'_1w'_1(CE)[(CT)^2 - (ST)^2]} - 2\overline{u'_1v'_1(CT)(ST)(CE)(SE)} + \overline{w'_1v'_1(SE)[(CT)^2 - (ST)^2]} - (\overline{u'_1})^2(CT)(ST)(CE)^2 [24] - (\overline{v'_1})^2(CT)(ST)(SE)^2 + (\overline{w'_1})^2(CT)(ST) \overline{u'v'} = \overline{u'_1v'_1(CT)[(CE)^2 - (SE)^2]} + \overline{w'_1v'_1(ST)(CE)} - \overline{u'_1w'_1(ST)(SE)} - (\overline{u'_1})^2(CT)(CE)(SE) [25] + (\overline{v'_1})^2(CT)(CE)(SE) \overline{v'w'} = \overline{v'_1w'_1(CT)(CE)} - \overline{u'_1w'_1(CT)(SE)} - \overline{u'_1v'_1(ST)[(CE)^2 - (SE)^2]} + (\overline{u'_1})^2(ST)(CE)(SE) - (\overline{v'_1})^2(ST)(CE)(SE)$$ [26] Similarly, a scalar such as temperature or water vapor measured near the anemoclinometer can be represented in Reynold's notation as $Q = \overline{Q} + Q'$ and covariances can be corrected by the transform to natural wind coordinates as follows: $$Q'u' = Q'u'_1(CT)(CE) + Q'v'_1(CT)(SE) + Q'w'_1(ST)$$ [27] $$\overline{Q'v'} = \overline{Q'v'_1}(CE) - \overline{Q'u'_1}(SE)$$ [28] $$Q'w' = Q'w'_1(CT) - Q'u'_1(ST)(SE) - Q'v'_1(ST)(SE)$$ [29] Natural coordinate system with an angular rotation about the x-axis. At a site with adequate fetch, no divergence, and steady state flow, measurements indicate that in addition to $\overline{v} = \overline{w} = 0$, $(u')^2 > (w')^2$ 1/. Lettau states that $\overline{u'v'} = \overline{w'v'} = 0$ 2/. Although wide variations of $(v')^2$ at different meteorological sites with similar conditions have been reported, our measurements at a one-meter height indicate that $(\overline{u'})^2 \ge (\overline{v'})^2 > (\overline{w'})^2$. When $u'v' \neq 0$, conditions are not ideal; during the sampling period the horizontal wind velocity tends to increase as it shifts a particular direction 3/. When measurements indicate that u'v' is significantly different than zero, local divergence caused by fetch or surface homogeneity may be occurring, since the coordinate transform for forcing u'v' to zero results in finite \bar{v} and \bar{w} . A shift in wind direction may be accompanied by a change in velocity due to flow about large-scale surface features; this large scale divergence also may affect u'v' significantly over our 30-min sampling period. Since $\bar{v} = 0$ and there is no reason to expect v' to be correlated with w' 4/, measurements Lumley, J. L. and H. A. Panofsky. 1964. The structure of atmospheric turbulence. Interscience Monogr. Vol. 12. John Wiley and Sons, New York, 239 p. Lettau, H. H., 1968. Three-dimensional turbulence in unidirectional mean flow. p.127-156. In Studies of the effects of boundary modification in problems of small area meteorology. U. S. Army Electronics Command Tech. Rept. ECOM66-624-A, 156p. ^{3/}Sutton, O. G. 1953. Micrometeorology. McGraw-Hill Book Company, Inc. 333p. ^{4/}Sutton, O. G. 1948. Atmospheric turbulence. Methuen & Co. Ltd. London. 107 pp. of finite $\overline{w'v'}$ indicate that the z-axis is orientated such that part of $\overline{u'w'}$ appears in $\overline{w'v'}$. By a proper rotation of the z,y plane through the angle a in the natural wind coordinate system, $\overline{w'v'}$ can be set to zero, with \overline{v} and \overline{w} remaining zero. The result is that the x,y plane is made parallel to the average slope of the terrain somewhere upwind from the sampling point. Using (X_q) from [3] and letting u_2 , v_2 and w_2 be the wind components after the planar rotation to make $w_2'v_2'=0$, $$\begin{pmatrix} u_2 \\ v_2 \\ w_2 \end{pmatrix} = (X_{\beta}) \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$ [30] Therefore, $$u_2 = u$$ [31] $$v_2 = v(CB) + w(SB)$$ [32] $$w_2 = w(CB) - v(SB)$$ [33] where $$CB = \cos \theta \qquad [34]$$ $$SB = \sin^{q}$$ [35] The proper multiplications and averaging of the deviation of the wind components results in $$\frac{(v_2')^2}{(v_2')^2} = \frac{(v')^2(CB)^2 + 2v'w'(CB)(SB) + (w')^2(SB)^2}{(36)}$$ $$\frac{(w_2')^2}{(w_2')^2} = \frac{(w')^2}{(CB)^2} - \frac{2w'v'}{(CB)} (SB) + \frac{1}{(v')^2} (SB)^2$$ [37] $$u_2'w_2' = u'w' (CB) - u'v' (SB)$$ [38] $$u_2'v_2' = u'v' (CB) + u'w' (SB)$$ [39] $$\overline{w_2'v_2'} = \overline{v'w'[(CB)^2 - (SB)^2] + \overline{(w')^2(CB)(SB)}}$$ $$- \overline{(v')^2(CB)(SB)}$$ and $$(u_2')^2 = \overline{(u')^2}$$ [41] $$\overline{u_2} = \overline{u}$$ [42] $$\vec{\mathbf{v}} = \vec{\mathbf{w}} = \mathbf{0} \tag{43}$$ For a scalar quantity Q, $$\overline{Q'u_2'} = \overline{Q'u'}$$ [44] $$Q'v'_2 = Q'v'(CB) + Q'w'(SB)$$ [45] $$Q'w_2' = \overline{Q'w'}(CB) - \overline{Q'v'}(SB)$$ [46] To make $w_2'v_2' = 0$, we must manipulate [40] to get where $$K = \overline{w'v'}/[(v')^2 - (w')^2]$$ [48] The positive sign must be used in [47] because then $(w_2')^2$ is minimized and $\overline{(v_2')^2}$ is maximized, as is desirable for $\overline{(v_2')^2} > \overline{(w_2')^2}$. Since $9 = \arccos$ (CB) is small, (CB) and (SB) can be found in a few iterations by first assuming CB = 1, then solving [47] for SB, then $$CB = (K)/(SB) - 2(K)(SB)$$ [49] and repeating until sufficient convergence obtains. # DATA LISTING | | Page | |---|------| | DAVIS, 1967, WITH TWO ROTATIONS TO MAKE v = w = 0 | D2 | | DAVIS, 1967, WITH THREE ROTATIONS TO
MAKE v = w = v'w' = 0 | D22 | | HANCOCK, 1968, WITH TWO ROTATIONS TO MAKE v = w = 0 | D42 | | HANCOCK, 1968, WITH THREE ROTATIONS TO
MAKE v = w = v'w' = 0 | D58 | | EXPLANATION OF HEADINGS | D75 | | NAD | | ETA | THETA | BETA | HU
SENS IB | SENSIBLE HEAT TRANS | | A I F | AIR TEMP
MEAN ST DEV | | EU EV EM | RANS | 7 | | EXCEEDED 6 | | |--|-----------|-----|---------|---------|---------------|---------------------|--------|-------|-------------------------|----------|----------|---------|------------|-----|------------|--| | 1,000
1,000 1,00 | RAD | α | RAD | RAD | ····CAL | / CM2-MI | • | CEN | FIGRADE | • | / CM2-MI | : | PARTS | œ | OUSAND | | | 1,100 1,10 | | | | 6 | 0 | 0 | 0 | • | | 6 | 9 | 6 | ď | • | | | | 1,000 1,00 | • | ĭ | 24.40 | | | 0000 | | ċ | | 0000 | 0000 | 0000 | - 6 | 0 | | | | 0.0000 0 | • | 1 | 2160 | | | 0000 | 0.000 | Ċ | 0.000 | 0.000 | 0.000 | 0.000 | 5 c | • | | | | 1,170 1,17 | | - 1 | .2041 | | 000000 | 0.6000 | 0.000 | o | 00000 | 00000 | 00000 | 0.0000 | 0 | 0 | | | | 1,000 1,00 | | | 4010. | | 000000 | 0.0000 | 0.000 | ċ | 0,000 | 000000 | 0.000.0 | 0050*0 | 0 | 0 | | | | 1,000
1,000 1,00 | - 40714- | t | -010- | טיטפר ס | 0.000 | CC • C | 0000 | ¢. | 0000° | 00000 | 0,000 | 000000 | c | c | | | | ### 1 | • | 1 | .0040 | | 0000-0 | 0.000 | 0.000 | C. | 000000 | 000000 | 000000 | 000000 | 0 | c | | | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | | | .0410 | | 3.0000 | 000000 | 0.000 | ċ | 0000 | 000000 | 0-000 | 000000 | 0 | 0 | | | | 0.0000 0 | - 3185 - | ī | £260. | | 0.000 | 0.0000 | 0.000 | ċ | 0000°¢ | 0000 | 00000 | 000000 | ဝ | c | | | | 0.0000 0 | - 1000- | • | 1000 | | 0000 | | 000 | ć | 0000 | 000 | | | c | • | | | | 0.0000 | | | 0217 | | 0.0000 | 0.000 | 00000 | ċ | 00000 | 00000 | 00000 | 000000 | c | 0 | | | | 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | | -013E | | 0.000 | 000000 | 0.000 | Ċ | 000000 | ט • טטטט | 000000 | 000000 | ¢ | C | | | | 0.0000 0 | 5272 | | 45.00 | | 0,000 | 2000 | | ć | 0000 | 0000 | 00000 | 00000 | c | c | | | | 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 1 | .0163 | | 0.0000 | 0000 | 0000 | ċ | 0.000 | 00000 | 0000 | 0.0000 | 0 | 0 | | | |
10.0000 | | | .0152 | 0.0000 | 000000 | 000000 | 0.000 | ċ | 0.000 | 000000 | 0.0000 | 000000 | O | 0 | | | | 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000 | - 11107 - | , | £ 000 | | 0000 | 0000 | | ć | 0000 | 0000 | 0000 | 000000 | c | c | | | | 0.0000 0. | | 1 | 0165 | | 0000 | 0000 | 000 | ċ | 0000 | | 0000 | 00000 | c | | | | | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 1800 | 0.0000 | 0.000 | 0.000 | 0.000 | | 0000 | 0.000 | 00000 | 0.000 | 0 | c | | | | 0.0000 | 0 | | | | 0 | 0 | 0 | • | | 0 | 0 | 0 | • | • | | | | 0.0000 0. | | | | | | 0000 | | • | 0000 | 00000 | 00000 | 0000 | 0 | • | | | | 0.0000 | | ٠, | 4540 ·- | 0.0000 | 0.000.0 | 0.000 | 0.000 | ċ | 0.000.0 | 0.0000 | 00000 | 0.0000 | 9 6 | 00 | | | | 0.0000 | 2870 | | 28.20 | 0000 | 0000 | 0000 | | ć | | 0000 | | 0000 | c | • | | | | 0.0000 0. | | | .002€ | 0.0000 | 000000 | 000000 | 000000 | ċ | 000000 | 0000 | 00000 | 000000 | c | 0 | | | | 0.0000 | | | .0698 | | 0.000 | 0.000 | 0.0000 | 0 | 00000 | 0000 | 000000 | 000000 | 0 | 0 | | | | 0.0000
0.0000 0. | 2520 | | 20404 | | 0000 | 00000 | 0000 | ć | | | | 0.0000 | 0 | o | | | | 0.0000 0.0000 0.0000 0.0000 0.0.0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0 | | 1 | .0020 | | 000000 | 00000 | 0000 | ċ | | 0000 | 00000 | 000000 | 0 | 0 | | | | 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000 | | 1 | .0477 | | 0000-0 | 0.0000 | 0.0000 | ċ | 0000-0 | 0.000.0 | 0000-0 | 0.000.0 | 0 | 0 | | | | 0.0000 | | | . 047E | 0.0000 | 0.0000 | 000, 3 | 0.000 | c | 0000000 | 000000 | 0.000.0 | 000000 | 0 | 0 | | | | 0.0006 | | • | *906* | | 0.0000 | 00000 | 0.0000 | ċ | 0.000 | 0.000 | 0.0000 | 0000.0 | 0 | 0 | | | | 0.0006 .0877 .00670221 121890 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 | 1723 | 1 | .0652 | | 00000 | 000000 | 00000 | ċ | 000000 | 000000 | 000000 | 000000 | 0 | 0 | | | | 0.0000 | 5448 - | • | 0452 | 0.0000 | .0877 | .0067 | 0221 | 12. | .1890 | 0.0000 | 0.0000 | 0.0000 | 0 | 0 | | | | 0.0000 .0652 .09510216 111730 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 | 4976 | | .0512 | | 000000 | 000000 | 0.0000 | ċ | 0.0000 | 0.0000 | 0.0000 | 0000.0 | 0 | • | | | | 0.0000 .0652 .09510216 111730 0.0000 0.0000 0 0 0 0 0 0.0000 0.0000 0 0 0 0 0.0000 0.0000 0 0 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | .0114 | | 0000 | 0.000.0 | 0.0000 | ċ | 000000 | 0.0000 | 00000 | 0000*0 | 0 | 0 | | | | 0.0000 0.0000 0.0000 0.0.0.0000 0.0.0000 0.000000 | 1471 | • | 0657 | | •0652 | .0951 | 0216 | 11. | .1730 | 000000 | 0000.0 | 0000*0 | 0 | ٥ | | | | 0.0000 0.237010430205 112330 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 | 1506 | | .0427 | | 0.0000 | 0.000 | 000000 | ċ | 0.0000 | 0-000 | 0.000 | 000000 | G : | 0 | | | | 0.0000 .237010430205 112930 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 | 1362 | | .0449 | | 000000 | 0.000 | 0.0000 | ċ | 0000•0 | 0.0000 | 0.0000 | 000000 | 0 | 0 | | | | 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 0 0 | | • | | | | 1043 | 0205 | | .2930 | 000000 | 0000-0 | 000000 | 0 | 0 | | | | | FF62 | | | | | 000000 | 0.0000 | | 00000 | 00000 | 0.0000 | 0.0000 | o c | > C | | | D3 | WIND
SHIFT
RAD | 0.000 | 00000 | 00000 | 0.000 | 000 | | 0.00 | 000 | 0.00 | 0.000 | 00000 | 000 | 0.000 | 0.000 | 00000 | | 0.00 | 00000 | 0.000 | 000 | | 0.00 | 000 | 000 | 0.000 | 0.00 | 000 | 0.000 | 000 | 000.0 | 0.00 | | 00000 | 000 | 0.000 | 0.000 | 00000 | 0.000 | 0000 | 0000 | 000 | |-------------------------|--------|--------|-------|--------|--------|------|--------------|--------|-------|--------|--------|-------|--------|--------|-------|-----|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|----------------|-------|--------|-------|-----|--------|-------|-------|--------|-------|----------------|--------|--------|--------| | R A D | 0.000 | 0000 | 000.0 | 00000 | | | 000.0 | 0000 | 0.00 | 000.0 | 0.000 | 0000 |
000.0 | 00000 | 00000 | | 00000 | 0.000 | 0.000 | 000 | 000 | 0.00 | 000 | 0000 | 0.000 | 0000 | 00000 | 000 0 | 00000 | 00000 | 00000 | | 0.000 | 000 | 0.000 | 00000 | 0.000 | 00000 | 0.000 | 0.000 | 0000 | | GSD
ANGLE
RAD | .209 | •230 | 000.0 | •205 | 1000 | | .150 | .149 | 00000 | .180 | • 186 | 00000 | .237 | •226 | 000.0 | | .235 | .251 | • 432 | 282 | 208 | .272 | 7.8.7 | .279 | •225 | .142 | -172 | 00000 | .133 | .155 | .147 | | | 000 | | | 0.100 | | .162 | .145 | •165 | | G
AZIM
RAD | -217 | • | 000.0 | 140. | C | | -,051 | | 0.000 | 163 | | 0000 | | | 0.00 | | | 158 | | -230 | 1 | | | | 192 | .186 | | 0 | | .170 | | | • 223 | 00000 | 0.000 | .003 | 00000 | | 203 | | | | FSU
ANGLE
KAD | •080 | | 0.000 | .088 | • | • | 660. | | 0.000 | •109 | | 0.000 | .135 | .139 | C | | | | .119 | .123 | | .126 | | | .086 | 760. | • | C | • | •093 | • | | •215 | | 0.00 | | | 0.00 | | •093 | | | ELEV | 054 | | | 750 | 400 | | 059 | •055 | 000.0 | 090 | • 062 | 0.500 | -,054 | | Ç | | | | 008 | £003 | 100 | 0.00 | | • 035 | | | 015 | | | 015 | | | •036 | 0.000 | 000.0 | | 0.000 | | •003 | 160. | - 007 | | HOR12
WIND
CM/SEC | 135.48 | | 00°C | 167.72 | _ | | 182.61 | 185.52 | 00 °C | 192.75 | _ | J.00 | ~ | _ | 9.00 | | 261.59 | 261.22 | 265.51 | 277.90 | 278-47 | | 327.84 | 329.01 | 394.66 | | 456.97 | 0.00 | 232 | 232.22 | 237 | | 2 | | 00.0 | 22 | | 0.0 | 96.404 | 524.86 | 422.20 | | Rev | .048 | 248 | 0.000 | •639 | 1000 | 0.00 | •015 | -005 | 0.00 | 007 | 039 | 0.903 | .018 | 024 | 0.000 | | .123 | 133 | .208 | 1747 | -2716 | .562 | 365 | 250 | -612 | .202 | 182 | 00000 | •039 | 022 | 0.000 | | 00000 | 0.000 | 0.000 | .176 | 00000 | 000 | .057 | 013 | 074 | | REYVOLDS STRESSES | 273 | 502 | 0.00 | 323 | 1000 | 001. | 337 | 375 | 000-0 | 487 | 606 | 0.000 | 517 | 576 | 0.000 | | 358 | 527 | 675 | 0000 | 9000- | 454 | -2-146 | -2.753 | -1.235 | .351 | .455 | 000° | 167 | 379 | 321 | | 1.241 | 0.00 | 000.0 | 055 | 0.00 | 000.0 | 504 | -1.789 | 572 | | RUM
REYVO | 051 | 020 | 0.003 | 179 | 1000.0 | 601. | 225 | 195 | 0.000 | 268 | - 238 | 00000 | -,290 | 279 | 00000 | | 671 | 712 | 734 | -77.4 | 728 | 814 | -1.126 | 764 | 563 | -1.267 | -1.554 | 0000 | 47%- | 280 | 210 | | 621 | 000-0 | 0.000 | 476 | 0000 | 0000 | -1,268 | -1.280 | 16401- | | WSD
DEV | 8.33 | 8.93 | 00.0 | 15.82 | 200 | | 18.17 | 19.23 | 2.00 | 20.78 | 20.29 | 00.0 | 20.76 | 20.17 | 00.0 | | 28.77 | 30.31 | 29.84 | 31.08 | 31.26 | 32.34 | 37.16 | 33.00 | 29.77 | 40.67 | 41.59 | C O • C | 21.03 | 21-11 | 20.18 | | 24.03 | C . | 0.00 | 25.11 | 00.0 | 00.0 | 39.42 | 47.99 | 12064 | | VSD
ND ST | 28.82 | 30-12 | 00.00 | 33.62 | 0.00 | | 28-22 | 28.64 | 00.0 | 34.65 | 37.26 | 0.00 | 38.83 | 40.50 | 0000 | | 59.28 | 64.68 | 90-65 | 76.80 | 82.60 | 74.27 | 80.88 | 91.19 | 92.51 | 66.49 | 78.89 | 0°0 | 31.24 | 35.89 | 35.10 | | 53.23 | 0.00 | 00-0 | 79.28 | 0000 | 0.00 | 67.44 | 77.87 | 76.00 | | USD
WIN | 19.21 | 24.04 | 0.0 | 46.74 | | | 42.51 | 40.14 | 00.0 | 40.30 | 47.14 | 2.00 | 51.64 | 41.24 | 0.01 | | 96.00 | 63.81 | 66.89 | 75.54 | 72.64 | 74.55 | 92.87 | 97.30 | 66.7! | 91.73 | 94.19 | C
C | 43.39 | 43.23 | 42.12 | | 116.64 | C (| 0 | 104.52 | 0.00 | 0 | 94.12 | 98.11 | 103.47 | | MEAN | 132.68 | 130.45 | 00.0 | 164.76 | 00.00 | | 180.91 | 133.69 | 0000 | 190.10 | 193.84 | 00.00 | 183.16 | 191.61 | 0.00 | | 254.72 | 253.28 | 564.59 | 267.36 | 256.58 | 275.35 | 312.69 | 316.66 | 392.64 | - ec | 450.51 | 00.0 | 30.6 | 229.56 | 37.4 | | | 0000 | | 207.68 | 0.00 | 00.0 | 399.60 | | | | SITE | 191 | 2 | * | ٦, | 4 (* | | ~ 4 (| ٠, | • | - | 2 | ۳. | - | ~ | ~ | 567 | _ | ~ | m | | | ~ | 1 | ~ | ~ | - | N | " | - | 7 | m | 199 | _ | ۸, | er. | - | ۸, | Pr. | (| ~ . | • | | TIME S
START | 4226 | 1830 | 2 | 1900 | 1900 | | 1930 | 0661 | 0161 | 2000 | 2000 | 2000 | 7030 | 2030 | 6606 | 425 | 900 | 900 | 930 | 945 | 596 | 345 | 1015 | 1015 | 1015 | 1614 | 1614 | 1614 | 1713 | 1713 | 1713 | 426 | 1330 | 066 | 1330 | 3400 | 0071 | ()
()
() | 1630 | 0630 | 1630 | | DED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 000 | 000 | |---|---|---------------------------|-------------------------|----------------------------|---|------------------------------|----------------------------|----------------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------|---| | EXCEEDED
F
G
R THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ••• | 000 | 000 | 030 | 000 | 000 | | LIMITS EXCEEDED
VSQ F
PARTS PER THOUSAN | 000 | 000 | 000 | 200 | 000 | 000 | 000 | 000 | 600 | 006 | 000 | ٥٥٥ | 600 | | EW
RANS
N) | 0000000 | 0.0000 | 0.0000 | 00000 | 000000000000000000000000000000000000000 | 00000*0 | 0.0000
0.0000
0.0000 | 0.0000 | 00000°0
00000°0
00000°0 | \$355.0
\$355.0
\$0000.0 | 0.0000 | 0,0000
0,0000
0,0000 | *0554
0*0000
0*0000 | | EU EV EW
LATENT HEAT TRANS | 0000-0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.7000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.000
0.000
0.000 | 0.0000 | 0.0000 | | w : | 000000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.00000
0.00000 | 0-00mg | 0-0000
0-0000
0-0000 | 0.0000 | 0-0000 | 0.0000
0.0000 | .3419
0.0000
0.0000 | 0.0000
0.0000
0.0000 | | AIR TEMP
HEAN ST DEV
CENTIGRADE | .1790
0.0000
0.0000 | .3190
0.0000
0.0000 | .1940
n.0000 | .2460
0.0000
0.0000 | .1890
0.0000
0.0000 | •4480
7•0000
7•0000 | .8400
0.0000
0.0000 | .8370
0.0000
0.0000 | .5140 | .5720
0.0000
0.0000 | 1.0100
0.0000
0.0000 | .8470 | .1680 | | AIR
MEAN
CENTI | | • • • | ø e e | | 900 | 966 | ; · · · | 5000 | | 0000 | 5000 | 500 | 13: | | 2. | 0650
0.0000
0.0000 | 0181
0.0000
0.0000 | 0.0000
0.0000 | 0.0000 | 0.0000 | .0876
0.0300
0.0000 | 0.0000 | .2212
0.0000
0.0000 | .0766
0.0000
0.0000 | 0.0000 | .1324
0.0000
0.0000 | .1300 | 0180
0166
0251 | | HU HV HW
SENSIBLE HEAT TRANS | .0028
0.0009
0.0009 | 0356
7.0000
7.0000 | 0,0000 | 0.0000
0.0000
0.0000 | .0259
0.0000
0.0000 | 3180
/-0000
/-0000 | .0805
0.0000
0.0000 | 0246
0.0000
0.0000 | .1218
0.0000
0.0000 | 0.0000 | 1261
7-9960
7-5000 | 7.0340
7.0000
7.0000 | .0313
0013
0347 | | HU
SENSIB | .0234
0.0060 | .1799
0.0000
0.0000 | .1192 | .1130
0.0000
0.0000 | 0.0000 | 1606
7-0000
7-0000 | 0.0000 | 0.0000
0.0000 | 0.000
0.000
0.000 | .2458
0.0000
0.0000 | •0962
••0000
••0000 | 0.0000 | .0231 | | BETA | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0000°0
0°0000°0 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0000°0 | 0.0000
0.0000
0.0000 | 000000000000000000000000000000000000000 | | THETA | 658n
-039n
n.1000 | 0629
.0467
0.2000 | 0654
.0519
0.0000 | 0570
0584
0784 | 0642 | 0059 | 0056 | -0027 | .0129
0237 | -0110
020
0104 | .0191
0.0000
0.0000 | .0075 | 0047 | | ETA | .2049
.2526
0.0000 | .0868
.1306
5.0000 | 0595
0169 | 1743
1379
0-0000 | 2637
2260
0-0000 | 2745 | 2291
1159
1889 | 3156
2256
1949 | .1283 | .1532
.1655
.1604 | .2894
0.0000
0.0000 | 0.0000 | 2068
2139
2726 | | SITE | 42267
0 1
0 2
0 2 | - ~ ~ | 474 | | 426 | 42567
0 1
0 2
0 2 | | -~6 | v r | ~~ | 2 2 2 | | ~ ~ m | | TIME SITE | 42
1830
1830
1830 | 1900 | 1930 | 2000
2000
2000 | 2030 | 42
900
900
900 | 945
945
845 | 1015 | 1614 | 1713
1717
1717 | 42667
1330 1
1330 2
1330 2 | 1400 | 1630
1630
1630 | | WIND
SHIFT
RAD | 0.000 | 0.0000 | 0.000 | 0.000 | 0.000 | 000000 | 000000 | 0.000 | 000000000000000000000000000000000000000 | 0.000 | 000000 | 0.0000 | 0.000 | |----------------------------------|-----------------------------|---------------------------|--------------------------|--------------------------|--|-------------------------|----------------------------|-----------------------------|---|----------------------------|----------------------------|---------------------------|----------------------------| | WIND
DIR
RAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0000-0 | 000.0 | 0.0000 | 000000 | 0.000 | 0000 | 000000 | 0.000 | | 6SD
ANGLE
RAD | *151
*134
*157 | 0.000 | .119 | .138
.165
0.000 | .136
.176
.265 | 0.000 | .227
.238 | .258
.247
.243 | .258
.240
.214 | .293
.274
.278 | .214
.175 | .134
0.000
.173 | .230
.214
.217 | | G
AZ 1M
RAD | 169 | 0.000 | 369
0+000
447 | 276 | 272
315
034 | 0.000 | 218
066
169 | 114 | -168 | 032 | .254
.381
.283 | .394
0.000
.370 | 063 | | FSC
ANGLE
RAD | .100 | 0.096
0.000
0.108 | 0000 | .100 | .098
.093 | 0.000 | . 108
. 099
. 106 | .109 | •105
•094
•105 | .107 | •102
•090
•135 | 091 | .105
.089
.136 | | F
ELEV
RAD | .005 | 7.003
7.000
00i | 0.030 | .004
.140 | 001
034 | 000.0 | 00000 | .001 | 0.000 | .003
040
-039 | .009 | 0.000 | .003
.037
008 | | HOR 12
W IND
CM/SEC | 398°76
515°71
422°77 | 417.82
0.00
419.10 | 390.37
0.00
341.38 | 274.17
364.41
0.00 | 259.25
341.11
230.78 | 0.00 | 460.29
579.86
482.00 | 434.64
551.39
462.20 | 435.79
548.77
423.07 | 623.09
516.77
432.71 | 420.78
507.90
424.95 | 477.94
0.00
484.23 | 529.74
691.18
550.13 | | RWV
SSES | .151 |
.970
0.000
175 | 0.000 | | .026
501
077 | 0.000
0.000
254 | .207
528
171 | -1.346
-1.346
237 | -328
899
196 | -1-870
-1-569 | -281
-743
153 | 069
0.000
0.158 | -1.797
312 | | RUW RUV RWV
REYNOLDE STRESSES | .013
649
999 | 0.000 | 0.000
0.000
1.460 | 196
1-454
0-0.00 | 1.455 | 0.000
0.000
0.873 | .870
1.462
439 | -2.627
-4.446
-3.398 | 1.935 | -1.846
.788
-1.693 | 1.530 | .919
0.000
017 | -3.435
-2.431
-1.632 | | RUW
REYNO | -1-196
-1-278
-1-395 | -1.311
0.000
-1.366 | 7.570
7.000
-1.346 | 1.661 | 465 | 000000 | -1.968
-1.615
-1.631 | -1.653
-1.652
-1.650 | -1.592
-2.259
-1.423 | -1.618
-2.105
-1.279 | -1,212 | -1-371
0-000
-1-283 | -2-335
-2-215
-2-190 | | WSB
DEV | 38.28
46.16
42.99 | 37.93
0.00
41.36 | 34.55 | 35.56
0.00 | 24.55
31.55
31.90 | 0.00 | 45.26
54.13
48.42 | 43.94
52.50
45.92 | 42.57
46.85
44.97 | 42.15
51.08
42.72 | 39.55
42.42
40.25 | 00.05
0.00
42.62 | 51.92
57.50
55.24 | | VSD
C. S.T | 61.72
69.67
63.92 | 54.88
0.30
45.43 | 46.65
0.00
40.47 | 37.34
60.33
0.00 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 0.00 | 104.94
131.83
98.91 | 1111.74
134.38
112.10 | 126-12 | 121-79
135-26
120-75 | 85.14
83.01
93.40 | 56.74
0.00
78.74 | 128.58
151.65
122.04 | | USD
WIN | 90.33
92.36
104.19 | 92.79
0.00
100.55 | 82.02
0.00
100.10 | 62.02
61.52
0.00 | 57-17
53-52
69-78 | 0.00 | 124,30
120,39
128,44 | 107.84
120.79
121.34 | 119.3A
147.77
115.04 | 119.85
139.06
115.9! | 114.36 | 120.97
0.00
129.31 | 124.89
131.51
128.24 | | MEAN | 394.20
512.94
425.03 | 414.43
9.99
432.50 | 277-75
0.00
405-39 | 271.67
362.88
5.00 | 256.91
339.07
226.94 | 0.00
0.00
205.77 | 4:8.69
564.70
479.21 | 420-42
535-34
455-61 | 422+60
594+32
451+30 | 405.70
498.94
424.64 | 412.00
501.54
*26.16 | 03.00 | 515-13
575-53
542-87 | | SITE | 1 2 2 3 | r. m | - 00 | 35 = | 32 - | 146 | 341.6 | VE | -12 m | 00 | in fulfi | ** 100 100 | | | TIME S
START | 426
1700
1700
1700 | 1730
1770
1730 | 1800
1800
1800 | 1900 | 1930 | 2000
2000
2000 | 427
930
936
936 | 1000 | 1030 | 1100 | 1130 | 1200
1200
1200 | 1400 | | XCEEDED
G
THOUSAND | ••• | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|---|-----------------------------| | W L ~ | 000 | 000 | 000 | 000 | 000 | 000 | 636 | 000 | 000 | ٥٥٥ | 000 | 000 | 000 | | LIMITS
VSQ
PARTS PER | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 600 | 000 | 000 | 000 | 5 00 | | EN RANS | .0283
0.0000
0.0000 | 0.0000 | 0170
0.0000
0.0000 | 0.0000 | 0.0000 | 0000000 | 0000000 | .3349
0.0000
0.0000 | 0.0000 | .3419
6.0000
0.0000 | 0.0000 | ,3613
0,0000
0,0000 | .3702
0.0000
0.0000 | | EU EV EW
LATENT HEAT TRANS | .0090
0.0000
0.0000 | 0063
0-0000
0-0000 | 0016
7-0000
0-0000 | 0042
9-6000
0.000 | .0205
9.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000 | 1857
0.0000
1.0000 | 2748
0.0000
0.0000 | .1907
0.0000
0.0000 | .1221
7.0000
0.0000 | .2569
6.0000
0.0000 | | EU
LATEN | -*20*0
0*0000
0*0000 | 7.0507
0.0000
0.0000 | .0410
7.0000
0.0000 | .0967
0.0000
0.0000 | .0521
0.0000
0.0000 | 0-000-0 | 0.0000 | 9212
0.0000
0.0000 | 9138
0-0000
0-0000 | 9550
0.0000
0.0000 | 0000°0
0°000
0°000 | 7.0030
0.0000 | -1.5430
0.0000
0.0000 | | AIR TEMP
IEAN SI DEV
CENTIGRADE | .2270
.2110
.2130 | .3100
0.000
0.2910 | .2920
0.0000
.3080 | .2540
.2310
0.0000 | .2520
.1980 | 000000000000000000000000000000000000000 | 0.000
•4690
0.0000 | .5570
0.0000 | . 1740
.6339
0.0000 | .8920
.6140 | .9110
.5900
0.0000 | .8390
0.000
.8130 | .6520
.5250
.6490 | | A1R
MEAN
CENTI | 13•
13•
10• | 12. | 11. | 0000 | . 6
. 4
. 4 | 000 | ំដូ | 112. | 13.
12.
n. | 13.
12.
0. | 13.
12. | 13. | 13. | | | 0333
0382
0346 | 0590
0,000
0699 | 0517
0.0000
0752 | 0530
0674
n.conn | 0336
0490
1863 | 0.0000
0.0000
-1271 | 0.0000
.2155
0.0000 | ,2496
,2554
0,0000 | .2347
.2640
^.0000 | .5285
.5270
0.0000 | .2367
.2052
0.9060 | .2079
0.0000
.2217 | .1869
.1953
.7046 | | HU HW
SENSIBLE HEAT TRANS | .0273
.0332
.0015 | .0626
0.7000
.0651 | .0110
.0000
.0565 | 0154
0595
0-0000 | *0338
*1232
2:2453 | 0.0000
0.0000
1.003 | 0.0000
0.0974
0.0000 | 0823 | .0798
.1219 | 2863
3363
0-000 | 0829
.0036
n.nnn | 0040
n.nnn
1376 | .1514 | | HU
SENSIB | •2909
•1221
•1020 | .3586
n.nnn
.2896 | .3087
0.0000
.4335 | .2417
.1906
n.0000 | .0954 | 0.0000
0.0000
0594 | 0.3000
3466
0.0000 | 6398 | 9508
0761
/ | 6709 | 6445
5910
0.0000 | 7.0000
7.0000
2260 | 5774 | | BETA | 0.00.0
0.0000
0.0000 | 0000000 | | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.00000 | 0.000 | 0.0000000000000000000000000000000000000 | 0.0000
0.0000
0.0000 | | THETA | 0018
-0831
0146 | 010%
0.0000
0083 | 0073
0-0000
0077 | 033r
.1361
n.000n | 6661
-1359
0217 | 0.0000
0.0000
0094 | -0104
-0259
0164 | 0075
0367
0138 | CO77
.0361
0078 | 0060
-0342
0167 | 0027
-0053
0247 | .3035
04:1000
0246 | -0047 | | E ETA | 1697
1780
2345 | 3536
^.0000
4059 | 3704
0.0000
4262 | 2797
3162
0-0000 | 2764
3080
0329 | 0.0000 | 5132
6632
1673 | 1256
-0032
0961 | 1736
0566
1965 | 040G
-1073
0396 | .2664
.3947
.278 | .3998
0.0000
.3597 | 0145
-0414
0188 | | \$116 | 42667
0 1
0 2
0 3 | re | ~ r.m | - 0 r | 126 | | 42767
0 1
0 2
0 3 | rv r- | - 2 - | 1 2 6 | 726 | | 3 2 1 | | START | 42
1700
1700
1700 | 1730
0571
1730 | 1830 | 1900
1900
1900 | 1930
1930
1930 | 2000
2000
2000 | 930 | 1000 | 1030
1030
1030 | 1100 | 1130 | 1200 | 1400 | | WIND
SHIFT
RAD | 000000000000000000000000000000000000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.000 | 0.0000000000000000000000000000000000000 | 0000 | 000000 | 0000 | 0.0000000000000000000000000000000000000 | 0.000 | 0.000 | 000000 | 000000 | |---------------------------|---|----------------------------|---|-----------------------------|---|----------------------------|----------------------------|----------------------------|---|---|---------------------------|----------------------------|----------------------------| | KIND
DIR
RAD | 0.000 | 0000 | 0000 | 000000 | 000000 | 00000 | 0.000 | 0000 | 0000 | 0.0000000000000000000000000000000000000 | 00000 | 0000 | 0000 | | GSD
ANGLE
RAD | .221 | .239
.232
.243 | .229
.218 | .169
.145
.181 | .191
.169
.191 | .245
.232
.227 | .120
.130 | .149
.117 | .138
.106 | .149
.117
.143 | .260
.246
0.000 | .149
.126 | .158
27.302
.136 | | G
AZ IM
RAD | 093 | .108 | .013 | .113 | 051
010
057 | 241
211
232 | .380
.392 | 0.010 | 221
198
211 | 135
102
115 | .173 | 035
125
208 | 0.000 | | FSD
ANGLE
RAD | .107 | .094 | .104
.089
.102 | .105 | .105
.085 | .100 | .097
.094
.129 | 960. | .107 | .101 | .116
.120
^.100 | 0643 | .087 | | F
ELEV
RAD | .003 | .035
-011 | .002
.035
014 | .005
.033
013 | .002 | 001 | .010 | 006 | 007 | 003
037
011 | 006
.038 | 005
041
016 | 0.000 | | HOR12
WIND
CM/SEC | 507.95
655.04
555.47 | 447.35
,72.67
487.55 | 499.10
638.99
520.33 | 501.72
666.29
549.77 | 533.61
703.91
585.71 | 420.56
605.23
452.76 | 330.10
423.16
320.41 | 187.01
275.96
214.63 | 293.69
399.72
314.76 | 250.68
359.28
281.34 | 162.44
230.61
0.00 | 151.35
265.77
164.54 | 145.19
247.27
155.36 | | RWV
SES | .595
961
237 | -1.393 | -1 c095 | .251
544
068 | -208
880
318 | 0.000
652
315 | .004
282
080 | .038
.111
002 | .054
050
017 | .007
105 | .050
.009
.009 | 011 | .020 | | RUW RUY
REYNOLDS STRES | -1.097
.400
-2.071 | 1.750
3.969
2.582 | 2.276
2.123
3.256 | -1.391
-066 | .589
495
381 | 3.343
1.304
-,572 | 171
484
-2.497 | .018
019 | .310 | 1.452 | -2.215
-3.487
0.000 | .083
.109 | 052
-016
087 | | RUW
REYNO | -2.322
-2.456
-2.219 | -1.472
-2.185
-1.832 | -1.947
-2.326
-1.842 | -2.044
-1.993
-1.965 | -2.282
-2.215
-2.179 | -1.430
-1.418
-1.568 | 996 | 196 | 626
625
739 | 416 | 159
296
^.000 | 065 | 109 | | MSD
DEV | 50.82
56.89
55.15 | 44.45
56.36
46.84 | 48.84
53.76
50.26 | 50.05
54.10
53.58 | 52.75
57.82
55.64 | 41.93
44.83
44.53 |
30.33
38.38
29.03 | 15.26
2.92
19.28 | 29.96
30.83
30.28 | 24.84
25.88
26.81 | 18.98
23.52
0.00 | 10.60
11.54
10.93 | 12.55
14.11
11.41 | | VSD
ST | 116.21
133.25
122.30 | 110.66
137.66
121.16 | 112.23
134.38
115.28 | 84.21
97.55
99.92 | 101.82
118.27
112.06 | 106.59
145.30
55.73 | 41.76
56.76
41.93 | 29.20
33.78
31.78 | 45.60
40.19 | 38.52
43.94
40.41 | 37.01
41.92
n.00 | 22.85
33.90
23.80 | 22.48
.08
21.22 | | USD
WIND | 118.19
116.65
126.61 | 104.37
108.71
109.90 | 115.87
124.71
114.91 | 120.76
120.66
1111.19 | 115.97
107.58
117.00 | 155.57
155.57
152.28 | 89.74
84.47
115.64 | 39.66
37.93
41.93 | 59.40
56.50
60.83 | 60.14
52.97
64.95 | 92.71
124.34
0.!!0 | 19.26
25.67
23.43 | 25.86
26.78
21.07 | | MEAN | 494.93
642.40
548.77 | 434.31
557.22
480.81 | 486.37
624.85
513.45 | 494.72
653.61
545.42 | 524.00
694.52
580.22 | 408.37
589.3,
452.14 | 327.77
419.82
335.77 | 184.89
274.11
313.47 | 291.01
397.97
316.37 | 247.86
357.02
280.52 | 158.24
226.33
0.30 | 149.65
263.88
165.15 | 143.43
246.05
154.89 | | SITE | 2767 | .4 ti m | - 76 | ~ 0 F | 406 | - 12 5 | 3 2 1 | 3 5 1 | 222 | 355 | - 7 5 | | → 7/ F | | SIARI | 42
1430
1430
1430 | 1500
1500
1500 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | 1700 | 1800
1800
1800 | 1900 | 1930
1930
1930 | 2000 | 2030 | 2360
2300
2300 | 2330
2330
2330 | | DED
G
SAND | 000 | 000 | 000 | 000 | 000 | ••• | 000 | 000 | 0 0 C | coc | 000 | 000 | 000 | |---------------------------------------|---|---------------------------|-----------------------------|---|---|-----------------------------|--------------------------|-------------------------|---|---------------------------|---|---|---| | EXCEEDED G G R THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ၀၀င | 000 | 000 | 000 | | LIMITS 6
VSG P
PARTS PER | 000 | • • • | 000 | c o o | ••• | 000 | 000 | 000 | 000 | 000 | 0 00 | 000 | 000 | | : | 0.000.0
0.000.0 | 0.00000 | .2797
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0.0000
0.0000
0.0000 | .0814
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0201
0.0000
0.0000 | | EU EV EW LATENT HEAT TRANS | 0543
0500
 | .3661
0.0000
0.0000 | .0024
0.0000
0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0512
0.0000
0.0000 | 0181
0-0000
-0046 | 0.0000000000000000000000000000000000000 | .0151
0.0000
0.0000 | 0365
0-0000
0-0000 | 0.00000 | 0001
.0081
0.000c | | • | -1.4133
0.0000
0.0000 | 0.0000 | -1.0723
0.0000
0.0000 | 00000 | 7234
0.0000
0.0000 | -1.0444
0.0000
0.0000 | 0.0000 | .0869 | •1232
0•0000
0•0000 | .1334
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .5580
.4800
.5130 | .5480
.4200
.5150 | .4810
.3750
.4910 | .5680
.3560
.4240 | .3430
.1710
.2130 | . 4340
. 4340 | .5280
.3010
.5020 | .6160
.2430
.5460 | .4080
.2550 | .4320
.2590 | .6110
.3330
n.0000 | 000000000000000000000000000000000000000 | .9370
.1970
1.3870 | | AIR
EAN
CENT | 13.
12. | 14.
13. | 14.
13. | 13.
12.
13. | 12.
12.
13. | 111. | 100 | 46. | ٠٠٠ | * • • | w.e.c | 606 | *** | | • | .1544
.1867 | .1323
.1350
.1318 | .1053
.1290
.1110 | .0250 | .0255
.0255 | 0045 | 0733 | 0276 | 0711 | 0568
0351
0665 | 0367 | 0.0000 | 0279 | | U HV HW
ENSIBLE HEAT TRANS | .0146
0367
0016 | .0274
0568
0163 | 0001
0652
1537 | 1461
0892
1158 | .0250 | .0407
.4824
.4850 | 1143 | .0108
.0218
.0115 | 0010
.0419 | 0146
0596
0184 | 1247
1006
0.0000 | 00000-0 | 0191 | | HU
SENSIBI | 5887
3988
5894 | 4478 | 4027
4147
4782 | 1922
1275
0234 | 0554 | 1.1628 .25914969 | .4592
.2272
878 | .2456
.0837
.2093 | .2704 | .1987
.0087
.2564 | .6790
.5215
0.0000 | 000000000000000000000000000000000000000 | .0823
0001
.0454 | | BETA | 0.0000000000000000000000000000000000000 | 0.00000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | | THETA | 0054
-0481
0188 | .0301 | 0051
-0313
0208 | 0027
-0294
0200 | 0055
0408
0174 | 008A
.0409 | .0037
.0094
0260 | 0109
.0290
0169 | 0136
-0471
0120 | 0094
.0350
0169 | -0092
-03330 | .040 | 0047
.0374
0219 | | E ETA | 0478
0728 | .1145
.1704
.1170 | .0218
.087?
.0533 | .0564
.1114
.0726 | 0114
0114
0567 | 2466
2145
2368 | .3927
.3927
.4668 | .0006 | 2228
1972
2115 | 1234
0941
1100 | .0342
.0829
0.0000 | 0320
1245
2002 | 0029
-i.5704
0981 | | 5175 | 2767
1
2
3 | 3 2 1 | 406 | - 26 | 3 5 1 | ~~~ | ** ** ** | 32. | 325 | - ~ E | es to es | -~- | | | START | 1430
1430
1430
1430 | 1500
1500
1500 | 1530
1530
1530 | 1600 | 1630
1630
1630 | 1730
1700
1700 | 1300
1600
1800 | 1900 | 1930
1930
1930 | 2000 | 2030 | 2300
2300
2300 | 2330
2330
2330 | | 0.15.0 | 222 | 888 | 222 | 0000 | 222 | 888 | 888 | 222 | 888 | 222 | 888 | 222 | 225 | |-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|-------------------------|---------------------------|----------------------------|-------------------------------------|----------------------------|--------------------------|------------------| | WIND
SHIFT
RAD | 00000 | 0000 | 0.000 | • • • | 00000 | 0000 | 0.0000 | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | | WIND
DIR
RAD | 000000 | 0000 | 0000 | 000000 | 0.000 | 0.000 | 0.0000 | 0.000 | 000000 | 000000 | 0000.0 | 0.000 | 0000 | | GSD
ANGLE
RAD | 171. | .279
.251
.268 | .196
.114
.156 | .134 | .301
.169 | .240
.234
.273 | 0.000
.190 | .234
.209
.226 | .334
.317 | .346
0.000
.350 | .319
.323
.269 | .283
0.000
.210 | .183 | | G
AZIM
RAD | .075
002
028 | .026
046
060 | 236
337
319 | 160 | 158 | 001
163
030 | 0.000 | 305
234
221 | 128 | .018
0.000 | .042
.048
030 | .091 | .065 | | FSD
ANGLE
RAD | .039
.043 | .081 | .085
.061 | .069
.049 | .036
.020
.072 | .099
.099 | 0.000
.057
0.000 | .089 | .159
.145
.137 | .144
0.000
.160 | .128 | .105
0.000
.087 | .091 | | F
ELEV
RAD | -002 | 002 | 0.000 | -0045 | 009
003 | .017
.016
003 | 0.000 | .016 | .003 | .010
0.000
.009 | .001 | 000.000 | •006 | | HORIZ
WIND
CM/SEC | 105.81
182.50
116.90 | 114.44
207.18
120.73 | 137.96
229.64
154.47 | 104-17
191-43
118-36 | 76.51
152.94
84.60 | 107.43
171.56
104.66 | 0.00
139.63
0.00 | 95.76
156.86
108.32 | 119.87
148.54
144.47 | 210.44
0.00
200.44 | 279.52
351.87
283.21 | 302.72
0.00
316.79 | 403.24
518.16 | | RWV
SSES | .010
052
012 | .014
156
044 | -012
-025
0-000 | -034 | 044 | .007
110
022 | 0.000 | .013
.003
015 | -007
142
098 | 0.000 | -172
340
213 | .166
0.000
148 | -197 | | REYNOLDS STRESSES | 344
027 | 101
718
209 | 285
113
225 | 216
-103
171 | 160
080
059 | .501
.675 | 0.000 | .181 | .283
190 | .204
3.090
-2.206 | 2.544
5.731
1.324 | .992
0.000
190 | -1-401 | | RUW
REYNO | 005 | 035
006
008 | 103 | 044 | 002
016
018 | 052
195
082 | 0.000
016
0.000 | 044 | 198
147
161 | 430
0.000
231 | 359 | 0.000 | -1.246 | | MSD
DEV | 4 • 18
8 • 03
4 • 83 | 8.28
10.39
6.25 | 12.10
14.31
12.33 | 8.15
9.88
10.13 | 1.63 | 9.44
16.69
8.52 | 0,00
0,50
0,00 | 8°.05
14°.20
8°.17 | 15.34
21.25
16.35 | 23.31
0.00
20.12 | 29.42
17.77
24.52 | 29.61
0.00
26.24 | 39.88
43.83 | | WIND ST D | 16.09
28.56
22.79 | 51.57
51.27
32.12 | 24.25
24.77
21.86 | 19.65
26.49
20.62 | 19.28
26.06
21.35 | 26.28
40.28
25.11 | 26.00 | 21-67
31.35
21-12 | 43.69
53.29
56.98 | 88.34
0.00
73.29 | 82.60
98.82
79.34 | 87-67
0-00
66-78 | 83.86 | | USD
HI
HI
CM/S | 12-38
18-66
12-22 | 24.58
25.96
20.87 | 33.02
41.33
28.82 | 31.61
41.76
31.90 | 27.34
29.57
31.14 | 41.09
51.26
44.77 | 31.37 | 32.06
37.60
25.64 | 55.57
60.17
40.50 | 147.94
0.00
141.87 | 106.13
119.68
101.65 | 0.00 | 95.60 | | MEAN | 104.27
180.35
115.67 | 110.08
200.90
118.46 | 135.61
228.66
156.94 | 102-48 | 73.78
50.90
69.51 | 104-42 | 0.00
13.7.42
9.00 | 93-33
153-75
107-88 | 112.63
140.27
138.30 | 197.06
0.00
188.13 | 267.63
334.80
271.62 | 290.65
0.00
308.84 | 394.64
508.92 | | SITE | 3512 | 32 | -06 | - 46 | | - N m | -0.5 | ~~~ | -26 | | - 25 | ~ ve | ~~~ | | TIME | 4.28 | 333 | 100 | 130 | 230 | 0000 | 430
633
633 | 300
300
500 | 700
700
700
700 | 50267
1430
1
1430 2
1430 3 | 1530
1530
1530 | 1600 | 1630 | ## CORRECTED DATA FOR SITE 3, MAY 2, 1967, Pages DIO-DI5 | TIME | SITE | E MEAN | JSD | VSD | 450 | RUW | RUV | RWV | HORIZ | F | FSD | G | GSD | |---|--|--|--|---|---|--|--|--|--|---|--|---|---| | START | • | CHIM | W | IND ST D | | REYNOL | DS STRES | | WIND | | ANGLE | MISA | ANGLE | | | | ••••• | CM/ | SEC | | DY | | | | | RAD | RAD | RAD | | | | _ | | | | _ | | | 15 | | | | | | | 267 | | | | | • | | | | | | | | | 1430 | 3 | | 142.71 | 86.14 | 23.70 | | -2.912 | | 200.44 | | -184 | .017 | •412 | | 1530 | 3 | | 101-64 | 93.44 | 28 • 88 | 564 | 1.531 | 296 | 283.2 | 010 | .129 | 034 | •317 | | 1600 | 3 | 308.88 | 70.74 | 78.65 | 30.90 | 661 | 168 | | | 012 | . 103 | .028 | .247 | | 1630 | 3 | 410.78 | 88.33 | 90.96 | 41.28 | 982 | 818 | | 418.6 | | • 102 | .005 | .213 | | 1705 | 3 | | 101.69 | 73.00 | 46.59 | -1.578 | 407 | | | 007 | | 178 | .153 | | 1735 | 3 | 333.08 | 75.51 | 44.78 | 30.74 | 688 | -1.038 | | | 005 | | 291 | .138 | | 1800 | 3 | 273.05 | 62.06 | 37.56 | 26.32 | 450 | 346 | | | 008 | | 145 | .136 | | 1830 | 3 | 212-27 | 45.88 | 34.88 | 18.98 | 217 | 394 | | | 023 | -046 | .188 | .163 | | 1900 | 3 | 186.54 | 37.70 | 20.13 | 15.04 | 152 | 003 | | | 029 | •079 | -266 | •105 | | 2000 | 3 | 201.85 | 38.69 | 28.44 | 18.40 | 210 | .064 | | | 019 | | 116 | .139 | | 2030 | 3 | 205.29 | 37.89 | 27.96 | 19.93 | 271 | 089 | | | 016 | | 133 | -136 | | 2100 | 3 | 192.26 | 40.42
38.80 | 29.71
15.94 | 20.62 | 291
185 | 163 | | | 9013 | | 160 | -140 | | 2136 | 3 | 180.94 | 35-10 | 22.95 | 15.36 | 169 | -109 | | | 001 | | 440 | | | 2200 | 3 | 198.64 | 42.91 | 28.88 | 17.80 | 185 | -081 | | | 7005 | | 356 | -123 | | 2230 | 3 | 163.71 | 30.43 | 27.31 | 16.61 | 173 | 261
.019 | | | 500 8
0012 | | 237 | -143 | | 2305 | 3 | 166.17 | 33.72 | 23.28 | 15.61 | 153 | 284 | | | 6010 | | 090 | -148 | | 2330 | 3 | 160.92 | 48.60 | | 14.63 | 119 | 528 | | _ | 3029 | | -172 | | | | | | 70000 | | | | 1720 | 01000 | | 3 -1027 | | **** | **** | TIME | SIT | E ETA | THETA | BETA | -4L | HV | 1414 | AIR T | FMD | e u | State of the | eu. | | | TIME | | E ETA | THETA | BETA | HU
SENS I | HV
BLE HEAT | HW
TRANS | AIR T
Mean s | | EU | Z-/ | ÉW
TRANS | | | | | E ETA | THETA
RAD | BETA
RAD | SENSI | HV
BLE HEAT
L/(CM2-M) | TRANS ! | HEAN S | T DEV | LATEN | T HEAT | TRANS | | | START | | | | | SENSI | BLE HEAT | TRANS ! | | T DEV | | T HEAT | TRANS | | | START | 267 | RAD | RAD | RAD | SENS I | BLE HEAT
L/(CM2-M) | TRANS | MEAN S
CENTIC | T DEV | LATEN
••••CAL | T HEAT | TRANS | | | STAR1 | 267 | RAD
1226 | RAD0119 | RAD
0.0000 | SENS ! | BLE HEAT
L/(CM2-M)
-
3752 | TRANS (| CENTIC | T DEV | LATEN | T HEAT
-CM2- | TRANS | ••• | | STAR1 | 267
3
3 | RAD
1226
0100 | 0115 | RAD
0.0000
0.0000 | •5517 | BLE HEAT
L/(CM2-M)
-
3792
2040 | .0267 | MEAN S
CENTIO | T DEV
BRADE
5150
3820 | LATEN
CAL
0.0000
0.0000 | T HEAT
 | TRANS
MIN)
0 0.0 | 000 | | STAR1
1430
1530
1600 | 267
3
3 | 1226
0100
-0258 | 0115
0201 | RAD
0.0000
0.0000
0.0000 | CAICAICAICAI | BLE HEAT
L/(CM2=M)
-
3752
2040
0134 | .0267
.0485
.0174 | 20 | 5150
3820
1670 | LATEN
CAL
0.0000
0.0000
0.0000 | T HEAT
 | TRANS
HIN)
0 0.0
0 0.0 | 000 | | 51430
1530
1600
1630 | 267
3
3
3 | 1226
0100
-0258
-0007 | 0115
020*
0197
0231 | RAD
0.0000
0.0000
0.0000 | •5517
•••0175
••0737
••0824 | BLE HEAT
L/(CH2-M)
-
3752
2040
0134
.0239 | .0267
.0485
.0174 | ZO | 5150
3820
1670 | LATEN
CAL
0-0000
0-0000
0-0000 | 7.000
0.000
0.000
0.000 | TRANS
HINI
0.00
0.00
0.00 | 000 | | 57AR1
1430
1530
1600
1630
1705 | 267
3
3
3
3 | 1226
0100
-0258
-0007
1802 | 0115
0201
0197
0231
0140 | RAD
0.0000
0.0000
0.0000
0.0000 | •5517
••0175
••0737
••0824
•1850 | BLE HEAT
L/(CH2-MI
3752
2040
0134
.0239
.0071 | .0267
.0485
.0174
0144 | 20.
20.
20.
20.
19. | 5150
3820
1670
2480 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 000.000.000.000.000.000.000.000.000.00 | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000 | | 57AR1
1430
1530
1600
1630
1705
1735 | 267
3
3
3
3 |
1226
0100
-0258
-0007
1802
2487 | 0119
0209
0199
0291
0140 | RAD
0.0000
0.0000
0.0000
0.0000
0.0000 | •5517
••0175
••0175
••0824
•1850
•4301 | BLE HEAT
L/(CM2-MI
 | .0267
.0485
.0174
0144
0445 | ZO | 5150
3820
1670
2480
1560 | LATEN
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | ###################################### | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000 | | 57AR1
1430
1530
1600
1630
1705
1735
1800 | 267
3
3
3
3
3 | 1226
0100
-0258
-0007
1802
2487
1500 | RAD011502020197023101400140 | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | CAICAICAICAICAICAICAICAICAICAICAICAICAICAICAI | BLE HEAT
L/(CM2-MI
 | .0267
.0485
.0174
01445
0532 | 20. 20. 20. 20. 19. 18. 18. 16. | 5150
3820
1670
2480
1560
4750 | LATEN
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 3-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000 | | 51430
1530
1600
1630
1705
1735
1800 | 267
3
3
3
3
3
3 | 1226
0100
-0258
-0007
1802
2987
1500
-1810 | RAD011902001990291014001400272 | RAD
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | -5517
0175
0737
0824
-1850
-4501
-5410 | | .0267
.0485
.0174
0144
0453
0570
0570 | ZO. 20. 20. 20. 19. 418. 418. 418. 418. 418. 418. 418. 418 | 51 DEV
5150
3820
1670
2480
2480
4750
6640 | LATEN
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000 | J-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #1N) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000 | | 51430
1530
1600
1630
1705
1735
1803
1833 | 267
3
3
3
3
3
3 | 1226
0100
-0258
-0007
1802
2487
1500
-1810
-2662 | 0119020901990291014001420272 | RAD
0.9000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | •5517
•••175
••0175
••0175
••0824
•1850
•4301
•5410
•6429 | BLE HEAT
L/ICM2-MI
3752
2040
0134
-0239
-0071
1190
0464
1494
0036 | .0267
.0485
.0174
0144
0445
0570
0570
0337 | 20.
20.
20.
20.
19.
18.
18. | 5150
3820
1670
2480
4750
4640
9840 | D-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000 | J-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000
000
000 | | 51AR1
1430
1530
1600
1630
1735
1803
1800
1930 | 267
3
3
3
3
3
3
3 | 1226
0100
-0258
-0007
1802
2987
1500
-1810
-2662
1146 | RAD011902010199029101100127203200239 | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | •5517
••••CAI
•5517
••0175
••0737
••0824
•1850
•4301
•5410
•4629
•0244
•1257 | BLE HEAT
L/(CM2-MI
3752
2040
0134
-0239
-0071
1190
0464
1494
0036
0002 | .0267
.0485
.0174
0144
0532
0570
0337
0228
0230 | ZO. 20. 20. 20. 19. 18. 18. 11. 9. | 5150
3820
1670
2480
1560
4750
6640
9840
9840 | LATEN CAL 00000 | 3-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000
000
000 | | 51AR1
1430
1530
1600
1630
1705
1735
1803
1830
1930
1930
2000 | 267
3
3
3
3
3
3
3
3
3
3
3 | 1226
0100
-0258
-0007
1802
2487
1500
-1810
-2662
1146
1347 | RAD01190290199014001100142027202390239 | RAD
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | CAICA | BLE HEAT
L/(CM2-MI
 | .0267
.0485
.0174
0144
0532
0570
0397
0228
0230 | ZO | 5150
3820
1670
2480
1560
4750
6440
9840
9840
9840 | LATEN CAL 00000 | 9-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000
000
000
000 | | 57AR1
1430
1530
1600
1630
1705
1735
1803
1833
1930
2000
2030 | 267
3
3
3
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -0007180229871500 -1810 -2662114613471636 | RAD011902001990140014202720239023902196 | RAD
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | CAICA | BLE HEAT
L/(CM2-MI
 | .0267
.0485
.0174
0144
0532
0570
0337
0328
0330 | ZO | 3150
3820
1670
2480
1560
4750
6640
9840
9840
3650 | LATEN
CAL
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000 | 9.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | TRANS 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000
000
000
000 | |
57AR1
1430
1530
1600
1630
1735
1735
1803
1830
1900
1930
2000
2030
2100 | 267
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -00071802298715001810 -26621146134716364240 | RAD01190200199029101400142027203200239021960106 | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | -5517017907370824 -1850 -4301 -5410 -4629 -0244 -1257 -1343 -1919 | BLE HEAT
L/(CM2-MI
3752
2040
0134
-0239
-0071
1190
0464
1494
0036
0002
0110
0254
0046 | .0267
.0485
.0174
-0144
-0445
-0532
-0570
-,0397
-0228
-0345
-0356 | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. | 5150
3820
1670
2480
1570
4750
46640
9840
5290
4090
3650
3650 | DATEN CAL | 3-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 | 000
000
000
000
000
000
000
000
000
00 | | 51AR1
1430
1530
1600
1630
1705
1830
1830
1930
2000
2030
2136 | 267
3
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -0007180224871500 -266211461347163643403518 | RAD0119020019902310140014202720239C21901960099 | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | -5517
0175
0737
0824
-1850
-4501
-5410
-4629
-0244
-1257
-1341
-1919
-1668 | BLE HEAT
L/(CM2-MI
3752
2040
0134
-0239
0071
1190
0464
0096
0002
0110
0254
0260 | -0267
-0485
-0174
0144
0452
0570
0397
0328
0330
0356
0252 | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 8. 8. 8. 8. | 5150
3820
1670
2480
1560
4750
46640
9840
5290
4090
3590
3590
3200 | DATEN CAL | 3-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 000
000
000
000
000
000
000
000
000
00 | | 51AR1
1430
1530
1600
1630
1705
1735
1803
1900
1930
2000
2030
2136
220G | 267
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -0007180224871500 -2662114613471636434035182431 | RAD0119029019901400140014202720239023902190106 | RAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | BLE HEAT
L/(CM2-MI
3752
2040
0134
-0239
-0071
1190
0464
0494
0096
00902
0110
0254
0260
0070 | -0267
-0485
-0174
-01445
-0570
-0570
-0278
-0236
-0236
-0257
-0228
-0236
-0257 | 20. 20. 20. 20. 19. 18. 18. 11. 9. 9. 8. 8. 7. | 5150
3820
1670
2480
1560
4750
46640
9840
5290
4090
3650
3290
3290 | DATEN CAL | 3-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 | 000
000
000
000
000
000
000
000
000
00 | | 51430
1430
1600
1630
1705
1735
1830
1930
2000
2030
2136
2206
2230 | 267
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -0007180224871500 -1810 -2662114613471636351824310612 | RAD01190201019902310140014202720239023902190164 | RAD 0.9000 0.0000 0.0000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 | -5517
0175
0175
0737
0824
-1850
-4301
-5410
-4629
-1257
-1343
-1919
-1668
-1183
-1800
-3869 | | .0267
.0485
.0174
0144
0532
0532
0230
0345
0258
0259
0259
0259
0259 | ZO. 20. 20. 20. 19. 18. 18. 11. 9. 9. 4 | 5150
3820
1670
2480
1560
4750
4640
9840
9840
9840
9840
9840
9840
9840
98 | 0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000 | 9-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
000
000
000
000
000
000
000
000
00 | | 51AR1
1430
1530
1600
1630
1705
1735
1803
1900
1930
2000
2030
2136
220G | 267
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 12260100 -0258 -0007180229871500 -1810 -2662114613471636351806121003 | RAD0119029019901400110014202390239023901960094012401740151 | RAD 0.9000 0.0000 0.0000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 | | BLE HEAT
L/(CM2-MI
3752
2040
0134
-0239
-0071
1190
0464
0494
0096
00902
0110
0254
0260
0070 | -0267
-0485
-0174
-01445
-0570
-0570
-0278
-0236
-0236
-0257
-0228
-0236
-0257 | ZO. 20. 20. 20. 19. 18. 18. 11. 19. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18 | 5150
3820
1670
2480
1560
4750
6440
9840
9840
9840
9840
9840
9840
9840
9 | DATEN CAL | 3-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000
0-000 | TRANS #IN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
000
000
000
000
000
000
000
000
00 | | SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ••• | 000 | |---------------------------------------|---------------------------|-------------------------|-------------------------|---|---|---|---|-------------------------|--------------------------|-------------------------------------|---------------------------|---------------------------|---| | TS EXCEEDED F G PER THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ••• | 000 | | LIMITS
VSQ
PARTS PER | 000 | 500 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | EW
RANS
N) | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0000°0
00000°0 | .1888
0.0000
0.0000 | .3265
0.0000
0.0000 | .2336
0.0000
0.0000 | 0.0000 | | EU EV EW
LATENT HEAT TRANS | .0338
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0687
0.0000
0.0000 | 5181
0.0000 | .3970
0.0000
0.0000 | .1857
0.0000
0.0000 | .0277
0.0000
0.0000 | | | .0349
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.00000 | 00000 | 2126
0.0000
0.0000 | 3.2180
0.0000
0.0000 | 3104
0.0000
0.0000 | 0.0000 | 5724
0-0000
0-0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .5140
.2980
.3610 | .3810
.1760
.4200 | .3120
.2070
.3500 | .2400
.1390 | .3390
.5550
.2630 | .2700
.3600 | 0.0000
.2500
0.0000 | .4100
.2260
.4410 | .3790 | .5320
0.0000
.5150 | .2540
.2390
.3820 | .2940
n.nnn | .3130
.1660
.2480 | | E AN CEN | 200 | 12: | 1.
2. | 15:1 | 12: | • • • | coc | ••• | v 4 v | 20.00 | 20.
20. | 20. | 19. | | | 0.0000 | 0110
0052
0004 | 0?11
0132
0210 | 0098 | 0042 | 0211 | 0.0004
0.0004 | 0113 | .0579 | .0584
0.0000
.0226 | .0396
.0314
.0412 | .0172 | 0165
0038
0122 | | SENSIBLE HEAT TRANS | .0876
.0278
.0268 | 0692
0409
1035 | 0335
.0058
0472 | 0203
0031
0505 | 0739
0083 | 0084
.0899
.0353 | 0.0000
0147
0.0000 | 0385 | 1765 | 6081
0.0000
3193 | 0266
0634
1732 | .0420
0.0000
0114 | .0816
.0277
.0203 | | HU
SENSIE | .0596
0400
8460 | .0860
.0505
.0722 | .1135
.1142
.1085 | .0591
.0520
.0634 | .0399 | .0328 | 0.0000
0.0000
0.0000 | .0306
-0306
-0271 | .0779 | 3438
0.0000
.5378 | 4249
2885
0178 | 1339
n.nnn
0735 | 0884
1707
0825 | | BETA | 0.000
0.0000
0.0000 | 0.00000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.00000 | 0.00000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | | THETA | -0031 | 004
0361 | 7044
-050*
0127 | 2069
0444
0117 | 0084
0369 | .0147
.0118 | 0.000n
.0467
.0000n | .0387
.0387 | .0204 | .0023
0.0000 | .0022 | .0009 | 0002 | | ETA | .0848
0114
0300 | .0250
0578
0696 | 2507
3412
3216 | 2777 | 1647 | .0429
.1865
.0314 | 0.0000 | -2152 | 0960
.0045
0706 | 0.000 | .1132 | 0962 | .0562
.0741
.0006 | | SITE | 1 2 2 3 | -26 | | HNE | | | -0" | | -46 | | - 26 | | 705 | | TIME S | 428 | 999 | 0001 | 130 | 230
230 | 4 4 4
0 0 0
0 0 0 | 444
000
000 | 5000 | 700
700
700 | 50267
1430 1
1410 ?
1430 3 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | | WIND
SHIFT
RAD | 00000 | 0000 | | | 0.00 | 0000 | 0000 | 0.000 | 000000 | 0000 | 0000 | 0000 | 00000 | |----------------------------------|-----------------------------|----------------------------|----------------------------|--------------------------------------|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | WIND
DIR
RAD | 0.000 | 0.000
 00000 | | 0000 | 0.000 | 0000 | 00000 | 0.000 | 0.000 | 00000 | 000000 | 0000 | | GSD
ANGLE
RAD | -177
-157
-130 | .142
.137 | •163
•121
•116 | .138 | .083 | .146
.112
.118 | .151
.109
.116 | .149
.109 | .108
.070 | .126
.123
.105 | .186
.148
.122 | .153
.110 | .197
.116
.121 | | G
AZIM
RAD | 129
127
151 | 248
236
247 | 1 1 1 | • • • • | .329 | 142
096
098 | 157
106
113 | 174
144
136 | 445
421
373 | 375 | 126
-011
201 | 122
-013
052 | 048 | | FSD
ANGLE
RAD | .100 | .084 | | | .063 | .099
.075 | .080 | .080 | .101
.063
.068 | .067 | .104
.073 | .102
.068
.077 | .103
.073 | | F
ELEV
RAD | 0.000 | 007 | 90 | ••• | 025 | .004
.021
016 | .005
.026
013 | .004 | .001 | .005 | .005
.025
007 | .004
.020
010 | .024 | | HOR12
WIND
CM/SEC | 458.68
614.26
481.29 | 332.54
425.56
333.11 | 254.18
354.84
274.58 | 296.97
296.97
213.94
181.07 | 271.14
186.20 | 194.74
282.88
203.20 | 203-32
288-28
206-50 | 196.47
287.89
212.19 | 166.11
261.52
189.86 | 156.79
256.48
180.27 | 188.91
279.70
199.35 | 169.43
260.62
185.30 | 137.26
229.79
167.36 | | RWV | .025
338
024 | .039
132
047 | -039 | 066 | 003 | -028
033
012 | 0.000 | .035 | 020 | 010 | .005 | 024 | .022
012
004 | | RUW RUV RWV
REYMOLDS STRESSES | 1.217 | 724
934
711 | 169 | 983 | 034 | 004
.046 | 091
130
045 | 086 | .033 | -314
092
-120 | .069
266
163 | .031 | 629 | | RUW
REYMOI | -1.480
-2.040
-1.327 | 701
883
580 | -439 | 255 | 141 | 239 | 276 | 260 | -189 | 163
182
142 | 272 | 200 | 167 | | WSD
DEV | 43.10
49.72
39.55 | 30.97
34.90
26.10 | 25.74 | 22.06
16.12
16.15 | 17.67 | 19.02
21.31
15.62 | 20.98
23.06
16.92 | 19.80
23.05
17.68 | 15.78
16.97
13.04 | 15.00
17.83
13.50 | 18.84
20.44
15.11 | 16.66
17.72
14.10 | 14.13
16.52
13.25 | | VSD
ST | 83-19
96-95
62-25 | 46.26
58.71
38.49 | 40.93
43.08
31.99 | 29.75
29.75
20.36 | 23.36
17.25 | 28.26
31.65
24.19 | 30.22
31.48
23.80 | 29.20
31.47
25.32 | 17.73
19.01
13.88 | 19.63
32.04
19.82 | 34.49
40.54
24.72 | 25.21
26.84
23.20 | 24.45
25.46
19.79 | | USD
WIND
***CM/SEC | 106.91
101.76
101.02 | 73.92
67.77
73.76 | 62-11
57-74
61-69 | 51.22
46.01
37.86 | 37.81
37.31 | 40.41
37.75
38.58 | 41.46
40.03
37.70 | 42.0m
41.11
40.11 | 42.84
33.00
38.17 | 38°76
32°81
34°73 | 45.00
45.24
42.27 | 31.20
30.10
30.41 | 46.27
43.32
33.47 | | MEAN | 451.49
605.23
475.88 | 329.45
419.78
329.02 | 250.96
351.83
272.19 | 292.00
292.00
211.28
180.07 | 268.23
184.71 | 192.72
280.76
201.47 | 201-11
286-22
204-76 | 194.38
285.68
210.20 | 165-32
258-21
187-45 | 15°.69
2512
177.91 | 185.77
276.39
197.03 | 167.54
258.87
183.61 | 134.98
228.17
165.93 | | SITE | 3776 | | | | ~ m | ~ N E | 446 | - N E | - NE | ~ N M | | | | | THE | 502
1705
1705
1705 | 1735
1735
1735 | 1800 | 1630 | 1900 | 1930
1930
1930 | 2000 | 2030 | 2130
2100
2100 | 2136
2136
2136 | 2200 | 2230
2230
2230 | 2365
2305
2305 | | DED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|-------------------------------------|---------------------------|---------------------------|---------------------------|---|-------------------------|-------------------------|-------------------------|---|---|---------------------------|---------------------------|---------------------------| | EXCEEDED
F G
R THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS I | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0 0 0 | 000 | 000 | 900 | | EW
RANS
N) | .0579
0.0000
0.0000 | .0212
0.0000
0.0000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | 0.0000 | 00000 | 000000 | 000000000000000000000000000000000000000 | 0263
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | | EV EW
T HEAT TRANS | .0531
0.0000
0.0000 | .0112
0.0000
0.0000 | .0452
0.0000
0.0000 | 0225
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0.00000 | 0.0000 | 0.00000 | 0.0000 | .0103 | .0327
0.0000
0.0000 | 0039
0.0000
0.0000 | 0.0000
0.0000 | | EU
LATENT | 0.0000 | 2328
0-0000
0-0000 | 0.0000 | .2014
0.0000
0.0000 | 0.0000000000000000000000000000000000000 | 0.00000 | 0.00000 | 0.00000 | 0.0000 | .1349
0.0000
0.0000 | .1629
0.0000
0.0000 | .0997
0.0000
0.0000 | .1768
0.6000
0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .3050
.1890
.1560 | .4870
.2990
.4750 | .7120
.4410
.6640 | .8570
.7170
.9840 | .5780
.5790
.5290 | .4670
.3620
.4090 | .3580
.2680
.3650 | .4019
.3130 | .4470
.2690
.3200 | .3960
.2750
.3000 | .4020
.3090
.3280 | .2930
.2080 | .2730
.2970 | | AIR
EAN
CENTI | 188 | 17.
18. | 16.
17. | 13.
15. | 113. | 9::0 | 10. | | 10. | - ° ° • | . 6. | , e, | ••• | | • | 0496
0467
0378 | 0682
0564
0452 | 0596 | 0388
0201
0285 | 0409 | 0406
0303
0280 | 0384
0316
0292 | 0365 | 0279 | 0235
0163
0186 | 0316
0277
0199 | 0287
0175
0196 | 0253 | | HU HV HW
SENSIBLE HEAT TRANS | .0821
.0654
.0061 | 111:
1429
1023 | 0478
0496
0565 | 1373 | .0001
0427
0031 | 0203 | .0103 | 0122
0247
0216 | .0357
0051
.0940 | .0201
0433
0242 | .0446 | 0078 | 05636
0268
0205 | | SENSTB | .2710
.1475
.1843 | .4034
.2270
.4152 | .5651
.3212
.5363 | .3263 | -1091
-0243 | .1526
.0489
.1253 | .0716 | .1954
.1363
.1898 | .2255 | .1811
.0226
.1137 | .1898
.1086
.1780 | .0923
.0529
.0862 | .2316
.1102
.1129 | | BETA | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | | THETA | 0075
-0222
0119 | 0079 | 0018
.0224
0121 | .0037 | .0066
.0013 | 000*
0197 | 0015
.0239
9184 | 3014
.0267
0167 | 008; | .0002
.0369
0080 | 000g
0230
0109 | 0319
-0187 | .0007 | | ETA | 1218
1253
1534 | 2550
2426
2557 | 0941
0919
1276 | .2496
.2611
.1541 | .3340
.3332
.2275 | 1425
0962
0974 | 1632
1088
1145 | 1768
1483
1393 | 4332 | 3650
2886
3021 | -1252 | -1214-0144 | 0831
.0145
0852 | | SITE | | - N m | | - 2 5 | ~~~ | 335 | - N m | -26 | | - 2 6 | | -~~ | ₩ N W | | START | 50267
1705 1
1705 2
1705 3 | 1735
1735
1735 | 1800 | 1830
1830 | 1900 | 1930
1930
1930 | 2000 | 2030
2030
2030 | 2100
2100
2100 | 2136
2136
2136 | 2200
2200
2200 | 2230
2230
2230 | 2305
2305
2305 | | WIND
SHIFT
RAD | 000000000000000000000000000000000000000 | | | 0000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000 | |----------------------------------|---|---|--|--|---|--|--| | WIND
DIR
RAD | 000000000000000000000000000000000000000 | | | 000000000000000000000000000000000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 000000000000000000000000000000000000000 | | | GSD
ANGLE
RAD | .174
.124
.122 | .181
.134
.185
.379
.389 | .315
.315
.296
.159
.166 | . 3 4 4 8 9 4 4 8 9 4 8 9 4 8 9 9 9 9 9 9 9 | .218
.231
.295
0.000
0.000 | .257
.246
.251
.191
.171 | .168
.129
.151
.145
.110 | | G
AZ IM
RAD | .123 | .089
.216
.102
160
111 | .173
.274
.354
.354 | .089
.102
.032
.070 | .298
.328
.263
0.000 | .145
.149
.134
.030 | 1 0662
1 0662
1 0653
1 0659 | | FSD
ANGLE
RAD | .102
.070 | .108
.098
.231
.230 | 159
159
1098
125
125 | .137
.163
.154
.127
.144 | .142
.186
.166
7.000 | .105
.097
.106
.090 | .106
.086
.103
.080 | | F
ELEV
RAD | .012
.011
024 | .009
-013
-013
.001 | .008
.007
.013
.013 | 000
006
006 | .006 | .0004
015
015
014 | .008
013
023
023 | | HORIZ
WIND
CM/SEC | 174.06
257.88
161.93 | 205-15
296-41
191-68
113-35
145-70
115-28 | 219.82
263.86
226.94
276.14
337.81 | 235.52
284.72
247.39
196.27
235.16
194.40 | 206.01
233.27
185.24
0.00
158.48 | 290.85
363.24
290.77
298.79
388.32
298.59 | 259.27
357.35
278.40
229.47
321.00
245.80 | | RWV
SSES | -0043 | .022
0462
046
081 | 1.199
1.250
1.006
1.034 | -184
-397
-254
-099
-549 | -020
-124
-051
-051
-053 | -134
-295
-185
-029
-192 | .0444
082
007
068 | | IUM RUV RWV
REYNOLDS STRESSES | 1.548 | 054
164
.240
299
-2.048 | 1.680
2.107
.617
-2.287
-1.320 | 2.563
3.350
3.307
1.460
001 |
569
569
039
0.000
0.000 | 1.109
.954
.901
.266
.266 | -280
-406
-043
-134
-064 | | REYNOL | 208 | 304
273
233
146
191 | | 11 | 11.
10.
10.
10.
10.
10.
10.
10.
10.
10. | 1 | - 523
- 571
- 584
- 396
- 391 | | WSD | 17.83
18.69
12.42 | 21-27
22-48
18-62
13-46
26-64
19-31 | 23.70
34.21
27.75
25.26
36.68
28.30 | 255.il
339.96
26.45
19.40
27.80 | 22:34
22:34
23:68
00:00
16:99 | 28.72
33.07
29.16
29.71
33.97
29.84 | 26.41
27.98
23.20
26.36
23.75 | | VSD
ST D | 30.94
32.41
20.85 | 37.61
39.01
39.03
30.03
50.03
50.03
50.03 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 70.95
84.32
75.63
62.56
80.04
65.57 | 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 71.95
84.90
70.00
56.67
65.64 | 44.67
46.80
42.98
33.95
37.36 | | USD
WIND | 42-73
44-21
48-79 | 39.19
38.20
37.79
68.73
91.87 | 122-18
127-89
106-64
105-74
104-24
98-88 | 102.04
118.12
196.37
81.11
86.28 | 34.40
100.04
0.00
0.00
0.00
0.00
0.00 | 67.48
75.18
69.80
71.57
62.31 | 60.96
66.98
68.53
61.31
57.89 | | MEAN
WIND | 171.43
254.72
160.35 | 201.89
292.61
189.34
106.66
134.55 | 210-72
249-29
220-58
273-55
329-60
272-74 | 226.96
270.57
238.23
197.21
219.99 | 261.83
225.35
225.35
180.83
0.00
0.00
164.33 | 281.82
351.02
284.20
293.50
294.28 | 255.60
353.93
275.93
227.09
318.68
244.21 | | SITE | 9 - 2 - | 5 -26 126 | | 351 351 | | | | | TIME S
START | 5026
2330
2330
2330 | 5036.
1130 11130 11130 2 | 1230
1230
1230
1306
1306
1306 | 1330
1330
1330
1400
1400 | 1444
1444
1440
1440
1440
1440
1440
1440 | 1630
1630
1630
1700
1700
1700 | 1730
1730
1730
1800
1800 | | | | | | | | | | | SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |--------------------------------|----------------------------|---------------------------|---|---------------------------|---|-----------------------------|---|---------------------------|---|---------------------------|----------------------------|----------------------------|----------------------------| | EXCEEPED
F
G
THOUSAND | 000 | 000 | 000 | 000 | •00 | 000 | 000 | 650 | 000 | 000 | 000 | 000 | 000 | | TS
PE | 000 | 000 | 600 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0 00 | 000 | | LIMI
VSQ
PARTS | | 00.0 | | | | | | | | | | • | 000 | | 7.0 | .0300 | .0310 | 0000 | .0000 | 0000 | 0.0000 | .2206 | .4332
0.0000
0.0000 | 0000 | .1592
0.0000
0.0000 | .1512
0.0000
0.0000 | 0.3000 | 0316
0.4500
U.0000 | | ENTRANS | 100 | 100 | 000 | 00 | 00 | 00 | 00 | | 000 | | 00 | | | | EU EV EW
LATENT HEAT TRANS | 0380
0-0000
0-0000 | 0159
0-0000
0-0000 | 0.0000
0.0000
0.0000 | .2905
0.0000
0.0000 | 1683
0.0000
9.0000 | .6748
0.0000
0.0000 | 3696
0-0000
0-0000 | 00046
0-0000
0-0000 | 0.000.0
0.0000 | 0.0000
0.0000 | 0.0000 | 0000 -0
0-0000 | -0070
0-0000
0-0000 | | EU
LATEN | .1482
0.0000
0.0000 | .0940
0.0000
0.0000 | 0.00000 | 0.0000 | 5082
0.0000
0.0000 | . 39999
0.0000
0.0000 | 0.0000 | .3888
0.0000
0.0000 | 000000000000000000000000000000000000000 | 6176
7.0000
0.0000 | 1.0475
0.0000
0.0000 | 1.2322
0.0000
0.0000 | 1814
0-0000
0-0000 | | TEMP
ST DEV | .3200
.2400
.3770 | .2920
.2520
.2630 | .8980
.5960 | .4090
.6930 | .7560
.5680
.6670 | •6860
•4670
•6430 | .5560
.3400
.5490 | .7520
.5390
.7220 | 0.0000 | •3120
•1980
•1890 | .3440 -1
.3150 0 | .4910
.3670
.4920 | -6450
-4710
-6190 | | MEAN CENTIC | 6.46 | | 17.
17. | 19.
19.
20. | 20. | 20•
19•
20• | 19.
19.
20. | 20. | | 19.
19. | 19. | 17.
18. | 15.
16. | | | 0297
0204
0134 | 0308
0262
0248 | .1557 | .1198
.1198 | •1351
•1641
•1287 | •1194
•1161
•1290 | .0251 | .1057 | 0.0000 | 0085
0054
0125 | 0463 | 0593
0503
0518 | 0520 | | HV
E HEAT
(CM2-M) | -0374
-0068
-0534 | 0140
0237
0095 | .2680
0508
0973 | 1370 | 0798
-0854
-0310 | .0565 | .2609
.2679
.2820 | -01130 | 0-1000
0-1000
0374 | .1526
.1526 | .0679
.1106 | 0280
023:
0001 | .0158
.0120
0183 | | HU
SENSTBL | .0239 | .0921
.)462
.)607 | 8854
-5758 | 9407
-0274
-1150 | -1.3048
3267
1526 | 0764
1007
0509 | 0925
0130
-1310 | 5066
5038
5038 | 0.0000
0.0000
2637 | .0453
.0207
.0511 | .1231
.0172
.1342 | .3341
.277
.4185 | . 3337
. 3337
. 6888 | | BETA | 0000000 | 0000°0
0°0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.00000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | THETA | .0394
-0384 | .0026
.0104
0234 | 0127
0178
0009 | 0017 | .0065
.0016
0234 | 0009
0044
0240 | 0005
0024
0175 | .0037
.0034
0164 | 0.0000
0.0000
0152 | 0017
-0111
0231 | 002;
0107 | .0194 | .0001 | | RAD | .1139
.2390
.1325 | .2164
.1088 | 2460
2241
2852 | .2231
.2500
.2664 | .3906
.3906
.3467 | .1542 | .1194 | .3338
.3338 | 0.0000
0.0000
0.2611 | .1574 | .0329 | 0645 | 0415 | | SITE | 0267
1
2 | 50367
1
2
3 | - 2 6 | +1 N/m | ~~~ | ~ N M | ~ 7 % | e1 (0) (6) | - r.r. | ~ n n | ~ ~ c | - 2 E | - 0 m | | START | 50
2330
2330
2330 | ** | 1130 | 1230
1230
1230 | 1336
1306
1306 | 1330 | 1400 | 1430 | 1690
1690 | 1630
1630
1630 | 1700 | 1730
1730
1730 | 1800 | | WIND
SHIFT
RAD | 0.000 | 000000 | 000000 | 0.0000 | 000000000000000000000000000000000000000 | 000000 | 000000000000000000000000000000000000000 | 000000 | 000000 | 0.0000 | 0000 | 0.0000 | 000000 | |-------------------------------|------------------------------|------------------------|----------------------------|----------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|------------------|------------------------|--------------------------| | WIND
DIR
RAD | 000000 | 0.000 | 000000 | 000000 | 0.000 | 000000 | 0.0000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 0000 | 0.000 | 0000 | | GSD
ANGLE
RAD | .149
0.000
.143 | .160
0.900
.151 | .149
.121
.144 | | .147
.125
.148 | .149
.129
.160 | .123
0.000
.139 | .148 | •141
•103
•132 | .125
.104
.134 | 194 | .327
0.000
0.000 | .324
0.000
.275 | | G
AZIM
RAD | .018
0.000
.001 | 080
0.000
107 | 131
.007
089 | | 210
125
176 | 227
122
180 | 310
0.000
286 | 086
115
136 | .146
.116 | | .156 | 031
0.000
0.000 | .089 | | FSD
ANGLE
RAD | .100
0.000 | .105
0.000
.100 | .108
.103 | • • • | .090 | .106
.092
.107 | .106
0.000
.104 | .102 | .105
.078
.097 | .105 | .103 | .117
0.000
0.000 | .140
0.000
.135 | | F
ELEV
RAD | .004
0.000
014 | .006
0.009
010 | .003
-035
-016 | ••• | .005
.048
012 | 00 <i>?</i>
040
011 | 0.000 | .030 | .023 | _ 1 | .031 | .017
0.000
0.000 | .010
0.000
020 | | HORIZ
WIND
CM/SEC | 235.25 | 0.00
0.00
236.40 | 256.50
348.14
263.16 | 300.87
390.81
327.47 | 252-65
333-52
265-57 | 269.86
352.63
279.83 | 318.15
0.00
329.65 | 187.21
273.87
212.29 | 182.30
254.11
186.64 | 187-15
250-85
175-76 | 254.59
185.97 | 160.96 | 269.68
0.00
281.37 | | RWV | .027
0.000
053 | 0.000 | -032
-039
-050 | -0107 | .005 | .026
019
014 | 0.000
0.000
0.000 | .019
053
009 | .015
.012
005 | -0004 | -116 | 000000 | .185
0.000
152 | | RUV
DS STRES | .044
0.000
010 | .038
0.030
414 | 027
134
092 | .513
.891
.165 | 235 | 451 | .070
0.000
013 | .056
.007
018 | 019
052
135 | .024
016
159 | 817 | 319
0.000
0.000 | 1.557
0.000
.514 | | RUM RUV RWV REYNOLDS STRESSES | 360
0.000
373 | 0.000 | 540
507
524 | 814 | 523
486
447 | 527
603
531 | 0.000
749 | 234
283
283 | 228
259
217 | 230 | 259 | 0.000 | 0.000 | | WSD | 23.21
0.00
23.52 | 23.01
0.00
23.10 | 26.48
29.66
26.41 | 30.39
34.18
32.43 | 26.30
29.34
26.48 | 27.10
31.75
28.85 | 31.53
0.00
32.84 | 18.58
21.38
20.15 | 18.81
19.64
17.78 | 19.23
21.36
18.46 | 25.74 | 18.04 | 29.90 | | VSD
ST | 36.02
0.09
35.01 | 36.66 | 37.70
42.68
38.13 | 54.05
54.05
64.05
64.05 | 36.69
41.87
39.07 | 40.02
45.18
44.87 | 38.86
0.90
45.65 | 28.01
29.53
27.87 | 25.69
26.40
24.90 | 23.70
25.69
23.36 | 45.73 | 0.00 | 84.19
0.00
76.89 | | USD
WIND | 50.64
0.00
50.86 | 0.00
47.78 | 62.74
62.34
64.57 | 70.41 | 55.28 | 70.02
74.02
68.75 | 72.74
0.00
72.21 | 35.97
37.25
36.29 | 35-17
32-40
36-31 | 43.57
45.01
39.72 | 51.83
48.58 | 0.00 | 99.81
0.00
104.30 | | MEAN | 232.62
0.00
242.39 | 222.40 |
253.79
345.42
261.18 | 297.65
386.5)
325.3) | 330.57
263.97 | 267.07
349.27
277.79 | 315.97
0.00
329.33 | 185.17
271.94
211.14 | 180.54
252.43
185.39 | 185-82
247-73
175-79 | 249.44 | 152.96
0.00
0.00 | 257.28
0.00
274.59 | | S17E | 32 12 | - ~e | - 26 | - 26 | 32 - | | - ce | 3 5 1 | | | 35 | | 325 | | START | 5036
1830
1840
1830 | 1900
1900
1900 | 2000
2000
2000 | 2035 | 2130 | 2130
2130
2130 | 2200
2200
2200 | 2300
2300
2300 | 2330
2330
2330 | v č | 200 | 100 | 1200 | | XCEEDED
6
THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ••• | 000 | 000 | |---------------------------------------|---|---------------------------|---------------------------|---|----------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---|---------------------------|---| | tal ta. | 000 | 000 | 600 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS 1 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | EW
RAMS | 0514
0.0000
0.0000 | 000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000
0.0000
0.0000 | 0355
0.0000
0.0000 | 0.0000 | 0221
0.0000
0.0000 | 0215
0.0000
0.0000 | 0.0000 | 0282
0.0000
0.0000 | 0254
0.0000
0.0000 | 000000000000000000000000000000000000000 | | EU EV EW
LATENT HEAT TRANS | .0495
0.0000 | .0365
^.0000
0.0000 | .0181
0.0000
0.0000 | -1421
0-9000
0-9000 | 0027
7.7000
7.9000 | .0117
0.0000
0.0000 | .0153
0.0000 | .0046
7.0000
7.0000 | 0044
0004
0000 | .0019
0.0000
0.0000 | .0039
0.0000
0.0000 | 0835
0-0000
1-0000 | 0.00000 | | • | .1065
0.0000 | .1689
 | .0178
0.0000
0.0000 | .5294
0.0000
0.0000 | .1156
0.0000
0.0000 | .0780
0.0000
0.0000 | .1330
0.0000 | .0670
0.0000
0.0000 | .0771
0.0000
0.0000 | .0711
0.0000
0.0000 | .0911
0.0000
0.0000 | .1276
0.0000
0.0000 | 0.00000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .6770
0.0000
0.5950 | .5100
0.0000
.5160 | .3270
0.0000
.2600 | .3300
0.0000
.2680 | .3500
0.0000
.3500 | .2820
0.0000
.2490 | .2720
n.0000
.1950 | .2970
n.0000
.1490 | .2500
0.0000
.2270 | .2150
0.0000
.2310 | .2580
0.0000
.2100 | .2960
0.0000
0.0000 | .8770
0.0000
.7930 | | ATI
GEN
CEN | 13. | 12.
0.
12. | 000 | 900 | 000 | œ c o | 6 6 6 | 6 C & | 000 | F C 8 | + C & | +66 | 18. | | • | 0.000.c
0.000.l | 0480
0.0000
0442 | 0405
0.0000
0342 | 0.0000
0.0000
0382 | 0394
0.0000
0307 | 0366
0.9000
0294 | 0393
0.0000
0340 | 0231
0.0000
0207 | 0212
0.9000
0194 | 0200
0.0000
0154 | 0275
^.0000
0211 | 0568
0.0000
0.0000 | .1783
0.0000
.1477 | | U HV HW
ENSIBLE HEAT TRANS | .0439
0.0000
.0754 | .0281
0.0000 | 0011
0-000
-0036 | .0444
0.1000
.0232 | 0226
0.9000
0355 | 0134
9.0000
-,3121 | 0.0000 | .0061 | .0012
0000-0
0131 | 0022
0.0000
0115 | .0306
n.0000
.0401 | .1036
0.0000
0.0000 | 1143
0.0000
.0660 | | HU
SENSIB | .1265
n.100n
.0749 | .2081
0.0000
.2391 | .1764
0.0000
.2006 | .2840
0.0000
.2085 | .2113
0.0500
.2021 | .1521
0.0000
.1951 | .2003
0.0000
.2018 | .1032
0.0000
.0851 | .0925
n.1047 | .1149
0.0000
.0973 | .0888
0.0000
.0917 | .2324
0.0000
0.0000 | 1772
0-0900
1789 | | RETA | 000000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.000
0.0000
0.0000 | 0.0000 | | THETA | 0006
0204 | 0.0000 | 004n
032e
0229 | 002A
.0191 | 0023 | 0097
1770- | 0074
0.0700
0134 | 0054
-0277
0177 | 0015
.0207 | .0007
.0117
0254 | .029 | .010¢
0.000n
0.000n | .003n
0.000n
0272 | | E ETA | .0193
0.0000
.0011 | 0804
0.0000
1135 | 1321
-0059
0910 | 2203
1188
1765 | 2122 | 2343 | 3113
0.0000
2862 | 0854
1164
1373 | .11471 | .3350
.4366
.2920 | 0552
-1442
1375 | 00000-0 | .1222
0.0000
.2466 | | SITE | 367
3 | - ~ ~ ~ | 1. 5 | r e | - re | ~ ~ m | r m | - ~ 6 | re | 0467 | 321 | 40.5 | | | TIME | 1830
1830
1830 | 1900
1900
1900 | 2000
2000
2000 | 2035
2035
2035 | 2100
2100
2100 | 2130
2130
2130 | 2200
2200
2200 | 2300
2300
2300 | 2330
7410
2330 | 6 | 0 F 6 | 100 | 1200
1200
1200 | | MIND
SHIFT
RAD | 0.0000 | 0.0000000000000000000000000000000000000 | 0.000.0 | 000000 | 000000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000.00000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.000 | 0.00000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | |----------------------------------|-----------------------------|---|---|----------------------------|---------------------------------|---|---|---|---|-----------------------------|---------------------------|---|---| | WIND
DIR
RAD | 0.000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0000 | 000000 | 000000 | 0.000 | 0.000 | 0.000 | | GSD
ANGLE
RAD | .261
0.090
.265 | 0.0000 | .252
0.000
.260 | .261
.273
.280 | .244 | .145 | •178
•111
•176 | .183
.095 | .153
0.000
.158 | .148
.103 | 0.000 | .127
.107
.128 | .155
.102
.152 | | G
AZIM
RAD | .222
0.000
.309 | .235
0.000
0.000 | 0.000 | .106
.086 | .166
.0 ²
.179 | 038
157
002 | 237
320
223 | 135
256
158 | 249
0.000
222 | 280 | 300
0.900
303 | 309 | 181
192
168 | | FSD
ANGLE
RAD | .139
0.000
.155 | .109
0.000
0.000 | .120
0.000
.127 | •120
•117
•119 | .112 | .090
.090 | .108
.081 | .129
.083
.103 | .107
0.000
.104 | .043
.081 | .107
0.000
.104 | .110 | .080 | | ELEV
RAD | .020
0.000
025 | .000 | .014
7.707
020 | .014
.035
013 | .011
.025
023 | .008
.035
018 | .003
.036
011 | .003
.037
014 | .001 | .001
.037 | 0.000 | .001
.035 | .005
.034
010 | | HOR12
WIND
CM/SEC | 279.93
0.00
284.87 | 273.30
0.00
0.00 | 297.77
0.00
286.87 | 314.30
396.51
321.88 | 351.08
450.04
369.11 | 379.03
492.18
388.72 | 425.77
553.61
454.81 | 433.38
549.53
442.32 | 449.59
0.00
481.75 | 444.56
588.72
472.69 | 402.29
0.00
430.87 | 340.08
449.23
350.75 | 278.51
385.96
287.79 | | RWV | .079
0.000
110 | .266
0.000
0.000 | .105
000.0 | -155
093
203 | -203
323
188 | .359 | .165
.332
081 | .204
.343
260 | 0.000
0.000
071 | .115
.356
036 | .151
0.000
056 | .307 | .070
.258
017 | | RUW RUV RWV
REYNOLDS STRESSES | 1.072
0.050
1.276 | 2.385
0.000
0.000 | 0.000 | -4-375
134 | -4.542
-509 | .340
-2.759
.204 | .859
649
397 | 1.109
950
039 | 0.000 | .156
-2.357
-1.503 | 186
0.000
953 | 266
-2.024
642 | 519
-2-057
585 | | RUW
REYNOL | 807
 | 0.000 | 0.003 | -1.272 | -1.018
-1.546
-1.016 | -1.252
-1.399
-1.281 | -1.658
-1.242
-1.417 | -1.529
-1.581
-1.403 | -1.658
0.000
-1.526 | -1.735
-1.540
-1.521 | -1.420
0.000
-1.364 | -1.046
624
919 | 717 | | WSD | 30.13
0.00
30.64 | 25.86
0.00
0.00 | 32.07
0.00
31.86 | 33.62
41.21
34.08 | 36.31
46.28
36.54 | 39.42
41.44
39.94 | 42.88
43.61
43.81 | 44.50
44.58
43.37 | 44.81
0.00
46.76 | 45.39
46.11
45.99 | 40.26
0.00
42.51 | 35.35
32.53
34.83 | 29.38
30.89
29.51 | | VSD
ND ST | 70.80
0.00
64.18 | 85.67
0.00
0.00 | 73.62
0.00
71.32 | 83.21
104.49
89.59 | 87.44
104.35
85.22 | 75.48
66.68
77.54 | 76.52
61.61
80.48 | 79.76
52.93
84.42 | 68.05
0.00
76.16 | 66.21
60.50
72.67 | 54.93 | 43.37 | 42.51
38.78
44.17 | | USD
WIS | 109.46
0.00
118.17 | 117.02
0.00
0.00 | 97.53
7.00
98.93 | 87.72
102.22
96.84 | 90.69
108.57
94.45 | 95.85
103.48
95.14 | 101.68
92.68
91.84 | 103.42
103.42
93.06 | 105.99
0.00
101.87 | 1111-92
105-30
107-36 | 99.63 | 85.04
80.97
F14 | 67.78
67.78
67.99 | | MEAN | 271.62
0.00
281.22 | 260.99 | 289-12
0-00
280-72 | 303.78
380.95
312.25 | 340.74
435.77
362-14 | 371.69
486.15
382.52 | 419-19
546-56
450-94 | 426.29
544.85
436.83 | 444.67
00.00
478.94 | 439.96
589.67
471.42 | 398.85
0.00
430.83 | 337.57
443.85
351.62 | 275.16
382.96
285.83 | | SITE | 0467 | 4 6 6 | 3.5 | 3 5 7 | 32 7 | 321 | 321 | 4 2 5 | - 0.6 | 3 2 1 | - 0· E | 351 | 126 | | START | 50,
1230
1230
1230 | 1330
1730
1730 | 1400 | 1430
1430
1430 | 1500
1500
1500 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | 1700
1700
1700 | 1730
1730
1730 |
1800
1800
1800 | 1830 | 1300
1900
1900 | | DED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ၁၀၀ | 000 | |---------------------------------------|---|------------------------------|---|---|---|---|---|---|---|---|---|---|---| | EXCEEDED
F
F THOUSAND | 000 | 000 | e o e | 000 | 000 | 000 | 000 | 000 | 500 | 200 | 000 | 000 | 000 | | LIMITS
VSG
PARTS PER | 0 00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | c o o | 000 | | EW
RANS
N) | 0000000 | 0000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0000000 | 0000000 | 000000000000000000000000000000000000000 | 0000000 | 000000000000000000000000000000000000000 | | EU EV EW
LATENT HEAT TRANS | 0.0000000000000000000000000000000000000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.00000 | | • | 0.00000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.00000 | 0.0000 | 0.00000 | 0.0000 | 0.0000.0 | 0.0000 | 0.0000 | 0.00000 | 0.0000
0.0000
0.0000 | 0.600.0
0.0000.0
0.0000 | | AIR TEMP
KEAN ST DEV
CENTIGRADE | .8670
0.0000
0.777.0 | .7350
0.000,0 | .6700
nenn.n | .5220
.4840
.5130 | .3340
.3960 | .3410
.3180
.2900 | .2940
.2970
.3270 | .2420
.2810
.2050 | .3820
0.0000
.4360 | .3600
.3640
.4130 | .4470
0.0000
.4460 | .4680
.3820
.4720 | .3790
.4123 | | AIR
MEAN
CENTI | 200 | 6 6 6 6 | 19. | 19•
19•
21• | 19. | 19.
19.
20. | 18.
18. | 17.
18. | 8 5 6 | 15.
16. | | 12.
13.
14. | 11. | | 4 | .1787
0.0000
.1527 | .1622 | .1122
0.0000
.1132 | .1079
.1091 | .0876
.1144
.0800 | .0605
.0835 | .0471 | .0234
.0185
.0208 | 0.0001 | 0364
0345
0292 | 0.0000
0.0000
0493 | 0572
0388
0452 | 0553
0505
0440 | | HU HV HW
SENSIBLE HEAT TRANS | 0557
0000 | 2024
0000
0000 | .0315
0.0000
0.0680 | .0383
.1027
.1000 | 0070 | .0125
.1178
.0058 | .0357 | 0216 | .0481
0.0000
.0360 | 0125
0408
0597 | 0107
0.0000
0108 | 0452 | 0213
0529
0058 | | HU
SENSIBL | 7.5444
7.0700
0568 | -1.2067
-1.0000
0.0000 | 2863
n.0000
1149 | 2127
2209
1083 | 2491
2052
2661 | 2741
2871
2342 | 1887
1384
1300 | 1565 | 1844
0.0000
1391 | .1461 .0322 .1524 | .3176
0.0000
.3548 | .3470 | .2850
.1695 | | BETA | 0.0000 | 0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.000.0 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | | THETA | .0072
 | .0024 | .0049
0287 | .0045
.0277
023* | .0034
.0184
0314 | .0004
.0304
5265 | -00049
-0325
-0185 | 0043
.0337
0214 | 0066
n.nnn
0176 | 0004
-034n
0146 | 0.0000
0.0000
0.0140 | 006#
0141 | 0025
-0304
0180 | | ETA | .2403
0.0000
3258 | .2675
0.0000
0.0000 | .1829
0,000,0
.2107 | .0566
.0566 | .1694
.0521
.1725 | 0377 | 2337 | 1306
2624
1573 | 0.0000
0.0000
0.2262 | 2807
3783
2833 | 0.0000 | 3171 | 1886
2062
1734 | | SITE | 1 2 2 2 3 | ** 6. F | - 6 | - N F | | ~ v. w | - 25 | -26 | | - 2 6 | ~ ~ ~ | 325 | - 26 | | START | 5046
1230 1
1230 2
1230 3 | 1330 | 1400 | 1430
1430
1430 | 15.00
1500
1500 | 1530
1530
1530 | 1600
1600 | 1530
1630
1630 | 1700 | 1750
1730
1730 | 1900 | 1830
1830
1830 | 1906
1906
1900 | | 6 GSD
AZI:3 ANGLE
PAD PAD
 | .195 0.000
.222 0.000
.291 0.000
.267 0.000 | |---|--| | G GSD
AZI: ANGLE
RAD RAD
 | .22
.22
.22
.267 | | AZIX
RAD
186
191
243
243
243
243
243
243
243
243
243
243
165
243
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165 | | | Section Sect | 115 | | 100 0000 0000 0000 0000 0000 0000 0000 | | | TER III III III III III III III III III I | .108
.108
.113
.695 | | | -013
-023
-013 | |
HORING
WIND
WIND
WIND
WIND
23422
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96
295-96 | | | \$5.55 \$1.11.1 \$1.00 \$1.11.1 \$1.1 | - 327
- 327
- 186
- 527 | | RUW
REWNOLDS STRESSES
 | 2.148
.342
3.055
5.080 | | REG | 269
200
200
285
285
538 | | DEEV WSD | 43.98
43.98
37.99
42.69 | | 8 450 400 400 400 400 604 600 604 60 40 60 60 60 60 60 60 60 60 60 60 60 60 60 | 99.80
99.80
104.02
122.22
249.30 | | USD VSEC • • • • • • • • • • • • • • • • • • • | 110.74
110.74
93.94
101.09 | | MEAN MIND MIND MIND MIND MIND MIND MIND MIN | 5500-71
2570-71
349-75
447-89 | | | | | ν 1 | 1130 | | DED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ••• | 000 | 000 | 000 | |--|---|-------------------------|----------------------------|---|----------------------------|---|----------------------------|----------------------------|----------------------------|---|---|---| | EXCEE
F
THOU | 000 | 000 | 000 | ა e o | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS EXCEEDED
VSQ F G
PARTS PER THOUSAND | 000 | 000 | 000 | 000 | 005 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | EM
RANG
N) | 0.000
0.000
0.000 | 0000°0
0000°0 | 0.00000 | 0,0100
0,040
0,000
0,000 | 0.0000 | 0.00000 | 0.0000 | 00000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.00000 | 000000000000000000000000000000000000000 | | EU EV EW
'ATENT HEAT TRANS | 0.0000
0.0000
0.0000 | 0.000.0 | 0.0000
0.0000
0.0000 | 3.0000
0.0900
0.0900 | 0-2020
0-3030
0-0053 | 0.0000 | 0.0000 | 0000000 | 0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000000000000000000000000000000000000 | 0.000
0.000
0.000
0.000 | | | 0-0000
0-0000
0-0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 000000 | 000000000000000000000000000000000000000 | 0.0000
0.0000
0.0000 | 0000000 | 0.0000 | 0000000 | 0.00000 | 0.0000 | | AIR TEMP
MEAN ST DEY
CEMTIGRADE | 2450
2030
3463 | .3570
.3570 | .252C
.2470
.2750 | 1.3680
1.3680
1.5900 | .5680
.3850
.5490 | .2610
.2500
.3060 | 0.0000
0.0000
.2200 | 0.0000 | 0.0000
0.0000
0.3920 | 0.0000 | .4260
.3820
.4340 | .4770
.3340
.4610 | | AIR
IE AN
CENT | 11: | 10: | 100. | 13. | 13.
13.
14. | 13. | c c 4 | c e E | 0
75. | 6.68 | 14.
14.
16. | 14. | | TKANS P | 0456
0400
0405 | 0525
0541
0403 | 0514
0520
0453 | .1257
.0743
.1171 | .0902
.0961
.1075 | .0419 | 0.0000
0.0000
0.0576 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.1049 | 0.0000
0.0000
0.1576 | .1134
.1068
.1063 | .1036
.1035 | | HU HV HW
SENSIBLE HEAT TYANS | 0279 | 0666
1193
0370 | 0017
0373
-0217 | .1267
0823
1233 | 0254
0213
-0121 | .1181
.1315
0899 | 0.0000 | 0.0000
0.0000
0.0637 | 0.0000
0.0000
0.0282 | 0.0000
0.0000
0.0493 | .0145
0469
0200 | .1061
.0875 | | HU
SENSIB | .2861
.1371
.2653 | .3276
.2676
.2601 | .2233
.1873
.3250 | 3127
0161
2882 | 0935
0141
2021 | .1240
.2042
2161 | 0.0000
0.0000
1860 | 0.0000
0.000
2521 | 0.0000
0.0006
3216 | 0.0000
0.0000
5607 | 3158
2389
3587 | 2301
1140
2673 | | BETA | 000000000000000000000000000000000000000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | THETA | 0097
0367 | 0083
-0370
0167 | 0080
-0334
0154 | 0146
-0140
0133 | 007n
.0345
0175 | 0047
-010n
0201 | 0.0000 | 0.0000
0.0000
0273 | 7.000
7.000
0304 | 0.0000
0.0000
0265 | 0040
-0153
0217 | 2049
.0188 | | ETA
RAD | 1969
2028
1988 | 2473
2413
2410 | 2985
3082
2858 | 1823
1960
0023 | 1819
1881
-0647 | .1536
.1501
.0138 | 0.0000 | 0.0000 | 0.0000
7.0000
.2637 | 0.0000 | 0925 | 0438
0575
0575 | | SITE | 50467
0 1
0 2
0 3 | 325 | 321 | 50567
5 2 2
5 3 3 | 176 | 40.6 | - 10 | - ~ 6 | | ~ ~ ~ | -26 | 4 N E | | START | 50
1930
1930
1930 | 2000
2000
2000 | 2030
2030
2030 | 735
735
735 | 800
800
800 | 830
830
830 | 9006 | 010
010
030 | 1000 | 1630 | 1100 | 3130
1130
1330 | | WIND
SHIFT
RAD | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000 000 000 | | | |----------------------------------
---|--|--|--|---|--| | EIA"
DIR
RAD | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000 000 000 | | 000000000000000000000000000000000000000 | | GSD
ANGLE
RAD | 251
251
256
271
260 | .208
.187
.190
.256
.270 | 2884
2789
2789
2750
2753 | .221
.219
.212
.192
.188
.187 | .195
.195
.195
.079
.079 | .253
.253
.223 | | G
AZIM
RAD | 255
231
261
174
173 | 335
321
009
000 | 025
006
027
102
084 | 2546
246
281
268
268
268
268 | | 133
122
257
260 | | FSD
ANGLE
RED | .135
.131
.121
.121
.121 | .118
.109
.113
.113 | . 114
. 114
. 114
. 111
. 113 | | > | .111
.109
.116 | | F.EV
RAD | .004
.004
.004
.005 | .004
-015
-015
-017 | 007
007
009
009 | | | .058
.058
.058
.066 | | HORIZ
WIND
CM/SEC | 206.22
206.32
207.41
233.70
236.14 | 322-72
329-33
930-27
355-66
355-66 | 980.97
980.53
385.14
352.74
362.03 | 391 - 16
386 - 31
386 - 31
386 - 32
386 - 35
386 - 36
386 - 36
386 - 36
386 - 36 | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | 204.35
309.41
206.54
212.17
218.81 | | : | 000000000000000000000000000000000000000 | 000 000 | 0.000
0.000
0.000
0.000
0.000
0.000 | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | RLW PUV RBV
REYNOLDS STRESSES | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -1.206
-1.206
-1.466
-126
-126 | - 563
- 738
- 10406
- 10406
- 10550 | 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 1.1F2
1615
1615
1615
1705
1705
1705
1705
1705
1705
1705
17 | -2.824
-2.824
-1.419
-1.639 | | RUM
REYNOL | 1 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -10138
-1034
-1926
-1936
-1936 | -1-279
-1-298
-1-692
-1-691
-1-151 | 111 111 111 111 111 111 111 111 111 11 | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 766
767
488
383 | | WSD
DEV | 23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
23.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 33.3
32.3
33.4
33.4
33.4
33.4
33.4
33.4 | 39.68
40.96
41.07
37.03
36.91 | 38.01
39.08
39.08
39.27
36.27
36.27
36.27 | 30 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - | 32,28
31,16
23,16
23,116
22,65 | | VSD
ND ST
EC | 52.06
51.06
51.06
51.06
65.04
63.02
63.03 | 59-26
64-69
64-28
93-68
94-38 | 108.22
109.73
107.23
85.55
86.65 | 88 88 88 88 88 88 88 88 88 88 88 88 88 | 23 - 64 - 65 - 65 - 65 - 65 - 65 - 65 - 65 | 81.78
81.71
42.57
42.38
43.49 | | USD
W11 | 66-11
67-12
64-12
64-13
64-13
64-13
64-13 | 95-33
92-90
58-09
88-87
69-76 | 98.33
94.48
92.17
97.35
98.43 | 8889
9889
9889
989
989
989
989
989
989 | 92.85
79.95
80.40
99.40
97.26
79.46 | 78.78
81.01
73.11
72.51
75.14 | | MEAN | 199.81
200.51
203.50
230.16
230.36 | 315,74
324,42
328,14
345,28
342,61 | 365.866
373.0;
352.34
355.34 | 382.65
379.42
379.42
379.42
379.43
374.60
374.60 | 326.07
325.11
325.62
373.39
393.02
291.21 | 294-77
302-09
204-21
208-62
216-39 | | 3176 | 20 mm mm | | | | | MW 44W | | TIME S
START |
923
923
923
953
953
953 | 1108
1108
1108
1158
1158 | 1230
1230
1230
1300
1300 | 11411111111111111111111111111111111111 | 1513
1611
1611
1640
1640
1723 | 1723
1723
1753
1753 | | EXCEEDED G G THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | coo | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|---|--------------|---|-----------------------|---|---|---|------------------------|---|---|---------------------------|---|---| | | 000 | 000 | 000 | 000 | 000 | 000 | 00 0 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS I | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 600 | 000 | 000 | 000 | 000 | 000 | | PA | | | | | | | | | | | | | | | EW
RANS
N) | 0.0000000000000000000000000000000000000 | 00000 | 0.0000 | 0.00000 | 00000 | 00000 | 0.0000 | 00000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | EV EW EW EW LATENI HEAT TRANS | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000.0 | 00000 | 0.0000 | 0.0000.0 | 0.0000.0 | 0.0000 | 0.000.0 | 0.000.0 | 0.0000 | 0.0000 | | EU
LATENT | 0.000
0.0000
0.0000 | 0.0000 | 00000*0 | 0.000.0 | 0.0000 | 0.0000 | 0-0000 | 0.000.0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000 | 0.00000 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000.0 | 0.000.0 | 0.0000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000*0 | 00000*0 | 000000000000000000000000000000000000000 | 0.0000 | .1730
0.0000
0.0000 | .2380
0.0000
0.0000 | | AIR
EAN | 000 | ¢ ¢ ¢ | | 666 | | | 000 | 666 | | ::: | 12. | 100 | #°°° | | • | 0.000
0.000
0.000
0.000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.000.0 | 0.0000000000000000000000000000000000000 | 0.000.0 | 0.000.0 | 0°000°0
0°0000°0 | 0000°0 | 0.0000000000000000000000000000000000000 | 0233
0.0000
0.0000 | 0219
0.0000
0.0000 | 0225
0-0000
0-0000 | | SENSIBLE HEAT TRANS | 0.0000
0.0000
0.0000 | 0.000.0 | 000000000000000000000000000000000000000 | 0.0000.0 | 0.000.0 | 0.0000.0 | 0.000.0 | 0000-0 | 0.000.0 | 0.0000000000000000000000000000000000000 | .0026
0.0000
0.0000 | 0.0000 | 1039
0.0000
9.0000 | | SENSIBI | 0.0000
0.0000
0.0000 | 0.0000.0 | 000000000000000000000000000000000000000 | 0.000.0
0.0000 | 0000-0 | 00000-0 | 0.0000 | 0.0000.0 | 000000000000000000000000000000000000000 | 0.0000.0 | .0877
0.0000
0.0000 | .0652
0.0000
0.0000 | .2370
0.0000
0.0000 | | BETA | .0710
-0340
-0460 | 0350
0350 | -0220
-0580 | -0500 | .0240
0540
.0540 | 0410
0410 | .0500
-0500
.0420 | .0890
0630
.0310 | -0580
-0580 | .0110
0570
.0440 | .1800
1709
0570 | .0030 | 0190
.04.0 | | THETA | 0034
-0449
0169 | 0051 | .0418
-0737 | 0001
0217
-0135 | -0034
-0163 | 016- | .0578
0014
1454 | .0584
0074
0698 | .0604
-00020
-0677 | .0625
0064
0653 | 0452
.0517
.0114 | 0657
.0527
.0440 | .0560 | | ETA
RAD | 2522
2427
2523 | 1687 | 3404
3340
3185 | 0091
0098
0047 | 0277
0109
0309 | 1107 | 2480
7488
2100 | 2820
2803
2583 | 2545 | 2115 | 5448
4876
4654 | 1471
1506
1787 | 2940
2933
2818 | | SITE | 267 | - 0 5 | -0" | | -25 | | - C F | | | - ~ F | - ~ F | -~- | - 0,6 | | TIME STARE | 923 | 953
953 | 1108 | 1158 | 1230
1230
1230 | 1300 | 1411 | 1441 | 1515 | 1611
1611
1611 | 1640
1640
1640 | 1723
1721
1721 | 1753
1753
1753 | | WIND
SHIFT
RAD | 0.0000 | 0000 | 000000 | 0.000 | 0000 | 000000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 0000 | |----------------------------|--------------------------|--------------------------|---|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|-----------------------------|---|----------------------------| | WIND
DIR
RAD | 0.000 | 0000 | 0.000 | 0.000 | 0000 | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 0.000 | 0000 | | GSD
ANGLE
RAD | .209
.230
0.000 | .202
.204
0.000 | .150
.149
0.300 | .180
.186
0.000 | .237
.226
0.000 | .235
.251 | .282
.298
.272 | .257
.279
.225 | .142
.172
0.000 | .133
.155 | .316
0.000
0.000 | ,360
0.000
0.000 | .162
.145
.165 | | G
AZIM
RAD | .217
.278
0.000 | .097
.143
0.000 | 051 | 163
125
0-000 | 217
215
0-000 | 273
158
227 | 230
114
188 | 301
206
192 | .186
.229
0.000 | .154
.170
.166 | .223
0.000
0.000 | .003
0.000
0.000 | 203
207
275 | | FSD
ANGLE
RAD | .059 | .088
.090 | 000.0 | .109
.104
0.000 | .135
.109
0.000 | •121
•125
•119 | .123
.121
.126 | .112
.109 | .094
.097
0.000 | .092
.093
.086 | .215
n.000
n.000 | .175
0.000
0.000 | .103 | | ELEV | 054
.038
0.000 | .057 | 059 | 060 | 054
.064
0.000 | .003
-004 | 001 | .005
010 | .018
015
0.000 | -015
-015
-007 | .036
0.000
0.000 | .020
0.000
0.000 | .003
.097
007 | | HORIZ
WIND
CM/SEC | 135-48
133-74
0-00 | 167.72
169.72
0.90 | 182-61
185-52
0.00 | 192.75
196.89
0.00 | 187-11
195-76
0-00 | 261.59
261.22
265.51 | 277.90
278.47
278.17 | 322.84
329.01
394.64 | 456.20
456.97
0.00 | 232.65
232.22
237.59 | 202 -81
0 - 00
0 - 00 | 220.59
0.00
0.00 | 404.96
524.86
422.20 | | RWV
SSES | 0.000 | 000000 | 0.0000000000000000000000000000000000000 | 0.000 | 0.0000 | 00000 | 0000-0 | 000000 | 000000 | 0.000 | 0.000 | 0.0000 | 0000 | | RUV
DS STRE
NES/CM2 | 276
501
0-000 | 330
406
0-000 | 342 | 485
598
0.000 | 521
572
0.000 | 383
503
723 | 029
-016
538 | -2.208
-2.731
-1.298 | .268
.508
0.000 | 184
372
321 | 1.241
0.000
0.000 | 0.0000000000000000000000000000000000000 | 524
-1.786
537 | | RUW
REYNOL | 036 | 167
164
0-000 | 218
196
0.000 | 272
258
0.000 | 283
289
0-000 | 657
730
690 | 724 | -1.008 | -1.290
-1.539
9.900 | 269
297
210 | 620
0-000
0-000 | 0.0000 | -1.260
-1.284
-1.451 | | EV EV | 8.22
8.83
0.00 | 15.79
16.05
0.00 | 18.23
18.23
0.00 | 20.27
20.27
0.00 | 20.76
20.76
0.00 | 28.73
30.26
28.71 | 30.96
31.18
31.74 | 31.94
32.92
28.63 | 40.62
41.55
0.00 | 21.04
21.10
20.18 | 24.03
0.00
0.00 | 25.04 | 39.41
47.99
43.27 | | VSD
ND ST D | 28.90
30.18
0.00 | 33.66
33.93
0.00 | 28.23
28.64
0.00 | 34.65
37.30
0.00 | 38-84
40-51
0-00 | 59.35
64.75
59.29 | 76.92
82.67
74.99 | 81.11
91.26
83.58 | 55.22
78.96
0.00 | 31.33
35.91
35.10 | 53.23
0.00
0.00 | 0.00 | 67.46
77.87
66.56 | | USD
W II | 19-21
24-04
0-04 | 46.94
96.98 | 42.51
41.84
0.00 | 40.30
41.14
0.00 | 51.64
41.24
0.00 | 66.00
63.81
66.89 | 75.54
72.64
74.55 | 92.87
87.30
66.71 | 91.73
94.18
0.00 | 43.39
43.23
42.12 | 116.64
0.00
0.00 | 104.52
0.00
0.00 | 94.17
98.11
103.42 | | MEAN
WIND | 132.68
130.45
0.00 | 164.76
166.58
0.00 | 180.91
183.69
0.00 | 190.10
193.84
0.00 | 183.16
191.61
0.00 | 254.72
253.28
264.59 | 267.36
266.58
275.35 | 312.69
316.66
392.64 | 451.68
450.51
2.00 | 230.62
229.56
237.46 | 0.00 | 207.66 | 399.60
523.67
425.92 | | 67
1TE | 321 | - 2 5 | 301 | 351 | 321 | 3216 | 300 | - N N | 406 | 400 | 7 7 7 7 | - 46 | | | 42267
TIME SIT
START | 1830 | 1900 | 1930 | 2000 | 2030 | 900 | 945
945
845 | 1015 | 1614
1614
1614 | 1713
1713
1713 | 426
1330
1330
1330 | 1400 | 1630 | | | | | | | | | | | | | | | | | ITS EXCEEDED F G PER THOUSAND | 000 00 | c 00c 0 | 00 000 | 000 000 | 000 000 000 | 000 000 0 | 000 | |--|---|----------------------------|--|---|---|---|----------------------------------| | LIMIT
VSQ
PARTS P | 000000000000000000000000000000000000000 | | 0 00000 | 0 00000 | | | •0552
•0000
•0000
•0000 | | LATENT HEAT TRANS | 606 60 | 0 000 0 | | 000000000000000000000000000000000000000 | | 00 00 | 0.0000 0.0000 | | EU E'
LATENT H | | | 0 00000 0 | | | | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .1790
0.000
0.000
0.3190
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.1890
0.0000 | | .8570
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 2.0000
2.0000
2.0000
2.0000 | .1680 | | . · | -00002 9.
0.0000 0.
0.0000 0.
0.0000 0. | | - | .0883 10.
 | . 2226 13.
0.0000 0.
.0000 0.
.0000 0.
.00000 0. | Hee Nec 1 | 0185 13.
0166 13. | | HU HV HW
SENSIBLE HEAT TGAN
***CAL/(CM2-MIN)** | | | |
0146
0.0000
0.0000
0.0000 | 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000 | | 0012 | | HU
SENSIB | | | 0.0000
0.0000
0.0000
0.0000 | 0.1606
0.0000
0.0000
0.1000 | 000000
000000
000000
000000
000000
00000 | ccicc | .0231 | | A BETA | 16 1 | | ic ic | 2 .0380
2 .0380
5 .0640
6 .0410
7 .0410 | | 00000000000000000000000000000000000000 | 2 0020 | | THET | 1 C 1 | c i c i | 79 .0584
00 0.000
370662
60 .0591
00 0.000 | 0005
810. | 3156 -0027
7256 -0077
11949 -0146
11883 -0129
2310 -0737
7000 0.0000
1532 -0110
1655 -0200 | 66 66 | 760 | | SITE ETA | 267
1 -2049
2 -2526
3 0.0000
1 -0868
2 -1306 | | | 9mne0e | 13156
27256
31947
1 -1883
2 -2310
3 0.0000
1 -1532
2 -1655
3 -1655 | ~ | 22139 | | STAPT | 422
1830
1830
1830
1900 | 1930 | 2000
2000
2030
2030
5010
5010 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1015
1015
1015
1614
1614
1713
1713 | 1330 11
1340 1
1340 7
1400 1
1400 7 | 1630 | | WIND
SHIFT
RAD | 000000000000000000000000000000000000000 | 0.000 | 0.0000000000000000000000000000000000000 | 000000 | 0.000 | 000000 | 0000 | 000000 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.0000 | |--------------------------|---|---------------------------|---|---|---|-------------------------|----------------------------|-----------------------------|---|---|---|---------------------------|---| | EIND
DIR
RAD | 000000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000000 | 0000 | 0000 | 0.000 | 000000000000000000000000000000000000000 | 0.000 | 000000 | | GSD
ANGLE
RAD | .151
.134
.157 | .128
0.000
.117 | .119
0.000
.116 | .138
.165
0.000 | .136
.176
.265 | 0.000 | .227
.238
.207 | .258
.247
.243 | .258
.240
.214 | .293
.274
.278 | .214
.175 | 0.000 | .230
.214
.217 | | AZIH / | 169
174
236 | 354
0.000
419 | 369
0.900
447 | 276
322
0.000 | 272
315
034 | 0.000 | 218
066
169 | 114 | 168 | 032
033 | .254
.381
.283 | 394
0.000 0 | 003 | | FSD
ANGLE
RAD | .100
.092 | .096
0.000
.108 | .096
0.000
.115 | .106
.100 | .093
.093 | 0.000
0.000
0.208 | .108
.099 | .109
.100 | .105 | .107
.108 | .102
.090 | .091 | .105
.089 | | F
ELEV
RAD | .005
.086
 | 003
0.000
001 | 00:
0.000
.001 | .004
.140 | 001
-138
004 | 0.000 | 040.0 | .001 | 0.000 | .009 | .004
.009
018 | .009
0.000
019 | .003
.037 | | HOR 12
WIND
CM/SEC | 398.76
515.71
422.77 | 417.82
0.00
419.10 | 380.37
0.00
391.38 | 274-17
364-41
0-00 | 259.25
341.11
230.78 | 0.00
0.00
200.78 | 460.29
579.86
482.00 | 434.64
551.39
462.20 | 435.79
548.77
423.07 | 423.09
516.77
433.71 | 420.78
507.90
424.95 | 477.94
0.00
484.23 | 529.74
691.18
550.13 | | RWV | 000000 | 0000 | 000000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000 | 00000 | 0000 | 000000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0000000 | 0.000 | 0.0000000000000000000000000000000000000 | | REYNOLDS STRESSES | 052
658
357 | 0.000 | .083
0.000
2.211 | 1.585
0.000 | 1.542
0.098 | 0.000
1.025 | .833
1.511
408 | -2.658
-4.326
-3.367 | -1.533
2.058
.039 | -1.892
.994
-1.645 | 1.680 | .891
0.000
059 | -3.517
-2.264
-1.584 | | REW
REYNO | -1-197
-1-274
-1-407 | -1.329
0.009
-1.160 | 0.074
0.000
535 | 642
646
0.000 | 457
328
725 | 0.000
0.000
292 | -1.984
-1.570
-1.639 | -1.603
-1.974
-1.714 | -1.551
-2.154
-1.423 | -1,566
-2,029
-1,341 | -1.289
-1.091
-1.250 | -1.389
n.000
-1.383 | -2.214
-2.398
-2.226 | | WSD
DEV | 38.24
46.16
42.98 | 37.93
0.00
42.82 | 34.55
0.00
43.75 | 27.10
35.19
r.00 | 24.58
30.84
31.88 | 0.00
0.00
29.79 | 45.23
54.04
48.40 | 43.91
51.87
45.89 | 42.50
46.48
44.94 | 42.04
49.79
42.54 | 39.46
41.82
40.22 | 40.02
n.00
42.59 | 51.79
56.67
55.20 | | VSD
WD ST | 61.37
69.67
63.97 | 54.94
0.00
48.30 | 46.09
0.00
67.56 | 37-61
61-35
0-00 | 35.77
60.69
55.62 | 0.00
0.00
41.32 | 104.97
131.94
98.94 | 1111.78
135.04
112.13 | 109.20
125.56
95.05 | 121.79
136.47
120.90 | 85.26
84.04
93.43 | 66.76
0.20
78.80 | 128.72
152.45
122.09 | | USD
VIV
VIV | 90.33
92.34
104.19 | 92.79
0.00
100.55 | 82.07
0.00
100.10 | 62.02
61.57 | 57.17
53.52
59.78 | 73.29 | 124.90
120.39
128.44 | 107.86
123.79
121.34 | 119.3R
147.77
115.04 | 119.85
139.04
115.91 | 114.36
142.03
127.97 | 120.97
0.00
120.31 | 124.89
131.51
128.24 | | MEAN | 394.20
512.94
425.03 | 414.43
0.00
432.50 | 377.75
0.00
405.39 | 271.67
362.88
0.00 | 256.91
339.07
226.94 | 0.00 | 448.69
564.70
479.21 | 420.42
535.34
435.61 | 422.00
534.32
451.30 | 405.70
498.94
424.64 | 412.00
501.54
426.16 | 0.00 | 515.13
675.53
542.87 | | SITE | 3446 | 325 | 400 | 44 FW FF | 426 | | 167 | 325 | 325 | 400 | m (1) (m) | - ~ ~ | 406 | | TIME S
START | 426
1700
1700
1700 | 1730 | 1800
1800
1800 | 1900 | 1930
1930
1930 | 2000
2000 | 427
930
930
930 | 1000 | 1030
1030
1030 | 1100 | 1130 | 1200
1200
1200 | 1400
1400
1400 | | | | | | | | | | | | | | | | | SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|----------------------------|--|---------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------| | EXCEEDED
F G
R THOUSAND | 000 | 000 | 000 | 000 | 300 | 000 | ပဝင | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS PASS PARTS PER | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | | EW
RANS
N) | .0278
0.0000
0.0000 | 0.0000 | 0169
0.0000
0.0000 | 0261
0.0000
0.0000 | 0173
0.0000
0.0000 | 0.0000 | 0.0000 | .3438
0.0000
0.0000 | .3499
0.0000
0.0000 | .3497
0.0000
0.0000 | .3257
0.0000
0.0000 | 0.000
0.0000
0.0000 | .3611
0.0000
0.0000 | | LATENT HEAT TRANS | .0106
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0000000 | 0.0000 | 0-0000
0-0000
0-0000 | 0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | .2044
0.0000
0.0000 | .1294
7.0000
0.0000 | .2700
0.0000
0.0000 | | ω : | 2040
0-0000
0-0000 | 0.0000 | 0.0000 | .0967
0.0000
0.0000 | .0521
0.0000
0.0000 | 0.0000 | 0.0000 | 9212
0-0000
0-0110 | 0.0000
0.0000
0.0000 | 0.0000 | 5928
0.0000
0.0000 | -1.0630
9.0000
0.0000 | -1.5430
0.0000
0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .2270
.2110 | .3100
n.0000
.2910 | .2920
0.0000
.3080 | .2640
.2310
^.7000 | .2520
.1980
.2520 | 0.0000 | 0000°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | .7420
.5570 | .7740
.6330
0.0000 | .8920
.6140
0.0000 | .9110
.5900
0.0000 | .8390
0.0000
.8130 | . 350 | | AII | 13.
13. | 12.
 | 111.
0.
12. | 1000 | 9.
10.
14. | c c o | | 112. | 13.
12. | 13.
12.
0. | 13.
12. | 13. | 13. | | | 0348
0385
0345 | 0613
n.n.n.n | 7.0520
0437 | 0514
0590
0590 | 0347 | 0.0000 | 0.0000
.2185
0.0000 | .2512
.2532
0.0000 | .2325
.2706
0.0000 | .2366
.2942
0.0000 | .2401
.2056
0.0000 | .2080
0.0000
.2259 | .2027 | | SENSIBLE HEAT TRANS | .0254
.0329
.0025 | .0603
.0878 | .0092
0.0000
0.0985 | -0207
-0690
-0690 | .0327
.1309
2.2511 | 0.0000
0.0000
1961 | 0.000.
0.000.
0.0000. | 0775
0483
0.0000 | .0861
.1076
0.0000 | 2798
3682
0.0000 | 0730 | .0001
0.0000
1310 | .1479 | | HU
SENS 1BL | .2009
.1221 | .3686
0.0000 | .3087
7.0000
14335 | .2417
.1906
0.000 | .0954 | 0.0000 | 0.0000
3466
0.0000 | 43979 | 9508
8701
0-000 | 6709
4894
0-0000 | 6445 | 0.0000
0.0000
2260 | 7450
5774
8601 | | BETA | .0550 | .0370
0.0000
3130 | 0.0000 | .0980
1400
0.0000 | -0320
-1550
-0310 | 0.0000
0.0000
2750 | 0380
0300 | .0190
0720
0180 | .0270
054C
0240 | .0280
0970
0370 | .0410
1170
0180 | .0200
0.0000
.0300 | .0350
0750
0210 | | THETA | 001A
0831
0144 | 7.0105
7.0000
0083 | 0.00073
0.0000
0077 | 0035
-1361
0.0000 | 0081
.1359
0210 | 0.0000
0.0000
0.0000 | 0104
-0369
0104 | 0075
-0362
0170 | 0077
.0361
7078 | 0060
-0342
0167 | .0027 | .0035
0.7000
0246 | 0042 | | E ETA | 1697 | 3536
0.0000
4059 | 3704
0.0000
4262 | 2797
3162
0.0000 | 2764
3080
0329 | 0.0000 | 0132
0632
1673 | -1256 | 1736
0566
1965 | 0406
-1073
0396 | .3947 | .3998
0.0000
.3597 | 0145
-0414
0188 | | SITE | 667
1
2
3 | ~ | - 20 | - 2 5 | 3 8 1 | - 0:6 | 42767
0 3
0 2
0 3 | 126 | 325 | 1400 | 3 2 1 | H 6.E | 446 | | TIME |
1700
1700
1700
1700 | 1730
1771
0671 | 1800
1800
1800 | 1900
1900
1936 | 1930
1930
1930 | 2000
2000
2000 | 930 | 1000 | 1030 | 1100
1100
1100 | 1130
1130
0r11 | 1200
1200
1200 | 1400 | | WIND
SHIFT
RAD | 0.000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 0000 | 00000 | 0000 | 0000 | 0000 | |-------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|---|----------------------------|----------------------------| | WIND
DIR
RAD | 0000 | 00000 | 0.000 | 0000 | 0.000 | 0000 | 0000 | 0.000 | 0000 | 0.0000 | 0.000 | 0000 | 00000 | | GSD
ANGLE
RAD | .227
.202
.218 | .239
.232
.243 | .229
.218
.227 | .165
.145 | .191
.169
.191 | .245
.232
.227 | .130 | .149
.117
.244 | .138
.106 | •149
•117
•143 | .260
.246
0.000 | .126 | 27.302
27.302 | | G
AZIM
RAD | 048 | .150
.150 | .013
.081 | .064 | 051
-010
057 | 241 | .392 | 0.000 | 221 | 135
102
115 | .173 | 125 | 0.000 | | FSD
ANGLE
RAD | .107
.091
.124 | .094
.094 | .089 | .084 | .105 | .130 | .094 | 960 | .107 | .101
.073 | .116
.120 | .069 | .087
.057 | | F
ELEV
RAD | .003
.052
011 | .035
-011 | .002
.035 | .033
.033 | .002 | 001 | .010
.014
025 | 006 | 007 | 003 | 008
038 | 005 | 0.000 | | WOR12
WIND
CM/SEC | 507-95
655-04
555-47 | 447-35
572-67
487-55 | 499-10
638-99
520-33 | 501-72
666-29
549-77 | 533.61
703.91
585.71 | 420.56
605.23
452.76 | 330-10
423-16
320-41 | 187.01
275.96
214.63 | 293.69
399.72
314.76 | 250.68
359.28
281.34 | 152.44
230.61
0.00 | 151.35
265.77
164.54 | 145.19
247.27
155.36 | | RWV | 00000 | 0000 | 0000 | 0000 | 00000 | 0000 | 0000 | 00000 | 0000 | 000000 | 000000000000000000000000000000000000000 | 0000 | 000000 | | JV
STRE
S/CM2 | -1.203
.534
-2.034 | 1.694 | 2.200
2.262
3.298 | -1.255 | -537
343 | 3.344 | 175 | 036 | .340 | 1.485 | -2.221
-3.489 | .081 | 058
037 | | RUM REYNOLDS | -2.272 | -1.538
-1.907
-1.779 | -2.199
-2.199
-1.767 | -2.064
-2.088
-1.965 | -2.249
-2.249
-2.190 | -1.429
-1.381
-1.587 | -1.059 | 197
205
245 | 629
610
713 | 423 | 274 | 067 | 106 | | WSD | 50.65
56.58
55.13 | 46.32 | 46.71
53.34
50.21 | 50.00
53.94
53.58 | 52.74
57.52
55.60 | 41.93
44.68
44.46 | 30.33 | 18.24
1.01
19.28 | 29.97
30.83
30.28 | 24.84
25.83
26.81 | 18.95
23.52
0.00 | 10.59
11.41
10.96 | 12.54
17.66
11.40 | | VSD
WIND ST B | 116.42
133.62
122.33 | 110.83
138.32
121.21 | 112.39
134.83
115.34 | 34 - 35
97 - 94
99 - 93 | 101.87
118.76
112.13 | 106.59
145.41
99.82 | 41.76
57.51
42.10 | 29.30
34.00
31.78 | 40.11
42.67
40.20 | 38.52
43.23
40.42 | 37.07
41.92 | 22.86
34.01
23.82 | 22.52
8.76
21.24 | | USD
WI | 118.19
116.65
126.63 | 108-37 | 115.87
124.71
114.9) | 120.76
120.66
1111.19 | 115.97
107.58
117.00 | 166-15
155-52
152-28 | 89.74
84.42
115.64 | 39.66
37.93
41.93 | 56.00
0.00
0.00
0.00 | 60.14
62.97
64.95 | 92-71
124-34
0.04 | 19.26
25.67
23.43 | 25.86
26.78
21.07 | | MEAN | 494.93
642.40
548.77 | 434.31
557.22
480.81 | 486.37
624.85
513.45 | 494.72
659.61
545.42 | 524.00
694.52
580.22 | 408-37
589-37
452-14 | 327.77
419.82
333.77 | 184.89
274.11
213.47 | 291.01
397.97
715.37 | 247.86
357.02
280.52 | 158-24
226-33
0.00 | 149.65
263.88
165.15 | 143.43
246.05
154.89 | | 5116 | 3226 | - 20 | - 0.6 | C | 40.5 | m 01 m | 11 N M | HNE | -126 | - N 50 | -06 | -06 | - 2 E | | TIME S | 427
1430
1430
1430 | 1500 | 1530
1530
1530 | 1600 | 1630
1630
1630 | 1700
1750
1700 | 1850
1800
1800 | 1900 | 1930
1930
1930 | 2000 | 2030
2030
0105 | 2300 | 2330
2330
2330 | | | | | | | | | | | | | | | | | ۵۵ | 000 | 000 | | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0 00 | 000 | |---------------------------------------|-------------------------------------|-----------------------------|-----------------------------|---|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---|---|----------------------------------| | EXCEEDED
F
G
THOUSAND | | | | | | | | | | | | | | | E 4 | 000 | 000 | 000 | 300 | 000 | 000 | 200 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMIT.
VSQ
ARTS P | ကစပ | ٥00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | RANS
N) D, | .3716
0.0000
0.0000 | .3260
0.0300
0.0300 | 0.0000
0.0000
0.0000 | 0.0000 | .1579
0.5000
0.0000 | .0813
0.0000
0.0000 | 0062
0.0000
0.0000 | 0318
0.0500
.0017 | 0.0000 | 0.0349 | 0247
0.0000
0.0000 | 0.0000000000000000000000000000000000000 | 0201
.0034
0.0000 | | EV EW
MI HEAT TRANS | 0376
7.0500
7.0000 | 0.00000 | .0133
0.0000
0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 4505
0.0000
0.0000 | 0512
0.0000
0.0000 | 0201 | .0020
0.0000
0.0000 | .0148
0.0060
0.0006 | 0376
0.9006
6.9009 | 0.0000 | 0011
-0081
0.0000 | | ELATE: | -1-4133
0-0000
0-0000 | -1.0473
0.0000
0.0000 | -1.0723
0.0000
0.0000 | 0.0000000000000000000000000000000000000 | 7234
0.0000
0.0000 | -1.0464 | 0.0000 | .0869
0.0000
.1015 | .1232
0.0000
0.0000 | .1334
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0.0000 | .0609
0.0000
0.0000 | | AIR TEMP
MEAN ST DEV
CENT:GRADE | .5580
.4800
.5130 | .5480
.4200
.5150 | .4810
.3750
.4910 | .3560 | .3450
.1710
.2130 | . 4690
. 4440 | .5280
.3510 | .6160
.2430
.5460 | .4080
.2550
.4030 | .4320
.2590
.4280 | .6110
.5330
n.nnon | 0.0000.0 | 07 - 10
07 - 10
10 - 38 70 | | AIR
EAN
CENT | 13•
12•
14• | 13. | 14.
13.
14. | 13.
12.
13. | 12.
12.
13. | 11. | 9.01 | 96. | \$2.5 | | W 0 C | | 25. | | • | .1537
.1847
.1609 | .1312
.1310
.1315 | .1053
.1251
.1074 | .0316
.0338
.0223 | .0036
.0272
.0036 | 0045
.0103
0699 | 0727
0568
0878 | 0493 | 0710
0529
0802 | 0567
0395
0667 | 0315
0312
7.0000 | 0.0000 | 0270
0218
0183 | | HV
-E HEAT | .0216
0470
0042 | .0324
0663
0190 | .0039
0729
1563 | 1449
0920
1160 | .0081
.0232
0478 | .0407
.4825
.4878 | 1147
1489
3248 | .0078
.0195 | 0055 | 0150 | 1263
1006
0.0000 | 0.0000 | 0205
0390
0228 | | HU
SENS I BI | 5887
3988
5894 | 4478
3917
5244 | 4027
4147
4782 | 1922
1275
0234 | 0554 | 1.1628 .25914969 | .4592
.2272
3878 | .2456
.0837
.2093 | .2704
.1662
.2909 | .1987
.0087
.2564 | .5215
.5215 | 0.0000000000000000000000000000000000000 | .0823
0001
.0464 | | BETA | .0450
0540
0160 | .0370
0690
0200 | .0390
0590
0230 | .0450
0680
0080 | .0220
0680
0280 | 0.6000
6280
0320 | .0040
1290
0710 | .0610 | .0640
0480
0200 | .0066
0730
0140 | .0410 | .0240
0470
0320 | .0480
4020
0310 | | THETA | 0656
0481
0188 | .0301 | 0051
.0313 | 0027
.0298
0200 | -0055
-0408 | -,6068
-0409
-,6079 | .0037 | 0109
.0290
0169 | 0136
.0471
0120 | 0094
0350 | 0092
.0339 | -0080
-0404
019:) | 0047
0374
0219 | | ETA | 0953
0478
0728 | .1704 | .0218
.0872
.0533 | .0664
.1114
.0726 | 0501
0114
0567 | 2466
2145
2368 | .3927
.4668 | 0096
-0006
0456 | 2228
1972
2115 | 1234
0941
1100 | .0942
.0829
0.0000 | 0429 | 0029
-1.5704
0981 | | SITE | 767
1
2
3 | - 26 | ~ ~ ~ | 351 | 325 | 3 5 7 | 3 2 3 | 321 | 3 5 1 | 321 | - 2 5 | -26 | 321 | | TIME | 42767
1430 1
1430 2
1430 3 | 1500
1500
1500 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | 1700
1700
1700 | 1800
1800
1830 | 1900
1900
1900 | 1930
1930
1930 | 2000
2000
2000 | 2030
2030
2010 | 2300
2300
2300 | 2330
2330
2330 | | MIND
SHIFT
RAD | 00000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 0000 | |---|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|----------------------------|---|---------------------------|----------------------------|---|----------------------------|--------------------------|----------------------------| | WIND
DIR
9AD | 0.000 | 00000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 0000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 0.000 | 0000 | | GSD
ANGL E
RAD | .171
.159
.197 | .279
.251
.268 | .196
.114
.156 | .134 | .301
.169 | .240
.234
.273 | 0.000
0.000 | .234
.209
.226 | .334
.317 | .346
0.000
.350 | .319
.323
.269 | .283
0.000
.210 | .209
.183
.181 | | G
AZ IM
RAD | .075
002
028 | .026
046
060 | 236
337
319 |
160
282
227 | 158
103
249 | 001
-163
030 | 0.000 | 305
234
221 | 128 | .018
0.000
.015 | .042
.048
030 | 0.000 | 0065 | | FSD
ANGLE
RAD | .039
.043
.039 | .081
.049
.052 | .085
.061
.079 | .069
.049
.087 | .036
.020
.072 | .099
.085 | 0.000 | .087
.089 | .159
.145
.137 | 0.000
0.000
0.160 | .128 | .105
0.009
.087 | .105
.091
.086 | | F
ELEV
RAD | 002 | 002
.035
019 | 0.000 | -0045 | 009 | .017
.016
003 | 0.000 | .016
.040
0.000 | .023 | 0.000 | .011 | 0.007 | .006
.016
014 | | HORIZ
WIND
CM/SEC | 105.81
182.50
116.90 | 114.44
207.18
120.73 | 137.96
229.64
154.47 | 104.17
191.43
118.36 | 76.51
152.94
84.60 | 107.43
171.56
104.66 | 0.00
139.63
0.00 | 95.76
156.86
108.32 | 119.87
148.54
144.47 | 210.44
0.00
200.44 | 279.52
351.87
283.21 | 302.72
0.00
316.79 | 403.24
518.16
418.63 | | RWV | 000000 | 0.0000 | 0000 | 0000-0 | 00000 | 0000-0 | 0.0000000000000000000000000000000000000 | 0000-0 | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | | M RUV
EYNOLDS STRESS
•••DYNES/CM2•• | .127
343
027 | 101
718
209 | 287
107
225 | 218
-106
170 | 160
080
058 | .500
.688
.357 | 0.000 | .180 | .676
.290
186 | .195
0.000
-2.203 | 2.527
5.742
1.339 | .978
0.000
172 | -1.438
-2.561
663 | | RUW
REYNOL | 009
027
011 | 037
043
016 | 096
127
078 | 037
051
055 | 0.000
012
020 | 057
150
071 | 0.000 | 050
110
028 | 200
133
166 | 0.000
0.000
264 | 756
187
433 | 0.000 | -1.203
-1.476
853 | | MSD | 4.15
7.86
4.81 | 8.27
10.07
6.14 | 12.09
14.29
12.33 | 8.13
9.82
10.12 | 1.61
2.94
1.96 | 9.43
16.54
E9 | 0.00 | 8.64
14.30
8.15 | 15.34
21.14
16.23 | 23.24
0.00
20.09 | 29.37
17.:3
24.42 | 29.57
0.60
26.13 | 39.84
43.55
36.75 | | VSD
D ST | 18.11
28.65
22.80 | 31.58
51.41
32.16 | 24.26
24.82
21.86 | 19.66
26.55
20.63 | 19.28
26.14
21.36 | 26.29
40.45
26.14 | 0.00
26.03
0.00 | 21.68
31.55
21.15 | 43.69
53.41
57.02 | 88.38
0.00
73.31 | 82.65
98.91
79.41 | 87.70
0.00
66.84 | 83.92
89.87
77.36 | | USD
WIN | 12.38
18.66
12.22 | 24.58
25.94
20.87 | 33.02
41.33
28.82 | 31.61
41.76
31.90 | 27.34
29.57
31.14 | 41.09
51.26
44.77 | 31.34 | 32.04
37.60
25.64 | 55.52
60.17
40.50 | 147.94
0.00
141.87 | 106.17
119.64
101.65 | 82.73
0.00
70.71 | 95.60
118.84
88.27 | | MEAN | 104.27
180.35
115.67 | 110.08
200.90
118.46 | 135.61
228.66
156.94 | 102.48
189.93
118.73 | 73.78
150.50
83.51 | 104.42
167.04
102.98 | 0.00 | 93.33
153.75
1088 | 112.83
140.27
138.30 | 197.06
0.00
188.13 | 267.63
334.80
271.62 | 290.65
0.00
308.84 | 394.64
508.92
410.75 | | 67
ITE | 3 5 1 | HNM | 32 | 3 2 1 | - 2 E | - 26 | 725 | H 46 | - 26 | 50267
0 1
0 2
0 3 | | 126 | 126 | | 42867
TIME SITE
START | | 8 8 8
8 8 8 | 1000 | 130
130
130 | 230
230
230 | 0004 | 0 6 4
0 6 4
0 6 7 | 7 00 0
00 0 | 700
700
700 | 5 22
1430
1430
1430 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | | | | | | | | | | | | | | | | ## CORRECTED DATA FOR SITE 3, MAY 2, 1967, Pages D30-D35 | TIME SITE ME
START WI | | | RUV RHV
DLDS STRESSES
DYNES/CH2 | HGRIZ F
WIND ELEV
CM/SEC RAD | FSD G GSD
SIDNA NISA SIDNA
KAD KAN KAN | |--------------------------|-----------------|------------------------|---|------------------------------------|--| | | | | | | | | 54267 | | | | = | | | | 53 142.71 86.26 | 23.67315 | | 200.44 .011 | .186 .017 .412 | | | 64 101.64 93.53 | 28.76516 | | 283-21 010 | | | 1600 3 308. | | | | 316.79712 | c103 •U2W •247 | | 1630 3 410. | | 41.17 -1.015 | | 418.63 017 | | | | 04 101.63 73.00 | 46.59 -1.582 | | 481.29007 | -101173 -153 | | 1733 3 333. | | 30.73743 | | 333.11005 | | | 1800 3 273. | | 26.32445 | | 274.58008 | •097 -4145 •136 | | 1830 3 212. | | | | 213.94023 | | | 1900 3 186. | | | | 186.20029 | | | 1935 3 201. | | 18.40208 | | 203.20019 | | | 2000 3 205. | | | | 206.50 016 | | | 2030 3 211. | | | | 212.19013 | | | 2105 3 192. | | | | 189.86 301 | .08044u .083 | | 2136 3 180. | | 15.89163 | | 140.27 305 | | | 2206 3 198. | | | | 199.35008 | ·088 -·237 ·145 | | 2230 3 183. | | 16.61172 | | 185.30012 | -091061 -148 | | 2305 3 166. | | 15.61 ~.158 | | 167.36010 | .093090 .142 | | 2330 3 169. | 92 48,60 24,48 | 14-63119 | ~.528 0.000 | 161.93029 | .082 .172 .144 | | TIME SITE ET
START | | HU HV
SENSIBLE HEA' | | T DEV LATEN | EV EK
T HEAT TRANS
/(CM2-MEN) | | | | | | | | | 54267 | | | | | | | | 2601150150 | | 7 •0209 20• •! | 5150 0.0000 | 0.0000 0000 | | | 00 0204 0310 | | • | 3820 0.0000 | 0.0000 0.0000 | | | 58 0199 0320 | | | 1670 0.0000 | 0.0000 0.5000 | | | 07 0231 0430 | | 50133 19. · | 2480 0.0000 | 0.0000 0.0000 | | | 02 0140 0090 | | | 1560 0.0000 | 0.0000 0.0000 | | | 8701100520 | | | 4750 0.0000 | 0.0000 0.0000 | | | 00 0142 .0130 | | | 6640 0.0000 | 0.0000 0.00UA | | | 10 0272 0240 | | | 9840 0.0000 | 0.0000 0.0000 | | | 62 0329 0520 | | | 5290 0.0000 | 0.0000 0.6000 | | | 46 0230 0300 | | | 4090 0.0000 | 0.0000 0.0000 | | | 4702190190 | | | 3650 0.0000 | 0.0000 0.0000 | | | 36 0194 0200 | | | 3590 0.0000 | 0.0000 0.0000 | | | 40 0062 4290 | | | 3200 0.0000 | 0.0000 0.000 | | | 18 0092 0650 | | | 3000 0.0000 | 0.0000 0.0000 | | | 3101240300 | | | 3280 0.0000 | 0.0000 0.0000 | | | 12 0172 0050 | , | | 3010 0.0000 | 0.0000 0.0000 | | | 0301510180 | | | 2970 0.0000 | 0.0000 0.0000 | | 2330 3 .15 | 57 3329 0. 3000 | •2535062 | 70159 6 | 3775 3.0000 | 0.0000 0.0000 | | | | _ | 0 | _ | _ | _ | | _ | _ | | | | | | 0 | _ | _ | | _ | 5 6 | | | 0 | _ | _ | | . 0 | | | 00 | | | 0 | _ | _ | _ | _ | | _ | _ | 0 | _ | _ | | |--------------------|---------------------|-------|---------|----------|---------|-------|--------|-------|-------|--------|-------|-------|----------|---|----------|--------|--------|---|---------------|--------|--------|--------|---------|---------|------|------|--------|---|----------|---|-------------|-------|-----------|----------|-------|-------|--------|---------|---------|--------|--------|-------|-------|--------| | ë, | AND | Ŭ | | | Ŭ | | | Ŭ | | • | • | • | - | | • | _ | Ŭ | • | • | • | , | Ŭ | Ĭ | Ŭ | • | • | , , | , | | | , | | _ | | | Ū | | | Ü | Ŭ | Ŭ | | | | | CEED | HOUS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ح | ی | | > 0 | ם כ | , | 0 | 0 | ٥ | | > (| ۰ د | , | 0 | 0 | 0 | c | , (| 0 | , | 0 | 00 | | | 0 | . | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | | | ري
ن | ה
ה | I WI | VSG F G | ဂ | 0 | ٥ | 0 | 0 | 0 | 0 | c | 0 | • | > 0 | 0 | , | ၁ | 0 | 0 | • | . | 0 1 | 9 | 0 | 0 | 0 | c | • | 0 | , | 0 | 00 | , | | 0 | n · | 0 | 0 | ٥ | ၁ | 0 | 0 | 0 | 0 | 0 | • | | | P 8 4 | • | : | 0000 | 0.000.0 | 000 | 0.000.0 | 0000 | 0.000 | 000 | 0000 | 0.0000 | 9 | 000 | 000000 | • | 000000 | 0000 | 0000 | 9 | 0000 | 00000 | 200 | 0000 | 000000 | 0000 | 9 | | 000000 | | 299 | 0000 | • | ľ | •2500 | 0000 | 000 | 100 | 000 | 0.000.0 | 2298 | 0000 | 0.0000 | 1399 | 0000 | 0.0000 | | 13 | LATENT HEAT INANS | | | | | | | | | | | | | | | | | • | ٠, د | ٠, | _ | 0 | 0 | 0 | | | | | | 00 | ı | | | | | Ę, | | • | | | | | | | | | 42-M | .0337 | 000000 | 0000 | 0000-0 | 0000 | .0000 | 0000 | 0000 | 0.000 | 0 | 00000 | 0000 | | 000000 | 0000 | 0000 | - | 0000 | 000000 | 0000 | 0000 | 000000 | 0000 | | 2 6 | 0000 | 1 | 5882 | 000000000000000000000000000000000000000 | :
:
! | | -5140 | 000000 | 00.00 | 6404 | 000000 | 000000 | +1904 · | 0000 | 0.0000 | 0350 | 0000 | 0.000 | | <u>.</u> | E O | • | ċ | ċ | | | | | | | • | | c | | Ü | ò | • | | | | | C | 0 | C | < | | | | | | | | | | | • | ċ | Ċ | • | | | ٠ | | | | | LATE | •0349 | 000000 | 9000 | 0.0000 | 0000 | 0.0000 | 0000 | 0000 | 000000 | 000 | 00000 | 0000 | | 0000 | 0.0000 | •0000 | | 0000 | 000000 | 0000 | U COU | 0.000.0 | ייטטט• | 000 | | 00000 | | 2126 | 0000000 | | ı | 3.2180 | 00000 | 0000 | 3104 | 0.0000 | .0000 | .6413 | 0000 | 0000-0 | 5724 | 0000 | 0.0000 | | | ·
> | | | C | | | | | | | • | | | | ċ | | | | | | | | | C | • | | | | | | | | | | | i | ò | | i | | | | | | | Q 6 | ENTIGRADE | .5140 | *298D | • 2610 | .3810 | .1760 | •4200 | .3120 | -2070 | 1500 | | 0000 | .3370 | | •3380 | .5550 | • 2630 | ; | 01/5. | 00/7 | • 3600 | 000000 | •2500 | 000000 | 000 | 2016 | • 4410 | | 6260 | . 5000 | | 1 | • 5320 | 0.0000 | •5159 | .2540 | • 2390 | .3820 | .2940 | 000000 | .1676 | .3130 | 41660 | .2480 | | A 5.9 | CERT | e, | 2* | ~ | | ? | | : | 2 | 2. | • | • , | • •
V | | : | 2• | -: | | • | • | • | | • | ċ | | | • | , | . | • • | | | | | 20• | 20. | 20. | 20. | 20. | | | 19. | 19. | 13. | | | v : | 025 | 0033 | 039 | 101 | 073 | -+00%5 | 203 | 129 | 0211 | | 1 6 6 | 0006 | | 9600 | 003 | 0023 | Š | 4600 | 0610 | 7 | COC | 0009 | DOOD | 203 | 9 0 | 0100 | | 579 | 0500 | | | | 0000 | | | | 0358 | | | 0144 | 0190 | | 0113 | | Ī | Z . Z | 0 | 0 | • | 0 | 0 | • | 0 | 0 | • | | | | | • | • | • | • | 0 | 0 | • | 0 | 0.1 | c
c | - | | | | • | • | | | • | Č, | • | • | • | 0 | • | C | • | 1 | 0 | 0 | | | SENSIBLE HEAT TRANS | 9480 | 0280 | 569 | 0693 | 407 | 980 | 0340 | 965 | 0472 | 200 | 9600 | .0505 | | .0738 | .0701 | •0083 | | 2000 | 4160 | 121 | 0000 | 146 | 0000*0 | 200 | 370 | 0684 | | 500 |
347 | | 1 | 6068 | 000000 | 196 | 0257 | 0644 | 245 | 423 | 500 | 0118 | 119 | 279 | 0208 | | ₹ | | • | Ç | c. | 0 | C. | 103 | • | ç | • | , | 1 | | | 0 | ç | • | • | | • | • | C | 014 | ¢
¢ | | | | | 0 | 1347 | • | • | 9 | C (| | • | • | 174 | • | Ç | • | • | 0 | 9 | | _ | S. C. A. | 969 | 9040 | 348 | 860 | 505 | 3722 | 135 | 142 | +1685 | 0 | 1000 | 0634 | | 0673 | 399 | 035 | Š | , , | 9250 | 305 | 000 | •0203 | 00000 | 5.0 | 304 | .0271 | | 100 | -0353 | | 3 | 3438 | 00000 | 376 | 249 | 695 | 178 | 339 | 600 | 0735 | 884 | 707 | 0825 | | 3. | 3 | 0 | ē. | ç | • | • | ç | • | • | 7 | • | • | | | • | • | • | • | • | • | • | 0.0 | • | č | | | • | | 401 | 20 | | | • | C 6 | · | 1 | | 0178 | 133 | 5 | | - | - | 0 | | BETA | RAD | 0520 | 1580 | 9210 | 0110 | 3510 | 0360 | 0570 | 9200 | 0013 | 01.00 | | 0250 | | .0150 | 1550 | 280 | 9 | 2 6 | 2.00 | 310 | 000 | 0380 | 000000 | 280 | 200 | 0336 | | 030 | .0270 | | | 0120 | 000 | 150 | 0540 | 0620 | 0310 | 0020 | 5000 | 0350 | 300 | 0590 | 0430 | | | Œ | • | i | i | • | i | i | • | i | i | | • | | | • | • | • | | • | i | i | 0 | 0 | | | | ٠ | | | | | • | • | | | | | | • | c | i | | | | | THETA | RAD | 5031 | .0320 | 0234 | 204 | •0361 | 0200 | 0044 | .050 | 0123 | 7 | 7000 | -0117 | | 0086 | +0360 | 0160 | | | | ** | 0.000n | • 0467 | 0000° | 9210 | 0.00 | 3042 | | -002 | 0067 | | | £20c* | 2000 | 000 | .0022 | .0064 | 0172 | .000 | 0,000 | 0163 | -0000 | .0114 | 4196 | | ETA | RAD | | | 3300 | 0250 | | | 2507 | 4:2 | 3216 | | 2277 | | | 1647 | 0975 | 2049 | | | 1992 | | | | COOC | 75.2 | 15.7 | 1927 | | 960 | 0706 | | | 6 6 6 6 6 | 050000 | 7 00 | 616 | 132 | *000* | 3900 | | | | | 9000 | | | | 0 | 0 | | • | 0 | - | 2 | 1 | | | | - 2 | | | • | 2 | • | • | • | • | c. | 3 | ٠.
د | | | | | • | • | | | 0 0 | 0 | • | • | | 0 | 17. | C C | • | 0 | • | 0 | | 511 | | ~ | ~ | 'n | - | ~ | • | | 2 | (FT) | - | 4 6 | 'n | | | 2 | • | • | 4 (| ۱ ۱ | • | - | ~ | ~ | - | • ^ | 1 60 | | ~ (| 4 W | | 50267 | → (| ۸. | ۳, | | ~ | | *** | • | 60 | - | ~ | • | | 42867
TIME SITE | X X | | | | 30 | 30 | 30 | 100 | 100 | 100 | 7.50 | 2 6 | 130 | | 230 | 230 | 230 | , | | | 9 | 430 | 430 | 630 | 000 | 200 | 200 | | 200 | 26 | | in i | 2641 | 25.4 | 1630 | 1530 | 1530 | 1539 | 1600 | 1600 | 1600 | 1636 | 1630 | 1630 | | WING
SHIFT
RAD | 000.0 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.000 | 0.000 | 0000 | 0.000 | 000000 | 000 | 0000 | 0000 | |--|------------------------------------|---|--|---|----------------------------|----------------------------|----------------------------|----------------------------|---|--------|----------------------------|----------------------------| | WIND
OIR
RAD | 0000 | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000 | 0.000 | 0000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 0000 | 0000 | | GS9
AMGLE
PAD | 177
151
130 | 197 | .121
.116
.161
.150 | .110
.083
.069 | ,112
,112 | .151
.109
.115 | 109
109
118 | .070
.070 | •126
•123
•105 | .148 | .153
.110
.126 | .197
.118 | | S
AZIM
RAD | | 247 | 038
123
-256
-267 | .331
.229
.226 | | 157
135
113 | - 174
146
130 | 421 | | 201 | 122
-013
052 | 048 | | FSD
ANGLE
RAD | .00.
400.
400. | .084
.082 | .098
.098
.073 | .063
.063 | .099
.075
.077 | .080 | .105
.080
.085 | .101
.063
.063 | .100 | .073 | .102 | .103 | | F
RAD | 0 1 | | 0000
0000
0000
0000 | ••• | .021 | .026 | .029 | 001 | ••• | -007 | .004
.020
010 | .008 | | HORIZ
WIND
CM/SEC | 458.68
614.26
481.29 | 332.54
425.56
333.11
254.16 | 354.84
274.58
209.33
296.97
213.94 | 181
271
186 | 194.74
282.88
203.20 | 203.32
288.28
206.50 | 196.47
287.89
212.19 | 166.11
261.52
189.86 | | 279.70 | 169.43
260.62
185.30 | 137.26
229.79
167.36 | | RWV | 0000 | | 000000000000000000000000000000000000000 | 0.000 | 0000 | 000 | 000 | 000 | 0000 | 0000 | 0000 | 000 | | PM RUV
REYNOLDS STRFES
****DYNES/CM2** | 1.857
1.300
056 | 744
891
683
183 | 404
238
973
993 | 009 | -017
-058
-086 | 109
130
041 | 098 | .002 | 079
-129 | 256 | .026 | 636 | | RUM
REYNOL | -1.488
-1.991
-1.327 | 680
929
613
429 | 420
374
272
291 | 151 | 237 | 298 | 256 | 087 | 146 | 254 | 201 | 138
160
132 | | wsp
DEV | 43.10
49.65
39.55 | 26.09
25.09 | 25.69
22.34
20.59
22.03
16.11 | 16.18
17.67
12.77 | 19.02
21.30
15.62 | 20.98
23.06
16.92 | 19.79
23.05
17.68 | 16.06
17.23
13.65 | 15.01
17.78
13.49 | 20.41 | 16.65
17.71
14.10 | 14.11
16.51
13.25 | | VSD
ND ST
EC | 53-19
97-09
62-26 | \$6.29
\$8.83
38.56
\$0.97 | 43.09
31.99
35.06
44.77
29.77 | 20.47
23.36
17.29 | 28.32
31.72
24.20 | 30.30
31.48
23.80 | 29.25
31.57
25.32 | 18.32
19.51
14.85 | 19.67
32.18
19.87 | 24.74 | 25.22
28.88
23.20 | 24.50
25.47
19.80 | | USD
WIW | 106.91
101.76
101.07 | 73-92
67-77
73-76
62-11 | 57.79
61.58
52.31
51.22
46.01 | 37.86
33.81
37.33 | 40.41
37.75
38.58 | 41.46
40.03
37.70 | 42.08
41.11
40.11 | 42.84
33.00
38.12 | 38.75
32.81
34.74 | 45.26 | 31.20
30.10
30.41 | 46.27
43.32
33.47 | | MEAN | 100 | 329-45
419-78
329-02
250-96 | 351.83
272.19
206.65
292.00
211.28 | 180.07
268.23
184.71 | 192.72
280.76
201.47 | 201-11
286-22
264-76 | 194.38
285.68
210.20 | 165.32
258.21
187.45 | 155.69
253.12
177.91 | 276.39 | 167.54
258.87
183.61 | 134.98
228.17
165.93 | | SITE | 284 | | NF -NF | 321 | 325 | 3.2 | 35 | 321 | | N 10 | -26 | 424 | | TIME | 5026
1705 1
4705 2
1705 3 | 1735
1735
1735
1800 | 18 000 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1900
1900
1900 | 1930
1930
1930 | 2000
2000
2000 | 2030
2030
2030 | 2100
2100
2100 | 2136
2136
2136 | 2200 | 2230
2230
2230 | 2305
2305
2305 | | c | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|-------------------------------------|---------------------------|---|---------------------------|---|-------------------------|---|---|---|---------------------------|---------------------------|-------------------------|----------------------------| | EXCEEDED
F G
THOUSAND | | | | | | | | | | | | | | | ~ ~ | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS
VSQ
PARTS PE | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | > 4 | | 000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0.00 | | | | | ~00 | ••• | ~ ~ ~ | | | : | .0577
0.0000
0.0000 | .0209
0.0000
0.0000 | 0.0000 | 0370
0.0000
0.0300 | 0.0000 | 0000000 | 0.00000 | 00000 | 000000000000000000000000000000000000000 | 0.0000 | 0336
0.0000
0.0000 | 0.0000 | 0234
0.0000
0.0000 | | EV
HEAT T
(CM2-MI | .0534
0.0000
0.0000 | .0118
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0231
0.0000
0.0000 | 0.0000 0.000000000000000000000000000000 | 0.0000.0 | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0.0000 | .0118
0.0000
0.0000 | 0325 | 0.00000 | 0.0000
0.0000
0.0000 | | EU EV EW
LATENT HEAT TRANS | - 4030
0.0000
0.0000 | 2328
0-0000
0-0000 | 0.0000 | .2014
0.0000
0.0000 | 000000000000000000000000000000000000000 | 0.0000 | 00000-0 | 0.0000000000000000000000000000000000000 | 0.0000 | .1349
0.0000
0.0000 | .1629
0.0000
0.0000 | 0.0000 | .1768
0.0000
0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .3050
.1890
.1560 | .2990
.4750 | .7120
.4410
.6540 | .8570
.7170
.9840 | .5780
.5790
.5290 | .4670
.3520
.4090 | .3580
.2680
.3650 | .4010 (
.3130 (| .2690
.3200 | .3960
.2750
.3000 | .4020
.3090
.3280 | .2930
.2080
.3010 | .3860
.2730
.2970 | | AIR
EAN
CENTI | 18.
18. | 17.
19.
18. | 16.
17.
16. | 13•
15•
13• | 113. | 9. | 9. | 8.
8. | 10. | . 6 8 | | - 01 | 400 | | • | 0499 | 0651
0634
0503 | 05800469 | 0363
0254
0318 | 0409 | 0395
0310
0280 | 0390
0316
0291 | 0359
0263
0307 | 0196 | 022.
019:
0201 | 0319
0251
0200 | 0285
0175
0197 | 0224
0179
0151 | | HV
E HEAT
ICM2-MI | .0819
.0473
.0064 | 1130
1401
1001 | 0488
0488
0573 | 1380
1434
1267 | 0424 | 0225
0118
.0006 | .0137 | 0139 | -00093
-00114 | -0214
-0421
-0230 | .0640 | 0084
0011
0269 | 0648
0263
0201 | | HU
SENSIBL | .2710
.1575
.1843 | .4034
.2270
.4152 | .565
.3212
.5363 | .5017
.3263
.4680 | -1091
-0243 | .1526
.0489
.1253 | .1477
.0716
.1339 | .1954
.1363
.1896 | .2255
.0666
.1631 | .1811
.0226
.1137 | -1898
-1086
-1780 | .0923
.0529
.0862 | .2318
.1102
.1129 | | RAD | 0040 | .0280
0490 | -0320
-0150
-0140 | .0170
0360
0260 | .0860
0130
0550 | .0530
0500
0290 | .0590
.0010
0180 | .0460 | 2280
-2050
3350 | 0550
0773
0710 | .0950
0410
0280 |
.0210
0380
0050 | .0460
0270
0170 | | THETA | 0075 | -0079 | 0018
0225
0121 | .0037 | 0014 | 0508
0192 | 0015
-0239
0186 | 0014
0267 | -0081
-0404
-0054 | .0002
.0369 | -0008
-0230 | 0187 | .0007
.0223
0129 | | ETA | 1218
1253
1534 | 2550
2426
2557 | 0941
0919
1276 | .2496
.2611
.1541 | .3332
.2275 | 1425
0962
0974 | 1602
1088
1145 | 1768
1483
1393 | 4332
4261
3748 | 3650
2886
3021 | 1252
-0075
2075 | 1214
-0144
0520 | 0831
.0145
0852 | | SITE | _ | 426 | 3 5 1 | 426 | -26 | - 2 E | - 26 | 325 | ~~ | 3 5 11 | 126 | 486 | - 76 | | TIME | 50267
1705 1
1705 2
1705 3 | 1735
1735
1735 | 1800
1800
1800 | 1830
1830
1830 | 1900
1900
1900 | 1930
1930
1930 | 2000
2000
2000 | 2030
2030
2030 | 2100
2100
2100 | 2136
2136
2136 | 2200
2200
2200 | 2230
2230
2230 | 2305
2305
2305 | | WIND
SHIFT
RAD | 0000 | 0000 | 0000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000 | 0000.0 | 0.000 | 0.000 | | |----------------------------------|-----------------------------|----------------------------|----------------------------|---|---|---|----------------------------|----------------------------|-------------------------|----------------------------|----------------------------| | N IND | 000000 | 000000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0.000 | 000 | 0 | | GSD
ANGLE
RAD | .174 | .181
.134 | .389
.389 | .312
.315 | .159
.166
.186 | .331
.312 | .314
.344
.345 | .218
.231 | 0.000 | .257
.246
.251 | 191 | | G
AZIM
RAD | .123
.244
.146 | .089
.216 | 160 | .213
.213 | 354
395
370 | .102 | .070
.119
.115 | .298
.328
.265 | 00000 | .145
.149
.134 | .030 | | FSD
ANGLE
RAD | .070 | .108 | .231
.230 | .144 | .098
.125 | .137 | .127
.144
.145 | .142
.186
.166 | 0.000 | .105
.097
.106 | .106 | | F
RAD | .012
.911
024 | .009
.013 | .001
.002
.015 | .008 | .013
.007
015 | 0.002 | .005
.008 | .005 | 0.000 | .004
.015 | •005 | | HORIZ
WIND
CM/SEC | 174.06
257.88
161.93 | 205.15
296.41
191.68 | 113•35
145•70
115•28 | 219.82
263.86
226.94 | 276.14
337.81
273.36 | 235.52
284.72
247.39 | 196.27
235.16
194.40 | 206.01
233.27
185.24 | 0.00 | 290.85
363.24
290.77 | 298.79
388.32 | | RWV
SSES | 00000 | 00000 | 0000 | 0.000 | 0000 | 0000 | 0000 | 0.000 | 0000 | 0000 | 0000 | | RUW RUV RHV
REYNOLDS STRESSES | 371 | 060 | 305
-2.059
910 | 1.666
2.148
.648 | 666
-2.279
-1.301 | 2.557
3.365
3.336 | 1.455
.332
.007 | .197
549
-050 | 0.000 | 1.097 | 302 | | RUW
REYNOL | 188
188
099 | 302
279
221 | 134
-068
202 | 415
483
602 | 519
706
694 | 260 | 313 | 196
387
540 | 0.000
0.000
1.465 | 503 | 144 | | WSD
DEV | 17.80
18.69
12.42 | 21.27
22.47
18.59 | 18.40
26.53
19.10 | 23.57
33.90
27.59 | 25.26
36.67
28.29 | 25.02
33.74
26.30 | 19.36
27.21
20.83 | 22°34
32°57
23°87 | 0000 | 28.68
32.95
29.08 | 29.70
33.90 | | vsb
st | 31.03
32.44
20.85 | 36.62
39.05
33.99 | 44.51
54.48
42.65 | 68.41
85.65
70.10 | 43.24
59.67
49.53 | 71.03
84.56
75.93 | 62.69
30.53
65.60 | 43.33
54.07
52.51 | 0.00 | 72.00
85.02
70.10 | 56.68
65.79 | | USD
WIND | 42.73
44.21
48.79 | 39.19
38.20
37.79 | 68.73
91.87
89.59 | 122.18
127.89
106.64 | 105.74
104.24
98.86 | 102.04
118.12
196.32 | 81-11
86-28
88-14 | 84.40
98.70
100.05 | 5000
5000
5000 | 67.48
75.14
69.87 | 71.57 62.31 | | MEAN | 171.43
254.72
160.35 | 201.89
292.61
189.34 | 106.66
134.55
110.33 | 210.72
249.29
220.58 | 273.55
329.60
272.74 | 224.96
270.67
238.23 | 187.21
219.99
185.98 | 201.83
225.35
180.83 | 0.00 | 281.82
351.02
284.20 | 293.50
361.97
294.28 | | SITE | 267
1
2
3 | 50367
1
2
3 | 126 | 32 | | - 26 | 25 | 3 2 1 | | 3 2 1 | - 2 - | | TIME | 502
2330
2330
2330 | 0.0 | 1136
1130
1130 | 1230
1230
1230 | 1306
1306
1306 | 1330
1330
1330 | 1400 | 1430
1430
1430 | 1600
1600
1600 | 1630
1630
1630 | 1700 | | | | | | | | | | | | | _ | | | |---------------------------------------|------------------------------|---------------------------|---|----------------------------|----------------------------|----------------------------------|-----------------------------|---------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------|---| | ED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | EXCEEDED
F
THOUSAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | TS E)
PER | | | | | | | | | | | | | | | LIMITS
VSQ
PARTS PER | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | > 4 | 200 | | 200 | | - 00 | | | 2100 | | | | | ۰۰۰ | | 3. S | 0278
0.0000
0.0000 | 0307
0-0000
0-0000 | 0000 | .4130
0.0000
0.0000 | 0.0000 | .4339 | .2292 | .4332
.0000 | 0000 | .1704
0.0000
0.0000 | .1771
0.0000
0.0000 | 0116
0-0000
0-0000 | 0.0000000000000000000000000000000000000 | | TRAI | | | 000 | | 00 | 00 | 00 | 66 | 000 | 00 | | | | | EU EV EW
LATENT HEAT TRANS | 0397
0-0000
0-0000 | 0166
0-0000
0-0000 | 00000 | .3076
0.0000
0.0000 | 1663
0.0000
0.0000 | 0000°0 | 3645
0.0000
0.0000 | | 00000 | 4283
0.0000
0.0000 | .2.4206
0.0000
0.0000 | 0.0000 | .0064
0.0000
0.0000 | | ENT
AL/C | | | | | | | | | | | , | | | | EU | .1482
0.0000
0.0000 | 0940 | 000000000000000000000000000000000000000 | .4387
0.0000
0.0000 | 0.0000
0.0000
0.0000 | .8999
0.0000
0.0000 | 1617
0.0000
0.0000 | .3888
0.0000
0.0000 | 0.0000 | 6176
0-0000
0-0000 | 0.0000 | 1.2322 | 181 | | | | | | | | | | | | | • | | | | TEME
ST C | .3200
.2400
.3770 | .2920
.2520
.2630 | .8980
.5960
.9120 | .4090
.6930 | .7560
.5680
.6670 | .6860
.4670
.6430 | .5560
.3400
.5490 | .7520
.5390
.7220 | 0.0000
0.0000
0.4340 | .3120
.1980
.1890 | .3440
.3150
.3450 | .4910
.3670
.4820 | .6450
.4710
.6190 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | \$ - 6 | • • • | 17. | 19.
19. | 20.
20. | 20.
20. | 19.
20. | 20. | 6 6 6 | 19. | 19. | 17.
18.
17. | 15.
16.
16. | | • | 0276
0202
0135 | 0305
0270
0244 | 0380
1526
1674 | .1497
.1251 | 1354
1652
1296 | 159
192
292 | 0466 | 1084 | | .0127 | 0470 | 0585
0515
0518 | 0523 | | HU HV HW
SENSIBLE HEAT TRANS | 000 | 111 | 9:: | 777 | | 777 | 000 | 944 | 0.000.0
0.000.0
4.010. | 000 | 000 | 000 | | | HV
HEAT
CM2-M1 | 0391
.0074
0534 | 0147
0227
-0107 | •2701
•0601
•1126 | .151;
.0725 | .0792
.9833
.0271 | .0501 | .2616
.2659
.2810 | .0119
.0419
.0337 | 0.0000
0.0000
0.0374 | .1628
.1528
.1101 | .1124 | 0297 | .0148
.0152 | | FEE. | | | 1 1 | ' ' | 1 | • | | ' | | | | 1 1 | • | | HU
SENS IBL | .1472
.0239
.2551 | 0921
0462
0307 | 0552
8854
5758 | .9307
.0274
.1150 | -1.3098
3267
1826 | 1007 | 0925
0130
.1310 | 5038 | 0.0000 | 0453
0207
0511 | 1231 | 3341
2770
4185 | .5312
.3337
.4858 | | S. S. | | • • • • | 11. | į | • | | | | | • • • | ••• | • • • | | | BETA | .0550
0280
0010 | .0210
0340
0480 | 0410
0590
0860 | .0400
0650
0500 | -0120
0120 | .0340
0550
0410 | .0230
0400
0210 | -0120
0550
0190 | 0.0000
0.0000
0152 | .0250
0400
0380 | .0100
0500
0220 | .0280
0530
0050 | -0180
0790 | | €0 | | 26
06
1. | V & R | | E 4 4 | | |
 | c c \ | | | | | | THETA | .0067
.0093 | 000 | 01127
-0178
0005 | 0017
0013 | .0065
.0014
.0234 | 0009
0046
0240 | 000¢
-002¢
0175 | .0037
.0034 | 7.9900
7.9000
0152 | 0012
-0111
0231 | 0021
.0107
0215 | .0019
.019%
0207 | .020%
.020% | | ETA
RAD | .1139
.2390
.1325 - | .0893
.2164
.1088 - | | 2231 -
2500 -
2664 - | .3674
.3906
.3567 - | • 1464 -
• 1542 -
• 1463 - | •1660 -
•1194
•1065 - | 3039
3338
2808 | 000 | -1574 -
-1558
-1434 - | .0250 | | 1 | | | 77. | 77.5 | 2460
2241
2852 | 222 | £ £ £ | 41. | 2 | 2,3 | 0.0000 | 111 | 000 | 0645
0659
0651 | 0415 | | SITE | 0267 | 50367
1
2
3 | 426 | ~ 7 € | ~ m | - 2 6 | 3.2 | H 0 6 | ~ ν ε ι | 3 5 1 | 35 | H 01 E | 1 2 6 | | TIME | 2330
2330
2330
2330 | ₩. | 1130
1130
1130 | 1230
1230
1230 | 1306
1306
1306 | 1330
1330
1330 | 1400
1400
1400 | 1430
1430
1430 | 1600
1600 | 1630
1630
1630 | 1700
1700
1700 | 1730
1730
1730 | 1800
1800 | | | | | | | | | | | | | | | | | | 000 | 000 | 000 | | 0.00 | 000 | 000 | 000 | 000 | 0.00 | 000 | 0.00 | 0.00 | |-------------------------|-----------------------------|---|----------------------------|----------------------------|---|----------------------------|--------------------------|---|----------------------------
----------------------------|----------------------------|---|---| | WIND
SHIFT
RAD | 0.000 | 000000000000000000000000000000000000000 | 0.000 | 0000 | 000000000000000000000000000000000000000 | 000000 | 000000 | 0000 | 0.000 | 00000 | 0.000 | 0.000 | 000000000000000000000000000000000000000 | | WIND
DIR
RAD | 00000 | 00000 | 000000 | 000000 | 0000 | 0.000 | 0.000 | 0.0000 | 000000 | 000.0 | 0.00.0 | 0.000.0 | 000000000000000000000000000000000000000 | | GSD
ANGLE
RAD | .149
0.000
.143 | .160
0.000
.151 | .149 | •149
•138
•150 | .125 | .129 | 00000 | .148
.109
.132 | .141
.103 | .125
.104
.134 | .237
.19+
.263 | 000000 | .324
0.000
.275 | | G
AZ IM
RAD | 0.000 | 0.000 | 131 | 225
122
178 | 210
125
176 | 227
122
180 | -,310
0,000
-,286 | 086
115
136 | .146
.116
.053 | .332
.331 | 642
155
115 | 0.0031
0.000
0.000 | .089
0.000 | | FSD
ANGLE
RAD | .100
0.000
.098 | 0.000 | .108 | .108
.088 | .090 | .106
.092
.107 | 0.000
0.000
104 | .102
.078
.098 | .105
.078 | .105 | 121 | .117
0.000
0.000 | .140
0.000
.135 | | F
ELEV
RAD | .004
0.050
014 | 0000 | .003
.035
016 | .005 | .005
.048
012 | 002
040
011 | 0.000 | 0.000 | .004
.023
021 | .006
.015
019 | .012
.031
015 | .017
0.076
0.000 | .010
0.000
020 | | HORIZ
WIND
CM/SEC | 235.25
0.00
244.40 | 225.29
0.00
236.40 | 256.50
348.14
263.16 | 300.67
390.81
327.47 | 252.65
333.52
265.57 | 269.86
352.63
279.83 | 318.15
0.00
329.65 | 187.21
273.87
212.29 | 182.30
254.11
186.64 | 187.15
250.85
175.76 | 190.68
254.59
185.97 | 160.96
0.00
0.00 | 269.68
0.00
281.37 | | • | 00000 | 0.0000 | 00000 | 0000-0 | 00000 | 0.000 | 0.0000 | 0.0000000000000000000000000000000000000 | 000000 | .004
003 | 000000 | 0.0000000000000000000000000000000000000 | 000000 | | V
STRE | 0.000 | 0.000 | 116 | .484
.932
.181 | 1111
237
259 | 464
438
741 | .104
0.900
.029 | .048
.037
012 | 028
061
132 | 0000 | 403
799
688 | 0.000 | 1.539
0.000
.532 | | RUM RU
REYNOLDS | 361
0.000
374 | 0.000 | 539
512
529 | 776
770
739 | 518
485
452 | 516
610
538 | 0.000 | 236
282
283 | 227 | 230
277
203 | 348
315
233 | 0.000
0.000
0.000 | 0.000 | | WSD
DEV | 23.20
0.00
23.61 | 23.01
0.00
23.10 | 26.48
29.66
26.40 | 30.38
34.16
32.4 | 26.31
29.34
26.48 | 27.09
31.75
28.85 | 31.54
7.00
32.85 | 18+58
21•38
20•15 | 18.81
19.64
17.78 | 19.23
21.36
18.46 | 21.38
25.67
19.57 | 18.04
0.00
0.00 | 29.85 | | V SS | 36.04
0.00
35.13 | 36.68
7.00
35.86 | 37.74
42.72
38.22 | 45.00
54.65
49.43 | 36.82
41.87
39.08 | 40.04
45.19
44.87 | 38.90
0.00
45.76 | 28.04
29.78
27.88 | 25.72
26.42
24.90 | 23.70
25.69
23.36 | 41-11
45.91
38.48 | 50.60
0.00
0.00 | 54.24
0.00
76.94 | | USD
WIN | 50.64
0.01
50.85 | 46.10
0.00
47.73 | 62.74
63.39
64.57 | 70.41
64.19
65.19 | 1 | 70.02
74.02
68.75 | 72.74
0.00
72.21 | 35.97
37.25
36.29 | 35.17
32.40
36.31 | 43.57
45.01
39.72 | 46.94
51.83
68.46 | 0.00 | 99.81
0.06
104.30 | | MEAN | 232.62
0.00
242.39 | 222.40
0.00
234.48 | 253.79
345.42
261.18 | 297.65
386.51
325.33 | 250.07
330.57
263.97 | 267.07
349.27
277.79 | 315.97
0.00
329.33 | 185.17
271.94
211.14 | 180.54
252.43
185.39 | 185.82
247.73
175.79 | 186.22
249.44
182.59 | 152.96
0.00
0.00 | 257.28
0.00
274.59 | | SITE | 37 1 26 | 32 11 | ~~~ | 3 2 1 | 35 = | 3 2 1 | m 0:00 | 32 | ₩ N E | 0467
1
2
3 | 2 6 | | M V-W | | TIME S | 503
1830
1830
1830 | 1900
1900
1900 | 2000
2000
2000 | 2035
2035
2035 | 2100
2100
2100 | 2130
2130
2130 | 2200
2200
2200 | 2300
2300
2300 | 2330
2330
2330 | 200 | 000 | 100 | 1200
1200
1200 | | SAMD | 000 | 000 | 000 00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---------------------------------------|------------------------------------|---------------------------|---|----------------------------|---------------------------|----------------------------|--------------------------|--|--------------------------|---------------------------|----------------------------|--------------------------| | EXCEEDED
F G
THOUSAND | 000 | 000 | 000 00 | 000 | 000 | 200 | 000 0 | 000 | 000 | 000 | 000 | 000 | | LIMITS E
VSQ F
PARTS PER | 000 | 000 | 000 00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | ၁ ၀၀ | 000 | | : | 0528
0.0000
0.0000 | 0.0000.0 | 0.0374 | -0376 | 0.0000
0.0000 | 0.0000 | 0.0000 | 00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | LATENT HEAT TRANS | .0480
0.0000
0.0000 | .0350
0.0000
0.0000 | | 0.0054
0.0000
0.0000 | .0108
7.0000
7.0000 | .0167
7-0000
7-0000 | | | | 0.0000 | 0835
0.0000
0.0000 | 0.0000 | | | .1065
0.0000 | .1689
0.0000
0.0000 | 0.0000
0.0000
0.0000
.5294 | .1156
0.0000
0.0000 | .0780
0.000
0.0000 | .1330
0.0000
0.0000 | 0.0000 | 0000 | 0.0000 | 0.0000 | .1276
6,0000
0,0000 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .6770
0.0000
.5950 | .5100
7.0000
.5160 | .3270
0.6000
.2600
0.0000 | 3500 | .2820
0.0000
.2490 | .2720
 | 0.0000
0.0000
1490 | 0.0000 | .2150
0.0000
.2310 | 0.3030
0.3030
.2100 | .2969
0.0000
0.0000 | .8770
.0000
.7936 | | EAN CENT | 13. | 12.
0.
12. | | * * * * | 6 0 0 | 80 5 0 | | | -00 | | P C C | 18. | | | 0.0000 | 7.0483
7.0000
0441 | 0.0000
0.0000
0.0000
0.0000 | 0.0000 | 0362
0.5000
0295 | 0.0000
0.0000
0.0037 | 0.0000
0208 | 0.0000 | 0.0000 | 0.0000 | 1.0568
5.0000
0.0000 | .1812
0.0000
.1494 | | HU HV HW
SENSIBLE HEAT TRANS | 00423 | .0276
0.0000
.0021 | 0026
0.0070
0.0055 | 0.0000 | 0144
7.0000
0118 | .0015
.0071 | .0052
n.0000
0017 | 0.000 | 0022
n.0000
0115 | 0.0000 | .1036
0.0000
0.0000 | 1098
n. 1090
.0622 | | SENSIBL | .1265
0.7000
.0749 | .2081
0.0000
.2391 | 0.0000
.2006
0.2840 | .2113
0-0000
-2021 | .1521
0.0000
.1951 | .2003
0.000
.2018 | .1032
0.0000
.0851 | 0.0000 | 0.0000 | 0.0000 | -2324
0,0000
7,0000 | 7-1772
0-0000
1789 | | BETA | .0293
0.0000
0550 | .0100 | | .079¢
.0050 | .0250
0150
0100 | 0410
0.0000
0570 | 1 1 | 1 | | 0670 | 0.0010 | 0240 | | THETA | 0306
0.0000
0204 | 0.0000 | | -0024 | -00094 | 0672
0-0000
0130 | 0054 | -0271 | • • • | 0200- | .0106
7.0000 | .003n
n.000n
0272 | | E ETA
RAD | .0193
0.0000
.0011 | 0804
0000
1135 | 1321
-0050
0910
2203 | -2122 | 2343
1273
1886 | 3113
0.0000
2862 | A 44 60 | 25 | .335C
.3366
.2920 | -1975
-1375 | 0.0000
0.0000
0.0000 | .1222 | | 211 | 1267 | N:M | m / m / m / m | | 4 4 6 | m 1/10 | m type in | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | - ce | - (v e- | | - 126 | | START | 5026
1830 1
1830 2
1830 3 | 1900 | 2000
2000 20 | 2100 | 2130
2130
2130 | 2200
2290
2290 | 2300 | 2330 | : | 200 | 100 | 1200 | | E DIR SHIFT
RAD RAD | 000.0 | 000.0 000.0 | 000000000000000000000000000000000000000 | | | | | | | | | |------------------------|--|--|---|---|--|--
---|---|--
---|---| | AZIM ANGLE
RAD RAD | .222 .261
0.000 0.000
.309 .265 | | .235 .309
0.000 0.000
178 .252
0.000 0.000
219 .260 | 0.000
0.000
0.000
0.000
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005 | 00000000000000000000000000000000000000 |
0.309
0.0000
0.0000
0.0000
0.252
0.260
0.270
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.244
0.2 | 00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.00000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.0000
00.00 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 |
.309
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.00 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | | ELEV ANGLE
RAD RAD | .020 .139
0.000 0.000 0
025 .155 | | .009 .109
0.000 0.000 0
0.000 0.000 0
0.000 0.000 | .109
0.000
0.000
0.000
0.120
.120
.117
.118
.119 | .109
0.000
0.000
0.120
0.127
0.117
0.117
0.117
0.110 | 0.000
0.000
0.000
0.120
0.127
0.117
0.117
0.117
0.117
0.117
0.110
0.110
0.110 | 0.000
0.000
0.000
0.120
0.127
0.117
0.117
0.107
0.100
0.000
0.000
0.000
0.000
0.000 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 |
0.000
0.000
0.000
0.120
0.120
0.117
0.117
0.107
0.108
0.081
0.083
0.083
0.081
0.081
0.081
0.081
0.081
0.081 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | | WIND
CM/SEC | 279.93
0.00
284.87 | | 273-30
0-00
0-00
297-77
286-87 | 272-30
0-00
0-00
297-77
0-00
286-87
396-51
321-88
450-04
369-11 | 273.30
0.00
0.00
297.77
0.00
314.30
396.51
396.51
396.51
396.51
396.51
396.51
396.51 | 272.30
0.00
0.00
297.77
286.87
336.83
396.51
396.51
396.00
450.00
392.18
388.72
452.18 | 273.30
0.00
0.00
297.77
0.00
396.81
336.81
396.51
396.51
396.51
396.51
450.04
450.04
450.11
450.11
450.11
450.11
460.59 | 273.30
0.00
0.00
297.77
0.00
396.81
396.51
396.51
396.51
396.51
369.11
454.81
462.18
388.72
462.18
462.18
462.18
462.18
462.18
462.18
462.18
462.18
462.18
462.18 | 273.30
0.00
0.00
0.00
396.51
396.51
396.51
396.51
396.51
396.51
396.51
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
460.01
4 | 272.30
0.00
0.00
396.51
396.51
396.51
396.51
396.51
396.51
396.51
369.11
456.81
4425.77
553.61
4425.77
4425.77
4425.77
4425.77
4426.81
4426.81
4426.81
4426.81
4426.81
4426.82
4426.82
4426.82
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4426.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83
4436.83 | 272.30 70.00 70.00 70.00 297.77 296.81 314.30 396.51 396.51 396.21 396.23 366.22 449.55 449.55 440.56 440.50 400.60 360.75 | | • | 000000 | | 000000000000000000000000000000000000000
 | | | | | | | | | REYNOLDS STRESSES | •824 1.059
•000 0.000
•447 1.299 | | 2.36
0.00
0.00
0.00
0.00 | • | | • • • | | | | | | | : | 30.12824
0.00 0.000
30.81447 | 5.74576 | | | 1 111 111 | | | 1 111 111 111 111 1 1 | | | | | ST DEV | 70-82 30
0-00 0
64-22 30 | 85.76 25
0.00
0.00 | 73.65 32
0.00 0
71.41 31 | | | | | | | | | | 5 | 109.46 | 0.00 | 98.93 | 0.00
98.93
87.77
102.27
96.84
108.57 | 98.93
87.77
102.27
96.84
90.69
108.57
94.45
103.48 | 98.93
87.77
102.27
108.69
96.84
96.45
95.85
95.85
95.14
95.14 | 98.93
98.93
97.72
102.22
108.55
96.84
96.84
95.88
95.14
91.84
91.84
91.84
91.84
91.84 | 0.00
98.93
98.93
96.84
90.84
95.85
103.48
95.14
95.14
95.14
101.68
92.68
103.47
100.66
103.47
103.67 | 98.93
87.77
102.27
108.56
96.84
96.84
96.84
95.14
97.68
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84 | 98.93
87.77
102.27
103.64
95.85
103.64
95.14
95.14
95.14
91.84
103.67
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84 | 98.93
87.77
102.27
103.65
96.84
96.84
95.85
95.85
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84
91.84 | | NIA
NIA | 271.62
0.00
281.22 | 260.99
n.00
0.00
289.12
0.00
280.72 | | 303,78
380,95
312,25
340,74
435,77 | | | | | | | | | START | 50467
1230 1
1230 2
1230 3 | 1330 1
1330 2
1330 3
1400 1
1400 3 | | 1430 1
1430 2
1430 3
1500 1
1500 2
1500 3 | | | | | | | | | SED
G
SAND | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | |---|---|---------------------------|---------------------------|---|---|---|---|---|--------------------------|---|--------------------------|-------------------------|-------------------------| | LIMITS EXCEEDED
SO F G
RTS PER THOUSAND | • • • | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIMITS I
VSO PARTS PER | 000 | 000 | ••• | 000 | 000 | 000 | 000 | 000 | 000 | 00 0 | 000 | 000 | 000 | | AAP.S | 00000 | 00000 | 00000 | 00000 | 000000000000000000000000000000000000000 | 00000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000 | 000000000000000000000000000000000000000 | 00000 | 000000 | 000000 | | EU EV EM
LATENT HEAT TRAMS | 0000000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.0000 | 0.0000 | 000000000000000000000000000000000000000 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0000000 | 0000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000 | 0.0000 | 0.0000 | 0.0000 | 000000 | 000000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .8670
0.0900
0777. | .7350
0.0000
0.0000 | .6700
0.0000
.6730 | .5220
.4840
.5130 | .4170
.3340
.3960 | .3410
3180
.2900 | .2940
.2970
.3270 | .2420
.2810
.2050 | .3820
0.0000
.4360 | .3600
.3640
.4130 | .4470
0.0000
.4460 | .4680
.3820
.4720 | .4440
.3790
.4120 | | MEAN
CENT | 19.
20. | 6 c c | 19. | 19.
19.
21. | 19.
19. | 19.
20. | 199 | 17.
18.
19. | 36. | 15.
16. | 14.
25. | 12.
13. | 11.
12.
12. | | | •1796
0•0000
•1524 | .1589
0.0000
0.0000 | .1115
0.0000
1157 | .1100 | .0877
.1162
.0788 | .0602 | .0466
.0354
.0354 | .0243
.0152
.0190 | 0083
0.0000
0064 | 0359
0271
0297 | 0606
0.0000
0496 | 0524
0152
0458 | 0540
0308
0441 | | HU HV HW
SENSIBLE KEAT TRANS
•••CAL/(CM2-MIN)•••* | 0528
0-0000
0135 | 1970
0.0000
0.0000 | .0337
0.0000
0.0539 | .1018 | 0047
.0551
0453 | .0136
.1268
.0046 | .0172 | 0207 | .0478
0.0000
.0361 | 0140 | 0162
^.0095 | 0513
1347
0631 | 0247 | | HU
SENSIB
••••CAL | 7.5444
7.0000
0568 | -1.2067 | 2863
0.0000
1149 | 2127
2209
1083 | 2491
2052
2661 | 2741 | 1887
1384
1300 | 1565
1765
0891 | 1844
0.0000
1391 | .1461
.0322
.1524 | .3176
0.0000
.3548 | .4818
.3470
.3806 | .2890
.1695
.2298 | | BETA | .0160
0.0000
0280 | .0330 | .0190
0.0000
0360 | .0220
0080
0240 | .0260
0300
0260 | .0170
.1060
0200 | .0340 | .0380
.2830
0410 | 0.0000 | .1790 | .0880
0.0900
0260 | .1060
.1830
0080 | .0610
.3040
0130 | | THETA | .0077
0.0000
0304 | . 6025F | .0049
7.1000
0287 | .0277
-0238 | .0033 | .0304 | 0049
.0325
018 | 0044 | 0066
0.0000
0176 | 0064
0349
0146 | 7.0075
7.0000
0140 | 0068
.0330
0141 | 0025
-0304
0180 | | ETA | .2403
0.0000
.3258 | .2675
0.0000
0.0000 | .1829
0.0000
.2107 | .1042
.0566
.0872 | .1694
.0521
.1795 | 0377 | 2337 | 1308
2624
1573 | 2540
0-0000
2262 | 2807
3783
2833 | 0.0000 | 3171
3217
3277 | 1886
2062
1734 | | SITE | 0467 | - ~ ~ | 4 6 6 | 3 5 1 | 351 | 353 | - 2 E | -26 | - 00 | -26 | - 26 | 357 | -26 | | START | 1230
1230
1230
1230 | 1330 | 1400
1400
1400 | 1430
1430
1430 | 1500
1500
1500 | 1530
1530
1530 | 1600
1600
1600 | 1630
1630
1630 | 1700
1700
1700 | 1730
1730
1730 | 1800
1800
1800 | 1830
1830
1930 | 1900
1900
1900 | | VSD YSD RUW RUV RWV
WIYD ST DEV REYNOLDS STRESSES
/SEC************************************ | |--| | 48.86 28.93565
45.55 30.98138
46.41 30.45594 | | 43.91 31.21679 | | 34.39 | | 50-69 34.87458
49.74 34.99888 | | 97 | | 49-68 28-85251 | | | | 65-39 29-3823
65-39 29-3823
65-71 23-20440 | | 90.76 28.03550
107 R8 35.55483
77.23 28.05692 | | 0.00 0.00 0.000
0.00 0.00 0.000
9.27 37.63978 | | 0.00 0.00 0.000 0.000 77.62 39.81 -1.151 | | 0.00 0.00 0.00
0.00 0.00 0.00
75.17 (2.20 -1.470 | | 0.00 0.00 0.000
0.00 0.00 0.000
90.39 44.14 -1.536 | | 67-72 4:-30 -1-447
99-95 43-87 -1-183
9(-31 40-71 -1-185 | | 1034-04 37-96 -1-105
122-33 42-56 -1-129
103-57 17-38 -2-342 | | SAND | c c o | 000 | 000 | 000 | 000 | 300 | 000 | 000 | c 0 0 | 000 | ••• | 000 | |---------------------------------------|-----------------------------|----------------------------|------------------------------|---|-------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------| | EXCEEDED 6 6 1 THOUSAND | 000 | 0 O O | 000 | 000 | 000 | 000 | 200 | 000 | 000 | 000 | 000 | 000 | | LIMITS E
Su F
RTS PER | 0.00 | 886 | 000 | υ
0 0 | coo | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | LIM
VSC
PARTS | | | | | | | | | | | | | | EW
RANS
NI | 0.000°0
0.0000
0.0000 | 0.930¢
0.00¢
0.0000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.00000 | 0.5000 | 0.000000 | 5-0900
7-0009
0-0009 | 0.0000 | 0.000.0
0.000.0
0.000.0 | 0.0000 | 0.00000 | | EV
PEAT C | 0*00°0
0*000°0
0*0000 | 0.000.0 | 0.000.0
0.000.0
0.0000 | 0.0000
0.0000
0.0000 | 0.00 10
0.000 0
0.000 0 | 0.0000 | 1.0000
0.0000
0.0000 | 0.0000
0.00000 | 0.0000
0.000
0.000
0.000 | 0.0000
0.0000
0.0000 | 0-0000°0
0-0000
0-0000 | 0000-0 | | EU EV EW EW LATENT NEAT FRANS | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000.0 | 0.000.0 | 0.00000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 0.000.0
0.0000 | 0.0000 | 0.0000 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .3550
.2330
.3400 | .3590
.3570
.3540 | .2520
.2470
.2750 | 1.4560
1.3680
.5900 | ,5680
.3850
.5490 | .2510
.2500
.3060 | 1.0000
0.0000
0.2200 | 0.0000
0.0000
0.2850 | 0.0000
0.0000
0.3920 | 0.0000
0.6070 | .4260
.3820
.4340 | 144770
143340
-7.35.8090 | | A'R
EAN | :14
114
120 | 10. | 10. | 13. | 13, | 13.
13. | ç ç <u>ş</u> | 5,5 | 66.5 | 66.9 | 16. | 14: | | • | 0439
0303
0404 | 3473 | 0512
0439
0447 | .3196
.0760
.1118 | . 1978
. 1979 | .0395
.0423
.0389 | 0578 | 0.0000 | 0.0000
0.0000
1054 | 0.0000 | .1131
.1550
.0935 | .1069
.1062
.1925 | | HU HV HW
SENSIBLE HEAT TRANS | 0%06
0%4)
0{31 | 0702
1371
0365 | 0053
0486
7228 | .1328
0808
1294 | 0240 | .1189
.1297
1922 | 0,0000
0,0000
0331 | 0.0000
0.0000
0.0620 | 0.0000
0.0006
0.0263 | 0.0000
0.0000
0.0460 | -0512
-0512
-0242 | .1079
.0843
.1102 | | HIJ
SENSTBL | .2861
.1371
.2653 | .3276
.2876
.2603 | .2233
.1873
.2260 | 3127
0161
2882 | 0141
0141
2021 | .1240 | 0,000
0,000
-1360 | 0.0000 | 0.0000
5.0000
3216 | 0.0000 | 3158 | 2301
1140
2617 | | BETA
RAD | .0590
.1660
.0040 | .0680
.3170
0110 | .0710
.7140
0230 | .0700
-0700
-0430 | .0260
0520
0280 | .6200
0520
0520 | 0900°- | 0.0000
0.0000
0.00000 | 0.0000 | 0.0000 | -0230
-0400
-0420 | .0160
0300
.2010 | | THETA | 2097
246
0162 | 008
-0370
315- | 7081
-0338
0356 | 0144 | 0070
0248
02. F | 0367
-0367 | 0,0000
0,0000
0281 | 4720 | 0303
0303 | 0.0000
0.0000
0265 | 0040
-0153
0217 | 0049
-0189 | | E ETA | -1969
-2028
-1988 | 2473 | 296°
30JZ
2858 | 1822
3960
0023 | 1816
1863
-0647 | .1536 | 0.0000 | 7.0000
7.0000
1243 | 0.0000 | 0.0000 | 0925 | 0438 | | SITE | 467 | ~~~ | ~ r; m | 50367
25.25
35.25 | - N E | -26 | - c w | ~~~~ | -~ | r e | 3 5 7 | ~ ~ E | | TIME | 50467
1930 1
1930 2 | 2000 | 2030
2030
2030 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 870
800
800 | 830
830 | E # 6 | 999 | 1000 | 1000 | 1100 | 1130 | | WIND
SHIFT
RAD | 00000 | 0.000
1.872 | -12 | .053 | 135 | .319 | 044 | 108 | 299 | .037 | 520 | 0.000 | 034 | 0.000 | 00000 | 0.000 | .112 | 094
094 | |----------------------------------|---------------------|----------------|--------|---------------|----------------|----------------|------------------|--------|------------------|---------------|----------------|-------|--------|----------------|----------------|---------------|------------------|----------------| | HIND
DIR
RAD | 5.776 | 5.244 | 5.368 | 5.410 | 5.271 | 5.460 | 5.418 | 5.336 | 5.055 | 5.289 | 4.580
5.068 | 5.136 | 5.100 | 0.000 | 0,000 | 0.000 | 4.327 | 4.392 | | GSD
ANGLE
RAD | .322 | .356 | .344 | .350 | .416 | .366 | .368 | .379 | .413 | 404° | .361 | 0.000 | .331 | .372 | 0.000 | 0.000 | .348 | 107 | | G
AZIM
RAD | .015 | -005 | 005 | .023
0.000 | 002 | .036 | .034 | 008 | 010 | 007 | 017 | 0000- | 097 | 0.000 | 0000- | 0.000 | 041 | 023 | | FSD
ANGLE
PAD | .186 | .252 | .195 | .191 | .207 | .192 | .187 | .190 | ,199 | .200 | .197 | 0.00c | .209 | .214
0.000 | 9-1-90 | 0.000 | .233
825. | .272 | | F
ELEV
RAD | .076 | .055 | .036 | .037 | .042 | .036 | .034 | .038 | .045 | .042
.051 | •036 | 0.000 | .034 | 0.049 | 0.000 | 2.000
.018 | •039 | .056 | | KOR1Z
HIND
CM/SEC | 112.28 | 133.64 | 153.15 | 201-41 | 180.56 | 224.90 | 238.46 | 240.66 | 232•19
222•20 | 239.46 | 167.70 | 0.00 | 189.95 | 169-96
0-00 | 0.00 | 76.98 | 117-11 | 110.86 | | REV
SES | .067
107 | .001 | .033 | -117 | 050 | .112 | -108 | ,098 | .044 | •052
-•054 | .146 | 0.000 | 060 | 0.000 | 0.000 | 0.000 | 026 | 018 | | RUM RUV RWI
REYNOLDS STRESSES | 200 | .061 | 038 | -1.154 | .117 | 091 | 471 | -1.858 | 312 | -1.963 | -1.493 | 0.000 | 960- | 0.000 | 0.000 | 0.000 | 975 | -122 | | RUM
REYNOI | 260 | 414 | 539 | 920 | 659 | -1.749 | -1.095
-1.115 | -1.158 | -1.032 | -1.153 | 875 | 0.000 | 765 | 00000 | 0.000 | 0.000 | 286 | -,308 | | WSD | 16.59 | 22.51 | 25.47 | 33.60 | 29.13 | 36.49 | 37.26 | 38.65 | 37.53
37.58 | 38.91 | 29.87 | 30.33 | 30.47 | 28.89 | 0.00 | 0.00 | 20.27 | 21.03 | | | 33.35 | 41.59 | 34.74 | 47.04 | 69.07 | 75.97
57.58 | 77.45 | 89.09 | 87.93 | 94.09 | 79.02 | 0.00 | 54.63 | 56.21 | 0.00 | 20.09 | 34.14 | 39.79 | | USD VSD
WIND ST | 39.07 | 43.80 | 46.15 | 70.02 | 64.68
69.16 | 74.80 | 86-67 | 85.30 | 83.41 | 96.27 | 96.59 | 71.29 | 78.40 | 72.94 | 0.00 | 30.89 | 46.69
51.33 | 51.23
48.08 | | MEAN | 107.08 | 126.73 | 144.91 | 195.71 | 166.97 | 211.22 | 224.74 | 222.47 | 214.62 | 231.40 | 146.59 | 0.00 | 183.97 | 160.88 | 0.0C
138.17 | 0.00 | 111.84 | 103.63 | | SITE | 91168
0 1
0 2 | ~~ | - ~ | H 2 | - 2 | -~ | - ~ | ~ ~ | - ~ | - 2 | ~ ~ | - 2 | - ~ | e c | - ~ | ~~ | 91268 | ~~ | | TIME S
START | 30 41 | 715 | 745 | 830 | 900 | 1000 | 1135 | 1230 | 1330 | 1400 | 1430 | 1500 | 1535 | 1605 | 1640 | 1840 | 91
710
710 | 7.0 | | | | | | | 1.02 | | | | | | | | | | | | | | |--------------------------------------|---|--------------|---------------|---------|---------------|---------------|---------------|---------------|---------------|-------------------|----------------|-----------------|--------------|---------|--------------------|-----------------|---------------------|--------------| | EXCEEDED 5
F 100.000 | 2955
18390 | 4415 | 2826 | 1811 | 4078 | 2243
42907 | 2416
24523 | 2235
20896 | 3396
29983 | 5240
24512 | 17270
25148 | 29427 | 9789 | 10065 | 28066 | 9667 | 9791 | 14179 | | 20 | 1377 | 2347
9216 | 1505
10551 | 1499 | 2822
11186 | 1588
9273 | 1462
1199 | 1402 | 2076
3847 | 2661 24 20 | 10946 | 4140 | 3336 | 3385 | 0
3 56 9 | 2230 | 4334 | 8340
9163 | | LIMITS
VSQ
PARTS P | 122 | 144 | 1392 | 188 | 891
1706 | 193 | 232 | 250 | 711 | 1184 | 6275 | 1398 | 316 | 1123 | 049 | 561 | 889
5957 | 2898 | | EW
RANS
N) | 0000000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | EU EV EW
LATENT HEAT TRANS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
.1961 | .0000 | 0.0000 | 0.0000 | | EU
LATEN | 0.0000000000000000000000000000000000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 00000- | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0399 | 0060- | 0.000. | 0.0000 | | AIR TEMP
EAN ST DEV
CENTIGRADE | .2190 | .5940 | .5590 | .6200 | .7290 | .7500 | .5740 | .6030 | .6660 | .5890 | .4860 | .5710 | .3240 | 0044. | 0.000 | 0.0000 | 131.0610
144619. | .4130 | | AIR
MEAN
CENTI | e . | 10. | :: | 13. | | 17.
16. | 18. | 20. | 21. | 21. | 21. | 22. | 21. | 21. | 22. | c e | 1.0 | 14. | | 3 | 022A | .0576 | .0781 | .1234 | .1447 | .1886 | .1306 | .1929 | .1681 | .0972 | .0459 | 0.0000
40824 | .0325 | 0022 | 0.0000 | 0.0000 | .0341 | .0476 | | SENSIBLE HEAT 1RAMS | 0077 | 0221 | \$100 | .0721 | 1151 | .0349 | 0063 | 1081 | 0806 | 0943 | 0751 | 0.0000 | 0114 | 0.0000 | 0.0000 | 0.0000 | 0396 | .0216 | | HU
SENSIBL | .0693 | 0925 | 1686 | 3946 | 2895 | 4250 | -,1033 | 3380 | 3974 | 2681 | 0501 | 0.000 | 1779 | .1178 | 0,000. | 10622 | 0157 | 1015
0832 | | BETA | 000010 | 0.000.0 | 0.000.0 | 0.000.0 | 0.0000 | 0.00000 | 0.000.0 | 0.000.0 | 0.0000 | 0.000.0 | 0.00000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | THETA | . 1074 | .0163 | .0131 | .0142 | .0123 | .0129 | .0107 | .0161 | .0224 | .0127
.6216 | \$110° | 0.000n | .0161 | .018s | .0102 | 5000°
• 0000 | .0070 | .0135 | | ETA | .1749 | 1.2355 | 1229 | 0745 | .1504 | 0388 | .0389 | .0837 | .3016 | 0615 | .3090 | 0.0000 | 1186 | .0091 | 0.0000 | 0.0000 | 6490 | 0889 | | SITE | 2 = 2 | → 63 | - ~ | m N | 7 7 | - 7 | 1 2 | - 2 | - 2 | | - ~ | - 7 | per 617 | ٦ ٨ | ~ ~ | -8 | 91266 | - ~ | | TIME START | 911
30
30 | 715 | 740 | 630 | 900 | 1000 | 1135 | 1230
1250 | 1330 | 1400 | 1430 | 1500 | 1535
1535 | 1605 | 1640 | 1840 | 917 | 740 | | WIND
SHIFT
RAD | .983 | .528 | 198 | 110 | 237 | .196 | 181 | .100 | 422 | 014 | 118 | .089 | 078
057 | .108 | 002 | 082 | 348
126 | -081 | |----------------------------------|------------------------|--------|----------------|----------------|------------------|----------------|--------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|----------------|--------|---------------|-------| | PAN DER | 4.759 | 5.010 | 4.956
5.382 | 5.409 | 4.740 | 4.788 | 4.580 | 4.873 | 4.429 | 4.222 | 4.111 | 4.201 | 4.155
4.355 | 4.306 | 4-191 |
4.104 | 3.756 | 3.670 | | GSD
ANGLE
RAD | .490 | .388 | .364 | .345 | .418 | .404 | •436
•485 | 419 | .365 | .381 | .323 | .375
.390 | .372 | .353 | .355 | .293 | .227 | .198 | | G
AZIM
RAD | 040 | 170 | 025 | .258 | .105 | -100 | .162 | .212 | .207 | .018 | .024 | .252 | .272 | .028 | .014 | .009 | .009 | .065 | | FSD
ANGLE
RAD | .296 | .249 | .230 | .198 | .235 | .239 | .328 | .351 | .105 | .281 | .208 | •234 | .262 | .233 | -207 | .196 | .153 | .088 | | F
ELEV
RAD | .079 | .058 | .055 | .040 | .106 | .100 | .119 | .162 | .097 | .024 | .018 | .035 | .057 | .031 | 419.
689. | .020 | -020 | 025 | | HOR12
WIND
CM/SEC | 101.08 | 142.07 | 171.84 | 225.65 | 199.72 | 209.34 | 152.38 | 147.40 | 210.97
192.76 | 185.77 | 210.59 | 179.84
169.73 | 152.85 | 176.74
178.58 | 154.09 | 110.20 | 75.66 | 77.34 | | : | 018 | | 008 | 124 | 093 | 216 | 159 | 145 | 161 | 165 | | 023 | -013 | 015 | 045 | 007 | ამ∂ს
• 043 | 003 | | RUM RUV RWV
RETMOLDS STRESSES | 378 | 341 | 105 | 139 | -,770 | 479 | 084 | +095 | •547
-•120 | ,518
455 | .312 | -240 | .234 | 390 | 416 | 093 | 085
.058 | 018 | | RUM
REYNOL | 249 | -544 | 649 | -1.057 | 763 | -,916 | 621 | 616 | 861 | 675 | 911 | - £95
- £96 | 605 | 626 | 643 | 251 | 036 | 028 | | usb
DEV | 19.13 | 26.04 | 29.70 | 36.55 | 32,83 | 34.51
33.15 | 31.61 | 29.08
33.53 | 34.56 | 32.56
33.36 | 34.34 | 31.47 | 28.03 | 31.68 | 25.72
26.12 | 18.27 | 9.46 | 7.38 | | a | 37-23 | 45.84 | 55.82 | 70-17 | 74.54 | 73.35 | 68-49 | 60.44 | 71.21 | 65.31 | 61-11 | 64.25 | 51.35 | 57,43
61.13 | 44.92 | 29.83 | 16.57 | 14.17 | | USD VS
MIND S | 51-80 | 61.37 | 74.70 | 81.94
91.05 | 87.79
98.11 | 96.60 | 94.82 | 108.69 | 113.81 | 86.53 | 66-17 | 76-69 | 72.51 | 74.29 | 57.29
55.63 | 40.08 | 21.62 | 16.79 | | MEAN | 93.95 | 134.13 | 162.66 | 214.08 | 185.77
152.98 | 196-15 | 153.40 | 137.38 | 149.41 | 174.72 | 201.76
197.76 | 168.70 | 144.24 | 167.39 | 147.39 | 106.03 | 73.94 | 76.02 | | S176 | 2 1 2 | ~ ~ | 63 | ~~ | - 2 | 7 | 7 | - 2 | - ~ | - 2 | 7 | ~ ~ | - 2 | ~ ~ | ~ ~ | - 2 | - 2 | - 2 | | START | 9126
810 1
810 2 | 006 | 930 | 1005 | 1035 | 1105 | 1135 | 1205 | 1305 | 1335 | 1430 | 1500 | 1530 | 1600 | 1630 | 1710 | 1746 | 1805 | | LIMITS EXCEEDED
SQ F G
ARTS PER 100.000 | 1 11909 27059 | 5640 16190 | 1 4688 9479 | 1996 3429 | | 5079 8763
14768 26125 | 5079
14768
6197
11696 | 5079
14768
6197
11696
10858 | 5079
14768
6197
11696
10858
17826
24367 | 5079
14768
6197
11696
10858
17826
24367
13532
10484
15672 | 5079
14768
6197
11696
10858
17826
24367
19532
10484
15672
5005 | 5079
14768
6197
11696
10858
17826
24367
13532
10484
15672
5005
9346
2638 | 5079
14768
6197
11696
17826
24367
13532
10484
15672
5005
9346
2638
1928
4173 | 5079
14768
6197
11696
17826
24367
13532
10484
15672
5005
9346
1926
4173
7224
7682 | 5079
14768
6197
11696
17826
24367
13532
10484
15672
5005
9346
10572
5005
9346
7682
4173
7224
7682
7682
7682 | 5079
14768
6197
11696
17826
24367
13532
10484
15672
5005
9346
15672
5005
9346
7224
7224
7682
7682
7682
7682
7682
7682
6230 | 5079
14768
6197
11696
17826
24367
13532
10484
15672
5005
9346
15672
4173
7224
7224
7224
7224
7224
7224
7224
7224
7224
7224
7224
7238
7299 | 5079
14768
11696
110858
17826
24367
13532
10484
15672
5005
9346
15672
4173
7224
7224
7682
4244
4903
6230
1889
4953
4734 | |---|-------------------------|----------------|----------------|----------------|--------|--------------------------|--------------------------------|---|---|--|--|--|---|---|--|--|--|--| | LIMIT
VSQ
PARTS | 5758
7775 | 1261 | 2153 | 362 | 2114 | | 3765 | - | | | | | | | | | | | | EW
TRANS
IN) | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | | 0.0000 | | | | | | | | | | | | | LATERT HEAF TRANS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | | | | | | | | | | | | | " : | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | | 0-0000 | 0.0000
5743
0.0000
1859 | | | | | | | | | | | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .6680 | 4090
• 7980 | .6915
.7180 | .6830
.6830 | .7370 | | .7130 | | • | | | | | | | | | | | MEAN | 16. | 23. | 21. | 20. | 23. | | 24. | 24 24 25 25 25 25 25 | 22 22 22 22 23 23 23 23 23 23 23 23 23 2 | | | | | | | | | | | | .080. | •1229
•1160 | .1372 | .1647 | .1465 | | .1670 | | | | | | | | | i | 1 1 (| 1 11 11 | | SENSIBLE HEAT TRANS | 0587 | 0437 | .0165 | 0889 | 0324 | | 0877 | | | | | | | ., , , | | ., , , | | | | SENSIE | 1189 | 2101 | 2629 | 3840 | 4288 | | 3917 | | | | | | | | | | | | | RAD | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | | | | | | | | | | | | | THETA | .0065 | .0322 | .0172
.0178 | .0044 | .0064 | | .0117 | •••• | •• •• •• | ••• •• •• •• | | | | | | | | | | re e:A
RAD | 5043
-1-0694 | -44253 | .1867 | .1023 | .1951 | | 1523 | 1523
6966
-1263 | | -1523
-0966
-0538
-0512
-0512
-0512
-1508 |
1523
1546
1563
1561
1562
1562
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
1563
 | 1523
 | 1523
 | 1523
0966
1561
0513
0523
1.1036
0383
1138
1138
0952
0952
0853
0853
0853
0853 | 1523
-1666
-1766
-1766
-1766
-1766
-1768
-1768
-1768
-1768
-1768
-1768
-1768
-1768
-1768 | | -1923
-1924
-1926
-1926
-1861
-1936
-1936
-1936
-1936
-1936
-1937
-1977
-1129
-1129
-1129
-1129
-1129
-1129
-1129
-1129
-1129 | 1923
0966
0833
0831
0831
0831
0833
0883
0888
0888
0888
0982
0982
0982
0982
0983
0983
0983
0983
0983
0983
0983
0988 | | 517E | 91268
810 1
610 2 | - 7 | ~~ | | ~~ | | ~~ | | | | | | | | | | | | | START | 9 0 0 0 0 0 | 969 | 930 | 1005 | 1035 | 1105 | 1105 | 1105
1135
1135 | 1105
1135
1135
1205
1205 | 1105
1135
1135
1205
1205
1505 | 1105
11135
11205
1205
1505
1505
1235 | 11135
11135
11135
1205
1205
1505
1505
1630
1630 | 11135
11135
11135
1205
1205
1505
1630
1630
1630 | 11105
111135
11135
11205
11205
11335
11330
11330
11330 | 11105
11135
11135
11205
1205
1205
1205
1430
1430
1430
1430
1430
1430
1430 | 11105
11135
11135
11135
1205
1205
1205
11200
11500
11500
11500
11500
11500 | 11105
11135
11135
1205
1205
1205
1205
1200
1200
1200
1500
1600
1600
1600
1600
1600
1600
1710 | 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (f. (f.) fried, Epolif Ange, Afte, 110° 50° Appending to make the mentioned control of the contr | WIND
SHIFT
RAD | 0.000 | 0.000 | .022 | 008 | .022 | 017 | 027 | .037 | 012 | 051 | .030 | .049 | 131 | .124 | 554 | .032 | 035 | 064 | |----------------------------------|-------|-------|--------|--------|--------|------------------|----------------------------|------------------|------------------|---------------------|------------------|------------------|-------------------|------------------|-------------|------------------|------------------|---------------| | WIND
DIR
RAD | 0.000 | 0.000 | 4.334 | 4.328 | 4.351 | 4.333 | 4.305 | 4.334 | 4.304 | 4.257 | 4.300 | 4.355 | 5.162 | 5.113 | 4.383 | 4.418 | 4.383 | 4.316 | | GSD
ANGLE
RAD | 0.000 | 0.000 | .057 | .050 | .050 | •069 | .049 | .065 | .076
.087 | .068 | .087 | .105 | .179 | .330 | .128 | .129 | .120 | .119 | | G
AZ IH
RAD | 0.000 | 0.000 | 013 | 011 | 009 | 011 | -,012
,002 | 010 | 027 | 023 | 011 | 005 | .346 | .172 | 008 | 002 | 002 | 010 | | FSD
PNGLE
RAD | 0.000 | 0.000 | .038 | .032 | .034 | .047 | .034 | .044 | 940. | .042 | .051 | .059 | .370 | .349 | .110 | .121 | .112 | .105 | | ELE | 0.00 | 0.000 | .000 | 002 | 001 | .001 | 002 | 0.000 | .000 | 002 | 0000 | .003 | .245 | .205 | .012 | .014 | .010 | .010 | | HORIZ
WIND
CM/SEC | 00.00 | 0.00 | 162.91 | 147.03 | 167.32 | 178.69 | 186.90 | 181.11
174.18 | 132.42
133.17 | 139.81
130.74 | 213.59
201.21 | 241.51
232.37 | 211.70 | 258.34 | 000 | 000 | 0000 | 0000 | | . : | 0.000 | 0.000 | 0.000 | 039 | 012 | 007 | 008 | 008 | 010 | 010 | 013 | 026 | 317 | 240 | .190
137 | 166 | 013
00& | •004 | | RUM RUV RWI
REYNOLDS STRESSES | 0.000 | 0.000 | .051 | 024 | 0.000 | 006 | 066 | .056 | 009 | 086 | 126 | 092
187 | 7.389 | 9.537 | -2.228 | -1.297 | 632 | 035 | | RUM | 0.000 | 0000- | 000 | 052 | 087 | 116 | 115 | 108 | 055 | 070 | 160 | 239 | -1.319 | -1.382 | -1.053 | 690 | 926 | 862
-1.056 | | WSD
DEV | 0.00 | 00-00 | 4.88 | 3.28 | 5.46 | 5 . 46
4 . 34 | 5.27 | 5.53
5.53 | 3.43 | 4.04 | 7.12 | 8.66
8.54 | 26.89 | 26.41
26.98 | 21.04 | 20.98 | 23.12 | 22.62 | | VSD | 0.00 | 0.00 | 9.37 | 7.19 | 9.65 | 11.26 | 9.55 | 11.10 | 8.06 | 8.61 | 14.09 | 24.75
19.64 | 62.23 | 69.50
50.18 | 56.35 | 80.61 | 75.12
75.40 | 77.58 | | USD
WIND | 0.00 | 53.33 | 53.47 | 32.50 | 41.34 | 52.70
49.66 | 48.58
52.51 | 59.6A | 98•64
45•35 | 47.53
45.10 | 67.49 | 83.52 | 197.67
185.89 | 225.40
200.86 | 143.25 | 107.97 | 110.61 | 115.14 | | MEAN | 0.00 | 0000 | 162.69 | 146.87 | 167.12 | 178.36 | 186.68 | 180.80 | 132.19 | 139.56 | 213.14 | 220.37 | 195.30 | 225.68 | 283.57 | 298.08
298.15 | 325.96
327.48 | 328.96 | | SITE | 91368 | -2 | - ~ | - 2 | ~ ~ | 7 7 | 7 7 | 7 | ~ ~ | 77 | - ~ | - 2 | -~ | | - ~ | - ~ | | 7 7 | | START | 91: | 215 | 245 | 315 | 335 | 415 | 4
4
4
5
5
5 | 515 | 545
545 | \$15
61 5 | 130 | 705
705 | 800
000
000 | 835 | 995
935 | 933 | 1995 | 1040 | | EXCEEDED
F G
FR 180-000 | 0 4 | 243 | 140 | 75
51 | 13 | 211 | 23 | 182
126 | 411 | 225
863 | 261
302 | 379 | 47940 | 33373
31573 | 292 | 444 | 294
394 | 243 | |--|--------|--------|------------|------------|------------|--------------|---------|------------|-------------------------|------------|--------------|------------------|-------------------|----------------|--------|--------|------------|------------| | நிய | 200 | 1380 | 108 | 33 | 70 | 157 | 12 23 | 115 | 222
562 | 112
688 | 194 | 326
577 | 37941
35931 | 31382
30528 | 257 | 450 | 284
375 | 210
375 | | LIMITS
VSQ
PARTS PI | 1700 | 115 | 91 | 15 | n 4 | 1119 | 1 | 86
51 | 200 | 90
588 | 160 | 252 | 29899 | 24789 | 210 | 363 | 230 | 157 | | EW
RANS | Õõ | 00000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.00000 | 0.00000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | EU EV EW LATENT REAL LATENT HEAT TRANS | 0.0000 | 00000 | 0.0000 | 0.0000 | 0.0000 | 00000-0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | • | 00000 | 0000 | 0000000 | 0000-0 | 0.00000 | 0.000.0 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.000 | 0000•0
0000•0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0-999 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | 000000 | 0000 | .0590 | .2230 | .2180 | .3066 | .3160 | .3190 | .3110 | .2360 | 0.000.0 | 1.2130 | .9200 | .3660 | .5080 | .4720 | .5130 | .5740 | | AIR
MEAN
CENT | c c | | 13. | 13.
13. | 13. | 15.
13. | 12. | 13.
13. | 13. | 13. | 13. | 10. | 18. | 17. | 22. | 23. | 23. | 21. | | | C C | 000000 | 0012 | 0044 | 0065 | 0098
0091 | 0110 | 0105 | 0067 | 0025 | 0006
0006 | 0015 | 0647 | .0286 | .0430 | .0591 | .0706 | .0721 | | HU HV HW
SENSIBLE HEAT TRANS | 000000 | 00000 | •0000 | 0013 | 0003 | 0062 | 0014 | 0001 | 0009 | 0056 | 0006 | 0807 | .0072 | 1674 | .1073 | .0438 | .1565 | .1579 | | HU
SENSIB | 0.000 | 0.0000 | .0093 | .0482 | .0661 | .1380 | .1595 | .1885 | .0309 | .1048 | 1005 | -3277 | 2.5939 | 9210 | 3512 | 3927 | 5128 | 5513 | | BETA | 00000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | RAD | 0.0000 | 0.000 | 000- | 00*0 | 0041 | 6034 | 0045 | 0041 | 0047 | 0051 | 0044 | 0033 | .0096 | .0077 | 000,- | 0004 | 0019 | 0006 | | RAD RAD | 0.0000 | 0.0000 | .8613 | .0069 | 0218 | .0162 | .0260 | 0266 | .0102 | .0469 | 0338 | 0527 | 1247 | .3226 | 1.1280 | 1306 | .1066 | .2126 | | S11E | 91368 | -~ | ~~ | 7 | ~ ∧ | 1 2 | ~ ~ | - 2 | - ~ | ~ ~ | -~ | - 2 | | -2 | - 2 | - 2 | - 2 | - N | | START | 144 | 215 | 245
245 | 315 | 335
335 | 415 | 445 | 515
515 | 8. 8.
8. 8.
8. 8. | 615
615 | 610 | 705 | 800
000
000 | 835
835 | 905 | 935 | 1005 | 1040 | | WIND
SHIFT
RAD | 041 | .978 |
049 | .042 | .078 | 168 | .047 | .030 | .039 | 033 | .319 | 138 | .070 | .157 | 050 | .009 | .100 | .166 | |----------------------------------|---------------------------|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|----------------|----------------|------------------|-------|-------------------|----------------|-----------------| | RAD CA | 4.279 | 4.352 | 4.235 | 4.358 | 4.403 | 4.222 | 4.262 | 4.311 | 4.338 | 4.285 | 4.215 | 4.093 | 4.142 | 4.357 | 4.255 | 4.269 | 4.505 | 4.711 | | GSD
ANGLE
RAD | .146 | .129 | .280 | .305 | .293 | .280 | .285 | .271 | .288 | .278 | .282 | .333 | •252
•230 | .259 | .268 | .264 | .367 | .416 | | AZ IM
RAD | 0.000 | .062 | .010 | .014 | .010 | 003 | 011 | .041 | 003 | 024 | •004 | .026 | .005 | .011 | .011 | .015 | .152 | .193 | | FSD
ANGLE
RAD | 105 | .125 | .174 | .173 | .188 | •173
•190 | .177 | .178 | .178 | .181 | .190 | .202 | .160 | .165 | .174 | .134 | .335 | .342 | | F
ELEV
RAD | .012 | .016 | .010 | .012 | .019 | .018 | .114
3027 | .013 | .009 | .015 | .013 | .014 | 005 | 0.005
.016 | 003 | 013 | .145 | .129 | | HOR12
WIND
CM/SEC | 000 | 000 | 310.63 | 319.59
313.66 | 279.04 | 256.55
258.94 | 242.62 | 275.79
275.80 | 278.26
279.86 | 191, 71
186.66 | 156.15
154.41 | 109.27 | 103.50 | 124.82
130.71 | 92.57 | 77.00
84.73 | 61.53
65.81 | 74.33
105.66 | | RWV
SES | -094 | 217 | 126 | 142 | 020 | 032 | 122 | 113 | 096 | 050 | 225 | 007 | 615 | 0.000 | .011 | -, 0.29
-, 048 | 004 | 025 | | RUM RUV RWV
REYNOLDS STRESSES | 2.755
.906 | -,368 | -1,057 | ,17?
-1.3A3 | -1.797 | 162 | 6653 | 685 | .941 | 036 | #6:
#6: | 678 | -,078
-,119 | -,008 | 086 | -,633 | 0.00°- | .255 | | R.VM
AEYNO | 936 | -,998 | -2.564 | -1.771 | -1 52;
-2.,55 | -1,135 | -1.093 | -1.360 | -1.344 | 765 | 467 | 200 | 144 | 236 | 136 | 055 | 050 | -1110 | | MSD
DEV | 22.72 | 24.78 | 46.80 | 48.58
51.28 | 43.52 | 37.56 | 37.25 | 42.59 | 42.24 | 29.79 | 24.85 | 18.46 | 14.51 | 18.67 | 13.53 | 8.95 | 10.25 | 12.46 | | VSD
ST | 96.35 | 87.66 | 83.14 | 86.83 | 75.59 | 67.51 | 65.37 | 70.79 | 78.75 | 50.77 | 40.38 | 33.27
28.81 | 24.41 | 30.91 | 22.79 | 17.96 | 18.38
17.67 | 22.54 | | USD
W1N
W1N
W1N | 110.35 | 122.21 | 106.37 | 112.05 | 99.76 | 85.24 | 82.32
90.45 | 98.84
104.68 | 104.46 | 74.83 | 67.04 | 54.30 | 39.24 | 46.33 | 33.97 | 22.45 | 44.35 | 51.70 | | MEAN | 328.19
336.92 | 347.58 | 299.42
283.05 | 307.75 | 268.82
263.23 | 249.57 | 233.85
235.01 | 266.63
2(5.71 | 267.50
269.10 | 185-12 | 151.00 | 104.57 | 100.55 | 121.03 | 89.72 | 74.75 | 59.08 | 71.16 | | SITE | 368
1
2 | - 2 | - 2 | - 7 | - 7 | 72 | 7 7 | - 2 | - 2 | ~ 7 | -12 | ~ ~ | - 2 | - 2 | - 2 | - 7 | 42 | ~ ~ | | TIME SITE
START | 91368
1130 1
1330 2 | 1200 | 1300 | 1330 | 1400 | 1430 | 1505 | 1535 | 1605 | 1635 | 1755 | 1735 | 1805 | 1905 | 1935 | 2005 | 2035 | 2110 | | 20fb
5
0•060 | 240 | 451 | 1432
4828 | 1641 | 2980 | 1776
3598 | 2064 | 1746 | 2357 | 3657 | 4528
5078 | 3524 | 3158
2061 | 3095 | 5341 | 5927 | 12990 | 27972 | |---------------------------------------|---------------------|------------|----------------|----------------|-----------------|--------------|-------------|---|---|---------|---------------|---------|------------------|--------------|------------|--------|--------|---------------| | TS EACEEDED
F
PFR 100+00 | 263 | 419 | 711 | 686
2271 | 1510 | 713 | 876
2135 | 891 | 969 | 1135 | 1815
1799 | 2911 | 938
691 | 929 | 1741 | 124 | 5636 | 22110
718 | | LIMITS
VSG
PARTS PI | 200 | 368 | 153
611 | 143 | 669
365 | 95 | 34
279 | 121 | 184 | 123 | 282 | 1309 | 97 | 130 | 261
181 | 200 | 2981 | 15579 | | EW
TRANG | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0,000,0 | 0.0000 | 0.0000 | 0000°0 | 0.0000 | 0.0000 | 0°C000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 960000 | | EV
HEAT | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 6.00°0
.0626 | 0.000 | 0.0000 | 0.0000 | 0.0000
.1868 | 3.0000 | 0.000.0 | 0.0000 | 6.0000
.020h | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | _ | 0.0000 | 0.4000 | 6.0000
2388 | 000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 040000 | 0.0000 | 0.0000-2-5699 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | .5450 | .5920 | .5890 | .5540 | .5810 | .3170 | .3400 | .3050 | .3730 | .4910 | .5980 | 2.4070 | .5620 | .5150 | .5560 | .5080 | .6750 | .8470
2870 | | ATR
EAN
CENT | 22. | 22.
23. | 26. | 26. | 26. | 25. | 26.
26. | 26. | 25.
26. | 25. | 24. | 22 | 20. | 19. | 19. | 18. | 17. | 17. | | • | .0777 | .0809 | .1746 | •1501
•1596 | .0952 | .0216 | .0?61 | .0606 | .0314 | 0399 | 0355 | 0254 | 0273 | 0450 | 0385 | 0137 | 0156 | 0244 | | HU HV HE
SENSIBLE HEAT TRANS | .1052 | .0938 | .0748 | .1352 | .0194 | .0099 | 0089 | .0004 | -0201 | 0201 | 0791 | 1347 | 0050 | .0091 | 0169 | 0134 | .0169 | .0116 | | HU
SENSIB | 5218 | 6655 | 5304 | 5222 | 2528 | 0607 | 2257 | 2567 | 1894 | .2708 | .4519 | .4946 | .1081 | .2487 | .1066 | .0826 | .3313 | .3229 | | BETA | 0.000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0.00000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000.0 | | THETS | .0001
0056 | .0004 | 0081 | 0064 | 0064 | 0094 | 0050 | 0053 | .0504 | 0054 | 0074 | 0082 | 0184 | 0148 | 0194 | 0217 | 0130 | 0142 | | ETA
RAD | .1608 | 2538 | .0569 | 0434 | 1057 | .1647 | 0452 | 0322 | 0331 | .0267 | .0535 | .0812 | 0772 | 1607 | 0050 | -0147 | 0.0000 | .c120
0180 | | SITE | 91368
0 1
3 2 | ~ '' | - 2 | ~ 7 | | 1 2 | - 2 | ~ ~ | 7 | - 2 | 7 | - 2 | 7 | - 2 | N | 7 | ~~ | -2 | | TIME | 91
1130
1133 | 1200 | 1300 | 1330 | 1400 | 1430 | 1505 | 1535 | 1605 | 1635 | 1705 | 1735 | 1805
1805 | 1905
1905 | 1935 | 2005 | 2635 | 2110
2110 | | WIND
SHIFT
RAD | 196 | . 000 | 0.000 | 004 | .053 | 017 | 080 | 218 | .018 | 0.000 | 0.000 | 020 | 025 | .015 | .037 | 040 | .021 | 003 | |---------------------------------|--|----------------|------------------|----------------|--------------|--------|---------------|--------------|----------------|--------------|---------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------| | WIND
DIR
RAD | 4.328 | 4.339 | 4.506 | 4.439 | 4.388 | 4.359 | 4.613 | 4.391 | 4.398 | 0.000 | 0.000 | 4.283 | 0.264
4.411 | 4.277 | 4-297 | 4.324 | 4.360 | 4.376 | | GSD
ANGLE
RAD | .251 | .269
.251 | .280
.281 | .278 | .248 | .204 | 000-0 | .234
.233 | .256 | .304 | 0.000 | .276
.273 | .275 | .268 | .265 | .276 | .287
.272 | .274 | | G
AZIM
RAD | •005 | .032 | .015 | .016 | .005
.002 | 008 | .118 | 001 | 012 | 0.000 | 0.000 | .002 | .009 | .030 | 011 | 024 | 010 | .039 | | FSD
ANGLE
RAD | .164 | .187 | .189 | .185 | .152 | .128 | .275
0.000 | .156 | .162 | 0.000 | 0.000 | .194 | .183 | .182 | .171 | .183 | .191 | .178 | | F
ELEV
RAD | 001 | .017 | .016 | .013 | 004 | 009 | .056 | -,002 | 001 | 0.000 | 0.000 | 600. | .006 | .000 | .009 | .015 | .023 | .018 | | HOR 12
W IND
CM / SEC | 151.55
153.93 | 146-83 | 152.80
154.28 | 123.16 | 113.89 | 106.65 | 81.85 | 126.84 | 96.42 | 96.09 | 0.00 | 146.37 | 174.16 | 212-87 | 264.30 | 260.56
251.59 | 260.32 | 285.70
286.85 | | _ : | 045 | 193 | -277 | 005 | -038 | 0.000 | 0.300 | 022 | -005 | 0.000 | 0-000 | 194 | 059 | .024 | 010 | .258 | -024
074 | -,002 | | UW RUY RWY
REYNOLDS STRESSES | 055 | 019 | 096 | 154 | 296 | 051 | .162 | 020 | 547 | 0.000
831 | 5.000 | .413 | 171 | 281 | .101 | 104 | ?28
701 | 387
59A | | RUW
PEYNOL | 388
384
384
384
384
384
384
384
384
384 | 450 | 516 | 272 | 156 | 131 | 0.000 | 242 | 131 | 0.000 | 000.0 | 455 | 524 | 798 | -1.175 | -1-744 | -1.346 | -1.454 | | MSD
DEV | 22.55 | 24.02 | 24.01 | 19.59 | 15,77 | 12.48 | 11.83 | 18.05 | 13.44 | 0.00 | 0.00 | 23.96 | 27.69 | 33.47 | 38.70
40.12 | 39.37
41.56 | 41.29 | 44,19 | | VS.5 | 36.73 | 36.63 | 38.61
39.17 | 30.85 | 25.26 | 20.86 | 19.77 | 28.27 | 22.21 | 30.97 | 30.00 | 38.31 | 43.44 | 53-62
53-00 | 65.03 | 60.05 | 68.66
68.50 | 72.45 | | USD
WIND | 48.42 | 50.31
55.95 | 35.41
56.86 | 42.58
67.56 | 35.19 | 25.90 | 0.00 | 36.56 | 33.10
32.98 | 0.00 | 0.00
56.20 | 48.37
53.00 | 55.22 | 74.59 | 37.53 | 95.03 | 90.84 | 95.34
95.21 | | MEAN | 147.10 | 1.2.08 | 147-67 | 119.08 | 101.45 | 104.61 | 00.00 | 123,65 | 93.07 | 0.00 | 161.01 | 131.19 | 168.40
164.26 | 206.01 | 256.13
246.18 | 259-37 | 250.09 | 276-14 | | S11E | | m 17 | 2 1 2 | ~ ~ | 7 | m es | ~ ~ | ~ | 1 2 | ₩ 7 | - 2 | - 2 | - 2 | - 2 | - 2 | - 2 | - ~ | ~~~ | | TIME S
START | 91368
2140 1
2160 2 | 2210
2210 | 9146 | 30
30 | 110 | 140 | 240 | 335 | 40.4
20.4 | 530
530 | 909 | 530
630 | 700
700 | 730 | 300
870 | 835 | 905
905 | 935
935 | | DED | 100.000 | 1972 | 3335 | 4104 | 5000 | 2453
3326 | 1511 | 16064 | 1820 | 4463 | 1961 | 3142 | 4373 | 3409 | 2453 | 2124 | 2620
3971 | 2773 | 2296 | |------------|--------------------|---------------------|-------------|--------|--------|--------------|---------|-----------------|------------|--------|----------------|----------------|--------|-----------|-----------------|--------|--------------|--------------|----------------| | S EXCEEDED | L OC | 735 | 1460 | 1694 | 1673 | 729 | 399 | 11557 | 552 | 1335 | 3514 | 1742 | 1553 | 1251 2388 | 994 | 902
| 1188 | 1491
1531 | 1005
1578 | | LIMITS | PARTS | 30 | 128 | 275 | 185 | 138 | 3.6 | 0 0 | 17 | 524 | 838 | 192 | 167 | 203 | 105 | 328 | 229 | 335 | 145 | | * E | RANS | 0.0000 | 0.0000 | 0.0000 | 0.9000 | 0.0000 | 9.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | EV EW | | 0.0000 | 0.0000 | 0,0000 | 0~0000 | 0.0000 | 0.0000 | 0-0000 | 0.0000 | 0.0000 | 0.0000 | 6.7000
0128 | 0.0000 | 0.0000 | .1200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | w | * | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0900 | 0.0000 | 0.0000 | 0.0000 | 9564 | | TEMP | CENTIGRADE | .4680 | .4130 | .4840 | .5240 | .5910 | .5580 | .4080 | .3480 | 0.0000 | 0.0000 | 0.0000 | .2030 | .3780 | 1-1200
-9780 | .4340 | .4500 | .5140 | .4570
.4410 | | AiR | CENT | 16. | 18. | 17. | 15. | 15. | 14. | 14. | 14. | 14. | 13. | ¢ 4 | 15. | 16. | 17. | 21. | 23. | 23. | 24. | | | | 0544 | 0553 | 0521 | 0485 | -,0404 | 0285 | 0205 | 0400 | 0274 | 0.0000 | 0.0000 | 0026 | .0251 | .0245 | .0605 | .1114 | .1213 | .1087 | | MH AH NH | SENSIBLE HEAT TRAN | 0111 | 0029 | 0285 | 0223 | 0680 | 0081 | 00054
0.0000 | 0031 | 0146 | 0.0000 | 7.000r | .0055 | .0143 | .0033 | -,0487 | .0526 | .0552 | .0968 | | D. | SENSIB | .2150 | .2029 | .2536 | .1833 | .1743 | .0952 | .1419 | .1545 | .1023 | 0.0000 | 0.0000 | .3074 | 0073 | 2628 | 2747 | 2926 | 4250 | 3802 | | RETA | RAD | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.00000 | 0.00000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | THETA | RAD | 0149 | 1033
068 | 0141 | 0054 | 0164 | 0184 | 0131
n.0000 | 0165 | 0014 | 7.000-C | 0.000A | 0014 | 0333 | -,0095 | 5101 | 0005 | 0001 | .0017 | | ETA | KAD | .1537 | 0098 | 1215 | 0084 | 077) | .3156 | .1772 | .3223 | 0023 | 0.0000
0387 | 0.0000- | .0005 | .0196 | 0227 | 0396 | 0046 | 0026 | 0089 | | SITE | | 368
1
2 | - 2 | • | - 2 | | -1.4 | | - ~ | ~: K) | - 2 | -2 | 1 2 | - 2 | 7 7 | - 2 | - 2 | - 2 | 7 7 | | TIME | ¥ | 913
2140
2140 | 2210 | 91461 | 30 | 110 | 140 | 240 | 335
335 | 405 | 530
530 | 600 | 630 | 7007 | 730 | 800 | 835 | 905 | 935 | | WIND
SHIFT
RAD | -010 | 010 | 148 | .155 | .031 | 030 | 057 | .029 | 005 | 089 | .035 | .065 | .003 | 025 | 05? | 032 | 034 | -,005 | |--|---------------------|----------------|-----------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------------|------------------|------------------|--------|----------------| | DER DER DER DER DE | 4.350 | 4.396 | 4.413 | 4.324 | 4.354 | 4.323 | 4.267 | 4.501 | 4.289 | 4.232 | 4-248 | 4.311 | 4.309 | 4.261 | 4.250 | 4.208 | 4.171 | 4.:79 | | GSD
ANGLE
RAD | •285
ŋ~600 | ,295
.628 | .312 | .307
.244 | 289 | .295
.261 | .293 | .302 | .289
.298 | .242 | .276
.29. | .264 | .282 | .264 | .235 | .233 | .247 | .257 | | AZ IM | 0.000 | .003 | .053 | .030 | .039 | .065 | .003 | 610 | .033 | .014 | .050
.050 | 012
-048 | 016 | 039 | 0.000 | 009 | 012 | 0.000 | | FSD
ANGLE
RAD | .165 | .191 | .181 | .191 | .132 | .184 | .:83 | .181 | .177 | .169 | .166 | .171 | 186 | .174 | .160 | .169 | .164 | .172 | | F
ELEV
RAD | •024 | .022 | .019 | .030 | .022 | .025 | .017 | .019 | .018 | .013 | .306 | .018 | .023 | .021 | • 000 | .003 | .006 | 009 | | HORIZ
WIND
CM/SEC | 281.38 | 305.31 | 319.55 | 305.19
371.69 | 304.71 | 283.13
346.11 | 260.6U
315.35 | 265.93
320.11 | 302.59
353.97 | 319.88
397.71 | 320.5?
389.35 | 253.75
316.53 | 233.14 | 196.65
249.80 | 203.82
246.12 | 155.25
186.53 | 118.51 | 126.83 | | : | 162 | -2.194 | 124 | 257 | 104 | 077 | 059
-588 | 218 | 189 | 128 | 109
1-702 | .015 | 110 | 1 . 0000
1 . 0000
1 . 0000 | 034 | 006 | -206 | .030 | | RUV RUV RWV
REYNOLDS STRESSES | .102 | 9.728 | 057
3.775 | .529 | .410 | .394 | 210 | 109 | 253 | .364 | .533 | -2.084 | .166
584 | 240 | .C49
-887 | 184 | 032 | 218 | | RUW
REYNOL | -1.529 | -1.686 | -1.896 | -1.824 | -1,939 | -1,652 | -1.341 | -1.392 | -1.743 | -1.862 | -1.705 | -1.274 | -1.013
-1.288 | 730 | 700 | 430 | -,214 | 290 | | KSD
DEV | 42.54
0.00 | >8.09
52.99 | 48.92
54.93 | 47.20
55.16 | 48.60
56.47 | 53.00 | 41-05 | 40.69 | 54.90 | 47.83 | 47.58
59.07 | 37.9i
51.60 | 37.25
35.00 | 30.34 | 29.30 | 18.14 | 17,35 | 19.08 | | V SV | 72.29 | 87.54 | 85.52
108.51 | 89.66 | 87.11 | 77.88
97.50 | 77.75 | 76.47 | 84.45 | 87.42
102.53 | 84.16
109.77 | 65.65 | 63.37
79.26 | 49.70 | 46.58
53.00 | 36-39 | 27.97 | 30.18 | | USD
WIN
WIN | 105.66 | 118.55 | 113.64 | 119.1R
127.95 | 117.13 | 99.09 | 91.77
98.36 | 96.97 | 98.71
112.7. | 102.80 | 101.24 | 94.85 | 85.45 | 70.8%
79.74 | 66.24
68.30 | 52.42 | 33.37 | 39.69
43.01 | | WEAN | 271.49 | 283-12 | 306.12 | 292-70 | 297.79 | ?72.35
333.27 | 250.68
301.66 | 254.98
104.76 | 337.39 | 363.05 | 309.52 | 245.56
304.33 | 224.96 | 190.44 | 198.54 | 180.91 | 115.15 | 123.09 | | SITE | 2 1 2 | - 2 | - N | - 2 | - 2 | 01 | 14 N | H 5 | H N | . 4 . 4 | F# (N | ~ N | - 2 | - 2 | -14 | - 2 | | - ~ | | TIME SITE
START | 91,
1005
1005 | 1035 | 1105 | 1200 | 1230 | 1710 | 1335
1335 | 1400 | 1425 | 1450 | 3530
1530 | 1600 | 1630
1630 | 1700 | 1735 | 1835 | 1835 | 1905 | | | | | ed 10 | 0.80 | | m ~ | s. ~ | ~ ~ | vo vo | m m | 0.5 | | v . | ~ ~ | | • | ~ - | ~ 0 | |---------------------------------------|--------------------|--------------|---------------|------------|----------------|--------------|----------------|----------------|----------------------------|--------|-------------|------------|------------|--------------|-------------------|--------|-------------|-------------| | CEEDED 6 | 7864 | 3518
8597 | 2101 | 3200 | 2222 | 2168
3032 | 2465 | 3367 | 1686 | 943 | 939 | 1621 | 2765 | 2742
1766 | 1168 | 2339 | 2557
961 | 3382
700 | | 3,52 | C C | 1655 | 1054 | 1971 | 1134 | 1123 | 1108 | 1269 | 674
1014 | 518 | 4 06 | 754 | 1342 | 1001 253 | 526
115 | 368 | 669
155 | 1135 | | VSQ
VARTS F | 373 | 692
301¢ | 616 | 627
161 | 248
169 | 169
339 | 212
116 | 466 | 131 | 136 | 1100 | 76
192 | 321 | 185 | 9 | 107 | 13 | 102 | | RANG
N) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | CATENT HEAT TRANS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | .1755 | .3290 | 0.0000 | 0.0000 | | - | 000000
00000 | 0.0000 | 0.0000 | 000000 | 7.0000
8037 | 0.0000 | 0.0000
0279 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | .1061 | .5081 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | AIR TEMP
MEAN SI DEY
CENTIGRADE | .4680
0.0000 | .5660 | .5990 | .5300 | .6590
.4970 | .5480 | .5160 | .5430
.5090 | .4290 | .3080 | .2100 | 1.3000 | .2830 | .4120 | .4860
.4070 | .5590 | .6940 | .4880 | | AIR
FAN
CENT | 46 | 25.
26. | 26.
26. | 25.
27. | 25.
76. | 26.
27. | 26.
27. | 26.
27. | 27 .
28 . | 27. | 26.
28. | 28.
29. | 28.
29. | 27. | 24.
25. | 23. | 24. | 24. | | v. • | +1090
-1000 | .1803 | .1490 | .:568 | .1275 | .1218 | .1197 | .142/ | .1278 | .0896 | .0523 | .0151 | 0086 | 0348 | 0619 | 0541 | 0323 | 0530 | | SENSISLE HEAT TRANS | .0744 | .0388 | .0537
0835 | .0511 | .1606 | .0348 | .0412 | 0609 | .0280 | .0212 | .0335 | .2152 | 0400. | 1400 | .0374
.650 | 0572 | 0121 | 0339 | | HU
SENS FS | -,3425 | 6326 | 5956
5806 | 5774 | 2735 | 4016
3619 | 4385 | 3605 | 3546 | 2358 | 1624 | 1116 | 0460 | .2044 | .2905 | .3364 | .1307 | .1984 | | BETA | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 00000 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.000 | 0000000 | | THETA | 0.0000.
0.0000. | 3026 | .0019 | .0033 | .0000 | .0025 | 000- | 0034 | 0017 | 0049 | 0072 | 0015 | .0031 | 0032 | 0097 | 0145 | 0074 | 0126 | | ETA
RAD | 0340 | .0768 | 0160 | .0842 | 0286 | .0297 | .0984 | 0342 | .0040 | .0716 | 0304 | 0813 | 0053 | .0208 | .0543 | .0248 | .0306 | 0076 | | SITE | 4 to 6 | 1 2 | - ~ | 7 | - 2 | - 2 | ~ ~ | 7 | 7 7 | ~ ~ | 7 | ~ ~ | 7 | - 7 | ~ 0 | ~~ | - 2 | ~ ~ | | TIME SITE
START | 1005 | 1035 | 1105 | 1200 | 1230 | 1310 | 1335 | 1450 | 1425 | 1450 | 1530 | 1600 | 1630 | 1700
1700 | 1735
1735 | 1635 | 1635 | 1905 | NOTIFIED BY THE SECTION OF SECTI | YIMO
SHIFT
RAD | -,003 | | 039 | 298 | .008 | *000 | .004 | ~•003
-•014 | .014
355 | .001 | 004 | .009 | .017 | 003 | 006 | .037 | 009 | -1003 | |----------------------------------|------------------|----------------|------------------|------------------|--------------------|-----------------|--------------------|----------------|------------------|------------------|----------------|------------------|-----------------|----------------|--------|----------------|--------------------|------------------| | BIAD
RAD | 4-172 | 4.193 | 4.140 | 3.864 | 3.864 | 3.958 | ₽986
946
946 | 3.889 | 3.869
3.85 | 3.873
3.915 | 3.875 | 3.878 | 3.883 | 3.886 | 3.887 | 3.693 | 3 - 895
3 - 833 | 3.874 | | GSD
ANGLE
RAD | .244 | ,258 | .225
.195 | .262 | ,257
,223 | .268
.217 | .258 | .254
.213 | -266 | .226 | •261
•210 | •276
•209 | .270
.20÷ | •253
•211 | .245 | .25¢ | .236 | .261 | | G
AZ I H
RAD | 004 | .039 | 005 | .025 | 002 | 005 | 007 | 004 | 017 | 015 | 008 | 014 | 027 | 020 | 312 | -014 | 004 | 001 | | FSD ANGLE | .156 | .174 | .148 | .165 | 161 | .178 |
.169 | .159 | .168 | .169 | .104 | .179 | 161 | .096 | .167 | .173 | .167 | .176 | | F
ELEV
RAD | .003 | -,010 | 003 | 004 | 007 | 011 | 002 | 001 | .005
~.010 | 003 | 005 | 012 | 003 | 001 | 004 | .003 | .005 | 900°- | | HOR 12
W IND
CM / SEC | 125.96
167.34 | 147.15 | 118.41 | 148.09 | 141.18 | 130.57 | 148.97 | 150.92 | 122.52 | 126.26
153.35 | 140.84 | 113.20
147.16 | 101.48 | 143.75 | 151.60 | 161.70 | 167.36 | 180.32
220.19 | | RWV | 024 | .023 | 004 | 030 | 047 | 006 | 035 | 044 | 030 | 013 | 024 | 033 | 014 | 044 | 002 | 006 | 062 | 043 | | RUW RUV RWI
PEYNOLDS STRESSES | 075 | 690 | 8; 0°- | .040 | .032 | 043 | 029 | .023 | .014 | .002 | .054 | 044 | 028 | .068 | .027 | .044 | -142 | - 5089 | | RUN
PEYNOL | 241 | 388 | 188 | 382 | 316 | 322 | 359 | -,365 | 257 | 308 | 346 | 226 | 142 | 364 | 330 | 451 | 456 | 599 | | WSD
DEV | 17.55 | 22.37 | 15.87 | 21.39 | 23,75 | 19.70 | 22,39
18,26 | 21•19
17•19 | 1. 8c
14.3b | 18-66 | 20.91
15,45 | 17-12 | 14453
10:99 | 20.55
35.77 | 21-3. | 23.58
18.39 | 24.38 | 27.34 | | ۵-: | 28.83
34.32 | 35.30
42.61 | 25.01 | 36.10 | 34+21 | 31.77 | 36.03 | 36.27 | 27.90 | 34.11 | 34.20 | 28.49
29.60 | 25.62
24.66 | 34.10 | 34.57 | 98-22 | 39.57 | 45.50
55.45 | | USD VS
WIND S | 37.29 | 44 | 35.29 | 46.38. | 40 . 43
40 . 45 | \$5.37
42.54 | 45.42 | 45.30 | 37.41 | ÷1.99 | 42.63 | 37.27 | 33.430 | 47.67
50.66 | 50.25 | 46.12 | 5%63
55,48 | \$5.44
65.02 | | HIND | 122.5:
163.65 | 154.75 | 115.65
151.84 | 143.57
375.40 | 136.87 | 125.49 | 144,49 | 146.47 | 118.65
150.66 | 122-30 | 136.51 | 109.43 | 98.15
129.64 | 139,62 | 147.52 | 156.93 | 162.55 | 174.40 | | S. 1E | 468 | r N | ~ ~ | - 0 | ~ ~ | - ~ | ė i | . - ~ | ≠ (v | | H N | 7 7 | -1 (1 | 1 2 | - ~ | mN | -~ | -~ | | T) (E S | 0261 | 2060 | 2030 | 2230
2230 | 2306 | 2330 | 3156
1
2 | 30 | 100 | 130 | 200 | 230 | 300 | 330 | 004 | 430 | 000 | 530 | | CEEDED
G
160.000 | 2355
882 | 2850
1286 | 1760
763 | 2454 | 1844 | 3260
1345 | 2260 | 1782
861 | 2996 | 2555
1273 | 2523 | 3990
976 | 3563
1111 | 2116 | 1791
771 | 2350 | 2002 | 2184 | |---------------------------------------|---------------------|--------------|----------------|----------|--------|--------------|---------------|-------------|------------|--------------|---------|-------------|--------------|---|----------------|---------|---------|-------------| | M r K | 707 | 1186 | 99
99 | 968 | 609 | 1584 | 957 | 34 | 925
169 | 1099
308 | 990 | 1538 | 862
190 | 769 | 876 209 | 1131 | 832 | 1053
278 | | LIMITS
VSQ
PARTS PI | 25 | 93 | 21 | 140 | 50 | 159 | 90 | 2°4
0 | 78 | 3.8 | F 4 | 209 | 13 | 12 | 26 | 136 | 39 | 124 | | RANS
N) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0000.0 | 0.0000 | 0.0000 | 0.0000 | .0105 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | .0108 | 9.0000 | 0.0000 | | EU EV EW EW LATENT HEAT TRANS | .0193 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0030 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | .0106 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 000000 | 0.0000 | 0.0000 | | EU
LATEN | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | .0108 | 0.0000 | 0.0000 | | AIR TFMP
MEAN ST DEV
CENTIGRADE | .4400 | .3920 | .5210
.4570 | .3550 | .3350 | .9220 | .3640 | .3670 | .3980 | .3940 | .3570 | .4050 | .3960 | .3950 | .2440 | .2380 | .2260 | .2220 | | A I R
E A N
C E N T | 24. | 24. | 23. | 23. | 22. | 22. | 24. | 24. | 23. | 23. | 23. | 22. | 22. | 22. | 21. | 21. | 72. | 22. | | • | 0198 | 0588 | 01319
0189 | 0489 | 0429 | 0491 | 0413 | 0435 | 0375 | 0404 | 0397 | 0314 | 0240 | 0345 | 0237 | 0282 | 0282 | 0308 | | HU HV HW
SENSIPLE HEAF TRANS | 0035 | 0106 | 0143 | 0007 | .0042 | .0030 | 0075 | .6026 | .0062 | .0025 | 0049 | 0038 | 0026 | *690°- | 0028 | 0105 | .0162 | .0056 | | HU SENSIPLE | .1704 | .2161 | .1432 | .1970 | .1547 | .2717 | .1636 | .1801 | -1445 | .1781 | .1417 | .1673 | .1186 | .1826 | .1180 | .1240 | .1193 | .1251 | | BETA
RAÚ | 0.000.0 | 0.0000 | 0000-0 | 0.0000.0 | 0.0000 | 0.000.0 | 0.000.0 | 0.000.0 | 0.000.0 | 0.00000 | 0.00000 | 0.000.0 | 0.000.0 | 000000000000000000000000000000000000000 | 0.0000 | 0.000.0 | 0000000 | 0.0000.0 | | THETA | 0111 | 0091 | 0133 | 0137 | 7214 | 0047 | 0184 | 0167 | 011% | 0146 | 0152 | 0157 | 0161 | 0174 | 0194 | 0171 | 0119 | 010A | | ETA | 0010 | 0139 | .0387 | -2918 | 0063 | 0094 | 0058 | .0030 | 0131 | 0021 | .0052 | 0149 | 0182 | .2217 | .0209 | 0072 | .0140 | .0030 | | SITE | 91468
0 1
0 2 | 1 2 | -10 | - 2 | 1 | - 2 | 568
1
2 | - 2 | - 2 | - 12 | - 2 | 7 | ~ ~ | 7 | 7 | ~ ~ | 7 | - 7 | | START | 91-
1930
1930 | 2000 | 2030 | 2230 | 2300 | 2330 | 91 | 30 | 100 | 130 | 200 | 230 | 300 | 330 | 00¢ | 430 | 500 | 530
530 | ooraansaansa eratuutsustaania eratiiniisia. Tuosistoorii Armittaisissa taakkanistoorii tootiiniinii 1967 kaksi Armittaania kiiseette vaa muuraala kiise alkaanistaanista turautsu eratuutsi kaliuutsi 1966 aannamattaa a | _ | 0.4 | m C | 0.4 | 80 N | <i>.</i> | m 0 | | 50 | ~ 0 | • 0 | | |----------------------------------|---------------------|--------------------------|----------------|------------------|------------------|--------------------------|------------------|--------------------------|----------------------------|---------------|-------------------------------------| | WIND
SHIFT
RAD | 010 | 023 | 030 | 048 | 044 | 003 | 0.000 | 0.000 | .052 | 00000 | 000000 | | PAD
CER
CAS | 3.889
3.851 | 3.873 | 3.838 | 3.911 | 3.760
3.921 | 3.748 | 4.409 | 3.795 | 3.806 | 3.812 | 3.824 | | GSD
ANGLE
RAD | .265 | .269 | .307 | .284 | .309 | .352 | .579 | .326 | .386 | .364 | .356 | | G
AZIM
RAD | .020 | .010 | •005 | .010 | .019 | .010 | .131 | 209 | 0.000 | 177 | 223 | | FSD
ANGLE
RAD | .172 | .181 | .196 | .190 | .214 | .187 | .399 | .194
0.000 | .230
0.090 | .227
1.600 | .217
0.000 | | F
RA5 | 062 | 0.000 | .016 | .004 | .019 | .010 | .220 | .019 | .051
0.000 | .038
0.001 | 21.93 .030 .217
0.00 0.000 0.000 | | HOR12
WIND
CM/SEC | 188.82 | .003 196.82
.000 0.00 | 189.63 | 201.76
:58.70 | 194.65
157.31 | 057 736.91
284 191.07 | 262.02 | 025 336-88
ก-กจก ๑-cก | 176 330.31
0.000 0.00 | 330.56 | 214 321.93 | | RWV
SSES | 007 | .003 | 070 | 057 | 088 | 057 | .936
-1.104 | 025
0.500 | 0.000 | 153 | 214 | | RUW RUV RWV
REYNOLDS STRESSES | .024
567 | .182
0.000 | .098
190 | .115 | .053
578 | .083 | 15.515 | 513
0-010 | .268
0.000 | 000-0 | .216 | | RUW
REYNOI | 579 | 0.000 | 797 | 720 | 803 | -1.032 | -1.577 | -2.400 | -1.939 | -1.991 | -1.947 | | WSD
DEV | 27.67 | 29.45 | 29.80
28.78 | 31.34 | 32.39
30.83 | 37.02
35.24 | 59.54 | 50.96
0.00 | 0.00 | 50.00 | 00.00 | | USD VSD
WIND ST D | 46.43 | 68-89 | 51.89 | 51.77 | 53.64 | 63.83
63.01 | 164.54 | 99.07 | 101.34 | 97.93 | 97.40 | | USD
WI | 60.52 | 67.69 | 69.88 | 71.26 | 82.68 | 85.23 | 196.63 | 135-84 | 146.85 | 150.78 | 136.75 | | MEAN | 182.91 | 190.55 | 182.09 | 194.82
150.99 | 187.12 | 228.11
180.81 | 213.52
189.06 | 322.38
0.09 | 315.62 146.85
0.00 0.00 | 316.63 | 307.63 | | SITE | 91568
0 1
0 2 | ~ n | 7 7 | ٦ ٦ | 7 7 | 7 7 | 7 | - ~ | - 2 | - ~ | - 2 | | TIME SITE
STARÎ | 600
600 | 630 | 700 | 730 | 800 | 830 | 1200 | 1300 | 1330 | 1400 | 1430 | | EDED
6 | 2093 | 2286 | 4391 | 3119
8815 | 5179
12454 | 2432 | 43367 | 6626 | 15324 | 11133 | 11116 | |---|----------------------|-----------------|------------|--------------|-----------------------|------------|---|--|---|----------------------------|---| | LIMITS EXCEEDED
VSQ F G
PARTS PER 100.000 | 938
519 | 1288 | 1907 | 1691
5001 | 2897 | 1273 | 37812
37799 | 2128 | 6488 | 5718
0 | 6074 | | LIMIT
VSQ
PARTS | 171 | 137 | 366 | 299 | 814 | 232 | 27165
28796 | 1040 | 5252
0 | 4819 | 321 6
0 | | EW
ANS | 0.0000 | 0.000.0 | 9690. | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 00000*0 | 0.000.0 | 0.0000000000000000000000000000000000000 | | EU EV EW
LATENT HEAT TRANS | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.000.0 | 0.0000 | | EU
LATENT | 0.0000 | 000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.000.0 | 000000 | 0.000.0 | 0.000.0 | | TEMP
ST DEV
GRADE | .1970 | 0.2400 | .3250 | .4430 | .7430 | .5850 | .8080 0.0000
.9590-18.6285 | .6160 | 0.820 | 0.000.0 | 244300 | | AIR
MEAN
CENTI | 22. | | 23. | 24. | 26. | 24. | 25. | | | | 26.0 | | 2 | 0207 22.
0195 21. | 0007 23. | .0312 | .0621 | .0890 | .1242 | .1270 | .2072 25. | .1460 24.
0.0000 0. | .1609 25. | .1334 24.
0.0000 0. | | HU HV HW
SENSIBLE MEAT TRANS | 0016 | .0024
0.0000 | .0619 | 0043 | 0347 | .0185 | -1.2529 | .0039
0.000. | 0014
1.0000 | 0508 | 0007
0-0000 | | HU
SENS IBL | .0886
.0869 | 0178
0.0000 | 1378 | 1409 | 4441 | 3712 | | 7806 | 4554 | 0.0000 | 0.0000 | | BETA | 0.000.0 | 0.000.0 | 0.000.0 | 0.000000 | 0000000 | 0000000 | 3074 0.0000 -2.2449
-3025 0.0000 -1.9726 | 0.00000 | 0.0000 | 0.000.0 | 0.000.0 | | THETA | 0194 | 0147 | 03094 | 0185 | .03450117
0227025n | 0129 | 2074 | .26680116 0.0000
0.0000 0.0000 0.0000 | 10520049 0.0000
0.0000 0.0000 0.0000 | | | | ETA
RAD | .0086 | .0242 | .5106 | .0466 | .0345 | .0007 | 4450 | .2668
0.0000 | 1052
7-1000 | .02610141
0.0000 0.000A | 39056141
0-0000 0-0000 | | SITE | 91568
0 1
0 2 | → N | 7 | 7 7 | 7 | 7 | 7 | - ~ | - ~ | - ~ | - ~ | | TIME SITE
START |
91
600
600 | 630 | 700
700 | 730 | 900 | 830
830 | 1200 | 1300 | 1330 | 1400 | 1430 | | SHIFT | 00000 | 0.000 | .121 | .053 | 135
145 | .319 | 044 | 108 | 288 | .037 | 323 | 00000 | 034 | 0.000 | 0.000 | 0.000 | -112 | 094 | |--------------------------------|-------------------------|------------------|----------------|----------------|------------------|-----------------|------------------|--------|----------------|--------|------------------|-------|------------------|--------|-------|-------|-------------------------|----------------| | T S | | | | | • • | ' | | | | | | • | | | | | | | | RAD
RAD | 5.999 | 5.244 | 5.368 | 5.410 | 5.271 | 5.460 | 5.418 | 5.336 | 5.055 | 5.089 | 4.580
5.088 | 0.000 | 4.868
5.100 | 0.000 | 0.000 | 0.000 | 4.327 | 4.392 | | GSD
ANGLE
RAD | .387 | .356 | .344 | .350 | .416 | .366 | .368 | .379 | .413 | .340 | .361 | .366 | .331 | .372 | 0.000 | 0.000 | 348 | .401 | | G
AZ ISM
RAD | .015 | .014 | .012 | .023 | 002 | .036 | .034 | 008 | 010 | 007 | 017 | 0.000 | 092 | 0.000 | 0.000 | 0.000 | 041 | 023 | | FSD
ANGLE
RAD | .317 | .252 | .195 | .191 | .207 | .192 | .187 | .190 | .199 | .200 | .197 | 0.900 | .209 | .214 | 0.000 | 0.000 | .233 | .272 | | ELEV | .026 | .055 | .036 | .037 | .042 | .036 | .034 | .028 | .045 | .042 | .039 | 00000 | .034 | 0.000 | 0.000 | .018 | .039 | .067 | | HOR 12
WIND
CM/SEC | 112•28
112•28 | 133.64 | 153.15 | 207.41 | 180.56
173.77 | 224.80 | 238.46 | 240.66 | 232.19 | 249.46 | 167.70
197.62 | 0.00 | 189.95
190.23 | 169.96 | 0.00 | 70.98 | 117-11 | 110.86 | | RWV | 000.0 | 0000 | 0.000 | 0.000 | 0000-0 | 0.000 | 0.000 | 00000 | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | 0.000 | | RUW RITY RWY KEYMOLDS STRESSES | 023 | .037 | 054 | -1.179 | .110 | 113 | 492 | -1.873 | 318 | -1.970 | -1.513 | 0.000 | 078 | 7.435 | 0.000 | 0.000 | 066 | 118 | | RUM
KEYMO | 260 | 414 | 53d
748 | 689 | 660 | -1.047 | -1.086 | -1.134 | -1.030 | -1.142 | 842 | 0.000 | 768 | 0.000 | 0.000 | 0.000 | 282 | 310 | | WSD
DEV | 18.53 | 22.51 | 25.45 | 33.57 | 25-12
35-85 | 36.47 | 37.24 | 38.65 | 37.53
37.57 | 38.93 | 29.83 | 30.31 | 30.46 | 28.89 | 0.00 | 0.00 | 20.26
18:70 | 21.03 | | VSD
C ST | 33.50 | 41.59 | 35.23 | 68.74
47.10 | 69.08
51.86 | 76.00
\$7.59 | 77.67
60.48 | 89.11 | 87.93
75.26 | 94.10 | 79.06 | 0.00 | 54.66
54.51 | 56.21 | 0.00 | 0.00 | 34.16
24.01 | 39.79 | | USD
WIN | 39.07 | 43.80 | 46.15
56.39 | 70.02 | 64.65 | 74.80 | 86.67 | 85.30 | 83.41 | 96.32 | 96.59 | 71.29 | 78.40 | 72.94 | 63.35 | 30.89 | A6.69
51.33 | 51.23
46.08 | | MEAN | 107.08
104.16 | 126.73
126.72 | 144.91 | 195.71 | 166.97
166.95 | 211.22 | 224.74
218.19 | 222.47 | 214.62 | 231.40 | 146.59 | 0.00 | 181.97 | 00°0 | 00.00 | 0.00 | 111.84 | 103.83 | | SITE | 91168
0 1 1
0 2 1 | 7 | 7 7 | 7 7 | - 2 | - 2 | - ~ | ~ ~ | - 0 | ~ ~ | 7 7 | -2 | -2 | - ~ | - 2 | ~~~ | 91268
0 1 1
0 2 1 | - 2 | | TIME SITE
START | 30 | 715
715 | 740 | 830
830 | 900 | 1000 | 1135 | 1230 | 1330 | 1409 | 1450 | 1500 | 1535
1535 | 1605 | 1640 | 1840 | 917
017 | 740 | | EDED
6
0•000 | 2955 | 4415 | 2826 | 1811 | 407= | 2243
429C7 | 2416
24523 | 2235 | 3396
29983 | 5240
24512 | 17270
25148 | 29427 | 9789 | 10065 | 29006 | 9667 | 9791
18679 | 14179
15479 | |---------------------------------------|---------------------|---------|---------------|-------------------|---------------|-----------------|---------------|--------|---------------|------------------|-----------------|-----------------|--------------|----------------|-----------------|----------------|---------------------|----------------| | IS EXCEEDED
F
PER 100.00 | 1377 | 2347 | 1505
10551 | 1499 | 2822 | 1588 | 1462 | 1402 | 2076 | 2661 2420 | 10946 | 4140 | 3336
2101 | 3385 | 9569 | 2230 | 4334 | 8340
9163 | | LIMITS
VSQ
PARTS PI | 122 | 144 | 1392 | 188 | 1706 | 193 | 232 | 250 | 711 | 1184 | 6275 | 0
1398 | 1155
318 | 1123 | 0 4 | 561 | 889
5957 | 2898 | | EW
(PANS
IN) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000000 | 0.0000 | 0.0000 | 0.0000
0.011P | 0.0000 | | EV
HEAT
(CM2-M | 0.0000 | 0.000.0 | 0000000 | 0.0000 | 0.0000 | 0.0000
.2957 | 3.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000
.1946 | 0.0000 | 0.0000 | 0.0000 | | EU
LATENT | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6000 | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0060- | 0.0000 | 0.0000 | | AIR TEMP
IEAN ST DEV
CENTIGRADE | .2190 | .5940 | .6250 | .6200
.5930 | .7290 | .7500 | .5740 | .6030 | .6800 | .5890 | .4860 | 0.0000 | .3240 | 0000*0 | 0.0000 | 0.0000 | 1.0610 | .4130 | | AIP.
MEAN
CENTI | 9 5 | .00 | 11: | 13.
13. | 14 | 17.
16. | 18. | 20. | 21. | 21. | 21. | 22. | 21. | 21. | 22. | 0.18. | 131
14. | 14. | | s • | 0222 | .0576 | .0781 | .1214 | .1460 | .1878 | .0427 | .1943 | .1686 | .1024 | .0476 | 0.0000 | .0322 | 0021
C.0000 | 0.0000 | 0.0000 | .0329 | .0479 | | HV
E HEAT
(CM2-M) | 0094 | 0221 | .0005
0029 | .0755 | 1135 | .0388 | 0052 | 1056 | 0796 | 0938 | 0740 | 0.0000
-0730 | 0122 | .0649 | 0.0000 | 0.0000
0086 | 0406 | .0209 | | HU
SENSIBL | .0793 | 0925 | 1686 | 3946 | 2895 | 4250 | 1003 | 3380 | 3974 | 2861 | 0501 | 0.0000 | 1779 | .1178 | 0.000. | 0.0000 | 0157 | 1215 | | BETA | -0720 | 0.0000 | .0300 | .0270 | ,0100
C523 | .0210 | .0190 | .0120 | .0050 | .0050 | .022C
0.0000 | 0.0000 | 0240 | 000000 | 0.0000 | 0.0000 | 0290 | 0130 | | THETA | .0073 | .0163 | .0131 | .0147 | .0123 | .0129 | .0107 | .0161 | .0224 | .01£7
.0214 | .0214 | 0.000 | .0163 | .0188 | .0102 | .000°- | .0070 | .0008 | | ETA
RAU | .1740 | 1.2355 | 1229 | 0745 | .1504 | 0388 | .0389 | .0837 | .3016 | 0615 | .3008 | 0.0000 | 1146 | .0000 | 0.9000 | 0.000 o | 6490 | .0589 | | SITE | 91168
0 1
0 2 | 7 | - 2 | 7 | 7 | 1 2 | - 2 | 7 | 7 | (+ | 7 | - 2 | - 0 | - ~ | | ~~ | 91268
0 1
C 2 | - 2 | | STARY | 91
30
30 | 715 | 740
740 | 000
000
000 | 906 | 1000 | 1135 | 1230 | 1330
1330 | 1400 | 1430 | 1500 | 1535
1535 | 1605 | 1640 | 1840 | 710 | 740 | THE PROPERTY OF O | WIND
SHIFT
RAD | .383 | .381 | 198 | 110 | 237 | .106 | 181 | .100 | 422 | 014 | 118 | .089 | 078 | .080 | 002 | 082 | -•348
-•126 | 081 | |-------------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|--------------------|----------------|------------------|------------------|----------------|------------------|----------------|------------------|------------------|-----------------|----------------|-------| | WIND
DIR
RAD | 4.759
5.121 | 5.010 | 4.956 | 4.879
5.409 | 4.740 | 4.788 | 4.722 | 4.873 | 4.499 | 4.222 | 4.111 | 4.201 | 4.155 | 4.206 | 4.191 | 4-104 | 3.756 | 3.670 | | GSD
ANGLE
RAD | .475 | .388 | .364 | .345 | .418 | 404 | .436 | 419 | .365
.393 | .381 | .323 | .375 | .372 | .353 | .320 | .293 | •227
•210 | .198 | | G
AZ IM
RAD | 040 | 170 | 025 | .007 | .105 | .047 | .162 | .212 | .207
.291 | .018 | .024 | .026 | .057 | .028 | .01%
.179 | .346 | .009 | .005 | | FSD
ANGLE
RAD | .296 | .249 | .230 | .198 | .235 | .239 | .328 | .351 | .305 | .240 | .208 | .234 | .262 | .233 | .207 | .196 | .153 | .116 | | ELEV
RAD | .079 | .058 | .055 | .040 | .106 | .100 | .079 | .162 | .097 | .024 | .018 | .035 | .057 | .031 | .014 | .008 | 020 | 025 | | HOR12
WIND
CM/SEC | 101.08 | 142.07 | 171.84
166.38 | 225.65 | 199.72 | 209.34
191.30 | 166.18
152.38 | 147.40 | 210.97
192.76 | 185.77
172.78 | 210.59 | 179.84
169.72 | 152.85 | 176.74
178.58 | 154.09 | 110.20 | 75.66
72.42 | 77.34 | | RHV
SES | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | 000000 | 0.0000 | 0.000 | 00000 | 0.000 | 0.000 | 00000 | 0.000 | 0.000 | 0.000 | 0.000 | | RUW RUY RWY REYNOLDS STRESSES | 375
831 | 326 | 105 | 108 | -2.107 | 439 | 055
-1.002 | .107 | .580
118 | .547 | .336 | .244 | .230 | 387 | 404 | 060 | 089 | 019 | | RUW
REYMO | 251 | 553 | 699 | -1,061 | 777 | 936 | 824 | 614 | 840 | 653 | 902 | 693 | 607 | 628
914 | 434 | 252 | 029 | 027 | | WSD
DEV | 19.12 | 26.03 | 29.70 | 36.52 | 32.82 | 34.43 | 31.56 | 29.07
33.50 | 34.90 | 32.50
33.31 | 34.32 | 31.47 | 28.03
28.15 | 31.68 | 25.71 | 18.27 | 9.41
8.51 | 7.37 | | a- : | 37.24 | 45.87 | 55.83
57.06 | 70.22 | 74.56
96.03 | 73.47 | 68.57 69.19 | 60.46 | 71.30 | 65.42 | 61.15
63.35 | 64.25
65.49 | 51.35 | 57.43 | 44.95 | 29.83 | 16.68 | 14.18 | | USD VS
WIND S | 51.80
51.97 | 61.97 | 74.70 | 81.94 | 87.79
98.11 | 96.60 | 94.82 | 108.69 | 113.61 | 83.03 | 86.17
87.24 | 76.69 | 72.53 | 74.29 | 57.29
55.63 | 40.08
42.89 | 21.67 | 16.79 | | MEAN | 93.96
87.55 | 134.13
133.93 | 162.66
156.35 | 214.08
192.78 | 185.77
152.98 | 196.15
180.21 | 153.40 | 137.38 | 199.41 | 174.72
160.22 | 201.76 | 168.70
157.89 | 144.24 | 167.39 | 147.30
133.03 | 106.03
95.61 | 73.94 | 76.02 | | 517 E | 91268
0 1
0 2 | 1 2 | 7 | 7 | - 2 | - ~ | 7 7 | 7 | 7 2 | ~~ | - ~ | - 2 | 7 7 | 7 | ~ | - ~ | 7 | 24 N | | TIME SITE
START | 912
610
810 | 900 | 930 | 1005 | 1035 | 1105 | 1135 | 1205 | 1305
1305 | 1335
1335 | 1430 | 1500 | 1530
1530 | 1600 | 1630 | 1710 | 1740 | 1805 | | ი ღ 0 | 27059
298 55 | 16190
10661 | 9479 | 3429
19855 | 8763
26125 | 12103
18339 | 16346
30444 | 33407
25252 | 15254
30045 | 8061
6356 | 6956
8644 | 7660 | 12557
20981 | 8461
4392 | 5899
16049 | 5824
25416 | 4647 | 1892
503 | |---------------------------------------|------------------------
-----------------------|--------------|---------------|------------------|----------------------|----------------|----------------|----------------|--------------|--------------|------------------|----------------------|---------------|---------------|---------------|------------------|---------------| | EDE | 29 | 20 | 17 | 19 | | 12
18 | 30 | 33 | 15 | 16 | 40 | 7 22 | 12 | 14 | 16 | 2, 5 | 10 | - | | TS EXCEEDED
F G
PER 100,000 | 11909 | 5640 | 4688
7980 | 1996
7851 | 5079
14768 | 6197
11696 | 10858
17826 | 24367
13632 | 10484
13672 | 5005
9346 | 2638
3926 | 4173
7890 | 7224
7683 | 4244 | 2389 | 1889 | 1677 | 478
57 | | LIMIT
VSQ
PARTS | 5758
7775 | 1 26 1
2242 | 2153
3417 | 362 | 2114 | 37 65
8026 | 5663
12375 | 17811
9015 | 7944
8508 | 1584 | 785 | 3864 | 289 2
2561 | 1541 | 437 | 238 | 854
3357 | ¥ 0 | | EX
RANS
N) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0035 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.3000 | 0.0000 | 0.0000 | .0100 | | EU EV E#
LATENT HEAT TRANS | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 0.0000 | 0.0000 | 0.0000 | 0.000 | 6.0000
1.4050 | 0.0000 | 0.0150 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1664 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0000-0
0000-0 | 0.0000 | | AIR TEMP
IEAN SI DEV
CENTIGRADE | .6680 | .7080 | .4910 | .5820 | .7170 | .7060 | .8340
.8000 | .8170 | .6580 | .7170 | .5170 | .4870 | .4310 | .2870 | .2110 | .3450 | .6010 | 1730 | | AIR
MEAN
CENT | 16. | 20 •
21• | 21. | 20. | 23. | 24. | 24. | 25. | 25. | 25. | 15.
26. | 15. | 15. | 15. | 15. | 23. | 21. | 20. | | ν . | .0807 | .1218 | .1373 | .1622 | .1459 | .1638 | .1576 | .0872 | .1258 | .1250 | .0987 | .0907 | .0727 | .0414 | 0025 | 0270 | 0083 | 0123 | | HV
E HEAT | 0549 | 0470 | .0162 | 0937 | 0350 | -,3813 | 0107 | 0488 | .0440 | .0161 | .0502 | .0165 | .0270 | .0205 | .0051 | 0462 | 0455 | 0237 | | HU
SENCIBL | 1189 | 2101 | 2629 | 3840 | 4288 | 3917 | 6614 | 3943 | 2796 | 3332 | 3143 | -,2812
-,3063 | 2124 | ; 246
1605 | 0134 | .1122 | -1404 | .0861 | | BETA | 0150 | 0260 | 0030 | 0280 | 0170 | 0420 | 0350 | 0190 | 0390 | 0420 | 0270 | 0050 | .0060 | 0050 | 0270 | 0106 | .0900 | .0180 | | THETA | .0204 | .0227 | .0172 | -0249 | .0064 | .0117 | .0057 | .0071 | 0107
.0018 | 0136 | 0091 | .0001 | .000 | 0042 | 0091 | 0142 | 0316 | 0314 | | E ETA: | 5043 | 4253 | .1867 | .1023 | •1951
•2741 | 1523 | .1363 | 1661 | .4231 | .0046 | .1135 | 0952 | .0585 | 1077 | 0194 | .0733 | .3343 | .5791
0110 | | SITE | 91268
0 1
0 2 - | 7 | 1 2 | 1 2 | H N | 1 2 | 7 2 | 1 2 | 7 | ~ ~ | 7 | ~ ~ | 2 2 | 7 | 7 7 | 7 | 7 7 | 7 | | I IME
START | 91
810
810 | 900 | 930 | 1005 | 1035 | 1105 | 1135 | 1205 | 1305 | 1335 | 1430 | 1500 | 1530 | 1600 | 1630 | 1710 | 1740 | 1865
1895 | | SHIFT
PAD | 0.000 | 3.000 | .022 | 008 | .022 | 017 | 027 | .027 | 0112 | 051 | .030 | .049 | -457 | .124 | 554 | .032 | 635 | 064 | |---------------------------------|---------------------|----------------|--------|-----------------|---------------------|----------------|------------------|-------------|------------------|------------------|--------|--------------------|----------------|------------------|----------------|------------------|--------|---------------| | WIND
DIR
RAD | 9.600
4.426 | 0.000
4.345 | 4.334 | 4.328 | 4.353
4.336 | 4 . 333 | 4.305 | 4.353 | 4.364 | 4.300 | 4.309 | 4 • 355
4 • 338 | 5.162 | 5.113 | 4.383 | 4.418 | 4.363 | 4.316 | | 6SD
ANSLE
RAD | 0.000
.125 | 0.900 | .057 | د
د د
د . | .050 | 590° | .049 | .065 | .078 | .068 | .077 | .105 | .179 | .330 | .128 | .129 | .120 | .119 | | G
AZIM
RAD | 6.000 | 0.000 | 013 | 011 | 009 | 631 | 012 | -010 | 027 | 023 | 011 | 005 | .346 | .172 | 008 | 002 | 002 | 010 | | FSD
ANGLE
RAD | 0.000 | 0.000 | .058 | •032
•036 | .034 | .047 | .034 | .044 | .068 | •042 | .051 | .059 | .370 | .349 | .110 | .121 | 123 | .105 | | F
ELEV
RAD | 0.000 | 3.000 | 0.000 | 002 | 001 | .001 | 002 | 0.000 | 0.000 | 002 | .000 | .003 | .245 | .205 | .012 | .014 | .010 | .010 | | HORIZ
WIND
CM/SEC | 9.00
111.80 | 0.00 | 162.91 | 147.03 | 167.32
169.93 | 178.69 | 186.90
187.73 | 181.11 | 132.42
133.17 | 139.81
130.74 | 213.59 | 241.51
232.37 | 211.70 | 258.34
254.86 | 00.00 | 000 | 000 | 00.00 | | : | 000 | 00000 | 0.000 | 0.000 | 0.000 | 000000 | 00000 | 000000 | 0.0000 | 0.000 | 0.000 | 0.000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.000 | | UW RUV RWY
REYNOLDS STRESSES | 0.000 | 000.0 | .051 | 014 | .015 | .014 | 052 | .064
036 | 0.000 | 075 | 113 | 082 | 7.498 | 9.604 | -2.289 | -1.282
912 | 630 | 035 | | RUW
REYNOL | 0.000 | 0.000 | 080 | 057
073 | 087 | 115 | 123 | 104 | 157 | 083 | 170 | 243 | 707 | 921 | 925 | 719 | 927 | 862
-1.050 | | WSD
DEV | 0.00 | 0.00 | 4.37 | 3.09 | 4.66
5.29 | 5.43 | 5.22 | 5.54 | 3.26 | 3.92 | 7.08 | 8.61 | 26.57
27.29 | 26.25
26.85 | 20.85 | 20.91 | 23.12 | 22.62 | | VSD
ST | 0.00 | 00.00 | 9.37 | 7.42 | 8.90 | 11.30 | 9.56 | 11.15 | 8.24 | 8.77 | 14.16 | 24.79
19.67 | 62.62
32.41 | 69.65 | 56.53
55.33 | 80.65 | 75.12 | 77.58 | | USD
WIND
***CM/SEC | 0.00 | 0.00 | 44.43 | 32.50 | 41.34 | 52.70
49.66 | 48.58
52.51 | 59.68 | 38.64 | 45.10 | 67.49 | 83.52 | 197.67 | 228.40 | 143.25 | 107.92 | 110.61 | 115.14 | | MEAN | 0.00 | 0.00 | 162.69 | 146.87 | 167-12
169-70 | 178.36 | 186.68 | 180.80 | 132.19 | 139.56 | 213.14 | 240.37 | 195.30 | 225.58 | 283.57 | 298.08
298.15 | 325.96 | 328.96 | | 51 TE | 91368
5 1
5 2 | 7 | ~ () | ~ ~ | - 2 | 7 7 | ~ 2 | 1 2 | - ~ | 7 | 7 7 | 7 | 7 7 | 7 7 | 7 2 | - 2 | 7 | 7 | | TIME SITE
START | 913 | 215
215 | 245 | 315
315 | 335
335 | 415 | 445 | 515
515 | 545 | 615
615 | 630 | 705 | 800 | 835
835 | 905 | 935 | 1005 | 1040 | | CEEDED
6
100+000 | 3054 | 243 | 140 | 75 | 13 | 211 | 23 | 182 | 411 | 225 | 261
302 | 379 | 47940 | 33373
31573 | 292 | 444 | 394 | 243 | |---------------------------------------|-----------------------------|---|--------------|--------------------|------------|----------------|---|------------|------------------------------|-------------------|--------------|------------|----------------|----------------|-----------------|------------|--------|--------| | IS E)
PER | 1934 | 3.58 | 108
89 | 33 | 7 70 | 157 | 12 23 | 115 | 2 2 2
5 5 2 | 112 | 194 | 326
577 | 37941
35931 | 31362
30528 | 257 | 400 | 284 | 210 | | LIMITS
VSQ
PARTS PI | 1709 | 115 | 91 | 15 | v 4 | 110 | 7 | 86
51 | 200 | 90 | 160 | 252 | 29899 | 24789 | 210 | 363
351 | 230 | 157 | | EW
RANS
N) | 0.00000 | 0000000 | 0.000.0 | 0000000 | 0.00000 | 0.0000 | 0.0000000000000000000000000000000000000 | 0.0000 | 000000 | 0.000.0 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | C.0000
.1348 | 0.0000 | 0.0000 | 0.0000 | | EU EV EW
LATENT HEAT TRANS | 0.0000 | 0000000 | 0000000 | 0.0000 | 0.000.0 | 0.000.0 | 0.000.0 | 0.0000 | 0.0000 | 00000•0
0000•ï | 00000-0 | 0000000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | EU
LATENT | 0.0000 | 0.000.0 | 0.000.0 | 0.0000 | 0.00000 | 0.00000 | 0.000.0 | 0.000.0 | 0000-0 | 0.00000 | 0.00000 | 0.00000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | AIR TEMP
MEAN ST DEV
CENTIGRADE | 0.000.0 | 0.000.0 | .0590 | .2230 | .2180 | •3060
•3070 | .3160
.3180 | .3290 | .2980 | .2360 | 00000-0 | 1.2130 | .9200 | .3560 | .5080 | •4720 | .5340 | .5650 | | AIR . | 0 5 | 33. | 13.
13. | 13 .
13. | 13.
13. | 13•
13• | 12 .
12. | 13.
13. | 13. | 13.
13. | 55 | 10. | 18. | 17. | 22. | 23. | 23. | 21. | | TRANS P | 0.0000 | 0.0000 | 0012 | 0046 | 0069 | 0102 | 0112 | 0105 | 0068 | 0033 | 0006 | 0048 | 0247 | .0205 | .0368 | .0602 | .0709 | .0720 | | HU HV HW
SENSIBLE HEAT TRANS | 0.0000 | 000000000000000000000000000000000000000 | .0002 | 0065 | 0011 | 0055 | 0001 | -0000 | -00004 | 0052 | 0005 | -,0806 | .4884 | 1688 | .1098 | .0474 | .1563 | .1579 | | HU
SENS IB | 0.0000 | 0.000 | .0093 | .0482 | .0661 | .1380 | .1595 | .1885 | .0909 | .1048 | 0005 | .0167 | 2.5939 | 9210 | 3512
4457 | 3927 | 5128 | 5513 | | BETA | 0.0000 | 0.0000 | .0040 | 1810 | 1790 | 0670 | 1130 | 0720 | 1530 | 1430 | 0760
0640 | 0400 | 0820 | 0480 | .0570 | 0220 | 0020 | 0.0000 | | THETA | 0.0000 | 0.0000 | 002#
0021 | 0040 | 0041 | 0034 | 0045
0028 | 0041 | 0040 | 0051 | 0044 | 0034 | .0096 | .0077 | 0006 | .000H | 0019 | 0006 | | ETA
RAD | 0.0000 | 0.0000 | .8613 | .0069 | 0218 | .0001 | .0260 | 0266 | .0102 | .0390 | 0338 | 0527 | 1247 | .3226 | 1.1280 | 1306 | .1066 | .2126 | | SITE | 913 68
5 1
5 2 | - 2 | 7 | - 2 | 7 | 7 | 7 7 | 1 2 | ~ ~ | 7 | - ~ | 7 7 | m 2 | ~ ~ | 7 | 1 | 7 | 7 | | START | 91 | 215 | 245 | 315 | 335
335 | 415 | 445 | 515
515 | 545
545 | 615
615 | 630 | 705 | 800 | 835
835 | 903
905 | 935
935 | 1005 | 1040 | | WIND
SHIFT
RAD | 041 | .072 | 049 | .042 | .048 | 168 | - 00. | .030 | .039 | 033 | .319 | 138 | .070 | .157 | 053 | .00% | .010 | .003 | |----------------------------------|---------------------------|------------------|------------------|----------------|------------------|------------------|--------------|------------------|------------------|--------|--------|--------|--------------|--------|--------------|-------|----------------|-------| | BIND
BIR
RAD | 4.279 | 4.352 | 4.312 | 4.358 | 4.403 | 4.222 | 4.262 | 4.311 | 4.338 | 4.285 | 4.215 | 4.093 | 4-142 | 4.305 | 4.255 | 4.269 | 4.505 | 4.711 | | GSD
ANGLE
RAD | .146 | 129 | .280 | .784 | .293 |
.280 | .279
.285 | .271 | .288 | .278 | .282 | .333 | .252
.230 | .259 | .268
.253 | .217 | .367 | .225 | | G
AZ 14
RAD | 0.000 | .002 | .010 | .014 | .010 | 003 | 011 | .009 | 003 | 024 | •004 | .026 | .005 | .036 | .011 | .015 | .152 | .193 | | FSD
ANGLE
RAD | .105 | .125 | .174 | .203 | .168 | .173 | .177 | .178 | .178 | .181 | .190 | .202 | .160 | .165 | .174 | .134 | .335 | .342 | | F! F.V
RAD | .012 | .016 | .010 | .012 | .019 | .009 | .014 | .013 | .009 | .015 | .013 | .014 | 005 | 0.000 | 003 | 013 | .034 | .120 | | HOR12
WIND
CM/SEC | 00.00 | 000 | 310,63 | 319.59 | 279.04 | 256.56
258.94 | 242.62 | 275.79 | 278.28
279.86 | 191.71 | 156.15 | 109.27 | 103.50 | 124.82 | 92.57 | 77.00 | 61.53
65.81 | 74.33 | | RWV | 000 | 0000 | 0000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | 00000 | 000000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | | PUW RUV RWV
REYNOLDS STRESSES | 2.763 | 343 | -1.046 | .218 | 406 | 172 | .089 | .152 | .965 | 017 | 188 | 676 | 073 | 008 | 090 | 031 | .011 | .263 | | PUN
REYNO | 911 | -1.00 | -1.664 | -1.767 | -1.535
-1.965 | -1.137
-1.515 | -1.092 | -1.357 | -1.326
-1.755 | 766 | 503 | 205 | 146 | 236 | 133 | 056 | 050 | 091 | | WSD
DEV | 22.71 | 24.69 | 46.78 | 48.57
51.27 | 43.52 | 37.96 | 37.23 | 42.67 | 42.7 | 29,78 | 24.82 | 18.46 | 14.51 | 18.67 | 13.52 | 9.78 | 10.24 | 12.43 | | VSD
ST | 96•36
85•52 | 87.71
79.81 | 83.18 | 86.87 | 75.59 | 67.52
69.21 | 65.43 | 70.84 | 78.77
80.17 | 50.80 | 40.59 | 33.27 | 24.43 | 30.91 | 22.81 | 17.98 | 18.38
18.10 | 2120 | | .1SD
HIND
***CH'SEC | 110.35 | 122.21 | 106.37
108.86 | 112.05 | 99.76 | 85.24 | 92.37 | 98.84 | 104.44 | 74.83 | 67.04 | 54.30 | 29.24 | 46.33 | 33.97 | 22.46 | 44.34 | 51.70 | | MEAN | 328.19
336.92 | 347.58
365.74 | 299.42 | 307.75 | 768.82
253.23 | 247.47 | 233.85 | 256.63
265.71 | 267.50
259.10 | 185-12 | 151.00 | 104.57 | 100.55 | 121.03 | 89.72 | 74.75 | 59.08
63.37 | 71.16 | | SITE | | - ~ | ~ ~ | ~ ~ | ~ ~ | 2 | ~ ~ | 7 | 7 7 | - 2 | 7 2 | ~~ | ~ ~ | ~ ~ | 1 2 | 7 | 7 2 | - ~ | | TIME START | 91368
1130 1
1130 2 | 1200 | 1300 | 1330 | 1400 | 1430 | 1505 | 1535 | 1605 | 1635 | 1705 | 1735 | 1805
1805 | 1905 | 1935
1935 | 2005 | 2035 | 2110 | | CEEDED | 240 | 451 | 1432 | 1641 | 2980 | 1796 | 2064 | 1746 | 2357 | 3657 | 4528
5078 | 8767
3524 | 3158
2061 | 3095 | 5341 | 6080
1927 | 12990 | 27972 2198 | |---------------------------------------|---------------------|---------------------|--------------|-----------------|----------------|-------------|-----------------|--------------------|-------------|--------------|----------------|-----------------|--------------|----------------|-----------------|----------------|----------------|------------------| | χ.
π. α.
π. α. | 242.263 | 419 | 711 | 1122
989 | 1510
2396 | 713
1753 | 876 | 891 | 960
1536 | 1135 | 1815 | 2911 | 938
691 | 929 | 1741 | 724 | 5636 | 22110
718 | | LIMII
VSQ
PARTS | 202 | 3 5.8
340 | 183 | 143 | 365 | 233 | 34. | 181 | 184 | 123 | 282 | 1309 | 97 | 130 | 261 | 203 | 2.381 | 15579 | | EN TRANS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 00000 | 0.0000 | 0.0000 | | EV
HEAT
(CM2-N | 0+0000 | 0.0000 | 0.0000 | 0000.0 | 0.0000. | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000. | 0.0000 | \$300°- | 6.000n
.0243 | 0.0000 | 0.0000 | 0.000.
0.0653 | | EU
LATENT | 0.0000 | 0.0000 | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000 | 0000.0 | 0.0060 | 0.000-0 | 0.0000 | | AIR TEMP
MEAN SI DEV
CENTIGRADE | .5450 | .5920 | 0609° | .5540 | .5310 | .3170 | .3400 | .2840 | .3730 | .4910 | 0675 | 2.4070
.6860 | .5620 | .5750
.5170 | .5560
.5296 | .5010
.5080 | •7230
•6750 | 2870 | | A1R
EAN
CENT | 22. | 22.
22. | 26. | 26. | 26.
26. | 25. | 26.
26. | 26. | 26.
26. | 25. | 24. | 22. | 20. | 15. | 13, | 18. | 17. | 17.
18. | | | .0787 | .0924 | .1760 | .1515 | .0955 | .0217 | •(,358
•0432 | .0606 | .0318 | 0404 | 0366 | -,0264 | 0174 | 0450 | ~.0790
0316 | 0143 | 0153 | 0235 | | HU HV HW
SENSIBLE HEAT TRANS | .0971 | .0600 | .0595 | .0572
.1393 | ,7190
•0860 | 0118 | -,0101 | 0013 | .0195 | 3191 | 0787 | 345 | 0040 | .0091 | 0180 | 0190 | .0190 | .0134 | | HU
SENSIBI | 4792 | 6555
6584 | 5304
6034 | 5922 | -,2528 | 0607 | 2257 | 2567 | 1894 | .2738 | .4519 | .4944 | .1061 | .2800 | .1366 | 3480. | .3560
.3313 | .453C | | BETA | 0080 | 0250 | 0220 | -c3220
-026U | 0640 | 0080 | (-350 | 0290 | 0180 | 0250
2130 | 0130 | 0370 | 20330 | 0.0000 | .0290 | 0330 | 0170 | 6720 | | RAD | .0001 | .0000 | 0081
0018 | 3043 | 0067 | 0094 | 0050
0030 | 1.00083
1.00083 | 0104 | 0054 | 0076
0-0900 | 3087 | 0184 | 016# | 0194 | 0217 | 013n
0978 | 010 | | E ETA | .1508 | 2538
2862 | .0490 | 0434
0515 | 0625 | .1647 | 0813 | 0322 | 0331 | -,0089 | .0884 | .0812 | 6772 | 1607 | .0405 | 0147 | 0.0000 | -0120 | | SITE | 91368
0 1
C 2 | ~ ~ | ⊷ 6. | ~~ | - 2 | - 2 | -~ | ~ ~ | ни | | - 2 | 2 | N | 7 2 | 7 ~ | - 2 | 7 | ⊷ N | | TIME START | 91
1130
1130 | 1200 | 1300 | 1330 | 1400 | 1430 | 1505 | 1535 | 1605 | 1635 | 1705 | 1735
1735 | 1805 | 1905 | 1935 | 2605 | 2035 | 2110 | | WIND
SHIFT
RND | 196 | 00000 | 0.000 | .004 | .053 | 017 | 0.000 | 213 | .019 | 0.000 | 0.000 | - 020 | 025 | .015 | .037 | 070. | .021 | -003 | |----------------------------------|--------------------|------------------|----------------|----------------|----------------|--------|---------------|--------------------|----------------|---------------|---------------|----------------|----------------|------------------|------------------------|--------------|------------------|--------| | WIND
DIR
RAD | 4.328
4.394 | 4.339 | 4.442 | 4.439 | 4.388 | 4.359 | 4.613 | 4.503 | 4.398 | 0.000 | 0.000 | 4.283 | 4.264 | 4.277 | 4.297 | 4.324 | 4.360 | 4-376 | | GSD
ANGLE
RAD | .251 | .269 | .280 | .278 | 248 | .264 | .335 | .234 | .256 | 3000 | 0,000 | 276
2.2.3 | .275
.230 | .268 | .265
.266 | .276 | .287 | .274 | | G
AZ IM
RAD | .005 | .032 | .038 | •016
•016 | .002 | 008 | .118 | 001 | 012 | 0.000 | 0.000 | ,002 | .022 | .030 | 011 | 024 | .010 | •00• | | F SU
ANGLE
RAD | .164 | .187 | .189 | -185 | .152 | .128 | .275 | .356 | .162 | 0.000 | 0.000 | .194 | .183 | .162 | .171 | .183 | .191 | .178 | | F
ELEV
RAD | 001 | .017
-014 | .008 | .013 | 304 | 009 | .056 | -, 302 | .001 | 5.090
.028 | 0.090 | .009 | .021 | •059 | .009 | .034 | .021 | .018 | | HOR12
WIND
CK/SEC | 151,55
153.93 | 546.83
153,99 | 152.80 | 123.16 | 113.89 | 106.65 | 81.85
0.00 | 126-84 | 96.42
93.63 | 0.00 | 156.14 | 154.00 | 174.16 | 212.87 | 254.30 | 260.56 | 260.32 | 285.70 | | | 00000 | 0.000 | 000000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0000 | 000.0 | | RUW RUV RWV
KEYNOLDS JTRESSES | 039 | 604 | 091 | 152
253 | -308 | 051 | .163 | 039 | 048 | 0,000 | 0.000 | .491 | -172 | 290 | .105 | -134 | 237 | 386 | | RUK | 360 | -,450 | 164 | 272 | 157 | 131 | 960*- | 269 | 130 | 00000 | 0.000 | -385 | 524 | -1.170 | -1.174 | -:-243 | -1,345 | -1.454 | | WSD
DEV | 22.53 | 24.02 | 24.01 | 19.25 | 15.74 | 12.48 | 11.83 | 18 ¢ 95
16 - 82 | 13.44 | 0.00
16-39 | 0.00
26.18 | 23.49 | 26.96
27.63 | 34.80 | 35.70 | 39.96 | 41.20 | 43-19 | | USD VSD
WIMD ST D | 35.79
34.83 | 36.64 | 38.61
40.89 | 30.85 | 25-83 | 20.86 | 19,77 | 28.31
26.7i | 22.15 | 33.47 | 40.91 | 39.24 | 43.44 | 53.63
530 | 64.39
62.08 | 60.38 | 68.66 | 72.45 | | USD
WI | 40-42 | 50.31 | 55.41
56.85 | 42.58
47.98 | 35.70
36.15 | 27.58 | 0.00 | 36.93 | 33.10
32.98 | 0.0v | 55.20 | 48.37
52.03 | 55.27 | 74.59
76.76 | 87.93
90.18 | 95.03 | 90.84 | 95.38 | | MEAN | 147-10 | 142.08 | 147.67 | 119-08 | 101.65 | 104.61 | 19.37 | 123.65 | 93.07 | 1,00 | 161.01 | 131.19 | 166.40 | 208-01
208-94 | 2:6.13 | 259.07 | 250.C1
260.08 | 276.14 | | SITE | 91368 | -7 | 468
1 | - ~ | 7 7 | ~ ~ | ~ ~ | ~ (·4 | - ~ | - ~ | - 2 | - r: | ₩ F4 | - N | ~ N | - 8 | - ~ | F4 | | TIME | 91
2140
2140 | 2210 | 6 | 30 | 110 | 140 | 240 | 335
335 | 404 | 0 E E | 60
00
0 | 630 | 700 | 730 | 8 80
00
00
00 | 83.5
83.5 | 905 | 935 | | EXCEEDED | 100,000 | 1972
1653 | 3335
26 58 | 4104 | ± 000
6844 | 3326 | 1511 | 15054 | 1820 | 4463 | 7957 | 3142 | 4373 | 3409 | 2453 | 2124 | 3471 | 2773 | 2296 | |-----------|--------------|--------------|----------------------|----------------|---------------|-----------------|----------------|-----------------|----------------|------------------|----------------|----------|--------|--------------|--------|------------|--------|----------------|------------| | | P. R. | 735 | 1460 | 1694 | 1673 | 729
1436 | 393 | 11557
0 | 552
1078 | 1355 | 3514 | 1742 | 1553 | 1251
2388 | 994 | 902 | 1488 | 1491 | 1005 | | LIMITS | PARTS | 30 | 128
83 | 275 | 185 | 138 | 46
35 | 0 | 17 | 524
128 | 83.8 | 192 | 167 | 203 | 105 | 328
367 | 229 | 335 | 145 | | E E | N, | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000c
.0273 | 0.0000 | 0000000 | 0.0000 | 0.0000 | 0.0000 | 000000 | 000000 | 9.0000 | 0.0000 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | | EV E | _ | 0.0000 | 0.000. | 0.0000 | 0.0000 | 0000. | 0.0000 | 0.0000 | 0.0930 | 6.5063
• 6062 | 0.0007
1051 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | E) | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0900 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0007 | 9.00C0
4355 | 0.0000 | | TEMP | CENT 1 GRADE | .4580 | .4130 |
.4940
.4410 | .5240 | .6230
.5913 | .5580
.5040 | .408U | .3480 | 0.4240 | 0.0000 | 0.0000 | .2240 | .3780 | 1.1260 | .4340 | .4270 | .5140 | .4570 | | AIR | CEN | 13. | 13. | 17.
16. | 16. | 15. | 14. | ; ° | 14. | 13. | 13. | c 4
4 | 15. | 16. | 17, | 21. | 23. | 23. | 24°
25• | | N A G | | 7.050. | 0553 | 0638
2551 | 0486 | 0361 | 0285 | 0205
0.00fi0 | 0401 | 0273 | 0.0000
0337 | 0.0000 | 0017 | .0250 | .0244 | .0560 | .1101 | .1209 | .1185 | |) I | , : | 1100* | 002: | 6/37 | 0215 | 0706 | 0082 | .0055
0.3000 | 0014 | 0148 | 0.0000 | 000000 | .0060 | .0143 | .0087 | 0489 | .0553 | 1950. | .0343 | | HC
FW? | •••CAL | .2265 | .2029 | .2536
.2370 | .1833 | .1693 | -0952
-0984 | .1419 | ,1545
,1370 | .1013 | 0.000 | 0.0000 | .0024 | 0073 | 2628 | 2747 | 2926 | 4414 | 3802 | | 8£.7A | RAD | 6446 | 2030 | .0020 | 0070 | .0630 | 0.0000 | 0050 | 0400 | .0070 | .0000 | 0.0000 | 1690 | .0010 | .0116 | 0030 | .0240 | .0060 | 0.0040 | | THETA | BAD | 0349 | 0033
0068 | 0141 | 0054 | 3164 | 0184 | 0131
0.0000 | 0165 | 0016 | 1.0007 | 0.000 | 0014 | 0133 | 0094 | 0101 | -0000 | 0001 | .0017 | | ETA. | RAD | -1937 | 0098 | 1050 | 0094 | 1391 | .0156 | .1772 | .3223 | 0023 | 0.0000
0597 | 0.000 | .0392 | .0156 | 0227 | 0110 | 0040 | -,0026 | 0089 | | SITE | | 91368 | ~ 2 | 91468 | 1 2 | 7 | ~ 7 | H 6 | ·4 62 | ~ N | | ~~ | ~ ~ | 7 | r 8 | | 7 | ~~ | n.v | | TEME STIE | · | 214C
2140 | 2210 | 6 | 30 | 110 | 140 | 240 | 335
335 | 405
405 | R. R.
C. O. | 004 | 630 | 700 | 730 | 800
800 | 835 | \$06
\$06 | 935 | | WIND
SHIFT
RAD | .032 | 010 | 148 | .155
-1.503 | .031 | 030 | 057 | .029 | 005 | 690 | .035 | .069 | .003 | 025 | 052 | 032 | 034 | 013 | |---|--------------------------|-------------------|------------------|------------------|----------------|------------------|------------------|------------------|------------------|--------|------------------|------------------|------------------|------------------|------------------|--------------|------------------|--------| | WIND
DIR
RAD | 4.350 | 4.396 | 4.413 | 4.508 | 4.354 | 4.325 | 4.267 | 4.283 | 4.289 | 4.232 | 4.248 | 4.311 | 4.309 | 4.261 | 4.250 | 4.208 | 4.171 | 4.178 | | GSD
AN'SLE
RAD | .289 | .296 | .280 | .302 | .289 | .290 | .291 | .302 | .289
.298 | .278 | .291 | .264 | .282 | .264 | .235 | •251
•233 | .204 | .257 | | G
AZIN
RAD | 054 | .003 | .008 | .036 | .003 | .005 | .055 | 010 | .033 | .014 | 005 | 012 | -016 | 039 | 0.000 | 009 | 012 | 0.000 | | FSD
ANGLE
RAD | .185 | •191 | .181 | 191 | .182 | .184 | .183 | .181 | .177 | .169 | .169 | .171 | .136 | .114 | .160 | .167 | .164 | .172 | | FLEV | .024 | .022 | .019 | .030 | .022 | .025 | .021 | .019 | .018 | .013 | .006 | .018 | .023 | .021 | 900 | 003 | 010 | 005 | | HOR12
WIND
CM/SEC | 281.38
0.00 | 305.31
34.7.83 | 319.55 | 305-19 | 369.33 | 283.11
346.11 | 260.60 | 265.93
320.11 | 302.59
353.97 | 319.88 | 320.53
389.35 | 253.75
316.53 | 233.14
290.76 | 196.65
249.8f | 273-82 | 155.25 | 118.51
155.32 | 126.83 | | RWV | 000.0 | 00000 | 0.000 | 0.000 | 0.0000 | 0.000 | 0.0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 00000 | 0.000 | 00000 | 0.000 | 0.000 | | RUW RUV RWV
REYNOLDS STRESSES | .163 | 8.817 | 017
3.641 | .521 | .683 | .103 | 190 | -2.204 | -197 | 013 | .582 | 856 | 329 | 216 | 780 | -181 | 092 | 232 | | REYNO | -1.525 | -1.883 | -1-897 | -1.807 | -1.932 | -1.647 | -1.344 | -1.397 | -1.751 | -1.855 | -1.689 | -1.270 | 1.007 | 738 | 589 | 431 | 211 | 280 | | MSD
DEV | 42.51 | 48.08
51.11 | 54.79 | 47.15
55.15 | 48-59
56-45 | 14.28 | 41.04 | 40.63 | 46.82 | 47.82 | 47.55
57.81 | 37.91 | 37.23 | 30-33 | 29.30 | 22.89 | 17.64 | 19.07 | | 7 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × | 72.38 | 87.57
131.10 | 85.55 | 89.76 | 87.13 | 77,89 | 71.76 | 76.59 | 94.53
100.43 | 87.45 | 112.17 | 93.34 | 63.43 | 49.74 | 55.71 | 36.39 | 28.02
52.77 | 30.23 | | USD
WIN | 105.66 | 116.55 | 113.64 | 119.18
127.95 | 117.13 | 99.09 | 91.77 | 96.97 | 98.71 | 102.80 | 101.24 | 94.84 | 85.46 | 70.87 | 66.24 | 52.42 | 40.04 | 39.69 | | MEAN | 271.49 | 293-12 | 308,12
364.23 | 292.70 | 354.89 | 272,35 | 250.68
301.56 | 254.98
304.76 | 290.77 | 306.05 | 309.57 | 245.56
304.38 | 224.96
200.28 | 190.44 | 194.54
240.31 | 150.91 | 115.15
152.29 | 123.09 | | SITE | 2 4 6 | 7 7 | 7 | 7 | ~~ | ~ ~ | 7 2 | - ~ | 7 | (1 | ~ ~ | ~~ | m N | 7 | - 2 | - 2 | ~ ~ | - 2 | | START | 9146
1005 1
1005 2 | 1035 | 1105 | 1200 | 1230 | 1310 | 1335 | 1400 | 1425 | 1450 | 1530 | 1600 | 1630 | 1700 | 1735 | 1835 | 1835 | 1905 | | ETA THETA | THE
RA | HETA | BETA | HU
SENSTBI | HU HV HW
SENSIBLE HEAT TRANS
CAL/(CM2-MIN) | - | AIR
MEAN
CENTI | AIR TEMP
MEAN ST DEV
CENTIGRADE | EU
LATENT | EV
HEAT
(CM2 -v | EW
TRANS
IIN) | LIMITS
VSQ
PARTS PE | பூட் | CEEDED
6
100+000 | |--|---------------------------|---------------------------|----------------|---------------|--|--|----------------------|---------------------------------------|--------------|-----------------------|---------------------|---------------------------|--------------------|------------------------| | 0340 0.000003903425
0.0000 0.0000 0.0000 0.0000 | 0.0000-0 | 0.0000-0 | 7.342
7.700 | m C | .0701 | •1119
0•000 | 24. | | 0000000 | 0.0000 | 000000 | 373 | 1482 | 4386 | | .0068002401806326
6785 .012912609107 | 0160 | 0160 | 6326 | | .0355
1837 | .1610 | 26. | .5660 | 0.0000 | 0.0000- | 0.0000 | 692
3019 | 1625 | 3518
8697 | | ~*0160 -*0019 -*0210 -*5956
*1771 *3089 *0500 -*5806 | 0210 | 0210 | 5956
5806 | | .0506
0753 | 1502 | 26. | .5990 | 0.0000 | 0.0000 | 0.0000 | 319 | 1054 | 2101 | | .0842 .003303605774
:5003 .015400906182 | 0360 | 0360 | 5774 | | .0454 | .1587 | 26. | .5860 | 0.5000 | 0.0000 | 0.0000 | 827
161 | 1971
962 | 3200 | | 0286 .000901602735
9643 .0154 .01062759 | 0160 | 0160 | 2735 | | .1585 | .1302 | 25. | .6590 | 0.00008637 | 0.0000 | 0.0000 | 248 | 1073 | 2222 | | .0297 .002801504016
.0484 .0058 .07303619 | 0150 | 0150 | 4016 | | .0529 | .1226 | 25. | .5480 | 0.0000 | 0.0000 | 0.0000 | 169
339 | 1123 | 2168 | | ************************************** | 0140 | 0140 | 4385 | | .0684 | 11207 | 26. | .3940 | 0.0000 | 0.0000 | 0.0000 | 212 | 1108 | 2465
2197 | | 0342003404303605
08700001 .07003910 | .0430 | | 3605 | | 0671 | .1395 | 26. | .5090 | 0.0000 | 0.0000 | 0.0000 | 466
626 | 1269 | 2937
3367 | | .3040001703103546
.3461 .0098 .01304134 | 0310 | | 3546 | | .0239 | .1287 | 27. | .4290 | 0.0000 | 0.0000
.1112 | 0.0000 | 131 | 674
1014 | 1686 | | .01180049011902858
.0898000901602470 | 0190 | | 2858 | • | -0194 | .0900 | 27. | .3080 | 0.0000 | 0.0000 | 0.0000- | 136 | \$18
233 | 6.44 | | 03040107202901624
00960103 .15602114 | 0290 | | 1624 | | .0320 | .0532 | 26. | .2100 | 0.0300 | 0.0000 | 0.0000 | 1100 | 406 | 939 | | 08130015 .00401116
07100098 .22501080 | .2250 | .2250 | 1116 | | .29153 | .0140 | 28. | .9290 | 0.0000 | 0.0000 | 0.0000 | 76
192 | 754
1285 | 1621 2384 | | -,0053 .0031 -,0350 -,0460
.0215 -,0613 -,1950 -,0347 | 0350 | | 0460 | | .0043 | 1085 | 28. | .2830 | 0.0000 | 0.0000 | 0.0000 | 321
348 | 1342
1047 | 2765 | | .0508 .00320320 .2044 . | 0320 .2044
1890 .2083 | 0320 .2044
1890 .2083 | | | 0564 | ************************************** | 27. | .4120 | 0.0000 | 0.0000 | 0.0000 | 185 | 1001 253 | 2742
1766 | | .054300970210 .2905
.060401312250 .2267 | 0210 .2905
2250 .2267 | .2267 | | • | .0092 | 0617 | 24. | .4860 | 0.0000 | 0.0000 | 0.0000 | 4
0 m | 52 6
115 | 1168 | | .024801450060 .3364 . | 2160 .3364 | 2160 .3364 | | | 0369 | 0544 | 23. | .5590 | 0.0900 | 3.0000 | 0.0000 | 107 | 368 | 2339 | | .03060076 .0460 .0746
.000401572080 .1307 | .0460 .0746
2080 .1307 | .0460 .0746
2080 .1307 | | | 0136 | 0317 | 24. | .6940 | 0.0000 | 0.0000 | 0.0000 | 13 | 669
155 | 2657 | | 00760126 .0460 .1984
.000601562120 .3644 | .0460 .1984
2120 .3644 | .0460 .1984
2120 .3644 | | | 0364 | 0515 | 24. | .4880 | 0.0000 | 0.0000 | 0,0000 | 102 | 1135 | 3382
700 | | WIND
SHIFT
RAD | 003 | .009 | 039 | 288 | 041 | • 000 | •000 | 003 | .014 | .001 | 004 | .009 | .017 | 003 | 006 | .037 | 009 | 003 | |----------------------------------|--------------------------|----------------|----------------|--------|------------------|----------------|----------------|----------------|------------------|--------|------------------|------------------|--------|----------------|--------------|------------------|------------------|------------| | WIND
PIR
RAD | 4.172 | 4.193 | 4.140 | 3.864 | 3.964 | 3.958 | 3.868 | 3.869
3.931 | 3.869 | 3.873 | 3.675 | 3.878 | 3.891 | 3.886 | 3.889 | 3.893 | 3.833 | 3.895 | | GSD
A.VGLE
RAD | .244 | .258 | .195 | .217 | .257 | .217 | .258 | .254 | .266 | .228 | .261 | .276 | .270 | .253
.211 | .245
.233 | .255
.218 | .253 | .257 | | AZIM
RAD | 004 | .038 | 305 | .007 | 002 | -0005 | 007 | 004 | 017 | 015 | 008 | 014 | 027 | 020 | 012 | 014 | 004 | 001 | | FSD
ANGLE
RAD | .158 | .174 | .148 | .165 | .161 | .178 | .169 | .159 | .168 | .169 | .170 | .099 | .161 | .163 | .167 | .173 | .167 | .176 | | F
ELEV
RAD | .003 | 0.00- | 003 | 004 | 007 | 011 | 002 | 001 | 010 | 003 | 005 | .003 | 003 | 001 | 004 | 003 | 012 | .000 | | HORIZ
WIND
CM. SEC | 125.96
167.34 | 147.15 | 118.41 | 148.09 | 141.18
166.66 | 130.57 | 148.97 | 150.92 | 122.52
153.89 | 126.26 | 140.84 | 113.20
147.18 | 101.48 | 143.75 | 151.60 | 161.70 | 167-36
205.54 | 180.22 | | • | 000.0 | 0.000 | 0.000 | 0.000 | 000000 | 000000 | 0.000
| 00000 | 00000 | 000000 | 00000 | 00000 | 000000 | 0.000 | 000000 | 0.000 | 0.000 | 000000 | | RUW RUY RWY
REYNOLDS STRESSES | 7.065 | 100 | 626 | .051 | .04E | 040 | 316 | .039 | .025 | .007 | .363 | 032 | 024 | 603 | .028 | 347 | .166 | .105 | | RUW
REYNO | 244 | 385 | 188 | 381 | 315 | 232 | 350 | 364 | 257 | 308 | 344 | 229 | 143 | 361 | 330 | 451 | 449 | 597 | | 45b
05v | 17,54 | 22.37 | 15.87 | 21.38 | 20.73 | 19.70 | 22.08
16.29 | 21.17
:4.82 | 17.87 | 18.66 | 20.90 | 17.11 | 14.52 | 20.53 | 21.80 | 23.58 | 24.36 | 27.33 | | VSD
C ST | 28.87
35.88 | 35-32 | 25.01
30.48 | 36.09 | 34.59 | 31.78
36.61 | 36.07 | 36.33 | 33.99 | 31.08 | 34.22 | 28.56
31.21 | 25.63 | 34.16 | 34.57 | 38.22
43.50 | 39.66 | 56.85 | | USD
W1N | 37.29 | 47.53
47.58 | 31,84 | 46.94 | 40.33 | 43,37 | 46.42
52.15 | 46.30 | 37.41 | 41.99 | 42.69 | 37.27 | 31.30 | 47.62
50.66 | 46.87 | 48.17 | 54.63 | 59.44 | | KEAN | 122.57 | 142.78 | 115.66 | 143.57 | 136.8?
162.63 | 126.49 | 144.48 | 146.47 | 150.66 | 122.30 | 136.51
165.86 | 109.43 | 98.15 | 139.62 | 147.52 | 156.93
192.03 | 162.55 | 174.40 | | SITE | €0 | 7 | m fil | 7 | 2 2 | -~ | 568
1
2 | ~ ~ | 7 | 2 | 7 7 | - 2 | 72 | - 2 | 7 7 | - ~ | H N | - 2 | | START | 9146
1930 1
1930 2 | 2000
2000 | 2030 | 2230 | 2300 | 2330 | 919 | 30 | 001 | 130 | 200 | 230 | 000 | 330 | 000 | 430 | 500 | 530
530 | | DED
G | 100+000 | 2355 | 2350
1286 | 1760 | 2*54 | 1845 | 3260
1345 | 2260
1369 | 1782
861 | 2996 | 2555
1273 | 2523 | 3990
976 | 3563 | 2116 | 1791
177 | 2350 | 2002 | 2164 | |----------------|--------------|---------------------------|--------------|--------------|------------|--------|--------------|--------------|-------------|---------------|--------------|--------|-------------|---------|-----------|---|---------------|--------|--------| | S E | PER | 707 | 1166 | 003 | 968
207 | \$0¢ | 1564 | 957
281 | 999 | 925
169 | 1099
308 | 990 | 1538 | 190 | 763
92 | 876
209 | 11,11 | 111 | 1053 | | LIMITS
VSO | PARTS | 25 | 30 W | 21 | 140 | 000 | 159 | 96 | ₹ o | 78 | 3.5 | 7,4 | 205 | 13 | 170 | 26 | 136 | 39 | 124 | | RANS | -MIN) | 0.0000 | 0.0000 | 0.0000 | C.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 000000 | 0.0500 | 0.0000 | 6,3000 | | EV | 1 CM2-M1 | 0.0000 | .0164 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00.00 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 0.0000 | | W | · · · · CAL | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 6.0000 | 0.0001 | .0000 | 0.0000 | 3000.0 | 0.0000 | 0.2000 | 0.0000 | | ST DEV | IGPADE | .3843 | .3920 | .5210 | .3550 | .3350 | .9220 | .3640 | .3170 | .3980 | .3340 | .3570 | .3450 | .3960 | .3950 | .1860 | .2380
0752 | .2670 | .2050 | | AIR) | ENT | 24. | 24. | 6.45 | 23. | 22. | 22. | 24. | 24. | 23.
23. | 23. | 23. | 22. | 22. | 22. | 21: | 21. | 22. | 22. | | | • | 0387 | 0585 | 0353
0508 | 0499 | 0427 | 0401 | 0416 | 3434 | 0372 | 0404 | 0396 | 0316 | 0241 | 0350 | 0237 | 0287 | 0273 | 0306 | | | / (CM2-NIN) | 0020 | 0122 | 0140 | -00007 | .0065 | .0034 | 0060 | .0045 | .0078
0073 | .0033 | .0060 | 0021 | 0019 | .0109 | 0028 | .0011 | .0177 | .00% | | HU
SENS 181 | · · · · CAL/ | .1704 | .2161 | .1432 | .1970 | .1547 | .2717 | .1669 | .1801 | .1445 | .1761 | .1417 | .1673 | .1186 | .1826 | .1180 | .1240 | .1467 | .1251 | | BETA | RAO | 2130 | .0266 | 0100 | 2530 | 0510 | 2260 | 0360 | 0420 | 0430 | 0180 | 0270 | 0530 | 0260 | 0490 | 0030 | 2300 | 0530 | 2430 | | THETA | RAD | 0111 | 0091 | 0139 | 0137 | 0218 | 0097 | 0184 | 0167 | 0115 | 0146 | 0152 | 0157 | 0161 | 0175 | 0194 | 0171 | 0119 | 0108 | | | RAD | 0010 | 0139 | .0387 | -2918 | 0063 | 0094 | 0058 | .0030 | 0131 | 0021 | .0052 | 0149 | 0182 | .2217 | .0067 | 0072 | -0140 | .0360 | | SITE | | 7 7 7 | 7 | ~ ~ | -2 | ~ Z | - 2 | 91568 | - 7 | 7 | ~ ~ | 7 | ~ ~ | 7 | 7 | - 7 | <u> </u> | 7 | 77 | | TIME | | 91466
1930 1
1930 2 | 2000 | 2030 | 2230 | 2300 | 2330 | 16 | 30 | 100 | 130 | 200 | 230 | 300 | 330 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 430
430 | 200 | 530 | ter a fewer of the descensional conservation of present of the second of the sold of the second t | HIND
SHIFT
AAD | 010 | 023 | 330 | 048 | 044 | 003 | 0.000 | 0.000 | .052 | 000.0 | .058 | |----------------------------------|----------------|-------------------------------------|------------------|-------------------|--------------------------|------------------|--------------------------------|----------------------------|--|----------------------------|---| | WIND
DIR
RAD | 3.889 | 3.873 | 3.838 | 3.794
3.911 | 3.921 | 3.748 | 4.409 | 3.795 | 3.806 | 3.812 | 3.824
0.000 | | GSD
ANGLE
ZAD | .265 | .269 | .350 | .342 | .309 | .352 | .396 | .326 | .386 | .364 | 000000 | | G
AZ IM
RAD | •004 | .010 .269 | .005 | .010 | .019 | .010 | .13! | -,209 | 249 | .227177 | 223 | | FSD
AiGLE
RAD | .172 | .181 | .196 | .190 | .214 | .187 | .392 | 010 - 154
0-000 0-000 | 0.000 | | .217 | | F
ELEV
RAD | 007 | 36-82 ,008 .181
0,00 0,000 0,000 | .018 | .019 | .019 | .010 | .220 | .019 | 000.0 | . U38 | 21.93 .030 .217223 .356
0.00 0.000 0.000 0.000 | | HORIZ
WIND
CM/SEC | 188.82 | <u>~</u> | 189.63
154.35 | 201-76
158, 70 | 0.000 194.65 | 236.91 | 262.02
208.40 | 0.000 336.88 | 0.000 332.11
0.000 0.00 | 0.000 330.56 | 0.000 321.93 .030 .217 ~.223 | | PWV | 00000 | 0.000 | 000000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | RUW RUV PWV
REYNOLDS STRESSES | -027 | , 180
0,000 | .124 | .136 | .085 | -102 | 15,460 | 7.506
0.000 | 9304
0*000 | .719
000-0 | 264 | | RUW
REYN: | 579 | 0.000 | 794 | 716 | A01 | -1.031 | -2.120 | -2.402
0.000 | 1.934 | -1.979 | -1.941 | | WSD
EV | 25.08 | 29.45 | 29.78 | 31,33 | 32.37 | 37.32
35.08 | 69.38
57.64 | 50.96 | 48.78 | 00.00 | 48.63
0.00 | | USD VSD WSD WIND ST DEV | 46.43
51.15 | 0.00 | \$1.94
49.33 | 51.80 | 53.72 | 63.85 | 164.72
109.72 | 0.04 | 101.37 | 97.96 | 97.46 | | USD
WI
***CM/S | 65.52 | 0.00 | 66.89
66.89 | 71.26 | 82.68
72.72 | 85.23 | 196.63 164.72
161.77 109.72 | 135.86 | 166.85 | 150.78 | 136.75 | | MEAN | 182.91 | 190-35 | 182.09
146.61 | 194.82 | 187-12 | 228.11
180.81 | 213,52 | 322-32 135-86
0-00 0-00 | 315.62 146.85 101.37
0.90 0.00 0.00 | 313.63 150.78
0.00 5.01 | 307.63 136.75
0.00 0.00 | | SITE | 91568 | m 1/2 | ~ ~ | 7 7 | 0 | ~ ~ | H N | | - ~ | ٠, | → / | | TIME SITE
START | 916 | 630 | 700 | 730 | 800
800
800
800 | 830
830 | 1200 | 1300 | 1336 | 1400 | 1430 | | EDED
6
0•000 | 2093
1547 | 2286 | 4391 | 3119 | 5179
12454 | 2432
9421 | 43367 | 6626
0 | 15324 | 11133 | 11116 | |---|-------------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------------|------------------------|----------------------------|--------------------------------------| | LIMITS EXCEEDED VSQ F G G G PARTS PER 100.000 | 936 | 1266 | 1907 | 1691 | 2897 | 1273 | 37812 | 2128 | 949 | 5718
0 | 400 | | LIMI1
VSQ
PARTS | 171 | 137 | 366 | 299 | 814 | 232 | 27165 | 1040 | 5252
0 | 4819 | 3216
0 | | EV
Ars | 0.0000 | 0.000,0 | 3640. | 65.50.
0000.0 | .1201 | 0.0000 | 0.0000. | 0.0000 | 0.0000 | 0.000.0 | 0.0000.0 | | EU EV EW
LATENT HCA! TRANS | 0,0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | .1044 | 0.0000 | 0.0000 | 0.000.0 | 0.000.0 | 0.000.0 | | EU
LATENT
CAL/ | 0.0000 | 0.000.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.000.0 | 0.000 | 0.000.0 | 0000000 | | AIR TEMP
IEAN ST DEV
CENTIGRADE | .1970 | 0.2400 | .2900 (| . 64430 | .7436 | .5850 | .8080 0.0000
.9590-18.6285 | .6160 | 0.4820 | .5250 | 244300 C | | A I R
MEAN
CENTI | 22. | | 23. | 24. | 26. | 24. | 25. | | 2.
c | 25. | 24.
0.0 | | 2. | 0207 22.
0202 21. | 0007 23. | .0314 | .0523 | .0937 | .1245 | .1708 | .2072 25.
0.0000 0. | .1460 | .1600 | .1334 24.
0.0000 0. | | HU HV HW
SENSIBLE HEAT TRANS | 60015
-00007 | *005* | .0029 | 0061 | 0383 | .0163 | -1.2484 | 00033 | 1400 | 0537 | 0.0040 | | HU
SENSIBL | .0886 | 0178 | 1378
1288 | 1409 | 4441 | 3712 | | -, 7896
9.0000 | 4554 | 5311
3.9000 | 4801
0-3000 | | BETA | 0646 | 0.0010 | 0320 | 0270 | 0409 | 01/0 | .0340 -2.24^9
1960 -1.9726 | 0020 | 0180 | 0180 | 0.000.0 | | THETA | .008601940C4G
005700072040 | | .02510095 .
.51060309 . | -046601840270
162102566680 | -034501170409
022702500873 | .000701290170
139902970850 | 0074 | .266801180020
0.0000 0.0000 0.0000 | 105200490180
0-0000 | .026101410180 | 096501410250
3.0000 0.0000 0.0000 | | ETA | -00086 | .02420147
0.0000 0.0000 | .0251
.5106 | .0466 | -0345 | .0007 | 4450 | .2668 | 1052 | .02610141
0.0000 1.0000 | 0000-0 | | SITE | 91568
0 1
0 2 | ~ K | 1 2 | 1 2 | 1 2 | 7 | 7 | ~ ~ | | - ~ | - C | | TIME SITE
SIART | 913
600
600 | 630
630 | 7007 | 730 | 800 | 830 | 1200 | 1300 | 1330 | 1400 | 1430 | ## IDENTIFICATION OF HEADINGS ON DATA LISTING TIME: Starting time. Pacific Standard time in 1967 and Central Standard in 1968. During 1967, the runs ended at 1 minute and 20 seconds before the hour or half-hour. During 1968, runs were for 30 minutes. SITE (1967): The site description is given in Chapter 1, as are the instrument locations for April 26-27, and May 2-5. On April 22-25, all anemoclinometers were at 1 meter at the north end of the field. SITE (1968): Site 1 was located
60 meters south of the instrument trailer in a field of snapbeans. A 3-cm anemoclinometer was mounted at a height of 117 cm. The beans were 25 to 30 cm high. Site 2 was 10 meters east of site 1. A 3-cm anemoclinometer was mounted at a height of 117 cm except following 1030 on September 14, when the anemoclinometer was moved to 210 cm until 0630 on September 15. It was at 75 cm after 0700 on September 15 for the remainder of the day. The bean fetch was 60 meters to the north, 50 meters to the east and west, and 100 meters to the south. Beyond the beans to the south was alfalfa extending for 150 meters to a 15-meter high woods. To the west was a 100-meter alfalfa field extending to a 10-meter high shelter belt. Fetch to the northwest beyond the beans was 200 meters of low crops to a shelter belt. To the east was 300 meters of alfalfa extending to a woods. Mean wind: \overline{U} . USD: Standard deviation, $(\underline{u'^2})^{\frac{1}{2}}$, cm/sec. VSD: " $(\underline{v'^2})^{\frac{1}{2}}$, cm/sec. WSD: " $(\underline{w'^2})^{\frac{1}{2}}$, cm/sec. RUW: Reynold's stress, $\underline{0u'w'}$, dynes/cm². RUV: " $\underline{0u'v'}$, dynes/cm². RWV: " $\underline{0u'v'}$, dynes/cm². HORIZ. WIND: Equivalent to anemometer wind, $(\underline{u_1^2 + v_1^2})^{\frac{1}{2}}$, cm/sec. F, ELEV. ANGLE: Mean angle of wind with x_1 , y_1 plane of anemoclincmeter, \overline{F} . plane of anemoclinemeter, \overline{F}_4 in program, radians. FSD, ELEV. ANGLE: Standard deviation of F, $(\overline{F}')^2$. G, AZIM. ANGLE: Mean angle of wind with the x_1 , s_1 plane of the anemoclinometer, $(\overline{G}_2$ in program), radians. GSD, AZIM. ANGLE: Standard deviation of azimuth angle, $(G'_4)^2$ in program. WIND DIR: Mean wind azimuth direction, $\overline{G}_2 + \overline{G}_3$ in program, measured clockwise from North, radians. (The listing is incorrect and gives mean G_3 ; the G AZIM. ANGLE, \overline{G}_2 , should be added to give the wind direction). WIND SHIFT: Change in azimuth of mean direction for one half-hour period from the previous half-hour, \overline{G}_4 in program. ETA: Azimuth angle used in coordinate transform, arctan (\bar{v}_1/\bar{u}_1) , radians. THETA: Elevation angle used in coordinate transform, arctan $[\bar{w}_1/(\bar{u}_1^2+\bar{v}_1^2)^{\frac{1}{2}}]$, radians. BETA: Rotation angle about x-axis (anemoclinometer axis), to force $\overline{w'v'} = 0$, see transform program. HU: $\mathfrak{oc}_{\mathfrak{D}} \overline{\mathfrak{u}'\mathfrak{T}'}$, cal $\mathfrak{cm}^{-2} \mathfrak{min}^{-1}$. HV: $\rho C_p \overline{v'T'}$, cal cm⁻²min⁻¹. HW: $\mathfrak{oc}_{p}^{\overline{w'r'}}$ vertical heat flux, cal cm⁻²min⁻¹. AIR TEMP. MEAN: Mean air temperature, Celsius . AIR TEMP. ST. DEV: $(T^{2})^{2}$. EU: $\lambda \overline{u'q'}$, cal cm⁻²min⁻¹ EV: $\lambda \overline{v'q'}$, cal cm⁻²min⁻¹. EW: $\lambda \overline{w'q'}$ (latent heat of evaporation), cal cm⁻²min⁻¹. LIMITS EXCEEDED (times per 100,000 scans): VSQ: Times V² voltages were negative and set equal to zero (Program equation [1A]). - F: Times elevation angle, F, exceeded 40° (0.698 rad) and was set equal to 40° (program equation [7]). - G: Times azimuth angle, G2, exceeded 40° and was set equal to 40° (Program equation [5]). In 1967, the position of the anemoclinometer was fixed and the azimuth angle G often was very large. When G was greater than 25°, the data were discarded. When correlation coefficients between u', v', and w' exceeded unity, the run was discarded. The data listing obviously includes more digits than are experimentally significant. ## Notes on 1968 Data No effort has been made to check the data gathered at Hancock, Wisconsin during 1968. The only data excluded were those where notes indicated obvious instrument failure or when winds were less than 50cm/sec. There were times when the azimuth servo-drive failed and had to be replaced. The accuracy of the azimuth angle may be in doubt during preceeding periods. Some notes regarding questionable periods are given below. - Site 1: The azimuth potentiometer was not referenced during September 11-12 - Site 2: The servo system definitely malfunctioned from 2000h September 11 through 0550h September 12. The motor required replacement at 1200h on September 12. From 1035h September 14 onward, the anemoclinometer was on a mast driven at 1/3 the earlier speed. We believe performance was satisfactory; however, the slow response may have created larger error than would be observed with a faster motor. - General: At night when winds were intermittent and low, the uv signal to the servo system occasionally was too low to actuate the motor. If wind direction had shifted appreciably following a calm period, at times the servo system turned the wrong direction until it struck a limit stop. ## Data differences between site 1 and site 2: Lower horizontal wind, higher | pu'w' | and more negative ou'v' generally are observed at Site 2. This possibly may be due to spatial heterogeneity of the row crop; however, a more likely possibility is that the differences are due to the location of the humidity sensor (see Chapter 5), which may have changed the wind flow around the sphere. There may be other reasons, not yet considered. Security Classification | DOCUMENT CONT (Security classification of title, body of shefrect and indexing | | | overall report is classified; | |---|------------------|-------------|----------------------------------| | 1. ORIGINATING ACTIVITY (Corporate author) | | | CURITY CLASSIFICATION | | University of Wisconsin | | Uncl | assified | | Medison, Wisconsin 53706 | | 26. GROUP | | | ANEMOCLINOMETER MEASUREMENTS OF REYNOLDS SURFACE LAYER | STRESS AND H | EAT TRANSP | ORT IN THE ATMOSPHERIC | | A. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final report - October 1965 to January 19 | 69 | | | | R. AUTHOR(8) (First name, middle initial, leat name) Champ B. Tanner and Peorge W. Thurtell | | | | | April 1969 | 74. TOTAL NO. 01 | PAGES | 78. NO. OF REFS
56 | | SA. CONTRACT OR GRANT NO. DA-AMC-28-043-66-G22 | SE ORIGINATOR'S | REPORT NUMB | E P(8) | | 6. PROJECT NO. 17061102B53A | | | | | a Task 17 | sb. OTHER REPOR | | her numbers that may be assigned | | 4. | | ECON 66-G | 22 - F | | This document has been approved for publiculimited. | c release an | isale; i | ts distribution is | | 11. SUPPLEMENTARY NOTES | Atmospher | Flectron: | ies Command
s Laboratory | | 13. ABSTRACT | a nacha an | | /*W57 | A small, three-dimensional pressure-probe anemometer (IMFL anemo-clinometer) was used to measure the three components of the wind vector, shear stress, and the ratio of the standard deviation of the vertical wind to the friction velocity as influenced by atmospheric stability. Horizontal wind and shear stress have been compared with independent wind profile and shear stress meter measurements. The anemometer was coupled with a fast thermometer for eddy correlation measurements of sensible heat flux and with a fast hygrometer for measurements of latent heat flux. The eddy correlation measurements of sensible and latent heat fluxes were compared with independent energy balance, wind profile, and sonic anemometer-thermometr measurements. DD 1988 1473 REPLACES DO FORM TATE, I JAN 44, WHICH IS UNCLASSIFIED Secrety Classification UNCLASSIFIED PRINCE, AND AND THE HARMON PROPERTY AND THE PROPERTY OF PR | Shear stress Eddy correlation Wind vector components Three-dimensional anemometer Sensible heat flux Evanporation Energy balance | |--| | Shear stress Eddy correlation Wind vector components Three-dimensional anemometer Sensible heat flux Evanporation | | | UNCLASSIFIED Security Classification