RR 264

2

44'

o

89

Research Report 264

THE ATTENUATION AND BACKSCATTERING OF INFRARED RADIATION BY ICE FOG AND WATER FOG

Motoi Kumai and Jack D. Russell

April 1969

U.S. ARMY MATERIEL COMMAND TERRESTRIAL SCIENCES CENTER COLD REGIONS RESEARCH & ENGINEERING LABORATORY

HANOVER, NEW HAMPSHIRE

Reprise Cold Aleston Color - Solar Aremot THIS DECUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED.

Research Report 264

THE ATTENUATION AND BACKSCATTERING OF INFRARED RADIATION BY ICE FOG AND WATER FOG

Motoi Kumai and Jack D. Russell

April 1969

DA PROJECT 1T061101A91A

U.S. ARMY MATERIEL COMMAND TERRESTRIAL SCIENCES CENTER COLD REGIONS RESEARCH & ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

> THIS DECUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: 175 DISTRIBUTION IS UNLIMITED.

PREFACE

This report was prepared by Dr. Motoi Kumai, Research Physicist, Research Division, Cold Regions Research and Engineering Laboratory (CRREL), U.S. Army Terrestrial Sciences Center (USA TSC). Computer work was done by SP5 Jack D. Russell of CRREL.

The report covers the optical and physical studies of ice fog undertaken by CRREL as a FY68 ILIR project with partial support from the ¹J.S. Anny Arctic Test Center. This report was published under DA Project 1T061/101A91A, In-House Laboratory Independent Research.

USA TSC is a research activity of the Army Materiel Command.

CONTENTS

	Page
Preface.	ii
Abstract	iv
latroduction	1
Physical properties of ice fog	1
Mie scattering computations	4
Results	5
Literature cited	7

ILLUSTRATIONS

Figure

· _

Andrew Shirt Andrew

1.	Ice fog crystals formed at -39C ambient temperature	2
2.	Size and mass distribution of ice-fog crystals formed at -39C	
	ambient temperature	2
3,	Size and mass distribution of ice-fog crystals formed at -41C	
	ambient temperature	3

TABLES

Table	9	
I.	Physical properties of ice fog at Fairbanks, Alaska	3
Π.	Optical constants of ice and water	5
III.	The attenuation coefficients b(m ⁻¹)	6
IV.	The backscattering functions $\beta(\pi)(m^{-1}sr^{-1})$	6

iii

• . •

.

ABSTRACT

Ice-fog crystals consisting of many spherical particles, and some hexagonal plates and columns, were observed at ambient temperatures of about -40C in the Fairbanks, Alaska, area during mid-winter. The concentrations and the size distributions of the ice-fog crystals were measured. The attenuation and backscattering of infrared radiation by ice-fog crystals were computed for optical wavelengths of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ and 10.9μ using the Mie theory. The minimum attenuation coefficients and backscattering functions of ice fog were found to be at 9.7μ wavelength in the observed wavelengths. Optical attenuation coefficients and volume backscattering functions of water fogs were also computed using the Mie theory. The minimum attenuation coefficients and backscattering functions of water fog were found to be at 10.9μ wavelength in the region of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ and 10.9μ . Both the attenuation coefficients and backscattering functions of ice fog are within the same order of magnitude as water fog for equivalent fog concentrations and wavelengths.

iv

THE ATTENUATION AND BACKSCATTERING OF INFRARED RADIATION BY ICE FOG AND WATER FOG

by

Motoi Kumai and Jack D. Russell

INTRODUCTION

By reducing visibility, ice fog hampers the normal flow of traffic during severe cold weather conditions in subarctic countries. In addition, ice fog can cause extinction of the infrared beam in an infrared guidance system. Because of this, the emphasis of CRREL's ice fog research is being placed on the effects of ice fog on infrared transmission. This report presents results of a study of attenuation and backscattering of infrared radiation by fog in Alaska.

PHYSICAL PROPERTIES OF ICE FOG

The physical properties of ice fog in the Fairbanks, Alaska, area have been studied by Thuman and Robinson (1954). The formation of ice fog and its nuclei have been studied by Kumai (1964) and Kumai and O'Brien (1965).

The optical properties of fog depend on the number concentration and size distribution of the particles, which can vary significantly during different meteorological conditions. Establishing a representative fog model is not an easy task. Determination of the collection efficiency for fog droplets with radii approaching the wavelength of near-infrared radiation is one of the problems in fog sampling.

Ice-fog crystals and ice crystals are initial stages in the formation of snow crystals. Because their sizes and optical properties are quite different, it is convenient to consider them separately. Ice crystals have well-formed hexagonal plates and columns. They are often called "diamond dust" because of the way they twinkle under a lcs son or under nighttime illumination. Ice crystals form at about -25C and are 20μ to 309μ in diameter. They have much lower concentrations and do not affect visibility as adversely as ice fog does. Ice-fog crystals consist of many spherical particles, equant crystals with rudimentary faces, and some hexagonal plates and columns of 2- μ to 30- μ diameter formed at ambient temperatures of about -40C by spontaneous nucleation (Fig. 1).

lce-fog distributions at air temperatures of -39C and -41C in the Fairbanks, Alaska, area are shown in Figure 2 and Figure 3. The number of particles and the mass of fog per unit volume are shown as a function of crystal diameter. Table 1 summarizes the important physical properties of each fog spectrum.

Figure 1. Ice log crystals formed at -39C ambient temperature.

,

Figure 2. Size and mass distribution of ice-fog crystals formed at -39C ambient temperature.

1

a de la

.......

Figure 3. Size and mass distribution of ice-fog crystals formed at -41C ambient temperature.

Table I. Physical properties of ice fog at Fairbanks, Alaska.

Chservations	N	rmode	rmin	rmax	Δr	Air temp	L.W.C.
	(au./cm ³)	(μ)	(μ)	(μ)	(μ)	(°C)	(g/m³)
No. 1 (Fig. 2)	140	3.0	1,5	12.0	0.5	-39	0.08
No. 2 (Ftg. 3)	90	1.5	1.5	12.0	0.5	-41	0.02

N = total concentration

 $r_{mode} = mode radius = radius corresponding to the maximum number of ice-fog crystals$

rmin = minimum radius

rmax = maximum radius

i.

 $\Delta \mathbf{r}$ = radius interval containing $\mathbf{n}(\mathbf{r})$ crystals, where N = $\sum \mathbf{n}(\mathbf{r})$

L.W.C. = liquid water content.

3

ATTENUATION OF INFRARED RADIATION BY ICE FOG AND WATER FOG

MIE SCATTERING COMPUTATIONS

The Mie theory is an exact solution of Maxwell's electromagnetic theory for spheres; it describes the field inside and outside a sphere for any scattering angle, size, and index of refraction.

For backscattering, the scattering angle equals π radians. The particle size parameter is $\mathbf{x} = k'a$ where $k' = 2\pi/\lambda$, a is the radius of the spheres, and λ is the wavelength of incident radiation.

When dealing with actual particles, scattering due to the sphere's dielectric properties alone is not sufficient to define fully the intensity of the backscattered radiation; the contribution due to absorption within the sphere must also be included. This requires a complex index of refraction of the form m = n - ik, where $m = (\epsilon - 4\pi i\sigma/\omega)^{\frac{1}{2}}$, ϵ being the dielectric constant, σ the conductivity, and ω the angular frequency of the electromagnetic wave.

The computational method as outlined in Carrier et al. (1967) appears quite simple at first glance. In the present study we are interested in the attenuation coefficient due to scattering, b, and the volume backscattering function, $\beta(\pi)$. The quantity b is the coefficient in the relationship

$$I = I_0 \exp(-bt) \tag{1}$$

defining the decrease in light intensity while passing through a medium of length 1.

According to the above-mentioned paper,

$$b = \sum_{r_{\min}}^{r_{\max}} n(r) \, \delta r \, \pi r^2 K_{ext}(x,m) \, [meter^{-1}]$$
(2)

and

$$\beta(\pi) = \frac{\lambda^2}{4\pi^2} \sum_{\substack{r \\ min}}^{r} n(r) \delta r i_1(\pi, x, m)$$
(3)

where n(r) is the number of particles per unit volume per δr radius interval, K_{ext} is the total extinction cross section of one particle, and i_1 is the Mie intensity function of a scattered component whose electric vector is either perpendicular or parallel to the plane of observation. When $\theta = r$, then $i_1 = i_2$.

The problem becomes more difficult, however, when we examine the work by Deirmendjian and Clasen (1962), which outlines a computational scheme to derive values for K_{ext} and i_1 . The method involves the use of ordinary Bessel functions, and circular and hyperbolic functions with complex argument. Although the functions may be reduced to fairly simple recursion formulas, the presence of complex quantities in the denominator of most of the terms requires long and tedious algebraic manipulation to make the problem programmable. It must also be kept in mind that a computer deals with pure numbers and that the real and the imaginary parts of a complex number must be dealt with individually.

The greatest consumer of computer real-time is the evaluation of the recursion formulas which consist of very slowly converging infinite series. It is not unusual to find that 300-350 terms are required to solve for just one value of the quantities $K_{\rm ext}$ and i_1 of which there are as many values as there are radius intervals. We must then multiply the number of radius intervals by the number of wavelengths in question when estimating total run-time.

4

ATTENUATION OF INFRARED RADIATION BY ICE FOG AND WATER FOG

In Figures 2 and 3, the radius interval, Δr_1 is 0.5μ . Particle concentrations for each fog radius $n(r_k)$ were punched on paper tape for subsequent entry into the computer. Computer calculations of the attenuation coefficient and backscattering functions from eq. 2 and 3 were made for the fog size distributions of Figure 2 and Figure 3, using the optical constants of ice by Kislovskii (1959) and the optical constants of water by Centeno (1941).

The recent investigations on the optical properties of ice were done by Hornig et al. (1958), Ockman (1958), and Zander (1966). However, their papers do not present the values of the refractive index (n) and extinction coefficient (k) of ice. Due to the experimental difficulties, our present knowledge of the optical constants of ice in the infrared region is inexact compared with our knowledge of those of water. The optical constants of ice and water used for this computer calculation are presented in Table II (Centeno, 1941; Kislovskii, 1959).

	lce		Water		
Wavelength In microns λ	Extinction coefficient k	Refraction index n	Extinction coefficient k	Refraction index n	
2,2	0.0005	1.29	0.0005	1,293	
2,7	0.03	1.19	0.0183	1.216	
4.5	0.01	1.33	0.0164	1.341	
5,75	0.01	1.24	0.0427	1,273	
9.7	0.08	1, 13	0.0579	1,230	
10,9	0.20	1.12	0.0993	1,150	

Table II. Optical constants of ice and water.

RESULTS

Optical attenuation coefficients and volume backscattering functions were computed for the observed Alaskan ice fogs for optical wavelengths of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ and 10.9μ using the Mie theory. The calculations were made for ice-fog crystal concentrations of 70, 140, 280 and 420/cm³ with size distribution shown in Figure 2; and ice-fcg crystal concentrations of 90, 180, 270 and 360/cm³ with size distribution shown in Figure 3. The attenuation coefficients $b(m^{-1})$ and the backscattering functions $\beta(\pi)(m^{-1}sr^{-1})$ of ice-fog crystals are presented in Tables III and IV. The minimum attenuation coefficient and backscattering function are found to be at 9.7μ wavelength for the computed wavelength range of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ and 10.9μ . The optical wavelengths of 2.2μ , 9.7μ and 10.9μ are those corresponding to atmospheric windows. The wavelengths of 2.7μ and 4.5μ fall within the absorption bands of both water vapor and carbon dioxide, and the wavelength of 5.75μ is within the absorption band of water vapor.

When the air temperatures were above -15C, supercooled fogs were observed in the Fairbanks, Alaska, area during mid-winter. Optical attenuation coefficients and volume backscattering functions of water fogs were computed for optical wavelengths of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ and 10.9μ using the Mie theory. The calculations were done for fog-droplet concentrations of 70, 140, 280 and 420/cm³ with size distributions shown in Figure 2, and fog-droplet concentrations of 90, 180, 270 and 360/cm³ with size distributions shown in Figure 3. The attenuation coefficients $b(m^{-1})$ and the backscattering functions $\beta(\pi)(m^{-1}sr^{-1})$ of water fogs are presented in Tables III and IV. Both the attenuation coefficients and backscattering functions of ice fog and water fog are within the same order of magnitude for the same fog concentrations and wavelengths. The

5

Table III. The attenuation coefficients $b(\pi^{-1})$.

Sise	Concentration	Liquid water						
distribution	of log droplets	conten	Waveleagik, µ					
	80'Cm2	/`	2,2	2,7	4,5	5,75	9.7	10,9
				ice-log				
Fig. 2	70	0.089	1, 153×10"2	1,212×10-1	1. 32 1× 10-2	1, 304 ×12 ⁻²	5.1 30 ×10 ⁻¹	6.795×10-1
Fig. 2	140	0.077	2,306,10"2	2.424× 10"2	2.642×10 ⁻²	2.606×10 ^{"2}	1.026×10"2	1.359× 10"2
Fig. 2	280	0.15	4.611×10-5	4.848× 10"5	5.283×10"2	5.216 10-2	2.052×10**	2.717×10-2
Fig. 2	420	0.23	6,917×10*5	7.272×10*2	7.925×10*2	7.824×10"	3.078×10*2	4.076× 10"
Fig. 2	90	0.023	6.952 10-2	6,694×10**	9.719×10"	7.939× 10"	3.045× 10-3	4,508×10*3
. ig. 3	180	0.047	1.786× 10"2	1.789×10"2	1.944× 10"2	1,588×10*5	6.092. 10"	8,616× 10 ⁻⁵
Fig. 3	270	0.070	2,880×10"	2.608×10*5	2,910 10-2	2.382 10-2	9.138×10**	1.292 10'2
14.5	380	0,093	3,573×10-2	3.478×10*1	\$,885×19" ²	3,178×10-2	1,218×10*	1,723×10"2
			1	ster-log				
Fig. 2	70	0.089	1, 153× 10 ⁻²	1.217× 10-2	1.314×10"2	1.252×10"2	7.848×10 ⁻³	5.455×10"
Fig. 2	140	0.077	2,305×10"2	2.434× 10"2	2.628-10"	2.564×10-2	1.568×10"2	1.091×10-2
Fig. 2	290	0.15	4.611×10 ⁻²	4.868×10*5	5,256×10 ⁻²	5.127×10**	3.187×10-2	2, 182, 10"2
Fig. 2	420	0.23	8.918×10 ⁻⁵	7.308×10**	7,885ec10"2	7.69 tx 10*2	4.705×10"	3.273×10"
Fig. 3	90	0.023	6.9 19×10 ⁻³	9.054×10**	9.675×10-3	8.256×10"	4,504×10 ⁻³	3.255×10 ⁻¹
Fig. 8	180	0.047	1.784×10*2	1.811×10'2	1.935×10*5	1.65 1×10"	9.008×10 ⁻³	6,509×10 ⁻³
Fig. 3	270	0.070	2.675×10*2	2,7 16× 30*2	2.902×10*1	2,477×10*2	1.351×10"1	9,764×10"3
Fig. 8	360	0.093	3.565×10*2	3.622×10-2	\$.870×10*2	8.309×10*2	1.802×10**	1.302×10"

Table IV. The backscattering functions $\beta(\pi | (m^{-1}m^{-1})_{i})$

tion	Concentration	Liquid water			Weveley	ath		
	Bo./cm ⁵		2.2	2.7	4.5	5.75	9.7	10.9
				ice-log				
2	70	0,089	4,804×10 ⁻⁴	9.184x10 ⁻⁶	1.251×10 ⁻⁵	2,695×10*2	2.984×10**	5, 45 0×10 ⁻⁵
2	140	0.077	9.609×10 ⁻⁴	1.827×10"	2.50 1× 10"4	5.389×10'2	5.927×10"	1,090×10*
2	280	0.15	1 922×10"	3.654×10*5	5.002×10 ⁻⁴	1.078×10"*	1. 185×10 ⁻³	2, 180×10**
2	480	0,28	2,888×10"	5,48 1×10"	7.502×10 ⁻⁴	7,502×10	1.778×10*2	3. 27 1×10 ⁻²
8	90	0.028	8.764×10**	5.794×10**	7.515×10 ⁻⁸	1.996> 10"	2,485×10**	4, 589×10 ⁻⁶
8	180	0.047	5.489×10"4	1.159×10 ⁻⁵	1.508×10 ⁻⁴	8.87′×10 ⁻⁵	4.970×10**	9, 179×10"
3	270	0.070	8.238×10"4	1.788×10**	2,255,10**	5.PJ8×10-2	7.455×10**	1.377×10"
8	860	0.098	1,098×10 ⁻³	2.818×10*5	3.006×10 ⁻⁴	7.745×10*5	9,940×10* ⁵	1.886×10*5
			۱	Nater-log				
2	70	0.089	⁻ 980×30 ⁻⁴	2.699×10**	9,402:10**	1.535× 10"	1, 170×10**	4, 108×10 ⁻⁶
2	140	0.077	9.960×10**	5.397×10"	1.88/1×10*4	8.070×10**	2.359×10"	3.206×10**
8	280	0.15	1.992×10 ⁻⁵	1.079×10 ^{*4}	8.760×10*4	8.181×10"	4.679×10"	1.641×10 ⁻⁵
2	480	0.23	2.988×10 ⁻²	1.819×10**	5.840×10**	9.271×10"	7,0 18×10**	2.462×10"
8	90	0.028	2.878×10 ⁻⁴	1.673×10'2	5.990×10 ⁻²	1.816×10-2	8.983×10**	8. 465× 10 ⁻⁴
8	180	0.047	5. 1 45× 10 ⁻⁴	3.846×10"	1, 198×10"4	2.682×10's	1.783×10"	6.98 1× 10 ⁻⁶
8	270	0.070	8.618×10 ⁻⁴	5.0 19×17 ¹⁵	1.796×10 ⁻⁴	3.948×10 ⁻⁵	2.680×10-5	1.0 40×10*5
8	360	0.098	1.149×10 ⁻²	6.892 10"	2.895×10-4	5.285×10"2	8.573×10'8	1.886×10*2
	22228833883888888888888888888888888888	Concentration tion of log droplets no./cm ⁴ 2 140 2 140 2 280 2 480 8 90 3 180 3 270 3 360 2 140 2 280 2 140 2 280 2 420 3 90 3 180 8 270 3 180 8 270 3 360	Concentration Liquid water tion of fog droplets content no./cm ⁵ g/m ³ 2 70 0.039 2 140 0.077 2 280 0.15 2 420 0.28 8 90 0.023 3 180 6.047 3 270 0.070 3 360 0.093 2 140 0.077 2 280 0.15 2 270 0.039 2 140 0.077 2 280 0.15 2 140 0.077 2 280 0.15 2 480 0.23 3 90 0.023 3 180 0.047 8 270 0.670 3 360 0.093	Concentration Liquid water tion of fog droplets content no./cm ⁵ g/m ³ 2.2 2 70 0.039 4.804×10 ⁻⁴ 2 140 0.077 9.609×10 ⁻⁴ 2 280 0.15 1.922×10 ⁻³ 2 480 0.23 2.888×10 ⁻³ 8 90 0.023 8.744×10 ⁻⁴ 3 180 6.047 5.489×10 ⁻⁴ 3 270 0.070 8.238×10 ⁻³ 2 140 0.077 9.960×10 ⁻⁴ 3 260 0.15 1.992×10 ⁻⁵ 2 140 0.077 9.960×10 ⁻⁴ 2 280 0.15 1.992×10 ⁻⁵ 2 420 0.23 2.988×10 ⁻² 3 90 0.028 2.878×10 ⁻⁴ 3 180 0.047 5.745×10 ⁻⁴ 3 290 0.028 2.878×10 ⁻⁴ 3 180 0.047 5.745×10 ⁻⁴	Concentration Liquid water tion of fog droplets content no./cm ⁵ g/m ³ 2.2 2.7 JCe-fog JCe-fog JCe-fog 2 140 0.077 9.609×10 ⁻⁴ 1.887×10 ⁻⁴ 2 140 0.077 9.609×10 ⁻⁴ 1.887×10 ⁻⁴ 2 140 0.077 9.609×10 ⁻⁴ 1.887×10 ⁻⁴ 2 280 0.15 1.922×10 ⁻³ 3.664×10 ⁻⁴ 2 480 0.28 2.888×10 ⁻³ 5.481×10 ⁻⁴ 3 180 6.047 5.489×10 ⁻⁴ 1.169×10 ⁻⁵ 3 270 0.070 8.283×10 ⁻⁴ 1.785×10 ⁻⁵ 3 360 0.093 1.098×10 ⁻⁵ 2.899×10 ⁻⁵ 2 70 0.039 1.960×10 ⁻⁶ 2.699×10 ⁻² 2 140 0.077 9.960×10 ⁻⁶ 5.397×10 ⁻⁵ 2 280 0.15 1.992×10 ⁻⁵ 1.079×10 ⁻⁴ 2 480 0.23 2.968×10 ⁻²	Concentration Liquid water content Waveley content no./cm ⁵ g/m ³ 2.2 2.7 4.5 Jice-fog Jice-fog Jice-fog Jice-fog 2 140 0.077 9.609×10 ⁻⁴ 1.827×10 ⁻⁵ 2.50 1×10 ⁻⁴ 2 140 0.28 2.888×10 ⁻³ 3.664×10 ⁻⁵ 5.002×10 ⁻⁴ 2 480 0.28 2.888×10 ⁻³ 5.481×10 ⁻⁵ 7.502×10 ⁻⁴ 3 180 6.047 5.489×10 ⁻⁴ 1.199×10 ⁻⁵ 1.503×10 ⁻⁴ 3 270 0.070 8.238×10 ⁻⁴ 1.199×10 ⁻⁵ 3.066×10 ⁻⁵ 2.255×10 ⁻⁴ 3 860 0.093 1.098×10 ⁻⁴ 2.699×10 ⁻⁵ 3.008×10 ⁻⁴ 2 70 0.039 1.980×10 ⁻⁴ 2.699×10 ⁻⁵ 3.008×10 ⁻⁴ 2 140 0.077 9.960×10 ⁻⁴ 5.397×10 ⁻⁵ 1.88/∞10 ⁻⁴ 2 280 0.15 1.992×10 ⁻⁵ 1.89/∞10 ⁻⁴ 5.640×10 ⁻⁴ 2 280 0.23 2.988×10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1

6

.

ATTUNUATION OF INFRARED RADIATION BY ICE FOG AND WATER FOG

minimum attenuation coefficient and backscattering functions of water fog were found to be at 10.9μ wavelength for the observed wavelengths of 2.2μ , 2.7μ , 4.5μ , 5.75μ , 9.7μ , and 10.9μ ,

These calculations describe only the effect of water droplets and ice crystals on the attenuation and scattering of radiation. For computations of total attenuation and scattering, the effects of the atmospheric absorption bands, especially water vapor and CO_2 , would also have to be considered.

LITERATURE CITED

Carner, L.W., Cato, G.A. and von Essen, K.J. (1967) The backscattering and extinction of visible and infrared radiation by selected major cloud models. Applied Optics, vol. 6, p. 1209.

Centeno, M. (1941) The refractive index of liquid water in the near infra-red spectrum. Journal of the Optical Society of America, vol. 31, p. 244.

Deimendjian, D. and Clasen, R.J. (1962) Light scattering of partially absorbing homogeneous spheres of finite size. The Rand Corporation, Report R-393-PR.

Hornig, D.F., White, H.F. and Reding, F.P. (1958) The infrared spectra of crystalline H₂O, D₂O, and HDO. Spectrochimica Acta., vol. 12, p. 338.

Kislovskii, L.D. (1959) Optical characteristics of water and ice in the infrared and radiowave regions of the spectrum. Optika i Spectroskopiia, vol. 7, p. 311.

Kumai, M. (1964) A study of ice fog and ice-fog nuclei at Fairbanks, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) Research Report 150, Pari 1.

____ and O'Brien (1965) A study of ice fog and ice-fog nuclei at Fairbanks, Alaska. USA CRREL Research Report 150, Part 11.

- Ockman, N. (1958) The infrared and Raman specira of ice. Advances in Physics, vol. 7, p. 199.
- Thuman, W.C. and Robinson, E. (1954) Studies of Alaskan ice-fog particles. Journal of Meteorology, vol. 16, p. 151-156.

Zander, R. (1966) Spectral scattering properties of ice clouds and hoarfrost. Journal of Geophysical Research, vol. 71, p. 375-378.

11 .4

Unclassified			
DOCUMENT CONTI	COL DATA - R &	0	
(Bousity closerification of title, budy of abottons and inducing a	anatation sourt be and	and when the c	revell report to closedfloch
Cold Regions Research and Engineering	Laboratory	Unclas	sified
U.S. Army Terrestrial Sciences Center,	Hanover,	. shoup	
New Hampshire 03755			
THE ATTENUATION AND BACKSCATT	ERING OF IN	IFRAREI	D RADIATION BY
4. DESCRIPTIVE NOTES (Type of report and instantro datas) Research Report			
5. AU Trebfill (Plast anne, aldille feldini, fest anne)			· · · · · · · · · · · · · · · · · · ·
Motoi Kumai and Jack D. Russell			
April 1969	74, TOTAL NO. OF 1 11	PA623	76. не. ст него 10
SA. CONTRACT OR SRANT NO.	3	EPORT NUM	
D. PROJECT NO. DA Project 1T061101A91A	Research	Report 2	64
•	N. OTHER REPORT		her makers that may be contigued
C			
This document has been approved for pub is unlimited.	olic release a	nd sale;	its distribution
11. SUPPLEMENTART NOTES Partial support from:	12. POMONINE MI	LITARY ACTI	ntt
U.S. Army Arctic Test Center	Laboratory	v. U.S. A	Army Terrestrial
Ft. Greely, Alaska	Sciences C shire 037	enter, H	anover, New Hamp-
 I ce-fog crystals consisting of many sphe and columns, were observed at ambient if Alaska, area during mid-winter. The co the ice-fog crystals were measured. Th radiation by ice-fog crystals were compu- 4.5µ, 5.75µ, 9.7µ and 10.9µ using the M ficients and backscattering functions of id in the observed wavelengths. Optical att tering functions of water fogs were also mum attenuation coefficients and backsca be at 10.9µ wavelength in the region of 2. Both the attenuation coefficients and back the same order of magnitude as water fog wavelengths. I4. Key Worde Ice fog Infrared Alaska - meteorology 	rical particle temperatures oncentrations e attenuation tied for optic. ie theory. T ce fog were f enuation coef computed usi titering funct: . 2μ , 2, 7μ , 4. tscattering fu g for equivale	es, and s of about and the and back al wavele he minin ound to b ficients in ions of w $5\mu_{1}$, 5, 75 inctions c ent fog co	tome hexagonal plates -40C in the Fairbank size distributions of excattering of infrared engths of 2, 2 μ , 2, 7 μ num attenuation coef- be at 9, 7 μ wayelength and volume backscat- be theory. The mini- cater fog were found to 5 μ , 9, 7 μ and 10.9 μ . Of ice fog are within bocentrations and
DD		1	
		ICIA881116	Classification
		Jac anti	·

a charling

- Tail