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ABSTRACT 

For a stochastic process x(t,u), the covariance X(A, A*)of 
j|| 

the t-intervals A, A means the integral in w of the product of differences 

Ax A X. The processes considered here are those for which (i) |x(A, A ) | 

< 9>(|a|)ç)(|a I) when A, A are non-overlapping, and (ii) X(A,A) < 

X2(|a|) where x is much larger than Such processes are termed 

discriminatory. If ?(u)/u is square integrable they turn out to be 

rather similar to the limiting case where ? = 0, which is that of a process 

with orthogonal increments; for instance (ii) is then a consequence of 

(i) if we take \{\x) = \Tu-, moreover we can define a stochastic integral 

with respect to x(t,w) for functions y(t) of certain integrated Lipschitz 

classes, where the graph of y(t) may very well fill a square. If 

ç>(u)/u is not square integrable, we can still define our stochastic integral, 

but the class of functions y(t) is then correspondingly smaller. Besides 

defining our stochastic integral and proving its existence in the above cases, 

we establish inequalities which can be used, for instance, for passage 

to the limit under the integral sign. The stochastic integrals studied here 

are partly suggested by the MRC Technical Report #677, to which this is 

a sequel. However, they are otherwise quite different from any previously 

considered in the theory of stochastic processes. 



STOCHASTIC INTEGRALS FOR PROCESSES WITH COVARIANCE 

L. C. Young 

§1* Introduction. This is a sequel to three notes on derivatives 

and integrals. We wish to define stochastic integrals, more general than 

in the third note, which are not included in those treated in Doob's book, 

nor in any other definitions in the literature. The covariance between non¬ 

overlapping time-intervals need vanish no longer, instead it can be majorized 

by a suitable product of estimates. In the case we are most interested in, 

which we term that of self-pairability, this leads to majorizing also the 

covariance of coincident intervals, in terms of a measure on the t-axis, 

exactly as in the special case of a process with orthogonal increments. In 

the case of non-self-pairability, any majorisation of the covariance of 

coincident intervals becomes a new hypothesis, and our results for this case 

will be somewhat less complete. 

We again understand a stochastic process as defined by a function 

x(t, w), which is complex-valued and square integrable in w for each t, 

the measure dw being some fixed probability measure. Further, given any 

pair of intervals A, A of the form (t, t+h), (t, t*+k), we write 
s|e 

Ax, A X for the differences, or increments 

x(t + h, w) - x(t, w), x(t* + k, w) - x(t*, to), 

* ™ — 
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and K (A, 
* 

A ) for the scalar product 

r *_ 
J A xA xdw . 

We term |k| the covariance, for the process, of the intervals A, A*, 

% 
or alternatively, of the increments Ax, Ax; we speak of self covariance 

* 
if A, A coincide, and of cross-covariance if they are non-overlapping. 

Incidentally, intervals in this paper will generally be neutral intervals, 

i. e. figures rather than sets. ( See Saks Theory of the integral Chapter III. ) 

For the processes considered here, we shall suppose that there 

exists on the relevant part of the t-axis, a monotone increasing function 

r(t), suchthat 

(1.1) 

(i) |x(A, A) I < (x(At))2 , 

1 
(ii) lx(A, A*) I < v>(AtMA*t), 

whenever the time-intervals A, A are non-overlapping. Here A r, 
* He ])( 

A T mean r(t+h) - r(t), r(t +k) - r(t ), while ç>, X denote increasing 

functions of u for u > 0. The process is "non-discriminatory" if \ = <p. 

We shall be concerned rather with the case of a heavily "discriminatory" 

process, where </> is small compared with x as u-*0, i. e. with the 

case where there is a genuine difference of order between (i) and (ii), 

and where (ii) is not simply a consequence of (i). 
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For such a process, minute successive time-intervals A, A* 

will have, at best, a very "poor" covariance |x|, compared with 

coincident ones. In a natural process, this may seem, at first, paradoxical: 

for if there is a memory at all, one would expect this memory to be "good" 

for a short enough time. However, the paradox is only superficial, since 

instantaneous memory is a myth, except for quite simple events, whereas 

in many natural stochastic processes the events taking place in the 

smallest distinguishable time-intervals are as complex as in millennia. 

One has only to open a newspaper to realize that it takes time and effort 

to recall even a comparatively simple chain of events, such as an 

assassination, in all its details. 

From the mathematical point of view, the existence of discriminatory 

processes, other than those of the third note, in which we set ^ = 0, 

follows from the principle of superposition. This seems to be a physical 

requirement also. Stochastic processes must form a linear space. In 

particular, by superposing a process with its translations, we pass from 

those of the third note to more or less non-discriminatory processes, 

and by superposing one of these with a process with orthogonal increments, 

we can clearly obtain a discriminatory process. It is, for instance, 

sufficient to superpose in this way two such real processes on orthogonal 

axes in the plane, the function x(u) being */iT, and the function <p small 

#932 
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compared with n/vT. If the superposition is not on orthogonal axes, we 

end up with a process obeying formally more general conditions than ( 1.1), 

in which the right-hard side of (ii) has been augmented by terms such as 

?(At)x(A t); we shall ignore this minor refinement, although, actually, 

our arguments would apply with <p replaced by *J(<px). At any rate, 

we see not only that discriminatory stochastic processes must exist, 

but also that they include the result of perturbing a process with orthogonal 

increments by superposing a suitable non-discriminatory process. 

It is convenient to give to (1.1) an equivalent, but in appearance 

more general, form. We shall stipulate that there must exist a pair of 

monotone increasing functions T^(t), suchthat, under the same 

conditions, 

(1.2) 

{(i) IxU^HsUíatj))2, 

(ii) |k(A,A ) I < ç>( At2MA*t2). 

To derive (1.1) from this form, it is sufficient to set r(t) = r^t) + r2(t). 

In these relations, the function will always be taken to be the first 

of a pair of estimate-functions ?, ^ as defined in the first note; the 

second function ^ of such a pair will play an important part also. 

We shall distinguish two kinds of discriminatory processes: those 

for which ? is self-pairable, i. e. for which the repetition <p constitutes 

a pair of estimate functions, or what comes to the same, for which 
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/<p(u) 
——dy(u) converges at 0; 

and those for which this is not assumed. In the former case, our basic 

hypothesis is only the cross-covariance inequality (1. 2) (ii), and the 

process is termed of restricted cross-covariance, with self-pairable <p. 

Otherwise, we assume (1.1) and we term the process of biased covariance; 

the additional self-covariance inequality then makes it necessary to 

introduce, besides <p, 4,, a second pair p, a of estimate functions, 

where p(u) r x(u)^fu. It should be remarked that, in the case of 

restricted cross-covariance, although <p is self-pairabi«, we still pair 

it with some ij>> which may be quite different from ç; moreover, that the 

self-covariance inequality (1.2) (i) will still play an important part, 

without being a hypothesis, the relevant function x being then sHT. 

The general discussion of stochastic integrals for our processes, 

under the above assumptions, is complicated by troublesome side-issues. 

These we prefer to ignore in this paper, by aiming rather at cases in which 

formal simplifications occur, but which are sufficiently typical to indicate 

the scope of our methods. Thus we set r(t) =t in (1.1), or t (t) =t 

in (1. 2) (ii), since this virtually amounts to making a smoothing 

substitution in which or r^, becomes the new variable. Again, for 

a process of biased covariance, we suppose each of the pairs 9, 4> and 

p, <r to be reversible, i.e. 4/, <p and <r, p are also to be pairs of 

estimate functions; we do so partly because, if we suppose ç not 

#932 
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self-pairable, and if <p, 4j are orders of magnitude in the scale of 

powers and logarithms and their combinations, then the pair of estimate 

functions <p, ip is reversible; and partly because of the symmetry of the 

roles of p, <r and <p, 4j. On the other hand, we make no reversibility 

assumption in the case of restricted cross-covariance, wtih self- 

pairable <p; in this case, however, our hypotheses, described above, 

are shown to imply a self-covariance inequality Ik(A, A) | < AQ, where 

Q(t) is a monotone increasing function, the "quadratic variation" from 

0 to t, which takes the place of T^(t) in(l. 2) (i); and we here 

make again a simplifying assumption which amounts to a virtual change 

of variable. 

For the purposes of this paper, a process of biased covariance 

will thus satisfy the conditions 

(i) |x(A, A) I < (x( Ia|))2 , 
(1.3) < 

(ii) |x(A, A*)I <?( IaIm |a*|), 
V. 

where A, A are non-overlapping, and |a|, |a | are their lengths. 

A process of restricted cross-covariance will be subject to 

(1.4) |X( A, A*) I < <p( I a| M I A*| ) 
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where A, A are non-overlapping, and ? is now self-pairable; and it 

will also satisfy a further condition according to which a certain "quadratic 

measure" Uq does not exceed dt. Because of the special role of the 

variable t and the measure dt, we shall refer to the process as 

canonical. 

Our main object is to define for our processes on a finite time- 

interval T, a stochastic integral 

(1.5) 

for a large enough class of "deterministic" integrands y(t), i.e. of 

functions independent of w. (in the theory of stochastic processes, 

classes of functions really .are large, and need to be. ) Besides defining 

the integral (1. 5) and establishing its existence, we shall seek to obtain 

for it an inequality, which can be used for passage to the limit under 

the integral sign. The relevant class of integrands y(t) will consist 

of those which are square integrable, and which satisfy, for small 

h > 0, 

(1) / ly(t) - y(t-h)|dt < Y(h), 

(ID / ly(t) - y(t-h) |2dt < (<r(h))2 . 

(1.6) 

The second condition can be omitted in the case of restricted cross¬ 

covariance, with self-pairable <p. Generally, by varying or 4/, <r 

#932 
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subject to the conditions connecting them to <p or x» we see easily 

that the space of integrands becomes a linear one, in which our integral 

has all the usual elementary properties. It is a particularly large space 

in the case of restricted cross-covariance with self-pairable <p: it 

then includes, as a matter of course, all functions y(t) of bounded 

variation, and also many other functions, whose generality fully matches, 

to say the least, that of the functions of t obtained, for almost all 

3/4 w = const, from For instance, when ?(u) = u ' , the continuous 

y(t) include some which may fill a square, which is almost never the 

case of a curve x(t,u) for constant w. 

§2. The stochastic integral for a canonical process with a biased 

covariance. We tackle this first, as it is easiest, and the method is 

clearest. By hypothesis, we have (1. 3). Moveover, to avoid even minor 

side-issues, as far as possible, we shall make also some minor 

assumptions. We suppose x(t,w) extended, if necessary, or modified, 

outside T, which we take to be the unit interval 0 < t < 1; and for 

this purpose we set, in an interval T slightly larger than T, 

x(t, w) = x( 0, w) for t < 0, 

x(t, co) = x(l, co) for t > 1. 

-8- #932 



We arrange too for x( t, w) tobe square integrable in (t,w), and hence in t for almost 

every w; this can be done by subtracting x(0, w). in fact, this 

subtraction from x(t,u) does not affect (1.5), and by (1.1)(1), 

with r(t) =t, the difference is square integrable in (t, w), and 

soin t for almost every w, by Fubini's theorem. As regards y(t), 

we also suppose its definition extended outside T, and we strengthen 

(1.6) (i) and (ii) by changing the interval of integration, from T 

to T+. 

We shall also modify slightly the definition of stochastic integral 

of the third note. We intend to define ( 1.5), not as the derivative ( in the mean) 

of the convolution 

/ y(t)x(t + k, u) dt. 
T 

taken with respect to k, but as the corresponding limit of the expression 

1 
Í2*1) / y(t)x(t,u>)dt, where x(t, w) a ^ "KÍt.“) 

-k * 

and where k —+0. The difference arises from the limit of the 

quantity 

y(t){x(t+k, w) - x(0, u)}dt; 

of course, this depends on how we extend y(t) for t < 0, but, in 

any case, by Schwarz's inequality, we have 

#932 
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/ |q|2du<k'‘(x(lt))2 / ly(t)|2dt. 
-k 

This last quantity certainly tends to 0 with k in the case in which 

X(u) s'Ju’, and therefore under the hypothèse? of the third note. Thus 

the definition there used accords with our present one. What is important 

here is that, with the above minor change, the definition will be expressed 

in a more convenient form below, which we shall then use throughout the 

rest of this section. In order to obtain this alternative expression, we 

need a few preliminary remarks. 

For this purpose, we recall, in our present context, the elementary 

definition of Stieltjes integral, for a scalar function y(t), with respect 

to a vector «valued function X(t), where y(t) is of bounded variation, 

and X(t) is continuous; the integral then exists, as the limit of the 

Riemann sums, and integration by parts is valid. Here we shall ^hoose 

for X(t) the vector whose value, for any fixed t, is the function of w, 

defined by x(t,u). In the space of such vectors f, i.e. of such 

functions f(w), we take as norm |f| the quantity ( / |f(w) |2d«)^2; 

the space is thus a Hilbert space. In this way, for a function y(t) of 

bounded variation, we define 

(2-2) / y(t)dx(t,u) = / î(t)dx(t), 
T T 

where the right-hand side is the elementary Stieltjes integral.* In particular, 

in the rest of this section, we choose 

Such elementary integrals will actually be found to be special cases of our 
definition of (1. 5). In the meantime, there is no conflict of notation, since the 
wider definition is not used until after the proof of Theorem (2. 9). 
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Vit) = u / y(t-u)du i 
O 

the integral (2.2) may then be written, after Integrating by parte, in 

the form (A - B)/k, where 

l 
A * kx( 1, w)y(I) + /x(t,ui)y(t-k)dt 

0 

-l 
* x( 1 ,u>) J y(t)dt + J x(t+k,w)y(t)dt 

1-k -k 
1 

a / x(t+k,w)y(t)dt, 
-k 

1 
B = kx( 0,w)y( 0) + / X(t,«)y(t)dt 

0 
1 

*/ x(t,u>)y(t)dt. 
-k 

Thus (2. 2) coincides with the value of the expression (2.1), and our task 

will be to prove that it has a limit as k - 0 and to define (1.5) as the 

value of this limit; naturally, here, the limits are in the topology of 

our vector space of functions of w, just like the definition of the 

elementary Stieltjes integral (2.2), itself. 

In ot ter terms, if we denote by f the vector, or the function of w, 

defined by ( 2. 2), and therefore dependent on k, we have to establish 

the existence of a vector I, such that If - l| -0 as k -0. 

#932 
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We shall need several simple lemmas, of which the most important 

is the first. In referring to (1.1), it will always be understood, in this 

section, that r(t) = t. 

(2.3) Lemma. Isi *(t) tcT take constant values z[ in the 

inteClQfg of the lûlgrvfllg ^ of a subdivision of T into equal 

gang of Içnqth h, and let 

yz) = iKzl^-XjzJ2)^, \), 

whSEe ll(z)| (jgnoteg the Hilbert norm of the vector 

M*) * ïji zff - f z(t)dtx(t,w). 

Then 

ll(*)|2 <y2) + h‘1(x(h))2/|zl2dt, lR.(z)l < (h'Vih)/|z|dt)2. 
T n T 

Proof. We have 

|l(z)|2 * /dwi^ * J] % z^K(Aj, Aj). 

Hence by (1. 3) (ii), 

im*)I = HE «i.KtA ,A)i<(h'V(h))2j;2h2i*.iu1i, 
l#J J 1 J i j 1 J 

while by (1.3) (i) 

iKxJ^-yt) = 2 <h“1(x(h))22h|zi|2. 

-12- #932 



Here £^12 l. the Inteirai of U|2, while £1£)h2|til|e | ha* 

been increased by adding the terms for which i * J, so that it becomes 

the square of ^h|zj, i. e. of the integral of |z|. 

We denote by T+ some fixed interval (-k0, 1) where k0 > 0, and, 

for 1 < p < 2, by 4^( u), u) the suprema in c, for 0 < c < u, 

of the expressions / ly(t) - y(t-c) |pdt, / ly(t) - y(t-c) |Pdt. The 
T T+ 

number k in the definition of y(t) will be supposed < k^. Further, for 

a subdivision of T into equal parts of length h, let z(t) be a 

step-function equal, in the interior of each ^ to the corresponding 

mean value of y(t), and let z(t) be there similarly the corresponding 

mean value of y(t); finally, let i*(t) be a itep-functlon similarly 

constructed from y(t), but for a subdivision of I Into equal parts of 

length h* * h/N, where N is a positive Integer. 

(2. 4) Lemma- With these notations, we hav« 

(i) / ly(t) - ÿ(t-h) |pdt < / ly(t) - y(t-h) |pdt <i|/+(h) , 
T « “ Tp ' J 

+ 

(11) / |s(t) -î(t)lPdt</ |y(t) -y(t)|pdt<+p(k), 

(Hi) / ls(t) - z*(t)|pdt < 2+(h). 
X P 

P[ooi. It will mainly be a matter of applying, in each case, 

Holder* s inequality. Thus 

#932 
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/ ly(t) - y(t-h) |Pdt * / / {y(t-u) • y(t-h-u)}du|pdt 
T T O 

i * 
< / ‘T / |y(t-u) - y(t-u-h) |pdudt 

T O 

i k 
/ du / dtly(t-u) - y(t-u-h) |p 
O T 

< V / du / ly(t) - y{t-h)|pdt, 
0 T+ 

which proves (1). Similarly 

/ ly(t) - y(t) |pdt = / lu / (y(t) - y(t-u)}du|pdt 
T T O 

i k 
< / r / ly(t) - y(t-u) lpdu dt 

T O 

i k n 
= 1:/ du / |y(t) - y(t-u) |pdt < lb (k), 

K O T p 

which Is the second part of (11). Again, If ^ is the Initial point of 

¿y and Zj» ^ are the constant values of z(t), z(t) in the interior 

of we see that 

f U(t) - z(t) lpdt = hUj - îjl1” *h|^ / {y(t) - J(t))dt|p 

Al Ai 

<h • r / ly(t)-y(t)|pdt, 

do that, by addition, we obtain the first part of (ii). 
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(2.5) 

Finally, to get (ill), it will suffice to verify, for each i, that 

/ U(t)-z*(t)|pdt<¿ i / Jy(t)-y(t-\h*)|pdt. 
t1 w X*1 tt+Vh* 

Keeping i fixed, we consider, for this purpose, the subintervals O 

of in which t has the form ^ + ^h* + u ( 0 < u < h*). here 

P * 0, 1, ..., N-l. In we have 

lz(t) - z*(t) jp 1 N’1 1 h 
= h f (yitj+vh^+u) - y(ti+ph%u))du|p 

1 h 
lyitj+vh^+u) -y(ti+ph*+u)|Pdu. 

By integrating in t over Q^, which means multiplying by h, and by 

then summing in p, we see that the left-hand side of ( 2.5) cannot 

exceed the quantity 

M = N ^ / ly(t +vh*+u) - y(t.+ph*+u) |pdu . 
p V 0 1 1 

However, M can be expressed as twice the corresponding sum for 

P>v; and if we then set \ * p-v, change the order of summation, 

and revert from u to t = ^ + ph* + u as our variable of integration, 

we find that M is indeed the right-hand side of (2.5). This proves (iii). 

We shall make use also of the following elementary remark: 

let p, a beareversiblepairof estimate functions, then 

#932 
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(2.6) £ 2Wp{2 V)a(2 ^) < 16 f u 2p(u)<r(u)du < «. 
V =N+1 0 

In fact 

/tU)r(M) t jaWtliH du 
0 u Ou 

J (V) 

0 u 

1 

♦ / 
0 

y (u)do(u) < oo 

and moreover, if we write h = 2 ^ for short and denote by u a suitable 

u in h < u < 2h, 

f2h><vM“) du . , »(g).lû) > .t. otailrtail , p(h)f (2h) 

Jh u2 ,0,2 - * ^ - 16h ' 

whence the first half of (2.6) follows by summation. Besides (2.6), we 

shall have, of course, the corresponding result for the reversible pair 

of estimate functions <p, 4». 

In what follows, the step functions z(t), z(t), determined as 

earlier, but now for h = 2 will be denoted by yv(t), y^t). 

Further we write 

I 
V 

f y (t)d x(t,w), 
T 

l =/ y„(t)dtx(t,w), 
T 
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so that these are functions («*»), or what comes to the same, 

they are vectors in our Hilbert space. We shall understand the norms to 

be in that space, whenever w is omitted from our notation. 

(2.7) Lemma. Bo$h gutnfr " lv I > * fj 

are dominated, term by term, by twice the series 

V 

A 

■M?f^over» 1”1^1 cannot exceed the expression 

Z^pU'^Mk) + ç>(2’v)^(k)). 

Proof. All this follows readily from lemma (2. 3), if we replace 

in it, successively, z(t) by the three step-functions y , - y . 
v-l V* 

A A + 

^v-1 ~ V \ - Vs anc^ ^ we rePlace further the integrals of 

U(t) lP (p = 1, 2) by the larger quantities given in lemma (2. 4). 

( 2.8) Lemma. Let 

h _2 

^(h) = / u {p(u)<r(u) + ?(u)ij/{u)}du. 
0 

Ihen. in our Hilbert space, the limits I = lim I , f = lim f 
V V V V 

exist and we have 

ll^-ll <16S(2‘<V-1)), lîv-fl ¿ItSU'*'”1*) . 

■ErPSl* This follows at once from the preceding lemma together 

with ( 2. 6). 
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(2.9) Theorem. Let x(t,u>) be subject to ( 1. 3). where x 

1/2 
1$ increasing, and let p(u) = u' x(u)‘ Further let y(t) satisfy (1.6), 

where integration is over an interval containing in its interior the closed 

finite Interval T, and suppose that (p, c), (<p, 4,) are reversible 
A 

pairs of estimate-functions. Finally, let I now denote the elementary 

Integral 

/ y(t)d x(t, w), where y(t) = “ / y(t-u)du. 
T K 0 

Then, in our Hilbert space, the limit I = lim^_^0 Î exists, and we have 

|l -l| < 400 §(k), where the function § is defined as in the preceding 

lemma. We term I the stochastic integral in T, _of y(t) with respect 

to x(t,u). 
A 

Proof. We define I, I provisionally, not as in the assertion, 
A 

but as in the preceding lemma. However, I then coincides with the 

elementary integral in question, which is the unique limit of the 
A 

approximating Riemann sums, and in particular of the I . It then only 
V 

remains to verify the inequality asserted for |l - l|, which clearly 

implies that I = lim^Ql. Further, we see by changing u to 2u 

and using the relations of the type ( 2.1) of the first note, that 

8 ( 2k) < 8 S ( k). Therefore it will suffice to prove that |l - 11 < 

508( 2k). 
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For this purpose, we choose v so that 1 < k2~v < 2 and we 

observe that 

lî - il < if - f i + ii-i i + if -i i. 
V V V V 

By lemma ( 2. 8), each of the first two terms on the right is < 16s( 2k); 

the same is true of the third term, by the last part of lemma ( 2. 7) and 

the remarks about ( 2. 6). This completes the proof, with a little to spare. 

An important, and typical, special case of our theorem is that in 

which X is a constant, and <p a power 4 - o ( 0 < a <-^) of u* we 

can then choose <r, ^ of power-orders ^ + «, ^ + a + «, so that y(t) 

lies in the intersection of two integrated Lipschitz classes of Hardy and 

Litdewood [5]. 

Our inequality for If - l| is reminiscent of ideas used to refine 

Schwarz's inequality, by separating non-diagonal terms; see, for 

instance, van der Corput [4]. This is useful for estimates of trigonometric 

sums in diophantine approximation. 

§3’ The more elaborate form of the basic lemma, and the notion 

pi quadratic measure. We pass on to the case of a process of restricted 

cross-covariance, with <¡> self-pairable. We assume, for the present, 

only (1. 4), so that this is a generalisation of the state of affairs of the 

third note. Our arguments will be more complicated than in the preceding 

section, and we shall not wholly avoid side-issues. 
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In the first place, we need to modify the notion of step-function, 

and this is one of the side-issues. For this purpose, intervals are, for 

the moment, to be regarded as neither open, nor closed, but as neutral, 

as in the algebraization of integration. Given a subdivision 3 of T 

into such neutral intervals A, we term ( step)-function associated with 

H , the map which attaches to each such At 7 a constant complex 

value z(A). A (step)-function z is thus a function, not of ttT, 

but of At ï . However, if z has the same value in two adjacent A, 

we identify it with the ( step)-function with this value in their union and 

with the original values outside. Similarly, if we superpose on 7 a 

further subdivision, we shall define z on the new parts so that it 

retains the original value in any subinterval of an interval of 3 , and 

the new (step)-function, thus obtained, will be identified with the old. 

Any two (step)-functions can thus be associated with a same subdivision, 

and hence ( step)-functions form an algebra. If z is any ( step)-function, 

we shall write Iz| for the (step)-function with the values |z( A) |• 

moreover, any integral of z denotes the appropriate finite sum, for 

instance we interpret / z dt and the stochastic integral 
T 

Hz) = f z d x(t,w) 
T 

to mean the finite sums z(A)At, ^z(A)Ax, where At, Ax 

stand for the difference in t, at the ends of A, applied to the functions 

t, x(t, w), and where the sums extend to the partial intervals A of 
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the associated subdivision of T. These integrals do not change when 

we pass from one subdivision associated with z to another, i. e. from 

z to a (step)-function identified with z. 

We term (step h)-function, a step-function associated with the 

subdivision 3 of T into equal parts of length h, and we speak of h 

as the "length of a step". This length will always be a power of 1/2, 

and it may depend on a suffix v, in which case it is understood to 

decrease as v increases. As previously in lemma (2.3), we write 

lyzjr/dwl/ zd x(t, w) 12 - X |z( A) K( A, A). 
T A c 3 

( 3.1) Lemma. For v = 0, 1, ..., N, !§* z^ denote a ( step h^)- 

function, and let s^ denote, for v < N, the sum of the block of terms. 

aivenby h, > 2-r > h^, in_the series l2%2(2'r), whilg denotes 

the remainder, the sum for hN > 2_r. Further let &0 = z0, t = z - z ^ 

(v>0). Ihen if z is a (step ^-function identical with z^t where 

h < h.., we have — - 

lzJZdt+2(1 h^^h )/ It Idt)2. 
v =0 T v =0 T W 

Proof. By setting t = 0 when h 2 v is not one of the h , we 
V U y * 

may suppose that h^ = hQ2 v, = h, and remove the term v = N firom 

the first sum on the right. The case N = 0 follows from lemma (2. 3). 

#932 
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We can proceed by induction. We have to show that ( 3.1) implies the 

corresponding statement with N replaced by N+l. We write h* = h/2, 

^ ♦ J|C 

2 = ZN+1 = Z+^ = Z+^N+1> 80 2 is a isteP h )-function, we 

denote by Zv the subdivision of T into equal parts of length 

V V» and» for w = N+l, we write Z , A* in place of Zv, AV. 

We first observe that the difference 

p= I U(a)|2k(A>a)- I |z(a‘)|2k,a*,a*) 
A«3 A*c3* 

may be written as the sum, for Ac Z , of the real part of 

2U(A)|2K(A', A”), 

where A', A" are the two halves of A; the absolute value of this 

difference is thus at most 

£h|z(A)|2(h ) V2(h ) *(h*) V2(h*)/ |z12dt. 
Ac? T 

Hence it will suffice to show that 

R(z*) - R(z) - P 

cannot exceed the quantity 

A = 2 / U|dt(hVV(h*) ( 
T i/=0 
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However, we have 

R(z') - R(z) - p = |l(z*)|2- |i(Z)|z . M) 

where 

M= .1, (Iz <A*>|2- Iz(A*)|2>x,aV) 
A < 3 

N+l 

8i^RealPart^0+ ,V tv(A<,^(4,,,)K(A* 

Moreover ll(z*)|2 - |l(z)|2 is the real part of 

/dwUKIMz + z*)} = 

and here 

L X(A ) /dw{A xl(z+z*)}, 
AM* 

/ dw{ A*x I(z+z*( } =(1 +^1) /du(A*xI(l )}• 
V =0 V =0 w 

Consequently 

R(z ) " R(z) - P = J Real part K(A*)f (¿*), 
AM ipzo y =o ^ 

where 

fw<A*> = /dwiA*xI(tv)} - iv(A*)K(A* A*). 

Ÿ932 
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# 
By comparing the expression found for R(z ) - R(z) - P with 

that for the quantity A, remembering that 

I k(A*)|h*=/ Uldt, 
A*€3* T 

we see that it will now suffice to prove that If^fA*) | has the bound, 

* 
independent of A , given by the expression 

2v(h*Mh Ih”1 / k Idt. 
T 

To this effect, we note that 

»iv* V w*! ^ ** 
tj* > =< L )K(A , A )) (A )K ( A , A ). 

'V*3W 
y 4> V V 

Now only one A intersects A , and for this A we have £ ( A ) 

* 
A ) and moreover, as is easy to see, 

|X(AW, A*) - X(A*,A*)|< 2*(h*Mhv), 

while for all the other ãv*3v , we have X(AV, A ) <ç>(h )^(hv). 

Hence, remembering that 

I k„(Av)|h =/ It Idt, 
Aw€ jv v v T 

jâj 

we see at once that |f (A ) | has the desired bound. 
v 

The lemma Just proved is already of importance in a very simple 

special case. We choose h = 2 v and we denote by A an interval v 
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whose extremities are integer multiples of h = 2~N. We define the 

(step h )-function z so that z (Av) = 1 if Av C Ã , and z (Av) =0 
K V V " y ' " 

otherwise. Thus the final (step h)-function z can be identified with the 

(step)-function which is 1 on Ã , and 0 on the set of (at most two) 

complementary intervals} moreover, for each v, the (step)-function 

t,v will be 0 except on at most two of the Av, on which it is 1. 

In this case ll(z)| =X(A, A), so that lemma ( 3.1) yields the inequality 

|X(A,A) - Yj K(A, A) I < A + 2B2, 
ACA 
A( J 

where 

A= IÃI I h^Vfh^), 

^ _J _J 
B = Z\V(h )/ It Idt = EOv2Wh ))(h2 / Itldt). 

V T yKVVTV 

If we apply Schwarz's inequality to this last sum, noting that 

I E / It Idt = U|, 
T V T 

and therefore that 

EC (/ It Idt)2<2|l|, 
V T 

we find that 

B2<2|Ã| Y h‘V(h ). 
^ V V 
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Thus 

A + 2B2 < 5S, 

where 

s = £ zVu'1'), 
V 

and here we can now sum in v from 0 to ». Of course, we could have 

discarded originally the values of v for which 2 > |A|, since, for 

V ~ 
these values, no interval of the form A is contained in A. We may 

therefore, if we prefer, discard these small values of v in the definition 

of S, and so sharpen slightly our bound. 

We shall write, for brevity, and only temporarily, J) for the 

function of 3 given by the sum 

V"' «W A* 

A i« *> 
Ac 7 

where ? denotes any subdivision of T. The inequality, derived above 

from lemma (3.1), leads at once, by addition, to the following one« 

lEû) - Zml <58> 

provided that J is as before, and that 7 has all its points of division 

among those of 7. Hence, further, 
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(3*2) l£(in - £(3-)1 <ios, 

if J and J now denote any two subdivisions of T, whose points of 

division are integral multiples of 2 N, for some N. We shall extend 

this last result further» 

( 3. 3) Lemma. The inequality (3.2) remains valid for an *rh<tr»ry 
*0 

3 of subdivisions of T. 

Proof. It is clearly sufficient to show that any subdivision ï 

of T can be associated with another 3^, where the points of division of 

Jh are integer multiples of h = 2_N for some N, in such a manner that 

£(¾) - £(3) as N — oo, 

To this effect, let t. (i = 1, 2, ..., n-l) be the points of division of 

T . We mark off, for each the nearest integer multiples of h on 

the two sides of they have the form ^ + « j where 0 < « ^ < h, 

0 - < h. We shall suppose N large enough for the intervals determined 

by these pairs of points to be disjoint. We denote by 3^ the subdivision 

of T whose points of division are the and the t +« ', and by 

30 3h the subdivision whose points of division are those of ? together 

with those of ?h . From the bilinear character of k and the relation 

(1. 2) (ii) with r2(t) = t, we easily estimate the differences 

!£<?>-X<î0Vi, lE(íh)-Z<50yl; 
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the former will not exceed a fixed number of products of the form 

i ** i ** 

^(h)^( |^| ) Ac 7 , and the latter will not exceed a fixed multiple 

of ?2(h). Hence 1^(3^)-^(7)1 tends to 0 with h, and this 

completes the proof. 

In (3.2), the quantity S is finite, since we suppose <p self- 

pairable. (See the remarks after (2.6) of the preceding section). It is 

convenient further to denote by S( c ) the sum derived from that 

defining S by discarding the initial terms, for which 2 v>c. If the 

lengths |a|, |Ã| of the intervals of 7, 7 are all <c, we can, 

as already noted, discard these initial terms, so that in (3. 2), 3 

can then be replaced by 3(« ), which is small with c. 
a# 

We remark also that (3. 2) implies, for every subdivision 7 

of T, 

£(7 ) <K(T, T) + 10 3. 

This has an important interpretation: if we again write X(t) for the 

vector in Hilbert space, defined by x(t,w), we have 

£(7) = £ lÃxl2, 

Ac 7 

and the supremum in 7 of this quantity is termed the quadratic variation 

of X(t). Thus we see that X(t) is a function of bounded quadratic 

variation. We shall denote more generally by Q(t) the supremum in 

7 of the sum 
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(3.4) Tj x(a,a) = 1 |ax|2, 
Ac 7 Ac 7 

for subdivisions 7 , not of the whole original interval T, but only 

of the part between 0 and t. We term Q(t) the quadratic variation 

from 0 to t of the vector-valued function X(t), or of the process 

x(t,w). It is covenient also to denote by (t) the corresponding 

supremum when 7 is further restricted by the condition that I a| < c 

for every Ac 7. 

Evidently Q(t) is increasing and AQ > X( A, A) for every interval 

ACT. In other words the relation (1. 2) (i) must hold for x(u) = '/IT 

and Tj(t) =Q(t), so that the diagonal distortion, resulting from the 

fact that Tj( t ) need not be linear in t, is wholly determined by the 

quadratic variation Q(t). At the same time, Q(t) replaces, in this 

respect, the function n(t) of the third note. We have thus! 

(3.5) Theorem. Suppose that fl.2) (ii) holds with r (t) =t 
C* 

and ç> self-pairable. Then (1. 2) (i) holds with X(u) =n/7 and 

T^t) = Q(t), where Q(t) is the quadratic variation from 0 to t 

for the process. 

Nevertheless, the role of the measure dp, of the third note, will 

mainly be taken over, not by dQ(t), but by a quadratic measure 

dq(t) derived from the function q(t)=Limt_^0 QJt). This limit 
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exists, since Q^(t) decreases with «; and q(t) is clearly monotone 

increasing. We shall speak of this quadratic measure, as defined, not 

only for dq-measurable sets, but also for neutral intervals A, when it 

becomes the corresponding difference Aq of q(t). 

From the earlier remarks about discarding initial values of v in 

the quantity S in ( 3. 2), it follows that« 
«■w a# 

(3.6) Lemma. The quadratic measure Aq of any neutral interval A 

is the unique limit, as h 0, of the sum ( 3, 4), for subdivisions 3- 

of A such that each At 3 has length < h. 

A slight variant of this lemma will be needed also. For a given A, 

we denote by sum 

A) 

extended to those Ac 3 for which A intersects 

the same sum extended to those Ac 3 for which ACA. Here 3 

now denotes an arbitrary subdivision of T. 
A# 

From the preceding lemma, we deduce easily that, if A is an 

interval at whose ends q(t) is continuous, or else an interval, one of 

whose ends is 0 or 1, and the other is a point of continuity of q(t), 

then Ãq is the unique limit of E an<^ also of (3), for 
■f" “ 

subdivisions 3 of T such that each Ac 3 has length <h. 

-30- #932 



Lemma ( 3. 6), together with this variant, is itself a special case 

of the following result, easily deduced by addition« 

( 3. 7) Lemma. Let ï be a subdivision of T, and let z be a 

jstep)-function associated with J, _i. e. one for which the constant 

^lues are defined when At fr. Then the integral 

J = /z dq 
T 

is the unique limit, as h -0 of the sum 

Yj Z(A)K(A,A) 
Ac 7 

for subdivision^ 7 of T, such that each A« 7 is of length < h, 

ünâ that the points Of <11 Vision of 7 include all thnsp nf J. FurtherJ 

2 Ifi real-valued, and we denote, for anv interval Z*(A) 

any value between the greatest and least values of z for intervals 

a€7 v&iGh intarsgçt a, then the sum 

E z*(A)K(A,A) 
Ac 7 

ÍQI subdivisfons J ai T, such that earh Ac 7 is of lennth < h, 

algo h9S tha qmq^ limit J aah-O, provided that the points of 

division Of 7 are points of continuity of q(t). 

We shall need the following analogue of lemma (3. 7) for ordinary 

functions: 

#932 
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(3.8) Len^^. Let f(t) be a bounded real-valued function. 

Riemann-Stielties integrable in T with respect to the quadratic measure 

dq, and for each interval ACT let g(A) denote a real number 

between the supremum and the infimum of f(t) in A. Then, for 

subdivisions 3 _of_ T such that each Ae 3 has length < h, the integral 

/ f(t)dq is the unique limit, as h —'0, of 
T 

Yj g(A)K(A,A). 
Ac? 

Proof. We write f) for the sum in question, in so far as it 

depends on f, and we note that, if fj < f < we can always determine 

corresponding sums Y(f2)’ 50 that 

Y(V^V(f) <y(í2)* 

Now by Riemann-Stieltjes integrability of f with respect to dq, given 

c > 0, there exist step-functions f^, which have no common 

discontinuities with q(t), and which satisfy 

^<*<*2, / (f2(t) -f1(t)}dq<c. 

By the preceding lemma, the integrals of f2 are the limits of all 

the corresponding sums Y(f2)- Hence the upper and lower limits 

of y(f) must lie between these two integrals, which differ by < c 

from one another, and a fortiori from the integral of f with respect to dq. 

This last integral is therefore the desired limit, as asserted. 
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We return to lemma ( 3.1), and we put it into a convenient form for 

our main application. We write, when z denotes a ( step)-function, 

and more generally 

R(z) = /d-j |/zdjc(t,w) |2 - J |z|2dq . 
T T 

(3.9) Lemma. With the notation and hypotheses of lemma M. n J 

we have 

N 

R(z) < Z 
V =0 

Proof. We need only make h in lemma (3.1), and use 

lemma ( 3. 7). 

§4* The stochastic integral for a canonical process with restricted 

cross-covariance and self-pairable tp. We now limit ourselves to the 

case in which dq < dt; this is the case that we term canonical, in dealing 

with a process subject to (1.4). In studying it, we need to modify slightly 

the line of argument of section 2, by using our more elaborate lemma. 

We first fix 4* so that ç>, iji is a pair of estimate functions 

according to the first note, and we determine an infinite decreasing 

sequence h^ v = 0, 1, ..., consisting of powers of 1/2 and with limit 

0, such that 

(4.1) W\) < < W\), 
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and therefore, by (2.1) of the first note, such that 

(4.2) . 

This subsequence h^ of the binary sequence 2 ^ was introduced in 

the first note to ensure the behavior of a geometric series for vjj(h ), 

and (more to the point) for the series of its differences, so that, in the 

latter, the remainder ^( h ) be of the same order as the v-th term 
V 

i)>(h^) - 4>(h^+j). We keep the sequence h^ fixed except for discarding 

initial terms, so that hQ may be arbitrarily small. 

We denote by y(t) t« T+ a square integrable function subject 

to (1.6) (i), and consequently also to (1.6) (ii), for some <r(u) which 

is continuous and increasing for u > 0 with the initial value cr ( 0) = 0. 

We write again 

1 k 
y(t) =7 / y(t-u)du; 

K 0 

moreover, if denotes the subdivision of T into equal parts Av 

of length h , we define (step h )-functions y , y by stipulating that 
V V V V 

their values, for each AWí?l,, are given by 

yw(AV) =ït f y{t)dt’ yvl aV) =h" y(t)dt- 
V A V V V 
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Alternatively, we can regard these as the values taken In the Interior 
1/ 

of A , and define y^, as ordinary step-functions; the distinction 

Will be Immaterial In this section, as It was in section 2. The Integrals 

of yv, 9, with respect to dtx(t,w) on T will be denoted for short by 
A 

V 'v ; ,hey exlst as integrals of ordinary step-functions, and the same 

applies to corresponding integrals in dt or dq. Further, from lemma 

(2.4), we draw the following consequences for v = 1, 2, .... (1) the 

integrals on T of I y - v 12 and IC f, 12 . J , 
Iyl yv' and lyj yj in dt, and also in dq 

(whlchis <dt), areeach <2v2(h); (11) those of | y -y I 

and ly.. ' i’.+l1 are nach < 2*(hi<); and (111) those of |y. - S | and 
i - 12 1 ^ 
yl " yl are, respectively, less than +(k) and v2(k). Finally, 

from ( 4. 2) above and from ( 2.5) of the first note, we have 

V -1 aW . hl 
2, h„ v(h Hfh > < 2 J h'V(h )4,(h ,)<2U/ *Ü¡1 
v=l v=2 v v v-l i u di^u), 

While in lemma (3.1), the sum of the V other than s,, is 3(^), where 

S(k) = J 2^2^)^16/ du <32dWu), 
, 0./ a U 2 "v< k 

k 2 
f 
Ou o 

by the remarks following ( 2. 6) in section 2 above. 

If we now apply lemma ( 3. 9) with = C0 = 0, first for C = 

y„ y„.( ^ - i’ then for = Vw - y. _j v > 1, and finally, with 

N=l, C, = 2=^-^, we find that llj-^l2 and Ifj - ÎJ2 are 

each at most 

^932 
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(4.3) 2^(^)(1 + ^)) + 2(211 / -^d^u))2, 

and that ll^ - ij2 is at most 

(4.4) 2a 2( k) (1 + S ( hj)} + 2(V( ^)^( k) )2. 

Hence, as in section 2, by making hj —0, it follows that the Hilbert- 

space limits I = lim I. = lim I , and Î = lim Î , exist, and that 

¡1^ - l|2, |îj - Î |2 are each at most the quantity (4. 3). Further, 

if we choose hQ in our binary subsequence, so that 

h0> k > hj, 

and remark that the second expression in (4. 4) is then at most twice 

the square of the quantity 

hj1«.(h1)+(h0) < S tTVlh^lh^) < z'V'^d+lu), 
0 

r 12 
we find that each of the expressions | ^ - 11 , | ^ - I | , I ^ ^ I 

is at most 

(4.5) 2a2(k){l+ g(k)} + 2(2U / ^^-d^u))2. 

Finally, since, as in section 2, Î is identical with the elementary 

Stieltjes integral, we obtain the following result: 
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( 4. 6) Theorem. Let x(t, w) be subject to (1. 4), where <p 

ls.self-pairable, and let y(t) satisfy (1. 6) in T+. Further suddoqp 

the quadratic measure dq, defined in section 3T satisfies dq<dt, 

and that the function ij, in ( 1. 6) is such that ç», ij, is a pair of 

estimate functions according to the first note. Finally, let f denote 

the elementary integral 

f A , k 
J y(t)dtx(t,u>), where y(t) =-/ y(t-u)du. 

Then, in our Hilbert space, the limit I = lim^ Î exists and we 

(4,7) IÎ - ll < (5 + c)<r(k) fi,, 

where 

§5. Additional comments. The non-discriminatory case may be 

considered to have been treated in [1], and the reader will find there 

also some indication of the manner in which a reduction from (1.1) to 

the canonical case (1. 3) can be effected. We intend to deal with this 

more in detail at a later date, and also to discuss the corresponding 

extension of theorem ( 4. 6). In this connection, we draw attention 

to an oversight in the third note, where no special assumption is made 

#932 
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in regard to dq« it should have been assumed that y is almost everywhere 

in dq the derivative of its indefinite integral in dt. This is the case for 

almost every (in dt) translation of a function which satisfies the other 

conditions stated, as follows from a theorem of Wiener and R. C. Young 

[3]. 

Finally there is the further problem of extending our stochastic 

integral to non-deterministic integrands y(t,u>). This also we planto 

come to at a later date. 
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