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ABSTRACT

The method of moments is used to characterize the asymptotic

behavior of the central moments of the sample occupancy numbers

from the multinomial distribution with equal cell probabilities.

The limiting behavior is then used to establish asymptotic normaility

when the sample size n and the number of cells N tend t,- infinity

so that n/N- ., 0 <a < O

NMM



THE LIMITING DISTRIBUTION OF THE SAMPLE OCCUPANY NUMBERS
FROM THE MULTINOMIAL DISTRIBUTION WITH EQUAL CELL PROBABILITIES

B. Harris and C. J. Park

1. Introduction. Assume that a random sample of n observations has been made

from a multinomial population with uniform cell probabilities, that is, cell I has

probability N-l, i t 1, 2, ... , N . Let s be the number of cells which occur

exactly i times in the sample. Then, we clearly have

n n
(1) N and Z is,=n

I=0 i=0

The random variables s, i 0,l, 1.•, n will be called the (sample)

occ \pancy numbers in agreement with usage in past publications of the authors.

(Wi ks [10] refers to these as the cell frequency counts).

ur interest in the behavior of the occupancy numbers is motivated by their

significant role in non-parametric tests of the hypothesis F(x) -- F0 (x), where

F (x) is an absolutely continuous cumulative distribution function and F (x) is
0

a specified absolutely continuous cumulative distribution function. In particular,

2
the X goodness of fit teslj the empty cell test, and the likelihood ratio test

(based on the multinomial distribution) all are expressible in te-ms of occupancy

numbers. For each of these tests, the customary procedure (but not the only one

possible) is to select an integer N in advance of the experiment; then divide

the zeial lHe into N consecutive intervals each of which has probability N-j

under F (x) . Thus, when the hypothesis is true, the distribution of the [
01
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observations, when classified only by the interval in which they fall and ignoring

the natural ordering of the intervals, is the multinomial distribution with equal cell

probabilities.

In this paper, we will study the limiting distribution of si, i = 1, Z, ... , k

k fixed and independent of n and N, as n, N--ao so that n/N--a,

Under the hypotheses of this paper, I. Weiss [9] and M. Okamoto [6] estab-

lished independently that (so E(s 0 ))/s has a limiting standard normal

distribution. Weiss and Okamoto both employed the method of moments in their

investigation. Subsequently, Renyi [7] reexamined the limiting distribution of

s using generating functions. The limiting distribution of so under alternative

hypotheses was examined by S. Kitabatake [5] and V. P. Chistyakov 1].

Sevast'yanov and Chistyakov [8], nsing saddlepoint methods, established

the joint asymptotic normality of any subset of (s si, ... , S ) and this was
of p

extended to alternative hypotheses by Chistyakov and Viktorova [ 2].

In this paper, we study the asymptotic distribution of s by using the method

of moments. Despite the fact that the asymptotic normality has been previously

established, it was felt that information concerning the rate of convergence of

the standardized central moments would prove useful and lead to improvements

in probability estimates over those specifically given by the limiting normal dis-

tribution. In the Sevast'yanov and Chistyakov [ 8] and the Chistyakov and

Viktorova [2] papers only the moments of order one and two are reported and

for these only the leading terms of their asymptotic development are reported.

The methods of this paper can be extended to exhibit the joint asymptotic normality
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of any subset of (so, Sl, ... , sp), but this extension would be very tedious.
p

The complete Asymptotic expansion of the standardized central moments of so

Is implicit in Weiss's paper [9], but the specific details are not provided therein.

In another paper (Harris and Park [3]), we have studied the limiting distribu-

tion of linear combinations of the occupancy numbers,- since this is precisely

the form in which the occupancy numbers enter into various non-parametric tests.

The results in this paper have been useful in pursuing that investigation.

2. The Moments of the Occupancy Numbers. In Wilks [10], p. 433, the joint

distribution o! so, Sip sZ, ... , Sn is given by

n! N!
(P P(sot Sl "'' Sn) =n s0 s I s

N (0!) (n) (n!N n
n 0t n1

n n• th
where s. > 's = N, is = n . The v factorial moment (WiIks [10],

i=l i=l
p. 153 or 433) is given by

(3)sNv) v! (iv) (N in 1 i V v n-Iv
(3)id

where v < N, iv<n . Thus, we can write

(4) E(sv). = N (v) n,.,( v .n-iv

(iV)

where

1 iv=O

i 9N1 n,i, v)-3 Siv-I

ti,=0 
n
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m--k

(i) thLet 11 be the k central moment of s, and let a and k be the
d k jjk jjk

Stirling numbers of the first and second kind respectively, defined by

x(k) k

j=l

and
kxk (j)

where x x(x-l) (x-r+)

I ~ We adopt the conventions that a•. = 3Jk = 0 unless j = k = 0, or 0O<j < k

jk k -

weIn particular e = 1 Then,

0,0 0,0

-9

I4
-I

I4
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F1 k ((1 - E(si))

kr !r
- k- r k( Nr n ir r )n-ip

pO (p,k-r Vj) 'IN h(N,n,i,p)

,•- p~o(ii)pk k-r (k Nr+J ir+p)

r=Op=Oj=0 r rp Np,p np,k-r
i• • I-• (-p [hN~n~ll)]rh (N. n. i, p) .

k-r1

S~~We set p+r =s and j + r=i obtaining

i) rI N Ni

(6) _ (-l)k n -(- N) a
r=0 s=rI r () N P-rps- k-r

•-I .r(n-i) p-rn-ips-r

S(I -- ) (1---•5) [h(N,n,, 1.)]r h(N, n,i, s-r)

In the asymptotic analysis of (6), we will frequently employ the following

relationships. If N, n-- o so that n/N-* a, 0 <a < 00, then for each fixed u,

(7) I =e{ P-

(expf-n 4-L )J}

j=l
b

We will also employ the convention that Z ai = 0, whenever b <a
i=a

Now apply (7) to (6) and let n, N-ý 00 so that n/N- a, 0 <a <00, obtaining

for each fixed i, <i_<q ,
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j 1)r(n-) s-r .n-i(s-r) r(8) I- , ( -- •-)[h(N~n,i,I)] h (N. n. i. s-r)

¢x'o 1 ,s - r t *

-exp{-ri~n-i)L -i (n - i(s-r)) tZ
t=l tN t=1

i- 00i•r- oo

u=0 t=l u=0 t=l

00 r0 t+lSn n r+ (s-r)t~ + i r+ (s-r) ,

=exp s(-)--LN
'N N t

t=l (t+l) t=l tN

00 i-I t )t o1 i-r) -11 -N
t=l u=0 M~ t=l u-0 t )t

Thus,

1I)r(n-i) (1s-r )n-i(s-r) h(N.n, 1)]r h(N.n,i, s-r)

N- N

Sn r+ (s-r)t+ ir+ (s-r)t+l N
Nt, Nr

t=l u=O

iýs-r) -1 N t u.t_. -T)+ L •(I + O (N-

U=0

Observe that the exponent in (9) is of the form

T

-s •+ P (r)l/N
N t= t1

where P (r) is a polynomial in r of degree at most t + I with coefficients

depending on n/N, r, i, and s Now we expand exp{Z Pt+ 1(r)IN obtaining
t=l
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tIt

t+l j=O t=l

P (Pl(r)/Nt)/j/J] +R(p,N) .:•

j=Ot=l

We-now estimate R(p,N) Clearly, since i< q, s- r <k, r <k, we have

(k+k q (k + k+ N ql t+l r1 5 N t + I + t + l t+1

+ N (qk)t+l
n t+1

n N
Now let max Then

1p Pl(r)) <t (qk) t+l M

t+1

Thus, for N sufficiently large,

1 P t+ 1 (r)/N t _< 16qZk PI/N
t=l

and

IR(p,jNI) = (EP t(r)/Nt)j/J! 5 z (<)J/j!

j=p4N t=l J=p+l

where -y 16q 2 k2  . Thus, we can easily establish that

{l) {R (p, N){ 0 O(N-'-)

Hence, combining (9), (10), and (11), we have in fact established the following

lemma. M
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Lemma 1. If N. n-oo so that n/N -~a > 0 and i < q, then for any pair of

positive integers p and Tr

wheren-)( j-1 r)isaplnomiaofderee atmsr +1i
Lemma~~h(n 2.l) Unde th hyohee of emm1

(13)Z P (r1 tl~)N)Jj IN Kj (N +-r 0I'(n

where foPah <p (r ,sr ) is a polynomial i ofexc degree 2mms +Ii

whenev2.Uner theN hypcoteffcent of rem Is

(13P (-1) IN n! K rs r i) Nm

m!
2 m

Proof:

PJZP~~,,~,!L, Tk~ I P (r) k1 k3 r c
ki ' ik' 2~*J=0 t=l 1= 2 "T N

P (r) k
T~~k ~ >0, Ek =j

N

Collecting terms by powers of N, we get
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k k k

[ 2 () 2 Tr+l
Tp [pz~r)][P3 (r)j ... [p ~(r)]

m kk! •...kIm=ON 2

T T

the second sum running over kl, k 2 , ... , k with Z Jkj =m and Zki_< P
j=l J=l

The degree K of each K satisfiesm

K<Z (j + Ilk_<m+ p<2m
Jj=

Further, for each m <p, set kI m, k =k = k... =0 obtaining the term

2 3m
[P (r)]m which is of degree 2m, since the coefficient of r is (-llm(n/2N

2m
i + Ni /Zn)m and is non-zero by hypothesis. This is clearly the only term of

S~degree 2m.

The following lemma can now be established.

Lemma 3. For N, n sufficiently large, n * iN, and m< p<

k rk
(14) (Y )oa K (r s-r i)4 (-I)r u+m-r, s-rps-r, k-r mr-0

0 u >k/2

ck! u =k/2

where

C s-ki-m D t 1 n nN m
(15) c= s.... n

,I[2(s-k/2-m)] I2ksJ l(~~-+~-

C = (-14) D = (-)V 1T(2j-l)
V 1' J=l

#951 -9-
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Proof: It is well known (see Jordan[4], p. 151 and p. 171) that a and7 l-VTI

are polynomials in n of degree Zv with leading coefficients Cv

and D /(2v)! respectively. Then,

f(r) = au+i-r, s-r 3s-r kr Km (r, s-r,i)

is-a-polynomiaT in r of degree 2(k-u) . Thus, the left hand side of (14) is

k (0 u >k/2 .

L (-l)r (rk) f(r) = (-1) A f(O) 0
r=0 ck! u =k/2

We now return to our examination of the central moments and obtain the following

theorem.

Theorem I. If N, n - oo so that n/N- a > 0, then for every fixed i < q and

each fixed k

S • /Z k /2 a -kZ a+(i-a)2 ai -a k/2 ko/2-i1
-(16) t'k =N D /?(--ie ) 1-( a )--e + +O(N )

] even;
k/2

•k(i) M FT(2v-l) k even

(17) lira - ki k2 =

n, N-oo [IL 2(i)]0kdnN- 0 k odd.

Proof: From (6), (12), and (13), we have

1 k k s rk N n is
(18 N E zE (-1) r-(d j~ at.1-r. §-r Psrs...k-.r

"r=O s=rl--r (i-

- TP Km(r,s-ri) -Tt" L1 -T)
00Nm +ON--1(I+O(N-

--40- #951



Letting u = 1 - m and interchanging the order of summation, we have,

(19) .(i) k k min s-up) u+m rk Nu is
(19) Lk _,r ( k) (SN

U=-Tp s=u m=max(0,-u) r=O (i!)

n

u -s-r s-r,k-r e (K (r, s-r, i) + 0 (Nm- P-I))(I + 0 (N-)1

Since a = 0 for p<0, we can extend the upper limit of the sum on r to k,P, q

obtaining

Mi k k min(s-u .- p) n is e-sn/NI
(2) k E u E (i)U=-Tp s=u mr=max(0, -u) (i!)

k kE (-)r(k) K -(r,s-r,i) + Z o(NuIT
(-lO r u+m-r, s-r s-r, k-r ri )r=0 U=--Tp

Sk 
min(Tp,k-u) 0(Nu+m_ P)

S+ I OE-l

u=-Tp m=max (0, -u)

Let

min(s-u,Tp) k r k
a su(i,k) = Z (-1) (r)au+m rsPr~s r,k r K m(r,s-r,i)m=max(0,-u) r=O - -

then, since a u (ik) =0 for s<0

k k e-Sn/N

(21) 1 ) Mp =Ema( u) ( j1)S sua (i,k) +O(N kT) + O(Nk-pl) .

u=-•p s=max (0, u) ({

If n # iN, we can apply lemma 3. Here we choose T and p larger than k so that

the upper limit of summation on m is s-u for u > 0 . Ti.en, a (I, k) = 0
S ,u

u >k/2 . Thus, the upper summation limit of u becomes [k/2] . Hence, for

k even

#951 -II-



(i) k/2 n isIsi((22) Na (/llk) + R(k,N,ni) + O(Nkx I
k =k/2 (i!)s N SP k/2(ik

I where X=min(-r,,p+1) and I

(k/2]-1 k I
R(kN-ni) =Nu Z e- n is

U=-,p S-U (iMls (N'asisu( k)*

For k odd, we have,

k-i]i23-=kN-2" k -sn/N,3 e n niss23) Ilk) N a ft)2ik) + R(kN,n,i)

I k-k+ O(N-)

From the proof of lemma 3, since a (ik) is a sum of polynomials of degree < 2(k-ul

a Su(i, k) is itself a polynomial of degree <2 (k-u) . Further for n and N

both sufficiently large, a (i, k) is uniformly bounded in u, --rp < u <k I
Hence R(k,N,n,i) =O(N[k/2]-1) Choose X > Zk + I Then, for k even

zj (s-k/2-m

(241 lim a (ilk) = k! i
(24)2 s-/ s-k/2-m -

N.n- o -m=k -k/-(s-k/Z-m)!2s(k-3)!

(-)S -12 /-951

-k! k/2
;im=O 2kl (s-k/2-m) I (k-S) tI!m!
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S-k/2

_~~k (a -/ 21 ka+i I)
2 (k-s)I(s-k/2)I m=0

=D12 •2,fk/Z •'(lS-k/2 a+ (a-i))-k-

.Dk/.,..k/Z. a,

Thus for k even,

K(25) lirn =Dk/ e ais~ 2 Os-k/2fa+ 'sk/2"
nN- ko s=k/2 Tu7 s-k/2J\)

2(e-a~ea~) k/2 ( 1  (at+(c-i)2)e 7 ai./2

For k odd, the conclusion for N* in follows from (23) and R(k, N, n,i) =

O(N[k/21-)

For N = in, the conclusion follows from the continuity of (')IN

in a To see this, observe that (21) is a finite sum and that for N sufficiently

large, n aN + o (N) . Substitution of this into (21) and application of some

elementary analysis permits one to verify the continuity of the limit (25) in a

Corollary. Under the hypotheses of theorem 1, (s - E(s ))/a- has a limiting

standard normal distribution.

Proof: This is immediate upon noting that lim (k i () k/ are theSn, N-• co P

moments of the standard normal distribution.

Remark. The methods of this section are a direct extension of those used by

I. Weiss [ 9]. We have however extended the analysis to s, I* O, whereas

Weiss restricted his attention to sO. The procedure used herein also gives a

complete asymptotic expansion for 1 t) and thus contains additional information

on the limiting behavior beyond the statement of the corollary.

#951 -13-
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