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ABSTRACT

The method of moments is used to characterize the asymptotic
behavior of the central moments of the sample occupancy numbers
from the multinomial distribution with equal cell probabilities.

The limiting behavior is then used to establish asymptotic normaility

when the sample size n and the number of cells N tend t» infinity

so that n/N—-a, 0<a <o .
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THE IIMITING D{STRIBUTION OF THE SAMPLE OCCUPANY NUMBERS
FROM THE MULTINOMIAL DISTRIBUTION WITH EQUAL CELL PROBABILITIES

B. Harris and C. J. Park

1. Introduction. Assume that a random sample of n observations has been made
from a multinomial population with uniform cell probabilities, that is, cell i has
probability N‘l, i=1,2,...,N . Let s { be the number of cells which occur

exactly i times in the sample. Then, we clearly have
n n
(12) Eo si=N and z;oisi=n .
The random variables S i=o0,1, ..., n will be called the (sample)

occupancy numbers in agreement with usage in past publications of the authors.
(Wi' ks [10] refers to these as the cell frequency counts).

ur interest in the behavior of the occupancy numbers is motivated by their
significant role in non-parametric tests of the hypothesis F(x) = Po (x), where
F(x) is an absolutely continuous cumulative distribution function and Po {x) is
a specified absolutely continuous cumulative distribution function. In particular,
the xz goodnesc of fit test, the empty cell test, and the likelihood ratio test
(based on the multinomial distribution) all are expressible in tetms of occupancy
numbers. For each of these tests, the customary procedure (but not the only one
possible) is to select an integer N in advance of the experiment; then divide
the real line into N consecutive intervals each of which has probability N.l

under Po (x) . Thus, when the hypothesis is true, the distribution of the

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No. : DA-31-124-ARO-D-462.
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observations, when classified only by the interval in which they fall and ignoring
the natural ordering of the intervals, is the multinomial distribution with equal cell
probabilities.

In this paper, we will study the limiting distributionof s,, i=1,2, ...,k ;

i’
k fixed and independent of n and N, as n, N-® sothat n/N-a,
0<a<oo ,

Under the hypotheses of this paper, I. Weiss [ 9] and M. Okamoto [ 6] estab-

Rk o gt ke

lished independently that (s 0" E( so))/ L has a limiting standard normal
0
distribution. Weiss and Okamoto both employed the method of moments in their

R GE
ey

investigation. Subsequently, Renyi [7] reexamined the limitiny distribution of

s 0 using generating functions. The limiting distribution of s 0 under alternative

hypotheses was examined by S. Kitabatake [5] and V. P. Chistyakov [1].
Sevast’yanov and Chistyakov [8], using saddlepoint methods, established

the joint asymptotic normality of any subset of (s o’ sl, ceny sp) and this was

extended to alternative hvpotheses by Chistyakov and Viktorova [2].

In this paper, we study the asymptotic distribution of s, by using the method

i
of moments. Despite the fact that the asymptotic normality has been previously
established, it was felt that information concerning the rate of convergence of

the standardized central moments would prove useful and lead to improvements

in probability estimates over those specifically given by the limiting normal dis-

tribution. In the Sevast'yanov and Chistyakov [8] and the Chistyakov and

Viktocrova [ 2] papers only the moments of order one and two are reported and

for these only the leading terms of their asymptotic development are reported.

The methods of this paper can be extended to exhibit the joint asymptotic normality
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of any subset of (so, Sip vy sp) , but this extension would be very tedious.

The complete asymptotic expansion of the standardized central moments of s 0

is implicit in Weiss's paper [ 9], but the specific details are not provided therein.

o LR B ALAL
RS DT R BB T A R U RE TR

In another paper (Harris and Park [3]), we have studied the limiting distribu-

£ e ol wisieh i i g vt dialed
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tion of linear combinations of the occupancy numbers, since this is precisely

1y et A el

VI,

the form in which the occupancy numbers enter into various non-parametric tests.

The results in this paper have been useful in pursuing that investigation.

At

2. The Moments of the Occupancy Numbers. In Wilks [10], p. 433, the joint 5

distribution of s o’ Spp Sog ey S is given by

e e e

n! Nt )
s s s }

N(o1) Can .. "5,y PN

SN e g,

(2) D(SO, SI) seey Sn) =

TN R

n

where s >0, :?_J s, = N, Z isi =n . The vth factorial moment (Wilks [10],
i=l i=1

p. 153 or 433) is given by

pigE

T A LR A AR
St

Kaid b tent o 0 Y gatit

(v) v (iv)! 1. iv v N-iv
(3) B(s; ") ———Lw) () () ) -5

where v < N, iv <n . Thus, we can write

i 048
2t 4o

e
it

3
:

R B o g

(s, RN T

(4) s ) A= RN,y

1)

A

e G A

&

where
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YO

n{N,n,,v) =C.
TT (1--) iv>0 .
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Let }AS) be the kth central moment of s, and let @y and Bj K be the
+ s ’

Stirling numbers of the first and second kind respectively, defined by

k
(k) _ j
x ngl @ ) X

aind
k
k _ (i)
i —j§lpj9kx ’

{m)

where x =x(x-1}) ... {x-m+1)

We adopt the conventions that o, , = B =0 unless j=k =0, or 0<j<k.

ik

= =1. T
0,0~ Po,0 hen,

i,k
In particular «

[r———
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k-r N(p)

. g -——(
pZO P,k (1')

k k-r _
= ) L i 1)1' (k) N'F ( . )l(r-!-p) « B
r=0 p=0 j=0 )f"P N isP pPyk-T

)P (1B 1P N i, p)

N N

. 1 r(n-i) pnxp
(1- N) (IN [h(Nnil)] h(N,n,i,p) .

Weset p+r=s and j+ r=£{ obtaining

k
(6) (1) Z Z Z (- 1) ( - (II:I)IS L-r, s-r ﬁs-r k-r
r=0 s=r £=r (i ) ’ ’
< - Y - EEET oy 1) R n 4,50

In the asymptotic analysis of (6), we will frequently employ the following

relationships. If N,n-—o® sothat n/N—+a, 0<a<o, then for each fixed u,

00
- 1
(7) (1-5)" = exp{-n), 65
i=1
u 1 u.j T
=exp{-n ), - (3)'}(1+0O(N" ) .
et 7N
b
We will also employ the convention that Z @ = 0, whenever b<a .
i=a

Now apply (7) to (6) and let n,N— o, so that n/N-~a, 0 <a <®, obtaining

for each fixed i, 1<i<q ,
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€ (1- %I-)”“’i) (132571050 1 v n,1,1) 17 B(N, 0, 1, s-1)

Thus,

N

= exp{-r(n-i)z — -(n- i(s-r))z -1-
t"'ltN

L L R
t'n u=0 t=1 t n

o0 o0
=exp{s % rI:I Z r+(s- r) 41 z r+(s- r)

=l (BN =1 N

Qi-}tht m‘-'i--r)ltNt
- Z — <) - Z —< ) )
t=1 u=0 tN t=1 u=0 tN

(9 -V o S PEED i n 4 01 ey, -0

t+1 t+l -1 t
= s - Y (&) r+(s-r) . r+(s-r) N tru
exp{S(N) t-ZiN () 1371 1= +uz=o(n) -
-r)-l1 t
. t -
+§, @) R +om )

u=0

Observe that the exponent in (9) is of the form

where Pt +1

.
n
SN tzl Pen (O N

(r) is a polynomial in r of degree at most t +1 with coefficients

T
depending on n/N, r, i, and s . Now we expand exp{z Pt+l(r) /Nt} obtaining

t=1
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(10) exp{}. P, (r)/N} = 3, () b, (ry/nYY /31
t11 t+} =0 t= t+1

.
= i (ZPt+1(r)/I~It)j/1!~+ R(p, N})
j=0t=1

We now estimate R(p,N) . Clearly, since i<q, s-r <k, r<k, we have

t+1 t+ t
e (o cnkak™) g™ | (_1\1; x gt
t+l - N t+l t n’ t t+l
t ot
n t+l

Now let max(%,-f—) =f . Then

lp,,, () <38 qa)™ .

t+l

Thus, for N sufficiently large,

T

t 2,2
) P, (/N1 <160%" 8/N
t=1

and
00 T ‘] 0 §
IRGe, ™ = 17, (L2, /Y7l <), /s,
j=ptl t=1 i=ptl
where y =16 qzkzﬂ . Thus, we can easily establish that
(11) IR(p, ) =0 (NP7}

Hence, combining (9), (10), and (11), we have in fact established the following

lemma.
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Lemma l. If N,n—w sothat n/N—~a>0 and i <q, then for any pair of

. positive integers p and 7 ,

(12) (l-lﬁ)r(n'i) (-5 S0 (N, n, 1, 1)) B(N, n, 1, 5-1)
=e 1| f. (Z,Pm /Yy o P 1r0m™y |,
i=0 t=1

where Pt-l-l (r) is a polynomial of degree at most t+1 in r .

We now establish the following.

Lemma 2. Under the hypotheses of lemma 1, -

-(13) f (E Pt_'_l(r)/N )j/j! = ZP K (r s-r, 1)/Nm

j=0 t=1 m=0

where for each m <p, Km(r, s-r,i) is a polynomial in r of exact degree 2m

whenever n# iN . The coefficient of 2 is

2
(- 1o i Nym
BT R U a el

Proof:

P(r)k P(r)k

Iry =
Zo@ P, (/N9 /i1 Zj, Zk!k, e o Y NZ )

2

P . .(r) k .
: =y k >0, Lk =] .

T

N

Congcﬁng terms by powers of N, we get

-8- #951
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T T
the second sum running over kl’ kz, coey k_r with jz,l jkj =m andjv‘lkj <p -
The degree « of each Km satisfies

k <) (J+1Dk, <m+ p<2m

i

et

]
Further, for each m <p, set k1 =m, kz = k3 =.,.. = k_r = 0 obtaining the term -
[Pz(r)]m which is of degree 2m, since the coefficient of 2™ s (-1)™(n/2N -
i+ Niz/ Zn)m ;and is non-zero by hypothesis. This is clearly the only term of
degree 2m .

The following lemma can now be established.

Lemma 3. For N, n sufficiently large, n#iN, and m<p,

k r k
(14) 2 (e

r=0

B

Km (r,s-r,i)

utm-~r, S-r° S-r,K-r

R R A A R R i R U LR R R AR

0 u>k/2

H

ck! u=k/2
where

o < Jsok/2-m Dis ("

i [Z(S-k/Z-m)]g [2(](*8)]! m!

2
ln. . i N'm
(2(N)"1+2 n) 9

(15)

pRASE R ML AN ALt AAMTASE QIR LEALIOR

v
.. C, = (-1}’ B, = (-1)° TT(2-1)
Y i=1
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Proof: It is well known (see Jordan[4], p. 151 and p. 171) that an_v " and
?

pﬂ vin are polynomials in n of degree 2v with leading coefficients CV/(Zv)!
~Vy

and Dv/ (2v)! respectively. Then,

tHr) = au-l-x.x-r, S-r

p

S-r, k-r Km (r,s-r,i)

is'a"polynomial in" r of degree 2(k-u) . Thus, the left hand side of (l4) is
0 u>k/2

k
Y, (0F Er e = (-1F a5 £(0) =

r=0 ck! u=k/2

We now return to our examination of the central moments and obtain the following
theorem.
Theorem I. If N,n - so that n/N-+ a > 0, then for every fixed i <q and

‘each fixed k ,

i 2 i .
~ —a k - —a.k/2 -
6w anp @ @tlial g k2 ok

k even;
k/2
"k(i) E(Zv—l) k even
(17) lim ————p =
n, N~eo[p,(1)] 0 k odd

Proof: From (6), (12), and {13), we have

k k s 1
ag)  w=) L L HE-E&)

. P .
r=0 s=r f=r (i!)s N L-r,s-r" s-r,k-r
L 1 N
SN TP Km(r,s-r,i)

e 1), ——-——,;——acom"’")J (1+0(N-T)\ .
m=0 N j
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Letting u =f - m and iaterchanging the order of summation, we have,

min(s-u,Tp) utm
. : r k i
i (-1) ( y N N n  is

m_ & &
(19) =) X = (%)
s=u m=max (0, -u) r=0 (i!)

=-Tp
n
_S_..

m-p-1
“’u+m-r,s—r ps—r,,k-t e (K (r s-r,i) + O(N

) (1+O(N" )) .

Since « a =0 for p<0, we can extend the upper limit of the sumon r to k,

p,
obtaining
. 3 min(s;—u,'rp) -sn/N
20) wl! = Z, N Z, (3)'° &—0r
1=-Tp s=u m=max(0,-u) (it)

k
. u-
Z -1 ( e “utm-r, s-rps-—r k-t Ka (25510 # Z om )

r=0 u:—‘rp

k min(7p, k-u) o
+ Z, O(Nu+m p-1

u=-Tp m=max{0,-u)

) .

Let

min(s-u,7p) k

: r k
Wbk =) L (- ([)a B

K_(r,s-r,i)
m=max (0, -u) r=0 um-r, S

s-r,k-r m 4

then, since a_ (i,k) =0 for s<0
s,u

. k -sn/N
(1) P)il) - Z Nu L(n ise ~ "

(i,k) +0(N"") + oY .
us=-Tp s=max(0,u) (11)

s s,u
If n+#iN, we canapply lemma 3. Here we choose T and p larger than k so that

the upper limit of summationon m is s-u for u>0. Tien, a_ _ (i,k) =0

u>k/2 . Thus, the upper summation limit of u becomes [k/2] . Hence, for
k even

#951
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k -sn/N
(i) k/2 | e n s k-\
(22) po! =N = =) a (1,k) + R(k,N,n,1) + O(N" )
k sz;k/z in® N s, k/2'" 2 N Tl
where A =min(r,p4 1) and
(k/2]-1
CROGNm,f) = ) N Y SN (_)m K
==Tp s=u (i‘) s,u ’
For k odd, we have;
K~1
— k -sn/N
q (1) 2 ‘ € n is
b (23 ) =N 2, 2%, o o (1,k) + R(k,N,n,i)
k s=(k-1)/2 (11)° N S (k-D/2
+0(Nk"‘)

;| From the proof of lemma 3, since a_ ,(1,k) isa sum of polynomials of degree < 2(k-u),
. ’
u(i,k) is itself a polynomial of degree <2(k-u) . Further for n and N

both sufficiently large, a, u(i,k) is uniformly bounded in u, -Tp<u<k .

b

Hence R(k,N,n,i) =O(N[k/2]‘1) . Choose \A>2k +1 . Then, for k even

_ sik/z ( Us-k/Z-m
(24) lim a (i,k) = k! -
N, n— o s,k/2 meo 25°K/2 m(s—k/Z-m)!Zk-S(k-s)!
2
§ _'_!.L(-.- +— m

s-k/2 (-1) s-k/2(q- Zi+iz/a) m

= k1
m=0 2k/2

(s-k/2-m}) 1 (k-5) tm!}

-12- #951
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s-k/
m

s-k/2 S-}C/Z
( ?‘) (a-21+ 1‘7‘/0,)’“

2k7z(k-s) 1(s-k/2)1 m=0

2\s-k/2
_ k/2 s-k/2(a+ (a-i) )
- Dk/Z(s--k/Z/ (-1 ( a

st ascent 1t

Thus for k even,

(i)

3 k -as . 2s-k/2
. k . e is k/Z S—k/z a+ (a_l)
(25) lim =D a ( ) (-1) (.___.....
n, N N k/2 D2 qnyS \sK/2 @

=D (e-aai) k/ 2 (1 (a + (a-i) 2) e-aai )k/Z -
- Tk/2\ it - a it :

For k odd, the conclusion for N+# in follows from (23) and R(k,N,n,i) =
Om[k/a]-:) )

For N =in, the conclusion follows from the continuity of pk(i)/Nk/ z
in @ . To s=e this, observe that (21) is a finite sum and that for N sufﬁcientiy
large, n =aN + o(N) . Substitution of this into (21) and application of some

elementary analysis permits one to verify the continuity of the limit {25) in a .

Corollary. Under the hypotheses of theorem 1, (si - E(s 1)),/crs has a limiting

i
standard normal distribution.

Proof: This is immediate upon noting that lim "l?) /[ pg)]k/ 2 are the
n,N—+ow
moments of the standard normal distribution.

Remark. The methods of this section are 2 direct extension of those used by

1. Weiss [9]. We have however extended the analysis to s,, i# 0, whereas

1’

Weiss restricted his attention to s The procedure used herein also gives a

oo

complete asymptotic expansion for y{i) and thus contains additional information

on the limiting behavior beyond the statement of the corollary.
#951 -13-
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