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ABSTRACT 

The theory of gain saturation of a two-level system is briefly reviewed and then 

generalized to include an arbitrary number of upper and lower levels; the upper 

levels are coupled to each other, as are the lower levels. The laser radiation 

is assumed to induce transitions between one upper and one lower level. In the 

limit of tight coupling among the upper and lower levels by themselves, the 

equations reduce to those of a two-level system, with effective relaxation rates 

that are weighted sums of the relaxation rates of the multilevel system. The 

relaxation rates occurring in a CO„ laser system are comparatively low so that 

one would expect spatial diffusion to play an important role in determining sat- 

uration. A theory of diffusion is carried through and it is shown that diffusion 

effects can indeed be important for optical beam diameters of a few millimeters. 

Finally, experiments on a sealed-off CO„ laser oscillator and amplifier system 

are reported.   Amplifier gain is measured for four different beam radii.   The 

"equivalent" saturation parameter derived from the measurements decreased 
2 

monotonically from 97 to 25 W/cm   as the average input beam radius increased 

from 0. 9 to 2. 5 mm in the 9-mm radius discharge tube of the amplifier. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 
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PREFACE 

The bulk of the work presented in this report has appeared as a Master's Thesis 

by C. P. Christensen, submitted to the Department of Electrical Engineering at 

Massachusetts Institute of Technology in September 1968, entitled "Diffusion, 

Relaxation and Gain Saturation in the CO. Laser." Although based on the thesis, 
this report differs in several ways. When the thesis was composed, we were un- 
certain to what extent the other rotational-vibrational levels (e.g., the J-levels 
of 00°2) could contribute to the "effective number of levels." Further, the num- 
bers used in the thesis to estimate the importance of diffusion were very rough. 
More detailed work by H.A. Haus gave more accurate magnitudes* Sections I 
through III were accomplished with close cooperation of Christensen and Haus; 

Sec. IV is the work of H.A. Haus, and Sec. V that of C. P. Christensen. The ex- 

periments of Sec. VI were conducted at Lincoln Laboratory by C. P. Christensen 
and C. Freed. An abbreviated version of this work centered around the exper- 

imental results, under the title "Gain Saturation and Diffusion in CO? Lasers" by 

C. P. Christensen,  C. Freed,  and H.A. Haus,  will be published in the June 1969 
issue of the IEEE Journal of Quantum Electronics. 

H.A. Haus 

* This work was  supported   by Joint   Services  Electronics   Program (Contract 
DA28-043-AMC 02536(E)). 



EFFECT OF DIFFUSION ON GAIN SATURATION 
IN C02  LASERS 

INTRODUCTION 

In a laser system,  the gain-saturation parameter determines how the gain decreases with 
increasing intensity.    The C09 laser is a high-power laser,   in part,  because it has a large gain- 

1-3 saturation parameter.    Published experimental results on the CO- laser        reported rather 
widely different saturation parameters.    The conditions in these experiments were sufficiently 
different so that the variances in the results in themselves would not be too surprising.    Yet,  the 
work reported here was stimulated in part by the rather large variation in the saturation param- 
eter found by these workers,   in the belief that there existed some unsuspected cause for the dis- 
crepancies.    The desire to predict the power emitted by a CO? laser at threshold was another 
reason for the investigations reported here;  this prediction requires knowledge of the saturation 
parameter.    The saturation parameter predicted on the basis of a two-level description of the 
CO- laser system is an order of magnitude too low compared with the experimentally observed 
value.    Hence,   it is immediately apparent that a multilevel description is called for,   in view of 
the fact that the coupling among the vib rational-rotational levels of the 00° 1 and 10 "0 states is 

strong.    Further study led to the realization that diffusion effects must play an important role 

in determining the gain saturation in a CO? laser with a beam radius of up to a few millimeters. 
In Sec. I, we present a brief review of gain saturation in a two-level system.    Although the 

4-7 5 results are known and have been used in the literature,        the original derivation    has never 

been published. In presenting it here, we provide a useful background for the discussions in 
Sec. II of the multilevel system with a lasing transition occurring between two levels, still dis- 
regarding spatial diffusion. In Sec. Ill, we specialize to the case of a multilevel system with 
tight coupling among its upper and lower levels. A closed-form expression can be obtained for 
the gain-saturation parameter depending only upon the Boltzmann equilibrium densities and the 
relatively low relaxation rates of the levels considered into the levels not explicitly included in 
the rate equations. 

In Sec. IV,  we discuss diffusion in the mixture of gases:   CO-,  N,,  He,  and H?.    A diffusion 
constant is obtained for the pressures and temperature used in a typical sealed-off CO? system. 

We find that a CO- molecule can diffuse across an optical beam of a few millimeters in a time 
comparable to the inverse relaxation rate of the lasing level; hence,  we conclude that spatial 

diffusion effects can play an important role in determining gain saturation in CO-.    Section V is 

an analysis of gain saturation in the presence of spatial diffusion for an optical-beam profile of 
rectangular shape.    This analysis can be carried out in closed form,  and gives an estimate of 
the influence of diffusion upon the gain-saturation parameter.    The experimental results are 
presented in Sec. VI. 



I.      THE  TWO-LEVEL SYSTEM 

We first investigate gain saturation in the steady state in a two-level system.    A rate equa- 

tion approach is adequate because of the steady-state condition,  and spontaneous emission can 

be disregarded because the power levels to be considered are high.    We have the rate equations 

dN 
dt = -y  N - W (N  n^ + R (1-1) 

— T.n-W&n-NJ+R, (1-2) 

where N is the population density of the upper level,  n is that of the lower level, the y's are the 

relaxation rates,  and W is the rate of induced emission which is related to the spontaneous tran- 

sition time t      by en     J sp 

where 

and 

with 

sp 

I = intensity of radiation, 

X = wavelength of radiation, 

v - frequency of radiation, 

g(v) =  =-^ j- (1-4) 

v    - center frequency of lasing transition, 

Av = Lorentzian half-width of transition; 

g   and g. are the degeneracy factors of upper and lower levels,  and the R's are the pumping 

rates. 

The gain constant  a  is obtained from the above by noting that, by definition, 

a=Td5 (I"5) 

on one hand, and,  from energy conservation, 

£=h,W(N-^n) (1-6) 

on the other.    Hence, 

2 A' 

sp 
(N-^n)g(H      . (1-7) 

Returning to the rate equations and noting that d/dt = 0 in the steady state,  we may solve 

for [N — (g /g.) n] in terms of I,  obtaining 



A2 

8lrtsp 
(N-f*n)g(„] 

«<">     f o     —T   • t1"8» 
~Sp 1 + W 

87rt0„ 
&' r 4 1_      fuj_| 

u       gl   yt J 

When the radiation is weak,  W in the denominator of Eq. (1-8) can be set equal to zero,  and we 

obtain the small-signal gain a  , 

X2 

a 
°      8,rtsp 

g{v)\y~-^Tt)  ■ (I"9) 

4-7 With increasing intensity,  the gain decreases according to the law 

o rrw^) (I-10) 

where 

8irt    hv . 

^=^1  -5  (I_11) 

g(v)\"   J_ + fu ± 
ru     gt yt 

is the saturation parameter at the center of the Lorentzian line. 

Generally,   i/y. « l/y    and,  in this case,   Eq. (I — 11) can be rewritten, by returning to the 

definition of W  in Eq. (1-3), 

y    = W(I = I   )       . (1-12) 'u s 

Thus,  saturation occurs according to Eq. (1-12) when the rate of induced transitions becomes 

comparable to the relaxation rate of the upper level.    The induced transitions depopulate the up- 

per level at a rate comparable to the rate at which molecules enter or leave the upper level by 

relaxation processes in the lasing medium.    Thus,  when considering a system of given small- 

signal gain,  we can increase the saturation parameter (and hence, presumably,  the output power 

of a laser) by increasing the relaxation rate.    At first glance,  this seems somewhat paradoxical; 

indeed,  it seems that a system is made harder to saturate,  and thus capable of delivering a higher 

power density,  when we increase the rate at which particles leave the excited level (and cease 

to interact with the lasing field).    The paradox disappears as soon as we note that by raising the 

rate of relaxation of the upper level at a given small-signal gain,  we must raise the pumping 

rate;  in other words, we must raise the rate at which particles enter the upper level. 

One means of effectively raising the rate at which particles start or cease to interact with 

the lasing field is by diffusing particles into and out of the laser beam.    Hence,   diffusion can be 

expected to increase the saturation intensity.    The increase would become noticeable when the 

rate at which particles leave the beam via diffusion becomes comparable to the rate of relaxation 

of the upper level y  .    We shall return to this point after studying the multilevel system. 



H.    THE  MULTILEVEL SYSTEM 

We consider a system consisting of a set of (tightly) coupled upper laser levels and a set of 
(tightly) coupled lower levels.    The weaker coupling to all other levels is represented by a phe- 
nomenological relaxation rate to each of the upper and lower levels.    Lasing action is assumed 

to occur only between one upper and one lower level,  denoted by the subscript 1.    The lasing 
levels are assumed, at first, to be homogeneously broadened.    Spontaneous transitions will be 

neglected. 
In the CO, system, the set of upper levels is assumed to represent the tightly coupled set 

of upper vibrational-rotational levels (00°n, J), the lasing level being the (00° 1, J.) level. The 

rate equations for this system are of the form 

*W - -y^ - Z rk>4 * I rJX-w(Nl -£»,)+ R» 

dN,  2  _ _   u 
dt r2 N2 " Z rk2N2 +  Z r2UkNk + R2U      •       etc- 

dn1 

"dF 

dn 

'i ni - Z rkVi + Z riknk + w (Ni - gT ni) + Ri 

2 1 v T, .   V ^t .  „i 
dt ^2n2 Z rk2n2 +   Z TLnk + R2       •       6tC- (II-d) 

Here,  N. and n. are the population densities in the upper and lower lasing levels,  respectively. 

The remaining N, 's and n, 's are the population densities  of the upper and lower vibrational- 

rotational levels,  respectively.    R,   and R,    are the pumping rates,  and W is the induced transi- 
tion rate defined in Eq. (1-3).    The r.,'s and r.,'s are the relaxation rates among the upper and 

u -1 J th lower levels,  respectively,    y,   is the rate of relaxation of the k     upper level into all other levels 
0 +v» 

not explicitly included; y,   is the rate of relaxation of the k     lower level into all levels not ex- 
plicitly included.    The remaining quantities were defined in Sec. I. 

In the steady state, the time derivatives in Eq.(II-l) are equal to zero.    The equations can 

be solved for N. and n. in terms of W(I) by means of Cramer's rule and,  in this way,  we obtain 
an expression for gain saturation as a function of intensity.    First,  define the effective relaxa- 

tion rate for the k     level 

ßu        u      y     u 
pk      Yk +  L xjk 

j 

"k = Yk + Z r/k    • <n-2> 
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(II-5) 

and similar determinants for the quantities referring to the lower levels,  we obtain for the pop- 

ulation density N. in the upper lasing level 

^ -fllWA']   +— WAUK, 

AV -w[|ü AV + A'A
U
] 

(II-6) 



A similar expression is obtained for the lower level. 

nl = 

Kj [A    - WAU] + WAK 

AV -W^AV H-AV] 
(II-7) 

From Eqs. (II-6) and (II-7), we obtain the population inversion.   From the fact that the power added 

to the laser beam per unit volume is hv [N, — (g /g.) n.] W,  we compute the gain constant  a 

87rt sp 

K 

Ai    Si 

A2I 
g{v)       87rhvt sp 

A^ + Alfu] 
AU       Ai   8|J 

(II-8) 

Several features are worth noting.    The dependence of  a  upon intensity I  is the same as that of 

a two-level system (the quantity in brackets is negative).    Further,   for any particular set of dis- 

charge conditions,  all parameters are constants in terms of which the saturation parameter (i.e., 

the intensity at which the gain constant drops to half its value) can be evaluated 

8irhvt„ 
I sp 

.2  .   JAV^UA
1 

!T       gi   A 

(II-9) 

In terms of the saturation parameter,  we may write the dependence of  a   upon I: 

1-i 
i + 

tf 

If the system is inhomogeneously broadened 9,10 
the gain constant is produced by interaction with 

molecules of varying center frequency v   .    The probability distribution p(v   ) over v    for a gas 

in thermal equilibrium is Gaussian 

1 

N/T Ai' 
exp 

(v    —v'\2-% 

where v '   is the line center frequency of a molecule with zero velocity.    The gain constant,  for 

the case when the Gaussian linewidth Ai>    is much larger than Ay,  is 

A2p(f) I    AU       g*   AiJ 
87Tt sp 1   - X2I A'  -

U
I 

&irZhvt     Av   IAU
       A1    gi sp 

(11-10) 

If we study the decrease of  a  with intensity,   at small intensity,  we find a linear decrease with   I 

a = ao (4-rf) (II-11) 

where I    is given by the same expression as for the homogeneously broadened line.    The gain de- 

creases less rapidly with intensity because, in effect, a larger population density is participating 



in the interaction than would have been if all molecules had the same center frequency and had 

a density such that the same small-signal gain would have been achieved. 

When the inhomogeneous broadening is not as large as assumed to arrive at Eq. (11-10), the 

integration cannot be carried out in closed form.    Still,  the gain decreases with increasing I; 

initially, at small I, the dependence is as in Eq. (11-11) with the factor in front of i/l   varying be- 

tween 1 and j,   depending upon the degree of inhomogeneous broadening.    We may take advantage 

of this fact,  and define a satv 

the straight-line dependence 

of this fact,   and define a saturation parameter I    by fitting the initial dependence of  a  upon  I to 

1 - (II-12) 

where f- I   < I   < I  ,  depending upon the degree of inhomogeneous broadening.    The important 

fact to note is that I    is a function of the relaxation rates,  linewidth,  and degree of inhomogene- 

ous broadening, but is not a function of the beam geometry (beam diameter) if the rate equation 

description Eq. (II —1) is indeed the proper model of the system. 
u u i i 

In Sec. Ill,  we shall make the assumption that y,   « V.,   and y,   « T., ,  and obtain an esti- 

mate for the saturation parameter I  . r s 

m.   EQUIVALENT RELAXATION RATE 

When the coupling among the upper levels is tight (y,   « r., ) and the same holds for the 
u a 

lower levels,   we can expand the determinants in Eq. (11-11) in powers of y,    and y,  ,  and express 
u a 

the result in terms of equivalent relaxation rates y      and y 
u t eq eq   u t The determinants A    and A    are zero to zeroth order in y,    and y.  ,   respectively.    The first - 

u It u H order term in y,    and y,    of A    and A    can be found in terms of the cofactors of the y's in A.    In- 

deed,  to first order in the y's,   we may set all but one of the y's equal to zero in  A of Eq. (II —3) 

and then sum over all the terms obtained in this way.    Further simplification is obtained through 

the principle of detailed balance. 

Defining, 

u N er e 
(III-l) 

where N,    represents the equilibrium density,   we have from the principle 

y. 
u 

•>'l 

u 
(III-2) rjk "  rkj 

and a similar expression for the lower levels. 

Now consider the cofactor of the 11 term in the determinant Eq. (II-3),  with all y"'s set equal 

to zero.    We find 

U, 

1-1 

N 

M 
n 

i=l 
N. 

l 

-ly 
u 

.12 

K32 

M2 

*23 

J3 

M3 

u 
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-z jM 

(III-3) 



Now consider the cofactor of the 22-element 
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(III-4) 

Adding all columns to the first column and all rows to the first row in the determinant 

Eq. (III-4), we find that 

C C ^22        H 

Ne Ne 
iN2 1 

Similarly,  we can prove that 

C..       C, , 

N.e        N.e 

.1 k 

To lowest order in the y.  's. 

(III-5) 

(III-6) 

AU=C 11 (III-7) 

and 

A1 N. 

M 
S 

i=l 

(III-8) 

yuNe 

'i     l 

A comparable expression is found for A /A  .    Introducing these into Eq. (II —9),   we have for 

the saturation parameter of a homogeneously broadened medium 

87rt     hy sp 

g(iOA' 
N 

(III-9) 

z yuNe 
i    i 

§i   2 y.V 

u e One interesting observation may be made immediately:   When all y   's and all N. 's are 

equal,  then \/y    of a two-level system is replaced by l/My  ,  where  M  is the number of levels. 
u I A corresponding relation holds for the lower level.    The rates y    and y    are increased by 

a factor equal to the number of levels,  and the saturation parameter is raised accordingly. 

More generally,  it may be stated that the gain saturation of the system behaves similar to 

that of a two-level system with equivalent relaxation rates 



N 

vuff     2 yuNe 
eff ' l     i 

(III-10) 

eff 
„     I   e Z y. n. 

' l    l 

(III-ll) 

We may estimate these rates for the CO, system by assuming that all y   's (and the y   's) 
are equal to each other.    The populations of the J     rotational levels are proportional to 

(2J + 1) exp[-BJ(J + 1) kT"] 

where the parameter B  is characteristic of the vibrational state to which this vibrational- 
rotational level belongs.    The populations of the vibrational states are in the ratio's-of 
exp[—(E/kT)], where  E is the energy of the vibrational excitation.   Table I shows the parameters 
obtained from the literature,  and from which the effective enhancement of the relaxation rate 

TABLE 1 

Vibrational State 

B 

(cm    ) 

Energy 

(cm    ) 
Computed No. 

of J  Levels 
Relative Total 

Population Density 

00° 1 0.3866 2349 -14 1 

00°2 0. 3837 4679 -14 0.033 

00° 3 0.3808 6976 -14 0.011 

00°4 0.3779 9256 -14 0.007 

can be obtained.    We assume,   in the absence of more precise information,  that all y   's are 
equal to each other.    The sum over the rotational levels within one single vibrational state is 
approximated by an integral 

YJ      (2J + 1) exp[-BJ(J + 1) j^] 
J even 
or odd 

K £ \      dJ(2J + 1) exp[-BJ(J + !)££]- kTJ      2Bhc 

If the lasing level J. is assumed to have the largest population, 

0 

(111-12) 

jj (2J + 1) exp[-BJ(J + 1) £|] 
J=J, 

we have,   solving for J. and taking the value  B  from Table I,  at T = 300°K: 

kT 
' 2Bhc - 1  a 18 



The population density N.   is proportional to (2J. + 1) exp[—B^^J^ + 1) (hc/kT)].    Summed 
over all rotational states,  the population density in each of the vibrational states is  given by 

Eq.(III-12).    Hence, the effective relaxation time of the upper level is 

2 expI-ttWj/kTJJ/B. 
u u /v *Te/,.Te\       u   kT    i  ,ITT   .,, 

yeff = y   (LNi/Nl) = T     2hc" (2J4 + 1) exp[-B1J1(J1 + 1) (hc/kT)]      ■ (III~13) 

f 
A similar expression is obtained for y  ,,,  noting only that the J value of the lower level in the 

P-branch is higher by one than that of the upper level.    Introducing the values of Table I,  we 
find 2 N.e/N.e = 14.1 at T = 300°K.    If the "temperature" of the vibrational distribution is larger 

than that of the rotational distribution,  then the exponentials exp[—(hv./kT)] are larger,  leading 

to larger entries in the last column of Table I. 

IV.   DIFFUSION m A MULTI-SPECIES SYSTEM 

The process of gain saturation in a sealed-off CO? laser under the influence of a laser field 

with a small optical beam radius,  such that diffusion plays a role, proceeds roughly as follows. 
The laser field depletes the population in the upper vibrational-rotational levels and causes 

an excess population in the lower levels.    Therefore,  excited CO? molecules from the outside of 
the beam region diffuse into the "spatial hole" formed in the population density of the upper levels 
within the beam region,  and de-excited molecules diffuse out,  away from the "heap" of excess 

de-excited molecules.    We treat all molecules in the upper levels as a single species (see Sec. V 
for further details),  diffusing in a background of CO? molecules in all other levels,  of N?, He, 

and H?; the same is done for the de-excited molecules.    The problem is thus reduced to one of 
diffusion in a 6-species gas:   (a) the excited CO. molecules,  (b) the de-excited CO. molecules, 

(c) CO. molecules in all other levels,  (d) N_,  (e) He, and (f) H?. 
Consider a system at constant temperature and constant total pressure. It may be stated 

phenomenologically* that the density gradient of species j is equal to the weighted sum of the 
diffusion currents of all species 

Vn. =   £ djkCk      . (IV-1) 
k 

Onsager's relations imply d.,   = d, ..    We prefer to write the above equations using different 
symbols for the constants because they are related more directly to measured or computed dif- 
fusion constants in the literature.    Also, when written in the new format,  the equations automat- 
ically imply constancy of total pressure  2 Vn. = 0,  as appropriate for the present case.    Then, 

j        3 

C,   -C. 
Vni=     Z       ?r>     3      -       DM, = DU.       . UV-2) 

The fact that not all of Eqs. (IV-1) are independent is displayed explicitly in the form of Eq. (IV-2). 
Indeed,   if the total pressure is to remain constant (note that the temperature is constant and 

rWe gratefully acknowledge the assistance of Professor W. P. Al I is of M.I.T. in formulating this problem. 

10 



equal for all species),  2 Vn. = 0, as explicitly shown in Eq. (IV-2) but only implied by Eq. (IV-1) 
j        ■" 

through proper constraints imposed on the d., 's.    Equation (IV-2) further displays the physically 
reasonable fact that density gradients are due to relative particle currents. 

Consider two species as an example.    From Eq. (IV-2),  it follows that 

V(nd + n2) = 0 (IV-3) 

because D,? = D?,.    This is merely the condition that the total pressure remain a constant.   Be- 
cause the total particle current must be zero to maintain the constant total pressure,  C. + C? = 0. 

It follows that 

Ci = -D12Vni       . (IV-4) 

This expression identifies D._ as the diffusion coefficient of species 1 in species 2,  for which 
experimental data and theoretical expressions are available. 

Next,  we note that no sources or sinks of the background gases are present within the dis- 
charge.    Therefore,  in the steady state, 

Ck = 0 (IV-5) 

for k ^ 1,  2, where we identify with k = 1 the excited and with k = 2 the de-excited CO- molecules. 
The current of the excited molecules must balance the equal and opposite current of de- 

excited molecules 

Thus, 

Ci = -C2       . (IV-6) 

<s-(4^i,4h • Vn 
1 \U12       £ X   " k=3 

We find for the effective diffusion constant of the excited CC"   molecules 

11 — Jeans      cites a formula for the diffusion constants D.,   in terms of the molecular speeds c. and 
molecular diameters a..    Defining 

S.k = 1 (a. + afc) (IV-9) 

we have 

D
jk = -4T W7^ (IV-10) 

3irvS' Jk 

where v - v . + v,   is the net particle density.    Table II gives the parameters used (taken from 
i       K 

Ref. 12) and the diffusion constants D.,   obtained.    The effective diffusion constant computed is 
2 -1 •* D s 46 cm    sec 

11 
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On the basis of the foregoing results,  we may estimate how important a role diffusion may 
play in determining gain saturation.    As pointed out before,  saturation sets in when the rate at 
which the optical field depletes the upper level becomes comparable to the rates of relaxation 
of the upper level.    These relaxation rates are collisional in nature, when diffusion is negligible, 
but may become (in effect) enhanced if the particles diffuse into,  and out of, the beam within a 
time comparable to the inverse collisional relaxation rates. 

In Sec. Ill,  we found that the effective collisional relaxation rate of the upper level is larger 
than the actual rate,  if the upper laser level is coupled to other levels.    The question then is 
what collisional relaxation rate should be employed to obtain an estimate of the importance of dif- 

fusion effects —the actual or the effective collisional relaxation rate?   This can be answered by 

considering the physical reason for the enhancement of the collisional over the actual relaxation 

rate in a system of M tightly coupled levels, with y.   - y    (i=l,2,...,M).    Particles can leave 
the lasing level into the "general background" i.e.,  into all the levels not explicitly included in 

the rate equation (II-l),  either directly (at the rate y  ) or by first cross-relaxing into any one of 
the M-levels,  and then leaving into the general background at the rate y  .    A particle has effec- 

tively  M ways of leaving the system of upper levels,  hence y  ., = My  .    The saturation param- 
eter is raised as the rate at which the particles leave the upper level is increased.   We have 
pointed out before that the increased power density obtainable from such a system (with given 
small signal gain) is achieved because the rate at which particles enter the upper level is also 
raised accordingly. 

Diffusion is another means by which particles can enter (or leave) interaction with the laser 
field.    In a system of M tightly coupled levels,  all these levels diffuse.    Diffusion effects will be 
appreciable when the rate of diffusion of each of these levels becomes comparable to the relaxa- 

tion rate of each of these levels,   i.e.,   comparable to y  ,  not y_f(- 
Hence,  when computing the contribution of diffusion to any one particular group of excited or 

de-excited CO. molecules,  we should compare the rate at which diffusion supplies or extracts 
molecules, with the relaxation rate of a single level,  and not y „. 

We may quickly estimate the importance of diffusion effects by studying the random walk of 

an excited CO- molecule in the background of CO?,   N?,   He, and H? molecules  (as used exper- 
imentally).    By using the effective diffusion constant D = 46 cm   sec"  ,  a CO, particle diffuses 

i  -3 a distance d = v2Dt = 2.8mm within a time t = 10      sec corresponding to the inverse relaxation 

rate l/y  . 

V.    A THEORY OF DIFFUSION IN THE  PRESENCE OF GAIN SATURATION 

From the foregoing,  it is reasonable to expect that diffusion plays an important role in de- 

termining saturation.    We now present a simplified theory designed to evaluate the gain as a func- 
tion of beam geometry and input intensity,  and hence the effective saturation parameter I   as 

influenced by diffusion. 
To include diffusion effects in the rate equations of a system,  a particle current C    can be 

defined which is proportional to the gradient of the number density,  with the proportionality fac- 
tor being the diffusion constant D 

C    = -DVN      . (V-l) 
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Then,  from the conservation of mass, 

V-   Cp = "fir] diffusion (V"2) 

DV2N
 = tfl diffusion      • <V"3> 

r-i^-rV 

Formally,  let 

and 

rk=^k-Dv2      • 

Then,   Eqs.(II-l) still hold formally,  with y.   replaced by T. ,   and y.   by T. .    Actually,  the prob- 

lem now involves a set of coupled partial differential equations.    We can reduce this set to two 

coupled equations in the limit of fast rotational relaxation by the following heuristic argument: 

In the absence of diffusion,  for tight coupling, the saturation intensity is that of a two-level sys- 

tem,  with y    represented by  2 y. (N. /N.),   and y    represented by  Z y. (n. /n.).    If diffusion is 
i A» i U u x x treated formally by replacing y.   by r. ,  and y.   by T. ,  the expression for the saturation inten- 

sity is that which would have been obtained from a two-level system with the diffusion constant  D 

replaced by 

N.e 

D'  = D — u 

for the upper level,  and 

1 

e n. 

I e 
nl 

for the lower level.    We may use this argument to replace the set of coupled partial differential 

equations by two such equations.    Further,  for simplicity, we use the same diffusion constant 

for both levels 

M    Ne 

D' = D Z -T  ■ 
i=l Nf 

Further,  using the symbols 

Zu 
7i   ZT* 

N.e 

Nf 

e n. 
yt = Z yf -V 

n1 
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we obtain 

and 

D'V2N1-ruN1-w(N1-|Hni)=_R« 

D'V2„1-yin1+w(N1-^n1)=-R1
i 

(V-4) 

(V-5) 

Solution of Eqs. (V-4) and (V-5) for a Gaussian beam is quite difficult.    However,  a relatively 

straightforward solution can be obtained if the beam has no radial variation in intensity.    Allow- 

ing W to be constant across the beam and setting it zero outside,  we obtain by combining 

Eqs. (V-4) and (V-5), 

l(D'V2 -yu-W) (D'V2 -yt)-J* W(DV2 -yj]  nt = yuR* + W(R^ + R^)      . (V-6) 

Assuming a modified Bessel function for the homogeneous solution leads to 

nl = 

yuR/ +W(R4
U + R1

i) 

/gu \ y y.  + Wl  V    +7,1 
U   i \gjf      u       'l) 

+ *+
I
0(^+

r' +*.I0((P_r» (V-7) 

where 

yu+ yt 
+ (d + |T) W * /^u - V2 + w211 + IT) + 2W(d - 17) <^U - V et, elt 

1/2 

2D' 

and tp    and >j)    are constants to be determined from the boundary conditions.    Since 

(V-8) 

the population inversion of the medium inside the beam can be written as 

I R i (V-9) 

„ u _ £u       RI 7 

gu ^Rl       g,   yuRl 7,-DV2 

N. — — n. = +  w  *+Io(<P+r) 

Vt -DV2 

+  ^   ^_I0(<^_r) (V-10) 
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Outside the beam,  W becomes zero and 

(V-ll) 

(V-12) 

N, =  — + |   K    ( \y  r/D') 1      y        *u   o W   u ' 'u 

where 4    and £ . are constants to be obtained from the boundary conditions.    We require conti- 

ya density and particle currei nuity of population density and particle current at the beam boundary r  .    Defining 

V u 
* y, + Wly„ + — y   I u't \rt      gt   'u) 

yuRf +W(R1
U + R1

i) 
1)1 =  1 K \ 

Vi + W(Yi + g7yu) 

the boundary conditions can be written in matrix form as 

-A , I  (a> , r  ) —A   I  (w   r   ) + ovv+  o - o ^ -  o 

-<P+Vl(<P+ro) -<p_A_I1(v)_ro) 

o\V D'     0/ 

D'  KlW D'  roj 

I (cp ,r  ) I (<p   r  ) 
ox^ + o o ^ - o 

^+I
1(«'+

ro) ^-I^-ro) 

y ^u ru 

Rl 

^7 ~Vt 

h 

*. 
- 

<u 

>J 

(V-13) 

(V-14) 

(V-15) 

o\v D'     0/ 

(V-16) 
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It is also convenient to define 

6(a,b) 

I (<P  r  ) ovva o' -K   (Mr) o\V D1     of 

w   I.yep   r   ) +    / -j=rr  K.I     frr T   I ra lxva o v D'     1 yv D'    o) 

where a assumes the "values"  + and —,  and b assumes the "values" I   and u.    Then, 

(V-17) 

V^" -%) Kl  (M ro) yfee<-'<> + A-(?7 ~"i)  Kl (JÜ ro) -/¥ e<~'u 

A+e(+, u) e(-, i) - A_e(- u) e(+, t) 

(^ -Hu) K4  (7^ro) 7^9(+.i) + A + (^-  -„,)   Kl  (J^ rQ) J£ Oj+.u) 
A+e(+,u)e(-i) -A_e(-u)e(+,i) 

(V-48) 

(V-19) 

Equation (V-10) shows that diffusion causes both the small-signal gain and the saturation 

parameter to become functions of position in the beam.    However,  since most gain expressions 

in the literature assume no radial variation in saturation parameter,  some sort of "average" 

value is desirable for comparison of results.    Also,  a Gaussian beam would probably have a 

much different radial variation than the uniform beam,   again implying that some sort of averag- 

ing should be done.    With this in mind,  we can define an average gain  ä 

1   ,dl. 
«   =   T   (j—) I    dz   avg 

i   i   rro 
"I 2  J irr        ^ r\ ■nr     "o 

o 

,dl. ,      , -       1  dP 
(di} 27rrdr      '       a '-  P dz" 

(V-20) 

Using Eqs.(V-9),   (V-18),  and (V-19) in (V-20) gives 

/Du gu  Di     \ 

Vi + W(i, (yt ♦ £ vu)  ^% 

(DV+ -yt) i^<i>+r0) 
m  r 
^+ o 

A-KI (y¥ro)e(-'u) KI (M oe(--i ] 

J^ j^' 
A+e(+, u) e(-, i) - A_e(-, u) e(+, l) 

Kl  WrjK)e(+'i}       A+
Kl  (J¥ ro)e(+^) 

./V^ ■/^ 
A+e(+, u) e(-, i) - A_e(-, u) e(+, i) .(V-21) 
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As can be seen,  a closed-form expression for the saturation parameter I    cannot be defined in 

the usual way from Eq. (V-21).    However,  I    can be found graphically.    Taking!   as the intensity s s 
at one-half the small-signal gain gives the saturation parameter for a two-level system.    The 
multilevel saturation parameters are plotted as a function of beam radius in Fig. 1 which is a 

plot of I    obtained from Eq.(V-21) as that intensity for which the gain drops to half its small- s 2 
signal value.    A diffusion constant of 46 cm  /sec as computed in Sec. IV for one diffusion species 

1 3-8!-7365(I)| 

yu ■ 10   sec 

y, * to   sec 

A» = 43 MHz 

D = 46 cm /sec 

- 
14 LEVELS 

- 
NO   DIFFUSION 

1                1 

Fig. 1.    Computed variation of saturation 
parameter with and without diffusion. 

has been used.    The number of equivalent levels participating affects the evaluation of the sat- 
uration parameter only in one way:   when we search for the W(I   ),  which reduces the gain to 

half its value at zero intensity,   we find that W(I   ) is proportional to the relaxation rate y    (if s u 
both yu and y} are increased by the same factor).    But this implies that I    is proportional to the 
relaxation rate and hence to the number of equivalent levels.    Figure 1 has been plotted for 14 
levels as computed in Sec. IV.    We have used the parameters given in Table III below. 

TABLE  III 

Parameter Value Reference 

t 5.2 sec 13, 14 

J__ 
r       u 

u 
10"3 sec 15 

1 
»T u - 

Lv 43 MHz 16 

18 



VI.   EXPERIMENT 

Before discussing the details of the experiment,  we want to develop the theory used to ex- 
tract from the measurements the value of the saturation parameter as a function of geometry, 
a parameter that should be independent of geometry if diffusion effects were negligible.    In or- 
der to avoid the very difficult analysis entailed by inclusion of diffusion, we treat the system as 

if it were unaffected by diffusion, predict the curve of gain vs intensity on this basis,  and then 
match the experimental results to this curve.    For different experimental beam diameters, we 

then find different saturation parameters.    We take this as proof of the importance of diffusion 
in determining saturation. 

Consider first the expression for the gain constant  a  in the limit of small intensity I.    Re- 
gardless of the model of the system (whether homogeneously or inhomogeneously broadened), 

as long as the analysis is based on a rate equation without inclusion of diffusion effects, the de- 
pendence is 

*=«o[l-J- + ...] (VI-1) 

where the above equation can serve as a definition of the parameter I    [compare Eq. (11-12)]. 
Now assume that diffraction is unimportant so that ray optics can be applied.    Further as- 

sume that the optical beam rays are parallel,  a situation which is reasonably well approximated 

in the experiment (see Table IV).    Then,  at any radial distance r,  I(r, z) is given by 

1   dl f, I 1 — -T- = a = a    II — ^— I I   dz o I        II 1 o J 
(VI-2) 

TABLE  IV 

r 
max r 

r   . 
mm 

dl d2 R 
c 

r 
meas 

r 
comp 

(mm) (mm) (mm) (m) (m) (m) (mm) (mm) 

1.1 0.9 0.7 4.73 2.19 3.12 2.6 2.5 

1.2 1.1 1.1 3.34 2.36 3.12 2.0 1.9 

1.8 1.8 1.8 3.80 4.16 4.66 2.0 2.0 

2.5 2.5 2.5 2.46 2.62 4.66 2.6 2.6 

r        = n 
max 

laximum l/e radius of intensity 

F = a verage l/e radius of intensity 

r   .   = n 
mm 

linimum l/e radius of intensity 

d1=c scillator output mirror to spherical mirror separation 

d2 = c mplifier center to spherical mirror separation 

Rc = S jherical mirror radius of curvature 

r          = n 
meas 

leasured l/e radius of intensity 1 n i from amplifier center 

r          = c 
comp 

omputed l/e radius of intensity 1 i n from amplifier center 
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Integrating Eq. (VI-2) results in 

G I  I. 
j  o_o_in  (VI-3) 
out      I    +   G   -1)1. K ' o     v   o in 

a  L 
where G   = e        ,  and  L is the length of the amplifier.    Experimentally, we measure 

*S P     . = \   I    ,27rrdr (VI-4) out     .)    out 

and 

P.    = \  I.  2irrdr      . (VI-5) 
in    J    in 

Integration of the above for an assumed Gaussian intensity distribution 

Iin(r) = % e-<r2/f2) (VI-6) 
7rr 

gives 

P     . „ _     out      „ 
G"    P.     = Go 

in 

G   - 1     P. 
. o in 
l — —^— -2T Trr   I   . 

o 

(VI-7) 

Therefore,  when plotting gain G as a function of P.  /irr  ,  we would obtain the same straight line 
-2 in 

for all values of r    if I   were independent of the beam diameter.    Such a plot then serves as a 

means of determining I  .    Suppose next that  a  is not given simply as Eq. (VI-1), but has the gen- 

eral form 

a = f(a0. I, Io) (VI-8) 

where f is some decreasing function of I whose initial value is a    and whose initial slope against 

I  is a  /I   .    Integrating Eq. (VI-8) results in a new function 

I    t = g(a   , I.   , I   , L) (VI-9) out     6X   o'   in'   o . 

where  L is the length of the amplifier as before.    Evaluating the gain then yields 

2 /=2, 
P     .        f° 2*rdr gfa   ,   (P.   /TT?

2
) e"(r  /r   ',   I  ,   L1 out _  •'o 6 I   o        in'       o       J 

J00 2^rdr (P.   A?2) e-(r2/?2> 
•'o in' 

P. , ,  2/-2 in 

f°° 2jrudu gfa   ,   (P.   /:rr2) e"U  ,   I  ,   L1 
= r° S[ °     in 2_^ I    . (vi-io) 

/o°° 27rudu (PinAr2) e"u 

Thus,  we obtain for gain G a function of I ,  (P.  /irr  ),   a  , and L.    A plot of gain vs Pin/irr 

for varying average beam radii  r should give a single plot,  if no other parameters are varied 

in the amplifier.    Deviations from such a behavior are an indication that beam geometry plays 

a role. 
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1.3 "        \           Yv ■—~-^^J00 

1.2 

II 

  25 

1 0 1        \ N 1 

Fig. 2.    Computed gain variation without diffusion for different values 
of saturation parameter. 

To indicate the dependence of gain upon the parameter (P.  /irr  ),  Fig. 2 shows plots of G 
for varying I    = I    assuming homogeneous broadening.    The straight-line slopes correspond to 
Eq. (VI-7). 

Now let us turn to the experiments designed to measure the influence of diffusion upon sat- 
uration.    Figure 3 shows the equipment and experimental layout.    The signal source was a stable, 
sealed-off oscillator operating in a single TEM..    mode with up to 15-W output power.    The 
cavity configuration of the oscillator was semi-confocal with mirrors spaced 151.3 cm apart,  and 
the output beam had a l/e radius of 1.6 mm.    In this report, beam radius is defined by the radial 
distance at which the intensity of the beam (not the electric field) falls to l/e times its value at 
the beam center.    The design and stability of the laser oscillator has been discussed elsewhere. 

I 3-»?-736»(1)| 
FLIP  MIRROR- 

AMPLIFIER 

He- Ne 
ALIGNMENT 
LASER 

o 
3i2m  OR  4.66m 
SPHERICAL 
MIRROR 

OSCILLATOR 

Fig. 3.   Experimental setup. 
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In order to adjust the average beam radius in the amplifier and keep the beam within the 

perimeter of the 3 x 8-ft optical table, the output of the laser was usually made to follow a path 
between four mirrors,   one of which was curved.    In two cases,  the short path lengths necessary 
for matching allowed the use of only three mirrors.    The beam was directed into the amplifier 
in a confocal configuration with the beam waist at the center.    The average beam diameter in the 
amplifier was controlled by adjusting the path lengths between the oscillator,  the spherical mir- 

ror,  and the amplifier,  and by choosing the proper radius of curvature from available matching 

mirrors.    Path lengths and mirror curvatures for the various average beam radii are given in 
18 Table II.    Path lengths were calculated with the mode-matching formulas of Kogelnik and Li. 

Beam radii were checked by centering a 4-mm-diameter iris in the beam 100 cm from the am- 

plifier center and using the relation 

r' (VI-11) 
J-lMi-^-) 

where 

r   = l/e radius of the intensity 

r' = radius of iris 

P' = power with iris in 

P = power with iris out. 

Equation (VI-11) was obtained by integrating the beam intensity over the area of the iris to find 
the power transmitted through the iris.    The measured beam radii were compared with computed 

values by using the Gaussian beam formulas and assuming correct waist diameter and location. 
Maximum deviation of the measured radii was about 7 percent,   and was probably due to astig- 
matism caused by the use of a spherical mirror in an off-normal incidence. 

The water-cooled amplifier had an inside diameter of 1.8 cm,   and 70 cm of active length.    A 
sealed-off amplifier was used because pumping speeds are,   in general,   comparable to diffusion 
speeds and would tend to contribute in an incontrollable way to the diffusion effects.    A relatively 

large inside diameter (4 to 10 times larger than the beam diameters) was chosen to minimize 
wall effects.    The amplifier was filled with a mixture of 7 torrs He,   1.4 torrs CO-,   1.7 torrs 
N-,  and 0.2 torr H_.    Discharge was from a center cathode to anodes at each end.    Optimum 

cathode current was found to be 26 mA.    The beam entered the amplifier through NaCl windows 
tipped 7° to the beam axis to reduce the possibility of feedback effects.    Insertion loss of the 
amplifier with the discharge off was about 18 percent.    Nearly all this loss was due to reflection, 
scatter,  and absorption by the two windows. 

The total power output of the amplifier output was measured without an iris by using a Co- 
herent Radiation Laboratory thermopile capable of directly measuring the output power. Input 
power to the amplifier was varied by a combination of controlling the oscillator current, using 
only one anode of the oscillator, and replacing totally reflecting gold-coated mirrors with par- 

tially transmitting dielectric mirrors. 
Since there was no significant difference in insertion loss with the amplifier completely evac- 

uated and with the amplifier filled with the gas mixture,  absorption in the CO? was neglected in 

all measurements.    Power gain was taken as the ratio of output power with the discharge on,  to 
output power with the discharge off.    The sum of the output power with the discharge off and the 

power lost in the exit window was used as the input power to the amplifying medium. 
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Fig. 4.    Experimental   results of gain variation  for various average beam 

radii as a function of input power density in watts per square centimeter. 

Gain measurements were made for four different average beam radii between 0.9 and 2.5mm 
(measured to the l/e point of the intensity).    Figure 4 shows power gain as a function of input in- 
tensity for the various beam radii used.    The saturation parameters were obtained from the plots 
of Fig. 4,  using the initial slopes as indicated by Eq. (VI-2).    Note the constancy of the small- 
signal gain which indicates the relative unimportance of wall effects. 

Figure 5 shows the saturation parameter as a 
function of beam radius and is a summary of the 

experimental results. The measured saturation 

parameter varied from 2 5 to 97 W/cm , and was a 

monotonically decreasing  function of beam radius. 
In conclusion, experimental evidence indicates 

that diffusion effects can play an important role in 
determining the saturation parameter in CO. la- 
sers. The experimentally measured variation of 
saturation parameter agrees qualitatively with a 
curve obtained from a simple theoretical treatment 

of diffusion effects. Not too much importance can 
be given to the quantitative results of the diffusion 

theory which has been worked out for an optical 
beam of a "square" rather than a Gaussian cross 

section. If we attempted to match the theory to the 

experiment, a value of 50 (rather than 14) equiv- 
alent levels would give better agreement with ex- 
periments. This discrepancy can be due, in part, to the difference in the geometry analyzed from 
that used in the experiment;   it could also be due to an underestimate of the equivalent number of 

T, AVERAGE   1/« RADIUS  OF  INTENSITY   (mm) 

Fig. 5. Experimentally measured saturation 

parameter as a function of average beam 

radius. 
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levels when the number 14 was found in Sec. IV.    The vibrational temperature may be consider- 

ably higher than the rotational temperature,  resulting in a larger number of effective levels. 

Further,   in addition to the CO. levels,   some N_ levels are also tightly coupled into the lasing 

level,  and this coupling may also raise the number of effective levels.    A more rigorous treat- 

ment of the problem is yet to be done and will lead,  undoubtedly,  to more refined experiments. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge very fruitful and stimulating 

discussions with Professors W.P. Allis, G. Bekefi, A. Javan, and 

A. Szöke of M.I.T.; Drs. R.J. Carboneand R.H. Kingston of Lincoln 

Laboratory; and T.J. Bridges of the Bell Telephone Laboratories. 

The computation of Fig. 2 by M. Watson and the technical assist- 

ance of R.G. O'Donnell are greatly appreciated. 

24 



REFERENCES 

1. H. Kogelnik and T.J. Bridges, "A Nonresonant Multipass CO2 Laser Amplifier," 
IEEE J. Quant. Electron. QE-3, 95 (1967). 

2. P.A. Miles and J.W. Lotus, "A High Power CO2 Laser Radar Transmitter," 
Paper 10J-1, Quantum Electronics Conference, Miami, Florida, May 1968. 

3. D. F. Hotz and J.W. Austin, "Gain Saturation Flux and Stimulated Emission 
Cross Section for the 10. 6M-Line of CO2 " Appl. Phys. Letters 11, 60 (1967); 
D. F. Hotz and J.N. Ferrer, "Intrinsic Flux Limits for Continuous and Q-Pulse 
Gain for the 10.6-HL Line of C027 J. Appl. Phys. 39, 1797 (1968). 

4. J.S. Wright and E.O. Schulz DuBois, Solid-State Maser Research Report No. 5, 
Contract No. DA-36-039-SC-85357 (20 September 1961), ASTIA No. AD 265383. 

5. J.P. Gordon (private communication), some salient results of Gordon's unpub- 
lished 1963 internal memorandum were rederived and discussed in A. L. Bloom's 
book Gas Lasers (John Wiley and Sons, Inc., New York, 1968), pp 36-37. 

6. W.W. Rigrod, "Gain Saturation and Output Power of Optical Masers," J. Appl. 
Phys. 34, 2602 (1963). 

7.     , "Saturation Effects in High-Gain Lasers," J. Appl. Phys. 36, 
2787 (1965). 

8. A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., New York, 1967). 

9. W.R. Bennett, Jr., "Hole Burning Effects in a He-Ne Optical Maser," Phys. 
Rev. 126, 580 (1962). 

10.    , "Gaseous Optical Masers," Appl. Opt. 1^   (Suppl. 1, Optical 
Masers), 24 (1962). 

11. J.H. Jeans, An Introduction to the Kinetic Theory of Gases (Cambridge University 
Press, Cambridge, England, 1940). 

12. G.W.C. Kaye and T.H. Laby, Physical and Chemical Constants (Longmans, Green 
and Co., New York, new imprinting 1943). 

13. E.T. Gerry and D. A. Leonard, "Measurement of IO.6-HCO9 Laser Transition 
Probability and Optical Broadening Cross Sections," Appl. Phys. Letters 8, 227 
(1966); also, private communication. 

14. D.W. Ducsik, "An Experimental Determination of the Radiative Lifetime for CO2," 
Thesis, Department of Electrical Engineering, M.I.T. (August 1968). 

15. W.A. Rosser, A.D. Wood, and E.T. Gerry, "The Deactivation of Vibrationally 
Excited CO2 (^3) by Collision with CO2 or with N2" Paper 7G-5, Quantum Elec- 
tronics Conference, Miami, Florida, May 1968. 

16. T.J. Bridges, H.A. Haus, and P.W. Hoff, "Step Response of Laser Amplifier 
and Small-Signal Measurement of CO2 Laser Linewidth," to be published in IEEE 
J. Quant. Electron. 

17. C. Freed, "Design and Short-Term Stability of Single-Frequency CO2 Lasers," 
IEEE J. Quant. Electron. QE-4, 404 (1968), DDC 678987. 

18. H. Kogelnik and T. Li, "Laser Beams and Resonators," Proc. IEEE 54, 1312 (1966). 

25 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body of abstract and Indexing annotation must be entered when the overall report is classified) 

I.   ORIGINATING   ACTIVITY  (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.    REPORT   SECURITY   CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.    REPORT   TITLE 

Effect of Diffusion on Gain Saturation in CQ2 Lasers 

4.    DESCRIPTIVE   NOTES  (Type of report and inclusive dates) 

Technical Report 

5.    AUTHOR(S)  (Last name, first name, initial) 

Haus, Hermann A.       Freed, Charles       Christensen, Clad P., Jr. 

6.    REPORT   DATE 

7 February 1969 
7«.    TOTAL   NO.  OF   PAGES 

32 
7b. NO. OF REFS 

19 

8a. CONTRACT OR GRANT NO. 

AF 19(628)-5167 
6.    PROJECT   NO. 

649L 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Report 464 

9b.    OTHER   REPORT   NO(S)  (Any other numbers that may be 
assigned this report) 

ESD-TR-69-8 

10.     AVAILABILITY/LIMITATION   NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

II.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY   ACTIVITY 

Air Force Systems Command, USAF 

13.     ABSTRACT 

The theory of gain saturation of a two-level system is briefly reviewed and then generalized 
to include an arbitrary number of upper and lower levels; the upper levels are coupled to each other, 
as are the lower levels.   The laser radiation is assumed to induce transitions between one upper and 
one lower level.    In the limit of tight coupling among the upper and lower levels by themselves, the 
equations reduce to those of a two-level system, with effective relaxation rates that are weighted sums 
of the relaxation rates of the multilevel system.   The relaxation rates occurring in a CO2 laser system 
are comparatively low so that one would expect spatial diffusion to play an important role in determin- 
ing saturation.   A theory of diffusion is carried through and it is shown that diffusion effects can indeed 
be important for optical beam diameters of a few millimeters.   Finally, experiments on a sealed-off CO2 
laser oscillator and amplifier system are reported.   Amplifier gain is measured for four different 
beam radii.   The "equivalent" saturation parameter derived from the measurements decreased monoton- 
ically from 97 to 25 W/cm^ as the average input beam radius increased from 0. 9 to 2. 5 mm in the 9-mm 
radius discharge tube of the amplifier. 

14.    KEY   WORDS 

laser oscillators 
laser amplifiers 

diffusion 
saturation 

26 UNCLASSIFIED 

Security Classification 


