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Abstract

Probabilistic depreciation is a method of determining the proper depreciation

charge in each year of an asset's service life, when the service life is a random

variable with known distribution. In this paper, we discuss how the service

life distribution is modified as we gain more information about the actual life-

time of the asset. The prcblem of determining the proper amount to be charged

each year to depreciation while at the same time maintaining the proper balance

in the accumulated depreciation account is considered. The analysis is done both

for a single asset case and for group depreciation. A final section discusses the

use of Bayesian analysis for estimating the particular form of the service life

distribution while the assets are in service.
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1. Introductionu -

Conventional ddpreciation methods treat the service life of an

asseL as a given constant. When there is some uncertainty as to the

actual service life, an average (expected) value is used. The

depreciation rates are then calculated based on this given service life.

Contrary to this deterministic approach, a probabilistic approach to

deprec-4ation has been proposed in [2] where the service life is treated

as a random variable which has a given probability distribution. In

probabilistic'depreciation, the depreciation rates are calculated for

each possible service life of the asset and then the weighted average

is computed using the service life probabilities as weights. Thus if

the asset's life is equally likely to be 1, 2, or 3 years, the depre-

ciation rate for the first year under the probabilistic straight line

method is the averne of 100%, 50%, and 33 1/3 % or 61 1/9 7. This is

in contrast to the conventional straight line method which computes an

average service life first, 2 years in this case, and then calculates

the depreciation rate as 50% for the first and second year.

It was demonstrated in (2] that for single asset depreciation,

conventional depreciitioninmethods result in underdepreciation in the

earlier years of an asseit s service life. In the case of group depre-

ciation, conventional methods will typically result in underdepreciation

throughout the service Ure of the items in the group. The analysis in

[2] computed the deprelation -rate for each year based only on a single

estimate or the probability distribution of the service life; namely the
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one known when the asset was first put into service. As the asset'

service life expires, we obtain more information about the actual

probability distribution governing the particular asset under study

and it becomes reasonable to modify the probability distribution to

include the increased knowledge that we have.

In the numerical example above, if the asset survives the first

year, we know that the 1 year service life situation did not occur

and thus need to consider only the cases of 2 and 3 years of the

service life. Therefore, the conditional probability distribution of

the service life, given that the asset has survived the first year,

is 0.5 for the 2 year life and 0.5 for the 3 year life. Hence,

the first year depreciation rate for the asset after it has survived

the first year in service is (1/2) (1/2 + 1/3) - 5/12 - 0.42 under the

straight line method.

In this paper, we analyze how the depreciation patterns might be

affected by such a "sequential probabilistic depreciation" approach

as compared with a "static probabilistic" approach discussed in [2.10

Section 2 discusses this problem for a single asset case and Section 3

for group depreciation. In Section 4, an application of Bayesian

analysis for estimating the service life distribution is cosidered.

2. be uential Prpbabilistic Depreciation: Single Mset Case

Before we proceed in our analysis, we shall define our criteriq

In selecting depreciation methods. In this paper, we went to set aside

the issue of whether or not depreciation rates should be based on the
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consumption of service potentials, or on the decline of the market

values, or on any other factors. We assume that these economic consid-

erations have been included in the depreciation vector h ... ,

he j) where h is the proportion of the depreciable cost (acquisition

cost less estimated salvage value) to be depreciated in the I -th year

if the service life of the asset is J years. We shall assume that

hie > 0 for all i - 1,2,..,j and j - 1,2.., and that L-1lhij - I ao that

the asset is fully depreciated by the end of its service life. For the

straight line method, h ie 1/j ; for the sum-of-years-digits method,

h i = 2(j-i+l)/J(J+l); and for the double-declining balance method, hi|

aea(I -i 2/j) i-l(2/j).

With these assumptions, we consider the situation in which the

service life j is not given with certainty but is a random variable

with a given probability distribution. The criterion used in selecting

a depreciation vector is that the depreciation rate under the selected

depreciation vector be, year for year, equil to the expected value of

the depreciation rate under the given probability distribution. We refer

to this property as the unblasedness of the depreciation rates. The method

of deriving unbiased probabilistic depreciation vectors when the asset is

first placed in service is discussed in [2).

In this paper, we shall aprly the same criterlo of unblasedness.

lowwer, by using the additional inftmation that is available after

some nwrter of years, we shall try to minimize the discrepancies between

the lg e depreciation rates bascd on the prior service life distribution

and the R 22s depreciation rates based on the actual experience with the

asset.

I
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Consider an asset with a service life distribution given by (p1,p2,

... ) where pj is the probability that the asset is retired at the end

of the j -th year in service. We assum.e that retirement occurs only

at the end of a year.

In order to compute the unbiased estimate of the depreciation rate

for the I -th year, we must consider three cases. First, if the asset

is retired in the i-1 st year or earlier, we have di = 0 where d is

the depreciation rate for the i -th year when the asset has been retired

in an earlier year. If the asset is retired in the i -th year, then

d0- h where d0 is the depreciation rate for the i -th year when the

asset has been retired at the end of the I -th year. Note that in

both of these cases, the service life was known with certainty so that

there is no averaging required to compute the proper depreciation rate.

The third case occurs if the asset survives through the I -th year

so that the service life is known to be greater than I. In this situation*

the probability that the service life is J (>I) years is, by the definition

of conditional probability, pj/ k Pk w J = i+l, 1+2,..,

where Si ! l - 1+1 pk is the a priori probability that the asset is not

retired in the first I years.

If, in fact, the asset is retired in the j -th year, the depreciation

rate, in the I -th year should be hij. Since we do not, at this stages

know what the actual service life will be, we compute the expected depre-

elation rate by averaging over all possible service lives. T.hus,

I± ;. J-i+l hij (PJ/Si) (l/Sd) i+l1hijpJ

where dI is the depreciation rate for the I -th year when the assot has

survived through the I -th year.
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Since whether or not the asset is retired before, at the end of,

or after the i -th year is not known at the tine the asset is first

put into service, the actual depreciation rate for the i -th year is

a random variable. The expected value of the actual i -th year

depreciation rate is given by

0i-I p d, + P, di + 7 1pd+
~ ~~ L- P J--i~lP

--Pihii+ I J--i+l Pj hJ

J-i P hij

which is equal to the static probabilistic depreciation rate for the

i -th year as derived in [2]. Note that the sum of these expected

depreciation rates for i = 1,2,.., is unity since

Suppose that the depreciation rate for the i -th year when the

asset has survived the I -th year vas chosen to be di (0 dt ) . Then

the mean squared deviation between the actual depreciation rate and the

proper depreciation rate is given by

m2

/s) d J-,+ Pj (hJ " di )2I

Then,

(u/S) jj+l pj Jb1  d1*9 2 (l/S~)~ 5 1  pj[(hljJ'd +)+(d +d* 1
2

m(l/Si) [ X j pj (hijdi+)2  *2 (d+d*) 2 8+),

*~~( +-aS)Xj+ ) j, p+ +2( -d.d ) Si)

2

sinc d 0 by the choice of, d,

J-+ Pil
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Thus, the mean squared deviation b-tween the actual depreciation

rate and the proper depreciation rate is minimized when we choose

* +di = di •

So far we have concentrated on computing the actual depreciation

rate for the I -th year (i = 1,2,..,) to give as accurate a figure as

possible for use in the income statement. We now consider what the

accumulated depreciation rate should be at the end of the I -th year

after the depreciation rate for the I -th year has been charged.

Let ai be the proportion of the depreciable cost that has already

been depreciated by the end of the I -th year. Clearly, if the as-.et

has been retired by the end of the I -th year, at should equal 1

If the asset Is still in service at the end of the I -th year, a

should equal 1 minus the sum of the expected depreciation rates in

each of the remaining years in order for a1 to be an unbiased estimate

of the proper accumulated depreciation rate wben the asset Is still in

service at the end of the I -th year.

The expected value of the depreciation rate In the k -th year given

that the asset Is in service at the end of the I -th year is

=(1/8 ) .j Pj

Therefore, the sue of the expected deprectation rates in all years after

the I -th is

Jot kj "(1/31) J40+1 j L.'4 kj

M~~~ (•8P

,a 8 C ) kji3 k-4+1 bk

kal %J XkIbjLklhkj + 1kh1 j1

.7. .... 7.-..,
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+
Note that a. equals the sum of the expecLed depreciation rates thit should1

have been taken in years 1 to i if it were know.n that the asset would

still be in service at the end of the I -th year.

Knowing at , we can compute the expected accurmulated depreciation

rate after I years to be

Pj * a +
s.J=i+l PJ) a +

pj + S (I/S ) - p It

i i I£Lj--i+l j LA-k j

' + J6 +lp k l hkj

k-J ja PJ k j + kl J I k+ pj hkj

which is exactly equal to the accu.ulated depreciation rate under the

static probabilistic method as derived in [2). Since this quantity,

which is less than unity, is a convex combination of I and at *w

know that the accur.lated dopreciation for nonretired assets is always

less using sequential probabilistic depreciation (a) tha. when using

stattic prchbbillsttc depreciation.

Since the acetulated deprectation rate *ad depreciation rates

for each year were derived separately, It is not, In aencral, true

that the accumulated dep-4ciaioCn rate is the sun of dept.ctiptLon races

in each year. If the asset is still In service at the euO of yeAr 1-i,

its scetWulated depreciation rate is given by a . J it survives

the I -th year, the depreciation rate is gtvcn by d . Th 4lferrnnc ,

- (a1 1 + d) my be considered AP at* entry to At MCA*ooat (or



-8-

adjusting prior income, and is attributable to the uncertainty in the

service life of the asset. Similarly, if the asset is retired in the

i -th year 2/ the depreciation rate is d and the adjustmant is
+ )

given by I - (at + do,
+

An interesting feature of this method is that a. does not neces-
1.

sarily increase as i increases. For exaample, if p2 = p10 = 0.5

(all other pi = 0) , and if straight line depreciation is used, the

accumulated depreciation rate after one year, a1 , is .5(1/2) + .5(1/10)

=3/10 . If the asset is still in service at the end of the second year,

its accumulated depreciation rate a2 shou'., be 1(2/10) , a decrease of

+
1/10 over a1 . Since the asset is still in service at the end of the

second year, i.e., the asset's service life is now known to be 10 years

with certainty, the first year's depreciation rate should have been

1/10. This plus the depreciation rate in the second year of 1/10 equals

a2. The differe.ce between a 1  3/.10 and what it should have been,

1/10 , is attributable to the uncertai-ty in the service life. Thus a

proper accounting treatment is to depreciate 1/10 in the second year and

make a debit-enotry of 2/10-to the acctmulated depreciation rate, crediting

to an account ')r adjusting prior income.

In general,-the expected value of the adjustment required in the

.i -th year is

J4 (a + d'J Si + 1 (a + do)] pi
- .t (at- +  "* X (ei-l + ' P k~ k

Pj11 f l k k kJ +P

W 0
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so that the adjustment is due solely to the inherent fluctuations caused

by the variability in the service life of the asset.

3. Sequential Group Depreciation

The sequential probabilistic depreciation method developed in

Section 2 can be easil applied to group depreciation in which assets

of a similar n;ture are grouped together and depreciated in a single

account. At the end of any year, the original group of assets can be

partitioned into three groups; those that were retired in year i-i or

earlier, those that have Just been retired in year i , and those that

are still in service. The items in the first group have already been

fully depreciated and no further charges are required. Those items-

which have just been retired are charged at a rate equal to d h,

while those items still ie service are charged at a rte .equal to-

+
d (1/si) Lj i+l hij Pj

Let N be the number of items originally placed in service at the

start of the first year. Let ni be the number of items that have been.

retired at the end of the i -th year and let mi be the number of items

that were retired just at the end of the i -th ye-ar. Thus),

nl fi -11~ + Mi " i: < ' }I

'Therefore the i -th year depreciation rate, based on the total

depreciable cost for the N items, is given by

n 1 d +m d, + (N+ n d

M h + (N- n)1- - h p-7[ N I i
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0 +
wheredi _d1 , andd are as defined in Section 2. In order to compute

the expected depreciation rate in the i -th year, we need to compute

_only E( m i/N) an~d E(N -n 1/N) since d, and d+i are fixed positive niumbe:rs

and'd 0 -The probability mass functions for the random variables

iand N-n 1: are given bya binomial distribution with parameters

R (for both variables) and p = ~and Si respectively. Since the

expected value of-a binomial distribution with parameters n and p is

up we have that

:(m IN) pand

E(N,,,- )IN-S±

Therefore the expected i -th year, sequential group depreciation charge is

_4 giveni by

the static -group probabilistic rate computed in [2] .

A ~miaranlyisshw-that the accumulate depreciation rate

-after i -q yars, is,

N NS

Thrfr) h xeted- accumulated depreciation rate after i years is

(1 * Sj) + S1 _/S) PjX lhk

P j j h

the accUMUlatic de reciation rateL after k' years under the static probabilistic
m~tho (see[s))

L__.__._.__._.__. .
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As in the single asset case, an adjustment is generally needed each

year to keep the accounts balanced. The amount of this adjustment is
CD L i ' N -n

(1 - h) [m - p (N+_+. - i - i+l
ii i NS. I  - ji+ INi NS4.I

and one can readily check that the expected value of this adjustment is

zero.

4. Bayesian Analysis

For the calculations described in the previous sections, we have

implicitly assumed that the service life distribution,(pj ; j = 1,2,..,],

was precisely known. In [2] we discussed the use of parametric distri-

butions such as the normal, rectangular, Poisson, and ge,-etric to provide

convenient-representations for the service life distributions. In using

these distributions, one makes the assumption that the probabilities

of asset retirement follow about the pattern indicated by the distri-

bution so that only one or two parameters need to be specified in order

to completely characterize the distribution.

In practice, one may be willing to accept the assumption that a

particular distribution is appropriate and yet still be unsure about

the parameters that characterize the distribution. In this case,

3'
Bayesian analysis might prove useful.-

Assume we have a group of N identical assets each having an independent

and identically distributed service life-distribution given by pi; j=1,2,..,]

Then, the probability that exactly n1 are retired in the first year (assuming

P1 > 0) is given by

N " N-n
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Assume also that p, is not known for certain. The qtiestlon is how we

can use our prior information on p1 with the actual retirement numiber,

say n, , in the first year to get a new estimate on p, and indirectly

on p2 ,p3,.., . We could then continue in this manner at the end of

each year to note the retirement pattern and update our estimate of the

parameter(s) of the distribution under study.

Let fi(Pl ) be our prior density function on p1 where

f1(Pl ) 2_ 0 for 0 < pI <  and

0~ f(Pl ) d p = 1

After observing n1 retirements in the first year, our new (posterior)
density function on P (denoted by fl(pl) ) is given by

f p i 1 
1 -P 1 ) Nn1f (p1 -) 0<P

1n N-n1
FoP 1 (I"P I f(p 1 dp

In general, hcever, one would not be solely interested in p, but rather

in what the information on p, implies about the parameter(s) that are

specifying the complete service life distrlbutiou.

For example, suppose one feels that the geometric distribution is

reasonable approximation to the service life distribution. Therefore

Pp) J-I p4/p3  (1 - p) p , J3 1,2,...,.-

One way of estimating p is by noting that the expected lifetime is given

by J,1 j p - 1/p . Eowever, one may not have had sufficient

experience with items similiar to the assets currently being used to

place complete faith in a point estimate of p . Therefore one might wish

to select a prior density on p and let the experience with the actual items

now in service also influence our estimnte of p



For exposition purposes, it is-convenient in this situation to

5/
choose a beta cistribution as the prior density for p- ; i.e.,

r1 t-r-, I<;~~
f(p) Ao p (1 p) ; 0 < p 1;0 < r < t

where A0  (t-l)!

The parameters r and t may be estimated by using the relations that

E(p) r/t and

Var(p) = r/t2

Another interpretation of hodi r and t may be estimated will become clearer

as we proceed.

Therefore, if n1 out of N items are retired in the first year in service,
n N- t-r-I

A0 P (l-p) lrl -)
f1 (p) n N-nI r-i t-r-l

A fp (l-p) p (l-p) dp

r+n1-1 N+t-(r+n1 )-l=(N+t-l) ! p 1 lp

(r+n1-1)! (N+t-r-n1-1)!

which is a 0- distribution with parameters r+nl , N+t

At the start of the second period, we have N nI items still in service.

Suppose that n2 - n, (> 0) items fail in the second period. The probability

of this event, given p , is

N-n 1 k ~2~ -n1 N-n2

( I) 2  (l-p)
n2"n1

Therefore if our prior on p is given by f (p) above, the posterior (after

the second period) density of p is
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• 2-n I  N-n2  r+nl-1 N+t-(r+n1)-1
f2(p) = A2 p (l-p) p (1-p)

r 2 -1 Nq+(N-n )+t- (n2+0)-1

= A2 p 2 (-p) 1

(N+N-n I+t-)!
: where A2 (r+n- 1) 1 (2N+t-nl-r-n 2 -1) !

Proceeding in this manner, it can be readily shovm by induction that if

a- nj 1 items have been retired in the J-th period (j = 1,2,..,k; n0 = 0) ,

the posterior density of p after the k-th period is given by

fk(P)
Ai~ ~'~ 1~p Ji= (Nni) (n~+r)- 1 where

(t+- (n-ni) - 1)!

(r.-k-), (t+ i=0 (N-ni) " (r+nk) - 1)!

Note that fk(p) dpends on the entire history of retirements (as represented

by ul , . ,, k ) and not just on nk , the cumulative number of retirements at

the end of the k-th year.

One can see that the inikial paramctext -r and t can be interpreted as

if one bad a prior experience of observing t of these identical items in use

at the start of a period with r of them having been retired by the end of

the period. Thus the greater t is, the larger the influence of the prior

density on the posterior densities of later periods. In the limit, wbere

we know p with certainty to that a Bayesian analysis is not useful, r and t

both go to infinity with the ratio r/t remaining equal to p

Finally, to compute the probabilistic depreciation rate and accumulated

depreciation rate after the k-th period, we need to determine pj for J

k+l,+2.., . We know that for a given value of p , pjfp - (l-p) ,-k-ip

therefore, to find the unconditional value of p , we multiply by the denstty

___
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function for p , fk(p) and integrate over 0 to 1 ; i.e.,

PJ = fO (PJ p) fk( p ) dp = Akf p (l-p) k-l i )+ k

k-i It+X (N-n )-(nk+r)+(J-k-l)-1jI
-(r+nk) j j (4n ) i lIi=O 0

I - 1 nN- )+J-,-l It+ k-

:1 i=0 6 L=0

for j = k+lk+2,..., e

Thus, for example,
r~nk and

Pk+1 k-I(n

,'%'k-i
t+ k1=0 (N-nI ) - (nk+r)

r+Uk -' 1=0 L

tk+2 k-i (N-n t+ Vk-l (N-n )+ I

so that if k - 1 (have observed one period with nI failures), our revised

estimates of P2 and P3 are given by

P2 r4 l1 and P3 - n!_ t4N- (nift)

t4Nt+N -t+N+l

(One can easily verify that the prior estimates of p. and p3 are given by

P02=  and P" .

t tt+M

The values of for 3 - k+lk+2,.., are then inserted into the formulas

developed tn Section 3 to compute the k-th year depracition rate nd

accumulated depreciation rate under the sequential Probabilistic method.

In the above example, the posterior was always a I- distLibution with the

two parameters a simple linear fi ittiou of the prior estimates r and t *

and the observed retircmcnt history. The case with which we obtained the

posterior density of p given 3 l'...ak wa% due to the special structure that

was assumed: the ge&Aatrfc distrib.,tlon of the service lives and the 3- distri-

bution as the prior density on p . Departures from either one of these assuMp-

_ ___ ____
o~i - .. . .. - . . . .. .. . . . ... . . .
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tions will result in considerably more complication in the computation of

the posterior density function.

For example, in [2] we postulated the use of a Poisson distribution

as a good approximation to actual mortality curves of equipment. With the

Poisson distribution, we define Pi [ /(i-l)tJ e 'X for i = 1,2,..,

We would like to be able to treat the case in which X is a random variable

specified initially by a prior density function f(I,) . The authors are

unaware of any prior density for X that after observing a sequence of

retirements will yield a posterior density for % of the same general form.

lowever, if a prior density on X is chosen, it is still possible to carry

out the required computations to determine, numerically, the posterior

density of Xt

Let X be specified by a prior density, f(X) . Then with N identical

item, the probability that nI are retired in the first period is given by

Pn I s,X] = 1 l)(0o' )n ?k 1 -k I')'n

Therefore after observing n retirement, the posterior density of X is

fl() "A( U a M)() where A ti chosen so that fl(X)d ,  I

In generalet pk) be the probability, given ) , that an item is

retired in the k -th period given that it is still in service at the end

of the k-I st period. ThereCore,

Also, let %.,(I) be the posterior density of A based on the actual retire-

meut experience up through the lr-l at period. Then if N - 'k-1 itevs are

still in service at the start of tLh k -th period and nk nk.I retire-

if _ _ __ _ _ _
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ments are observed in thie k -th period, th new posterior density of X

is given by

fk()= A k[Pk(X)'k n,,1 - Pk(X)1 Nnkf k-l X) for X. > 0 ; k = 1,2,..,

with Ak chosen so that f '* dX = 1d

Thus to comipute the sequential depreciation rate for the k -th period,

*we need to determine the unconditional value of p for j =k+l,k+2,...,

a given by

Pj J0 fi fk(X) dX for j k+l,k+2,..., o

I ~~

Th bv eusv opttosaesrihfrad lettdos n

ca beporme o-ouino iia optr



FOOTOTES

1. For a comprehensive treatment of conventional depreciation uiethods, see

Grant and Norton [I]

2. If the asset is retired in one of the first few years of its possible

service life, this adjustment might be quite substantial. However, to

offset this effect, the salvage value may bo larger than expected because of

the few years in service and hence may reduce the amount of this writeoff.

3. See Raiffa and Schlaifer [31

4. A more general form of the geometric distribution might allow for a

minimum lifetime of m years so that p1 = 0 for j - l,2,..,m * and

p= - )J-mp for J *l,*m+2,...,

5. The beta distribution is the conjugate prior (see (31) for the Bernoulli

process being described here %here the probability of retirement in each year

Is a constants p , for those items which are still in service.

m-s
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