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Abstract

Probabiliétic depreciation is a method of determining the proper dépreéiatiéﬁ
charge in each year of an asset's service life, when the servicé life is a random
variable with known distribution. In this paper, we discuss howrthe se;vice
life distribution is modified as we gain more informatioﬁ éBout the actual 1life-
time of the asset. The prcblem of defermining the proper amount to be charged
each year to depreciation while at the same time maintaining the proper balance
in the accumulated depreciation account is considered, The analysis is done both
for a single asset case and for group depreciation. A final section discusses the
use of Bayesian analysis for estimating the particula; form of the service life

distribution while the assets are in service.
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1. Introduction -

Conventionalrdéfréciation methods treat the service life of an

1/

asset as a éiven éonsﬁant. When there 1s some uncertainty as to the
actual sef#{;e lifg, an average (expected) value is used. The
depreciatién rates‘g;g then calculated based on this given service life.
Contrary to‘tﬁis£deté¥ministic approach, a probabilistic approach to
depreciation'hég‘béeﬁ%prpposed in [2] where the service life is treated
as a random vaiiable wﬁich has a given probability distribution, Im
probabilisticrdepreciééion,-the depreciation rates are calculated for
éach possible service life of the asset and then the weighted average

is computed using the service life probabilities as weights. Thus if . # A

the asséﬁ‘s life i#vequally likely to be 1, 2, or 3 years, the depre-

ciation fate for thegfirst year under the probabilistic straight line
method is the averagégof 100%, 50%, and 33 1/3 % or 61 1/9 %. This is
in contrast to the’gqnﬁentional straight line method which computes an
average scrvice Iife7fiist, 2 years in this case, and then calculates
the depreciation fatéfas 507 for the first and second year,

| It was'demqnstrafa& in [2] that for single asset depreciation,
conventional debfeéidg@bﬁ;ﬁethods result in underdepreciation in the
earlier yearg'of an-;sgééﬂh service life. In thc case of group depre-
ciaﬁion, cdnventional‘mgﬁhods will typically result in underdepreciation
throughout the scrvice iifefdf the items in the group. The analysis in
‘[2] computed the deprauiatiéﬁ*rgﬁe for each year based only on a single

BN

estimate of the probahility“@istribution of the service life; namely the
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one known when the asset was first put into service. As the asset'
service life expires, we obtain more information about thg actual
probability distribution governing the particular asset under study
and 1; becomes reasonable to modify the probability distribution to
include the increased knowledge that we have,

In the numerical example above, if the asset survives the first
year, we know that the 1 year service life situation did not occur
and thus need to consider only the cases of 2 and 3 years of the
service life, Thereforé, the conditional probability distribution of
the service life, given that the asset has survived the first year,
is 0,5 for the 2 year life and 0.5 for the 3 year life, Hence,
the first year depreciation rate for the asset after it has survived
the first year in service is (1/2) (1/2 + 1/3) = 5/12 = 0.42 under the
straight line method,

In this paper, we analyze how the depreciation patterns might be
affected by such a "sequential probabilistic depreciation" approach
as compared with a "static probabilistic" approach discussed i{n [2].
Section 2 discusses this problem for a single asset case and Section 3
for group depreciation, In‘Sectiog 4, an application of Bayesian

analysis for estimating the service life diltribution is coasidered,

2, Sequential Probabilistic Depreciation: Single Asset Lase

Before we proceed in our analysis, we shall define our criteria
in selecting depreéiution methods. In this phper. wve want to set aside

the issue of whether or not depreciation rates should be based on the
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consumption of service potentials, or on the decline of the market
values, or on any other factors. We assume that these economic consid-

erations have been included in the depreciation vector h, = (hlj’ hZJ’ eve o

3

h,.) where h,, is the proportion of the depreciable cost (acquisition

13 i
cost less estimated salvage value) to be depreciated in the 1 ~th year
if the service life of the asset is j years. We shall assume that

ij
the asset is fully depreciated by the end of its service life. For the

b
h,.>0 for all i = 1,2,..,] and j = 1,2..., and that Zislh:lj = 1, so that

straight line method, h i‘l/j ; for the sum-of-years-digits method,

1)

hij = 2(j~i+1)/j(j+1); and for the double-declining balance method, h

a s 2/t tary).

With these assumptions, we consider the situation in which thte

13 °

service life j s not given with certainty but is a random variable

with a given probability distribution., The criterion used‘in selecting

a depreciation vector is that the depreciation rate under the selected
depreciation vector be, year for ycar, cquilvto‘the expected vhlﬁo of

the depreciation rate under the given probability discribution, Hc.rcfer
‘to this property as the unbiasedness of the deprccttttbn‘tatea. The method
of deriving unblaced probabiliatic depreciation vcctora uhnn tho asset is

| :m: placed fn service is discussed in [2). |
‘ 1o this pa per. ve shall apply the. same criterlou of unbiasednesc.
noucvcr, by uting the additional lnIotnation that {s available after
some nuzher of years, we shall try to ninimize the discrepancles botwcen
the gg_;g;g'dqproeiniioa rates bascd on the pilot service life distribution
and the gg‘ggg;;doprec;ation rates based on the actual experience uifh the

asset,
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Consider an asset with a service life distribution given by (pl,pz,
essy) Where pj is the probability that the asset is retired at the end
of the j ~th year in service.. We assume that retirement éccurs only
at the end of a year.

In order to cohpute the unbiased estimate of the depreciation rate
for the 1 ~th year, we must consider three cases, First, if the asset
is refired in the i-1 st year or earlier, we have d; = 0 where d; is
the depreciation rate for the i -th year when the asset has been retired
in an earlier year, If the asset is retired in the i -th year, then
d: ﬂ'hii where d: is the depreciation rate for the i -th year when the
asset has been retired at the end of the £ -th year., Note that in
both of these cases, the service life was known with certainty so that
there is no averaging required to compute the proper depreciation rate.

The third case occurs if the asset survives through thé i -th year
8o that the aervipe life is known to be greater than i. In this situation’
the probability that the service life is j (>1) years is, by the deflinition

of conditional probability, pj/ 2: =1+1 P pj/si J = 1i+1, 1+2,..,

®
where s1 - Zk = 1+ Pk is the a priori probability that the asset is not
retired {n the first 1 years.

1!,_in fact, the asset is retired in the J =-th year, the depreciation

~zate in the { -th year should be htj' Since we do not, at this stage,

know what the actual service life will be, we compute the expected depre-

ciation rate by averaging over all possible service lives, Thus,

+ - - ' ®
4 '-25-&“ hyy (py/8y) = (1/5)) 2 mi41M1 3Py
vhere dt s the depreciation rate for the i -th year when the assot has

‘survived through the i -th year.
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Since whether or not the asset is retired Lefore, at the end of,
or after the 1 -th ycar is not known at the time the asset is first
put into service, the actual depreciation rate for the i -th year is
a random variable, The expected value of the actual i -th year
depreciation rate is given by

Ti-1 \V
L1 Py & * B )+ ) iy Py d §

= Pghyyt 2 j=i+1 Py Pyj
= ® h
21=i Py M3
which is equal to the static probabilistic depreciation rate for the

i ~th year as derived in [2]. Note that the sum of these expected

depreciation rates for i = 1,2,..,, is unity since

21:121:1 Py By, ‘-‘21212111 Py byy = 25;1 Py 2111 By =t
Suppose that the deprecciation rate for the i =-th year wheu the
asset las survived the i -th year was chosen to be>d: (+ d: ) . Then
the mean squared deviation between the actual depreciation rate and the
proper depreciation rate is given by
11800 ], goyy Py Oy - ": )
Then,

(/s )Xj,m P, “‘11 -4, = (s )Zj,,m pJ[(hu a1 e, e, "0?

® +,2 AN D |
-WWZ,-m pj(h“-ct1 )+ "4, 8, )

- | + ' ST +
since zjﬁiﬂ pj(hij -d)=0 by‘ the chotccf of d, .
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Thus, the mean squared deviation b tween the actual depreciation

rate and the proper depre&iation rate is minimized when we choose
* +
4 =4

So far we have concentrated on computing the actual depreciation

rate for the i -th year (i =1,2,,.,) to give as accurate a figure as

possible for use in the income statement. We now consider what the
accumulated depreciation rate should be at the end of the i -th year
after the depreciation rate for the i -th year has been charged.

Let a, be the proportion of the depreciable cost that has already
been depreciated by the end of the i -th year. Clearly, if the asvet

has been retired by the end of the 1 -th year, a, should equal 1 .

i
If the asset is still in service at the end of the { -gh year, a,
should equal 1 minus the sum of the expected depreciation rates in
each of the remaining years in order for a, to be an unbiased estimate
of the proper accumulated depreciation rate when the asset is still in
service at the end of the 1 -th ycar,

The expacted value of the depreciation rate in the k -th year given

that the naQCt is in service at the end of the i -th year is
kel
u’st)'{ it1 PyO v R By + Y Joictl ’3 dk )
- sy g Py by e

, 1hcrcforc. the sum of the cxpected doprectation ratec in all years after |

" the t -th is

/s )ZHﬂ c.j-k Py "kj “’st’ wa Py ?.«.m Byy -

: _‘mu. » Tw1- “’31)23-1-” Py Ekwu-l "kj

"" “"’z,pm Py )k-lhkj ,

stnce Zk-x‘\q ) et By 4 Zu-m “kj




~ less using scquen:iai probabilistic depreciation'(a:) than vhen using

its nccumulated deprccintlon rate il glvon by a : 1 .' f 1t‘survlvés

’k‘tf'l(‘i-l + ‘L) » may be gonsldered & an entry to ar account for
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Note that az equals the sum of the expected depreciation rates that should
have becn taken in years 1 to {1 1if it were known that the asset would

still be in service at the end ¢f the i -tk year.

Knowing a;, , we can compute the expected accumulated depreciation

rate after 1 years to be

+
2j=1 Pj * 1+(S‘j’1+1 Pj)a

25-1 PJ + si.u/s ) L j—i+1 Py Yk =1 Py

Z =1 Pj k-1 M 2,1=1+1 Py Zk=1 b

i @«
21@1 Y g P Py + ke 2 gl Py B

°Zk=1212k Py By

which is exactly equal to the accunulated depreciatinn rate uader the

static probabilistic method as derived in [2]. Since this quantity,
which is less than unity, is a convex coabination of 1 and II » WO

knou that the accumulated depreciation for nonretired asscts is always

static ptobabilisttc deprociatton. |
Since tho acewmlated dapreclation rate and depreciation rates
for each yoar were-detived>toparatgly, it i3 not, in gencral, true
thaé the accumuiatéd dé;re¢iation‘ra£g‘is the sun of depreclation races

in cach year. 1f tke'aliét 1s utill'ln service at the end of year t-1,

the 1 «th ycnr. the deptcctation rate 1: given by d‘ « The diffevence,
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‘adjusting prior income, and is attributable to the uncertainty in the

‘service life of the asset, Similarly;rif the asset is retired in the

‘i -th yéar 2/ , the dapfeciation rate is‘d: and the adjustmentﬂis
given by 1 - (af_; + d:). ‘

An interesting feature of this method is that a: does not neces-
iariiy increase as i increases. For exaﬁple, if P =Py~ 0.5
(all other p; = 0) , and if straight line depreciation is used, the
accumulated depreciation rate after one fear, a; » 1s .5(1/2) + .5(1/10)
= 3/10 ., If the asset is still in service at the end of the second year,

its accumulated depreciation rate a; shou.d be 1°(2/10) , a decrease of

1/10 over at . Since the asset is still in service at the end of the

_ second year, i.e., the asset's service life is now known to be 10 years

b‘with cgrtainty,,the fi;ét year's depreciation rate should have been . -

1/10. This plus the depreciation rate in the second year of 1/10 equals

'l;. The differeace between al -3/10 and what it should have beecn,

1/10 , is attributable to the hncertaiaty in the service 1ife. Thus a
proper accounting treatment. is to depreciate 1/10 in the second year and
make g debttign ry of 2/10 to the accumulated depxeciation rate crediting
to an account fot adjusting prior income.

In 3eneral, the expected value of the adjustment required in the

“1 ~th year is

[OEROME i S, + 1= (o) + D] B,
® i o
| "25-1+1 Py L= Py Z;P-:l hyy By + Pyt ) o Py Zk=1 “\q

 "23-.+1 Pj anl hkj Zjﬂi "321@1 ey * Py

-o
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so that the adjustment is due solely to the inherent’fluctuations caused

by the variability in the service life of the asset.

3, Sequential Group Depreciation
The sequentiel probabilistic deprectation;metho& developed ;n‘
Section 2 can be easily applied to groupVAepreciation in which es§ete
of a similar n~ture are grouped tegetherfand depreciated in a siﬁgie
account, At the end of any year, the original group of-aseets :cah be
partitioned into three groups; those that were retired in year 1-1.or
earlier, those that have juet been retired in year i , and tﬁose that SRR "::;,if; 22

are still in service. The items in the first group havegelready:been‘."

fully depreciated and no further charges ‘are required Those items
which have just been ret;red are charged at a rate equal to d h11

'while those items still 10 service are charged at a rate equal to B e o :

: Let N be the number of itemsforiginally,placed in Service,at tﬁe

start of the first year. Let n, be the number of items that have‘beehffﬁ

retired at the end of the i -th year and let mi’Se the numberrdfiiﬁeme

that were :etiredﬁjust at the end of the i fthvyeai.,eThus,;;f
ng =gt . L : |
"Therefore the i «th year depreciation rate based on the total '

depreciable cost for the N items, is given by 7 o L: ;et1;;f?e\
- L gt g ‘ IR
_1:1 di + m1 di + (N-.-::_) d1
N N - N
gt u”“'“ 7. -
N 3=~—1+1 13"3 -
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: - + ‘
where di R _d: , and di are asdefined in Section 2. 1In ovder to compute

~ - - the expected depreciation rate in the i -th year, we need to compute
~ only E(m, IN) end EQN - n /N) since d: and d: are flxed positive numbers . |
- ahd'd.' '.l‘he probability mass functions for the random variables

1 and N - ni are give'x by a binom).al distributzon with paramcters

i respecuvely. Since the

expected rvalue of a binomial d1et:1but1on with parameters n and p is

Ca= N (for both variables) and p= pi and s

' f np we have that

Em-n)m-~s1 | o

' Thexefore ‘the expected i -th year. sequential group depreciation charge is

S

given by , N
ﬁ,i ﬁ] +s, (1/s )25—14(1 i3 pj
23—1 58 Pj ’ B

’ the static group probabilistlc rate computed 1n [2].
| A eimilar analysis shows that the accumulated depreciation rate

: ~after :l years is

~,>i1’.:'1+(N )‘i :5_11_*'[(N °)]§‘j—1+1 ijk’l h'kj
TR N TR

' Therefoxe, the expected accumulated depreciation rate after i ye.ars is

(1.3) +8, (1/8 )Zj=i+1 ijk—-l hkj
EEA N chl p“ ZJB:I.-H pj 21@1 kJ

the ceeumulated deprec:!.ation rate after g years under the static ptobabiltstic

method (see [2])

¥
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As in the single asset case, an adjustment is generally reeded each
year to keep the accounts balanced. The amount of this adjustment is

o - Ti-1 N-n
(A -h,) Im - p 0 -0y )] +Zj=i+1 Py Ll Mg ! =

- N-n
NS

i-1}
i-1

and one can feadily.check that the expected value of this adjustment is

' zero,

4., Bayesian Analysis

For the calculations described in the previous sections, we have
implicitly assumed that the service life distribution,{pj s 1=1,2,..,1,
‘was precisely known. In [2] we discussed the use of parametric distri-
butions such as the normal, rectangular,.Poisson, and geometric to provide
‘convenient representations for the service life distributions, In using
these’distfibutions, one makes the aésumption that the probabilities
of asset retirement follow about the pattern indicated by the distri-
bution so that only one or two parameters need to be gpecified in order
to completely characterize the distribution.

In practice, one may be willing to accept the assumption that a
pa;ticular distribution is;approptiate-and yvet still be unsure about
the parameters thét characterize the distribution. In this case,
'Bayesiankanalysis might prove uéeful.gl

Assume we have a group of N identical assets each having an independent

and 1dehtica11y distributed service life distribution given by {pj ; 3=1,2,..,}

Then, the probability that exactly n, are retived in the first year (assuming

P > 0) is given by

N, .'m Nen
@ p't @)
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Assume also that 12 is not known for certain. The question is how we
can use our prior information on p, with the actual retirement nusiber,
say n, , in thg first year to get & new estimate on 121 and indirectly
On PysPgsees o We could- then continﬁe in this manner at the end of
each year to note the retirement pattern and update our estimate of the
parameter (s) of the distribution under study.

Let fi(pl) be our prior densiﬁy function on P; where

fl(pl) > 0 for 0Z P < 1 and
[s £, ap =1
011 *

After observing n, retirements in the first year, our new (posterior)

density function on pl‘(denoted by fl(pl) ) is given by
n Nen .
.2 1(1"’1) lf(pl)
£ (p,) =
171 Jl n, N-n1
o Py (1-p) £(p,) dp

0 < p1'5 1 .

In general, however, one would not be solely interested in Py but rather
in what the information on Py implies about the parémetcr(s) that are
specifying the complete service life distributiom,

 For example, suppose one feels that the geometric distribution‘ié
a reasonable approximation to the segvice life distribution, Thereforé“

Pj=(1'P)j-lp y J=L2,..., &/

One Qny of estimating p is by noting that the expccted lifetime is given
by 5;3:1 i Py = 1/p . However, one may not have had sufficient
experience with items similiar to the assats currently being qsed to

place complete faith in a point eatimate of p . Tﬁerefore one might wish
to select a priof dehsity on p and let the experience with the aétual ftems

now in scrvice also influence our estimate of p .
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For exposition purposes, it is“convenient in this situation to
choose a beta cistribution as the prior density for pél ; L.e.,

r-1 ter-l.
- p)-

£(p) =4y p (1 ;0<p<gLo<r<t ,

where Ao = (E‘l)! - o
(r-1)! (t-r-1)!

The parameters r and t may beféstimated by using the relations that
E(p) =r/t and | |
Var(p) = r/t2 .
Another interpretation of ﬁdw r and t may be estimated will become clearer
as we proceed.
* Therefore, if n, out of N items are retired in the first year in service,

n N-n . ter-l
Ay P ta-n HThaee

fl(p) = nl N-n1 r-1 ter-l
Agip “(l-p) " p (1-p) dp

) r+n1-1 N+t-(r+n1)-1
- (N+t-1)! p " (l-p)

(r+n1-1)l (N+t-r-n1-1)!

which is a P- distribution with parameters r+n, , N+t .

1
At the start of the second period, we have N - n items still in service.
Suppose that n oy  0) items fall in the second period. The p:obability

of this event, given p , is

n,-n N-n
(N-nl ) p 21 (1-p) 2 .

Byt

Therefore if our prior on p is given by fl(p) abuve, the posterior (after

the second period) density of p is




n

‘N, =0 Nen, zr+n,-1 N+t=-(r+n,)~1
21 2 1
) =8, p° () P - (1P '
r+n2-1 N+(N-n1)+t-(n2+r)-1
=A, P (1-p) ’
(N+N-n1+t-1)!
where Az =
(r+nz-1)! (2N+t-n1-r-n261)! .

Proceeding in this manner, it can be readily shown by induction that 1if
g " nj_1 items have been retired in the j-th period (j = 1,2,..,k; n, = 0),
the posterior density of p after the k-th period is given by

-1 (N-n Y- (ntr) -1
£,(0) = A, b K (1p) L‘=° ks

(t+&=0 (n-n ) - !

A (r+nk'1)! (t+ 2‘ (N -n,) - (r+nk) - !

where

Note that fk(p) dpends on the entire history of retirements (as represented
by nl...,nk) and not just on o s the cumuiative number of retirements at
the end of the k-th year,

One can see that the ini:ial paramcter: r and t can be interpreted as
if one had a prior experience of observing t of these identical items in use
at the start of a period with r of them having been retired by the end of
the period. Thus the greater t is, the larger the influence of the prior
density on the posterior densities of later periods, In the lgmit, where
we know p with certainty so that i Bayesian analysis is not useful, r and ﬁ
both.go to infinity with the ratio r/t tcmaining equal to P", |

rinally, to compute the probabiiistie depreciation intovand accunulatcd
dcpreciation rate after the k-th period, we need to dotermine pj for §=
k+l k42,.., « We know that for a given value of P pilp = (1-p) 3k~ 1

Therefore, to tind the unconditfonal value of pj y VO multiply by the denatty
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function for p , fk(p) and integrate over O to 1 ; i.e.,

r
=6 @le @ ap=nf bk p)ft*i @ny )~ (et (3 -k-1)-1]

mzw @-n,)-111 {”ZH (-0, )= (n,+r)+(3-k-1)-1]1

[+ K21 (n D4(3K)-1]8 [c+2‘:;; (¥-ny)- (o, +2)-1]1

= (r-mk)

for § = kil,k+2,..., .

Thus, for example,

o, and

Pes1 © T k-1
t+) joo (F-0y)
T k-1
ﬁnk t+z =0 (N-ni)-(nk-l-r)
Pes2 © TT K1

t4) 1og (¥en)) NZM (N-n, 341

so that if k = 1 (have observed one period with o, failures), our revised

estimates of P, and py are given by

Pz 1 and p, = r-l-ul tHl-(n +r)
t"‘N tN tH+1 .

(One can easily verify that the prior estimates of Py and py are given by

P =rand p, =r tr .)
.2 t 3 t t+l

The values of pj for § = k+l k+2,... nrc then inserted {nto the fomlu

dcvclopcd in Section 3 to compute tha k-th year depr*ch:im ncc and

accmhtcd dcprccln:ion rate ‘under :ha uquenth! Probabi.luttc nthod. | __
In the abun cxauph N thc postorior was alwnyl a §- dhti:lbution with thn

» cvo parmters a ninplc li.nou: fi \ction of the prior cutlut« T and t,

and the obsemd retiremont history. ‘lha casg»wl.th which we obtatncd the
posterior do_noi:§ of p :jlv&n'nl,..._.nk ins»‘due"tg the ipechl structure that
vas umeci: the georotric dlsﬁrlbvti‘ﬁn_ of the ‘ue:vléa 1ives and the B- distri-

bution as thc'prlor deMi:y on p . Departures t_roiu.olther one of these assump-
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tions will result in cons%derably more complication in the computation of
thé posterior density function,

For example, in [2] we postulated the use of a Poisson distribution
as a good approximation to actual mortality curves of equipment. With the
Pofsson distribution, we define p, = N'"1/(A-11] e™ for 1 =1,2,.., .
We would like to be able to treat the case in which A is a random variable
specified initially by a prior density function £().) . The authors are
unaware of any prior density for A that after observing a sequence of
retirements will yield a posﬁerior density for A of the same general form,
However, if a prior demsity on A is chosen, it is still possible to carry
out ihe required computations to determine, numerically, the posterior
densiﬁy of A .

Let A be specified by a prior demsity, £(A) . Then with N identical
items, the probability that n, are retired in the flrst period is given by

Nen

Ay 1

N
Peln, [N = (e ™™ (1 - e

Therefore after observing n, retirements, the posterior density of )\ is

v n Nen
O =a 6 e

£(A) where Al. ies chosen so that J: fl(l)dl =1,
In general, let pk(x) be the probability, given A , that an iten is
' rotqud in the k -th period given that it is still in scrvice at the end

of'thq,k-l st perfod, Therefore,

W = 0Haenus 5, 9 g0
- Also, let tk_l(A) be the posterior density of A barad on the ectual rotire-
, ment experience dp through the k-1 st poriod. Then if N - B-1 itecs are

still ia .crv1c¢ at the start of tha k ~th period and L W retire~




ments are observed in the k -th period, the new posterior density of A

is given by

- N
fk(l) = Ak[pk(l)]nk nk 1 [1 = Pk(l)] nk fk"l(}‘) for h > o ; k = 1,2,.., £ 4

with A chosen so that [ o £, () dA =1,
Thus to compute the sequential depreciation rate for the k -th period,

we need to determine the unconditional value of p‘1 for § = k+1,k+2,...,

as given by

_ = ndlg-nn
P fo

£,0) a) for § =k+lk#2,..., .
@ i-1
% T @D

The above recursive computations are straightforward, albeit tedious, and

can be prograrmed for solution on a digital computer,
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FOOTINOTES

1. For a comprehensive treatment of conventional depreclation wethods, see

Grant and Norton [1] .

.2, 1If the asset is retired in one of the first few years of its possible

service life, this adjustment might be quite substantial. However, to
offset this effect, the salvage value may be larger than expected because of

the few years in service and hence may reduce the amount of this writeoff.

3. See Raiffa and Schlaifer’[3l .

4. A wore general form of the geometric distribution might allow for a
minimum lifetime of m years so that pj =0 for §= 1,2,,.,m , and

j-m-1

Py = (1-p) p for j= ml,m2,..., .

S. The beta distribution is the conjugate prior (see {3]) for the Bernoulli
process being described here where the probahility of retirement in each year

is a constant, p , for those items which are still in service.
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