

#### EXPLOSIVE BEHAVIOR OF A SIMPLE COMPOSITE PROPELLANT MODEL

D. Price, J. O. Erkman, A. R. Clairmont, Jr., and D. J. Edwards

ABSTRACT: AP/Wax mixtures were used to model a simple composite propellant. Addition of wax to the AP increased its infinite diameter detonation velocity, increased its shock sensitivity, decreased its critical diameter and its reaction zone length. The maximum of these effects occurred at about 20% wax. At this composition, the model is an explosive comparable to TNT.

Approved by:

States Publication and the

Carl Boyars ADVANCED CHEMISTRY DIVISION CHEMISTRY RESEARCH DEPARTMENT U. S. NAVAL ORDNANCE LABORATORY White Oak, Silver Spring, Maryland

The second state and the second second second states and the second second second second second second second s

۱

ll March 1969

EXPLOSIVE BEHAVIOR OF A SIMPLE COMPOSITE PROPELLANT MODEL

This work was carried out under the tasks MAT 03L 000/R011 01 01 FR 59 and ORDTASK 033 102 F009 06 01. It is part of a continuing program on the systematic investigation of the explosive behavior of composite propellant models.

E. F. SCHREITER Captain, USN Commander

ALBERT LIGHTBODY ; By direction <

## TABLE OF CONTENTS

Later -

| Page                                                          | е |
|---------------------------------------------------------------|---|
| INTRODUCTION                                                  |   |
| EXPERIMENTAL                                                  |   |
| Materials                                                     |   |
| Charge Preparation & Experimental Procedure                   |   |
| Record Reduction and Data Obtained                            |   |
| RESULTS AND DISCUSSION                                        |   |
| Detonation Velocity as a Function of % TMD                    |   |
| Diameter (d) = $5.08 \text{ cm}$                              |   |
| Diameter Effect                                               |   |
| Infinite Diameter Detonation Velocities, D                    |   |
| Reaction of Wax with AP                                       |   |
| Reaction of Wax with RDX                                      |   |
| Reaction Zone Length and Reaction Time                        |   |
| Detonability.                                                 |   |
| Shock Sensitivity                                             |   |
| Information from Burning Bate Studies                         |   |
| SUMMARY AND CONCLUSIONS                                       |   |
| APPENDIX: Use of an Exponential Function for Extrapolation 53 |   |
| DEFERENCES                                                    |   |
|                                                               |   |
| ILLUSTRATIONS                                                 |   |
| Figure Title Page                                             | e |
| 1 Effect of Wax on Detonation Velocity of 25µ                 |   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$          |   |
| AP (N127) at $d = 5.08$ cm                                    |   |
| 4 Extrapolation of D vs d-1 Data for AP (N126)/               |   |
| Wax, 90/10                                                    |   |
| 6 Extrapolation of D vs d <sup>-1</sup> Data for AP (N126)/   |   |

| 5 | Diameter Effect in AP (N126)/Wax, 80/20            | 19 |
|---|----------------------------------------------------|----|
| 6 | Extrapolation of D vs $d^{-1}$ Data for AP (N126)/ |    |
|   | Wax, 80/20                                         | 20 |
| 7 | Extrapolation of D vs $d^{-1}$ Data for AP (N127)/ |    |
| - | Wax, 95/5 • • • • • • • • • • • • • • • • • •      | 20 |
| 8 | Extrapolation of D vs $d^{-1}$ Data for AP (N127)/ |    |
|   | Wax, 68.5/31.5                                     | 21 |
| 9 | Effect of Wax on D <sub>1</sub> Value of AP        | 24 |
|   |                                                    |    |

# ILLUSTRATIONS (Cont'd)

| Figure   | Title                                                                                           | Page |
|----------|-------------------------------------------------------------------------------------------------|------|
| 10       | Computed Effect of Wax on D <sub>1</sub> Value of AP<br>(Ruby Code)                             | 27   |
| 11       | Computed Detonation Temperatures for AP/Wax<br>Mixtures                                         | 29   |
| 12       | Variation of Volume of Gas Products and Chemical<br>Energy Belease with Amount of Wax in AP/Wax | -2   |
|          | Mixture                                                                                         | 30   |
| 13<br>14 | Effect of Wax on Detonation Velocity of RDX                                                     | 35   |
| 15       | Density for Two APs                                                                             | 38   |
| 19       | Relative to Unwaxed                                                                             | 38   |
| 16       | Detonability Curves for AP/Wax and TNT                                                          | 44   |
| 17<br>Al | Shock Sensitivity Curves for AP/Wax                                                             | 47   |
|          | for AP/Wax Mixtures                                                                             | 55   |

## TABLES

Title

## Table

Fage

| 1  | Detonation Velocity vs Density for 25µ                  | _  |
|----|---------------------------------------------------------|----|
| •  | AP (N-126).                                             | 6  |
| 2  | Detonation Velocity vs Density for AP (N126)/Wax,       | 6  |
| 3  | Detonation Velocity vs Density of AP (N126)/Wax.        | 0  |
| -  | 80/20                                                   | 7  |
| 4  | Detonation Velocity vs Density for 28µ AP (N127)        | •  |
| -  | and Its Wax Mixtures                                    | ,9 |
| 2  | Diameter Effect in AP/Wax, 90/10                        | 12 |
| 0  | Diameter Ellect in AP (N120)/wax, 00/20 25µ AP          | TO |
| 7  | Diameter Effect in AP (N127)/Wax, 95/5 28µ AP           | 17 |
| 8  | Diameter Effect in AP (N127)/Wax, 68.5/31.5 28 AP.      | 18 |
| 9  | D: Values for AP/Wax Mixtures                           | 23 |
| 10 | Computations for AP/Wax                                 | 26 |
| 11 | Comparison of AP/Wax, 80/20, with TNT 254 AP            | 31 |
| 12 | Ruby Code Computations for BDX/(CHo)                    | 33 |
| 13 | BDY/Way Data Head for Extuanolation                     | スル |
| 1  | Norda 2 Decetion Rene Lengths for AD (N 106) and        | 24 |
| 14 | Nominal Reaction Zone Lengths for AP (N-120) and        |    |
|    | AP $(N-127)$ .                                          | 37 |
| 15 | Reaction Times of Waxed AP Relative to Unwaxed AP       | 40 |
| 16 | Summary of Detonability Data                            | 43 |
| 17 | Shock Sensitivity of AP/Wax Mixtures                    | 46 |
| Al | Data Fitted to $D = D_{i} \left[ 1 - (a/d)^{K} \right]$ | 54 |

#### EXPLOSIVE BEHAVIOR OF A SIMPLE COMPOSITE PROPELLANT MODEL

D. Price, J. O. Erkman, A. R. Clairmont, Jr., and D. J. Edwards

#### INTRODUCTION

This work is part of a systematic study of models of composite propellants. It is concerned with the detonability, shock sensitivity, and detonation behavior of the model, ammonium perchlorate (AP)/Wax, as a function of physical conditions (charge diameter and porosity) and of chemical composition. The present study covers the range of 5 - 31.5% wax. The composition of commercially produced, non-aluminized composite propellants (AP/organic matrix) is typically 18-26% matrix material. The model duplicates the usual propellant behavior of difficult detonability (large critical diameter) near voidless density, but is much easier to study as a granular charge, i.e., in regions where it is easily detonable.

Earlier work on this program dealt with the explosive behavior of pure  $AP^{1-3}$  which provided necessary information for interpreting the present results. Most of the literature information on the oxidizer AP concerns its behavior as a propellant rather than as an explosive. This is also true of the system AP/organic fuel for which there are very few references, and those, in turn, provide only a small amount of information about its explosive behavior.

Waxed AP provides an interesting contrast to waxed organic H.E., e.g., waxed RDX. Addition of wax to RDX decreases its sensitivity and the size of its detonation parameters, (velocity, pressure and temperature designated D, P<sub>j</sub> and T<sub>j</sub>, respectively); addition of wax to AP increases its sensitivi', and the size of its detonation parameters. This opposite effect must be explained on the basis that AP is a better oxidizer and  $\varepsilon$  poorer explosive than RDX or other organic H.E.

#### EXPERIMENTAL

#### Materials

All AP used was propellant grade and contained 0.15 - 0.25% tricalcium phosphate (TCP). Lots N119 and N126 with average particle sizes of 200 and 25µ, respectively were described in References 2 and 3. Lot N127 was supplied by the same manufacturer (American Potash & Chemical Corporation) as Lot N126. The manufacturer's average particle size determination by Micromerograph was 44 and 43µ for N126 and N127, respectively. Ro-Tap sieve analysis of N127 was quite similar to that of N126.\* Moreover, a newly available set of screens extending to smaller mesh sizes (Cenco Sieve Shaker) confirmed the Ro-Tap analysis of N127 in the region of overlap and indicated essentially the same weight mean particle size  $(34.4\mu$  and 36.5µ, respectively by Ro-Tap and Cenco S.S.). If the Ro-Tap data for N126 and N127 are treated the same way, i.e., fitted to a linear log - log plot of accumulated percentage vs screen mesh size, the means are respectively 30.4 $\mu$  and 34.4 $\mu$ . The mean size of N126 was previously assigned<sup>2</sup> on the basis of a number of different examinations (e.g., microscopic and micromerograph determinations); the

\* Sieve Analyses

#### Wt. % Retained on Sieve No.

| AP                 | <u> 1.00</u> | 140        | 200        | 230              | 270        | 325               | Pan          |
|--------------------|--------------|------------|------------|------------------|------------|-------------------|--------------|
| N1.26 <sup>2</sup> | 0<br>0       | 1.0<br>1.1 | 2.5<br>2.4 | 3.8<br>3.0       | 6.0<br>6.1 | 10.3<br>10.1      | 74.6<br>74.8 |
| N127               | 0            | 0          | 1.7        | 3.6              | 8.3        | 12.3              | 74.0         |
|                    |              |            |            | 4,2 <sup>a</sup> |            | 20.0 <sup>a</sup> | a            |

a. By Cenco Sieve Shaker with finer screens of  $30\mu$  and  $20\mu$  which retained 54.0% and 21.3%, respectively.

assigned value was 25 $\mu$ . Consequently the present data were used to assign a value of (34.4/30.4) 25 = 28.3 $\mu$  to N127 relative to N126 at 25 $\mu$ . The fact the N127 is a slightly coarser material than N126 is further confirmed by its D vs  $\rho_0$  curve given later in the text.

The wax chosen for this work was carnauba, and a refined, powdered, grade No. 1 yellow was supplied by Frank B. Ross Co., Inc. According to the Ross literature, this wax has a melting point of  $81.5-84^{\circ}$ C and density of 1.00 g/cc at  $15^{\circ}$ C, 0.999 g/cc at  $25^{\circ}$ C. In its powdered form it is easily dry-mixed with AP to produce apparently uniform mixtures. By Ro-Tap, the average particle size was about  $140\mu$  but since the wax stuck to the sieves, this is too large a value. Microscopic examination showed that most particles were in the size range of  $75-178\mu$  with an average of about  $125\mu$ .

Carnauba wax<sup>5</sup> is a natural product (a tree exudate) and consists chiefly of fatty acids and alcohols (roughly, 30-carbon chains) in the form of esters. There are also small percentages of free acids and paraffin hydrocarbons. For computational purposes, the composition was approximated by  $C_{30}H_{61}OH$  or  $(CH_2)_{30}\cdot H_2O$  and also by  $(CH_2)_n$ . The grade 1 material is 96.7%-99.3% wax, melts at about  $83^{\circ}C$ , boils at  $320^{\circ}C$ , has a flash point of  $270-327^{\circ}C$  and a fire point of about  $330^{\circ}C$ . It is consequently a relatively volatile fuel for a composite propellant.

#### Charge Preparation and Experimental Procedure

AP/Wax mixtures were prepared by tumbling the dry components; they were stored in moisture vapor proof bags until used. Charge preparation and experimental procedures were those reported in the previous work<sup>3</sup> except that waxed mixtures were not heated above  $35^{\circ}$ C. All charges were either unconfined or supported in 0.08 mm-thick cellulose acetate envelopes. Boosters were of the same diameter as the test charge and 5.08 cm long\*; they were of 50/50 pentolite (1.56 g/cc). Charges were 0.64-7.62 cm in diameter, 20.3 cm long\*, and were frequently followed by a pentolite witness. The shock induced disturbance was recorded by a 70 mm smear camera at writing speeds of 1 to 4 mm/µsec. Smear camera records were similar to those \* Near the end of this work, booster length was changed to 2.54 cm and charge length to 22.8 cm. This is noted in the appropriate tables.

of the previous work<sup>1-3</sup> with a tendency for waxed AP to produce greater luminosity of both the detonation front and the gas products for  $\rho_0 \leq 1.2$  g/cc.

### Record Reduction and Data Obtained

Record reduction was carried out as in the earlier work  $^{1-3}$  but, in addition, all detonation velocities have been corrected for the effect of using a non-planar initiating shock  $^{6,7}$  and for the difference in detonation velocity between the test charge and the booster<sup>7</sup>. Both corrections are made for an axial point 3.8 cm from the free end of the charge, i.e., at the midpoint of that part of the smear camera trace read for the velocity determination.

In the first correction, the 5.08 cm long booster is treated as part of the charge length. This correction amounts to -0.1% to -1.5%for length/diameter ( $\ell/d$ ) ratio values of 10 to 2.9. The second correction is positive and ranges from <0.1% to 0.5%. Hence the net correction amounts to 0 to -1.1% of the velocity read from the smear trace, and its absolute value decreases with decreasing charge diameter.

Eight sets of data included replications (seven pairs and one set of three). These showed an average precision of 0.64% with a range of 0.14 to 2.25\%. However, seven of the eight were  $\leq 0.78\%$  and the average precision of these was 0.41%

#### RESULTS AND DISCUSSION

#### Detonation Velocity as a Function of % TMD

Diameter (d) = 5.08 cm. A general picture of the effect of wax is given by the D vs  $\rho_0$  curves for 5.08 cm (2 in.) diameter charges. Unwaxed AP, N126 (25µ), had been studied earlier<sup>2,3</sup>; for completeness, these data are repeated in Table 1 and the D values have been corrected according to our present procedures. Tables 2 and 3 contain comparable data for AP/WAX, 90/10 and 80/20. All of these data are plotted in Figure 1 which shows the large increase in D (up to 60%) effected by adding wax to AP. The AP/Wax D vs  $\rho_0$  curves are similar in kind to those of AP, i.e., AP/Wax shows group 2 explosive behavior. Addition of the wax, although it has not changed the explosive classification, has extended the range (raised the critical %TMD)



## TABLE 1 - Detonation Velocity vs Density for 25µ AP (N-126)

|          |            |      |         | D(mm/                                                      | µsec)                     |
|----------|------------|------|---------|------------------------------------------------------------|---------------------------|
| Shot No. | Po<br>g/cc | %TMD | Read    | Corrected <u>once</u>                                      | Corrected<br><u>twice</u> |
| 169      | 0.90h      | 46.2 | 2.28    | 2.26                                                       | 2.27                      |
| 194      | 0.95h      | 48.7 | 2.36    | 2.34                                                       | 2.35                      |
| 179      | 1.01h      | 51.8 | 2.64    | 2.62                                                       | 2.63                      |
| 178      | 1.02h      | 52.3 | 2.60    | 2.58                                                       | 2.59                      |
| 172      | 1.10h      | 56.4 | 2.69    | 2.67                                                       | 2.68                      |
| 181      | 1.20H      | 61.5 | 2.81    | 2.79                                                       | 2.80                      |
| 180      | 1.20K      | 61.5 | 2.84    | 2.82                                                       | 2.83                      |
| 183      | 1.281      | 65.6 | 2.89    | 2.87                                                       | 2.88                      |
| 182      | 1.291      | 66.2 | 2.92    | 2.90                                                       | 2.91                      |
| 171      | 1.331      | 58.2 | 2.70    | 2.68                                                       | 2.69                      |
| 201      | 1.351      | 69.2 | 2.74    | $2.72 \\ 2.65 \\ \delta = 18 \\ \delta = 16 \\ \delta = 8$ | 2.73                      |
| 189      | 1.361      | 69.7 | 2.67    |                                                            | 2.66                      |
| 188      | 1.411      | 72.3 | F(2.73) |                                                            | .5 cm                     |
| 177      | 1.431      | 73.3 | F(2.68) |                                                            | .5 cm                     |
| 170      | 1.471      | 75.4 | F(2.63) |                                                            | .4 cm                     |

$$\rho_{\rm v} = 1.95 {\rm g/cc}$$
 d = 5.08 cm

## TABLE 2 - Detonation Velocity vs Density for AP (N126)/Wax, 90/10

|                                 |                                                |                                      |                                                            | D(mm/                                     | µsec)                                     |
|---------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Shot No.                        | g/cc                                           | %<br>TMD                             | Read                                                       | Corrected<br>Once                         | Corrected<br>Twice                        |
| 319<br>274<br>278<br>287<br>322 | 0.941h<br>0.958h<br>1.101h<br>1.200H<br>1.201h | 52.9<br>53.8<br>61.8<br>67.4<br>67.5 | 3.784<br>3.973<br>4.091<br>4.179<br>4.139                  | 3.758<br>3.946<br>4.063<br>4.152<br>4.112 | 3.766<br>3.955<br>4.071<br>4.159<br>4.119 |
| 284<br>285<br>286<br>283<br>272 | 1.2811<br>1.4081<br>1.4471<br>1.5161<br>1.7491 | 72.0<br>79.1<br>81.3<br>85.2<br>98.3 | 4.118<br>3.846<br>3.694<br>F(3.23) δ<br>Fδ <u>&lt;</u> 7.3 | 4.090<br>3.820<br>3.669<br>> 20.3 cm      | 4.098<br>3.828<br>3.677                   |

 $\rho_v = 1.78 \text{ g/cc}, d = 5.08 \text{ cm}, \text{ and } 25\mu \text{ AP}$ 

## TABLE 3 - Detonation Velocity vs Density of AP (N126)/Wax, 80/20

|          |            |          |       | D(mm/µsec)        |                    |  |  |  |  |  |
|----------|------------|----------|-------|-------------------|--------------------|--|--|--|--|--|
| Shot No. | ρο<br>g/cc | %<br>TMD | Read  | Corrected<br>Once | Corrected<br>Twice |  |  |  |  |  |
| 333      | 0.901h     | 54.9     | 4.176 | 4.148             | 4.155              |  |  |  |  |  |
| 378      | 0.902h     | 55.0     | 4.231 | 4.203             | 4.210              |  |  |  |  |  |
| 354      | 0.903h     | 55.1     | 4.273 | 4.244             | 4.252              |  |  |  |  |  |
| 334      | 1.001h     | 61.0     | 4.381 | 4.352             | 4.359              |  |  |  |  |  |
| 335      | 1.101h     | 67.1     | 4.447 | 4.417             | 4.424              |  |  |  |  |  |
| 356      | 1.101h     | 67.1     | 4.459 | 4.429             | 4.436              |  |  |  |  |  |
| 336      | 1.201H     | 73.2     | 4.340 | 4.311             | 4.318              |  |  |  |  |  |
| 332      | 1.2941     | 78.9     | 3.904 | 3.878             | 3.886              |  |  |  |  |  |
| 337      | 1.3791     | 84.1     | 3.605 | 3.581             | 3.589              |  |  |  |  |  |
| 375      | 1.3841     | 84.4     | 3.613 | 3.589             | 3.597              |  |  |  |  |  |
| 381      | 1.4241     | 86.8     | 3.181 | 3.160             | 3.168              |  |  |  |  |  |

$$\rho_{\rm w} = 1.64$$
 g/cc, d = 5.08 cm, and 25 $\mu$  AP

considerably. This effect on detonability will be discussed in greater detail below.

Pure AP presents difficulties in the extrapolation of the D vs  $d^{-1}$  curve to the infinite diameter value  $(D_1)$  for charges at higher  $\% TMD^{1-3}$ . It is quite possible that similar difficulties will arise with AP/Wax. To minimize these, we worked with mixtures at 50-67% TMD which lie at, or to the left of, the maximum in the D vs  $\rho_0$  curves of Figure 1. The curves at 10 and 20% wax parallel each other (and roughly parallel the 0% wax curve) up to about 72% TMD; after that they tend to converge in a manner that indicates that the greater amount of wax is less effective in the less porous charges.

Comparisons are made here, as in all work of this project, at equal %TMD or equal % porosity (100 - %TMD) to assure equal void space, interior surface, and volume of materials being compared. As Figure 1 shows, on this basis, the curves for the two waxed mixtures show some convergence, but do not cross. The inset of Figure 1 shows the same data, plotted on an absolute density basis instead of on a porosity basis. In this case the curves do cross to show that the 80/20 mix exhibits higher velocities than the 90/100 at  $\rho_0 \leq 1.25$  g/cc and lower velocities at  $\rho_0 > 1.25$  g/cc.

The supply of AP N126 was exhausted before the planned work had been completed. Since particle size does not affect the infinite diameter results, a new lot of AP (N127) was used to obtain the  $D_1$  vs  $\rho_0$  curves of mixtures at 5 and 31.5% wax. For comparison, data from this second lot of AP are given in Table 4 and plotted in Figure 2 (analogous to Figure 1). Although the two lots of AP show distinct differences, the addition of wax almost obliterates them. For example, a plot of D (5.08 cm, 55% TMD) vs % wax shows the waxed AP (N126) and waxed AP (N127) on essentially the same curve. However, a valid comparison can be made only with infinite diameter values  $(D_1)$ , and that is done in the next section.

Diameter Effect. Because there was some information in the literature on AP/Wax, 90/10, this mixture was first studied for the effect of diameter and porosity on detonation velocity. The data obtained are given in Table 5 and plotted in Figures 3 and 4. The former displays D vs d for two porosities (52.8 and 67.5% TMD) of the 90/10

# TABLE 4 - Detonation Velocity vs Density for 28µ AP (NJ.27) and Its Wax Mixtures

|                                                             |                                                                                        | ,                                                            |                                                                               | D(mm/µ                                                                                                               | sec)                                               |                        |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|
| Shot No.                                                    | Po<br>g/cc                                                                             | TMD_                                                         | Read                                                                          | Corrected<br>Once                                                                                                    | Corrected<br>Twice                                 | ρ <sub>v</sub><br>g/cc |
|                                                             |                                                                                        | 100/                                                         | O, AP/Wax                                                                     |                                                                                                                      |                                                    | 1.95                   |
| 432<br>435<br>435<br>435<br>434<br>442<br>444<br>444<br>435 | 0.901h<br>1.001h<br>1.001h<br>1.101h<br>1.2221<br>1.2671<br>1.3161<br>1.3381<br>1.3621 | 46.2<br>51.3<br>56.5<br>65.6<br>65.6<br>67.6<br>68.8<br>69.8 | 1.993<br>2.290<br>2.361<br>2.511<br>2.628<br>2.635<br>F(2.48)<br>F(2.47)<br>F | 1.979<br>2.274<br>2.345<br>2.494<br>2.664<br>2.617<br>$\delta > 20.3$ cm<br>$\delta > 20.3$ cm<br>$\delta = 15.7$ cm | 1.988<br>2.283<br>2.354<br>2.503<br>2.673<br>2.626 |                        |
|                                                             |                                                                                        | 95/5                                                         | , AP/Wax                                                                      |                                                                                                                      |                                                    | 1.86                   |
| 439<br>482                                                  | 1.025h<br>1.236i                                                                       | 55.1<br>66.4                                                 | 3.419<br>3.689                                                                | 3.396<br>3.664                                                                                                       | 3.4<br>3.670                                       |                        |
|                                                             |                                                                                        | 68.5                                                         | /31.5, AP/1                                                                   | Wax                                                                                                                  |                                                    | 1.50                   |
| 477<br>490                                                  | 0.8261<br>1.006h                                                                       | 55.0<br>67.0                                                 | 3.802<br>4,036                                                                | 3.776<br>4.008                                                                                                       | 3.782<br>4.014                                     |                        |

d = 5.08 cm, 28µ AP

9







mixture. The curves are typical of those found for the other three mixtures in that they show a regular, smooth increase of D with increasing d. They can be compared with the analogous curve for a  $10\mu$  AP at 51.7% TMD<sup>3,9</sup>, also shown in Figure 3. It is evident that the curves for the 53% TMD mixture and the 51% TMD AP are essentially parallel although the former extends to much lower d values before it reaches its failure limit, as shown in Figure 3. Over the same range in d, extrapolation of D vs d<sup>-1</sup> should be as satisfactory for the mixture as for the pure AP. There is no comparable guidance for the 67% TMD mixture because the curve for the 65% TMD AP<sup>1</sup> is parallel to other AP curves at d  $\geq 6.35$  cm, but goes through a point of inflection at about d = 5.08 cm. Extrapolation of data for pure AP at 65% TMD gives questionable results<sup>1,3</sup> and so too may extrapolation of the higher density 90/10 mixture.

Finally, Figure 3 contains a dashed curve (from Reference 8) for 10µ 90/10, AP/paraffin, at 56.1% TMD. This curve cannot be explained from our present data since none of our mixtures exhibited an S-type D vs d curve. Moreover, the smaller particle size mixture would be expected to exhibit higher detonation velocity than the N126 mixtures at all values of the diameter, not just at d > 5 cm. The Reference (8) curve appears to be approaching such expected behavior at d > 6 cm, but the curve at lower diameters must result from measured velocities which arose from metastable reactions rather than from true detonations. Certainly we observed no constant velocity (independent of diameter for d small) that could be attributed to decomposition of AP only, and no transition to another constant (higher) velocity, independent of diameter for d large, which could be attributed to reaction of AP and wax. Hence our observations conflict with those of Reference (8) and with the explanation of them proposed there.

Figure 4 displays the D data for the 90/10 mixtures plotted as a function of reciprocal diameter. In contrast to pure AP, the smaller diameter D values lie above the extension of the upper linear section of the D vs d<sup>-1</sup> curve. Of course, the pure AP is not detonable at most of the smaller diameters, but where a velocity can be measured off the linear section of the curve, it lies <u>below</u> the

|             | Dc2             | 47000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4444444<br>4444444<br>844444444<br>844444444444                                                                                                                        | 7. cm<br>7. 888<br>1. 331<br>2. 231             |                            |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|
|             | D <sub>c1</sub> | E<br>000,000,00<br>000,000,00<br>000,000,00<br>000,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>4<br>4<br>4<br>4<br>4<br>6<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 6 × 879<br>4.318<br>4.518                       | 6 > 20.<br>sity            |
|             | D(0.940)*       | 22.00 TM<br>8 < 7.6<br>2.242<br>2.560<br>3.060<br>3.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.5% TMD<br>6 < 4.4                                                                                                                                                   | 60. <i>3%</i> TMD                               | 67.4% TMD<br>tion with den |
| (N126), 25µ | D<br>mm/µsec    | 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 444422<br>20099999<br>20099999<br>200999999999999                                                                                                                      | 19), 2001<br>F(2.77)<br>3.906<br>4.365<br>4.473 | F(4.15)<br>linear varia    |
| a AP        | pg<br>g/cc      | 0.907h<br>0.907h<br>0.907h<br>0.901h<br>0.918h<br>0.958h<br>0.958h<br>0.957h<br>0.957h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.202h<br>1.202h<br>1.202h<br>1.202h<br>1.202h<br>1.202h<br>1.202h<br>1.202h<br>1.202h                                                                                 | nt70.1<br>4170.1<br>4170.1<br>1.0751            | l.20lh<br>assuming         |
|             | eter d<br>cm    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | о<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                     |                                                 | 7.62<br>10n to D           |
|             | Diam<br>in.     | 0.275<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.755<br>0.7550<br>0.7550<br>0.7550<br>0.755000<br>0.7550000000000 | 00000000000000000000000000000000000000                                                                                                                                 | 1.375<br>2.50<br>3.00                           | 3.00<br>correct            |
|             | Shot No.        | 200408864664<br>200408664664<br>20040864664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72229988668<br>72229988668<br>72229988668<br>72229988668                                                                                                               | 4001<br>7902<br>794                             | 398<br>* Small             |

TABLE 5 - Diameter Effect in AP/Wax, 90/10

.

1

ł

i

i

|-.

ı

NOLTR 69-16





a been and the state of the second

extension of the linear section.

Tables 6, 7, and 8 contain, respectively, the data obtained for the AP/Wax mixtures, 80(N126)/20, 95(N127)/5 and 68.5(N127)/31.5. Figure 5 illustrates the diameter effect in the 80/20 mixture and confirms the fact, suggested in Figure 3, that the D vs d curves for mixtures of different porosities can cross. Figures 6, 7, and 8 show the extrapolation curves for the mixtures of 20, 5, and 31.5% wax, respectively.

Infinite Diameter Detonation Velocities,  $D_1$ . All of the curves D vs d showed perfectly continuous variation (e.g., Figures 3 and 5). Consequently D vs d<sup>-1</sup> curves should also be smooth. However, if D approaches  $D_1$  asymptotically as d increases, a portion of the D vs d<sup>-1</sup> curve generally approximates a straight line. Figures 4, 6, 7, and 8 show how the D vs d<sup>-1</sup> curves were approximated either by one straight line over the whole range of d<sup>-1</sup> or, as was more generally the case, by two. The range showing linearity at the larger diameters was selected from these graphs. The data for these ranges were then treated by least squares to find the best linear fit, and the resulting straight line extrapolated to D, at d<sup>-1</sup> = 0\*.

The  $D_1$  values so obtained are listed in Table 9 and plotted as linear curves of  $D_1$  vs %TMD in Figure 9. The slopes for the 90/10 and 80/20 mixtures were so nearly equal that of the pure AP<sup>9</sup>, also shown in Figure 9, that the value for the 95/5 mixture at 55% TMD was selected to give the same slope. As Table 9 shows for this set of data, dropping the lowest diameter point from the data set results in a much lower standard deviation for the fit; that was our first choice for the extrapolation. However, with only 5% wax it is harder to get reproducible charges; hence greater scatter would be expected for the 95/5 than for the other three mixtures. That consideration added to the way the  $D_1$  of the 95/5 mixture (at 55% TMD) fit into the  $D_1 - \rho_0 - \%$  wax patterns of Figure 9 led to the final choice made.

\*The D vs d data were also fitted to the curve  $D = D_{i} \left[ 1 - (\alpha/d)^{K} \right]$ . This manner of determining  $D_{i}$  was unsuccessful for reasons discussed in the appendix.

ł 25µ AP F Ě 878888977799709708 878888977799709708 Shot 1

A REAL PROPERTY OF

AND AND AND ANY ANY

- Diameter Effect in AP (N126)/Wax, 80/20

v

TABLE

| D <sub>C2</sub> |           |          | 2.408  | 2.007  |                  | 7.754                                                                             | 3.939        | 4.210  | 500<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 4.150  | 4.343  | 4.347  | +<br>+<br>+<br>000<br>+<br>0 | 422                                 |           |         |                   | 2.542 | 3.288  | 3.661  | 3.672  | 4.424        | +<br>+<br>-<br>-<br>- |               | 4.740   |                |             |
|-----------------|-----------|----------|--------|--------|------------------|-----------------------------------------------------------------------------------|--------------|--------|--------------------------------------------------------------------|--------|--------|--------|------------------------------|-------------------------------------|-----------|---------|-------------------|-------|--------|--------|--------|--------------|-----------------------|---------------|---------|----------------|-------------|
| D <sub>c1</sub> | CIVIL %6. |          | 2.408  | 2.807  | 2.001<br>710     | 7.752<br>3.752                                                                    | 3.937        | 4.203  | 4.243                                                              | 4°149  | 4.330  | 4.337  | 4.44V                        | 4.400                               |           | .1% TMD |                   | 2,542 | 3.288  | 3.659  | 3.670  | 4.418        | 4.4%0                 | 4.00.4<br>700 | 4.729   | nsitv          | 3 · · · · · |
| D(0.901)*       | 54        | õ = 5 cm | 2.408  | 2.857  |                  |                                                                                   |              |        | 4.271                                                              |        | 4.377  | 4.381  | <u>t</u>                     | <i>く1</i> . <b>+</b> • <del>1</del> | D(1.101)* | 67      | $\delta < 7.6$ cm |       |        |        |        |              |                       |               | 4 • 802 | fation with de |             |
| mm/µsec         |           | F(1.67)  | 2.359  | 2.843  | 2.581<br>Arr     | ン・10<br>3、753                                                                     | 0.949<br>949 | 4.231  | 4.273                                                              | 4.176  | 4.384  | 4.390  | 4.510                        | 4.460                               |           |         | ĨŦ                | 0 540 | 3.288  | 3.665  | 3.676  | 4.447        | 4.459                 | 4.051         | 4.79L   | linear val     |             |
| Po<br>B/CC      |           | 0.916h   | 0.934h | 0.916h |                  |                                                                                   | 0.902h       | 0.902h | 0.903h                                                             | 0.901h | 0.906h | 0.908h | 0.901h                       | 0.905h                              |           |         | 1 105h            |       | 1.102h | 1.1014 | 1.101h | uioi.i       | ulol l                | 1.101.1       | 1,094h  | assuming       | 2           |
| cm<br>cm        |           | 0.635    | 0.953  | 1.27   | ч.<br>700-1<br>С | о и<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 3.495        | 5.08   | 5.08                                                               | 5.08   | 6.35   | 6.35   | 7.62                         | 7.62                                |           |         | 0 053             |       | 1,905  | 2.54   | 2.54   | ۍ.08<br>0.08 | 5,08                  | 0.35<br>25    | 7.62    | tion to I      |             |
| in.             |           | 0.25     | 0.375  | 0.50   | 0.75<br>0        |                                                                                   | 1.375        | 2°00   | 2.00                                                               | 2.00   | 2.50   | 2.50   | 20°.                         | 3.00                                |           |         | 0 375             |       | 0.75   | 1.00   | 1.00   | 2.00         | 2.00                  | 2.20<br>50    | 3.00    | correct        |             |
| . oN            |           | ស្ត      | 5      | 5      | ₹,               | ຽຕ                                                                                | 15           | ω      | 54                                                                 | ñ      | 20     | δ.     | $\tilde{\mathbf{v}}$         | õ                                   |           |         | η.                | r ve  | 25     | .00    | ហ្ក    | ហ្គ          | 9                     |               | Ω       | Small          |             |

1

\*

NOLTR 69-16

С? Р 7.0871 7.5685 7.578 7.578 7.578 made with boosters 2.54 cm long cm long (instead of 20.5 cm) 4-20-27 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20-25 20 20-25 20 20-25 20 20-25 20 20-25 20 20-25 20 20-25 20 20-25 2 67.2% TMD 55.1% Dol - Diameter Effect in AP (N127)/Wax, 95/5 D(1.250) 2.738 3.166 3.692 7.943 7.943 D The D \* Note that all shots of number >480 were (instead of 5.08 cm) and acceptors 22.8 л. 1.871 3.688 3.6199 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.052 7.057 7.052 7.052 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7.057 7 2.735 3.169 3.689 4.157 28µ AP 1.025h 1.025h 1.025h 1.025h 1.025h Po g/cc 2621 2741 2741 Diameter d in. cm ~ TABLE = 1.85 g/cc Shot No. 480 482 482 483 484 484 1008864 Ρν

NOLTR 69-16

17

i

# TABLE 8 - Diameter Effect in AP (N127)/Wax, 68.5/31.5 $28\mu$ AP

| Shot No.*                | Diamet<br>in.                 | cm.                           | g/cc                                 | D<br>mm/µsec                     | D <sub>cl</sub>                  | D <sub>c2</sub>                  |
|--------------------------|-------------------------------|-------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 475<br>476               | 1.00<br>1.375                 | 2.54<br>3.495                 | 0.825h<br>0.826h                     | 3.187<br>3.542                   | <u>55.1% 1</u><br>3.181<br>3.530 | TMD<br>3.183<br>3.533            |
| 477<br>478<br>479        | 2.00<br>2.50<br>3.00          | 5.08<br>6.35<br>7.62          | Ļ                                    | 3.802<br>3.936<br>4.078          | 3.776<br>3.895<br>4.016          | 3.781<br>3.904<br>4.029          |
|                          |                               |                               |                                      |                                  | 67.1%                            | IMD                              |
| 488<br>489<br>490<br>491 | 1.00<br>1.375<br>2.00<br>3.00 | 2.54<br>3.495<br>5.08<br>7.62 | 1.006h<br>1.007h<br>1.006h<br>1.006h | 3.137<br>3.629<br>4.036<br>4.362 | 3.131<br>3.617<br>4.009<br>4.296 | 3.133<br>3.619<br>4.014<br>4.307 |

 $\rho_{\rm V}$  = 1.50 g/cc

the share to share you want the same through the share at the second state

١

\* All shots made with booster 2.54 cm long

2 67.1% TMD - 54.9% TMD AP 51.3% TMD ω FIG. 5 DIAMETER EFFECT IN AP(N126)/WAX, 80/20 DIAMETER d (MM) α 0 4.0 2.0 5.0 3.0

NOLTR 69-16



the feature of the state of the state of the state of the



i,

1

FIG. 8 EXTRAPOLATION OF D VS. 4<sup>-1</sup> DATA FOR AP(N127)/WAX, 68.5/31.5

۱ ۱

ŧ

NOLTR 69-16

With the use of smoothed values from the  $D_i$  vs  $\rho_o$  curves of Figure 9, the two upper curves of  $P_i$  vs % wax at 55 and 67% TMD were constructed. They show  $D_i$  increasing up to a broad maximum at about 20% wax, and decreasing thereafter. The curves should be smooth, but not necessarily symmetrical, because as long as the wax increases the energy release, it should increase  $D_i$ , but beyond that it would act as a diluent. The upper curves of Figure 9 indicate that the diluent effect is much more evident at 67% TMD than at 55% TMD, but the concentration at maximum  $D_i$  and the effect at lower concentrations seem much the same for both porosities.

Reaction of Wax with AP

It was shown in earlier work<sup>9</sup> that the decomposition of AP in detonation of very low density charges approximates the reaction

$$2NH_4C10_4 \longrightarrow N_2 + 2HC1 + 3H_2O + 2.5O_2$$
 (1)

But at practical chargedensities, the arbitrary decomposition

$$2NH_{4}Clo_{4} \longrightarrow N_{2} + Cl_{2} + 4H_{2}O + 2O_{2}$$
(2)

seems to be a better approximation. If we now assume that the AP in an AP/Wax charge first decomposes according to Eq. (2) we then have corresponding simple arbitrary equations for reactions with the wax: (a) all Cl appears as  $Cl_2$  in the products, 0 goes to form  $H_2O$ ,  $CO_2$ and CO in sequence, and (b) all Cl appears as HCl in the products, 0 goes to form  $H_2O$ , CO, and  $CO_2$  in sequence. These lead to the stoichiometric amount of wax and a constant volume heat of reacticr of (a) 7.66% and 1120 cal/g and (2) 9.40% and 1234 cal/g. Although the stoichiometric concentrations are less than half that found at maximum  $D_1$ , the arbitrary mechanisms have some value in approximating computed equilibrium products.

For a kilogram of the mixtures, the molecular compositions of 90/10 and 80/20 are represented, respectively, as

7.6596 
$$NH_4C10_4 + 0.2279 C_{30}H_{61}OH$$
 and

$$6.8085 \text{ NH}_4\text{ClO}_4 + 0.4558 \text{ C}_{30}\text{H}_{61}\text{OH}.$$

With a heat of formation of  $-\Delta H_f^o$  (298°K) = 223 kcal/mole for  $C_{30}H_{61}OH$ , computations were made with the arbitrary mechanisms (a) and (b) and

| a<br>mm                       | 10.3 (4.5%)<br>9.0 (1.1%)  | 7.0 (9.6%)  | 5.5 (3.2%)  | 7.1 (2.8%)  | 7.2      | 12.4 (2.4%) | 10.1 (6.0%) | 9.2 (3.6%)  | 9.1 (0.3%)  |                 | - ŷ1) <sup>2</sup> /n-k] <sup>2</sup><br>raight line<br>sviations                                                      |
|-------------------------------|----------------------------|-------------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| q.m.е.<br>mm/µвес             | 0.093<br>0.012             | 0°073       | 0.048       | 0.022       | 1        | 0.023       | 0.021       | 0.012       | 0.003       |                 | $\sigma = \begin{bmatrix} \Sigma(\mathbf{y_1} - \mathbf{z}) \\ \text{derlved str} \\ \text{standard de} \end{bmatrix}$ |
| D1<br>mm/µsec                 | 4.29 (2.0%)<br>4.16 (0.3%) | 4.46 (1.9%) | 4.75 (0.6%) | 4.41 (0.6%) | 4.88     | 4.88 (0.8%) | 5.17 (1.36) | 5.41 (0.7%) | 4.89 (0.1%) |                 | Ls defined as to which the corresponding to                                                                            |
| Range used<br><u>in d, cm</u> | 1.9-7.6<br>2.5-7.6         | 2.5-7.6     | 1.9-7.6     | 2.5-7.6     | 6.4-7.6* | 3.5-7.6     | 5.1-7.6     | 5.1-7.6     | 2.5-7.6     |                 | or (q.m.e.)<br>s the extent<br>ntheses are o                                                                           |
| CIVILS                        | 55.1                       | 52.8        | 54.9        | 55.1        | 60.3     | 67.2        | 67.5        | 67.1        | 67.1        | lon             | mean err<br>measure<br>1n pare                                                                                         |
| Po<br>B/cc                    | 1.025                      | 0,940       | 106.0       | 0.826       | 1.073    | 1.250       | 1.200       | 1.100       | 1.006       | trapolat        | adratic<br>9). It<br>Values                                                                                            |
| AP                            | LJIN                       | 921N        | 921N        | ZSIN S      | 6TIN     | LZIN        | 921N        | 921N        | LZIN S      | oint ext        | The qua<br>ference<br>ie data.                                                                                         |
| AP/Wax                        | 95/5                       | 01/06       | 80/20       | 68.5/31.5   | 01/06    | 95/5        | 01/06       | 80/20       | 68.5/31.5   | й ом <b>т</b> * | Notes:<br>(See Re<br>fits th                                                                                           |

TABLE 9 - D<sub>1</sub> Values for AP/Wax Mixtures

كالمحمول والمنافعة المراجعة والمتعارك ومراجع والمراجع والمنافع والمنافعة والمتعارك والمحمول والمتعالية والمتعارك

Sector Sector

Ĭ

ان من المانية المانية من المانية من موجود المانية المانية المانية المانية المانية المانية المانية المانية الما من المانية المان

The latter is defined by  $D = D_1 (1 - ad^{-1})$ . (converted to percentages) for D1 and a.



24

the first abarran for a first an Poly

S allow a series of the second second second

Æ,

with the Ruby code (TNT parameters). The results are compared in Table 10 with AP/Wax computations (NOL Propellant Code) for burning at one atmosphere.

The agreement between mechanism (a) and the Ruby results at 80% TMD is very good. They differ chiefly because of the products Cl and CCl, which were not considered in (a). Atomic Cl appears because of the very high temperature, but it is probable that CCl, is too complicated a molecule to form in the detonation and should not have been considered in the Ruby products. The net result is that mechanism (a) predicts the same amount of gas and a chemical energy about 4% lower than the Ruby values; most of this difference would be removed if CCl<sub>11</sub> were not considered a product. Mechanism (b) for 50% TMD produces results in good agreement with Ruby results at 50% TMD for the 80/20 mixture and in fair agreement for the 90/10 mixture. Here the difference (a net of +7% in chemical energy released) is caused chiefly by the shift in equilibrium products as a result of the high temperature (3174°K). The products from burning are not approximated well by either mechanism, but they are, of course, closer to the results of (b) which correspond to the lower % TMD and hence lower reaction pressure,

Figure 10 displays the results computed by Ruby for the effect Note that the slope of the computed curve is the same of wax on AP. as that of the experimental for pure AP although the absolute value of D, is too high by 0.7 mm/usec. The slopes of the waxed mixtures are lower than those found experimentally, but this may result, in part, from the fact that the stoichiometric amount of wax is less than 10%. The slope of the experimental curve 68.5/31.5 (for which an excess of wax is undoubtedly present) is also lower than that of the AP curve (Figure 9). These Ruby computations give D, values for the waxed mixtures that exceed the experimental by at least as much as was the case for AP. In drawing the upper curve of Figure 10, D, vs % wax, straight lines were used to connect the few points; they were made to intersect at the appropriate maxima found with the arbitrary mechanisms. The computed values show convergence of the 55% and 67% TMD curves earlier than the experimental curves; this is comparable to the earlier occurrence of the maxima mentioned before.

|         | * 1                             |            |          |                        |             |       |           |             |            |               | , <b>1</b> | •             |       |       |          |      |                  |       |       |                 |                 |                |
|---------|---------------------------------|------------|----------|------------------------|-------------|-------|-----------|-------------|------------|---------------|------------|---------------|-------|-------|----------|------|------------------|-------|-------|-----------------|-----------------|----------------|
|         | Adiabatic<br>Burning<br>Values  | 1          | 1        | 2054 (т <sub>n</sub> ) | L<br>1      | 1     | (u⊽)22(   | 49.0        |            | 3.40          | 0          | 0.02          | 6.79  | 10.90 | 12.18    | 2.08 | 0                | 0     | 13.56 | 0               | 0               |                |
| 80/20   | Arbitrary<br>a                  | I<br>1     | 1        | !                      | 1           | 1     | 1038      | 34.6        |            | 3.40          | 3.40       | 0             | 0     | 27.69 | 0        | 0    | 0                | 13.67 | 0.05  | 0               | 0               |                |
| P/Wax,  | 1 MD                            | 6.397      | 160.6    | 2482                   | 1.872       | 2.343 | 1088      | 34.62       |            | 3.39          | 11.0       | 0.97          | 1.83  | 26.71 | 0.18     | 0.40 | 0.95             | 12.13 | 0.03  | 0.04            | 0.02            |                |
| A       | 1<br>TWD                        | 5.305      | 70.0     | 2816                   | 771.1       | 2.295 | 1087      | 38.36       |            | 3.31          | 0.03       | 2.64          | 61,19 | 22.25 | 3.22     | 11.1 | 0                | 8.87  | 1.03  | 0.19            | 0.47            |                |
|         | Arbitrary<br>b                  | 1          | 1        | t<br>t                 | 1           | 1     | 1085      | 37.9        |            | 3.40          | 0          | 0             | 6.81  | 24.34 | 3.35     | 0    | 0                | 10.89 | 0     | 0               | 0               | AL OLT         |
|         | Adiabatic*<br>Burning<br>Values | 1          | 1        | 2686(T <sub>n</sub> )  | չ<br>լ<br>յ | 1     | (ud)č19   | 36.7        |            | 3.77          | 0          | 71.17         | 6.49  | 16.63 | 2.96     | 4.17 | 0                | 0     | 1.80  | 0               | 0               |                |
| 01/06   | Arb1trary<br>a                  |            | 8        | 1                      | 1           | ;     | 1120      | 34.3        |            | 3.83          | 3.83       | Ó             | 0     | 22.38 | 0        | 4.24 | 0                | 2.6   | 0     | 0               | 0               |                |
| AP/Wax, | 80%<br>TMD                      | 6.638      | 180.8    | 2639                   | 2.001       | 2.470 | 1156      | 33.50       |            | 3.82          | 60.0       | 0.62          | 0.69  | 22.01 | 0.55     | 4.16 | 1.54             | 0.59  | 0.01  | 0.01            | 0               |                |
|         | 200<br>2005                     | 5.526      | 84.4     | 3174                   | 1.291       | 2.221 | 0711      | 37.54       |            | 3 <b>.</b> 82 | 0.37       | 1. <i>3</i> 6 | 5.53  | 19.45 | 2.25     | 4.78 | 10.0             | 0     | 0.14  | 0.01            | 0               |                |
|         | Arb1trary<br>b                  | 1          |          | 1                      | !<br>;      | ;     | 1222      | 36.9        |            | 3.83          | 0          | 0             | 7.66  | 18.55 | 1.36     | 5.48 | 0                | 0     | 0     | 0               | 0               | oc ocnetdon    |
|         |                                 | D(mm/µsec) | P,(kbar) | T, ( <sup>o</sup> K)   | p,(g/cc)    | ج     | ∆e(cal/g) | n(moles/kg) | Products** | N - N         | C10        | c1 ~          | HCI   | н,0   | 00<br>C0 | c02  | cci <sub>h</sub> | C(B)  | Н     | NH <sub>3</sub> | CH <sub>4</sub> | ** Other snevt |

26

TABLE 10 - Computations for AP/Wax

-1 1 3

NOLTR 69-16

\*

Computed on NOL Propellant code at 1 atm. (other computations were on Ruby code with TNT parameters). For 90/10 mixture, also found 0.45H, 0.17 0, 0.66 02, 1.10 H and 0.12 NO. Also considered in flame equilibrium were C(s), C10, NO, NO2, and N20. In this computation, wax was approximated as (CH2)n with a heat of formation of 5.5n kcal/mole.



27

-ら

Figure 11 shows the computed detonation temperatures  $(T_j)$  for the AP/Wax mixtures together with their adiabatic flame temperatures which are considered a reasonable lower limit of  $T_j$ . Just as Ruby (with the TNT parameters) overestimates  $D_j$ , and consequently  $P_j$ , it appears to underestimate  $T_j$ . Even so, the relative positions of the curves in Figure 11 show, as would be expected, that the addition of a fuel to AP increases its temperature of reaction substantially.

The qualitative information offered by the computations indicates that wax and AP react. The resultant increase in chemical energy released causes about the expected increase in  $D_i$  and  $P_j$ . Experimentally, the maximum effect occurs not at the stoichiometric amount of wax, but at about twice this amount. This discrepancy is attributed to a number of effects, e.g., only the wax which has been vaporized and can be oxidized very rapidly by the AP decomposition products can contribute to the detonation phenomena. A higher than stoichiometric concentration of wax in the original mixture is evidently necessary to obtain the optimum concentration in the reaction zone.

The AP/Wax mixtures make very interesting explosives. In Figure 12, the arbitrary decomposition mechanism (a) has been used to show how addition of wax increases the reaction energy very rapidly to the stoichiometric; thereafter it decreases it, but very slowly. At the same time, the volume of gas products stays about constant from a wax content of zero to more than twice the stoichiometric amount. Beyond this, the gas products increase rapidly as a result of the simple decomposition of the excess wax (essentially  $CH_2$ ). The same broad maximum and slow fall cff found in reaction energy is reflected in the experimental  $D_1$  vs % wax curve of Figure 9, but the locations of the maxima differ, of course.

The most effective of the AP/Wax mixtures seems to be the 80/20. The organic explosive it approximates best is TNT. The comparison is shown in Table 11, and is made for  $D_i$ ,  $P_j$  (approximated as  $\rho_0 D_i^2/4$ ),  $\Delta e$  and n. The last two values were computed on the Ruby Code, but for the AP/Wax the maximum of Table 10, i.e., that computed for 90/10, was used to approximate the value at the experimental point



NOLTR 69-16

North Chi althe

Same and Franking a strength



FIG. 12 VARIATION OF VOLUME OF GAS PRODUCTS AND CHEMICAL ENERGY RELEASE WITH AMOUNT OF WAX IN AP/WAX MIXTURE

# TABLE 11 - Comparison of AP/Wax, 80/20, with TNT 25µ AP

| Material                         | D <sub>i</sub>   | P, <sup>a</sup> | Δe <sup>b</sup> | n <sup>C</sup> |
|----------------------------------|------------------|-----------------|-----------------|----------------|
|                                  | mm/µsec          | kbar            | cal/g           | moles/kg       |
| <u>2078 IMD</u><br>AP/Wax<br>INI | 4.79 a<br>4.77 a | 51.7<br>51.5    | ~1140<br>1092   | ~37.5<br>30.8  |
| 67% TMD                          |                  |                 |                 |                |
| AP/Wax                           | 5.39             | 79.8            | ~1156           | ~33.5          |
| TNT                              | 5.40 d           | 80.5            | 1130            | 28.4           |

- a. Estimated as  $\rho_0 D^2/4$ . TNT values are close to those of Reference (10), parallel the curve of Reference (11).
- b. Ruby code computations. For AP/Wax, values at <u>computed</u> maximum, i.e., 90/10.
- c. Ruby ccde computations. For AP/Wax, 90/10 mixture used; for TNT Reference (11).

d. Reference (12).

of maximum effect\*. All comparisons are made at the same % TMD, but this is also nearly the same  $\rho_0$  because the voidless density of AP/Wax, 80/20 is 1.64 g/cc; the crystal density of TNT is 1.654 g/cc. The two explosives have the same  $D_1$  and  $P_j$  at 55 and 67% TMD. The AP/Wax has an appreciably greater volume of gas products and probably a higher heat of reaction than the TNT. Its detonability region is more restricted than that of TNT (this will be described later), but within that region it is probably a slightly more effective H.E. [Ruby values of  $T_j$  and  $P_j$  have not been tabulated here because the  $T_j$  are probably wrong for all H.E., and the values for AP/Wax are either over-estimated ( $P_j$ ) or underestimated ( $T_j$ )]. However, the subroutine of Ruby which computes equilibrium gives proper results for the  $P_j$ ,  $T_j$  used, and the equilibrium shifts very little with  $T_j$ . Hence the  $\Delta e$  and n values may be useful for a relative rating. <u>Reaction of Wax with PNX</u>

As we remarked initially, addition of wax has a very different effect on organic H.E. from that which it has on AP. This can be shown very simply with Ruby Code calculations on  $RDX/(CH_2)_n$ . The results are summarized in Table 12. (The computations were carried out for another project, but have not been previously reported.) It is evident that wax in RDX lowers  $D_i$ .  $P_j$ ,  $T_j$ , and  $\Delta e$  although the volume of gas products stays about constant. Figure 13 displays the results for  $D_i$  vs % wax; the curve was extrapolated to 70% wax for comparison with an experimental value at that composition.

Also shown on Figure 13 are what we consider the best  $D_1$  measurements for RDX and PBX 9205 (approximating RDX/Wax, 92/8). The  $D_1$  for Comp A, also shown, is from data obtained on charges at a single diameter with the relatively slow streak camera available at that time<sup>16</sup>. Hence it is not considered as accurate as the  $D_1$  for RDX and PBX. Finally, Table 13 gives the Reference 17 data which were extrapolated to obtain  $D_1$  for the RDX/Wax, 31.5/68.5 mixture, also plotted in Figure 13. Contrary to the AP/Wax results, the agreement

\* The Ruby values for 90/10 and 100/0 give D ratio values of 1.24 and 1.19 at 55 and 67% TMD respectively. Corresponding ratios from the experimental work (Figure 9) for 80/20 and 100/0 are 1.23 and 1.19.

TABLE 12 - Ruby Code Computations for  $RDX/(CH_2)_n^*$ 

| Products %(CH_)n         | : _0 <sup>13</sup> | 15    | 25    | 35    | 45    |
|--------------------------|--------------------|-------|-------|-------|-------|
| ρ_(g/cc)                 | 1.80               | 1.55  | 1.43  | 1.33  | 1.24  |
| -44 (298°K)<br>cal/g     | ~66.18             | 1.040 | 45.80 | 90.70 | 135.6 |
| D <sub>i</sub> (mm/µsec) | 8.57               | 7.98  | 7.67  | 7.41  | 7.16  |
| P <sub>1</sub> (kbar)    | 341                | 249   | 209   | 180   | 154   |
| $T_{1}^{O}(K)$           | 2668               | 2403  | 2128  | 1847  | 1604  |
| $\rho_1(g/cc)$           | 2.427              | 2.073 | 1.904 | 1.763 | 1.637 |
| γັ                       | 2.882              | 2.962 | 3.016 | 3.068 | 3.121 |
| ∆e(cal/g)                | 1486               | 1325  | 1206  | 1079  | 952   |
| n(moles/kg)              | 34.1               | 34.1  | 33.7  | 33.5  | 33.5  |
| Products                 |                    |       |       |       |       |
| (moles/kg)               |                    |       |       |       |       |
| CO                       | 0.71               | 0.35  | 0.07  | 0,02  | 0     |
| 002                      | 6,66               | 1.23  | 0.16  | 0.04  | 0.01  |
| но                       | 12.98              | 20.16 | 19.87 | 17.47 | 14.83 |
| No                       | 13.39              | 11.13 | 9.03  | 6.96  | 5.12  |
| NH <sub>3</sub>          | 0.23               | 0.71  | 2.19  | 3.65  | 4.62  |
| CH                       | 0.09               | 0.47  | 2.37  | 5.38  | 8.86  |
| C(s)                     | 6.05               | 20.14 | 25.34 | 28.30 | 30.64 |

\* Original LRL parameters in code<sup>13</sup>. All mixtures are at approximately 100% TMD with density of polyethylene taken as 0.9 g/cc.

# TABLE 13 - RDX/Wax Data Used for Extrapolation 17

| Diam. d<br>in. | $d^{-1}$<br>(in.) <sup>-1</sup> | Po<br>g/cc         | D<br>mm/µsec |
|----------------|---------------------------------|--------------------|--------------|
| Batch 1 (7     | 51.5/68.5, reg                  | ular casti         | ng)          |
| 1.25           | 8.00                            | 1.11               | 6.54         |
| · <b>V</b>     |                                 | 1.11               | 6.67         |
| 1.50*          | 6.67                            | 1.12               | 6.34         |
|                |                                 | 1.12               | 6.19         |
| 1.75           | 5.71                            | 1.13               | 6.73         |
|                |                                 | 1.14               | 6.63         |
| Batch 6 (3     | 0.75/69.25, va                  | <u>acuum casti</u> | ng)          |

| _ ¥      |      |      |      |
|----------|------|------|------|
| 1.50*    | 6.67 | 1.08 | 6.13 |
| 1.63     | 6.14 | 1.11 | 6.52 |
| <b>.</b> |      | 1.11 | 6.64 |
| 1.75     | 5.71 | 1.10 | 6.57 |
|          |      | 1.10 | 6.50 |

\* In both series the 1.5 in. values seem low.

and a second and a second s



FIG. 13 EFFECT OF WAX ON DETONATION VELOCITY OF RDX

E.E.

between absolute values for  $D_i$  computed and  $D_i$  measured is good here. It would probably have been better, had the RDX parameters been used in the BKW equation instead of the original Ruby values. Agreement with  $P_i$ , approximated as  $\rho_0 D_i^2/4$ , is also good, of course.

A similar computation and excellent agreement with the experimental value of a HMX/polyethylene mixture will be found in Reference 18. <u>Reaction Zone Length and Reaction Time</u>

The available diameter effect theories were summarized in Reference (3) where it was pointed out that the curved front or modified curved front theory is most consistent with our data for pure AP. If we treat the waxed AP in a similar manner, the Eyring reaction zone length is "a" in the expression

$$D/D_{1} = 1 - a/d \tag{3}$$

and is related to the reaction time  $\tau$  by

$$a = (D - \bar{u}) \tau \tag{4}$$

where  $\tilde{u}$  is the average particle velocity between the leading von Neumann shock and the C-J plane of the detonation front. (The <u>ratio</u> of two zone lengths should have the same value in either curved front theory although the absolute values of the computed zone lengths differ by almost an order of magnitude.) If Eq. (4) is applied to the infinite diameter conditions, and we assume that

$$D_i - \bar{u}_i = \beta D_i$$

where  $\beta$  is a constant, then

$$a_1/a_2 = (D_{11}/D_{21}) (\tau_{11}/\tau_{21})$$
 (5)

will give the desired ratios. The nominal reaction zone lengths (a) for the waxed AP mixtures are given in Table 9. To use Eq. (5), we need the corresponding "a" values for AP(N126) and AP(N127).

Values for the unwaxed APs were obtained by use of the D values for charges of d = 5.08 cm (Tables 1 and 4) and the D<sub>i</sub> values (determined in earlier work<sup>9</sup>) in Eq. (3). The "a" values so calculated are listed in Table 14 and plotted in Figure 14. These are not very precise, of course, and the curves of Figure 14 could be drawn a number of ways. However, the curves, as drawn, show a

## TABLE 14 - Nominal Reaction Zone Lengths for AP (N-126) and AP (N-127)

| ρο<br>g/cc           | (mm)                  |
|----------------------|-----------------------|
| N-126 <sup>a</sup> , | 25µ                   |
| 0.90                 | 17.5                  |
| 0.95                 | 17.6                  |
| 1.015*               | 15.5                  |
| 1.10                 | 16.5                  |
| 1.20*                | 17.0                  |
| 1.28                 | 17.9                  |
| 1.29                 | 17.7                  |
| 1.33                 | 20.9                  |
| 1.35                 | 20.8                  |
| N-127 <sup>b</sup> , | 28µ                   |
| 0.90                 | 21.7                  |
| 1.00                 | 19.2                  |
| 1.10                 | 18.9                  |
| 1.22                 | 19.2                  |
| 1.27                 | 20.6                  |
|                      |                       |
| a. Data from Table   | l used in Eq. (3).    |
| b. Data from Table   | 4 used in Eq. $(3)$ . |
| * Average of two v   | alues.                |









reasonable trend of "a" with  $\rho_0$ , confirm that found earlier (and with different  $D_i$  values),<sup>2</sup> and provide approximate numbers to use in Eq. (5). The relative reaction rates thus computed are listed in Table 15 and plotted on a semi-log scale in Figure 15. The addition of wax to AP reduces the reaction time to about 0.3 and 0.4 its initial value at 55 and 67% TMD, respectively. These are maximum effects and occur at about 20% wax.

In a previous report<sup>2</sup>, we compared reaction times for the <u>same</u> reaction at the <u>same</u> temperature, but at different grain sizes. Here we are comparing reaction times at nearly the same grain size (N126 and N127 do not differ greatly) but at <u>different</u> temperatures and quite possibly for different reactions, e.g., a diffusion controlled reaction between wax vapor and AP decomposition products compared to simple AP decomposition. The latter reaction follows an Arrhenius law and decomposes with the rate  $Ze^{-A/RT}$ . Hence its relative rate at two <u>different</u> temperatures is

$$\frac{r(T_1)}{r(T_2)} = e^{A/R(1/T_1 - 1/T_2)}$$

A frequently used activation energy A for AP is 20 to 22 kcal/mole. With this value,  $T_1 = 2000^{\circ}K$  (maximum estimate for  $T_j$  of AP) and  $T_2 = 2686^{\circ}K$  (maximum  $T_j$  computed by Ruby for waxed AP)

 $\frac{\tau(2000^{\circ}K)}{\tau(2686^{\circ}K)} = 0.28 \text{ to } 0.25$ 

In other words a  $686^{\circ}$ K rise in temperature from  $2000^{\circ}$ K will decrease the decomposition time of AP to just about the extent addition of 20% wax decreases the resultant reaction time.

As Figure 15 shows, wax is less effective in reducing the reaction time  $\tau$  at higher than at lower % TMD. The 67% TMD curve also shows more scatter and a less marked minimum than does the 55% TMD curve for the higher porosity charges. This may be fictitious in that it could be caused by the same difficulty in extrapolation of data from the waxed charges that occurred for the unwaxed AP. Certainly the results at 55% TMD seem better.

10.10

AND A CONTRACTOR OF A

## TABLE 15 - Reaction Times of Waxed AP Relative to Unwaxed AP

|       | D <sub>1</sub> a | T. ( <sup>b</sup>      |
|-------|------------------|------------------------|
| % Wax | mm/µsec          | $\frac{1}{\tau_1(AP)}$ |
|       | <u>55% TM</u>    | D                      |
| 0     | 3.90             | 1.0                    |
| 5     | 4.27             | 0.495                  |
| 10    | 4.57             | 0.362                  |
| 20    | 4.79             | 0.271                  |
| 31.5  | 4.40             | 0.331                  |
|       | <u>67%</u> TM    | D                      |
| 0     | 4.51             | 1.0                    |
| 5     | 4.88             | 0.521                  |
| 10    | 5.17             | 0.452                  |
| 20    | 5.38             | 0.396                  |
| 31.5  | 4.89             | 0.382                  |

a. From smoothed data of Figure 9.

b. Computed from Eq. (5) with a values for 55 and 67% TMD, respectively: 16.5 and 19 mm for AP (N126) and 19 and 22 mm for AP (N127). See Figure 14.

Data for AP(N119)/Wax, 90/10, have been included in Tables 5 and 9. N119 is a coarse material of about 200µ average particle size. Unwaxed, it will not detonate at its pour-density in a 7.62 cm diameter. The data of Table 5 show that the addition of 10% wax makes this material detonable at 1.073 g/cc (the pour density of the mixture) or 60.3% TMD. Extrapolation of the two points at d of 6.35 and 7.62 cm gives  $D_1(60.3\% \text{ TMD}) = 4.88 \text{ nm/}\mu \text{sec}$  and a = 7.2 mm. The  $D_1$  value compares well to the interpolated one of 4.83 mm/µsec for AP(N126)/Wax, 90/10 (see Figure 9), but unfortunately we cannot interpolate the "a" values for this mixture. At 55 and 67% TMD, they were, respectively, 7.0 and 9.2 mm. It seems likely that the "a" values of the two waxed AP's are much the same, i.e., that addition of the wax has largely eliminated the difference in "a" values resulting from the large difference in particle size of the two AP's. However, the calculation of "a" for the N119 mix involves the small difference of two . large numbers and could easily be in error by a factor of 2 to 3.

Before leaving the subject of reaction times it is of interest to compare values for the AP/Wax, 80/20, with corresponding ones for TNT. For this purpose, we can use "a" values for TNT (determined as in the present work) midway between those of the confined charges of Reference (12) and the unconfined charges of Reference (19); the particle size range of the TNT seemed much the same (70-200  $\mu$ ) in these two investigations, but the particle size distribution curves were probably different. Thus the values of 3.5 and 2.3 mm were chosen for 55 and 67% TMD (0.91 and 1.11 g/cc). The corresponding  $D_1$  are given in Table 11, but since TNT and 80/20, AP/Wax have the same  $D_1$  values, Eq. (5) reduces to

$$\tau_1(80/20)/\tau_1(TNT) = a(80/20)/a(TNT).$$

Hence the waxed AP has reaction times 1.6 and 4 times greater than those of TNT at 55 and 67% TMD. This is one basic difference between the two explosives and could result from the slowness of the diffusion processes necessary for the AP/Wax reaction. This means that the low porosity range (higher % TMD) of the AP/Wax may, in some cases, not provide a practical explosive.

The "a" values of 80/20, AP(N126)/Wax, are very near those of AP(XP-17). In other words, addition of 20% wax to a  $25\mu$  AP results in an "a" value approximately equal that of a  $10\mu$  AP. If wax added to a  $10\mu$  AP has the same relative effect as its addition to a  $25\mu$  AP, the resultant "a" value of the 80/20 mix would be lower than that of TNT at 55% TMD but still above that of TNT at 67% TMD. Hence a very fine grained AP/Wax might exhibit a reaction time equal to or less than that of TNT at the lower % TMD. If so, the AP must have an average particle size of  $10\mu$  whereas that of the TNT might be about  $125\mu$ .

#### Detonability

The failure limit data in the  $d-\rho_{0}$  plane appear throughout the tables. They are summarized in Table 16, References (2) and (3) for AP(N126), and Reference (20) for TNT. They are plotted in Figure 16 which gives a number of comparisons. Addition of 10 or 20% wax to 25µ AP lowers its d by a factor of 5 or mcre. The limit curves of the 90/10 and 80/20 mixtures are indistinguishable up to 70% TMD above which the 80/20 shows a smaller d. Addition of 10% wax to 200 $\mu$  AP lowers its d from > 76 mm to about 40, or that of the 25 $\mu$ AP at 60% TMD, but does not comparably lower the d value at 67% TMD. The AP particle size effect on the 90/10 mixtures is qualitatively that found for pure AP<sup>2,3</sup>, i.e., it shifts the failure curve toward lower % TMD for increasing particle size. Thus for the 200µ AP, we find the steep portion of the 90/10 detonability curve at 60-67% TMD whereas for the 25µ AP it occurs at 76-82% TMD. Both the 90/10 and the 80/20 mixtures with 25 $\mu$  AP have d<sub>c</sub>  $\leq$  that of TNT (70-200 $\mu$ ) at a % MMD  $\leq 64$ . At lower porosities their d<sub>c</sub> is larger than that of the TNT.

Gor'kov and Kurbangalina<sup>21</sup> have published an interesting study of the detonability of AP. The, showed the effect of particle size, water content, temperature, and small amounts of fuel on the limit curve d<sub>c</sub> vs  $\rho_0$ . In particular, working at about 66% TMD, a particle size of about 50 $\mu$ , and glass confinement, they found that raising the initial temperature from 25° to 200°C lowered d<sub>c</sub> frc. 23 to 12 mm. Moreover, adding either 0.9% carbon black or 2.4% RDX lowered the d<sub>c</sub> at 25°C from 23 to 14-15 mm. At 200°C these mixtures had a d<sub>c</sub> of

|           | ı<br>و      |                 |                | 85.2  |       |       |       |       |       |       |       | 1     |  |
|-----------|-------------|-----------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|           | ж<br>*      |                 |                | 81.3  |       |       |       |       |       |       |       | 86.8  |  |
|           | ı           |                 |                | 1.516 |       |       |       |       |       |       |       | ł     |  |
| *         | о<br>Ч<br>+ |                 |                | 7.447 |       |       |       |       |       |       |       | 1.424 |  |
| lity Data | đ<br>( cm ) | 1               |                | 5.08  |       |       |       |       |       |       |       | 5.08  |  |
| Detonab1. | cm)         | 0.64            | 0,64           |       | 3.49  |       | 7.62  | 0.64  |       | 0.95  |       |       |  |
| mary of   | ק(<br>+     | 0,95            | 0.95           |       |       | 5.08  |       |       | 0.95  |       | 1.27  |       |  |
| 16 - Sum  | CIMILS      | 50.6<br>51.0    | 68.1<br>67.5   |       | 60.3  | 60.4  | 67.5  | 55.8  | 56.9  | 67.4  | 67.3  |       |  |
| TABLE     | Po<br>B/cc  | 100.0<br>702.0  | 1.212<br>1.202 |       | 1.071 | 1.075 | 1.201 | 0.916 | 0.934 | 1.105 | 1.103 |       |  |
|           | AP          | n126<br>25µ     |                |       | 6TIN  | 2001  |       | 921N  | 25µ   |       |       |       |  |
|           | Material    | AP/Wax<br>90/10 |                |       |       |       |       | 80/20 |       |       |       |       |  |

ł

From Reference (2) and Tables 5 and 6

\*

NOLTR 69-16



#### NOLTR 69-16 ·

ll-l2 mm. They concluded that the addition of fuel increased the reaction temperature and thereby decreased reaction time and  $d_c$ . This seems a reasonable conclusion, as far as it goes, and is equally applicable to our results.

#### Shock Sensitivity

Shock sensitivity data obtained on AP/Wax mixtures in the NOL Large Scale Gap Test are listed in Table 17. They, together with the analogous data for  $AP(N126)^2$  and  $TNT^{22}$ , are plotted P<sub>g</sub> vs % TMD in Figure 17. It is evident that addition of wax sensitizes AP to shock; it lowers the sensitivity curve and extends it to the right. The extension results from the extension of the detonability range to higher % TMD (Figure 16). As in the case of detonability, 90/10 and 80/20 mixtures of the 25µ AP are indistinguishable at lower % TMD; at higher % TMD the 80/20 mix remains shock sensitive up to a higher % TMD than does the 90/10. These shock sensitivity curves have been made vertical at the % TMD which fits the data and is also in accord with observed reaction limits. These reaction limits are indicated by vertical lines at the top of the figure: a thin line indicates that a shock-induced reaction less vigorous than detonation was observed at that density; a thick line, that no shock-induced reaction could be observed. Dead pressing for the conditions of the gap test occurs at a density slightly lower than that shown by the first limit (thin line).

The 200 $\mu$  AP/Wax, 90/10, is only slightly (possibly insignificantly) less sensitive than the 25 $\mu$  AP mixes at 79-86% TMD despite its vast difference in detonability. This indicates that both 90/10 mixes show about the same wase of ignition by shock, although the unconfined 200 $\mu$  mix is much less able to propagate detonation than is the 25 $\mu$  one. This implies about the same activation energy for ignition of the two 90/10 mixes, and little effect of available AP surface area on hot spot ignitions.

Finally, the waxed mixtures show a sensitivity curve very close to that of TNT; the 80/20 mix is comparably sensitive up to 90% TMD where it diverges because of its approach to the dead pressed condition. Under proper confinement, it is possible that this mix could replace TNT as a practical explosive. (Pressed TNT exhibits a

|              |             |             | probably no detonation |           |      |      |      |             |            |          |          |      |      |              |      |      |             |             |         |  |
|--------------|-------------|-------------|------------------------|-----------|------|------|------|-------------|------------|----------|----------|------|------|--------------|------|------|-------------|-------------|---------|--|
|              | Comment     | No reaction | Reaction but           |           |      |      |      | No month on | NO LEACTON | Reaction | Reaction |      |      |              |      |      |             |             |         |  |
| Values<br>P~ | kbär        | Neg.        | 70                     | 45.6-40.0 | 20.2 | 13.7 | 12.1 |             | . Sev      | Pos.     | Pos.     | 22.1 | 18.5 | 15.2         | 12.5 | 12.5 |             | 200         | 17.5    |  |
| 50%          | Cards       | *0          | <b>*</b> 55            | 110-125*  | 186  | 225  | 240  | *           | C          | *0       | *0       | 178* | 194* | 213          | 236  | 236  | L<br>t<br>r | C) 7        | 199     |  |
|              | <b>MTRD</b> | 93.8        | 91.8                   | 89 3      | 85.4 | 74.3 | 60.7 | L<br>L      | 0.06       | 93.9     | 92.7     | 91.5 | 0.68 | 84.6         | 75.0 | 61.0 | r<br>90     | 00.00       | 79.4    |  |
|              | لے<br>ا     | 1.67        | 1.63                   | 1.60      | 1.52 | 1.32 | 1.08 | t           | J.C. T     | 1.54     | 1.52     | 1.50 | 1.46 | <b>1.</b> 39 | 1.23 | 1.00 | ľ<br>L      |             | 1.42    |  |
|              | AF          | 031N        | ( אכַצ)                |           |      |      |      |             | 0ZTN       | ( 72h )  |          |      |      |              |      |      |             | <b>NTTN</b> | ( 700Z) |  |
|              | AP/Wax      | 01/06       |                        |           |      |      |      |             | 80/20      |          |          |      |      |              |      |      |             | 0T /06      |         |  |

TABLE 17 - Shock Sensitivity of AP/Wax Mixtures

All and a second

\* Extended test, cast Comp B witness



20% 6652066 6<sup>3</sup> (KB∀B)

State of the second sec

and we be a present of the other than a statement of the any

NOLTR 69-16

dead-pressing phenomenon in this geometry only if it is precompressed. However non-detonable TNT charges of these dimensions can be prepared by slow cooling of a cast charge.) The curves of Figure 17 in conjunction with the other explosive characteristics of the 80/20 mix also demonstrate the potential detonability of simple composite explosives under appropriate conditions. Although the wax is probably a more volatile fuel than the common propellant matrices, a small amount of carbon black, which is less volatile, has a similar effect in increasing detonability<sup>21</sup> and in increasing sensitivity<sup>23</sup>. Information from Burning Rate Studies

The use of arbitrary decomposition equations or Ruby Code computations and the assumption of a single-stage equilibrium reaction is a gross simplification of very complex behavior. It is justified only insofar as it offers guidance in planning experimental elucidation of the processes and predicts good relative ratings. Thus the maximum effect of wax was correctly indicated in the present work (though not the concentration required to produce that effect).

AP and its mixtures have been studied for many years as propellants. Recently two exhaustive reviews<sup>25,26</sup> of such work have appeared They exhibit striking similarities between the results of deflagration studies and those of detonation studies, such as ours on AP/Wax. Successful propagation (and its failure) in burning are governed chiefly by transport processes, whereas detonation and its failure limits are determined chiefly by hydrodynamic phenomena; we can therefore interpret the failure diameter in deflagration as a heat loss by conduction, convection, or both, and the failure diameter in detonation as a heat loss by reaction quenching, caused by lateral rarefaction waves. In both cases, the dominant factor is the relative energy loss rather than the mechanism whereby it occurs. It seems very likely that the chemical reactions are the same in both burning and detonation although the products and rates will reflect the different pressure and temperature ranges. Consequently, a brief review of the available information from the burning rate studies seems indicated.

Factors affecting the burning rate of AP are charge diameter, density, particle size, confinement, initial temperature, and initial

pressure. In general, these variables affect the burning rate and the detonation rate in the same way. There are a few situations for which there is no parallel in the two fields, e.g., initial pressure effect. However, many trends are the same, and deflagration, like detonation, is a multidimensional effect. Relatively few failure limit studies are available in either field.

AP is a somewhat exceptional propellant as well as an unusual H.E. Its linear burning rate decreases with decreasing % TMD whereas that of the common organic H.E. and of mixtures (AP/fuel) increases.<sup>26</sup> It is now generally accepted<sup>25</sup> that the initial step in its thermal decomposition is the sublimation-dissociation reaction\*

 $NH_4ClO_4 \implies NH_3 + HClO_4$   $\Delta H = 58$  Kcal/mole (6) with an activation energy of about 32 kcal/mole. The reaction sustaining steady burning (and producing the flame) is then the gas phase oxidation of  $NH_3$  by  $HClO_4$ . DTA studies reveal an endotherm at  $240^{\circ}C$  (crystal transition from orthorhombic to cubic) and two exotherms at about 300°C and  $440^{\circ}C$  corresponding to "low" and "high" temperature decomposition.

AP will not exhibit steady burning at  $20-25^{\circ}C$  and 1 atm. However, if it is preheated or if a small amount of volatile fuel is present, it will burn, and then, under comparable conditions, its burning rate is higher than that for pure AP. However, the amount of fuel is critical; very small amounts can decrease the rate or increase the critical diameter for burning<sup>26</sup>.

There are numerous models for AP/fuel mixtures. Many suggest an oxidizer flame supplying heat to vaporize the fuel and thus provide a diffusion flame, e.g.,  $HClO_{4}$ /fuel. Since addition of fuel increases the burning rate, some energy from the diffusion flame must be fed back to the solid mix although it may serve only to increase the rate of the reaction of Eq. (6). The reactions controlling the burning rate are completed near the solid surface, e.g., within 200 $\mu$ , but chemical reaction may go on several mm beyond the surface.

<sup>\*</sup> This is a multi-step reaction and the rate determining step is not clear.

This leads to a concept of "zone of influence" which includes only the portion of the total reaction which can affect the burning rate. Thus the final flame temperature (measured by thermocouples) may be higher than and some distance downstream from the temperature at the beginning of the reaction zone.

The necessary preheating for steady state burning at 1 atm. has been reported as initial temperatures of  $200^{\circ}C^{26}$  and  $280^{\circ}C^{25}$ . The latter, for a specific heat<sup>25</sup> of 0.309 cal gm<sup>-1</sup> deg C<sup>-1</sup> amounts to 87.5 cal/g energy supplied to the AP. (The minimum preheating by radiation gives the value 95 cal/g<sup>27</sup>.) The minimum fuel to effect the same result seems to be 3.85% paraformaldehyde or 2.6% metaldehyde, equivalent to 107 cal/g extra heat<sup>27</sup>. In this case, the extra energy must not only initiate the reaction of Eq. (6) but also vaporize the fuel.\*

It seems clear in the case of our AP/Wax mixtures that the AP can decompose exothermally at about 300°C, which is below the fire point of the wax. For a given thermal imput for initiation, the vapor phase will probably be richer in oxidizer than in fuel. This difference in concentration of fuel in solid and vapor phases could account for the maximum effect at a fuel concentration in the solid mixture approximately twice the stoichiometric. The requirement of excess fuel (presumed necessary to keep composition of the gas phase in the "zone of influence" constant and corresponding to maximum rate of reaction) is commonly observed in burning rate studies. For volatile organic fuels, the maximum effect on burning rate generally lies between 20 and 30% excess fuel over the stoichiometric. But greater excesses have been reported, and, in particular, a homogeneous premixed flame of  $HClO_{\mu}/CH_{\mu}$  exhibits two distinct flame fronts at atmospheric pressure and at concentrations on the fuel rich side of stoichiometric<sup>28</sup>; the second flame front is 100-150°C hotter than the first and seems to be essentially a CO flame. The maximum burning velocity for this gas mixture occurs at a concentration considerably on the fuel-rich side of the stoichiometric. This is apparently

\* The minimum flame temperatures observed in steady-state burning at 1 atm were 970°C (preheated AP) and 1000°C (AP/fuel)

associated with the lag of the oxidation of CO to  $CO_2$  behind the other reactions of burning; a similar lag in detonation reactions might not be entirely eliminated by the higher pressures.

Variables affecting the burning rate of AP/fuel mixtures are, of course, the same as those determining the burning rate of pure AP with the addition of the concentration as a variable for the mixture. Adams and his coworkers studied burning rates as a function of pressure, mixture composition, and particle size. They concluded that the dependence of the rate on any one of these variables was affected by the value of the other two; that there was a complex dependency and not a simple, separable effect. These conclusions seem to be generally accepted<sup>25,26</sup>.

In conclusion, it seems well established that burning of AP/fuel is a multidimensional, multistep, multistage process, dependent on both kinetic and diffusion factors. We know that detonation of AP/ fuel is a multidimensional process, as all detonations are, and must depend on diffusion processes as well as kinetic since adding a volatile fuel increases the  $D_i$  value above that of pure AP. There is every probability that detonation is also a multistage process and quite as complicated as deflagration.

#### SUMMARY AND CONCLUSIONS

Addition of wax to AP results in a large increase of D,, and a  $D_i$  vs % wax curve with a broad maximum at about 20% wax. The maximum D, (AP/Wax)-D, (AP) is about that computed on the Ruby increase code although the absolute values of the code are about 0.7-0.9 mm/ µsec too large. The computations also show a maximum at a stoichiometric composition of less than 10% wax. On the other hand, Ruby code computations correctly predict both absolute  ${\tt D}_{\underline{i}}$  values and the trend for RDX/Wax, i.e., monotonic decrease in  $D_1$  with increase in % wax. The effect of wax on the D, of AP is attributed to the reaction between the volatile fuel and the detonation products of the The observation of maximum effect at a concentration of wax AP. approximately twice the stoichiometric is believed caused by the kinetics of the diffusion processes necessary in the oxidationreduction reaction.

Same and states a second of the

Determination of the effect of wax on D, and reaction time was at 55 and 67% TMD, but detonability curves and shock sensitivity measurements were carried to as high a % TMD as our facilities permit. The results will be illustrated by data for the AP/Wax, 80/20 mixture which showed the largest effect of wax on each explosive characteristic studied. At 55% TMD the wax reduced reaction time (curved front theory) by a factor of 3.7. It increased detonability at d = 5.08 cm from a critical value of 71% TMD to 88% TMD; these determinations were on unconfined charges. In the confinement of the gap test, wax shifted the point of dead-pressing from about 8% TMD to about 96%TMD; it also increased sensitivity (lowered  $P_g$ ) over the range of detonability. The AP/Wax, 80/20, mix is most similar to pressed TNT. It has about the same voidless density, the same  $D_1$  at the same %TMD, approximately the same d at % TMD  $\leq$  70, and approximately the same shock sensitivity curve at % TMD  $\leq$  90. It differs from TNT chiefly in exhibiting greater reaction time and lower detonability at high % TMD.

These results show very clearly that a simple composite (AP/ organic matrix) is potentially detonable. This was expected since a composite (AP/matrix/Al in which the matrix contained no oxidizing groups or explosive substances) has been detonated at essentially voidless density and d = 72 in. However, the present data offer detailed information on how the point of detonability is approached and what explosive behavior to expect of granular mixes prior to their compaction to voidless density.

#### APPENDIX

#### USE OF AN EXPONENTIAL FUNCTION FOR EXTRAPOLATION

Because we had some initial success in fitting the data for the 90/10 and 80/20 AP/Wax mixtures to an exponential function<sup>24</sup>, all data were fitted to the curve

$$D = D_{i} \left[ 1 - (a/d)^{K} \right]$$
 (1)

as well as to its linear form (K = 1). It is evident that the linear form cannot fit the data over the whole range of d, e.g., see Figure 4.

As indicated in the text, this project was unsuccessful. To be sure, it fit all the data about as well as a straight line fit the data for larger diameters. The results are given in Table Al and plotted in Figure Al. (Compare with Figure 9 of text.) But these results cannot be reasonably interpreted and they are, in many cases, much higher than the maximum computed  $D_i$  values from Ruby. We know that Ruby values are much too high for AP, and assume that this might also be the case for AP/Wax.

Finally, the extrapolated values are supersentitive to the number of data points considered. For example, the 90/10 mix at 52.8% TMD, has an extrapolated value of 5.58 mm/ $\mu$ sec when all 8 points are used and of 4.27 mm/ $\mu$ sec when only 4 are treated (in the same handling, the exponent K changes from 0.38 to 1.35!). Despite the fact that a straight line cannot be expected to fit all points well (see Figure 4), the linear fit of 8 points gives 4.21 mm/ $\mu$ sec compared to 4.46 for 4 points.

For these reasons, the use of Eq. (1) (K  $\neq$  1) to extrapolate to  $D_i$  cannot be justified even by the empirical arguments used for the linear treatment of D vs d<sup>-1</sup>. The latter, on the other hand, has been most successful in the present work in producing consistent data which can be interpreted, at least qualitatively, in terms of chemical reaction.

|                    |                    | (9)                      | (8)                      | (13)                         | (2)       | (2)                        | (8)              | (8)                                                                | (†)           |
|--------------------|--------------------|--------------------------|--------------------------|------------------------------|-----------|----------------------------|------------------|--------------------------------------------------------------------|---------------|
|                    |                    | points<br>points         | points<br>points         | points<br>points<br>points   | points    | points<br>points           | points<br>points | points<br>points<br>points                                         | points        |
|                    |                    | A11<br>5                 | All<br>4                 | LLA<br>LL<br>8               | All       | 411<br>4                   | А11<br>4         | A11<br>7<br>4                                                      | IIA           |
|                    | q.m.e.             | 0.0542                   | 0.07 <i>37</i><br>0.0875 | 0.0326<br>0.0359<br>0.0291   | 0,0256    | 0.0200<br>0.0115           | 0.0144<br>0.0283 | 0.0146<br>0.0359                                                   | 0.0875        |
| (a/d) <sup>K</sup> | ۲<br>ک             | $\binom{13.5\%}{11.0\%}$ | (41.3%)<br>(86.8%)       | (7.3%)<br>(29.4%)<br>(169%)  | (30.7%)   | (39.0%)<br>(24.7%)         | (20°5)<br>(2048) | (5.0%)<br>(29.4%)                                                  | (2.3%)        |
| D <sub>1</sub> 1 - | 1                  | 1.650<br>0.891           | 0.382<br>1.347           | 0.703<br>0.631<br>0.303      | 0.867     | 0.306<br>0.597             | 0.345<br>0.322   | 0.585<br>0.631<br>ta                                               | 1,026         |
| đ to D =           | D <u>1</u><br>usec | (2.6%)<br>(2.6%)         | $\binom{16.8\%}{11.2\%}$ | (1.9%)<br>(57.3%)<br>(57.3%) | (5.8%)    | (21.2%)<br>(8.9%)          | (3.4%)<br>(227%) | $ \begin{pmatrix} 1.7\% \\ 6.4\% \\ 6.4\% \end{pmatrix} $ t fit da | (0.5%)        |
| Fitte              | /um/               | 3.84<br>4.26             | 5.58<br>4.27             | 65.0<br>3865<br>8            | 4.53      | 7.58<br>5.69               | 6.70<br>6.96     | 5.93<br>5.16<br>Canno                                              | 4.87          |
| - Data             | Used<br>cm         | 7.6<br>7.6               | 7.6<br>7.6               | 7.6<br>7.6<br>7.6            | 7.6       | 7.6<br>7.6                 | 7.6<br>7.6       | 7.6<br>7.6<br>7.6                                                  | 7.6           |
| BLE Al             | Range<br>in d      | 2.<br>2.<br>1 1          | 0.95 -<br>2.5 -          | 0.95<br>1.95<br>3.5          | 2•5 -     | 8<br>5<br>1<br>1<br>1<br>1 | 0.95 -<br>5.1 -  | ユユら<br>うのユ<br>1 2 1                                                | 2•5<br>1      |
| TA                 | CIMIT%             | 55.1                     | 52.8                     | 54.9                         | 55.1      | 67.2                       | 67.5             | 67.1                                                               | 67.1          |
|                    | 0<br>0             | 1,025                    | 0+6•0                    | 106.0                        | 0.826     | 1.250                      | 1.200            | 1.100                                                              | <b>1</b> ,006 |
|                    | AP                 | LJIN                     | 921N                     | 97TN                         | 121N      | Lstn                       | 92TN             | 97IN                                                               | LSIN          |
|                    | AP/Wax             | 95/5                     | 901/06                   | 80/20                        | 68.5/31.5 | 95/5                       | 90/10            | 80/20                                                              | 68.5/31.5     |



k. K

145

NOLTR 69-16

FIG. A1 EFFECT OF EXPONENTIAL EXTRAPOLATION OF VALUES FOR AP/WAX MIXTURES

#### REFERENCES

- A. R. Clairmont, Jr., I. Jaffe, and D. Price, "The Detonation Behavior of Ammonium Perchlorate as a Function of Charge Density and Diameter," NOLTR 67-71 (20 June 1967).
- D. Price, A. R. Clairmont, Jr. and I. Jaffe, "Particle Size Effect on Explosive Behavior of Ammonium Perchlorate," NOLTR 67-112 (27 Sept. 1967).
- 3. D. Price, A. R. Clairmont, Jr. and I. Jaffe, "Explosive Behavior of Ammonium Perchlorate," Combustion and Flame <u>11</u>, 415-25 (1967).
- 4. Lecture, "Perticle Size and Shape" by H. Heywood of Loughborough Univ. of Technology in which "probable conversion factors" used in British Standard 3406 were quoted. These are used to convert results from one method of measurement (on non-spherical particles) to another. (1967)
- 5. A. H. Warth, "The Chemistry and Technology of Waxes." Reinhold, New York (1956).
- 6. A. R. Clairmont, Jr. and I. Jaffe, Soc. Photo Instru. Eng. Journal 5, 18 (166). See also NOLTR 64-23 (Mar. 1964).
- J. O. Erkman, "Velocity of Detonation from Camera Records," NOLTR 68-117, (19 Sept 1968).
- A. Ya. Apin, I. M. Voskoboynikov and G. S. Sosnova, "Course of the Reaction in the Detonation Wave of Mixed Explosives," Zh. Prikl. Mekhan. i. Tekhn. Fiz. <u>5</u>, 115-117 (1963) through Tech. Memo 1599, Picatinny Arsenal (1965).
- 9. D. Price, A. R. Clairmont, Jr., J. O. Erkman, and D. Edwards, "Ideal Detonation Velocity of Ammonium Perchlorate and Its Mixtures with H.E.," NOLTR 68-182, in process.
- 10. E. A. Christian and H. G. Snay, "Analysis of Experimental Data on Detonation Velocities," NAVORD Report 1508 (1951).
- 11. C. L. Mader, "Detonation of Condensed Explosives Computed Using the EKW Equation of State," LA-2900, Univ. Cal. Los Alamos Sci. Lab. (1963).
- 12. M. J. Urizar, E. James, Jr., and L. C. Smith, "Detonation Velocity of Pressed TNT," Phys. Fluids, 4, 262-274 (1961).

#### REFERENCES (Cont'd)

| 13. | D. Price and H. | , Hurwitz, ' | "Ruby Code  | Calculation                    | of Detonation |
|-----|-----------------|--------------|-------------|--------------------------------|---------------|
|     | Properties I.   | C-H-N-O Sys  | stems," NOI | /IR 63 <b>-</b> 216 <b>(</b> N | Nov. 1963).   |

- 14. Project SOPHY, Solid Propellant Hazards Program, Aerojet-General, Downey Plant, Report No. 0977-01(02) QP/Mar. 1966.
- 15. "Properties of Chemical Explosives," UCRL-14592, Univ. Cal. Lawrence Radiation Lab., Livermore, Cal. (1965).
- 16. N. L. Coleburn and T. P. Liddiard, "The Rates of Detonation of Several Pure and Mixed Explosives," NAVORD Report 2611 (Sept. 1952).
- Large Solid-Propellant Boosters Explosive Hazards Study Program (Project SOPHY), Aerojet-General, Downey Plant, Rept. No. 0866-01(01)FP/Nov. 1965, pp 177 and 183.
- 18. J. W. Kury, H. C. Hornig, E. L. Lee, J. L. McDonnel, D. L. Ornellas, M. Finger, F. M. Strange, and M. L. Wilkins, "Metal Acceleration by Chemical Explosives," Proceedings of the Fourth Symposium (International) on Detonation, ACR-126, pp 3-13. U. S. Gov. Printing Office, Washington, D. C. (1967).
- 19. L. N. Stesik and L. N. Akimova, "An Indirect Method of Estimating the Reaction Zone Width of a Detonation Wave," Russ. J. Phys. Chem. 33, 148 (1959).
- 20. V. K. Bobolev, Dokl. Adad. Nauk SSSR <u>57</u>, 789 (1947). Translated by U. S. Joint Publications Res. Services, JPRS 4026.
- 21. V. A. Gor'kov and R. Kh. Kurbangalina, "Some Data Concerning The Detonation Ability of Ammonium Perchlorate," Fizika Goreniya i Vzryva, No. 2, 21-27 (1966), through Naval Int. Command Translation No. 2358.
- 22. D. Price and T. P. Liddiard, Jr., "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test," NOLTR 66-87 (7 July 1966).
- 23. J. D. Frazee, Ballistics Section Progress Rept 88, Rohm & Haas Co., Redstone Arsenal (1960).
- 24. J. Forbes, "The Diameter Effect in AP Containing Explosives as Reproduced by a Generalized Equation," TN-7743 (1967).

#### REFERENCES (Cont'd)

- 25. A. R. Hall and G. S. Pearson, "Ammonium Perchlorate: A Review of Its Role in Composite Propellant Combustion", Rocket Propulsion Establishment Report No. 67/1, Ministry of Technology, London, Jan. 1967.
- 26. N. N. Bakhman and A. F. Belyaev, "Combustion of Heterogeneous Condensed Systems," Institute of Chem. Physics, Academy of Sciences, U.S.S.R., Moscow, 1967. Through R.P.I. Translation No. 19, Nov. 1967.

A service of a supervised state of the set of a supervised state of the set o

- 27. E. A. Arden, J. Powling, and W. A. W. Smith, "Observations on the Burning Rate of Ammonium Perchlorate," Combustion and Flame <u>6</u>, 21 (1962).
- 28. A. R. Hall and G. S. Pearson, "Perchloric Acid Flames: IX Two Flame Structure with Hydrocarbons," paper presented at 12th Symposium (International) on Combustion at Poitiers, July 1968.

UNCLASSIFIED

| Security Classification                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                   |                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|------------------------------------|--|--|--|--|--|
| DOCUMENT CO                                                                                                                                                                                                                                                                                                                                                                              | NTROL DATA - R&                                                             | D<br>Mared when I | be overell report is classified)   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   | 28. REPORT SECURITY CLASSIFICATION |  |  |  |  |  |
| U. S. Naval Ordnance Laboratory                                                                                                                                                                                                                                                                                                                                                          |                                                                             | UNCLASSIFIED      |                                    |  |  |  |  |  |
| White Oak, Silver Spring, Maryland                                                                                                                                                                                                                                                                                                                                                       |                                                                             | 2b GROUP          |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
| 3 REPORT TITLE                                                                                                                                                                                                                                                                                                                                                                           | ·····                                                                       | ·                 |                                    |  |  |  |  |  |
| Explosive Behavior of a Simple Composite Propellant Model                                                                                                                                                                                                                                                                                                                                |                                                                             |                   |                                    |  |  |  |  |  |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                                                                                                                                                                                                                                                                                                |                                                                             |                   |                                    |  |  |  |  |  |
| 5. AUTHOR(S) (Last name, first name, initial)                                                                                                                                                                                                                                                                                                                                            |                                                                             |                   |                                    |  |  |  |  |  |
| Price, Donna; Erkman, John 0.;<br>Edwards, David J.                                                                                                                                                                                                                                                                                                                                      | Clairmont, J                                                                | r., A.            | Robert; and                        |  |  |  |  |  |
| 6. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                           | 74. TOTAL NO. OF P                                                          | AGES              | 76. NO. OF REFS                    |  |  |  |  |  |
| 11 March 1969                                                                                                                                                                                                                                                                                                                                                                            | 69                                                                          | 28                |                                    |  |  |  |  |  |
| 88. CONTRACT OR GRANT NO.                                                                                                                                                                                                                                                                                                                                                                | 94. ORIGINATOR'S RE                                                         | PORT NUM          | BER(S)                             |  |  |  |  |  |
| <sup>6. риојест но.</sup><br>МАТ 03L 000/R011 01 01 FR 59                                                                                                                                                                                                                                                                                                                                | NOLTR 69-16                                                                 |                   |                                    |  |  |  |  |  |
| ° ORD 033 102 F009 06 01                                                                                                                                                                                                                                                                                                                                                                 | 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
| IN AVAILABILITY/LIMITATION NOTICES                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                   |                                    |  |  |  |  |  |
| Distribution of this document is unlimited.                                                                                                                                                                                                                                                                                                                                              |                                                                             |                   |                                    |  |  |  |  |  |
| 11. SUPPL EMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                 | 12. SPONSORING MILITARY ACTIVITY                                            |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          | Naval Ordnance Systems Command                                              |                   |                                    |  |  |  |  |  |
| 13. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |                   |                                    |  |  |  |  |  |
| AP/Wax mixtures were used to model a simple composite propellant.<br>Addition of wax to the AP increased its infinite diameter detonation<br>velocity, increased its shock sensitivity, decreased its critical<br>diameter and its reaction zone length. The maximum of these effects<br>occurred at about 20% wax. At this composition, the model is an<br>explosive comparable to TNT. |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                           |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                   |                                    |  |  |  |  |  |
| DD 150RM 1473                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | TINCT             | ASSTRIED                           |  |  |  |  |  |

UNCLASSIFIED Security Classification

<u>...</u>

UNCLASSIFIED

Source and the second second second

| 14. KEY WORDS |                                                                                                                                                                            |    | LINK B |    | LINK C |    |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|----|--------|----|--|
|               | ROLE                                                                                                                                                                       | WT | ROLE   | WT | ROLE   | WT |  |
|               | Composite Propellant Models<br>Ammonium Perchlorate<br>AP/Wax Mixtures<br>HE/Wax Mixtures<br>Detonation velocity<br>Detonability<br>Shock Sensitivity<br>Critical Diameter |    |        |    |        |    |  |
| INSTRUCTIONS  |                                                                                                                                                                            |    |        |    |        |    |  |

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. 2a. REPORT SECURITY CLASSIFICATION: Enter the over-

all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES. i.b. total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, &c, & 8d. PROJECT NUMBER. Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

96 OTHER REPORT NUMBER(S). If the report has been assigned any other report numbers (either b) the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/J.IMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DFC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILIFARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T5). (S). (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 KEY WORDS. Key words are technically meaningful terms or short phrases that characterize a report end may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be follow d by an indication of technical context. The assignment of links, roles, and weights is optional.

UNCLASS\_FIED

Security Classification