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ABSTRACT

A theoretical study of metal-semiconductor (N-type)
rectifyzg contacts is develoDed. This study begins by
first aialyzing previous models for this type of junction.
Particular attention is given- to the Schottky model "ar
to the approximations 5.t contains. This model is then
improved upon by takIng into account nonuniform impurity
iorization and the free electron concentration in the[idepl~tion re gion, Using, this mre exact model -a
theoretical expression for- the differential junction

capacitance, is calculated. The results indicate that4Fthe junction capacitance as a function of reverse bias
can be used to accurately predict the doping concentra-
tion in the semiconductor material, but does not yield
a correct measurement of the equilibrium diffusion

~potential or barrier height.

The current voltage characteristic for this type
of contact is also discussed. An expression for the
I-V characteristic of this junction is derived based
upon a diffusion modeli This expression is then
improved, upon by accounting for tunneling and quantum-

L mechanical reflection of carriers at the junction.
L
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Df c LIST OF SYMBOLS

A Cross sectional area

C3  Junction capacitance per unit area

D~n

E Electric field strength

I Activation Energy as defined by Eq. 6.6.6

Eb Equilibrium barrier height as seen by an electron at
Efm

Et Energy correction needed for image effects

E Lowest energy of the conduction band
c

Ecd Lowest energy of the conduction band in the depletion
region

co Lowest energy of the conduction band in the bulk
semiconducter

Ed  Energy level assuciated with donor impurities

e !,inetic energy of an electron

Efm Energy corresponding to the Fermi level in a metal

Efs Energy corresponding to the Fermi level in a semi-

conductor

E_ Energy gap associated with a semiconductor (Eg=Ec-Ev )

Eh Energy difference as shown in Fi;, 2.2

E i  Ionization energy for donor impurities

E1  End-point .'norgy as shown in FIE, 6,3

E Energy level occupied by an electron
n
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Eo  Electric field strength at the metal-semiconductor

interface (x=O)

Er End-point energy as shown In F

ES  energy corresponding to eV., where Vs is the surface
potential at the free surface of a semiconductor

E Highest filled energy level associated with surface
states at a free semiconductor surface

Ev  Highest energy of the valence band

Highest energy of the valence band in the depletion
region

Evo Highest energy of the valence band in the bulk
semiconductor

El Arbitrary kinetic energy associated with an incident
electron as shown in FIE, Col

Fc Coulomb attractive force as defined by Eq. 2.4.1

In  Electron diffusion current

10 Reverse leakage current neglecting quantum-mechanical
and image effects

ior Reverse leakage current as defined by Eq. 6.6.7

I' ieverse leakage current' including quantum-mechanicaland image effects as defined by Eq. 6.5.2

I" Reverse leakage current considering avalanche multi-
0 plication

:r Reverse current as defined by Eq. 6.6.7

it  Total electron current

I, Reverse Pcurrent (Ite'eVd/KT) neglecting avalanchemultiplication

J Photc--urrent per unit area

M Avalanche multiplication factor as defined by Eq. 6.5.2

L Length of the semiconductor
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S "Experirentally determined constant for avalanche

multiplication

F c  Effective density of states Lin the conduction band

Nd Density of donor Impurities

Density of ionized donor impurities

_ 1pStored charge wthLi the depletion region

- Quantum-nechancal reflection

- iC Qaantum-nechanical reflection coefficient

QM.iC Quantum-nechanical transmisslon coefficient

a ~hotoresponse

V Potential with resiec to the bulk semiconductor JC

Va Bias voltage of arbitrary polarityai

Vb  Potential barrier height as seen by an electron in the
netal; irage fcrce neglected

Reverse breakdown voltage due to avalanche rmultiplicati.on

Fd  Equilibrium dkfrusion Potentia!; image force negleoted

Vb. Potential barrier height (Vb) Including iage effects

Vds Diffusion potential (V) includLng inage effects

Tldso SquilibriL diffusion potential (Vd) including image
effects

"If Forward bias voltage

V That portion of the bias voltage which appears across
the meta!-semiconductor zontact

2
Vo  Intercept voltage on a (k3/Cs) versus Vr plot

VIr  Reverse bias voltage

Vs  Surface poteiitial at the free surface of a semiconductor

W Equilibrium depletion region width
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Xe Electron affinity of a semiconductor

a Dummy variable as used in eq. 5.13

d Distance of separation between the semiconductor and
metal prior to contact

e Megnitude of electronic charge

f Freauency (cps)

fe Fermi probability factor for electrons

fo Frequency corresponding to Eb/h

fq Ratio of It toT-n

9 lattice spacing

k, Constant as defined by Eq. 4.26

R? Constant as defined by Eq. 5.11

'k3  Constant as defined by Eq. 5.5

:11 Lower limit of integratIon s used in Eq. C.4; shown

In ZjE1;. c

12 Uppel lmi-t of integration as used in Eq. C.4; shown
In F.-, C1

V Slope of (k3/CJ)2 versus Vr curve

M e  Electron Mss

Effective mss of an electron

M. !;ole mass

Effectire hole mass

-mv Slope as defined by Eq. 6.6.3

n Electron density

n. Density of free electrons contributed by Ionized
donor -mpurities in the bulk semiconductor

nod Density of free electrons contributed by Ionized
donor !mmjritles in the depletion region
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ni Equilibrium electron density In an intrinsic semi-
conductor

no Equilibrium electron density in a N-Type semicenductor

Fp Hole density
r Thickness of the insulating layer In the Bethe model

s H'omentum of an electron

v. Norzialized distance Daram-eter as defined by Eq, 4.26

x Distance rararneter as shown In Fiz. 2.r2

x0 Arbitrary position of an electron from a =eutal..
semiconductor Interface on the semiiconductor side
of the Junction

i;m Distance at vwhich P(i) is aiu

y Normalized electron potentiAal as defined by Eq, 4.2.5

yV? Normalized image force correction fasOCtor as defined by
:-Eq. 4.47

YO Normal~ized ele ctron pote-ntial at x=_O

z Dummy variable as defined by Eq. 4.33

interval size used in numerical integration

IDnorily variable used In Runge-Kutta method

Voltage dependent reduction in the equilibriumC~b diffusion potential due to iz7age effects

Variable as defined by Eq. 6.3.4

EI Variable as defined by Eq. 6-3.5

ai. Dummy variable used In Runge-Kutta nethod.

Total negative electron potential within the depletion
region with resrect to the bulk semiconductor

Ifegative electron potential w'ithin the depletion region
mith rescect to the bulk se-iconduct'-or

Negative electron potential with respect to the bulk
semiconductor due to inage effecjts
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Dummy variable used in Runge-Xutta method

laxi zmun value of ()

y Degree of Ionization as defined by Eq. 4,14

6 Experimentally determined constant to account for
nonideal nature of the contact; defined by Eq. 6.6.5

C O  Permittivity constant for free space

Cr Relative dtelectric constant

e Dielectric censtant of a semiconductor, es

C - igh frequency dielectric constant of a semiconductor
S

CS Ratio of C to s

9 Du'--y variable us.ed In -Rnge-Kutta method

waelength In reters

xe  reran free Dath of an electron

.0 Space chars_ density
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Os Thernionic work function of a semiconductor

4-k Contact notential difference
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CHAPTER I

MNTRODUCTION

1.1 Outline of this Study*

The purpose of this study Is to examine the Schottky

model for a metal-(N-Tjpe)-semiconductor contact, paying

particular attention to the approximations made which limit

Its accuracy. The assumptions made which limit accuracy are

removed and a more exact model proposed, although with great

sacrifice in simplicitye Poissonts equation based on the more

exact expression for space charge becomes nonlinear, but with

the aid of numerical techniques solutions are obtained. These

solvtions result in more exact expressions for the usual

contact parameters than those predicted by the Schottky

model and comparisons between the two theories are made,

Finally, the current-voltage relations for the contact are

discussed and an expression derived for the I-V characteristic

of the junction based on a diffusion model.

1.2 Historical Survey.

The earliest systematic studies dealing with rectifying

systems are generally attributed to Braun. Beginning in

1874, Braun used a variety of natural crystals to which he

applied base electrodes of various forms and a point contact.

I



~1 2F He then studied the dependence of the total resistance of

the device on the polarity of the applied voltage and on the

detailed surface conditions in the region of the point con-

tact. It was also Braun who first noted that the rectifica-

tion process was located at the contact itself, but he was

unable to offer a general theory which could predict his

findings.

Possibly the first studies dealing with the current-

voltage character of rectifying systems were done by Pierce
2

in 1910. He too used natural crystals and studied the nature

of the rectification process by an oscillographic technique.

- However, he was also unable to offer a general explanation

for what he had observed.

Point contact rectifiers similar to those studied by

Braun and Pierce found wide application in the early days

of radio telegraphy as detectors, but were not generally

understood and satisfactory devices could not be consistently

produced. Although a wide variety of rectifying systems

were known and the general oroperties of each categorized,

their application always necessitated an adjustment of the

point contact ("whisker" as it was popularly known) to find

a sensitive spot and frequent readjustment in order to

maintain useful rectification.

The development of a successful theory for rectifying

systems was the natural result of Wilson's3 interpretation

of semiconduction based on ths band theory cf solids, which

1
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was first presented in 1931. As a first attempt at a general

explanation for rectification, it was believed that tunnel-

Ing was responsible for the principal character. Wilson4

was the first to offer a quantitative expression for the

current-voltage relation at the contact based on tunh.el

theory. His results produced reasonable numpri*al agree-

ment with rectification ratios observed on cuprous oxide

rectifiers; however, it was later pointed out by Davydov
5

that tunnel theories Predict a polarity of rectification

which is opDosite to the direction actually observed. This

alone was sufficient cause to abandon the tunnel effect as

an explauation for rectification, although other discrepen-

cies also became apparent*

In 1932, Walbel and Schottky6 suggested that a blocking

layer of nearly stoichlometrlc composition at the rectifying

contact on a cuprous oxide rectifier was responsible for the

rectifying character. In 1938, Mott7 incorporated a form of

blocklng layer along with the effects of electronic diffusion

and an electric field to develop a theoreticel model which

could explain rectification. The Mott barrier (See Appendix

A), as it became known, extended throughout the semi-

conducting crystal and was to be a special case of a more

general theory developed by Schottky. In 1939, Schottky8

suggested that the barrier associated with the rectification

phenomena could arise from stable space charges in the semi-

conductor and the presence of a chemically distinct layer



was not necessary to explain its existence. Furthermore,

these charges arose from the presence of the metal. Con-

sistent with the concept of stable space charges, Schottky

Idevised a model which could predict a voltage dependent
rectifier caoacitance and barrier thickness and could give

reasonable agreement with experimental results. In 1942.

Schottky 9 presented a final quantitative version of his

theory and also assessed some of Its apparent limitations.

To date, the Schottky model is generally accepted as the

approximate model for rectifying contacts. Also in 1942, a

model was presented by Bethe,1 0 which was similar to the

Schottky version, but differed in that it Incorporated a

thin Interfacial layer of Insulating material and a slightly

different mechanism for charge transport. (See Appendix B

for a complete analysis of the Bethe model.)

The common characteristic of all =dels developed thus

far was the strong dependence on the difference of the

thermlonic work function of the metal and semiconductor.

However, experiments conducted on rectifying systems of

silicon and germanium had failed to show this dependence.

The apparent inconsistency was not explained until 1947,

- when Bardeen1 1 proposed a different mechanism of barrier

" formation, which was dependent on an electrical double layer

S-at the free-surface of the semiconductor. Bardeen's theory

was able to show that the presence of such a layer tends

to make the properties of the contact independent of the work

iI
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functions of the two materials. However, Bardeen's theory

does not appreciably alter the properties of the Schottky

model and the exact effects of Bardeen's theory will be

deferred to a later section.

-.d
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CHAPTER II

THEORY RELATING TO

F METAL- SENIC ONDUC TOR SYSTEMS

2.1 Energy Band Diagram of a N-Type Semiconductor.

In order to establish a common framework in which a

discussion of the Schottky model will be meaningful, this

Fchapter will deal with the more general theory relating to

metal-semiconductor systems. Also, it Is of importance to

note that in this chapter, as well as those which follow,

all discussions will be limited to metal-(N-Type)-

semiconductor systems and any reference to "semiconductor"

is meant to imply N-Type unless specifically stated otherwise.

First, consider the energy band diagram of an Infinitely

long semiconductor as shown in Fig. 2.1. This diagram shows

the relative positions of energy levels which will be of

interest in future discussions. Here Os represents the

energy required to transfer an electron at the Fermi level

of the semiconductor (Efs) into free space. The quantity

es is generally referred to as the thermionic work function

and will be a function of the position of the Fermi level.

Since Efs is a function of other properties of the semi-

conductor and will, in general, not remain a constant,

another energy will be defined to represent the energy

- -
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FIGURE 2.1: Energy Diagram of an Infinitely Long
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reauired to transfer an elactrci :Era the bat-tbo of the

onduct~on bandi(~ to ffree space. Odis qcan8tty is

cleathe electren affinity 2nd wiU b-- denoted by Xe.

Nlst, consider the =c1.%--cat~ci no cm tbe band

s tri-ctura due to sm abzmpt ter 'snatlon of" the sncrco

crystal. ?iZuE= ?,,a sbows tvfla band- a-tacture of a fres

samican-dctor surface. .he distortion noted, or be~bed

In&,, Is due to the pre-zence of zzmfrce states or allowed

levels of occupaney senii extend into thze g~srap (3;

the le~els being localized. at the Sirae ince the seani-

cemductoz is riype, the dstt~ic 3n band stamct~~e at

the svrface has created an effective P-Type layer, e,

tesane elffect could have been produced if accepr

*imrnritles had been in4 irfused fron the f rq-e scrface. Tnus.

a P-N Juection has been formed, end dus to the ipolsrity of

the surface Dotential (V,) the conduation bard Ias sonehaw

been depleted of electrcns.

Thnat causes the siwface potential? IS ane exam-nss the

physical situa-tion at an abruptltr ter=!Miated crystal surfpace

the explanation becones apparent. Here the 7.alence structure

of the~ crystal is distturbed since "&"he norzl. bonding Dattexn

can no longer be r=aIntained and ndanglinr_-.. bonds" or unused

valences are present at i he surface. 12oke' -srd

a detailed study of howA these surface states arise fror-

atomice levels and under ifnat conditions they may be expected

t~o aDDe-ar. His general conclusion Is that one discrete
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zil 53-mcc-nutor Rele D-e;Detlicm Free S&ece
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FIGIME 2.2.- &ergy Diat-pn for a -Free U(l- 'ype) Samicodzctr

Surf~ace. Surf-ace States Dernted by S.S.



s17s~ee state C= Erti W vaen-e, 9CM, be exceete q for each

srfceatom i the lattice Spacing of the O=~

strrtoe is -ff-Seently s=C 1 o Mes -states for-= a qM1s1-

ccmtu=vn ov.er an znry~ange wit-I the bs2,--a d -=r-e

half f-51 -eff when the s-,-face Ischrenua.

aer , ae a~.i~1fcoswhich can ccnt-zib'mte to

45.stortaicn In tzre bends at the f~es-mface. C!e CCl

LIMi1ne that s~of the zr eatzoas cvould Indeed be these

d~rImpu~attes and C-Oud t;A-s donate eLect -ns to erpty

s=12face states. Stn"la he cc tritiorn could be dr-e to

amy 2attlee d-Istrbance at- the fe rac.and p:Osslbly

the eeneof Tzac--rls Or nhrlt!c refci~s

he ~po~tpoint t;-- be =3de N1±hrar to su--face

stateas is that they eriiSaditior&-2 levels of occu,.ecy

wit-min the bendg;-D and =17e rise to a Potentia2 ba3rrIer P-t

*the free surface. Utder eq librium cenfd2141icns soze of the

e]Lectrs of the_ se iccnductor will occupy the en~pty smrface

states at the free r~raesul ting in a localized Y.egative

charg.Snc c e3lectrons -re notj m~issing frcn the

ccnuto bamd in the 7ic-Inity olf Ithe free surlpace, thm

senisco-ductor =ust assu.me,, a net positive chargSe and because

of t6he dimensions Involved* this char.-ge =aY be considered

as localzed andi c.ontinuous withln the region O<x-ed. rThe

region 0~~ rer-resents an inversion layer and is u--ua2'-y

referred to as a debletion region since the electron, con.-

centration in this region -,,s essenti-ally de-pleted. In



Sal1ticn, the DO~Snire chsm3_ associated ith tVMS resiom

causs tbe Is-1~rctr to becc~e distol-ted as zkown in

S2,?. The paentlal d-nte by Vd is co~mzly refperred

to as the d~frvskn 3:otent' .l or eq-!1Lb-ri~n barrkler he!l ht

and %'C) v 1 be vneed to repra sent the negative patentlal

of a-- electro.n at any point itin the de!n1etlen -reglcm

=eiTwe to t:-- h s1k icondrCtOr.

Next, considex the sm-ces of the positive charge

associated idth the depletl!m -ngin:

(l) She dvnor energy 12easp den--ted by Ed, itin

deple'ftcm reslcn are abv-e the ?Elar-S level and &-re either

ccmlete-Iy ionize or at least =--e imidzed than those

2orated in t16he bulk snc uto.Within the deplin

regiam tbhere ill be a met positive chaxrge ccntrlbuted by

sach urnconpensated, Ionized a-- ' inbile 4 dmo=o site.

(2) -1mce the elect--on density In the cmeevolncton

baedecays rapid-ly with Increasing energy, there ilil be

a demninishing nunber of -Irreie electrons as x decreases.

~nrt!f eVre3 if then the region O<x-cgw!3-1l be A" tst

u.Iform-ly depleted of electrons, except 1n the 71cinity of

x*W Thus, one nuzz conclude that near x=D free surf'ace)

*Imnuri.es are decidedly in--obile in semicornduct-or

crystals below a temperature of 200-300 OC ;13 thus Ionized

donor sites can be regarded as In~cbile below these temper-

atures.
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the Pcsitlve sace charge is essentially eNd "Xhile near

x=i the aailabillty cf conduccion electrons would offer a

com-ensat!ng effect. For L-W the net positive charge rust

of course be zero, slnce in the bulkJ semiconductor no net

charge is observed.

(3) A final contributon of positive space charge can

be att-ributed to the fact that in the region near the free

surfiace there can be an addition-al ccncentratlon of minority

carriers, since the valence band edge Is relatively near the

7er.- l lavel. Hoxever, if one consIders a relatively wide

band;,-p semconductor and/or sufficient doping levels, then

ah> ,a d this additicnal contrsbution of positive charge

by am.Inority carriers can be neglected.

*-he above considerations are sum.rized in Fig. 2.3.

She distr Jbutlons shown are only apiroxi'ate relationships

based on the above discussion, but the concepts involved

will be very useful In developing a more exact r-athematical

code! which will be undertaken in a later chapter.

In Fiz, 2,1c and fl 2,3d the depletion region has

been divided into two approxi=ate regions to emphasize the

nature of charge distribution In these areas. Region B

includes the area near the surface and in this region -he

ionized donor atoms are the primary contributor to space

charge. Region A is an area In which the ionized donor

atoms are partially compensated by electrons of the conduction

band. Ln this region the net charge density is a function

iii
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eVd (a) Energy Diagram

BulkI
Semiconductor Depletion Region FreSpace

x

________________________ -(Corresponding to Fermi Level)

Co
e (b) Potential Diagram

CA ()(c) Electron Density ^

0 (Approximate)

Abrunt AD~rxmto

(d) Net Positive

Space Charge

0 (Approximate)

FIGUME 2.3: Summary of Depletion Region Conditions for a

Barrier Formed at the Free Surface of a N-Type

Semiconductor.
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of the distance x. Furthermore, the barrier potential will

influence this distribution since Region B may disappear

entirely unless the barrier is sufficiently high. By

sufficiently high it is meant that the barrier must be high

F enough to act effectively as a barrier to conduction

electrons, i.e., Vd>>KT/e.

2.2 Formation of a Potential Barrier at an Idealized

Metal-Semiconductor Contact.

When a metal is brought into intimate contact with a

semiconductor, a simple rectifying contact may be formed.

The condition necessary for rectifying character Is that the

work function of the metal ($m), defined in the same manner

as for a semiconductor, exceeds that of the semiconductor

(0s). This situation insures the existence of a potential

barrier to electrons wbich in turn is responsible for the

rectifying nature of the contact. Also, the contact formed

may be considered idealized, since the unnecessary complica-

tions introduced because of nonuniform contact, surface

defects and the presence of surface contaminants will be

neglected. Furthermore, for the present, the effects of

surface states will also be neglected. ]
The formation of such a simplified, rectifying contact

is shown in FiS .2.4. In Fig, 2,4a the energy band diagrams I
of the two materials are shown as they would exist if both

materials were freshly cut and the dtstance of separation (d)

5,
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Is large enough so that any Interaation between the metal and

fsemiconductor is inhibited. In Fig. 2,14b the metal and semi-

conductor are_ allowed to establish thermal equilibrium with

a third medium which is not shown, but would be located

between the two surfaces. Cnce a continum Is for-ed and

thermal eou.librlum is established, the fact that no net

current can flow requires that the probablilty of occupancy

at any given energy level must be the same throughout the

continuum; thus, the Fermi levels of the two materials must

align.* Furthermore, If the Fermi level of the semi-

conductor Is assumed to remain constant (an arbitrary

reference point), then the Fermi level of the metal must

rise relative to that of the semiconductor by an amount

equal to the difference of the two work functions, I.e.,

In FiR. 2,4c the surfaces are brought closer together.

As d is decreased there will be an increasing negative

charge built up on the surface of the metal. This buildup

of electrons is the result of the conduction band of the

*From the thermodynamic point of view, the Fermi level

represents the chemical potential of an electron in the solid.

Thus, when a continuum is formed, the chemical potential of

the mobile electrons, and hence the Fermi level of the

materials involved, must be the same.

: 1.

- - -
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semiconductor bein at a higher energy level than the Fermi

level of the metal, causing some electrons of the semi-

conductOr to diffuse Jnto the metal. Furthermore, the

electrons which leave the semiconductor will be forced to

reside on the surface of the metal since the metal is

already saturated with free electrons and Is an equi-

potential medium. Thus, the electron supply of the con-

duction band is depleted near the semiconductor surface,

which in turn produces uncompensated donor sites and a net

positive space charge to form. Also, as the difference in

charge between the two malerials is formed an electric field

is produced which opposes further electron transfer to the

metal.

As d is diminished further, Fig. 2t4c, the depletion

region widens (W increases) and the potential barrier is

increased. One should note that Eb will remain small as

long as d is fairly large, since most of the potential

drop is across the gap between the two materials. Finally,

as d approaches zero and intimate contact is made, Fig. 2.4d,

an equilibrium state will be reached as soon as the electric

field at the contact prevents any further electron diffusion

from the semiconductor.

Once equilibrium is established, a limiting value of

the barrier potential (Vb), diffusion potential (Vd), and

depletion region width (W) will be reached; clearly, the

limiting value of the barrier potential will be
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; V=(-e / e (2.2.1)

and for the diffusion potential,

Wa(2.2.2)

Thus, in the absence of surface states, the equilibrium

value of the potential barrier for electrons in the metal

will be the difference of the metal work function and the

electron affinity of the semiconductor, whereas the height

of the potential barrier to electrons In the semiconductor

will be the difference of the two work functions. The

quantity m-s is sometimes called the contact potential

-difference,

2.3 Effect of Charged Surface States on the Contact

Barrier.

The equilibrium model for a metal-semiconductor contact

discussed in the previous section has neglected the presence

of surface states at the free surface of the semiconductor.

Clearly, If these surface states are present in sufficient

quantity and charged to a substantial degree, one must expect

some alteration in the nature of the contact, at least to

the extent of altering the equilibrium barrier height at

the contact.

. I
- -.- ,



When the barrier is formed in the same manner as dis-

cussed earlier (igj4) an electric fteld will exist at

the junction of the two surfaces. The establishment of this

electric field requires electric charge in the two materials,

which must increase as the distance of separation decreases.

However, in the presence of surface states there is an

additional mechanism by which this charge may be accommodated

within the semiconductor. In addition to the positive -harge

caused by uncompensated donor sites, there may also be a

charge associated with the surface charge induced in surface

states present at tha free surface of the semiconductor,

The density of these surface states and the amount of charge

they are able to accommodate will determine the amount of

space charge due to donor sites and thus influence the

depletion width. In addition, one can no longer expect the

barrier height to be given by a simple difference of the

work function and electron affinity of the semiconductor;

instead, it may well be Independent of these quantities

and depend solely on the barrier resulting from charged-

surface states.

The influence of charged suzface states on the potential

barrier at a metal-semiconduct.,r contact is summarized best

by giving the conclusions of Bardeen in a classic paper

presented in 1947. His conclusions will Oe presented n the

discussion which follows.

If the density of surface levels with energies which
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fall in the baniigap is sufficiently high (greater than

~oi2/cm approxmtl) there will be an electrical

double layer formed at the free surface of a semiconductor.

This double layer is forme-d frcm the negative charge associated

with the charged surface sta tes and- the positive space

clharge associated with the uncompen sated donor sites within

the sericcnductor. This double !ayer tends to make the uorzk

tunct'Ion of the semiAconductar independeiit, of the height of

the Fer=mi level in the bulk region, ad thas independent7

of the imizarity concentration.

7he total strength of tbae double layer at a retal-

-- semicor-ducltor jex-ct'ion will1 b-- fixed by the difference In

chenical potentials, and thus dependent on the bulkr prop-

erties of the metal and semiconductl-or. As a consequence,

t~he stLrength of the double layer Is Independent of the work

"unctions of t.he =aterial surfaces before contact is made.

The double layer copsists of the f~ollowing parts:

(1) A double ]Layer of atomic dimensions at the metal

(2) A doub2.e layer of atomic dimensions at the semi-

condAuctor surface.

(3) A double layer formed from the surface charges

zin the metal and semiconductor, both of atomic dimensions.

(4) A double layer formed from the surface charge of

atomic dimensions and a space charge extending to a depth

of 10-6 to 104 cm into the semicon-ductor.
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The strengths of the double layers my be estimated as

follows:

(a) If the density of surface energy levels Is suf-

ficient-ly high (greater /than 1013 cm2 , approximately), the

double layer of (4) above will be the same as that for the

free surface of the semiconductor. The rectifization

properties will then be largely independent of the work

function of the metal, since the difference In contact

potentials is comp-nsated by the double layer of (3) above.

(b) If the density of surface energy levels Is small

(less than 1013 /cm2 , approximately), then the double layer

of (3) above will be small, and the double layer of (4) above

will be determined by the difference In material work

functions.

(c) if the contact between the metal and semiconductor

is very intimate, it may not be possible to distinguish

between the double layers of (1), (2), and (3) above. The

metal will then tend to broaden the surface energy levels,

but If this broadening is small compared to the energy gap

of the semiconductor, then conclusion (a) above will still

j be valid.

(d) If the broadening of the surface energy levels by

the metal Is large, then no conclusions about the space

charge of the semiconductor can be drawn from measurements

of contact potential differences. Furthermore, it is possible'1 for all the conditions of (a), (b), (c), and (d) above to be
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-_Since Bardeen's Daper, there has been extensive research

done in the area of surface states, both from an experi-enta!

and theoretical apprcach, In an effort to be able to predict

their influence on an arbitrary metal-semiconductor system.

_14.
Mead- has ccmpiled a great deal of the work done on surface

states and conclude9 that an arbitrary nietal-semricnductor

system may be classified into two broad classes: (1) a

surface state controlled system, and (2) a system in which

the influence of surface states may be neglected, Further-

more, his preliminary conclusions Lidicate that the nature

of surface state control for an arbitrary metal on an

arbitrary semiconductor may be predicted from the nature

of the bonding mechanism in the semiconductor.

When a metal-semiconductor system is surface state

controlled, a reasonable approximation for the barrier height

(Eb) would be Ess, where Ess is the highest filled energy

level of the surface states when the free surface of the semi-

conductor is charge neutral. For the Group IV and III-V

semiconductors the values of Ess can be shown to agree quite

closely to the relation
1 5

Ess=Ec - (2/3 )E g (2,3.1)

or the value of the barrier height is approximately two-

thirds of the bandgap energy (E ). (See FiZ, 2,2)

!rg

I.T
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ihen the etal-semconductor system behaves as i no

surface states were present then the value of Eb would be

determined by the difference of the metal work function and

the electron affinity of the semiconductor. in both cases

P- has been ass--ed that the r-etal-sez-., onductor contact

represent. an Intimate contact between two clean and uniform

p!anar surfaces.

2.4 Influence of an Externally Applied Bias Voltage

on a Contact Barrier.

The discussion presented thus far has dealt entirely

with equilibrium conditions. If an external voltage is

applied to the device this equilibrium Is upset and one would

expect the potential difference between the two sides of the

junction to be influenced by the external voltage. Further-

more, one would expect the depletion region to contract if

the potential has been decreased and to expand If the

potential difference has been increased. Clearly then, the

equilibrium model is no longer applicable in the presence

of an externally applied voltage and must be modified to

include this influence,

When an external voltage is applied to the device a

current will flow and the total voltage must be the sum of

the contact potential and the voltages associated with the

bulk resistance and ohmic contact of the semiconductor. In

most cases, at least for reverse bias and low values of
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forward bias, the electric field associated with the bulk

semiconductor is small and may be neglected alorg with the

voltage drop associated with the ohmic contact.

jThe following notation will be adopted In discussions

concerning bias and contact voltages:

* (1) Va will be used to refer to a bias voltage of

arbitrary polarity.

(2) VfP will be used for Va when Va corresponds to a

forward biased condition of the device.

(3) -Vr will be used for Va when Va corresponds to a

reverse biased condition of the device.

(4) V. will be used to refer to that part of the bias

voltage which appears across the contact barrier. Under

reverse bias conditions VjVr and under forward bias condi-

tions Vj=Vf-(the voltage drops associated with the bulk

resistance and ohmic contact of the semiconductor, when

these are not negligible).

Figure 2,5 shows the influence of Va on the energy

diagram of a metal-semiconductor contact. If the Fermi

level of the metal is taken as a reference and assumed to

remain constant, then eVa corresponds to the displacement

between the Fermi levels of the respective materials. It

should also be noted that the height of the barrier, as seen

by conduction electrons of the semiconductor, increases when

Va is positive (relative to the metal) and decreases when

Va is negative. Since opposition to current flow increases

Vi
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FIGURE 2.5a: Energy Diagram for a Metal-Semiconductor

Barrier under Forward Bias Conditions;

Image Force Neglected.
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FIGURE 2.5b: Energy Diagram for a Metal-Semiconductor

Barrier under Reverse Bias Conditions;

Image Force Neglected.
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when the barrier increases, a positive Va (with respect to

the metal) will correspond to a reverse bias and a negative

Va to a forward bias. The height of the barrier (Eb) as seen

from the metal is assumed to remain constant since the

influence of any image force (discussed in the next section)

has been neglected in the diagram.

The two basic assumptions on which Fig. 2.5 is based is

that the charge within the depletion region is not appreciably

disturbed by the current flowing and equilibrium conditions

are maintained within the bulk region of the semiconductor

and in the metal. If this last assumption is valid then the

Fermi levels in the bulk semiconductor and in the metal are

uniquely defined. Within the depletion region the Fermi

level cannot be uniquely defined, since when a current is

flowing injection of free carriers prevents equilibrium

from being established, The Fermi level can, however, be

represented in the form of a quasi-Fermi level which repre-

sents the electrochemical potential for holes and electrons

separately as a function of the distance into the depletion

region. These quasi-Fermi levels can then be used to indicate

a reference for holes and electrons within the depletion

region; however, since the quasi-levels are not required

for the anr.lysis herein they will be omitted from Fig._2,

and no position for the Fermi level is indicated within

the depletion region (O<xW).



T

27

2.5 Influence of an Image Force on a Contact Barrier.

In order to demonstrate the influence of an image force,

consider an electron approaching a metal-semiconductor con-

tact and on the semiconductor side of the junction. This

electron will be under the influence of a potential which

I exists inside the depletion region as well as the influence

of a Coulomb attractive force as it approaches the metal

surface. This attractive force arises from the presence of

Ian electron in close proximity to the metal surface. It is

a well known fact that an electron of charge -e at a

distance x0 from the metal surface will induce an image

charge of +e at a distance -x o inside the surface1 6 and

these equal but opposite charges are then responsible for

the attractive force which pulls the electron toward the

metal surface. This force Is called, quite appropriately,

an image force and is responsible for lowering the potential

energy of a conduction electron in the vicinity of the metal

surface. This use of the conventional image force is based

on the assumotion that the semiconductor is acting as a

polarizable medium without free charge carriers,1 7 and seems

a valid assumption since the electron concentration near the

junction is almost exhausted of electrons for reasons

Ipreviously discussed.
The reduced potential of an electron in the vicinity

of the potential barrier near a metal surface requires an

alteration of the potential barrier near a metal-semi-

I,I
I
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conductor junction. Since the potential energy is effectively

Ireduced, the band edges must bend down In the vicinity of
the metal surface and eventually the potential of the

I electron must remain some finite and constant value within

the metal surface. it is important to note that this

reduction in barrier height (eVd) will be indeDendent of

the way in which the ultimate barrier height (without image

effects) was determined, i.e., whether it was determined by

the difference im-Os, by surface states, or a combination of

both. Furthermore, the presence of image effects explains

the apparent discontinuity of electron potential at the

metal surface, since with the presence of an image force the

electron potential is no longer discontinuous but must decay

over some finite distance near the junction.

The potential due to image effects can be calculated

from the laws of electrostatics, if one assumes that the

semiconductor acts as a polarizable medium free of charge

carriers within close proximity of the metal surface. If

an electron of charge -e is at a distance x from the metal

surface, then by Coulomb's law the force of attraction (Fc)

is

F ea (2.4.1)

c 4,E(2x)2 16ne6x2

1.
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where C7 denotes the high frequency value of Cs.* Thes
potential energy [ep"(x)] associated with this force 1s the
integral of the force from the point x0 (the point at which

the particle is located) to infinity, so that

e( I' (x)dx (2.4.2)

I o"-TE Ixo
0 SIo

One immediately notes that Eq. 2.4.2 cannot be valid as

Xo-P0, since it predicts an infinite potential when xo=0

(see Fig. 2,6) and the potential of an electron at. or inside

the metal surface must have some finite value. This apparent

inconsistency arises from the approximation inherent in
~Eq. 2.4.1, i~e., that the distance of separation (x ) is

large compared to the atomic spacing of the metal ions. For

distances of separation on the order of, or less than a

few atomic diameters the electron is most strongly influenced

by metal ions closest to it. The total effective induced

image charge is still +e; however, the force of attraction

caused by this induced charge is due to many components,

each of which is derived from the neighboring metal ions.

*The high frequency dielectric constant must be used

when dealing with image effects since electrons are moving

so fast in the region near the metal surface that dipole and

ionic polarization of the lattice does not occur.

I



I

30

.11

-- ' (x) !

Semiconductor Metal

E -xco

Eq. 2.4.2 /e

b

FIGURE 2.6: The Potential of an Electron Due to the

Image Force at a Metal-Semiconductor Junction.
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Therefore, a more accurate model for the force (Eq. 2.4.1)

is needed when x becomes small and in order to model such a

force the lattice structure of the metal must be known.

In order to demonstrate model dependence, consider a

simple cubic structure and an electron approaching the four

ions forming one face along 4 line passing through the mid-

point of the face (see Fig. 27). Since the total effective

charge is +e, each ionic charge component will be taken to

be one-fourth of the electron charge. The total force

(F ) will then be the vector sum of the force of attractionc

resulting from each ion, or

e x (2.4.3)

where g is the interatomic spacing as shown in Fig,2.7.

The potential energy of an electron due to image effects

is again found by integration, or

e,'It (x)dx = -( e 2(2.4.4)
4ue , (x 4-+g2/2)

xJ S 0~XO
0

Cne should note that for x0>>g/2, ep"(x o) will reduce to

e 2

- Y (x >>g/2) (2.4.5)
S 0

which agrees with Eq. 2,1'.2 except for a factor of . This

I1
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factor of * arises from the approximation that only the four

nearest-neighbor Ions exert an influence on the approaching

electron. Also of importance is the fact that Eq. 2.4.4 is

finite at x0=0, i.e.,

e (0)= (2.4.6)
(23/2-irE:Sg

,quation 2.4.6 states that the magnitude of the surface

potential should be inversely proportional to the inter-

atomic spacing in the metal. This point is borne cut by

experimental findings for the surface potential at a free

surface of the alkali metals1 8 (Cs, Rb, K, Na, and LI) and

would indicate that Sq. 2.4.6 would be the approrriate,

although approximate, expression for the potential of an

electron very near (x0 <g/2) a metal-semicorductor contact.

of primary interest Is the point at which the total

potential of the electron is maximum arA this maximum will

occur where the image force on the electron exactly balances

the force on it due to the electric field which exists in

the depletion region. Furthermore, this maximum should

occur at a distance which is greater than g, since the major

decrease in electron potential, as predicted by Eq. 2.4.4,

I will occur within a very few interatomic distances of the

metal surface. Thus, one can conclude that Eq. 2.4.2 should

be used to approximate the upper limit for the correction

actually required for image effects and the corrected barrier

I'
I
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-potential should appear as indicated In Fig. 2.8. The total

electron potential p(x), as shown in Fig. 2.8 results from

the addition of p'(x) as shown in Fig. 2.3 and "(x) as

predicted by Eq. 2.4.2 for -Xm, or by Eq. 2.4.4 as x-g.

The quantity Et Is used to denote the approximate correction

*needed for image effects and xm Is used to denote the point

at which the maximum value of O(x) occurs. Appropriate

expressions for these parameters will be deferred to a later

section until an expression for O'(x) has been calculated.

2.6 Influence of Tunneling and Quantum-4Lechanical

Reflection on a Contact Barrier.

T1_3 "tunnel effect" arises from a quantum-mechanical

analysis of the situation In which a particle is incident

upon an energy barrier whose height exceeds the kinetic

energy of the particle. Classically, the particle would be

reflected; however, quantl!t-mechanically the particle has

a finite probability of passing through the barrier.

Quantum-mechanical reflection (QER) arises from a similar

analysis of the situation in which a particle Is incident

upon an energy barrier whose height is less than the kinetic

energy of the particle. Classically, the particle would

pass over the barrier; however, quantum-mechanical analysis

predicts that there is a finite probability that the particle

will be reflocted.

Both of these quantum-mechanical effects must be

j
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considered in the analysis of the carrier transport properties

of a metal-semiconductor contact. The conditions which

govern the behavior of an incident electron on the potential

fbarrier associated with the contact can be determined from
the solutions of Schroedinger's wave equation. These

solutions would be functions exhibiting wave character and

would depend on the electric potential in which the electrons

are moving. The amplitudes of the transmitted and reflected

waves could be inferred from the continuous nature of the

wave function and its instantaneous spatial derivative and

a comparison of these amplitudes would in turn provide a

means of measuring tunneling and QI'R.

The usual procedure when considering the Influence of

quantum-mechanical effects on an energy barrier is to

introduce the concept of a quantum-mechanical transmission

coefficient (QkTC), The Q 11C for a potential barrier is

defined as the ratio of the number of electrons crossing a
,unit area pel it time in the incident and transmitted

waves. Similarly, one could define a quantum-mechanical

reflection coefficient (Q1',RC) such that

QN*RC = 1- Qj1.TC (2.6.i)

and would thus represent the ratio between the number of

electrons in the incident and reflected waves on a per unit

basis.
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Kemble1 9 has outlined a method for approximating the

Qi TEC of a parabolic potential barrier in terms of the

momentum of a particle incident from the side corresponding

to the bulk semiconductor. The assumed form of the barrier

(parabolic) could be used to account for the presence of

electron image effects and would make this method directly

applicable to estimating the Ql.*TC of a metal-semiconductor

contact. The results of Kemble's approximation techniquE

jare given in Appendix C.

Crowell and Sze 20 have considered the problem of

Icalculating the QYTC of the potential barrier at a metal-
semiconductor contact directly by using numerical techniques

to solve Schroedinger's wave equation . The QM1TC is calculated

as a function of the carrier energy and effective mass, the

high frequency dielectric constant of the semiconductor and

the shape of the potential barrier in the vicinity of the

point where the conduction band edge in the semiconductor

merges into the conduction band edge in the metal, The

mathematical treatment involves numerically solving the

one-dimensional, time independent wave equation of the form

d + E(x)-e (x) 0 (2.6.2)

'where E (x) is the electron kinetic energy, m* is thee e

effective mass and ep(x) is the potential energy perturba-

[tion introduced by the barrier. In addition to assuming that

I
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the electrons are incident normal to the barrier (one-

dimensional form of Eq. 2,6,2) it is assumed that m can
e

be approximated as an average effective mass with different

FIsotropic effective masses in the metal and semiconductor.

Farthermore, the image potential (9") is assumed to have

the form as given by Eq. 2.4.2 so that the potential barrier

- can be approximated by

(x) ' ()+ "(x)(2.6.3)

for sufficiently large x.

A typical result using the method of Crowell and Sze

is shown in Fig, 2,9. Their general conclusion is that a

QNTC,0,5 can be expected for an electron incident on the

barrier with energy greater than 0.05 ev with respect to the

barrier maximum,* Furthermore, the QMTC increases slowly

with increasing energy and is a rather strong function of

the electric field at the metal-semiconductor Interface.

Figure 2.9 also shows that tunneling for this particular

barrier can be appreciable for electric fields exceeding

104 v/cm.

Tunneling and QM will be considered again in Chapter VI

when carrier transport across the barrier is discussed in

greater detail.

*Kemble's method 1 9 predicts a QMTC of approximately 0.5

for electrons with the same energy as the top of the barrier.
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CHAPTER III

THE SCHOTTKY MODEL FOR A METAL-(N-TYPE)-

SEMICONDUCTOR RECTIFYING CONTACT

This chapter will deal primarily with a mathematical

treatment of the Schottky model9 for a metal-semiconductor

contact. Basically, the model consists of assuming a

constant charge density in the depletion region of the

semiconductor and by using PoIsson's -quation an estimate of

the electric field and potential can be obtained. The

assumptions on which the model is based will receive

particular attention as a preliminary step to the develop-

ment of a more exact model which will follow in the next

chapter. In addition, image effects will be introduced and

an expression derived for the junction capacitance predicted

by the Schottky modcl,

The energy band diagram for a metal-semiconductor

contact is shown in Fig. 3,1a. It is basically the same as

Fig, 295b and is repeated here for convenience. It should

be noted that the influence of an Image force has been

neglected and also that the junction should be considered

an idealized contact since the effects of lattice imperfec-

tions, nonuniform contact and the presence of surface

*contaminants will be neglected.

o- %L
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FIGURE 3.1a: Energy Diagram for a Metal-Semiconductor

Contact under Reverse Bias; Image Force

Neglected.
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FIGURE 3,ib: Energy Diagram for a Metal-Semiconductor

Contact under Reverse Bias with Image Force.
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With reference to F, the following six state-

T ments describe the Schottky model for an idealized contact:

(1) The equilibrium diffusion potential (Vd ) is large

compared with KT/e, i.e.,

Vd-KT/e (3.1)

This condition essentially insures that an effective barrier

exists to conduction electrons of the semiconductor. If the

energy barrier (eVd) is on the order of , or less than the

thermal energy of an electron (KT), then the barrier is

easily surmounted by conduction electrons and it does not

act as an "effective" barrier. Here "effectiveness" is

meant to imply a measure of the barrier's ability to prevent

electrons of the conduction band from crossing the junction.

The calculations which followwill be based on the condition

that an effective barrier is present, which necessarily

limits application of the model to cases of small forward

bias, moderate reverse bias, and the equilibrium condition

stated in Eq. 3.1.

(2) The width of the barrier (W) is large compared to

the wavelength of a conduction electron. This condition

insures an effective barrier against tunneling, although

it does not completely eliminate tunneling from taking place.

Tunneling must always be considered as a contributing

factor to electron transfer at a metal-semiconductor contact,
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since by the very shape of the barrier its effective width

becomes greatly reduced near the top.

However, if discussion is limited to barriers whose

width exceeds several thousand angstroms, then tunneling

may be neglected as a major contributor to electron transfer.

(3) The electron concentration on the semiconductor

side of the barrier is so large compared to the hole con-

centration that it may be considered a constant, i.e.,

n(W)= N (3.2)

This allows E to be uniquely specified and remain constant

for the region x W.

(4) The concentration of uncompensated, ionized, and

immobile donor sites within the semiconductor is given by

N for O<x<W

(3.3)

for W<x<LI

and Nn+W)n w n0 is the equilibrium concentration of
d where

electrons in the semiconductor.

(5) The hole concentration at the metal-semiconductor

junction Lp(0)3 does not exceed N+, i.e.,

+

P(O) =< d (3.4)

(6) The space charge associated with the depletion

I?

I
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Fbisson s eciua&tiJcn for a planar- contact has zhe form

I-n which VWx is the voltage drop associated mit-h the contact

And x~) is the space charge density associated with the

depletion region. It is convenient to transform Eaq. 3.6
into an expression Involving the negative Potential of an

electron by the relation Which follows:

V(X) =-01Wx (3.7)



-:Ehs, S. - 3.65 becoes

:Lv tbe deplettic i-.-1CM utnat inrage effects. (See ?iZ.3,a

Since P(m) r-e--emmus tie spae chrg densty, It my

be -&-itten in n'a.as

= ~)-(z)~-~z)](3-9)

and hoe densities aure ne-glected. ulh the depletiaom regicn,

so tha6C %Issmt's equationi becomes

The appropriate bonayconditions may be easilyv seen fton

Fiz ].a.Tese are

(1) A =0 at x=W (.1

(2) 0'(x) 0 at Y=W (.2

Integration of Eq. 3.10 once with respect to x yields

L
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Using tbh~ second1 botndary conditicn

9 2e (3.17)

so that the final express~.on for V(x) is

PI = el~ld(xW,2 (3.18)

Equation 3.18 can. be used to obtain an expression for

W4 In terms of the barrier height. Since

'IA
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(3.1-9)
Q. r

fOICt o"os that

[2 I~= -) (3.20)

Nex, the elect-ic fe]d [E(!-)] Is dete=1ned in tlie

d, Wz= -B(X) (3.21)d-r

Thus, E(z) is given by E. 3-15, or

E(x) = - ,(W-.- 1o=-) (3.22)

Also -of Interest is the electric field at the contact Eo

and fron Eq. 3.22

ie
Eld- (3.23)

o

iHowever, W can also be expressed in terms of the barrier

height (Eq. 3.20) so that

} 12~eNd(Vd+Vr

E0  [esdV+ ] (3.24)

t

I)



The esIts ofr the above- caleulations are srrn-.zed In

Next, aoe can determine the charge per mit area

T cciIned iu the depletIon regien by -te atIng tbe space

charge dem Ity over t he d-pleticn vIdth as follos:

zl = Y (3.25)

ad substittion of W from S_. 3.20 yields

(3.26)

Tne depletion region e7idently acts as a Parallel plate

capacitor sinc for a s---.! oltage Increase additional

charge WILL be added near the boundary at x--4. TIhus, a

Junction capacitance (C j) per unit area can be defined as

C dA - W (3.27)

Using 'q. 3.20, or Eq. 3.26, C may be expressed as

follows: *

*For forward biased conditions (Vd Vr) becomes

(Vd-Vj) and as V j->Vd the junction capacitance appears to

increase indefinitely. This is

I.
1.
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EIGURJ532b; Electric Field for the Schottky Model of a

Metal-S emiconductor Contact.

-eVd+Vr)

co
Bulk Semiconductor jDepletion Regiin Metal

Xx 0W

FIGURE 3.2cs Electron Potential for the Schottky Model of

a Metal-Semiconductor Contact; Image Force

j Neglected.
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I c~ (3.28)

in Chapter Ii the effect of an Image force was introduced

a--A the electron potential fue to the iage effect calculated_.

I Figure 3.1b shows this Influence and the true electron

Spotetiall within the depletion region. Using Eq.'s 2.4.2

and 3.18 the total electron tentlal, Including image

effects, -may be expressed as

= d(-) e (x>00 (3.29)

Alsop Eb (as shown in E_-- 3 ) may be calculated since

, e[d+V (x)] (3.30)

where i(x.) Is the maximum value of the electron potential

f! within the depletion region when image effects are included.

An expression for xm can be found from the fact that O(x

will occur at the point where the image force on the electron

prevented by the fact that for a small forward bias suf-

ficient current flows to prevent Vj from becoming comparable

with Vd due to the voltage drop associated with the bulk

1.. semiconductor.

271

Ai

]'I
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balances the force on It due to the electrkc field, or by

usi. F q.'s 2.4.1 and 3.22

eS e d(-___) (3.31)
s M s

Assuming that W>>xi, and solving for x. yields

[1nI] (3.32)

where Ct Is the ratio of E to es . Using Eq.'s- 3.29, 3.30,

and 3.32, ELI can be approximated as

e- e o (3-33)

or in terms of potential as

Le e d V (3-34-)E e~a; (s s) s_, -- T .3)

by eliminating E0 using Eqo 3.24. Under normal applications

of bias the lowering of the potential barrier to electrons

in the semiconductor due to image effects is quite small and

is usually neglected. This will be discussed in greater detail

in the next chapter and a sample calculation will reveal an

~estimate of the magnitude of lowering due to image effects,

The potential barrier as seen by an electron on the

semiconductor side of the junction (Vds) may be expressed as

II
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v .j+ E/ (3. 35)I' dsd + r Zor/

or

v is F V e:1!4d(Vd+Vr) 0-36

by using Eq. 3-34. The potential barrlr from 
the metal

side of the junction becomes

Sb-E; (3.37)

and if surface states are neglected

= ~ x ~)/e (3.38)
-7bm (jm e b%

The results of this chapter can 
be stated in the form

of the following equations:

eNd

(1) o,(x) _ 'q(x_W)2 (volts)

(2) (x) = '(x) - e (volts)
1 6rrs x

(3) WI . J (meters)

S Id

~-1
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(5) [2 ree.Nd(Vd +V)] (coulombs/neter)

Ir

( C) 4 (folad/meter)

(8) Vd = Vd  +Vr ]/ (volts)

(7.. FdJ" (ltvolts)

(9) V b V + - %e(l/e

Conparisons between the Schottky theory presented here

and a more exact analysis will be presented in Chapter V.

ii
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CHAPTER IV

A MORE ACCURATE MODEL FOR THE IDEALIZED
nETL- (N-PE)-SEMICONDUCTOR

RECTIFYING CONTACT

V The Schottky model, as discussed in the last chapter,

is limited in exact-ness by the assumption that all impurity

atoms within the depletion region are ionized and uniformly

distributed. Furthermore, the model assumes that all free

charze carriers are missing from the depletion region. These

simp ifyig assumptions imply that the total space charge

density within the depletion region is a constant and

outside this region it is zero.

These restrictions on the space charge model aill now

be removed and a more accurate model which includes both

incomplete and nonuniform ionization of donor atoms and the

presence of free carriers within the depletion region will

be substituted. The energy diagram for the metal-semi-

conductor junction is shown in Fig. 4.1 and is the same as

that used for the Schottky mode. However, more quantities

are defined since they are necessary for this more complete

derivation which will follow. One should also note that the

diagram is for reverse bias conditions, just as that for the

Schottky model and one can again assume that the expressions

which result will be equally valid for small forward bias.

I.
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FIGURE 4.1: Energy Diagram for a Metal-Semiconductor

Contact under Reverse Bias; Image Force

Neglected.
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In addition, it is assumed that any free carriers present in

the depletion region are due to the electrons furnished by

ionized donor atoms rather than injected from the metal.

Then from the standpoint of an idealized junction the model

should be exact, although exactness must be relative since

Itunneling, surface effects, and lattice imperfections will
- again be neglected.

When one considers incomplete donor ionization and the

presence of free charge carriers within the depletion

region, the total space charge density can no longer be

considered a constant. Instead, one must return to the

general expression for space charge density given by

P(x) = e[Nd(x)-n(x)+p(x)] (4.1)

in which N+(x) is the density of ionized donor sites and

n(x) and p(x) are the free electron and hole denslties,

respectively.

Equation 4.1 can be immediately simplified by assuming

that the positive space charge contributed by the minority

carriers is negligible. This assumption is valid, since

p(x) exp[-(E-E /1

fsvd/KT] (4.2)

and for N-Type semiconductors Efs-Evd >KT.

The electron concentration at the donor level (nd),

L
---- -7
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which will be used to calculate N+, may be obtained by

forming the product of the number of available energy levels

and the p2zobability of occupancy. The donor level (Ed)

actually consists of Nd narrowly spaced levels; however,

since the energy is almost single valued, the electron

concentration at the donor level can be expressed as

Nd

n= (4.3)
lexp[ (Ed-Efs)/KT] + 1

where the term in the denominator results from multiplica-

tion by the Fermi probability factore* Since the electron

concentration at the donor level Is also the density of

unionized impurity atoms, the density of free electrons

contributed by ionized impurities must be

nc Nd nd (4.4)

or by using Eq. 4.3,

t

**The conventional form of the Fermi probability factor

for electrons is fe(En) = [exp (n-Efs) + 1-1; however,

the Fermi probability factor for electrons of the donor

II level has an additional factor of j to account for spin degen-

eracy. For a rigorous proof of this form see S. Wang, Solid

State Electrnics (New York: McGraw-Hill Book Company, 1966),

1 pp. 143-5.

i!i
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nC. (4.5)L Nd  exp[(Ed-Efs)!KT] + 1j

which may be written as

INd
n + (4.6)2exp[-(Ed- fs)/KT] + 1

Equation 4.6 may be expressed in a more useful form by the

following manipulations:

(1) The ionization energy (E1 ) is definad as

E - E (4.7)
i co d

(2) By adding and subtracting Eco in the numerator

term of the exponential in Eq. 4.6, it may be written as

!:= (E -d) + Ef (4.8)

(3) The ionization energy can be incorporated into

Eq. 4.8 yielding

-(Ed-Efs) = E1 + - Eco (4.9)

so that an equivalent expression for Eq. 4.6 is

- N (4.10)
C 1 + 2exp(Ei/KT)exp(EfsEc )/KT]

Ic
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Another valid expression for n. Is

n.= Nexp[ (Ef-Ec )/KT] (4.11)

Iin which Nc represents the effective density of states for

the conduction band. Upon substitution of Eq. 4.11 into

Ea. 4.10, nc may be expressed as

n (4.12)

1 + 2(n/Nc)exp(Ei/KT)

and solution of this expression for exp(Ei/KT) yields

Nc(Nd-nc)
exp(E /KT) = (2n2c (4.13)

(Nc/N )(1-nc/N d

2(nc/Nd)
2

Next, a new parameter will be introduced and defined

as

y = n/N d  (4.14)

which may be interpreted as the degree of ionization, since

it represents the fraction of donor impurities ionized in

the bulk semiconductor. The degree of ionization represents

an important parameter for a semiconductor and is discussed

in greater detail in Appendix D. Using y, Eq. 4.13 may be

K
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expressed as

~(N /Nd)(1-y)exp(Ei/KT) 2 (4.15)

fT 2y 2

Next, one can use the Boltzmann relation* to express

the actual free electron density as a function of the

quasi-Fermi level for electrons within the depletion region

as follows:

n(x) = ncexp[-eO '(x)/KT]  (4.16)

This equation represents the rearrangement of free carriers

in the conduction band which occurs to establish equilibrium.

Finally, an expression for the free electron density of

the conduction band valid in the depletion region must be

found. Clearly, this expression will be a function of

distance (x), since the potential of an electron varies

with distance as shown in Fig. 4.1. Eq.'s 4.6 and 4.15

can be manipulated to show this dependence and give the

desired result by making the following substitutions:

*The Boltzmann relation states that the free carrier

density varies exponentially with carrier electrochemical

potential.

,Ir

_ -
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(1) First, one can write

-(Ed-Efs) -Ed + Efs (4.17)

(2) By using Eq. 4.7, evaluated in the depletion

region, the above expression may be rewritten as 2

(EdEfs) = + Efs - Ecd (4.18)

(3) Adding and subtracting Eco yields

-(Ed-Efs) Ei + (Efs-Eco) - (Ecd-Eco) (4.19)

(4) Noting that (Ec-Ec) is by definition ep'(x),

and making the above substitution into Eq. 4,6 yields

n(x) - (4.20)
1 + 2exp(E,/KT)exp[(Ef-Eco)/KT]exp[-eP,/KT]

(5) Now if Eq.'s 4.11 and 4.13 are substituted into

Eq. 4.20, the desired result is obtained, i.e.,

INd
ed(xW) (4.21)

I C1 + (i/y-1)exp[-eP'(x)/KT]

The above expression represents the free electron density

due to ionized impurity atoms as a function of distance,

I valid for the depletion region before any rearrangement

I
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occurs due to electrochemical potential. Furthermore,

Isince each ionized donor site will have contributed one
free electron

V+r4
N = ncd (xI (4.22)* I

Twhich yields the needed result for the space charge density

expression (Eq. 4.1).

Using Eq.es 4.16, 4.21, and 4.22, the space charge

density within the depletion region becomes

d~xl + (1/y-1)exp[-e t(x)/K(

yexp[-eO (x)/KT]}

This expression represents the space charge density assuming

incomplete donor ionization and the presence of free charge

ca.riers within the depletion region. One should note that

if 8'(x) is large enough the term corresponding to the

free carrier concentration may be neglected. This would

correspond to the Schottky approximation that the depletion

region is uniformly depleted of electrons. This appears to

be a good approximation for the region near x=O, but

signifcant error is introduced in the region near x=W.

Furthermore, if complete donor ionization is assumed, i.e.,

y=1, then N(x) reduces to Nd and yields the "abrupt" model

3.
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which was the assumed form for the Schottky expression for

space charge density.

Poisson's equation will now be used to relate the space

charge density [P(x)J to the negative potential of an

electron [p'(x)], just as was done in the previous chapter.

However, the relation will be considerably more complicated

since both terms contributing to the space charge density

are functions of distance. Poisson's equation, assuming

a one-dimensional application, becomes

d2 ' (x) end( 1

dx2 s Li + (1/y-1)exp[-eO'(x)/KT](4.24)

yexp[-eO' (x)/KT]}

This expression may be simplified by an appropriate change

of variables, namely

y(x) = eP'(x)/KT (4.25)

and

u(X) - x = Kx (4.26)

which upon substitution into Eq. 4.24 yields,

du1 = - yexp(-y) (4.27)
1 + (1/y-1)exp(-y)
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which is a second order, nonlinear differential equation,

The appropriate boundary conditions are

(1) im d '(x) = 0 (4.28)Idx

(2) '(0) =Vr + Vd (4.29)

which can be easily justified by Fig. 4.1. These boundary

conditions must now be transformed to the new variables.

They are

(1) dy/du =0 for y =0 (4.30)

e(Vd+Vr)
(2) y(0) y= KT (4.31)

It is worth noting that yo is a function of the applied
bias (Vr). Since V is fixed for a particular junction,

7r d

yo will in general be specified by the applied bias plus

an additive constant.

The result of the first integration of Eq. 4.27 may be

written as follows:

dy/du = -if z (4.32)

I

where

LZ = lnyeY+l-y] + ye y - y (4.33)

I
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This expression is verified In Appendix E.

L1 order to complete the solution, one must perform a

numerical Integration of Eq. 4,32, since the olution in

closed form is not apparent, if one exists. The numerical

technique to be used here is the Runge-Kutta method of

order four for finding a point by point solution; utilizing

a digital computer to perform the actual calculations. A

discussion of the Runge-Kutta method is presented in

Appendix F along with the computer program used to integrate

Eq. 4.33 and plot the results. A typical computer run is

contained in Appendix G.

The computer solutions are shown in Fig. 4.2 and

FIE, 4s.. In Fig. 4,2a the normalized electron potential

y is plotted against the normalized distance u. It has been

assumed here that the normalized barrier height is yo=60,

This would correspond to a combined equilibrium diffusion

potential and reverse bias of approximately 1.56 volts,

ioe., Vd+Vr$1.5 6 volts. The degree of ionization was

varied from 0.05 to 1,0 to reflect its influence on the

normalized electron potential and each curve corresponding

to a particular y is shown. The curves would seem to

indicate that the effect of y is quite small, since the

general shape of the curves is maintained as y is varied.

In Eigg 4g2b the normalized space charge density (normalized

to unity at the contact) is plotted against the normalized

distance u. For comparison purposes the equivalent Schottky
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FIGURE 4.2b: Computer Solu94-tons for the Norzmalized Space Charge

Density versus the Normalized Distance in~to the

Depletion Region. Solutilon is for the Initial

Condition of y =60.
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1 68
representation for sp~ace char~ge density (normalized to unityr

f at the contact) Is also plotted. The abrupt representation

for space oharge density remains constant to a point where

u :d and W in terms of the new variables y and u is W=(2y~ 0)

It now becomes apparent 'why the Schottky model gives useful

* and fairly accurate results* First, It can be noted that

7 the Schottky and 2-ore exact model agree to a point near

u=W(2y)kAfter this oInt however, the normalized spare

charge density of the more exact nodel decays over a finite

distance due- to the increasing compensation offered by the

Increasing concentration of electrons as xrwd. Faurtherm-ore,

V (the va2lue of ui at which y=-O) as predicted by the more

exact model is greater than that predicted by the Schottky

=odel. However. if one compares the areas of disagreenent

between the t1wo m~odels, the additional space charge density

predicted by the =ore exact model for WN(2y,)T has a

compensating effect on the reduced s 'ace char-ge density for

Wc(2Y) 2 Thus, the Sdhottky mode'l becom-es a fairly accv-rate

model for an effective space charge density and depletion

width,

Similar plots are shown 1n Fig. 4f.3. Here the va:lue of

0 was chosen as 20, to correspond to.- a combined diffusion

*potential and reverse bias of approximately 0.52 volts.

I The Schottky model predicts a voltage dependent

capacitancs as given by Eq. 3.28. T-his junction capacitance

Iarises from the facts" that the depletion region acts as a

T
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y 0 =20

=00

=o.~o. 6o

I Y=0.80

F'IGUIRE 4.3--: Comp ter Solutions 'or the No-malized Electron

Potential versus the Nori alized Distance Into

the Depletion Region. Solution Is for-: the

Initial Condition of y =20.

V 0
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I y=1.00

Y=0,80

Y=0.60

* [ Y=O.40

I Y=0.20

Y=0.10

I I Y=0. 05

Schottkv A)Droximation

0-

u=(2y0 ) U

0

FIGURE lJ.3b: Com.puter Solutions for the Normalized Space Charge

Density, versus the Normalized Distance into the

Depletion Region. Solution is for the Initial

Condition of Y =20.0

i.
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parallel plate capacitor since for a small voltage change

a net charge is either added o? substracted from the region

near x=W. By Gauss's law the total space charge per unit

{ area (q.) contained within the depletion region is related

to the electric field at the contact (Eo ) by

0 - E (4.34)

The electric field at the contact is in turn related to the

slope of the potential function evaluated at the contact, or

- d(x) (43
o axjx=o "-.-"

where

d8(x) (-KT/e)~T (dy/du) JuO(4.36)

d o

in terms of the new variables y and u, Thus, by substitu-

tion Eq. 4.34 becomes

Qw= - (esKTNd)W(dy/du)u (437)

in which

- -. -



|z

72

(dy/du)Iu = -2 n[yeo -

-y ) (4.38)i [ Ye-Y°

by using Eq. 4.32. Finally, the Junction capacitance can be

calculated as follows:

Si ye-Y0

d - 1 + (/!-1)e - YO

dY n[yeYO+l-y] + ye-

where

e dl (4.4o)

Yo = (4.41)

0 KT

The calculations made in this chapter thus far haveI

neglected image force effects. If one were to include image

effects, Poisson's equation (Eq. 4.24) would have to be

modified by replacing O'(x) by g(x) where

(x) = (x) + "(x) (4.42)

L
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Since the discussion of Chapter Ii indicates that a single

expression for p"(x), valid for the entire depletion region,

is not possible because of model dependence near the metal

surface, then Eq. 4.42, at best, would have to be approximated

by assuming two expressions, one valid for x>xm and the other

valid as x -> 0. In addition, a simple transformation of

variables could no longer be used to make the solutions of

Poisson's equation independent of the particular materials

used to form the contact, and no general results could be *

obtained, In short, the addition of image effects would

hopelessly complicate Eq. 4.24.

Fortunately, there is an alternate approach which can

give a reasonably accurate approximation to the maximum

correction of barrier height needed because of image effects.

It has already been established that the Schottky model is

quite accurate in the region near the Junction and that the

influence of image effects predominates In this region.

Furthermore, if one assumes that pm occurs in this region

and that xm is large enough to permit p"(x) to be approximated

by

pit - (4.43)

then one zan use the results obtained in Chapter III to

estimate the maximum correction needed for image effects by

i

iI
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E.. In order to show the influence of image effects on the

result obtained for the normalized electron potential as

shown in FiS, 4g2a, Eb, will be normalized to y'. This can

be done by using the approximate expression for Et based on

the Schottky model, or A

L( ) (4.44)

where Eis given byI

0I

0 L e 1 (4.45)
In terms of the normalizing variable y, Pt(O) may be

expressed as

0'(0) = ) yo (4.46)

Combining Eq.'s 4.44, 4.45, and 4.46, the normalized correc-

tion for image effects may be written as

( - e2NdKT )I1 ;I eK) Y(.7b L8Tr2 (eT8o)3 e (y(

which represents a "worst case" estimate to the modification

imposed on the normalized eltectron potential near the contact

due to image effects. The reduction in the barrier height

0y is usually quite small under normal applications of bias

I
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voltage and for the purpose of illustrating this reduction

the following situation will be assumed:

The contact is a metal-(N-Type)-Si contact with

Vd Vr=1* 56 volts, y=!.0, T=300 OK9 Nd=1016 cm"3 , and

et =12Eo farad/m,* Under the assumption that Vd+Vr=l.5 6

volts Pjgx 422a is applicable and one may proceed to

calculate the reduction factor y' as follows:

(e/KT) edb L~~89C2 E:tE!O) 2E;

38.6(2.56)(1.38)(3)(1o-37) (6o)-

L 8 (9 .8 7 )(1
.
2 )(1 0 30)j

Y' (3.86)(1-03)(2.78)(10
- )

Yb << Yo 60b 0

The result of this calculation is shown in Fig. 4.4o

The quantity y 4 seems quite negligible in comparison to

y=60 and would be even smaller for a lower doping concen-

16 -3
tratmon, i.e., N Although this seems sufficient

justl-ication for neglecting image effects, one must be

*For silicon Cstl since lattice polarization is purely

electronic.
21
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cautious in doing so. Since yt is a function of the reverse

bias voltage image effects can be expected to become more

important at higher voltages. In addition, it has been

I shown in Section 2.6 that a small change in the barrier

height would significantly alter the transport properties

£ of the barrier due to quantum-mechanical effects. As it

Iturns out, image effects can usually be neglected except
under reasonably large reverse biases, when the reduction

in the barrier potential accounts for the voltage dependence

of the reverse saturation current. Image effects will be

discussed again in relation to the I-V characteristic of

the contact In Chapter VI.

I
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?I

T CHAPITM V

!TODS OF PEER~ING THE EQUIIIU BARRIERI

CCNTACTS: A CO.11A3ISN OF =-- :ODELS
OF CHAP-M-3 ii ND CHAP IV

Trhe most co-only used experi-mental methods to deteZI-ne

Une energy barrier heights Eb and eVd are by the photo-

response method and by an extrapolation of data cbtained

from a capacitance versus voltage plot. In this chapter

both methods will be discussed; however, ra.or attention

will be focused on the cacacltance method since the results

obtained are dependent on the particular model uned for the

metal-semidonductor contact0 Furthermore, since the photo-

response method provides a direct measure of the barrier

height, a comparison of the results predicted by the two

methods will provide a means of comparing the aceuracy of

the contact models discussed in Chapters III and IV.

The photoresponse method uses a monochromatic light

source to induce a photocurrent in the device under Investi-

gtLion. The source may be Incident upon either the semi-

conductor or metal side of the contact. To provide a direct

measurement of evd the source must be incident upon the

semiconductor and to measure Eb the source must be incident

upon the metal; in either case, the material upon which the

_!
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light source Is Incident m-ust be as thin as possible to

enable sufficient light for electron exctat1on kn- the

immditevicinity of the con=tact. Gene' 1 ' l * the light

source is incident ci the metal sin-ce- the mc-st cc==n mt-hod

o re: ring meal-seic-onductor contacts i~s by aiu

evaporation of the =-t-1l onto a dozed, sing~1 e crystal

substrate. This =riethod allovi qery accurate control of the

mtal VnIckness and evacoezv~tion of a rg-tal has the add!-

tlanal advantases of lowier evaporation temiperatumres wbile

avoiding the moble~~s of doping and cr-ystal s-tructure.

Asmn tha :he 2ight source is Incldn on te ~ntal,

F!-z5 de-lnes the relevant para=-ters Involver-d in

measuring E by the jphotoresponse method,

Uhen light. is directed onto the mtal surface the free

electrons i-n the =etal are excited and if sufficient, encrgy

is acquired, they wili11 overcor-e the ener-gy barrier (Eb)

and produce a current In the semiconductor. if the phot-

electric curr-ent rer Incident photon is defined as the

photoresponset (R), then the spectral distribution of

will reveal the barrier height (E b) as seen by an electron

leaving the metal. A typical spectral response Is shown

In FIE, 5.2. aggre 5.2 also shows that there are two

distinct regions of the photoexcitation. process:

(1) The photoemission of excited electrons Ln h

metal over the barrier Eb

(2) The band to band exeltation of electron-hole pairs

1ithin a diffusion length of the semiconductor depletion region.
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Mhe Fowler Vheorl 2 cf the Photoelectric, effect predicts

that the dependence of the phtocurrent (J. on zfton

ener-cy, for photon energies exceeding Sb+3jK1 , may be

exuresseE as 4

cc hf(5-1)

ahere

h-o (5.2)

as shown In Zjj Th1 us, If one Plots Rl (which Is

defined to be proportional to J)verstis the Incident

photon energy (h:),* a straight line would result, which in

turn yields an extrapolated value for Eb, ioe.5 the Intercept

value on the hf ais. A blot of Rversus hf. for an

Au-CdSe contaot is showun In Fix. 5.3. Figare 5.3 also

Illustrates quite clearly why It Is necessary to have a very

thin metal contact, since an accurate extrapolation for Eb

Ff becoizes difficult. for metal widths exceeding 900[ ~ The eapacitance versus voltage technique for determiining

*The values of R are taken± from the longer wavelengths

of f to insure data corresponding to the proc(.ss of photo-

emission from the metal and not band to band excitation.
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FIGU5E .3, Photoresponse of a Au-CdSe Contact versus Photon

Energy 5 The Curve Labeled A if for a Metal Thick-

0ness of 300 A and the Curve Labeled B is for a Metal

Thickness of 900 R.
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the equilibrium diffusion potential (Vd), assuning an

Idealized contact, can also Provide an Indirect nea-sure-

cent of Elsince Eb is related to Vd as follovs:

which Is evident from Flz 9 with Ve=Oe The quantity

Vd Is experimentally deter-i~ned by plotting the square of

the reciprocal of the Junction capacitance per unit area

- ~ (C) versus the reverse bis voltage A plot of this

form will al1low cne to extrapolate a value of 'd (the

-- intercept value on the Vr axis) and once VdIs known, Ezb

may be calculated by using Eq. 5.3. The =ajor difficulty

encoimtered vhen using this method Is that thie theoretical

expression for the junct!,on capacitance CEq.Ws 3,28 and 4.39)

Is "model dependent" and the relation of the experlmentally

determined Intercept voltage t6 Vd will reflect this

dependence. This will become apparent In the discussion

which follows,

First, consider the capacitance expression ba~sed on

the Schottky model (Eq. 3.28). if this expression is squared

and the reciprocal taken of the result, one obtains

4 ("d:Vr) (5.4)Y0

where
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and

efcvv+,.) (5.6)

2
Clearly, if (i/C 2 ) versus yo is plotted., a straight ie

will result and at the pOut where

V = -v = V. (5.7
o r

is zero, or (I/C2)=G. Also of interest Is the slope,

since It provides a zaans of determining the doping density

(Nd) Thne slote can be calculated as follows:

d(1/C2) 2

dV - eesd (5.8)

The doping concentration may then be expressed as

2Nd emE (5-9)

A typical experimental plot of (1/Cs) versus Vr is

shown in Flg. 5g4a, illustrating the experimentally

determined values of Vo and Nd. For the purpose of compar-

ison, FIRR 5x4b shows the photoresponse method used to

detervine Eb for the same diode.

I:
['
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FIGURE 5.4a: C -2 versus Vr for an Au-Ge Contact.9
6
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FIGURE 5.4h: R versus hf for the same Au-Ge Contact as

in Fig. 5. .2I' 6

iI



T

87

Next, consider the capacitance expression derived on the

basis of the more exact model of Chapter IV, Squaring

Eq* 4.39 and taking the reciprocal yields

-2 1;In[YeYO+l-Y] + ye-Y° - Yl

j - k - o (5.10)

(l/y-1)e -yo

in which

This expression Is considerably more complicated than the

equivajent expression (Eq. 5.4) based on the Schottky model.

However, for sufficient values of reverse bias yo>>l,

Eq. 5.10 may be approximated by

C2 2n[ye -y (5.12)
j 3~LLe~-J y

Expanding the logrithmic term by the power series

In(a+x) = In(a) + 2 + - +
2 a+x 3 Ia +x]

(5.13)

+ ~ >

a further approximation may be made for yo>>l,

. . .~ ... 4
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yielding*

Y2  o + ln(y) -y] (5.14)

One may now recognize the equation of a straight line if

(k3/C) 2 is plotted against Yo. The approximations leading

V to Eq. 5.14 can be easily justified by observing a plot

of Eq. 5.10 for arbitrary values of y0 and y. Such a plot

is shown in Fig. 5,. For values of yo>4 (approximately),

Eq. 5.10 becomes a straight line and an extrapolation of

th-se lines for each y may be used to determine the intercept

value of V0 . This intercept value of V0 is of primary

importance since It will result In an expression for Vd .

The quantity Vd can be obtainpd by noting that whenj)2=O

(k3 /C =0 the straight line approximation to Eq. 5.10

can be written as

*Dewald has obtained the same limiting result for

C 2 ; however, his original expression for C 2 is not the
4j

same as Eq. 5.10 although both expressions produce the same

limiting result as reverse bias becomes large. Further-

more, his derivation of a voltage dependent capacitance

follows from an investigation of the distributions of

charge and potential at e zinc oxide-electrolyte inter-

face.



(k 3/C )2 89

6-

5 Schottky Model

3 y=0.8

J/ y=0.2

2- (More Exact Model,

23'.5 6 ye
FIGURE 5.: Normalized Junction Capacitance versus -Normalized

Bias Voltage (Eq. 5.10).I
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.0

or

e(V7-") Y - n(y)

Rearranging yields

Vd =V 0 + (K-T/e)[_y-1n(y)] (.?

it should be noted that the above expression for the

equilibrium diffusion Dotential (Vd)e has neglected the

Influence of Image effects. If Image effects were Included,

then yoIn Eq. 5.15 would be replaced by the effective

barrIer height near the ccntact, leer. yo-y'. However,

bb

For this particular application thp error Introduced by

neglecting 4L is quite small and it will become even smaller

as the bias voltage Is Increased. Tis may not be the case

wihen considering the carrier transport properties of the

contact since the magnitude of yL Increases as the bias

voltage is increased and quantum-mechanical effects are

critically depDendent on the barrier height and the electric

field strength at the contact, which also Increases with

bias. Thus, one can safel'y neglect image effects for this

particular application and Eq~. 5.17 should give a reasonably
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accurate relation between the intercept voltage and the

equilibrium diffusion potentlal; however, when on con-

siders the current-voltage properties of the contact image

effects may become fairly Important at higher reverse bias.

The slope of the straight line approxim ton for

Ea. 5.10 reduces to the same slope as obtained using the

Schottky expression for junction capacitance. This can be

easily verified by taking the derivative of Eq. 5.a4 with

respect to voltage. In other words, the value for Nd

predicted by the two models is exactly the same (Eq. 5.9)

since the slopes agree for yo>>1. This is shown quite

clearly in E .

By comparison of Eq.'s 5.7 and 5.17 one can see that

there will be a significant difference between the diffusion

potential predicted by the Schottky and more accurate model

when using the capacitance versus voltage method to

determine Voo The exact disagreement between the two models

will be the difference between the intercept values (V,)

as shown in i5 J, and will be Influenced by the degree

of ionization. Thus, one can expect the value of Vd

predicted by the Schottky model tc be in error by at leastIKT/e (from Eq. 5.17 with y=1) and this error would Increase

as the degree of ionization decreases. Furthermore, the

value of the doping concentration (Nd) obtained by the

capacitance method will be independent of the model used,

since the slope predicted by the Schottky model and the

I

| --
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straigh3 line approximation to Eq. 5.10 are the same for

T sufficient values of reverse bias.

The conclusions drawn thus far are for an idealized

contact and one will find that an application of' the

capacitance method to determlne Vd for a "real" contact

will involve many complicationse Goodman28 has made a

comprehensive study of the complications involved in the

measurement of barrier heights by the capacitance method for

"real" metal-semiconductor contacts, and outlines a

procedure to minimize many of these complications. He

also examines the model dependence of the capacitance

expression and cancludes that "the true value of the barrier

height is greater than the 'intercept value' by KT/e."

However, there can be significant error in this conclusion

for incomplete ionization, i.e., y<1, as can be seen from:q. 5.17e

Having determined the diffusion potential by experimental-

ly determining V., one can calculate the barrier height as

seen by electrons of the metal (Eb) by using Eq. 5.3. In
order to use Eq. 5.3 the position of the Fermi level must

be known for the bulk semiconductor and this may be calculated

by using the following relation:
29

Ef = (Eco+Ev) + 3K In(m*/m*) +

S+i)(5.18)

K
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Equation 5.18 Is an exact expression and all of the

auantitles are either known or material constants, with the

Dossible exception of Nd which can be determined by

Eq. 5.9. Thus, usizig Eq.'s 5-3, 5.17 and 518 (Vd by the

more exact model) or 5,7 (VO by the Schottky model) a value

of Eb can be determined and a comparison can be made

between Eb as measured by the photoresponse method and

indirectly measured by the capacitance method. This

comparison would be an Indicatton of the degree of accuracy

associated with the Schottky and more exact models;

however, any comparison should be made with reservation

since Goodman has indicated that there may be many

experimental errors associated with experimentally determin-

Ing Vo .

- At
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~CHAPTER VI

CURIT-T-VOLTAGE CHLRACTERISTICS OF A XETAL-

SEMICONDUTOR RECTIFYING CCONTACT

6.1 Current-Voltage Equation.

Before undertaking the development of the current-

voltage equation of a metal-semiconductor contact it would

be helpful to understand more clearly the basic mechanism

by which rectification takes place. In the absence of an

external voltage (Fig. 294d) the electrons of the metal are

in dynamic equilibrium with the conduction electrons of the

semiconductor. Under this condition the rates at which

carriers transverse the barrier are equal from either

direction and the probability of such a crossing taking

place will depend on the number of electrons having thermal

energies greater than Eb and moving in the right direction.

Furthermore, this rate of carrier transfer will be an

exponential function of the barrier height and would thus

decrease rapidly as the barrier height is increased. Since

the probability for electron transfer is the same for either

direction, one would expect no net electron current to flow

across the junction.

Next, consider the situation in which an external bias

is introduced in such a way as to make the semiconductor

!.
t.p
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positive with respect to the metal (Fg. 2.5b). This would

correspond to a reverse bias, since the effective barrier

height to electron flow from the semiconductor into the metal

has been increased. On a probability basis, the probability

of electron transfer from the metal is still governed by

exp(-Eb/KT) and must therefore remain unchanged with respect

to the equilibrium conditions On the other hand, the

probability of electron transfer from the conduction band of

the semiconductor Into the metal will be proportional to

exp[-e(V +Vr)/KTJ and must therefore be greatly reduced even

for a small amount of reverse bias (Vr). The equilibrium

condition of equal electron transfer can no longer be main-

tained and a small net current will zross the Junction. This

will be called the reverse saturation current (I ) and

represents an electron leakage current from the metal into

the semiconductor under reverse bias. Here the term

"leakage" is used to emphasize the fact that it is an

unwanted current, since ideally i should be zero for perfect
0

rectification.

Finally, consider the situation in which the polarity

of the bias voltage Is reversed, i.e., the metal is now made

positive with respect to the semiconductor. This will

correspond to a forward biased condition and is shown in

Figx 2,5a. Again equilibrium conditions cannot be maintained,

since the probability of electron transfer from the conduc-

tion band of the semiconductor to the metal is greatly

,1
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increased, i.e., it must now be proportional to
exp[-e(Vd-V3 )/KT]. tFurthermore, the rate at which electrons

flow In the opposite direction remains unchanged since this

transfer is still proportional to Sxp(-Eb!KT) and Eb

remains constant (neglecting image effects). The result of

this unbalance is a large net electron current flowing Into

the metal under the influence of a forward bias.

Thus, the character of rectification is exhibited

through the unbalanced flow of electron current under forward

and reverse bias conditions. In addition, one should note

that for a metal-(N-Type)-semiconductor contact positive

values of Va correspond to a reverse bias and negative

values of Va to a forward bias. Furthermore, the current

flowing under forward bias will be of much greater magnitude

than under reverse bias conditions.

In order to calculate an expression which can predict

the current-voltage relationship of a metal-semiconductor

contact it is necessary to assume that the actual number of

electrons constituting current flow across the contact is

only a small fraction of the total free electron population

of the semiconductor. This seems to be a reasonable assump-

tion for effective barriers, i.e., Eb>>KT, and allows one

to assume that the electron concentration of the bulk

semiconductor is constant and independent of the current

flowing in the device. Furthermore, it is possible to

I distinguish two types of models for rectification on the

II
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basis of barrier width. The most general case Is to consider

the width of the barrier within an energy Inorement of KT

near the top as being large compared with the mean free
ath* (Ae) of an electron in the semiconductor. This

distance near the top of the barrier is used because It is

necessary to compare the probability of an electron being

stopped by a normal collision process and the probability

of its reflection by the potential barrier itself. When the

width within KT of the top of the barrier is large compared

to the mean free path of an electron, the electrons crossing

the barrier can be expected to suffer many collisions before

reaching the other side and as a consequence current flow

across the barrier must be by a diffusion process. When

this width is small compared to Xe, the probability of many

collisions taking place is small and current flow can be

thought of as an emission of electrons over the barrier.
3 0

The emission model is somewhat simpler than the diffusion

model, but the diffusion model must be regarded as the most
general since Xe is on the order of 0 5 to 1o-6 cm31

causing the model to be applicable to all but the thinnest

barriers. A possible example of a thin barrier might be a

point contact device, in which case Xe could exceed the

*Xe is defined as the average distance between two

successive collisions of an electron with the lattice struc-

ture of the semiconductor.
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width of the barrier near the top.

-KUnder the assumption that diffusion theory is applicable
and that the potential within the barrier Is known from the

model developed in Chapter IV, one may calculate the

current-voltage relationship for the contact. Quantum-

mechanical effects and image force will be neglected

initially so that the current flow will be assumed to be

strictly by a diffusion process. Furthermore, since the

current in the barrier region depends on the local field as

well as the local concentration gradient, a calculation of

the current-voltage relation for a N-Type material must

begin from the general diffusion equation of the form
3 2

S D e Fdx eE (x]
d x + e n (6.1.1)

The diffusion of carriers against a retarding electric

field will occur across the barrier if a difference in

electron density occurs, and with the aid of Fig, 6.1 this

difference in respective densities can be easily shown. The

minimum value of electron concentration will ocur at the

junction, i.e.,

n(O) = yNdexp(-eVd/KT) (6.1.2)

One should note that this density will be independent ofK the applied voltage since the electron concentration in the

ii
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metal and the barrier height Eb have constant values

T(neglecting image effects). Furthermore, n(x) will increase

as x increases until it reaches a maximum at x=W whereI
n(W) = no = YNd (6.1.3)

and may also be regarded as constant since it was originally

assumed that the equilibrium concentration of electrons

in the bulk semiconductor is not appreciably disturbed by

current flow in the device. Thus, a difference in electron

densities between opposite sides of the barrier is apparent

and one can expect a diffusion of electrons in the direction

of the metal through the potential barrier. Electron

diffusion constitutes an electron current (I n) and if one

adopts the convention that positive current flows in the

negative x direction the calculation of In may procee .. as

follows:

(1) Equation 6.1.1 is multiplied by exp[-eo'(x)/KT ]

and upon substitution of E(x)=-do'(x)/dx yields

nexp[-e'(x)/KT] = eADnL-
ri expl-n[ dxx

L (6.1.4)

e . d '(x)
KT dx n(x]exp[-eP'(x)/KTI

(2) Noting that

L.
I . .
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d exp[-e '(x)/KT] =

(6.1.5)

e, d F ' •exp[-eP'(x)/KT]-- dx

the right side of Eq. 6.144 may be expressed in terms of a

derivative, or

In e xp[- eB t(x)/KT] =

( (6.1.6)

eAD t
eAn rx n(x) exp[-eP',.(x)/KT]) 616

(3) Multiplying both sides of Eq. 6.1.6 by dx and

integrating over the depletion width yields

Inexp[-eP'(x)/KT] 6

0 (6.1 .7)

eADn(n(x)exp[-e ' (x)/KTI) I

(h) The right side of Eq. 6.1.7 may be evaluated by

noting the following boundary conditions:

(a) n(W)exp[-eP'(w)/KT] = YNdexp[-e(Vd-Vj)/KT] (6.1.8)

1,
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00 ( n(O)ex[-eO'io1/'R] = yNdexp[-eVd/KT] (6.1.9)

(5) Finally, i may be regarded as a constant if

.op n

recombiration is neglected in the depletion region. Thus,

I may be expressed as

eAD yN e&p[-eV,/KT][exp(eV /KT) - 1]

in (6.1.1o)

foxP[-eg 2 (x)/KT]dx

Enuation 6.1.10 takes the form of the familiar diode

equation and may be rewritten in a shortened form as

fn~l ws:

Io[eXp(eV /KT)- 1] (6.1.11)

where

1I = eAD nyN d exp(-eVd!KT (6 ,. 2
(6.1 .12)

fxp[-eo '(x)/KT])

0

Upon closer examination of the integral which appears in

OR
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Eq. 6.i.12, one finds that after the variable transformation

used in Chapter IV (Eq.'s 4.25 and 4.26) I may be expressed0

as

Io =e AD yN d3'1(KTC )4F
(6.1.13)

exv( -eV./KT) e-ydu)

and the integral could be evaluated by using numerical

technioues similar to those used to evaluate y. This is

pointed out because a numerical evaluation of fe du would

be a simple matter of Inserting several statements Into the

computer program which has already been used to calculate

the normalized electron potential and space charge density

(Appendix F). However, since each evaluation of jfydu would

depend on the initial value of y (a function of bias) and

the degree of ionization (Eq. D.7), one must conclude that

Eq. 6.1.13, and thus Eq. 6.1.12 already appear in their

most general form.

Thus, if one neglects quantum-mechanical and image

effects, the i-V characteristic may be stated in its most

general form as follows:

I= I oexp(eV /KT) - 1]

where I0 Is given by either Eq. 6.1.13 (in normalized form)I0
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or by Eq. 6.1.12. Inherent in Eq. 6.1.14 is the assumption

T that the magnitude and polarity of Va Is consistent with the

assumptions on which the diffusion model is based.T

6.2 Influence of Tunneling and Qaantum-hechanical

Reflection on the I-V Characteristic.

In the previous section quantum-mechanical effects

were neglected in forming the diffusion model for current

transport at a metal-semiconductor contact. Clearly, the

discussion as presented in Section 2.6 would Indicate that

the effects of tunneling and QR may exert considerable

influence on the overall I-V characteristic of the contact.

The effects of tunneling and QMR can be incorporated

into the diffusior model by introducing a factor fq which

represents the ratio of total current flow (It ) predicted

considering quantum-mechanical effects to the diffusive

current flow neglecting these effects (In). Stated

mathematically,

i =f I (6.2.1)qn

Furthermore, a numerical value for fq may be calculated by

averaging the QMTC over the complete kinetic energy spectrum

associated with the electrons incident on the potential

barrier (corrected for image effects). If the kinetic

energy associated with an incident electron is denoted by
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Ee and it is assumed that Ee is governed by a Maxwellian

distribution9 then fq may be computed as follows:

f- ~L (QMTC)exp(-Ee/KT)dEe (6.2.2)
q I T'n

Crowell and Sze33 have used numerical techniques to

compute f. for Au-GaAs, Au-Ge, and Au-Si N-Type contacts

as a function of the electric field at the contact (E.)

for selected temperatures** A plot of f, versus Eo is

shown in Fig. 6,2 using the curves of the QMTG shown in

F for an Au-GaAs (N-Type) contact for selected

temDreratures, For this particular contact quantum-

mechanical effects may be seen to exert considerable

influence on the total current flow as predicted by the

diffusion model since tunneling becomes excessive for

electric fields exceeding 105 v/cm. Similar results are

found for the Au-SI contact over the same range of Eo;

however, for the Au-Ge contact fq approaches a very low

value at Eo>!05 v/cm (f e0.01). This would indicate that

reflection predominates in the germanium contact at relatively

high electric fields.

An alternate approach to calculating fq for a contact

*They k1ve assumed the approximate form of El asb

e!ir
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FIGURE 6.2: Quantum-Mechanical Transmission Coefficient, fq,

Averaged over a Maxwellian Distribution of Electrons

incident on the Potential Energy Maximum of an Au-GaAs

(N-Type) Contact as a Function of the Electric Field

(E0 ) for Selected Temperatures, Assuming a Smooth

Merging of the Conduation Band Edge In the Semicon-

ductor into the Conduction Band Edge of the Metal.
34
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barrier would be to adopt the approximate expr',ssions given

19
by Kemble (Appendix C) for the QMWC and average these

approximate expressions assuming a Maxwellian distribution

in electron energy. However, a calculation cf this type

would also require numerical techniques because of the

complexity of the expressions for the QMTC.

Still another approach Is available if one is willing

to approximate a QMTC plot by simple analytic expressions

in order to allow the average value of fq to appear in

closed form. In order to illustrate this technique the

QMTC will be approximated by a single straight line whose

slope has been adjusted to obtain the best agreement possible.

A plot of this form is shown in Fig. 6.3. This would

certainly represent a crude approximation, but Increased

accuracy would be obtained by using additional straight

lines, higher order analytic expressions, or a combination

of both. Using the single straight line approximation the

calculation of fq would proceed as follows:

(1)T 1 ITC)exp(FKT)dE (6.2.3)

(2) In terms of the straight line approximation for

the QMTC, fq may be expressed as

q..
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QMTC

---Approximation

1.0

//

Actual Q 'TC

I Energy (ev)
E
r

(Top of Barrier)

0 ,I

' e '

QMTC= 1 e <E En
ir

1 1 E>Ee r
FIUR-E 6,3: Single Straight Line Approximation for the QMTC.

_____________________________________
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-El r
I -T - -rfr+ Ee

f =1TJ(o)exp(-Ee/KT)dEe +KTJE Erexp(

-0 0. -E1  (6.2.4 )

-E /KT ) dE + K(1)exp(-E/KT)dEe
e ee e

Er

(3) Integralion with resnect to Ee and substitution of

the limits yields

KT exp(E!/KT) - exp(-Er/KT (6.2,5)q E E1 + E r  1

(4) Since plots of the QMTC reveal that Er>E1, a

reasonable approximatio n would be

f = KTexp(E,/KT) (6.2.6)

q E +" 1 r

Thus, using this form of approximation for the Q3,1TC, fq

may be expressed in terms of the end-point energies Er

and E1 . One should also note that these end-point energies

a-e rather strong functions of E o, and thus a function of01
the applied bias. In addition, if more accurate approximations

are used for the QMTC then q would become a more complicated

expression involving more characteristic energies.

6.? Infl2nce of Image Effects on the I-V Characteristic.

The sample calculation presented at the end of Chapter

IV indicated that the normalized correction to the barrier

F
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T height due to image effects (yb) was quite small in com-

oarlson to the uncorrected, normalized barrier height at

the contact (y ). However, the importance of image effects
0

should not be overlooked since a small change In the barrier

height has significant influence on the QMITC. This can be

seen from Fig. 2,9 in which the QMTC changed significantly

for small changes in the kinetic energy associated with an

incident electron when the kinetic energy is referenced to

the top of the barrier corrected for image effects.

Furthermore, yt is voltage dependent so that greater influ-

ence may be expected at higher bias voltages. As it turns

out yL exerts greater influence at higher reverse bias,

but due to large currents flowing under forward bias

e Vf/KT
(e e >i) the Influence of yL may go completely un-

noticed.

In order to Include the Influence of image effects in

the I-V characteristic predicted by the diffusion model

the original assumption that n(0) was Independent of bias

(assuming Eb was independent of bias, Eq, 6.1.12) must be

modified to include the influence of image effects. This

can be done by replacing Vd by an effective diffusion

potential (Vdso) which includes image effects. Stated

mathematically,

ds(6..1)

?A
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in which ab(Va)=E'(Va)/e and represents the voltage dependent

reduction in the diffusion potential due to image effects.

Furthermore, ab(Va) may be written in the formI
ab(Va) = aboa% (6.3.2)

P in which abo is independent of bias voltage and a contains

the voltage dependence. Expressions for abo and at may be

*found by writing Eq. 3.3.4 in the form*

a(V = d (V V) (6.3.3)
b a( n2-csE) 2P d a

so that abo may be expressed as

= 8.ed d,)2ET (6.3.4)

and

ab(Va) a( - Va/Vd)* (6.3.5)

It should also be noted that the inclusion of image

effects will alter the integral expression in Eq. 6.1.12

since OI(x) must now be replaced by the total electron

*Recalling that Va=-gr for reverse bas and VaV f

for small forward bias.
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pobential O(x) where p(x) is given by

i!  e

O(x) = '(x) - e (x>O) (6.3.6)

6.4 Complete I-V Characteristic for a Metal-

Semiconductor Contact.

The complete expression for the I-V characteristic for

* an idealized metal-semiconductor contact, assuming the

diffusion model is applicable, may be summarized as

* -follows:

I= Iexp(-eVd/KT)'exp(eVa - 1] (6.4.1)

whereI]
= eADnY Ndf exp( -aboa/KT)

Jexp[-e.(x)]dx

0 L]

f = T(Qr'iT\-)exp(-Ec/KT)dEe (6.4.3)

= V (6.4.4)

.iS I
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(1 -V/Vd)' , (6.4.5)

I

_ _ e
O(x) = P'(x) - e , (6.4.6)

andI
O'(x) is the solution to Eq. 4.24 (6.4.7)

6.5 Breakdown Mechanisms for a Metal-Semiconductor

Contact.

At large applications of reverse bias, junction

breakdown may occur by anyone of the following mechanisms:

(1) The barrier becomes so thin and the electric

field so large that current flow due to tunneling may become

excessive.

(2) Electrons can travel to the conduction band by

tunneling from deep lying traps or directly from the valence

band (Zener breakdown).

(3) The electron velocity becomes so large that

electron-hole pairs can be generated through collisions. These

in turn are again accelerated by the electric field so that

additional electron-hole pairs are created. As a consequence

A'

VIL
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iumcltion bz.edo'n by the Zener effect Is less "11_ly
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This is due to thes fact that cm-ent flow~ In the metal-

seicanuctor device Is chlefly, if not excl-usively, by

majority ca=rIes. Since i-X e Is typi caly much less tban

(the or ginwln assu ption on ihich the appr6zim-tion that

rO is based) tunneling by the Zener zechannls is greatly

reduced for a =ajozIty carrIer device.

Jumction breakdown by the avalanche mechanism Is a'lso

of rime InDortance for a metal-semiconductor contact under

large reverse bias. At very large reverse biases It may

happen that an electron emitted over the barrier from the

metal into the semiconductor may gain more energy due to

the high electric field during collisions that it loses

because of a collision. Thus, the kinetic energy of the

electron will continue to increase until it exceeds E
g

At this point a collision can generate electron-hole pairs,

7 which in turn may produce additional electron-hole pairs

I'f
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wn hich V 1s the reversoe 7oltage at-Mch facor.in

occurs and R is a relativeiy large (5 to 6) constant depend'ent

on the wart1culJ.ar semiconducting material. 3 5

4.6 Quaiitative Comvrisons Between the Theoretical

I-V Characteristic and ZEperimenta! Iseasurements.

The complete theoretical expression for the I-V character-

istic was summarized in Section 6.4 for an idealized metal-

semiconductor contact. Although the complete expression
would be quite difficult to evaluate, it could conceivably

be done and result in a theoretical plot of the I-V

characteristic by assuming the necessary constants and

evaluating the various expressions by appropriate numerical
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p~pr*ta2lar application it is convenient to plot ln(-m,)

versms v u sing Eq. 6.4.1. In(!,) beco=,s

w~hich un-der forward bl.as conditions m~ay be written as

= 1nFI'e= In7I /xn! e (6.6.2)]

since eXp(eVf/KT) >I. Thus, If ln(It) is plotted aizaLst

Vf a straight line should result with slope

M., e/.XT (6.6.3)

I -Experimentally it is found that for this particular contact
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FIGURE 6.4: Current-Voltage Characteristic for a Pt-Si (N-Type)

Contact, 6 Diam.=1.54(10 - 2) cm.
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that

i in hchi5=1.02. MIis sna-7 deviation from the slope as

predicted by Sq_ 6.6.3 can be attrbuted to the na-ideal

nature of the contact, or more specitf ialy to the presence

of' a thIn interfaclal layer of foreign zate=lal mulior

nonunforn contat between the metal and seziconducorA,-

in general, 6 is usually Included In the expresslon for the

I-V characteristic to account for the nonideal. nature of the

contact and can be ex Pected to be slightly different for

each device, If a Is included, it ay be determined by

the following relation:

- Ke s::ficlently larie) (6.6.5)
KT nn.Ip( 1  

A

The deviation from the constant slope (mv ) at higher

current [n(It)>o 4 amps] can be attributed to the series

resistance associated with the bulk semiconductor. Also,

by examining Eq. 6.6.2 a means of determining Ilexp(-eVd/KT)

becomes apparent. This parameter may be determined by an

extrapolation of the in(It ) versus Vf curve until inter-

section occurs at the In(It) axis (Vf=O) as shown in

Fih. 6.d.
I ~The exponential dependence of I~exp(-eVd/KT) on the-

[
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eqtilbr-1-n diffision potential 'V) can be shown by a plot

of the type shown in Fl. 6.i. Eere ln(I.e-eVd/KT) is

plotted against Vd for seversl netsl-Si (!N-Type) contacts,

showing a constant slow of approxirtely e/. Although

exact areement is not shown, the d&vlation can be attributed
46 19

to inaccuracies in the rea=-rer-ent of Vd*

{ Te terrerature de!endence of Iexp(-eVd!T) can be

shown by a plot of the t7je shown In F1. 6,6. Here

1n(T1Ax- e V d / C ) versus 1/T is plotted under forgard bias

for a Au-Si (N-Type) contact with evd-=0.0 8 . The slope Is

constant and equal to

e(Vd - YV) = 0.799 ev (6.6.6)

a is usually referred to as the thermal activation energy

for the contactw

The voltage dependence of the I-V characteristic at

high reverse bias is shown by Here ln(I ) versus

Ilf= Iorexp(y b (6.6.7)

and yL is given by Eq. 4.47. Ir is interpreted as the

effective reverse current flowing in this region (large

reverse bias) of operation and Ior Is the effective satura-

42
tion value of Ir . For silicon 61=11.7C o , and. good agreement

is shown between the theoretical value predicted by image

effects and the data shown in Pie. 6.Z.
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CHAPTER VII

SUEl.XARY, CONCLUSIONS AND RECONF-ENDATIONS

FOR FURTHER STUDY

This study originated as an effort to answer the

question of why the experimental method of measuring capaci-

tance as a function of reverse bias could be used to

accurately predict the doping concentration and yet could

not be expected to give a reliable measure of the eq librium

diffusion potential, even though both quantities resulted

from an interpretation of the same data. Since the capacl-

tince technique is based on the Schottky model for the

contact, the most logical approach to explaining this

apparent inconsistency was to examine more closely the

theoretical expression for junction capactiance, :,r more

basically the Schottky model itself, while paying particular

attention to any approximations which could limit accuracy.

The Schottky model is based on the assumption that the

space charge associated with the depletion region formed

at a metal-semiconductor contact is constant and due

entirely to the unifovm and complete ionization of donor

impurities within the depletion region. Outside the

depletion region charge compensation due to the presence of

free electrons is complete so that the net space charge Is

,
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zero. A =ore accurate model for smace charge in the

depletion region is developed in Chapter IV which considers

the possibility of Incomplete and nonuniform donor ioniza-

tlon and the vartial compensation to positive space charge

due tc the presence of free electrons in the immediate

vicinity of the depletion region edge. Once the space

charge density is . own as a function of distance in the

depletion region, Poisson's equation (this study assumes a

one-dimensional application) can be used to solve for

expressions for the electric field and potential variation

within this region. A comparison between the solutiojs

based on both models shows that the Schottky model is quite

accurate in the region near the contact; however, there may

be sinificant error in the region near the depletion region

edge. Furthermore, this error increases as the degree of

ionization decreases.

Even though there may be large differences between the

electric field and potential plots for the two models on a

point by point basis, a comparison between the two space

charge density plots reveals quite clearly why the Schottky

model can give accurate results for certain applications. A

comparison of this type shows that the Schottky model

represents a fairly accurate estimate for the effective

space charge density since the error predicted by the more

exact model on a point by point basis is compensating and the

overall difference between the two models can be quite small,

!.
L
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If the degree of ionization is fairly close to unity, This

is equivalent to saying that the areas under the two space

charge density plots (Fig.'s 4,2b and 4.3b) are approximately

the same.

In Chapter V the differential capacitance technique for

measuring the equilibrium diffusion potential was examined

In detail* Using the expressions for junction capacitance

(C -2) based on both mcdels the diffusion potential and

intercept voltage are related as follows:

1d = V°  (Schottky Model) (7.1)

Vd= Vo + !(y-lny) (More Exact Model) (7.2)

Comparing these two expressions one can expect the diffusion

potential predicted by Eq. 7.1 to be in error by at least

KT/e (using Eq. 7.2 with y=l) and this error will increase

as the degree of ionization decreases. For y=0.05 the

error is approximately 3(KT/e); however, this is not a true

representation of the actual error since the temperature must

also decrease as y decreases,

Another interpretation of the data from a capacitance

(C-2 versus reverse bias voltage plot results in an

expression for the doping concentration. In Chapter V

L
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Nd was shown to be proportional to the slope and the

predicted slopes from both models were identical fcr suf-

ficient reverse bias (y >4). The theoretical expression for!0
Nd for both models is given byFd

1 2
N. (y >4) (7.3)

C eEs d(C- 2

dVr

and is known to agree quite well with results obtained by

other means of measuring Nd . Why the apparent inconsistency

between Nd and Vd using the differential capacitance method

based on the Schottky model? The inaccurate measurement of

Vd by interpreting V as equal to Vo is not the fault of thed

model, but results from a false interpretation of V0 * The

experimental method of determining V0 is by extrapolating a

Cj 2 versus Vr plot, which is linear as shown in Eq, 7,3,

to a point where it intersects the Vr axis, i~e., Vo* This

straight line passes through a region of small reverse

bias and the eventual value of V0 falls in the region of

negative Vr (see Fig.-5°4a). The apparent assumption is that

the capacitance (C- 2 ) remains linear in this region and

this is contrary to fact as shown In Fig . . The non-

linear variation in capacitance (Cj2) at small values of

reverse bias can be explained quite easily by examining the

term corresponding to the free electron concentration in

Eq. 4.23, or

All
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n(x) n exp(-y) (O<x<W) (7.4)

Under a fairly large reverse bias yo is large and y is

jincreased so that n(x)O, which is consistent with the
assumption on which the Schottky model is based; however,

I as Vr is decreased, yo becomes smaller and eventually a

point is reached at which one may no longer neglect theI
free electron population at the depletion region edge.

This value of y0 can be interpreted from the capacitance-2

(C2 ) versus voltage plot as shown in Fig. 5.5. Since the

capacitance (C -2) becomes nonlinear for all values of 0

less than four (Vd+VreO.104 volts) and all values of y,

then one may interpret this as the point at which the

Schottky model assumption that the depletion region is free

of electrons is no longer valid. There is a small variation

in this point due to y, which is consistent with this line

of reasoning since n. in Eq. 7.4 is a function of y, i.e.,

nc=yNd. Thus, if y decreases the free electron population

at the depletion region edge will also decrease and the

cut off value of yo can be expected to increase. This is

shown quite clearly in Fig, 595.

Since the interpretation of V0 is based on the intercept

value of a linear plot, the value of V may be in error and

the plot can still predict the correct slope. This is

pointed out by F in which the Schottky and more exact

IL
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models predi--t the same slope for y >4 , but there is signif-

icant difference in 'the vralues predicted for V0. Furthermore,j

the slope i.s Independent of y (y0 >4i) and the intercept value

of V 0 is not. The reason is again due to 'the correct inter-

j pretation of the components of space charge for different

desrrees of ior4 zation. If all donor atoms are assumed t1o be

ionized and y >4J, then the slopes of 'the Schottky and more
0

7x 1 model are In complete agreement; however, If' y<1 then

the positive space charge furnished by positive donor sites

4-sreduced and one would expect an increasing disagreement

t"~we~nthe two models for space charge density as y decreases.

Tht~is shown in FiS.'s 4.2b and 4.1b. Furthermore, since

thc ef"fective depletion width is reduced for smaller values

of v one would expect larger valuies of capacitance (assuaming

a constant value of bias) for lower values of y (see Fi. .5)

Since a lo)wer value of y Implies a larger valuje of capacitance

for the same bias voltage, one would also~ expect the intercept

II-211e of V (based on a linear estrapolation) to be y depen-

do-t, with V, i-ncreasing as y~ decreases. This is also evident

roi ml- 5.5.

The agreement between the two models in predicting Nd

for y 0 > stemns from the -fact that the two models are comn-

pleelyr equ~valent in this range of bias with regard to

ca-jocitance. The voltage dependence of the junction capacl-

L~ tarp~e arises f-rom the change In stored chargZe within the

dern!-tion region with and incremental change (C =dQ/dV) in the
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applied bias and this addition and subtraction of charge

will be independent of the initial stored charge (pro-

portional to y) as long as the depletion region is free of

charge compensating electrons. For the regior of bias

I voltage in which the free electron population at the

depletion region edge can no longer be neglected (yo<4), the

Icange In capacitance C -2 ) associated with a change in

bias is no longer constant since the density of compensat-

ing electrons varies exponentially (Eq. 7.3). Furthermore,

the electron population is dependent on y so that the slope

can be expected to be altered by an additive constant due to

the influence of y. In addition, the change in capacitance

-2(Cj" ) caused by a change in y will eventually reverse

itself in this region, i.e., higher values of y will

produce lower values of capacitance (assuming the same value

of bias) since the electron population at low values of y

is more strongly influenced by y than by y (y approaches a

minimum value which is proportional to Vd). The above

conclusions are illustrated quite well in Fig. 5.x5.

In conclusion, the inaccuracy introduced by using

Eq. 7.1 to interpret the diffusion potential from a

capacitance (C- 2 ) versus voltage plot is due to the mis-

representation of the Schottky model. The Schottky model

assumes that the depletion region is free of electrons and

YO has a minimum value for compliance with this assumption.

Since capacitance (Cj 2) is a nonlinear function of biasSic



130
below this minimum, a linear extrapolation for V0 produces

significant error n Vd . However, if Eq. 7.2 is used to

interpret Vo, then one may expect an accurate value for the

equilibrium diffusion potential.

p The influence of image effects on the accuracy of

Eq. 7.2 was also considered in Chapter V and the conclusion

drawn that image effects may be safely neglected for this

particular application. This is due to the fact that the

reduction in barrier height caused by image effects is quite

small in comparison to the barrier height (neglecting image

effects) at the contact, i.e., yomy§yo at all values of

bias even though y' increases with bias.

This study has also considered a theoretical develop-

ment of the current-voltage characteristic of an idealized

contact based on a diffusion model. Although justification

for the accuracy of the I-V model developed on a quantitative

basis has not been attempted, a qualitative comparison

between the model and experimental measurements have

produced favorable results. The model is able to predict

the correct slope for the forward characteristic within a

small multiplicative constant and this deviation can be

attributed to the nonideal nature of the contact. Further-

more, the forward characteristic shows the correct temperature

dependence and the reverse saturation current agrees well

with the experimentally observed exponential dependence on

the equilibrium diffusion potential. Also, the model is

I
1.
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able to predict a voltage dependence of the reverse

characteristic which agrees well with experiment. This

dependence arises from the increasing importance of Image

effects at large reverse biases. The theoretical model

predicts a high probability of breakdown due to tunneling

which is also consistent with exnerimental results. In

Ishort, although the theoretical I-V model would require
fairly sophisticated numerical techniques for evaluation,

it should agree quite well with experimental results on a

quantitative basis.

Since the results of this study are quite conclusive

with respect to the use of the differential capacitance

technique for determining the diffusion potential and

doping concentration, this method should compare favorably

with values of Vd measured by the photoresponse technique.

Thus, an experimental study of this type would warrant

consideration. Also, it would be interesting, although

the practicality may be questioned, to pursue a complete

numerical evaluation of the theoretical current-voltage

-{ characteristic for the purpose of compar~ng the results with

experimental measurements.
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AP. DI A

.EE F31T .0MEL OF A MAM-SEICNDUCTOR

RECTIFfI!ZG CWTACT

The Mott node! 7 for a r-etal-(N-Type)-semiconductor

contact wiil not be discussed in as much detail a, the

Schottky and Belthe models since its application Is An1ited

to only a very thin barrier. Furtherzore, It represents a

szecial case of the Schottky =odel 'Whch Is dIscussed In

Chapter 171. One model and equations based on the wodel

are Included only for completeness, although its Irportance

shoui ziolt be overlooked since It wias one of the first

successful models which could predict and nathenatically

account for the rect.-izat-on 'henomena obse---ved at a metal-

ss-co.nductor cont-act.

The Potential distribution for the ott barrier is

shown in Fiz. A,'-- Tne barrIer is defined as a barrier

whLch extends througjout the N-Type semiconductor. or in

other words joins both =etal contacts of the device. Th-.e

left--h. contact is resarded as ohmic since the barrier

at -= offers very little oposItion to current flow. The

basic assumption of the ?.ott =odel Is that due to the nature

of the barrier too few impurities of the semiconductor are

Ionized to disturb the electric field In the semiconductor.

ii
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Since the charge associated with the system must be assumed

by the metal surfaces, the electric field is constant in the

semiconductor and the votential function is thus linear.

Stated mathematically, Poisson's equation takes the form

d V (A.!)

I
since there Is no space charge associated with the semnl

conductor. Upon integratlen and evaluation at the boundaries

one obtains an expression for the electric field, or

dV fV d - v a,
d- d a (A.2)

A second Lntegration yields an ezpression for the potential

distribution of the semiconductor, or

(X)- ,, + C (A.3)

iln which C -y be evalvated by noting that

V(o) = -Vb

Thus, the potential is linear and may be expressed as

"(x) d Vax (A.5)

= - -- -
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one could also develop an expression for capacitance

and the current-voltage characteristic based on this model,

but because of Its limited applicability this will not be

undertaken.

.1
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APPENDIX B

SBETHE IODEL OF A RETP-SEEICONDUCTOR

RECTIFYING CONTACT

'The Bethe model1 0 for a metal-semiccnductor

contact Is shown i1 P15. B.l The assumptions used to model

the contact are identical to those of the Schottky model

with the additional assumption that the interface is an

insulating layer of thickness r, separating the metal from

the semiconductor. The model is particularly applicable to

a semiconducting oxide layer, which may have been deliberately

applied to the semiconductor before forming the metal contact,

or may have resulted from the process of applying the metal

contact. In either case the semiconducting oxide forms a

thin insulating layer and the model assumes the transition

from the oxide to the pure semiconductor is abrupt,

Under the above assumptions Poisson's equation takes

the following form for a planar contact:

dzV(x) 0 (O<x<r) (B.1)

for the region of the insulator, and
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FIGURE B.1: Bethe Model for a Metal-Semi1conductor Rectifying

Contact.
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d2V(x) - - ed (r<x<W) (B.2)
dxe E: s

Ifor the region of the pure semiconductor with completely

ionized donor concentration Nd. The potential within the

barrier may be found by solution of Poisson's equAtion,

j subject to the following boundary conditions:

(1) V(W) = Vd + Vr  (B.3)

(2) V(o) = 0 (B.4)

(3) dV(x) 0 at x=W (B.5)
dx

with the potential and electric field continuous at x=r.

The solution may be written aE

V(x) e (W-r)x (O<x<r) (B.6)
s

V(x) fq w'r-Wxo (r<x<w) (B.7)

The Bethe model gives the following result for the barrier

width W:

4 5;
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W2 = 2 + d(Vd+r B8

r eNd d (B 8

Since the Bethe model neglects electrons and holes as part

of the space charge of the barrier, the charge per unit area

Is given by

Q(W+r) = eNd(W-r) (B.9)

giving the following result for barrier capacitance,

E: C

C s s (B.10)
j W - 2 + 2eTd

One should note that the conditions of the problem as stated

in Poisson's equation make the solutions physically valid

only for values of the barrier width equal to, or greater

than the thickness of the Insulating layer,

As a means of comparing the Bethe and Schottky models

Ithe juncticn capacitance versus reverse bias voltage is

shown in Fig. B,2* The extrapolation indicated in Fig. B.2

illustrates how one may theoretically estimate the thickness

v of the insulating layer through the intercept on the voltage

". axis. For an applied forward bias voltage exceeding the

rV equilibrium diffusion potential (Vd), the barrier should

behave as an ordinary capacitance with a dielectric layer

I of thickness r. This would correspond to the region of the

I
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FIGURE B.2s Comparison of the Bethe and Schottky Model

-22
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horizontal dashed line in Fig, B.2. However, the diffusion

of charge carriers into and beyond the barrier does not

attain a steady state condition until a certain time has

elapsed and this time may be on the order of time needed to

charge the barrier. This would have the effect of either

causing the measured capacitance to fall below or above the

z constant value indicated in Fixo B*2.

i

4-

7

1
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APPENDIX C

AN APPROXIFATION FOR THE QMTC OF A

PARABOLIC POTENTIAL BARRIER

Kemble1 9 has approximated the transmission coefficient

(QN'IC) for electrons of momentum s incident on a parabolic

potential barrier with the presence of an image force and

with reference to Fig. C.1 his results are as follows:

Case I: QMTC = 1 + 1 (E'< m ) (C.1)
1 +exp(2p n

Case II: QMTC ( > exp(-2p) (En m) (C.2)

Case III: Q',TC = m3)

where

I--j 2s n (c.4)
p ~1 E

= (r[ - (x)1) (c.5)

Si ,
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Case I, Sn< =, is shown In .!-. Ci; for Case I, Is and

12 ara he corplex =oots of

I
X - -= (C.7)

For Case ill, 11=1 2 and (z)= m so th-t be g ecor-s

equal to j. Cne sho-uld note t.at for this application E.

Is eased frm the top of the barrler wcthout correctirn

for lm'---e force and also 'hat 6(x) contatI s the co-recti7e

te- for ime force loxering, I.e.,

(( - "(() (c.8)

5- 5rr
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APPMDI X D

.A.31? AL CoyiJTS C.

DEG- O? I ONIZA2ION(

in view of the calculations of Chapter IV, the

- .ortance of "the degree of iouza ion of donor i=lr rites

has becoe apparent in dete-miing the norlized elect-.n

potential and space charge density as predicted by the more

exact nedel fo- the metal-semiconductor contact

4. and-4.3). In addition the results of Chapter V

(Fig. 5.4 and Eq. 5.1?) would Iul!cate that y is of prime

lportance in determInlng the equilibrium diffusion potential

(Vd ) by the caneltance method. In light of these results,

the degree of ionizatlon becomes an inportant parameter for

the metal-semiconductor contact and would warrant further

discussion.

I Equation 4,14 defines y as the ratio of the number of

I free electrons furnished by Ionized donor impurities (n.)

to the total Impurity density (Nd) In the bulk semiconductor.

In order to gain a better perspective of the dependence of

y with respect to temperature and material properties one

I can reexamine Eq. 4.15, or

4 -- -

"_2._
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emp(E r I d' (DA
- ~ 2y 2

Equation D.1 can be ar -rane to for= a quadratic equatlon

ZY , -of C 0

I where

= 2exp(E_ /' ?) (D.3)

b N c d  (D.4)

UsIng the standard quadratic formula, the principal value

of y may be expressed as follows:

4.N d )exp/ ( /KT/)

The effective density of states for the conduction band

(I) may be expressed as
4 3

3/2
14 F2 (Tr*KT)

= e (D.6)

'I Ii

I...
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and upon substitut-on Into Ea. D-5, y becoe ]

"- °(E1/K) 3tD.2)

N 1leexp( OKT)

F L _3
t Althoug 3 Eq. D.7 is a fairly complicated expression, it

allows one to calculate y for a particular device If Nd,

T. rn, and E1 are !own. it should be noted that, in

--neral, when a part!cular semiconductor material is

specified Ei , N., and re are 1mownk so that y is essentially

- a fun-ction of temDerature.

Since a quantitative evaluation of y would make it

T necessary for one to assume a particular izaterial, dopant,

doping density and temperature, no general conclusions could

lbe ade from takirn;- %his aoroach. However, as an alternate

approach, one could make the foll o wing qualitative observa-

tions by examining Eq. D.7:

(1) Since (Ej/KT) appears as the argument of an

exponential, it should be regarded as the most influencial

factor in determining y. In addition, since Ei is a constant

for a specific material, one would expect y to be a strong

function of temperature. If one assumes a specific tempera-

ture, then y will be strongly influenced by the ioniza-

tion energy E1. As an illustrative example, it could be

shown that at room temperature using the normal dopants

!I.

--- 6it1
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(P, As, and Sb) to produce N-Type silicon and ger--zan uLm,

j essentially all i--purities will be Icnized. This is due to

the relailvely low ionization energies associated vith these

dozants, ranging from 0.001 to 0.035 ev. However, If one

considers P-Type SIC using Al doping, Ej 0.25 ev4 5 and

ionIzation of impurities Is relative.y Incomplete at room

ftempterature.
(2) The doping densIty (Nd ) and the effecIve electron

-ass (r,) also influence the character of y, although this

influence nay go unnoticed because of the importance of EE

and T. However, one nay draw the general conclusion that

f y is proportional to the effective mass and inversely

proportional to the doping concentration,

|I

i-
-, ,-
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I *1
APPNDIX E

VERIFICATION OF EQUATION 4.32 AS TE

SOLUTION OF EQUATIcim 4.27

In order to show that Eq. 4.32 is a solution of Eqc,

4.27 it must be shown that Eq. 4.32 satisf!es the differ-

ent.aJ equatlcn (Eq. 4.27) and meetste boundary co dition

of Eq. 4.30. This resul.t can be shown quite easily by

performng the following differentiations:

1) _ = e - - y()v) (E.2)

(2) ye --y.

(3) u- (B.3)

- (1n[ye + 1 - y] + e-

Upon substitution of E.2 and E.3 into E.1 one obtains

L

F
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S-ye (E.4)

1 + (1/y-1)e-ye

whieh is identical to Eq. 4.27. Thus, Eq. 4.32 satisfies

the differential equation.

Next, considering the boundary condition:t
du

and

L uj=o = -r2[ln(ye°+I- y) + ye - y] (E.6)

or
I

Ldu y=O = -vrfjn(1) + y -1 0 (E.7)

so that Eq. 4.32 satisfies the boundary condition of Eq.

4.30. Thus, since Eq. 4.32 meets both requirements as

stated above it must be considered a valid solution to

Eq, 4.27 subject to the boundary condition of Eq. 4.30.

g .e ,
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APPEMDIX F

THE RJNGE-1kTrTA METHOD FOR

- NUMERICAL INTEGRATION

The solution of Eq. 4.32 is accomplished by a numerical

T integration employing the Runge-Kutta technique. in general,

this technique takes the interval (e ,s+l) and breaks It

T into two or more subintervals. The integral of the function

f(d,A) over the whole interval is then eslculated as the

~sum of the ntegrals over the subintervals. The function Is
taken to be constant over each subinterval and by judicious

choice of the points at which the function is evaluated a

_ low truncation error can be obtained. In addition, when

using the Runge-Kutta method only one initial point (oa o 0 )

is needed for the iteration process to begin. The chief

disadvantage of this method is that it requires several

evaluations of f(O,A) for each point of integration which

makes it somewhat slower than other methods.

The specific Ru-nge-Kutta method used for the solution

of this problem is of order four, or the interval (n) is

divided into four subintervals. The Integration is then

*given by the following system of equations:

Il

I.|
- -C * ~- " * ,-*.**~
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0 = lf(lnA n ) (F.) ]

S= L + ai!,A +  (F.2)

I

I a= -f(fl, A + I(F3)
2 '2' ni 20 0+ 0211!

1. fl f(8 n + n  1 + 1 + ) (F.4)

S 3 n 30 0 311 322

An - (al 0 + bl + cl 2 + dl) (F.5)

Although a large number of parameters appear in Eq.'s F.1

through F.5 they may be determined, at least in part, by

equating Eq. F.5 to the Taylor-series expansion of A n+1

about the point (8n~hn). This can be done so as to achieve
agreement through terms in 0L4 , yielding solutions that have

an error of approximately (n5 ).

One possible solution is

*s



158

i0 =nf (Sn n) (F.6)

f I1 = nf(e +0/2,,, +0n/2) (F.T) :
U 1n n

12 =f(e n + n/2,h n + n/2) (F.8)

n n

S3 = flf(en 'n 12) (F.9)

1/6(1 + 21 212 + I1
where dA/de=f(eA) with the initial starting point specified

as (0oAo). Here the interval n is divided into sub-

intervals of n/6, fl/3, 0/3, and 0/6. The function is

evaluated at the left-hand side first, then twice at

extrapolated center points, and finally at the extrapolated

right-hand side.

The complete computer program used to integrate Eq. 4.32

I.

.:L
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by the Runge-Kutta method of order four follows. In

addition to calculating the normalized electron potential,

the program is designed to calculate the space charge

I density based on both models and present the results in a

normalized form for comparison purposes. Also incorporated

into the program is a plot subroutine which allows the data

generated to appear in a more useful form. The program is

written in Fortran-IV for use in the GE-225 computer and

takes approximately three minutes running time for each

parameter change.

I

I

L -' m
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~1STJ33Ovtj7fl.- ?LOtIT (iiNPXY1,!.lL2,y3)

DIMENSION A(100) ,?LOTj(100)

7 FORHAT (X, 2210-3,4YX,95A1)

8 FORKA(1X. 3EIo. 3,4X. P5kl)

_9 E!RAT(1X.ZE1.3.4y-.79-1)

I 300 ~OA(H~fX1ELTSBROUTINE)

T310 F033FAT(IB ,22y-13,433 VALUES 0F Dyf/Dl(') V=.W(+) AREF

1 PLOMTED,8H AGAfNS-1,I3,31iE VALUES 0? U(.) SCALE nACTO?.

2 =,B10-3)

m 05 1=1,95

15 PDR ((I)=B3Lr

XY.U=0.0

DO 10 1='J ,NP

1 10 A(I)=Yl(i)

- - KSW=2

O 60

40 DO 50 I=1,NP

50 A(I)=Y2(I)

MSw=3

60 DO 90 I=1,NP

IF(A(I)-XM)' 70,75975

70 IF(A0l)-XMI) 80,90,90

80 XMI=A(I)



1 61
GO TO 90

75 Y)Y,=A (1)

90 CON--.IkvrJ

-~ IP(MSW-(N-1))' 20,l&,100

100 uRA.79.4-(N-1)*10

S?=(XMi-XM-II)/RA

IREF-BZ?(XV5I/(XM-XMI) )*RA+l .0

HR=RE?

IPRINT 300

PRINT 310,NP,NP,SF

GO TO (320,330,34f0),N

320 PRINT 325

325 FOBMAT(7X,4HiXt.),5X.,5HYl(*))

GO To 4

330 PRINT 335

335 FORNAT(7X,4HX(.),5x,5HY1(*),5x,5HY2(=))

41GO TO 4

340 PRINT 345

-' 1345 FOaNA&T(7x,4Hix(.)5x,5HY1(*),5X,5HY2(=),5x,5HY3(+))
Ii4 PRINT 350

350 FORMAT(IX,116H. **0@ *** eS*S . q**

DO 290 I=1,NP

PLOT(NR )=PRD

* L=Yl(I)/SF+REF



PLOT (L )=STAR16

GO TO (14fo,lio,11o),N

II110 Ky()S+E
T PLOT(K)=EQ

120 J=y3(I)/SF+RVp

PLOT(J)=PLUS

3 GO TO 160

14~o PRINT 79X(I),Y1(I),(PLOT(J),,J1,
95)

PLOT-(L)=BLN(

GO TO 290

150 PRINT 8 ,X(I),Yl(I),Y2(I),(PLOT(J) ,J=1,85)I
PLOT (K)=BLNK

3* GO TO 290

160 PRINT 9,X(I),Y1(I),Y2(I),Y3(I),(PLOT(J)J1?
5 )

DO 165 NO=-1995

165 PLOT(NO)=BLNK

*290 CONTINUE

RETURN

END



SUBROUTINE FNCT (X,Y,F) 163

COMMON G, BLNK, PRD, STAR, EQ, PLUS, COM, ME

I AA=SQITF( 2.01

BB=-LOGF(G*EXPF(Y)+ 1 . OG)+G*EXPF( -Y) -G

CC=S3QRTF(BB)

F=--AA*CC

RETURN

END

%WW
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-j I C R**** RUNGE-KUTTA METHOD FOR SOLUTION OF D.E, USING GE415

C * H. ALLEN LINDSEY, NOVEMBER 1968

C * THE FOLLOWING VARIABLES ARE USEDt

*** A AND B ARE THE INTERVAL LIMITS*
*** H IS THE STEP SIZE

S*** Y IS THE INITIAL VALUE OF THE SOLUTION

**** DELTA IS THE INCREMENT AT WHICH THE SOLUTION IS

IS TO BE PRINTED OUT

** G IS THE DEGREE OF IONIZATION

DIMENSION NEQ(80),P(1)

DIMENSION X1(200),Y1(230),Y2(200),Y3(200)

DIMENSION X11(70),Yll(70),Y22(70),Y33(70)

Ta COMMON G,BLNK,PRDSTAR,EQ,PLUS,COM,EXE

999 FORMAT (80Al)

998 FORMAT (//5X,19H ON THE INTERVAL U=,F8.4,6H TO U=,F8.4,

1 17H WITH STEP SIZE =, F9.7/) I

997 FORMAT (5X,51H THE TOTAL NUMBER OF INTERVALS FOR THIS

PROBLEM IS

1 16/)

996 FORMAT (5X,48H THE DEGREE OF IONIZATION FOR THIS

PROBLEM IS G=,

1 F8.4/)

995 FORMAT (5X,48H THE EXPECTED ERROR FOR THIS PROBLEM

IS E=(+OR-),

1 E16.8/)

994 FORMAT (8X,2H U,13X,2H Y,15X,2H V//)

993 FORMAT (5X,F12.?,3X,F13.8)

. U

1 :j
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992 FORMAT (5X,F12.4,3X,F13.8p3X,F13.8)

991 FORMAT (6F10.3) ]
1 990 FORMAT (111/)

989 FORMAT (?2X,IAI,2X,1Al,2X.1A1,2XlAl,2X,lA1),tI
988 FORMAT (5X,37H U=NORMALIZED DISTANCE PROM JUNCTION /

1 5x, 33H Y=NORMALZED ELECTRON POTENTIAL /

2 5X,35H V=NORMALIZED SPACE CHARGE DENSITY /
3 5X,32H W=SCHOTTKY APPROXIMATION FOR V ///)

READ 989,PRD,STAR,EQ,PLUS,BLNK

N1=3

C *C******** MAIN PROGRAM

1 READ 991,A,B,DELTA,H,Y,G

I C CHECK FOR EOF

IF (H) 2,100,2

2 NH=(B-A)/H

PRINT 990

READ 999, (NEQ(I),I=1,80)

E=H**5.0

I P(1)=SQRTF(2.0*Y)

C **** ***** PRINT HEADINGS

PRINT 999,NEQ

PRINT 998,A,B,H

PRINT 996,G

PRINT 995,E

PRINT 988

PRINT 994

PRINT 993,A,Y
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1J C INITIALIZATION

10 X=A
1=1

1~ J=O
C ******COMPUTAION OF THE NUMBER OF PRINT INTERVALS

N=DELTA/H

NN=N+l

15l YO=-Y

C ******EVALUATION OF THE FUNCTION FOR HUNGE-KUTTA FORMULA

30 CALL FNCT (X,YO,F) -

7 ZK1=F

XH=X+Hi/2 .0
'VA

j YO=-Y+H*ZK1/2.0

CALL FNCT (XH,YOF)

-' ZK2=F

YO=-Y+H*ZK2/2. 0

CALL FNCT (xH,Y0,F)]

ZK3=F

XH=X+H

YO=Y+H*ZK3

CALL FNCT (XH,YO,F)

ZK4--F

50 Y=Y+H*(ZKI+24.0*(ZK2+ZK3)+ZK4f)/6.0

I V= 1. 0/D-G*EXPF( -Y)

C ******INCREMENT ARGUMENT AND COUNTERS

Z=I



X=A+Z*H 167

C ******TEST FOR PRINT INCREMENT

IF (I-NN) 30,70170

70 PRINT 992,X,Y,V

J=J+1

Yi ('J )=Y

Y2(J)=V*Y1 (1)

IF (X-PC1)) 76.76t78

76 Y3(J)=Yi(1)

GO TO 79

78 Y3(J)=o.O

79 x1(J)=x

C ******TEST FOR FINAL COMPUTATION

IF (NN-(NH+1)) 80,90990

80 NN=N+NN

GO TO 15
90 S=(1.O/DELTA)*B

MN=SI
IF (S-58.0) 96,96992

92 SCALE=S/58.o+1.o

NM=S CALE

L=MN/NM

K=-2*NM

DO 94 JJ=1,L,1

K=K+NM

Yll.(JJ )=Y1 (K+NMi-)
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ST Y22(JJ)=Y2(K+NM+l)

Y33(JJ)=Y3(K+NM-i-)

9)4 Xll(Jj)=Xl(K+NM+1)

GO TO 98

96 CONTINUE

DO 97 J1=17MN,1

Y22(J1 )=Y2(JI)

Y33(J1 )=Y3(J1)

97 xll(Jl)=Xl(J1)

NP=MN

J98 CALL PLOTT (Nl,NP,X1I,Yl1,Y22,y33)

GO TO 1

100 CALL EXIT

END
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I
APPENDIX G

A TYPICAL COMPUTER SOLUTION

i DEPARTMFNT ..... EE *

- USER NA F- ... .. ALt.ENLINDSEY *

* USER IU~i3F.RN....

i

I.



*FJZ, OCT 9 /OCT 9 ,CARD *AAU* FLOATING POINT
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SUFpRoUTINi PLOTTtNND1 X,Y1,Y2,Y3]
DIMENSION x(1003 ,Y1(1o03Y2El003,Y3(100)
DIMENSION A[100!, PLOTf1003
COMMON G, BLNK,PRDtSTAR, EOPLUS, COM, EXE

7 FORHAT1Xp2E1U.3,4X,95A1j
48 FORMAT(1X,3Et0.3,4X,65AjI-

9 FORMAT1X,4Ei0.3,4X,75A15
300 FOPMATt1H1,45X,16HPLOT SUBROUTINE I
310 FORMATtIRH ,22XtI3s434 VALUES OF flY/DUt*Io V~s], W(+) ARE PLOTTED

1,814 AGAINST, 13,31)4 VALUES OF U1.1 SCALE FAC7OR uEIO.31
NPwNP
5O 5 1=1,95

5 PLOTjIII:LNK

XMUz 0
D)O 1 11 I1 l, NP

IU Att]=:II]l
MSWZ1
GO To 6..f20 DO 39J l:1,NP

30 AC(I ) Y3(I1I]

40 O Tn 6 -j
A O5 50 I=1,NP

50 A(I]=Y2[13
MSW=.3

60( DO 9"1 1 .NPIi IF(AI I3-XMI 7t3,75,75
70 IF(A(IJ-XM! )80,90s90

GO To 901
75 XM=ACIJ
90) CONTINUE

IF[MSW-1t4-13120,40,100
10-, NRA=94-(N-1]*10

RA-:NRA
SFz(YM-XMI 3/RA
REF:AHSFfXMI/(XM-XMIfl*RA+1.O

PR INT 32
4PRINT 31,NP,NP,SF

GO To(32,jp330#340J,N
I320 PRINT 325

325 FORMAT(7Xi4HXt.],5X,5H'it*]]
Go To 4

330 PRINT 3.55
33'5 FORMlAT I7X, 4HX f ,5X, SHYll *3,5X,5HY? (=Iit GO Tn 4
340 PRINT 349
345 FOPMAT(1X,4-IJ(. J,2XAHDY/OU(*3,4X,4HV(:1,4X,4HW(.] 3A4 PRI14T 35-1
35vu FOQMAT(1X*116d. .. *. 9 .. 99 99999*9 9 99 99*99 99 9

DO 290 I1I~
PLOI (NRJ iPR0



LxY1it ]/SF4+REF
PLoT,?L]=STAR
GO To (14UJ,11I3,110),y i1

I 10 KZY2(I]/SF+REF
PLOT (K]=Et
IFCN-21 150P150,i20

£120 jztY3tl]/SF+REF
PLOT(JilPLUS
Go Tn 160

140 PRINT 7,XC I],Y1U), tPLOTtJ)DJxlp951
PLOTtL)zBLNK
GO To 290)

J5O PRINT 8,X(I],Y1(IJ,Y2f1), CPLOT(JIJJa,353
PLOT rLJ :BLNK

pl, PLOTtK] :BLNK
GO To 29J

16U PRINT 9,XfI],yiCI),Y2f13,y3U]), PLOTLJIJz1,75]
DO 165 NO:1#95

165 PLOT(NOJIt3LNK
290 cONT;NUE

RETURN
FNO

0207fl, 17745

IPLOTT 0000012
N 1000012
NP 1000013
X 1000014 220 14 4
Y 1 10 0, 0 15 2 0 214 4
y 2 1GODO16 00201.44
Y 3 1000617 o %2 014 4
A 0000036 0020144
PLOT obfh1346 0020144
G 0017764
BLNK 00~17762
PRD 00617760
STAR 0017756
EU 0017754
PLUS 0017752
CON 001775u
EXE 001774A
/90007 W00661
/00008 O067oJ
/00009 0 )00677
/90300 U0b0706
/ )0 310 000 07 2
I 1)001656
+00001 0Ou0657
-00096 oouhJ775
/0009j5 0001025
XM fi:,01000
0 , 01101002
XNII 0 00 104
/00010 001046
-0o00v2 Qj610O6
MSW 0001 in
/0006P00O01153~
/00020 03nJ074
/00039 00%.1076
+000o2 0001011



/OoS34D ce)1124
/IC050 CoO1126
-~Og3e3 0001Mi 172

/096~75 OC?121.

19OCQ0 tb0~1216

T 1JRA OZOI01A
j *50O94 WeIoii

RA 008le22TSF- P101254
-REF -30126'

8SF 14126?2 X P~

SI '.R eO-0127-

i'~3 -b F - 372* T/7034n~ Ooj: 4 l 3

110CA 000~1437-JI 33c5 COO1376

f .135 Zi443

/---14- O..1632

K --'1273

1 (01274

VC V 1c 276

fu 165 G04 2

6:



SURROUTINE FNCT (X,Y,F)
COMMnN G,dLNKPRD*STAR#EQ,PLUSPCOM*EXE :

AA=SnRTVI?2.31 173 v
BuLOGF(G*EXPF(YJ4+.GJ+G*EXPFCtYJPG
UcC=SOlTF ( RB
Fz-AA*C"j RETURN

00113, 17745

FNCT 0000012
v S 1000012
Y 1000013j F 10000Z14
G 0917764
PLNK 0017762
PRD 091776o

ISTAR 0017756
EQ u'Ai 7754
PLUS Mi' 17752

:~ t COM 0j1 7 759i
FXE 0 fl 1 774 6

AA VOOOLI 14

SORTF Cl14u02o EXT PRoG
-- 2.C eg9f03'

RO V9000)32

I!LOGF ~in404 ET PROGI
EXPF 0,14,103o FXT PROG

1.PC-0004?
CC u00046

Ia

Ia
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C *****-** RUNCE-KUTTA METHOD FOR SOLUTION OF O,D.E. USING GE225

C **'' H. ALLEN LINDSEY, NOVEMBER 1968
C , THE FOLLOWING VARIABLES ARE USED
C *** A AwD B ARE THE INTERVAL LIMITS

C H IS THE STEP SIZE I
C **Y IS THE INITIAL VALUE OF THE SOLUTION
C *** DELTA IS THE INCREMENT AT WHICH THE SOLUTION
C IS TO BE PRINTED OUT
C .** G IS THE DEGREE 6F IONIZATION

DIMENSION NEO(80,P~tI
DINENSION xl{2003,Yji20o03Y2t200 ,Y3I200)
DIMENSION Xll[70),Y1(7alY22(70,Y33(70]
COmMONJ.G,B LNK,PRD,STAR. EOPLUS,COM,EXE

999 FORMAT (BOAl)
998 FGRMAT (1 15XP19H ON THE INTERVAL UzaF84,6H TO UuF8.4,

I 17H WITH STEP SIZE ,F9.7/1
997 FORMAT 15X,51H THE TOTAL NUMpER OF INTERVALS FOR THIS PROBLE IS

1 I /)

996 FORMAT (5X,48H THE DEGREE OF IONIZATION FOR THIS PROBLEM IS S=,

1 FF.4/I
995 FORMAT t5X,48H THE EXPECTED ERROR FOR THIS PROBLEM IS Ex.tOR-),

1 E16.8/1
994 FORMAT (X,2H U,13X,2H YzI5X,2H V//)
993 FORMAT [5XFi2.7,3XF13.8]
992 FORMAT (5X,Fi2.7,3X,rI3.8,3X,F13.8]
Q91 FORMAT 6F19.33
990 FORMAT [i////)
989 FORMAT 12X,!AI,2XsIAI,2XlAI,2XtlAI,2XdEA1I
988 FORMAT (5y,37H UcNORMALIZED DISTANCE FROM JUNCTION /

1 5x,33H YxNORMALIZED ELECTRON POTENTIAL /
2 5X,35H VxNORMALIZED SPACE CHARGE DENSITY /

3 5x,32H WxSCHOTTKy APPROXIMATION FOR V f11/1
READ 989,PRDSTAR,EQPLUSBLNK

C *.*tt* MAIN PROGRAH
I READ 991,A,B,DFLTA,H,Y,G

r *CHECK FOR EOF

IF (w] 2,1O,2
2 NH=[R-AJ/H

PRINT 99,
READ 999,[NEO[I3,I=,801

EzH*a5.b
Pi) =SQRTF[2.3*Yl

C ******o-* PRINT HEADINGS
PRINT 999,NEO
PRINT 998,ABH
PRINT 997,NH
PRINT 996,G
PRINT 995,E
PRINT Q85
PRINT 994
PRINT 993,A,Y

C ******** INITIALIZATION

10 X:A

~Jz
C ******** COMPUTATION 3F THE NUMBER OF PRINT INTERVALS

NxDEI.TA/H



NN=N41 175
15 YOxY
C ****)***EVALUATION OF THE FUNCTION FOR RUNGE-KUTTA FORMULA
30 CALL FNCT (XYO,F]

ZKI:F

YO:(,rH*ZK1/2. 0I CALL FNCT LXHYO#Fl

YO:YH*ZK3/.

,I ALL FNCT (XH,YO,FJ
ZK4=F

51j y=Y.L4*fZK1+2,0*(ZK2.Z.3i3ZK41/6e0

Va1. j/D-G*EXPFI-Y)
C ****. INCREMENT ARGUIIENT AND COUNTERS

IiC TEST FOR PR1LJT INCREMENT

IF fl-fl-J] 30,7,7

79 X[J)=VYlXi

IF (Y~-Uv11 76,6#78

qO Tn 79

C *~~*..STORAGE / SCALE FOR PLOT SUBROUTINE

9(l S=(l.C/DELTAJ9'P
MN=S
IF (S-58.33 96,96,92

92 SCALP=S/58.r-i.0

NM=SCAL't-
L=MN/NM
K=-2*NM

K=K.NM

y2? ( jjj =Yl[K*Nm.,jj
94 X11Jj=YX2ZK+NM,1)

Y33 (jJ] Y3[(K+Nm~li

GO Tn 913
96 CONIT I II

Yi(Jtl:YlfJij
Y2?t~ji I Y2 ( Ji

9Y33(ji1=Ys(Ji3
97XiiC.JlI:XiCJiI
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I

C ********** RUNGE-KUTTA METHOD FOR SOLUTION OF O.D.E. USING GE225
C ***'**** H, ALLEN LINDSEy, NOVEMBER 1966
C ********* THE FOLLOWING 4ARIABLES ARE USED

C ** A AND B ARE THE INTERVAL LIMITS
C *** H IS THE STEP SIZE

C Y IS THE INITIAL VALUE OF THE SOLUTION

C ,** DELTA IS THE INCREMENT AT WHICH THG SOLUTION

C IS TO BE PRINTED OUT
C *** G IS THE DEGROE OF IONIZATION

DIMENSION NEO[BSOP(i]
DIMENSION XI2OOIYir23c3,Y212OO],Y3[200]
DIMENSION Xl1(70,Y$11t701,Y22170,Y33(701
COMMON G,BLNK,PRD,STAR,.EOPLUS,COMEXE

999 FORMAT (80AI]
998 FORMAT [//5X,19H ON THE INTERVAL Uz=FB.4z6H TO UgsF8,4,

1 17H WITH STEP SIZE 2,F9.7/I
997 FORMAT [5X,51H THE TOTAL NUMRER OF INTERVALS FOR THIS PRO8LEm IS

1 IA!I
T 996 FORMAT 15X,48H THE DEGREE OF IONIZATION FOR THIS PROBLEM IS G:,

1 FR.4/]

995 FORMAT 15X,48H THE EXPECTED ERROR rOR THIS PROBLEM IS Eui*OR-1,

-1 E15.8/1
994 FORMAT 18X*2H Uj3X,2H Y,15X,2H V//

993 FORMAT (5XF12.7,3X,'13.8]
992 FOPMAT (5XF12.7,3X,F13,8y3X,F13.8J
q91 FORMAT [6FI0.3I
990 FORMAT (//////]

989 FORMAT (2X,1AI,2X,1Al,2X,1AI,2X,1Al,2X,1A1J
988 FORMAT 15X,37H U=NORMALIZED DISTANCE FROM JUNCTION /

I 5X,33H YxNORMALIZED ELECTRON POTENTIAL /
2 5X#35H V:NORMALIZED SPACE CHARGE DENSITY /

3 5X,32H WzSCHOTTKY APPROXIMATION FOR V I///]

READ 989,PRD,STAREQ,PLUSBLNK
N1=3

C **.'** MAIN PROGRAM

I READ 991,A,B,DFLTA,H,Y,G
C **t...*.* CHECK FOR EOr

IF !H) 2,160,2
2 NHCIR-A]/H

PRINT 99b
READ 999,(NEQ{I),1=I,80]
Ex**5.b
Ptl]=SORTF(2.O*YI

C ****.*** PRINT HEADINGS
PRINT 999,NE0
PRINT 998*A*B,H
PRINT 997,NH

PRINT 996,G
PRINT 995,E
PRINT 988

PRINT 994
PRINT 995aA,Y

C I [NITIALIZATION
10 XzA

11

C ********* COMPUTATION OF 1NE NUMBER OF PRINT INTERVALS
NDE.TA/H

71
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C ******EVALUATION OF THE FUNCTION FOR RUNGE-KUTTA FORMULA

30 CALL FNCT fX#YO,F]

ZKI:F

YO=YH*ZK1/2. o
CALL FNCT (XHPYO,F]
ZK2=r
YO=YH*ZK2/2, o
CALL FNCT tXHYO,FI
ZK3:F
XH:X.H
YO=Y+I8*ZK3
CALL FNCT (XH,Y0,FJ
ZK4=r

5Lt Y=Y.W*(ZK1.0,*(ZK2,ZK3).&ZK4]/6,O1' V31. /D-G*EPXPFt-Y)
**.*** INCREMENT ARGUMENT AND COUNTERSfZ

X:A+7*H

C **~*.*TEST FOR PRIN4T INCREMENT
IF (T-N-V! 30,70,70

7,i PRI'4T 992,tX.Y,#V

Y2[jI :V*Y1(i)
IF ly-PliJI 76,76p78

76 Y3iJ1:YI(11]
r;O Tn 79

78 Y3W1:6.c"
79 Yl[J)=X

C TEST FflR FINAL COMPUTATION
IF 30NfH*J o9o,90

GO Tn 15
CSTORAGE / SCALE FOR PLOT SUBROUTINE

IF IS-58.31 96,96*92
92 SCALP=S/'58.2l.1.0

.%M=SCALE
L:mN/NM
K: -2 *NM

DO 94 JJ=19L,1

Y2?fJJY2(KNM.gl

f'33 (J]Y3(K.&NM.1j

94 X14I(JJ)XIKNm+ll

GO Tn 911
96 COjT iNlII

DO 97 Jl:1,MN,1

Y22Cj1.1:Y2[JlJ
Y33 Lj11=Y-3t li

97 X11(.J1]:XtiJIj



P9A CALL LOTT (N1,NPXllYlly22,Y33]

GO Tn 1 176

100 CALL EXIT
rolll

.;5616, 17745

,KP c 0. )

NEO 009 "0q3 Oj2 0120
| P g0 124 0*200n1
! X1 000 126 0-,20310

Y1 000 74A a32)110
Y2 al 01566 0.20310

Y3 u0O24:6 , ,r 2031 0X11 0903226 ,):;2 0 1.;6

Yll 1; 0n3442 0..291.h
Y22 03113656 U:!201j',
Y33 PO04 !? 0,2011C6
G 6017764
PLNK 17762
PRD .C17760
STAR 17756

? EO L! i.7754

PLUS 1775,4
COm P,1775)

EXE n '17746
/ 1 0909 i.4321

1/0908 4324
/110997 "1.4356

/00996 .'.4404

/10905 . 44,J.

/:0903 ,4471

/,0902 0459%:

/.q109J. '4512
/.'1 q 0 r4515
/989 -u4 5 2:

/-109R8 :4535
Ni . r, 1n43'r64-30003 -.a431) 7

/10001 j4644

8 :004312B 004V!'

DELTA ,4314
H r,, r 0431S
Y V 04 , 5
/00,"2 "'472
" /'01CO .6 1 4

I , 146 7

5.0 ,if 04674
, .14461A X f P G

SORTF 144711: EXT PROG
2.nl "f472'
,AY 1'10 4 7,J4 EXr G.or

r rCG10 "5032
X, ,'i; 5 .i¢

Icc



J UJ05 i3f6
u0 of0 -15037

N U505. 41 NN 0 5,4t177
* NN (JC05 A4l

/03015 1 r)10.
YO 0005 42
/00G30 *5102
FNCT lIa'044 EXT PROG
F C905 146

ZK1 0005159
XH 0005,52
ZK2 0005 54
ZK3 0(105 f56
ZK4 105 6"
/00050 *5165
6.0 00052GI
D ut'05202
1.0 00052j4
EXPF 145206 EXT PROG
v 0905211
Z 0b05214
/00071 ;5304
/00076 t-533/
/00078 9C346

/90079 15354

0.0 0£O522n
/30080 ,5373/300O90 9 37 7

S 0005222
MN u005224
58.0 iq41(1
/00096 "555t
/00092 .u54 4 o
SCALE *li41 ?
NM U005414
L 0005415
K P005416
-000t,2 ,41;
JJ .00542
/00094 '-s524
NP b005422
/n098 '5604

J1 0n05423
/00097 '5565

PLOTT l"5424 EXT PROG
EXiT 1,542o FXT PRnfG

I



FNCT C-6,370171

EXIT 1432.)
SQRTF 14,541)
*IR 14411
ABSF 1447b
LOGF 14516
EXPF 14604
,AY 14762
* ST 15100
.LOAD LIMPrS 151.45, 17745



179ON THE INTERVAL Ux 0.0000 TO Uu 20,0000 WITW STEP SIZE =0.200000

THF TOTAL NUHdFR OF INTERVALS FOR THIS PkOBLEM IS i00
THE PEGkEE OF IONIZATION FOR THIS PROBLEM IS G= 0.0500

THE FxpECTED ERROR FOR THIS PROBLEM IS Ef.+OR-j 0.3 1 9 9 9 996E.03

UmNOPMALIZED DISTANCE FROM JUNCTION
Y=NO PMALIZFD ELECTRON POTENTIAL i
VxNORMALIZED SPACE C14ARGE DENSITY
W=SCwOTTKY APPROXIMATION FOR V

*,;,3o 60.00000000

-08544110 .00000000,.40ni-00 55.81088220 1.000000000
'A .0 0' 53.77632340 1.00000000
.RO(* 0t. 51.78176450 1.00000000.0. 49.82720570

1.200. UP 47.91264680 1.00000000
1.4066"V,0O! 46.03808800 1.0000000
1.60 0l G 44.20352910 1.00000000
1. ,O00' OC 42.40897030 1.000nO000
2o00ji 00 40.65441140 1.00000000
?.20c. 9n 38.93985960 1.00000000j2.4003.00 37.26529380 1.00060000
2'600. 0(; 35.63073500 1.00000000
2.8O0. .06 34.03617610 1.00000000
3.000'.O0 32.49161730 1.00000000
3,2C0th I 30.96705850 1.00000000
3.400PIL 29.49249970 1.000G0 000
3.600'..Oj 28.05794090 1.00000000
3I.00, (I 26-66338200 1.00000000
4.000J.Ot 25z30882320 1.00000000
4.2001%0U 23.99426440 1.000000004 .40U,.Ou 22-71970560 1.00000000
4.600,j0 21.48514680 0.99999999
4.AO0 Ov 20.29058800 0.99999997
5'JO0 ,09 19.13602920 0.99999991
5.200 ' 0O lo.02147040 0.99999972
5.400 I0 16.94691150 0.99999917
5.60n liU(; 15.91235270 0.99999766
5.900f000 14.91779380 0.99999368
6.;Oou.,jc 1.96323460 0.99998357
6.?G0oOU 16.04867470 0,99995899
6.400j N. 12.17411300 0.99990167

11.33954720 0.99977349
A.8O0'ol O10.54497190 0.99949b75
7.JO0 3 v 9.79037-63 0.99893456
7.200 Ju 9.07573494 0.99782523
7.40:'1 00 b.40100406 0.99573872
7.600u 7.76609726 0.q9198973
7.P i0).,00 7.17086121 0.98556724
P.fl0O;dof 6a61503444 0.97510387
9.20C 6OV b.09819286 0.95894403
8.4001))00 5.61968424 0.93536b748.600]',10 5.17856088 0.90299029
P.O00,ooll 4.77352563 0.86123036



g'',O0'JO 4.40291005 0,81068663
9.200i.Oo0 4.06469852 0.75317845j 9.4003000 3.75659978 0.69140161
Q.60001100 3.47615281 0.62833644
9.ROOQuOO 3,22084401 0.56666858

1 .0 0 .1 oo 2.98821345 0.50842300 180
11.2000000 2.77593549 0,45485896
I .40OJu0 2.58186948 0.40655608

* 1 .600JoOb 2.40408354 0.36358749

1 .80vu3 0 2.24035804 0.32570041
ll,.o' ,.Oo 2.09067604 0.29246392
11,200-Ji00 1.95220643 0.26337331
11.4000'00 1.82428385 0.23791585
ll,,00iKOd 1.70588840 0.21566783
11. R80JUOd 1.59612629 0.19601236
12.q0'J)'00 1.49421241 0.17874544
2,20i00 1.39945500 0.16347535
12.400 >0 1.31124229 0.14991866

Z 12,600 O0 1.22903122 0.1378a483
12.AOOu OU 1.15233777 0.12702043
13 o 0ci 1j 1.08072879 0.11730378
139200uO0 1.01381513 0.10853994
13.400vJ0o 0.95124584 0.10060648
13#A00%00 0.89270322 0.09339975

J 1308oUJuO0 0.83789873 0.08683184
14,900iO" 0.78656939 0.08082791
14 200t;O 0.73847484 0.07532408
14#40q'10o 0.69339474 0.07026562
14.*OJ uO"i 0.65112660 0.06560544
14.800'0rj 0.61148387 0.06130290
15.30Omu0 0.57429433 0.05732273
15.20!'.0u 0.53939867 0.05363422i5.400 o00 0.50664927 0.05021051

0.47590910 0.0470280115,00 O, 0.44705078 0.04406591
lo.s.,3 'J 0 ( 0.41995577 0.04130575
16.200 ,UO 0.39451362 0.03873111
16.400,,0O 0.37062127 0.03632733
16.60,- Ou 0.34818255 0.03408124
16,80OkOjb 0.32710756 0.03198099
16,9999999 0.30731226 0.03001585
17.?00v,O-J 0.29871801 0.02817610
17.A01X0O 0.27125119 0.02645290
17.60 '0,j! 0,25484284 0.02483815
17,8OAlJ01 0.23942836 0,02332445
18.OOOJuOo 0.22494717 0.02190502
18.200 C 0.21134246 0.02057358
18.3999999 0.19856097 0.01932438
18,600.iJO 0.18655271 0.01815206
18.Oof.,Ou 0.17527077 0.01705170
18.Q999990 0.16467112 0.01601669
19.200NO0 0.15471242 0.015n487919.400,2.00 0.14535586 0.01413802

0.13656501 0.01328268

10.00,o 0.12830563 0.012479341Q,9999q99 0.12054558 0.01172476
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inodel and to the approximations it contains. T1his model is then improved
- upon by taking into account nonuniform impurity ionization and the free

I electron concentration in tile depletion region. Using this more exact
model a theoretical expression for the differential junction capacitance is
calculated. The results indicate that the junction capacitance'as a function
of reverse bias can be used to accurately predict the doping concentration in
the semiconductor material, but does not yield a correct measuremen~t of the $
equilibrium diffusion potential or barrier height.

The current voltage characteristic for this type of contact i9 also discussad.
An expression for the I-V characteristic of this junction is derived based
upon a diffusion model. This expression is then improved upon by accounting

j for tunneling and quantuim-mechanical reflection of carriers at the junction.
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