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SEQUENTIAL ESTIMATION IN THE UNIFORM DENSITY

The main problem to be solved here may be described as follows:

be independent random variables, each with density

1et Xl,xg’ .o 0
fa(x) = % over (0,6) and zero elsewhere. It is desired to estimate

the unknown parameter 6 by an interval of length at most d wunits
and vith confidence at least 1-a, for some specified d > 0 and
a ir. (0,1). An cxact solution and an asymptotic theory for a sequential
proczdure are given in sections 1 and 2, respectively.
The procedure proposed in this paper is optimal in the sense
that the expected number of observations is minimized. It is also

minimax in that the maximum possible number of observations is minimized.

1. The Procedure.

By an estimation rule %, we understand the specification of a
stopping rule, which for given Xl’x2"” determines the number N of
observations to be made, together with a function which we also denote
by %, mapping the possible (Xl’x2""’XN) into sets of possible
values of 6. Associated with a particular & 1is a function
y(8) = PQ(GGB(XI,XE,...)j which is the probability that 5(x1,x2,...)
contains € 1in the sequel to be called the confidence function,

For the problem to be solved here, without loss of generality we

x
may suppose d = 1, since for any other positive 4, —% is uniformly




distributed over (O, g). Hence we may consider the problem as one of

estimating g by an interval of at most unit length.

The sets we shall use to estimate 6 are intervals of the form
6(X1,X2,...,XN) = (XN,g(XN)], vhere X, denotes the maximum of

X XE""’X Clearly, 5 maps the sample space into intervals of

1’ N°
length <1 unit on (0,6+1) if §N < g(iN) <X *l. Our confidence

requirement is y(8) = Pe[iN <o< g(f(N)’. >1-0  for all 6. Since

A

XN is sufficient for 6 1in the fixed sample size case, (N,iN) is

sufficient for € in the sequential case. (See Lehmann (3], p. 3.32.)

~

N S° XN alone is sufficient for 6 .

The sequential procedure we shall adopt is as follows:

But N is a function of X

~

until for the first time X < a

(1) Observe X ,X,5... y S ey

where al,ag,... form a non-decreasing sequence of non-negative real

numbers.
(2) If this occurs at N =n, make the statement 'X <€ < g(in)'.

The confidence function associated with this statement will be at least
1-& for every 6 for an appropriately chosen sequence (ajl .

The stopping sets for this procedure are determined by the
sequence (aj}. Clearly, the stopping set, Sn’ of points
(xl,xz,...,xn) at which samrling stops at N = n, and the continuation
set, Cn, the complement of Sn in n-dimensional Clartesian space,

may be determined successively for n =1,2,... by S, = (0,a] and

1

the recurrence relation Sn = (cn_ln (O,an]n'l)x(o,an]. Thus we find




= ’\al,aQ]X(O,aQ], S5 = (al,BQIX(aZ,aB]X(O,aBIU(sg,aslx(O,%JX(O,a.jJ )

We will now determine the distribution function of %N' On the

basis of our sampling procedure, for 6 > an we have

PG(N=n) = Pe[(Xl,X2,...,Xn)eSnp
1 f [dxdx d
= — {eoos 90 ey AX
g" B s J 172 n
n
b
n
=-—— , for some b .
n n
2]
n:_l br
For a ., <6<a_, Pb(N=n) = ¢-P6(N'S n-1) =1- , — - Define
r=0 e
b = 0. Thus,
o
PG(N=n) =( 0 , 6<a .
n‘_-_l br
< 1 - 42 - ﬂn_1<-3_<_an (1.1)
r=1 &
bn
o GZan
\ &
n b
For ¢=a_ , P/N<n =Y —:-_1 Hence
- r=l1 6
n n-1 n-2
bn = an-blan -b2an ~000c bn-lan’ n=12,... (1.2)

We will denote by Bn(x) the polynomial obtained by replacing a




in the right hand side of (1.2) ty x; i.e.,

. _.n n-1 n-2
dn(x) = X =byx T-box -eeem b X (1.3)
‘ . B_(x)
Thus, we infer, for a ,<x<a, and x <8, Pe(Xn < x,N=n) = _;3__ .

Now P (X <x|N=n) =1, for x >a . Hence
€'n— - n

oo

P (X

oy S %)

PG(Xr < x, N=r)
r=1

v(x)-1 n
r>=:1 PG(N=r) + Pe{)(v(

1}

x) <xN-= v(x)) )

where

vix) = 3 if a5 1 <x< 8, .

It follows that for all x in (an_l,an] and x < g,

~ -1 b Bn(x)
P.(X, <x) = —_+ (1.4)
) = r=1 ¢ e¥

For x > @ each side of this equation equals 1.
Clearly, v(6) 1is the maximum rmimber of observations which could

be required; i.e., v(6) = max N, the largest n for which Pe(N=n) > 0.

8
Consider now procedures with terminal statement 'iN <e< iN+l.'
Using (1.4), the probability that this statement is untrue is given by

b B (e-1)
.

-

o 9 an_l<9-15an

~ n-1
ale) = Py(X; <6-1) = 2
r=1 6

a1

(1.5)

ence the requirement y(68) > 1l-a 1is equivalent to a(6) < «a for all 6.
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The optimality criterion we shall adopt is as follows: of all
procedures for which a(g) <a for all ¢, a procedure is optimal if
every other procedure with smaller y-function for some 6 has larger
v-function for at least one 6' < 6. The solution to be investigated
will easily be seen to also satisfy an optimality criterion of the same
form expressed in terms of the expected number of observations rather
than the y-function.

Consider the case 0 <g-1 <a Using (1.5) and (1.3) we have

1"
al(8) = gél, vhich we require to be less than or equal to . Hence

1 1l
a must be such that al+1 < @. Suppose gf:i =y . Let P and P*

3 and a{ and with y-functions v(8)

and v(6)*, respectively. If we put a

be procedures associated with a

a* we have vy(6) =1 for

1 1
6 in (O,a{]. Suppose we choose 8y < af. Then the procedure P
cannot be optimal, since for any procedure P' associated with ai in
(al,a{], v(€)' <y(8) for 6 in (al,ai], but y(6)' is not greater
than y(8) for any 6 < ai. Since this is true for any a;, <&} and
ai in (al,ail, P cannot be optimal for a, <a¥. Hence we put
a, = a}; i.e., we choose a, as large as possible. From (1.2),
bl =a;. In generai, because of our optimality criterion, for each n

we choose an as large as possible; i.ec., a_ is the largest x for

which
n n-1 n-2
n;} br X -blx -bex -...-bn_lx .
L =t ~ = o (1.5)
r=1 (x+1) (x+1)
5




and bn is determined using (1.2). It should be noticed that a, = a;;

i.e., N cannot take the value 2 and so the procedure must be

started by taking one observation and if the observed Xl > al,

additional two observations. The second decision whether or not to

an

continue sampling is then based on the observed value of %5.
Values (correct to L4 significant figures) of the first 20
meabers of the sequence {aj} are given in table 1 for g = 0.05 and
0.01. Members of the sequence (bj} are required for evaluating the
expected number of observations, hereafter to be denoted by EQ(N).
However, in section 2 we will derive asymptotic expansions for this
function which are independent of the higher members of the sequence
[bj}. Thus (in table 2) we only tabulate (correct to 4 significant
figures) the first 10 members of this sequence for the above values

of a.

n-1 b Bn(x)

From (1.6) we have <a for x in (an_l,en).

r=1 (x+l)r ' (x+l)n

Hence a(8) <a for €& in the intervals +l,an+1), n=1,2,...,

(an-l
wnere ao is defined to be zero. However, for these values of 8, the

confidence will equal 1-2 if we slightly modify the procedure and

~

estimate ¢ by an interval of the form (XN,g(XN)], where

e(;(N < g )y = a.

There +ill exist a value x(0,8) of x, depending on @ and 0,

X)X, 1. ¢ S ui (g(X) <o) =
g(XN) XN 1 learly, we require Petg(AN) ) = P

for which PG(‘)(,\I < x) = a. Hence g_l(e) = x(t,0). For the optimal

vrocedure y(8) cannot take the value 2. Suppose vy(6) = n, n # 2.

n-1 b Bn(x)

+ - . Thus the largest root of the
6

Then PG(XN < x) =

"il"{

r=1 06

S




[ Summr

na?

polynomial @' -blu 'l-bgd“ ‘---'-bn_lB-Bn(x) = 0 when x 13 replaced
by the observed value of Qn is the required value of g(%n), for
a specified a. C(learly, g(an) = a +l since u(an+l) = a for
n=1,2,...

Using (1.1), for ¢ in the interval (an_l,an], the expected

sample size ‘s given by

n-1 r-br , n-1 br n-1 br
EG(N) = z — + nfl - Z _r) =n - Z (n-r) c-
el 6 r=1 A r=1 fa

(1.7)

As a variation of the procedure already described, we may consider
taking observations in groups of m, m > 1., Let a(m) denote the n-th
member of the sequence which de:ermines the optimel procedure (i.e.,
the sequence in which members are chosen successively as large as

possible). Thus we have O = a(m) ~alm) oLl a(m) < a(m) = a(m) =

1 2 m-1 W oomel
(m) _g(m) _ (m) _ . »
= 2m-1 2m Tese , b(j =0 for j not a multiple of m and
0 < bém) < béﬁ) < +-- , where [bgm)] is the sequence determined by
J
{agm)} using (1.2). Also, using (1.7), for n a multiple of m, say
n-=2zm, and ¢ in (a (m) (m)] we have
n-w’ °n
z-1 (n-rm)bix) z-1 rmoimlm
E,(N) - n - Y — = - Y — (1.8)
i r=1 ) r=1 a

2. Asymptotic Theory.

Before embarking on the asymptetic theory we will consider some

sequences of numbers which will prove to be useful. From the binomial




. . . 1
theorem, for m a non-negative integer we have -

X =
0
- {m) 1
(1-x) (m+1)’ where r‘m) = i% . It follcws that
L om
r(m)xr =m.x—m+1 . (2.1)
r=0 (1-x)
For pocsitive integral powerc we have
m g (s)
r = } S(ms)r (2.2)
s=0

where the numbers (S(m,s)}, m > s, are the Stirling numbers of the
second rind. These numbers are tabulated in Tatle XXII of Fisher and
Yates {1] under the title 'Initial Differences ol Powers of Netural
Numbers.'

We nov define a sequence of numbers [pj}, vhere
< m-r
p = 2 re , m=0,1,2,... (2.3)

Thus, using (2.2) and (2.1), with x =

1 h
S » Wwe have

S < (s) -r & S(m,s)sle
o= z 'S(m, s ) qu e = X
r=>

s=0 (e-l)S+l

vy
D
e
éo
il
=) la‘d
3
oy
&
n

, m=1,2,... (2.4)




h

In particular, 9, - g%i and g, = E%I + ——— . later members of

sequernce {qj} may re2adily be evaluated using the Fisher and Yates

rable,

Let us assume that an and bn have powe:r series expansions of

the following forms:

. 4, 4,
an =, E (l + E: + —5 +.e ) (2'5)
n
e e
nn 2
_ (R = g &
b - e(d)( *na + (2.€)

where c,k and the members of the sequences of coefficients {dj? and

{ej} are constants,

We are assuming that an asymptotically approaches the linear

1 .
function X (n+d1) of n. 1f an increases approximately as E
n n-1 n-2
T 2] 5 = a -b = o000 =~
or n large, bn an lan bean bnnlan
n bk boko b kL
~ {8 (1 42 = ) Thus, under the assumption
() = 5 oo ~— 5 hus, sumptio
n n
dl n
tnat . i3 small compared with T it. seems reasonable to assume

the expansion (2.%) for bn’

1’ d2 and

We will now find expressions for the constants ¢, k, d

Tne equations 1.2) and (1.A) which determine a_ and bn ray bhe

wrilttern

bt
o

™1
=3
(]
=

=
1]

(@]
o

= 1 (2.7)

d




n-1 b
— 0T _aq (2.8)

n-r
r=0 (an+l)

Formally substituting the power series expansions for an and bn

into (2.7) and (2.8) and equating coefficients of powers of n leads to

equations which may be solved in succession. Ccefficients of terms of
-3 n-1 n-r
higher order than n involve series Z re ,m=0tol, which,
r=0
when n is large may be replaced, with exponentially small error, by
oo

f e, Solving the equations and simplifying leads finally to

r=0
k = - logea
k 1
4 =-3-9-5F-1)
d;
e
e = —™—
p0
2
q d kb
1 2 1, 1
d2 = 'bl(E - 1)(5—-+ ol dlql + kbl-dl) e
q 3q q
! 3.1 2 2 2 2
- Abz(a -1) - = - % ((d,+k) dll(-j;- -3 )

q A
- F @ ?-ad) 2 - D) - g ((a)a))

9

1°% -7 = 1

2
d

I S
z - 49 1

Table 2.1 gives the numerical values of dl and d2 correct to
4 and 3 significant figures, respectively, for O = 0.05 and 0.0l
for the standard procedure P and procedures in which an initial set of

m > 2 observations are taken.

10
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P m=2 m > 2
Q dl de dl d2 d, d,
0.05 -%2,080 |0.67{ -2.080{ -4.97 || -2.080 | -0.25

0.01 -3.885 {1.69) -2.885| -4,86 || -2.885 | 0.77

Table 2.1

We will now derive asymptotic expansions for E,'N). Equation

(1.7) may be written rs follows:

n-1 rb

[ o n-r
EQ(N) =n- ) ——,8 ,<6<La .
r=0 &
Thus, if 6 = a -X, 0<x< an_an-l
n-1 rbn r
EjN) =n- } —F— . (2.9)
r=0 (a_-x)
n
From {2.5)
d, -kx d
n 1 2
a_-x = i(l P = ;5 oo ) . (2.10)

Substituting this expansion and the expansion (2.(6) for bn into (2.9),

taking the sum from r = 0 to « and simplifying leads to

11



q q
1) - kxy , 1 o oD L (a4 -xx)?
Foll) = n-(kby+q,e™) + 2 (leyq) + 5= - a9y + 5= (4)-kx)

2 1
(dl-kx)—k b ) + o(;é-) for 6 = a_-x,

N qg(dl-kx)]ekx + Kby

0<x<a-a (2.11)

n-1 °

We may also expand EQ(N) in powers of % rather than . if o

n
and n are both large. In this case, if 6 = an then n = ke-d1 + O(%)

and hence, using (2.11) with x = 0 we have

. Lo, 1 1 1
E.() = k(8 +3) + b {(Z - 1)-k} + 0(3) (2.12)
For assessing the efficiency of the sequential procedures discussed

in this paper, & convenient standard is provided by the optimai fixed

o
cample size procedure; for ¢ > 1, u(e) = —EQEL———I— is the least n

log(l - 5)
for which PG(XP <& < Xq+l) > 1-a. Since k = log 1/a, u(e) =
o1 1, . . - . u(e)
& - =) + 0(=). Thus, using (2.12) =
k(¢ 2) 3‘H) s, using (2.12), iizl f;TﬁT 1 so that the

cequential procedures ma;” be said to e asymptotically 100 percent
etf'ficient, relative 10 ihe optimal fixed sample size procadure.

We will now derive &s;mptotir expansions for EQ(N) when the ob-
servations are taken ia groups of m. It is sufficient to counsider

only the case in whick n 1is a multiple of m, since if it is not,

g(m _ g (m)
Xm

191

. . . n .
where X is the largest integer smaller then g Hence,

let n be a multiple of m, say n = zm. Then, using (1.8)

12




(m)
2= I‘mbn-rm (m) (m) (m)
EJN) =n- for 8 =a' '-x, 0<x<a,
e n-rm n n-m
r=0 (a_ . '-x)
(2.13)

Expanding the right hand side of (2.13) in powers of n leads to terms

2-1
of higher order than n-2 involving the series Z rm)J —rm
r=0
J = 1,2,3. However, for fixed m and large 2z, these series may be
* j -rm
replaced, with exponentially small error, by 2 {(rm)“e .
r=0 o
We now define a sequence Lq(m)1 where q(.m) = (-e;) 3 (rm)‘] -rn,
J e
m-1 S
(m) (e‘l)e
Jj=0,1,2,... . Thus, for example, q = — and
o m
(e”-1)
-1
( R
q’m) = __L_m(e e . Hence we are led to
1 m,\2
(e™-1)
( (m) , q( i (m) ( )
B m) m 5 m 2 (m
EG(N) = p-e’X [elql d,a; + (d kx) q
+ (d kx)q(m) + O(—é)} for m>2, 6= ar(lm)-x, 0<x <a( ) (mzx

n

and for m = 2

(2)
. (2 2) 4 2 2 v (2
EG(N) = 22-ekxlq£c)+%[elq](_ )+ 2 d2 i )+—(d -kx) (2)+(dl-kx/qé¢)
~ _ P 2
A o) o o< aBn 0 n cofPafl,

A

13




In the tables to follow, when a number is given in brackets, it

is the exponent to the base 10, of the number immediately preceding it;.

e.g8.

2.101(4) = 21,010.

X| 0.05 0.01
2.632(-2) 1.010(-2)
2.632(-2) 1.010(-2)
2.880(-1) 1.045(-1)
5.003(-1) 2.403(-1)
7.791(-1) | 3.978(-1)
1.065 5.753(-1)
1.372 T.642(-1)
1.686 9.617(-1)
2.007 1.165

10 | 2.332 1.372
2.660 1.582
2.990 1.794
3.321 2.007
3,654 2.221
3.986 2.436
4.320 2.652
L,653 2.867
4,987 3,083
5.321 3. 300

20 | 5.654 3.516
Table 1: Values of a

(0]

n\| 0.05 0.0l

1 | 2.6%2(-2) 1.010(-2)

zero zero
1.952(-2) | 1.031(-3)
4.621(-2) 2.944(-3)
2.197(-1) 8.369(-3)
1.080 2.96u(-2)
6.71k 1.210(-1)
k,706(1) 5.697(-1)
3.773(2) 3.016
3.361(3) 1.776(1)
10 3.307(k) 1.150(2)
Table 2: Values of b

14
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3. Qgpments.

Graybill and Connell [2] have proposed a two-stage sequential pro-
cedure for the problem considered in this paper, in which the informa-
tion of the first sample is ignored once the size of the second sample
is determined. However, in practice this approach is not likely to be
acceptable. A solution making use of information from the entiie
sample would seem preferable. The author has worked out details of a
two-stage procedure based on the largest observation. This procedure
has optimality properties similar to those of the procedure of section
1. This work, together with details of unbiased point estimation of
6 based on the procedure of section 1 will appear in a later publication.

The author is indebted to E. W. Bowen for proposing these problems

and for meny helpful discussions.
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