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SEQUENTIAL ESTIMATION IN THE UNIFORM DENSITY 

by 

P-te: T. Cooke 

The main problem to be solved here may be described as follows: 

let X-jXp,,,.  be independent random variables, each with density 

f
0(
x) ^ Q    over (0>ö) and zero elsewhere.  It is desired to estimate 

the unknown parameter 0 by an interval of length at most d units 

and vith confidence at least l-a,  for some specified d > 0 and 

a in (0,1). An exact solution and an asymptotic theory for a sequential 

procedure are given in sections 1 and 2, respectively. 

The procedure proposed in this paper is optimal in the sense 

that the expected number of observations is minimized. It is also 

minimax in that the maximum possible number of observations is minimized. 

1.  The Procedure. 

By an estimation rule 5,  we understand the specification of a 

stopping rule, which for given X1,Xpj,... determines the number N of 

observations to be made, together with a function which we also denote 

by b,    mapping the possible  (X ,X ,...,X )   into sets of possible 

valuer of 6. Associated with a particular 6 is a function 

r(ö) - Pt-{0<£6(X1,X2,...)i which ^s the probability that 6(X1,X2,...) 

contains 6    in the sequel to be called the confidence function. 

For the problem to be solved here, without loss of generality we 

xi 
may suppose d = 1,  since for any other positive d, "T is uniformly 



distributed over  (0, -r)-  Hence we may consider the problem as one of 

a 
estimating — by an interval of at most unit length. 

The sets we shall use to estimate $   are intervals of the form 

6(X1,X2,.*.,X ) = (X^g(X )], where X^ denotes the maximum of 

X,,X2,...,X . Clearly,  6 maps the sample space into intervals of 

length < 1 unit on (0,0+1)  if X < g(XN) < XN+1. Our confidence 

requirement is y{e)  = Vj^ < 0 < g(XN)] > 1-«  for all 0. Since 

XN is sufficient for 6    in the fixed sample size case,  {N,XN) is 

sufficient for 6    in the sequential case.  (See Lehmann [5], p. 3«32.) 

But N is a function of XmT,  so X„ alone is sufficient for 9  , 
N       N 

The sequential procedure we shall adopt is as follows: 

(1)     Observe X1,X0,... until for the first time X <a  , 

where a1 ,a ,... forma non-decreasing sequence of non-negative real 

numbers. 

(2)     If this occurs at N = n, make the statement 'X < 0 < g(X )' 

The confidence function associated with this statement will be at least 

1-a for every 6    for an appropriately chosen sequence {a 1 . 
J 

The stopping sets for this procedure are determined by the 

sequence  [a.}. Clearly, the stopping set,  S ,  of points 

(X,,/^,...^ ) at which sampling stops at N = n, and the continuation 

set, C ,  the complement of S  in n-dlmensional Cartesian space, 

may be determined successively for n = 1,2,... by S, = (0,a] and 

the recurrence relation S = (C .n (0,a ] ' )x(0,a ), Thus we find 



S2 = ta1i
ö
2Jx(0,a2]f  S^ = (a1,a2]x(a2,a5]x(0,a5]ü(e2,a5]x(0,a5]x(0,a3 

etc. 

We will now determine the distribution function of X,,. On the 
N 

basis of our sampling procedure, for 0 > a  we have 

Pe(N=n) =Pe{{X1,X2,...,Xn)€SnJ 

0 
n 

b 
= — ,  for some b 

0n 

n-1  b 
For an . < 6 < a^ , P0(N=n) = 1-P.{K < n-l) =1-7   — . Define 

n-j.    — n   ü ö  — *—    r 

b --- 0. Thus, 
o ' 

L 
r=0 

Pn(N=n) = /  0  ,  0 < a 
- n-l 

n-l b 
1-7  — ,a_<^<a 

r=l 6
r 'n-l    - n 

. c x' a 
- n 

(1.1) 

n b 
For e = a , P 'N < ny = V — - 1. no—     *-   r r=l 0r 

Hence 

.     n ,  n-l ,  ri-2 
b = a -bna  -b^a 
n   n 1 n   2 n - bn-lan' n = 1'2' (1.2) 

We will denote by B (x) the polynomial obtained by replacing a 



in the right hand side of (1.2) by x; i.e., 

3n(x) = xn-b1x
n-:l-b2x

n-2 b^^ . (1.3) 

Thus,  we infer,   for    a    n  < x < a      and    x < 6,   Pfl{X>, < x,N=n) = ——    . 
0 

Now    PjX    <x|N=n)  = 1,     for    x > a   .     Hence b    n ~ ^    n 

P
e(xN < x) =   Z   Pe(Xr < x,  N=r) 

r=l 

= V
r|1
lpe(N=r)+VXv(x)^x'" = v(x)) 

where 

v(x)  = J    if    a.  .   < x < a.   . 

It follows that for al3    x    in (a    , ,a   ]    and    x < e, 
n-1 n        — 

-1 b   B (x) 

For x > 6    each side of this equation equals 1. 

Clearly, v(6) is the maximum nnmber of observations which could 

be required; i.e., v(ö) = maxnN,  the largest n for which P (N=n) > 0. 

Consider now procedures with terminal statement ,XN < Ö < X-j+l.' 

Using (1.^), the probability that this statement is untrue is given by 

n-1 b   B (0-1) 
a{e) ^fy < e-l) =   I     -I + -iL_., an_:L<0-l<an 

r=l 6 6 

(1.5) 

Hence the requirement r(e) > 1-a  is equivalent to a{e) <   a for all 6. 



The optimality criterion ve shall adopt is as follows:  of all 

procedures for which OL{Q)  < Q for all 0, a procedure is optimal if 

every other procedure with smaller v-function for some B    has larger 

V-function for at least one 0'  < 0.    The solution to be Investigated 

will easily be seen to also satisfy an optimality criterion of the same 

form expressed in terms of the expected number of observations rather 

than the v-function. 

Consider the case 0 < 0-1 < a . Using (1.5) and (1.5) we have 

0-1 
a(ö) = -—, which we require to be less than or equal to Q. Hence 

aa ai 
a. must be such that —-=- < a-    Suppose —STV- = a • t^t    P and P* 

•1- a« 'i ■" a_ 'JL 

be procedures associated with a. and a* and with v-functions v(0) 

and v(ö)*> respectively. If we put a, = a* we have v{e)  - 1 for 

0 in (0,a*]. Suppose we choose a, < a*. Then the procedure P 

cannot be optimal, since for any procedure P* associated with a'  in 

(a ,a*], v(ö), < v(0) for 0 in (a ,ai], but v(ö),  is not greater 

than v(0) for any 0 < a' . Since this is true for any a < a* and 

a'  in (a ,a*],  P cannot be optical for a. < a*. Hence we put 

al = al' i•e•, we choose a
1 

as large as possible. From (1.2), 

b- = a . In general, because of our optimality criterion, for each n 

we choose a  as large as possible; i.e., a  is the largest x for 

which 

n-1    b      x -b,x  -b^x  -...-b .x 

Z  -^ *    i 1 n-^-a (1.6) 
r=l  (x+X)1 (x+l)n 



and b  is determined using (1.2),  It should be noticed that ar   -  a,; n & v  / 2   1' 

i.e., N cannot take the value 2 and so the procedure must be 

started by taking one observation and if the observed X1 > a , an 

additional two observations. The second decision whether or not to 

continue sampling is then based on the observed value of X,. 

Values (correct to k    significant figures) of the first 20 

members of the sequence {a.) are given in table 1 for a  - 0.05 and 
J 

0.01. Members of the sequence [b.] are required for evaluating the 
J 

expected number of observations, hereafter to be denoted by E-.(N)< 

However, in section 2 we will derive asymptotic expansions for this 

function which are independent of the higher members of the sequence 

(b.j. Thus (in table 2) we only tabulate (correct to h  significant 
J 

figures) the first 10 members of this sequence for the above values 

of a. 

n-1  br    Bn(x) 
From (1.6) we have  >    +   < a for x in (a , .a ). 

r=l (x+l)
r  (x+l)

n n-X    n> 

Hence a(e) < a for 6    in the intervals (a 1+l,a +l), n=l,2,..., 

where a  is defined to be zero. However, for these values of 6,  the o 

confidence will equal 1-a    if we slightly modify the procedure and 

estimate f    by an interval of the form (X ,g(XN)], where 

gU^-X^ <  1. Clearly, we require P^ig^) < 6} = P^ < g"±(e)) = a. 

There will exist a value x(o,0) of x, depending on a and 0, 

lor which P0{X., < x)  = a* Hence g" (e) = x(a,0). For the optimal 

procedure v(ö) cannot take the value 2. Suppose v(ö) = n, n ^ 2. 

n-1 br  Bn(x) 
Then P (X < x) ^ J     — + —-— . Thus the largest root of the 

0 iN      r-1 0r   en 



polynomial aß  -h-O''   -b_^n" b .ö-B (x) - 0 when x is replaced 
1    2 n-1  n ' ^ 

by the observed value of X  is the required value of g(X ),  for 
n n 

a specified a. Clearly,  g(a ) = a +1 since a(a +l) =.■ a for 
n n n 

n=l,2,._   fl 

Using  (l.l),   for    6    in the interval     (a       ,a   ],     the expected 

sample size :'.s  given by 

n-1      r»"b n-1    b n-1 b 
EeW   -I       -p   +    n(l -   I     -^) = n -   j;    (n-r) . -|    . 

r^l        e r=l    0 r=l 9 

(1.7) 

As a variation of the procedure already described, we may consider 

taking observations in groups of m. m > 1. Let a  ' denote the n-th 
n 

member of the sequence which de ermines the optimal procedure (i.e., 

the sequence in which members are chosen successively as large as 

possible). Thus we have 0 - a1
(m) - aW =.-•= a^] < a(m) = a(m) =... 
1    2        m-1   iu    m+1 

= a2m-l < a2m :s"'   >    bi  = 0 for J not a multiple of m and 

0 < b   < b0  < ••• , where  [b. ']  is the sequence determined by 
m     2m j 

(a  ] usin^ (1.2), Also, using (1.7), for n a multiple of m,  say 

/ (m)  (m) , n - zm, and S    in (a  , av 'j we ha ve 
n-m  n 

z-l  (n-rm)b(Tr')     z-l rmb(m) 

rti    6™ r=l  e"-™ 

2,  Asymptot i c Theo ry, 

Before embarking on the asymptotic theory we will consider some 

sequences of numbers which will prove to be useful. From the binomial 

-  -  - - -       -  ;. -V r-   -~^:-_-_: 



00 /      \ 
... , 1        v-        (m}   r"m 

theorem,   tor    m    a  non-negative  integer    we ha^ e    —p   2.    r     ^ - 
n'   r=0 

(l-x)'(m+1), where r'm) = —- .     It follows that 
'     ^ ml 

I    >)/ = *■* . (2.!) 
rto       (l-x)m+1 

For positive integral powers we have 

m       / \ 
rm - I    S(m,s)r(s) (2.2) 

s=0 

where the numbers {3(m,p)], m > s, are the Stirling numbers of the 

second hind. These numbers are tabulated in Table XXII of Fisher and 

Yates [1] under the title 'Initial Differences of Powers of Natural 

Numbers.. * 

We now define a sequence of numbers [p.], where 
J 

P,   -    I    rVr  ,     ir-0,1,2,... (2.5) 
"'      r=0 

Thus,  using (2,2) and  (2,1),  with    x  ^ ~ ,    we have 

s)   -T       r    S(m,sjsle 

"      s-0 r=0 s=0    (e-1) 
v    -    I    Sim,S)   I r's'e-r -   £ 

_+ m jet    q    - — 
in      p o 

s+1     ' s-u r-j s-u    ^e-x; 

P 

_    r-      S(m,sjs'. m T   o f0 M 
qm-    I '     s    '    m=l,2,... (2.1+) 

s=0       (e-1)0 

8 

- - 



1 12* 
In particular,  q -  --rr and q = —- i —:—- .  Later members of 

d      e'1       (e-1)2 

sequence     [q   )    rnay readily be evaluated using the Fisher and Yates 
J 

i.able. 

Let  us assume  that    a      and   b       have power series expansions of 

the  following forms- 

n ^       d2 

n 

bn-c(f)n(l+!i.!|+...   ) (2.6) 

where c,k and the members of the sequences of coefficients  (d.} and 

[e.) are constants.» 
d 

We are assuming that a    asymptotically approaches the linear 

function    - (n^d   )    of    n.     If    a       increases approximately as    ^ 

for    n    larr-e,    b    = an-bna
n"  -b0an~    -...- b      a    ~ 

n        n    In        2 n n-1 n 

.n,n .       blk      V2 bn.lkn'1 

~ ^   ^ n" " —2~  '   " n~l—^   *    Thus,  under the assumption 
*    n n 

dl 
that --  is small compered with -,  it seems reasonable to assume 

the expansion (2.6) for b , 
n 

We will no^? find expressions for the constants c, k, d , d and 

v 
The equations    1,2) and  (l,^) which determine    a      and    b      ray be 

n n 

written 
n-1    b 
L    —   -   l (2.0 

r=0   a n 



n-1    b 

I  ^ = a (2.8) 
r=0 (an+l)

n r 

Formally substituting the power series expansions for a  and b 

into (2.7) and (2.8) and equating coefficients of povers of n leads to 

equations which may be solved in succession.  Coefficients of terms of 

-3 n-1 
higher order than n"  involve series  ][  rme"r, m = 0 to U, which, 

r=0 
wh^n n is large may be replaced, with exponentially small error, by 
00 

^ r e'  . Solving the equations and simplifying leads finally to 
r=0 

k = - log a 

1 ^ " I " ql " bl(5 " ^ d 
i 

- e 

e=po 

^o     <äf kb. 
d2 = -vl - i)(r+ T ■ &l\ + kbi-di)+ IT 

ei = d2 " - " 2     ^i - kbl 

Table 2.1 gives the numerical values of d  and d? correct to 

h  and 3 significant figures, respectively, for a = 0.05 and 0.01 

for the standard procedure P and procedures in which an initial set of 

m > 2 observations are taken. 

10 
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i 

m = ^ m > 2 

dl d
2 

dl d2 dl d2 

-5.080 0.67 -2.080 -U.97 -2.080 -O.25 

-5.885 1.69 -2.885 -4.86 -2,885 0.77 

a 

0.05 

0.01 

Table 2.1 

We will now derive asymptotic expansions for E^'N). Equation 

(1.7) may be written «s follows; 

n-1 rb 
EÖ(N) = n - 2. 

n-r 
, a . < 0 < a . 

r=0 0 
n-r    n-1    — n 

Thus, if 0 = a -x, 0 < x < a -a , 
'        n '  -    n n-1 

n-1  rb 
EJN) = n - £ —^ 

6 r=0 (an-x) 
n-r (2.9) 

From (2,5) 

n 
(2.10) 

Substituting this expansion and the expansion (2.6) for b  into (2,9), 

taking the sum from r - 0 to » and simplifying leads to 

11 



k^ . 1 „. . .h     ...       *1 ,*   ^^2 E,;(M) - n-C^+q^") + i ([e^ + ^ - d^ + ^ (dj^-kx) 

kx 2 1 
+ q2(d -kx)]e  + kb1(d1-kx)-k b. } + 0(-~) for 0 = an-x. 

0 < x < a -a . . (2.11) 
-    n n-1 

We may also expend En(N) in powers of — rather than — if 0 

and n are both lar^e.  In this case, if 0 = a  then n = k0-d, + 0(—) 
'        n 1   v0 

and hence, using (2.11) with x = 0 we have 

E0(N) = k(e + |) + b1((i - l)-k} + 0(i) (2.12) 

For assessing the efficiency of the sequential procedures discussed 

in this paper, a convenient standard is provided by the optimal fixed 

sample size procedure; for 6 > 1,  u(6) =  * -— is the least n 
log(l - i) 

for which    P (X    < ^ < X +l) > 1-a.    Since    k = log l/a, \i.{e) = 

k(0 ~ |)  + 0(|).    Thus,  using (2.12),    lim     |^T|T = 1    SO that the 

sequential procedures may be said to be asymptotically 100 percent 

efficient,   relative TO the optimal fixed  sample size proc3dure. 

We will  now derive csymptotic expansions  for    E,(N)    when the ob- 

servat ions are  taker, in groups of    m.     It  is sufficient  to consider 

only the case in which    n    Is a multiple of    m,     since if it is not, 

a        ^ a where    x    is the largest  integer smaller then    — .     Hence, n xm m 

let    n    be a multiple of    m,     say    n = zm.    Then,  using (1.8) 

12 



z-1 rmb(m) 

1 

E
P(N) = n - £    A"" n rm for e = a(m)-x, 0 < x < a(

m)-a(m) 
e        r=0 (a  -x) n   '  -    n   n-m 

(2.15) 

Expending the right hand side of (2.15) in powers of n leads to terms 

of higher order than n'c involving the series  ][  (nn)Je'':nn, 
r=0 

J = 1,2,5. However, for fixed m and large z, these series may be 

replaced, with exponentially small error, by  J (rm)Je"  . 

We now define a sequence [q^ ],    where q(m) = (—) ^ (rm)Je''rin, 
J J m i  e  r=0 / , \ m-l / N  (e-l)e 

j = 0,1,2,... . Thus, for example, q^  =     and 
o     / m -1 \ (e -1) 

(m) mje-pe*'1 

QT  =  z      o— • Hence we are led to 
1 (e"1-!)2 

Q{m) 

Ee(N) = n-e^C^^.^e^)^ - a^ +i (d.-kx)2,« 

+  (d -kx)qjm)] + 0(4)}    for    m > 2,  e = a(ra)-x,    0 < x < a(m)-a(m) 

n n        '        — n        n-m 

and for    m = 2 

EC(N) = aZ-ek>-^) + Ii[eiqf )+^ - ^K ^.^f^K^.^) 

+ ^)e^] + o^)    for    e = a£)-x, 0 < x < 4f-g.^  • 

15 



In the tables to follow, when a number is given in brackets, it 

is the exponent to the base 10, of the number iranediately preceding it; 

e.g. 2.101(4) = 21,010. 

s. 0.05 0.01 

1 2.632(- ■2) 1.010(-2) 
2.632{- •2) 1.010(-2) 
2.88o(- 1) 1.045(-1) 
5.003(- 1) 2.405(-l) 
7.79l(- 1) 3.978(-l) 
I.065 5.755(-l) 
1.372 7.6U2(-1) 
1.686 9.6l7(-l) 
2.007 I.165 

10 2.332 1.572 

2.660 1.582 
2.990 1.794 
3.321 2.007 
3.654 2.221 
3.986 2.456 
U.320 2.652 
U.653 2.867 
4.987 3^085 
5.321 3.500 

20 5.654 5.516 

Table 1: Values of a n 

£ 0.05 0.01 

1 2.652(-2) 1.010(-2) 
zero zero 

1.952(-2) 1.05l(-5) 
4.63l(-2) 2.944(.5) 
2.197(-1) 8.369(-3) 
1.080 2.964(-2) 
6.714 1.210(-1) 
4.706(1) 5.697(-l) 
5.775(2) 5.016 
5.561(5) 1.776(1) 

10 5.507(4) 1.150(2) 

Table 2: Values of b 
n 

14 



3.  Corenents. 

Graybill and Connell [2] have proposed a two-stage sequential pro- 

cedure for the problem considered in this paper, in which the informa- 

tion of the first sample is ignored once the size of the second sample 

is determined. However, in practice this approach is not likely to be 

acceptable. A solution making use of information from the entiie 

sample would seem preferable. The author has worked out details of a 

two-stage procedure based on the largest observation. This procedure 

has optimality properties similar to those of the procedure of section 

1. This work, together with details of unbiased point estimation of 

0 based on the procedure of section 1 will appear in a later publication. 

The author is indebted to E. W. Bowen for proposing these problems 

and for many helpful discussions. 
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