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tpport and interest of the United States Air Force in making possible theApreparation of this monograph as a national contribution to N.A.T.O.
The theoretical work mentioned here stems from a broader interest

in the phenomena associated wit, .'0mbustion instability in liquid pro-
pellant rocket motors, which forms the basis for a research programme
presently being carried out at Princeton University under the sponsorship
of the Bureau of Aeronautics, United States Navy.
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1.01. STATEMENT OF TH-, PROBL-

EXPERIMENTAL observations show thaE the combustion in. a rocket
combustion chamber operating with liquid propellants is never perfectly
smooth. Even when the introduction of the propellants through the injectors*

and the exhaust of the burnt gases through the nozzle are carefully designed,
in order to obtain steady conditions, a certain -amount of non-steadiness is . -:

always present, as is deduced from observation of the pressure recorded at any
location in the chamber. Similar fluctuations of temperature, velocity, .
composition, etc., can also be assumed, even in the absence Of direct indica-
tions. It is impossible to decide at present how much of this non-steadiness is
due to-pure fluid dynamic causes generating turbulence, and hdw much to
the combustion processes themselves. What is certain is that an extremely•

turbulent condition is always present in the chamber, and is probably the
cause fror the intensity of the noise produced by the rocket operation, in
accor-dance with theory'. The amplitude of the fluctuations is different for

Sdifferent motors and, in the same motor, for different operating conditions, 11
S~When the fluctuations are small, the combustion is said to be smooth, and

when they are large it is said to be rough; but these terms have no precise
Sdefinition. 4 9

The results of combustion roughness on the operation of the -ocket can be !
S~very" different. In certain cases a considerable amount of roughness does.not

prevent succe-ssful operation and practical use of the rocket. -In others very
• detrimental-effects are produced, such as severe vibrations or interference
-• -with the controls and safety devices, mech anical failure of parts of the rocket
:• ~or of the accessry systems, aad finally, thermal failure (burn out) of some
•. part of the internal rocket wvalls. It is the occurrence of these detrimental

-•. ~effects, and their importance in determining the life and the operating •
S~characteristics of a rocket system, that makes it necessary to gain some under-

standing of the underlying processes. A possible line of attack would be to •
describe in detail the phenomenological aspects of the question, try ing to •J
systematize the experimental information in order to derive general results.

another monograph of this seriest, we shall use a more deductive one. In M•

other words, we shall make use of our present knowledge of the combustion •-
processs even if only qualitative, with the following objectives: ••,
(a) to establish a rational explanation for the existence of a detrimental and •.,

of a non-detrimental type of rough combustion•
(b) to distinguish a number of mechanisms which may be responsible for.

the appearance of the detrimental typ~e
S(c) to give for some of these mechanisms plausible quantitative formulations
S(d) to analyse in detail the resulis of the theoretical developments.

Item a of our programme is discussed briefly on a purely qualitative basis in
Sections 1.02 to 1.05. Sections 1.06 to T.10 deal with item h suggesting and

EXEIENA.berain.s..ha h omuto in a rocket._
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1.02 GENERAL CONSIDERATIONS

discussing qualitatively a few basic mechanisms without entering into any
analytical development. In Section 1.11 a quantitative relationship is
"established as a working tool for the theoretical treatment of the different
mecharnisms (item c). The rest- of the monograph is entirely devoted to the
development of the theory and discussion of results (item d).

1.02. THE CoMBusnoN PROCESS

In order to be able tG understand the reasons for the different behaviour of
• the combustion process in different cases it is necessary to discuss briefly how,

in fact, combustion of one or two liquid propellants takes place. The
V ; process starts with the injection of the propellants, brought through an appro-

priate feeding system from the tanks to the injector, where a pressure excess
Sexists with respect to the chamber pressure. The purpose of the injector is to

• - •make use of the pressure drop through the injection ports for the conditioning
of the propellants for combustion. The requirements are different for
different categories of propellants. In monopropellant systems the decompo-
sition of the propellant is produced only by the contact with high temperature
gases produced prc-Aously. It is therefore necessary to obtain:
(1) a large surface of contact between the liquid and the gases
(2) a convenient proportion between the mass of the propellant and the

mass of the hot gases surrounding it
(3) a good renewal of the hot gases to activate surface exchanges.

Requirement 1 is satisfied through good atomization of the liquid,
requirement 2 through properdispersion of the droplets in the gaseous mass,

I k and -requirement 3 through positive recirculation of the hot gases in the
atomization region.

In-bipropellant systems a necessary prerequisite for any chemical reaction
to take place is the mixing of the two propellants. Therefore one must
obtain from the injection system:
(4) a fast, as uniform as possible, mixing between the two propellants.

The fulfilment of this requirement would be virtually sufficient for
self-reacting propellants (hypergolic propellants or monopropellant and
liquid catalyser). For non-hypergolic propellants, however, mixing is not a

sufficient condition and combustion must again, as for the monopropellant
case, be activated by exchanges with the hot gases; thus the iinjector has
still to fulfil the requirements from I to 3 in addition to requirement 4. The
same is likely to be true for most of the systems using hypergolic propellants.
Only during ignition do such systems generally rely on the reactivity of the

i propellants alone, and once ignition is obtained such systems operate
substantially as other biprpellant systems, though in improved conditions.
There are of course other important requirements of the injection system,
but they have no direct cornection with the combustion process.

If we follow an element of propellant (monopropellant case), or two ele-
ments of propellaists destined to react together later (bipropeliant case), from

k rf • the moment of injection into the combustion chamber to the total conversion
into the final products of combustion, the element will describe a mare or
less complicated path during which processes such as atomization, heating,
vaporization, diffusion and turbulent mixing, and chemical reactions take
place in an intricate way. The chemical reactions are generally important

A2
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TIME LAO AND SPACE LAO -1.03 -

only in the last stages, after the propellants have been properly conditioned.& ~~~~The evolution of the substance from the initial conditions of the propellants -;a:..
to the final conditions of the burnt gases is gradual. A quantitative descrip-

tion of the evolution would require a detailed knowledge of all the inter-
mediate processes. This is impossible at present. However, an approximate
description can be obtained, based on the consideration that the most I
important changes are produced by the chemical reactions and therefore
only toward the end of the evolution. The well known exponential effect of
temperature on the rates of reaction will tend to accentuate this effect in the

Figurt 1. M•matic diagram • !J0~oB•, -:

ofow? draworWh M of Rfelcig

S~~~~monoppopellanfor in the well mixed bip'cpllant system, while the effect •

will be less sharp if mixing is stillii~r-mploetin the last stages ot the evolu- ""

tion. Therefore, if we were able-to plot a cqtainrepresentative-quantit like
energy release,- or volume Of the elemient, versus the time elapsed from the
injection instant, the result would appear as shown'by Figure .

1.03. Thm LAG AmD SPACE LAo
The approximation to be taken is now evident. It consists of replacing the
gradual evolution by a discontinuous process, in which the element does not
produce any appreciable energy release or volume increase up to a certain

time, whereupon it is suddenly transformed into the final products ofreaction. -- - -

In this way the impossible task of describing the combustion process through
the quantitative-knowledge-of its intermediate histpn y i-ý made much simpler

because the only quantity one needs to know for the timewise description of
the combustion is the time elapsed between the injection and the suddenk
conversion into hot gases, that is the time -ag.

If one is interested in the spacewise description of the combustion the time
lag must be replaced by a space lag,- a vectorial quantity- indicating the
location of the chamber where the sudden transformation of the element con-
sidered into hot gases takes place. Of course the space lag can be related to
the time lag if the vectorial velocities of the elements are known during- the
time lag itself It is clear, however, that the lack of indication about these
velocities can be comDletely replaced bythe iadependent knowledge of both 4

time lag and space lag, the two quantities being, in principle, susceptible of

3



1.03 GENERAL CONSIDERATIONS

scparate. experimental determination. A very convenient consequence of the
approximation introduced is that the propellant elements are present in the
chlamber either in the liquid fbrm, with negligible volume and negligible
contribution to tihe properties of the gases filling the chamber, or in the form
of final products of complete f-ombustion. It follows that the chamber can be
considered to be filled only with burnt gases, through which liquid droplets
are travelling without affecting the properties of the gases to any appreciable
extert.

How closely this approximation represents the actual situation depends
probably on the particular case under consideration. If in the case con-
sidered the propellants stay mainly in liquid f,,rm during most of the time lag,
and vapours or other intermediate gaseous pruducts have a very short lifetime

A•p and give place nearly immediately to the combustion products, then the
approximation can be quite good. In the opposite case, when the propellants
are vaporized early and remain in gaseous form during most of the time lag,
the assumption that the gases present in the chamber are only the final
product of combustion may introduce noticeable errors in the evaluation of
the mean proper ties of the gases filling the chamber. Nevertheless, the fact
that at present there is no way of predicting quantitatively the real process of
evolution, makes it necessary to accept also in this case the approximate
description of the process. Generally, the frequencies of iongitudinal oscilla-
tions measured in efficiently operating rockets are below the so-called
organ-pipe frequencies computed from the sound velocity in the burnt gases.
This fact has been interpreted as a proof that the temperature of the gases
-decreases considerably, when going from the nozzle to the injector end.
however, it will be shown in Chapter 3 that considerable departures from
the organ-pipe frequencies toward lower values are produced by the simple
presence of a de Laval nozzle. These departures may justify the observed
decrease in frequency without having to accept a decrease in mean tempera-
ture of the gases in efficient rockets.

We are now able to describe ouantitatively the whole process ofcombustioui
'in a combustion chamber by specifying the proper time lag and the space lag
of every element of propellant injected at any location of the injector.
Generally ti,.se two quantities are different for different elements and they
can be spread in a smaller or larger range; the case in which one or the other
quantity has the same value for all elements must be considered only as an
ideal limiting case. In agreement with the approximation we have just
discussed, the combustion chamber is filled only with the final product of
combustion and the presence of liquid propellants on their way from the
injection point to the location corresponding to the space lag can be ignored
except for the small correction of momentum exchanges as will be clear later.
If we neglect this momentum exchange, the points where 'he sudden con-
version of the propellants into combustion gases is effected, can be con-
sidered (in the aerodynamic sense) as sources of hot gases. It is clear that
the flow properties in the combustion chamber are determirned by the distri-
bution and intensity of these sources. If we assumed, for instance, that the
injection rates were independent of time, and that time and space lags were
constant too, the resulting intensity of the sources would also be independent
of time. This would result in a steady flow in the com'oustion chamber and

4
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72:ROUGH COMBUSTION AND UNSTABLE COMBUSTION .04

among other quantities, the local pressure would be perfectly constant. But
we have already mentioned the fact that such a perfectly smooth combustion
does not exist in practice. Therefore one of the aforesaid assumptions must

j be wrong. That is, the injection rate or the time lag or the space lag (or more
than one quantity at one time) must be non-steady.

1.04. ROUGH COMBUSTION AND UNSTABLE COMBUSTION

In-fact, the above conclusion is not too surprising. Suppose for a moment
the injection rates are constant, a condition which can ideally be obtained
by appropriate design of the feeding and injection systems. The-physico-
chemical processes taking place during the time lag proceed at rates which
are more or less affected by such factors as pressure, -temperature w" the
gases and of the liquids, relative velocities and so on. If these factors are
changed, the rates change too and the time lag with them, faster rate,,
resulting in shorter time lags. If the factors undergo fluctuations around
a mean value, the time lag for each propellant element is also a fluctuating
quantity. Whrn, at a certain location, the time lag is, for instance, increasing,
the result is a dilution in time of the combustion process and hence a
decreased burning rate. On the contrary the burning rate is increased
when the time lag is decreasing. Therefore fluctuations of the rate-affecting
factors result in fluctuations of the burning rates, or in our simplified com-
bustion model, in fluctuations of the strength of the sources of hot gases,
even with constant injection rates. It is evident now that if we relieve this
last restriction, the variations of the injection rate will introduce additional
fluctuations in the burning rates or the strength of the sources.

On the other hand, the system consisting of the gases in the chamber, the
propellant in the feeding system, and the mechanical parts of the chamber
and of the feeding system, is capable of non-steady effects even in the absence
of non-steady effects in the proces of combustion. Processes such as the
oscillations of the gases in the chamber, the liquids in the feeding system, or
the mechanical parts, can always be produced if properly excited. These
processes are generally distinguished by a characteristic time which cor-
responds to the period, if the process is periodic, and to some -kind of -

relaxation time if the process is aperiodic.
Now two conditions are possible"
(1) None of these processes is excited; the fluctuations in the chamber

are maintained by some internal effect related to the fluid dynamics of the
system, such as, for instance, some kind of flow instability of boundary layers
or shear flows, producing fluctuations of the same general character as in _

ordinary turbulent flows. In this eventuality, the correlation between
fluctuations at two different locations or instants vanishes as soon as the
space or time interval is not too small. Practically, the fluctuations at
one point or instant are independent of those at different points or instants
and therefore have a random character. As a result the integrated effect
of the fluctuations on a finite extension of surface or time has a tendency to
vanish and therefore no additional mechanical or thermal load is to be:
expected on the rocket and on the accessory systems, even when the fluctua-
tions have considerable amplitudes. This case corresponds therefore to 0-d
the non-detrimental type of rough combustion.

5
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-1.04 GENERAL CONSIDERATIONS

(2) One of the non-steady processes of the system is excited. As a result
of the excitation of this process, that can be called the coordinating process,
organized oscillations of some of the rate-affecting factors or of the injection
rates are present, which in turn result in organized oscillations of the burning
rates (or the source strengths). These provide the necessary exciting force
for the maintenance of the coordinating process itself. It is to be observed
that the effect produced on the burning rate by the instantaneous departure
of one of the physical factors from its mean value is not felt immediately,
but is displaced in time and space due to the existence of the time and
the space lags. 'The behaviour of such a sy~tenr must present analogies
to the behaviour, of the closed loop systcw with time delay considered in
servo control treatment. We know that these systems can be stable or
unstable depending on the specific conditions of the case under considera-
tion. The fundamental character ofan unstable system is such that supposing
initially the-system is running smoothly (which is ideally possible from a
static point of view), any small disturbance applied, say, to the pressure
distribution in the chamber, has a tendency to amplify. Actually, its
amplitude would grow without limits if non-linear effects were not present

A• to limit the amplitude to a finite value. Therefore a necessary condition
for the excitement and maintenance of the coordinating process is the
instability of the system and it is proper to attribute to case 2 the name of
unstable cowbustion. On the other hand, the condition of case 1 can be called
stable no matter how large the random fluctuations of the physical factors
are, because applied disturbances have a tendency to die without being
able to excite any coordinating process. It must be observed that the causes
that produce the random fluctuations are, present also -in unstable con-

-ditions. Therefore in unstable combustion -random fluctuations-armsuper-
- posed on the oscillations corresponding -to the coordinatin process. Thus
-the fundamental difference between unstable and rough- (but stable)- com-
bustion resides in the presence of these organized oscillatons, and-in the
fact that, because of the organizing -effect of the coordinating process, a
well defined correhtion is, established betwetm the fluctuations at two

4 1 • different points or instants; no matter how large the space or time interval iM
When these organized oscillations are present the integrated effect on a
finite surface or period can be different from zero with the result- that

BM increases in pressure forces, mechanical vibration levels, and thermal loads are
to be expected. Thus we reach the important conclusion that the detrimental
type of rough combustion can be identified with unstable combustion.

¶ In general, because of the self-amplifying character of small oscillations
4 in unstable combustion, the amplitude of the pressure fluctuations isj¢• expected to be larger than those in cases of stable rough combustion. How-

ever, this is not necessarily true, and one can very well conceive an unstable
condition where strong non-linear effects limit the amplitude at a lower
level th-r, that of other cases with stable but very rough combustion. It is
therefore clear that the level of pressure fluctuations is not an objectivie
index for the discrimination between stable and unstable combsstion, and
therefore between safe and dangerous conditions. A more objective basis
is found in the presence of periodic oscillations with well defined frequencies,
or, in the case when the roughness of combustion makes it difficult to _

6
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detect such periodic oscillations if their amplitude is not very large, in the 2
determination of the correlation between pressures measured at different
points.

1.05. NoN-LumI EFFEcTs

In the preceding discussion we have characterized the unstable combustion
by the property that small disturbances ar self-ampli'qing. This is what,
in analogy to other unstable systems, can be called linear instability, because
for very small disturbances all the effects are proportional to their causes
and th6 equations describing the system are of a, linear type. However, one
must observe that if combustion is linearly unstable, small initial disturbances
are soon amplified to such an extent that important non-linear effects may
appear. Among such effects we mention for example the fact that certain-
rates depend- exponentially on temperature with the consequence that the
mean rate is lkiger than the rate corresponding to the mean temperature.
Another important non-inear effect is the generation of shock waves from
the coalescence of compression waves in the combustion chamber. An
important result of the presence of non-linear effects is that a system, • s
stable against small disturbances, may become unstable when the amplitude
of the disturbance is increased above a certain limit. Below this limit any
disturbance would die out with time; but above this limit self-maintained J
oscillations are produced. This is what, in analogy to other systems, iscalled non-linear instkbility. Its possibility is interestinig for rocket operation
because if the non-linear limit is not too low it is possible to avoid this kind
of combustion instability just through careful protection against functional
or accidental disiurbances..

One- possible mechanism for non-linear instability can be conceived -to-
consist of a direct actiOn of shock Waves on the rates of chemical reactions.
If it is assumed, in-accordance-with some experimental indications"-, that
a -shock wave produces an -effect, -on chemical processes, larger than the j .
combined effects of the pressure and temperature increases through the,• ~ ~shock Wave itcel, thent the interaction. betwceen fluctuations in the chamber i
and burning rates is emphasized when shock waves appear. The result of

this assumption-is that a system presenting stable combustion for small
disturbances may become unstable when- the disturbance is large enough

S~tb generate shock waves.Though it is recognized thdt non-linear effects can be important, the j

fact that their phy-ical essence is still obscure and that their analytical
treatment involves great difficulties makes it necessary for the moment to
discount non-linearities in developing a theory. Therefore in the following
-we shall consider only linear effects, which can be treated through the
method of small perturbations. This means that the treatment will bej. strictly applicable only to cases where the effects of instability are not so
strong as to produce large amplitude oscillations. In other words; the
theory can be applied mainly to conditions of incipient instability and
therefore to the determ:nation of stability limits. As an a postriori justifica-
tion we observe that linear treatment actually predicts the possibility of
unstable combustion in the observed ranges of frequency and that there
seems to be a general qualitative agreement between the theoretical pre-
dictions on stability limits and many experimental observations.

7-
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• •_;• I1.06 GENERA CON•SIDERATION
1.06. MECHANISMS OF UNSTABLE COMBUST2ON: CHUGGING

In-order to illustrate the considerations of Section 1.05 and to formulate a
quantitative treatment in a few representative cases, it is necessary to specify

[ - closer plausible mechanisms for the production of self-maintained oscillations
in a rocket. Let us consider a rocket in steady state op~eration. By steady

state we do not indicate here the absence of any fluctuations in the physical
quantities, but merely the steadiness of the average quantities; and in
effect we know from the discussion of the last sections that stable operation
with steady values of the average quantities is possible even with rough
combustion because the integrated effect of the random fluctuations on
large areas or volumes is zero. Suppose now that we produce artificially a
sudden increase of pressure in the combustion chamber, corresponding to
an excess of gas content of the chamber with respect to the steady state
content. Suppose also that the feeding system is designed in such a way
as to be insensitive to chamber pressure variations and that the time lag
is unaffected by pressure. As a particular case, the time lag could be
negligibly small. This means that both the injection rate and the burning
rate will keep the same value they had before the application of the dis-
turbance. It is clear that the balance between burning rate and exhaust
rate-is disturbed, the latter now being too large. The excess of gas content
must therefore decrease with time and the pressure excess with it, until
eventually they both vanish and the steady state condition is re-established.
The actual process of adjustment is complicated by the presence -)f waves
travelling back and forth in the combustion chamber, which introduce
non-uniformities in pressure and other physical quantities. However, for
ordinary rockets, with the exception of the extreme case of a throatless
motor, the change in chamber pressure during the total time of propagation

-back and forth of a wave is contained in narrow limits. As a conscq:ence,
the amount of non-uniformity of the physical quantities at any given
instant is small, and one obtains a sufficiently accurate description of the
process by neglecting the propagation time of the waves and assuming
uniform conditions in the chamber. The problem can be solved simply,
and results in an exponential decay of the disturbance with time, dis-
tinguished by a characteristic time constant or chamber relaxation time.
For conventional systems the chamber relaxation time is generally between
one thousandth and one hundredth of a second, the wave propagation
time being generally several times smaller.

Let us next consider, as a second example, a simple monopropellant
rocket with feeding system consisting of a constant pressure tank, aut injector,
and a connecting pipe. Suppose, for the sake of simplicity, that at every
instant the exhaust rate is exactly equal to the burning rate and to the
injection rate (these assumptions being correct only for zero time lag and
zero chamber relaxation time). In steady state the pressure drop from the
tank to the chamber must be sufficient to provide the proper injection rate.
Suppose now a sudden increase of the flow in the feeding system is produced
artificially and the rates of injection, burning and exhaust also increase
instantaneously as postulated. The chamber pressure therefore also under-
goes an instantaneous increase and the pressure drop a decrease, which is

inot compatible with the increaed injection rate. Thus when the system is

8
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- ~---' - MECHAISMS OF UNSTAULE'COMBUSTION: CHUGUING WU.6

left to itself, the flow rate and the chamber pressure must gradualiy dlcrease
until eventually the steady state conditions are restored. Again the process-
is complicated by the presence of wave moving back and foith in the
propellant lines, which results in n,- aniform- flow rates along the lines. --

However, if the variation of the flow rate during the total time for propa-
gation of a wave back and forth in the-line is-relatively Sma, -the mean
process of adjustment is described with sufficient accuracy by neglecting the
wave motion and assuming that the flow rate at every instant is uniform at
all sections, so that the propellant moves as aisingle incompressible slug.
With- this approximation, sufficiently correct in many cases, the mean.
process is again found to be an exponential decay ofthe flow rate excess
(at least fo _perturbations small enough to preserve the linearity), dis-
tinguished by a characteristic time constant, or 'ne relaxation time..

For conventional feeding systems -the line relaxatiou time is generally
of the -same order as the chamber relaxation time. However, it can vary
independently of the latter and its magnitude can lie in a wider range.
Of course the assumptions-of -these two examples are not very realistic.
However, the results give-an idea of the behaviour of more complicated
systems in the ideal case of vaniishing time lag.

r-n all cases an artificially applied disturbance must ýdecay with time,
apeodically or periodically.- An exception may be provided by servo"
controlled feeding systems; in this case the flow system may be destabilized
by the presence of the serVo control; and the amplification of small dii-
turbances may be the result. With the exclusion of ths case, all -rocket
systems would be stable if the time lags were zero. Despite the fact that
the decay of distfirbance is not in general giveA by a simple exponential -

factor, it is possible to derive for this ideal case an approximate rate of decay
or relaxation time. This is of the same-order-as thelrger of the previously
defined &hamber relaxation .and' line ielaxation times, and- therefore
-:much longer than thepropagition time of raves in the chamber, and-
often also of the wave pr gtiontie in-tthe-propellant lines. Thus,- --

if the condition is also- satiffied in- the geiehal cse, the pr- -s-of decay
can-be analysed jeglecting the two types of wave motion. The order of
magnitude of the relaxation time for conventional systems is between a few
-rmilliseconds and a fewhundredths-of a second, while lie-waý- propagation
time in the chamber is generally of the -order of one millisecond or less.
The wave propagation time in the lines can vary in a wider- range. It is
also difficult to define a wave propagation time in complicated- feeding
systems because of the heterogeneity of the lines. Generally it is of the
order of a few milliseconds. "

What is the result of intridudng a finite combustion time lag? The -=-

answer is the-same as for other types of systems: the time lag has a de-
stabilizing effect. Thus if one increases the magnitude o: the time lag, a
system with aperiodic decay of disturbances will becomn oscillatory and
damped; and eventually the damping rate can change its sigit and the
system can become unstable. That this final condition is possible can'be
shown on a purely qualitative basis through the following reasoning. Sup-
"pose a systenmith a constznt press=re supply is working in oscillatory con-
ditions, so dthat the chamber pressure oscillates around the mean value.

9
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1.06 GENERAL CONSIDERATIONS

"As a result the pressure drop also oscillates, going through a minimum when
the chamber pressure is maximum and vice versa. The injection rate will
also be affected with a certain delay, of the order of the line relaxation
time, and the burning rate will follow the injection rate with a delay equal
to the time lag, supposed, for simplicity, to be the same for all propellant
elements. Thus the time phase between the minimum of the burning rate
and the maximum of the chamber pressure is approximately equal to the
sum of the line relaxation time and the combustion time lag.

" !i i Oscillations of
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On the other hand, the effect of burning rate oscillations is fet in the
chamber with a delay of the order of the charaber relaxation time. Therefore
if the sum of the two relaxation times and the combustion time lag is
approximately equal to a half period of oscillation, the decreased contri-
bution of combustion to the chamber pressure resulting from a maximum
in the chamber pressure will be felt when the chamber pressure goes through
a minimum and vice versa. The conditions for self-amplification of the
oscillations are thus created. Figure 2-shows schematically the relative
situation of the oscillations of the various quantities in accordance with the
foregoinig discussion.

From this approximate consideration, not only is an unstable situation
seen -to be possible, but also an approximate condition for instability is
obtained. This approximate condition of instability is that the sum of

10
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the relaxation time of the system plus the combustion time lag must be of
the order of half a period of oscillation. We shall see inwChapter 2 thatt-a
-more accurate quantitative expression of this dine conditiois essential-in the
theory of unstable combustion.

We have now demonstrated the first mechanism for unstable combustion,
in which the coordinating prozess consists of the relakation process of the
system, through oscillations of the injection rate and therefore of the burning
rate. This mechanism is not only practically -important because it occurs
frequently, but is also historically important because it was the first to
be recognized as possible in 1942 by von K•rmin and his group, and also
the first to be subject to analytical treatmentsý. The. corresponding range
of frequencies can be estimated from the time conditiofi. If the time lag
is small, compared with the system relaxation time, the system is stable.
Therefore, in order to have unstable combustion, the time lag must be at
least of the same order as the system reiaxation time. In which case, from thetime condition, we see that the period ofthe oscillation mutt be around -+ ++ =four times the time lag; and both are of the order of the relaxation time.

If, on the other hand, the relaxation time is small compared with the time
lag, the period of oscillation is approximately double the time lag and bothJ are larger than the relaxation time. Supposing that the time lag- is around
5 msec (which gives the correct order ofmagnitude), the resulting frequencies
are of the order of 50-100 c/s. Combustion instability with frequencies of
this order is generally called, in the language of rocket engineering, chugging,
or low frequency instability.

1.07. ANo•ER MECHANISM FOR CHUGGING

An alternative mechanism for the production of chuggings, independefit
of the injection process, is based on-the-fact, already dtscissed in-Section 1.04,
that the time lag under oscillating-conditions is also an oscillati"ng qutantity.

* Suppose that the essential factors affecting the rates of the poessduring
the time lag are the pressure and the temperature, and that the temperature
oscillations are correlated with the pressure oscillations. Since it is certain - - -

that in steady state an increase in pressure produces a decrease in time lag,
the same will be true for non-steady conditions. That is, the time lag- is E
shorter than its mean value when the pressure (averaged during the time lag
itself) is above its mean value, and vice versa. The way of averaging the
pressures during the time lag will be discussed later; but on purely quali-
tative grounds, we can say that if the pressure is oscillating, the time lag goes
through a minimum when the pressure is around a maximum during the
time lag and vice versa. This is illustrated in Figure 3, where, again, the
same time lag is assumed for all propellant elements. If the injection rate
is constant, and the time lag is close to a minimum or a maximum, the i
conditions will be dose to those obtained for constant time lag, and therefore.
the departure of the burning rate from its mean value -ill be zero. On the
other hand, if the time lag is increasing or decreasing, there is a dilution or
concentration of combustion. Therefore the burning rate goes through a -

maximum when the rate of decrease of the time lag is a maximum, and
through a minimum when the rate of increase is a maximum. Thus the
resulting burning rate oscillations must lag a quarter period behind the

III
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1.07 OGENEAL cONsI1DERATIoNS

time lag oscillations, as shown in Figure 3. Finally the effect produced on
the chamber pressure by the oscillations of the burning rate is felt with a

k delay of the order of the chamber relaxation time. If this effect is in phase
with the chamber pressure oscillations, as in Figure 3, the most favoulrable
conditions for self-amplification are created. Again, the time condition can

4 be expressed in a siinilar way to the one discussed before, and if the time
lag is given the same value of a few milliseconds, the resulting range of
frequencies is the same as before.

Si OGaiilations of

STiAme

Figure 3. Schimma diagram
of me zVaiow oseilluting quon-

t ihies eriyus litna with gwaiabk

Baurn,:qr,

O,?Ch&nh•mjr re/ntion time

We consider that chugging can be produced independently of the feeding
system characteristics. The coordinating process for this type of instability,
that has been called intrinsic instabili!y, resides in the chamber relaxation
process through the action of the oscillations of the physical factors on the
burning rate. The mechanisms described thus far, fer the production of

Sinstability, are distinct; howevcr, since they are characterized-by corn-
parable frequency conditions they can also be present simultaneously, each
one reinforcing the other. It is to be expected, for instan'e, that a chamber
intrinically unstable cannot be stabilized by the presence of aý conventional
feeding system. However, through the- appropriate use of servo controls
in the feeding system, one can think of producing stabilizing effects, a
possibility suggested by H. S. Tsw4'. All these questions will be subjected
to analysis in the following chapter, where the instability limits resulting

,: •from both types of coordinating processes are determined, and Tsien's idea
12
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of servo stabilization is shown possible. It must, however, be observed
that in order to provide an effective control of this type, mechanical servo
controls must be made to work in the range of frequencies characterizing
chugging, that is, with mechanical time lags of the Order of one hundredth
of a second at most, much shorter than ordinary mechanical lags, which
are around one tenth of a second. F. E. M ARBLE"- has suggested that
servo stabilization can be obtained with a frequency of the servo controlS~~~equal to a subharmonic of the unstable frequency. ; i

Of course, as we have already noticed, servo controls can be destabilizing

as well as stabilizing. The corresponding range of frequency for ordinary
se•vo controls, with time lags around one tenth of a second, results in oscil-
lations of frequencies below 10 c/s, and therefore is likely -to be well distinct
from chugging, and practically unaffected by the combustion phenomenon.
For this reason, we think that this type of instability must be considered
separately from chugging.

The same practical independence between the instabilities originated by
the two types of coordinating processes, discussed in this and in the pre-
ceding section, is to be expected in the following case. We have thus far
supposed that the time lags responsible for the two types are of the same
magnitude. However, in Section 1. 11 we shall discuss the possibility that
only one part of the total lag is dependent on the physical factors, in the
chamber. The remaining portion of the time lag is then practically un-;
affected by changes of the physical factors. If this possibility is accepted,
then considering again the case of intrinsic stability (without variations of the
injection rate) we see immediately that the portion of the time lag which is
unaffected by changing conditions has no effect on the stability; and that
only the variable part of the time lag is important. Therefore the period of
the oscillations-for intrinsic instability can be much srnaller than that for a
feeding system type ,f instability. If the magnitudes are suffic7ienily different'
from each other (as for instance if the variable part of the time lag were ofone
or two thousandths compared with a total time lag of five thousandths) then
'the interaction between the two processes can become practically negligible.
At the same time the frequency of intrinsic instability would increase, and
become closer to the frequency characteristic of wave motion in the lines -
and in the chamber. The assumption of neglecting wave motion effects
becomes more questionable. As a matter of fact above a certain frequency the
wave motion can become essential, as will be discussed in the next sections.

For this reason, and with the purpose of avoiding too complicated comn-

putations we have confined the analytical tmatment of Chapter 2 to the case
when all of the time lag is affected by the physical factors. The effects of
the coordinating process discussed in this section and its interaction with
the feeding system in exciting instability are magnified by this assumption.
The analytical results must therefore be considered ,only as representative
of this limiting case.

1.08. MECHANISM oF UNSmTALE CoMBUsTION: SCRAMING
Hitherto, in discussing low frequency instability we have never specified
the location of the chamber where particular elements of propellant burn.
Our discussion has only dealt with the time lags, but not with the space

13
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1.08 GENERAL CONSIDERATrIONS

lags. In other words, for the analysis of chugging it is not necessary to know
the source distribution in the chamber, but only the integrated value of all
sources. This simplification is a direct cosequence of the assumption
that the wave propagation time in the chamber is negligible, so that the
effect of the burning taking place at a given location is immediately tram-.

. mitted throughout the chamber no matter where it happens. This is the
reason why the only condition given for the appearance of instability is a
.time condition.-

It is evident thatthis simplification is no longer possible whenthe wave
propagation time cannot be neglected with respcct to the period of the
oscillations. In this case, contrary to the assumption of Sections 1.06 and
1.07, the local variation of physical factors during the wave-propagation
-time can-be large, with the result that non-uniformities of pressure, temper-

T ture, etc. are present at fixed instants in the chamber. -AU a consequence of
the non-uniformity of the rate-affectipg factors, the effect of their variation
on the rates of burning (and on the source strengths) depends on the location

f "'in the chamber where the prope!Jants -were when the rate began to be
affected and the location where combustion takes place. It is therefore
necessary to know, in the high frequency case, the spatial distribution of
combustion.

Let us consider a definite location in the chamber and the propellants
burning at this location in a system with fixed injection rates. And for sim-
plicity,-let us suppose that the propellants have been at this location during
all of the time lag instead-bf moving. Then-we see that we have, locally,
-the same situation we-have discussed for the whole chamber in the case of
intrinsic instability. Thus if apressure oscillation withfa definite frequency
is pree i at the location considered, oscillations in-the burning rate are,
"produced. With a-simple construction like the one- ofFiiure 3, it is imme-
--diately founddthat-if the time-lag is very short compared with the period,
"thee oscillations ofthe burning rate -are-in quadrature with those-of the
pressure and therefore-the system is stable. But if the time lag (which is
supposed to be the.same -for all, propellant elemenis) is equal .te a half
period, and the effects of pressure on the rate of the processes are uniformly
distributed duringAthe time lag, then the two oscillations are in phase, so
that the optfnium conditions for self-amplification and instability are
created.

Thus far the frequency of the oscillations has been taken arbitrarily. How-
ever, it is clear that the effect of the establishment of the self-amplification

-conditions is maximum if the chamber 'is close to resonant conditions, that
is, if the frequency is close to the frequency of one of the natural modes of
oscillation of the gases in the chamber considered without effects of com-
bustion. The time condition for this case is therefore that the time lag
must be close to the half period of one of the iatdral modes. Naturally, as
in the case of intrinsic instability, if only one part of the time lag is affected
by variation of the physical factors, only: that part of the time lag must
sa•isfy this time condition. The constant part of the time lag does not

k influence the phenomenon, b-cause we. have assumed here that the -rate of
injection is unaffected by pressure oscillatinns. However, the same result
"must be true in the more general case ofa feeding system senitive to pressure

14.
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variations, provided thc frequency is sufficiently large so that -the perod

is much shorter than the line relaxati6n time, and rovided that-the wave
motion is not excited in the propellant lines. (We shallg return- to the last
question in Section 1.10.) In fact, in both cases, the injection rates are
practically unaffected by pressure oscillations, and the time -cofidition .
remains approximately the same, tat is, the time lag -must be close to a-
half period. This condition can be made more general when we consider A
the possibility that more thah one period is contained in the durationt of .
the time lag. From-a simple graphical constructioni like the one of-Figure 3,

one finds that, supposing again for simplicity that the rates are affected j
uniformly for the duration of the time lag (more exactly for the vari-
able part of the time lag), the pressure- oscillation is in phase with the
burning rate oscillation if the time lag is 3, 5, 7 etc. times 'the half period.
Therefore a more general statement of -the time condition is that the -
time-lag must- be an odd multiple of the half period of ore of the natural

modes.I
A brief qualitative discussion about the natural modes is necessary here.As in Section 1.03 the chamber can be supposed approximately to be filled

-with products of complete combustion, and the presence of unburnt propel-
lants can be disregarded in first approximation. However, even with this
simple assumptioni, the gas is not int the same condition aski a closed chamber
without outflow, and therefore the charactexistics of the natural modes -
cannotz-be the same as-in the correspondingproblem of acoustics. The
difference is twofold. First, there is an-average flow of the gses superposed "
on the oscillations; second, and more important, the gases are-discharged
from the chamber through a de Laval nozzle. The consequences off
the 2first difference are not too important, provided the 'maximum flow
-Mach number in the chamber is sufficientjy below unity, a cndition
generally satisfied in rocket motors- (wiih the-exceptionof the throatess
motor).- Howcver, the presence- of-a Sonic nozzle- my -have •nsiderable
effects on the behavibur of the chamber 4if the frequencies are high. In
effec•t it can be shown quantitatively (Appendix, B) and understood quaa--- - -

tatively-that if the frequency of-the-oscillation is xery low, then the quasi-
steady flow through -the nozzle follows approximately the laws of:steady
flow so that, for instance, the-Mach number at-the nozzle entrance stays
constant (being determined by the area ratio of the nozzle). -

In these conditions the nozzle can be replaced by the condition of constant
Mach number at its entrance, and again for low subsonic values of the Mach - -=

number the behaviour of the chamber does not differ substantially firom the
acoustic case. These conditions are approximately satisfied in the iower --
part of the range of frequencies characterizing chugging. But already in M-g
the higher part considerable departures can, be obtained. And since the
departure increases with increasdig frequency, the acoustical- approxi-
mation, for thefrequencies proper of the natural modes, becomes unreliable.
In other words, ie propagation of waves along the nozzle and their re-
flection in the subsonic part modify the reaction of the nozzle to oscillating
conditions by changing the-phase between pressure and velocity oscillation,
"with the result that work is necessary to maintain the osdillations even if
the dissipative damping-forces are negligible. Therefore, due to the outflow
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of gases, even in the absence of damping forces, a continuous supply of
work is necessary to maintain the oscillations, while in the corresponding
acoustical case no energy is needed. Despite this essential difference,
however, the nature and frequencies of the natural modes are not sub-
stantially affected, so that we can make use of the predictions of acoustical
theory in order to complete the picture. This can be done very easily for
cylindrical chambers (which is the most common case) where longitudinal
and transverse (radial and angular) modes can be distinguished, the former,
with gas properties uniform on each circular section of the cylinder, and
the latter, uniform on each line parallel to the axis. Also, combinations of
longitudinal and transverse modes are possible; actually they are particu-
larly important in a rocket chamber, since a purely transverse mode cannot
be generated, due to the presence of the nozzle and to the backward re.
flection of longitudinal waves when a transverse wave is present. This
effect also constitutes a difference from the purely acoustical case in a closed
cylindrical chamber terminated by plane walls,.

A general feature of all modes, purely longitudinal or combined, is the
presence of nodal surfaces on which the pressure does not oscillate. In the
case of the rockets, these nodal surfaces take a particular importance, because.
it is clear that if the combustion processes (or the sources) are concentrated
in the vicinity of a nodal surface, then the corresponding mode cannot
become unstable because it cannot generate the amount of work necessary
to maintain the oscillation. On the contrary, the larger the fraction of the
combustion concentrated in the vicinity of what we may call the antinodal
regions (where the amplitude of pressure oscillations is large), the larger
will be the variations of the burning rates in these regions and that of the
amount of work generated, and therefore the larger the tendency toward
instability. It is evident, therefore, that the largest probability for the
appearance of instability of a-given mode is for the ideal case of combustion
concentrated on the surface where the amplitude of pressure oscillations ;s
maximum. For purely longitudinal modes this means combustion con-
centrated on the antinodal sections of the given mode. It is clear now that
for the appearance of this type of instability, it is necessary to satisfy not only
a time condition, concerning the time lags, but also a space condition con-
cerning the distribution of the combustion. The presence of a time and a
space requirement has been known for a long time in the problem of singing

flamesI0°4 which presents some analogies to screaming in rockets, although
it is based on a different coordinating process. If both conditions are
fulfilled, a kind of instability is created, characterized by a frequency close
to the frequency of one of the natural mode:, in which the coordinating
_process resides in the natural process of oscillation through its action on the
burning rates. In rocket language it is recognized as highfireqpency instability,
or screaming. This mechanism for production of high frequency instability
Sh, been suggested by L, CRoccog and studied in detail by L. CRocco and
SI-I x-C o 1 , 12 in the case of purely longitudinal oscillations. The
treatment is partly reproduced and generalized in Chapter 3 4,f th1is mono-
graph. The more complicated case of combined longitudinal a.Ad transverse

-• modes has not yet been treated analytically; this case is of practial interest
and is worth attempting at a future date.
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1.09. EFFECT ON STABILITY OF SPREADING THE COMBUSTION

In the discussions of the preceding sectioils, the time lag has been assumed
to be uniform for all propellant eleiente. Also, we have concluded that
high frequency instability of a given mode is most likely to appear when
combustion is concentrated on the antinodal surfaces. The ideal case,
where these two conditions are satisfied together, that is, where the com-
bustion is concentrated both in time and space, is the most unstable case,
because the time and space conditions arc fulfilled in the most defir,•te way. 11
In other words, in this case, all of the combustion process can be used in
generating, through oscillations, the maximum amount of work to overcome
the stabilizing forces. This result is true for both screaming and chugging;
in the latter case, the timewise concentration alone is effective.

If, however, the combustion is spread timewise and/or spacewise, even if'
the time and space conditions are in-average-satisfied, only those frac-
tions of the combustion processes which are close to individually fulfilling the
conditions will produce work. The further away the individual fractions
are from satisfying these conditions, the less work they will generate and
ultimately instead of producing they will absorb work and become
stabilizing.

We conclude that for a given average value of the time lag, the larger
the range of time lags for the individual fractions of propellants, the more
stable is the combustion process, for both chugging and screaming. For
screaming, starting from the ideal case of combustion concentrated in the
antinodal region of a given mode, an unstable combustion can become stable
by spieading the combustion away from the antinodal region. Of course, the
opposite can be true for another mode, for which initially the combustion is
concentrated in a nodal region, and for which the combustion can switch
from stable to unstable conditions when it spreads toward the antinodal
regions. If all the possible modes are considered together, the nodal regions
practically fill all the chamber, so that the most favourable distribution for
a given mode can be unfavourable for other modes. Apriori, the best overall
situation is likely to be obtained when the combustion is uniformly distri-
buted in the chamber, and the time lags are also spread over the widest
possible range. In this case there will be a convenient balanczof stabilizing
and destabilizing fractions for each mode. However, the possibility
must be kept in mind that certain modes can be more detrimental than
others; and also that the damping effect due to the presence of the nozzle,
-well established for longitudinal modes, might not be as strong for transverse
modes. In this case, some distributions other than uniform might be moi..
advantageous in having a larger stabilizing effect on the more detrimental
or the less damped modes.

it The quantitative study of the effect of spreading the combustion time-
wise or spacewise is given in Section 2.08 for chugging, and in Section 3.05
and the following for screaming, in the case of longitudinal oscillations.

1.1O. OTHER MECHANISMS FOR UNSTABIE COMBUSTION

One can imagine several other coordinating processes which might produce
instability. Vortex shedding with determined frequencies1 3, flow fluctua-
tions in the injectors"4 , and in the spray of two impinging jets13 , combustion
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phenomena in Adies, oscillatory chemical kinetics, ftow phenomena in
nozzles, and so on, may be distinguished by character stic times different
from either the relaxation times or the period of the natural modes. There-
fore, they may be able to produce unstable conditions with frequencies
different from those of c'ugging and screaming. However, too little is
known about these processes, and any attempt to formulate, even quali-
tatively, a mechanism based on them would merely represent a guess without
substantial value.

One interesting mechanism, related to the discussion of the preceding
sections, is the coordinating process of the wave motion in the propellant
lines and the consequent oscillation of the injection rate. This oscillation
produces a delayed oscillation in the burning rate and therefore in the
chamber pressure and the pressure at the injection port. The oscillation
of pressure at the injection port finally closes the loop, by providing the
necessary driving force for the maintenance of the oscillations in the lines,
provided that the proper time condition is satisfied. The frequency dis-
tinguishing this type of instability from other types is determined by the
wave propagation time in the lines, and of course this frequency can vary in
a wide range. Hence instability can be produced with frequencies inter-
mediate between those of chugging and screaming. A particularly inter-
esting situation arises, however, when the frequency due to wave propagation
in the lines, falls in the same range as chugging or screaming frequencies,
"in which case the two types of instability will reinforce each other and
particularly bad conditions are to be expected.

The difficulti n developiig an analytical treatment of these, Tects, is
that generally the propellant lines cannot be represented realistically by a
simple connecting pipe of constant cross section between the tank or the
pumping system mnd the injector ports. The injector passages are generally
quite complicated and the lines are interrupted by valves of several types
necessary for starting and shut-off. As a conseqpence uf this fact, and the
fact that different parts of th internal walls have different elastic constants,
the oscillatory characteristics of the system are quite complex and it is
difficult to estimate a length on which to base a fundamental frequency.
As a result of this complicated situation a theory has not yet been developed
for this kind of instability. Only a rudimentary consideration of the effect of
wave propagation in feed lines on low frequency oscillation has been pre-
sentedig. In principle, an analytical treatment should be possible and it
seems that efforts in this direction should be worthwhile.

We have already noticed that particularly strong effects are to be expected
when the frequency, characteristic of the prop. 1lant lines, coincides with
one of the screaming frequencies. Now we can add that it is sufficient that
this condition be satisfied for only one of the characteristic frequencies of
the feeding system, and that due to the complicated design, it is very likely

* that some frequencies fall in the range of screaming frequencies no matter
how long the entire lines may be. In particular, due :o the fact that the
sound velocity is of the same order in the propellants and in the burnt
gases, it is possible to have direct resonance between the propellant side
and the gas side of certain types of injectors in a direction parallel to the
injector face.
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• • ~ ~~~An interesting suggestion for a coordinating mechanfism in bipropellant .- "-- •
systems, which would produce frequencie in a range intermediate between-

Schugging and screaming is the following. In oscillating conditions, the
energy content of the products of combustion can also oscillate because of |
oscillations in the mixture ratio. Thus the temperature of the products, taken
at the mean pressure, will oscillate too, and so will the entropy. 'I ne entropy
excess -or deficiency moves with the products until it reaches the nozzle,
where it produces pressure waves travelling back to the injectors. A dosed
loop is thus determined because the pressure oscillations at the injector may
entertain the mixture ratio oscillations. A theory based on this mechanism
has not yet been developed, but a rough calcu!ation shows that the proper
frequencies should be higher than for chugging and lower than for screaming.
This mechanism is substantially the same as that suggested by K. BERMAN

and S. H. CHENEY, Jr1• to explain some of the phenomena they have
observed. It should be noticed, however, that Berman and Cheney stress the
dependence of this effect on the presence of shock waves and discontinuities
of temperature. In the opinion of the present authors these non-linear
phenomena are not essential for the mechanism.

An analogous mechanism could operate on monopropellant systems,
where the necessary entropy oscillations would result only from the oscilla-
tion of the pressure of combustioi.

111. EQUATIoOS toR THE TimE LAG AND THE SPACE LAG

An analytical treatment of tie phenomena qualitatively discussed in the
preceding sections requires that each individual process of the phenomenon.
be given a quantitative formulation. Within the approximation of the
assumptions of Section 1.03, we have already seen how the phenomen3nof
combustion ,=:: be conveniently represented through a suitable distribution
of sources in steady state operation, after which the problem is practically
reduced to a problem of fluid dynamics.

The same would be true for non-steady conditions, if the strength of the
sources were unaffected. However, the opposite case is true. It is necessary,
therefore, to know quantitatively how the source distribution, both in time,
and space, is determined by the physical factors; in ofher words, how time
and space lags depend on the time and space history of the physical factors
themselves.

Among the physical factors that are likely to have the largest influence,
are the pressure and temperature of the gases and the relative velocities
between the propellants and the gases. If one knew the details of the J
processes taking place during the time lag, it would be possible to express
the rates of these processes at each point along the path of the propellants
as a function of the aforesaid physical factors, which are supposed to be
known at every instant and location. But we do not know the details of either
the processes or their rates; moreover, it is doubtful if the values of such V.
factors as temperature and relative velocities, as computed for our corn-
bustion model, would represent consistently the actualvalueswhich determine
the rates, because the presence of vapour or other intermediate substances,
even if it does not substantially affect the fluid dynamics of the burnt
gases, probably has an important effect on the rate of the processes. For
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this reason, it is better not to describe separately the effects of the different
physical factors, but to make the simplifying assumption instead, that the
rate of the processes can be correlated with the values of the local pressure.
This does not mean that the other factors are assumed to exert negligible
influence on the rates, but merely that their variations, and therefore their
effects, are correlated to those of the pressure. Mathematically this can
be expressed as follows'. The rate of the processes at a given location and
time are a function f (p, T, Zg..) of pressure, temperature, and any other
physical factor Z. If starting from a certain steady condition, where the
local values of these factors are T, 9, we apply small perturbations p',
T', Z', the new process rate will be

f(P, ,z .. f(A T,Z .)±p + T,, +f +f

where the partial derivatives are computed at p = i, T= T, Z = Z etc.
If we assume that T and Z are correlated to p, so that T = T(p) and

7!/ -"Zp e a Tt '=p dT $' =p' d
Z=,) wecanwriteT' p' ( so that the

preceding expression becomes
I d2f dZ 6f

f (p, T, Z. ... + -p' " T + d -f
where the barred quantity has to be evaluated at p = T, T, Z == 9.

Let us write
F(f dT V dZ onWp dp + dp8z+ .... (I.11.0l)

and let us call n the 'interaction index'.

Then the instantaneous rate is given by
S • .• i f~~f(A, T, Z ... ) f( , , . . I +-I-,....(I I. )

which is exactly the same as if f was assumed to depend only on p and to be
, proportional to pR. Thus in the assumpticn that the physical factors are

cotrelated we can disregard the explicit effects of all the factors except
that of the pressure and represent the relation between the rate and the
instantaneous local pressure asS• i ~fp".. (1.11.03)

Then variations are related by equation (1.11.02). To illustrate the idea
with some examples let us consider the case in which the variations of state
are isentropic, so that

and assume a heat transfer process from the gases to the droplets following
the law

T, being the temperature of the droplets and m an exponent dose to unity.
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if T', <. f. Therefore the- interaction index is likely to be slightly larger
than m, but still close to unity. On the other hand, for a chemical process,
we can assume for the rate A temperature dependence of the Arrhenius type

where A represents an overall activation energy, and T, the effective
temperature in the reacting zone, different from T. Assuming again an
isentropic relation between T, and p we find

n =m + [( - 1)17] [AIRTJ,]

and we ste that the interaction index can, in this case, be considerably
greater than m if T, is in the proper range, so that even if m is of the order
of unity, as seems to be likely for most of the practical combustion proycesses,

i n may take values considerably larger. The purpose of these two examples
is not to suggest the possibility of a precise determination of the index of inter-
action, because we do not have sufficient information, but merely to show
that for processes which are likely to be present and important in rocket
combustion, the index of interaction can be around unity and larger. They
show also that among the physical factors affecting the variations of the
rates, the pressure is probably the most important one because, for the
processes considered, m is likely to be an essential fraction of n. This justifies
to a certain extent-the choice of the pressure as the single physical factor
with respect to which the interaction index is defined, instead of, for
instance, the temperature. It must be noticed, however, that the two
influences (or more than two)-could in principle be separated if we knew
more about the'processes involved.

The fact that the pressure alone has an important influence on the
processes is~also supported by some experimental results. It is known that the -
minimum volume.(or minimum L*), compatible with an efficient operation
of rockets, decreases with increasing pressure, and that in certain cases
its variation is roughly inversely proportional to the pressure. Since L*
is a measure of the residence time, and the minimum residence time is

proportional to the time lag, it is concluded that in certain cases, the time
lag can be roughly inversely proportional to the pressure, and therefore
the rates of the processes leading to combustion are directly proportional
to the pressure. Since the temperature of the burnt gases can be assumed
to be practically unaffected by changes in the pressure level, this is purely
a pressure effect. This deduction is substantiated by recent, more direct
preliminary measuremens of the time lag 7. Such a marked effect of
the pressure on the burning rate is not proper only of the combustion in
rockets. Even in ordinary laminar flames the fact that flame velocities
are only very slightly affected by pressure' indicates a mass burning rate

nearly proportional to pressure. Similarly the self-ignition 'ag of fuels
injected in atomized or vaporized form into a hot air stream has been found
to vary approximately as the inverse of the pressure".
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__- 1.I IGENERAL CONSIDERANIOM

Equations (1.11.02) or (1.11.03) apply to a particular phase of the pro-
cesses taking place during the time lag. Of course we cannot expect that
all of these processes are equally affected by variations in the physical
factors. For instance such processes as atomization or mixing, that con-
stitute a necessary- pre-requisite for the other processes, are likely to be
practically unaflected by the physical conditions in the chamber and to
depend substantially only on the injector configuration. Thus if we could
follow in detail Ne history of a particular element of propellant on its path,
we would find that the interaction index changes along the path, starting
with negligible values immediately after injection, then increasing gradually
"while the processes sensitive to physical conditions begin taking over, and
finally staying around unity for the rest of the time lag. Again, it is not
possible to describe the process in detail with our present knowledge of
the combustion processes in rockets. However, we can replace it with a
plausible schematic process, which is apparent after the previous quaii-
tative considerations. We can assume that the index of interaction is zero
for a certain portion of the time lag, -'i, that we shall call the insensitive
time lag, and discontinuous' becomes equal to a value n (of order unity)
for the rest of the time lag, r, which will be called the sensitive time lag.
The total time lag ri is the sum of the two

+' ' •r, t".. (1.11.04)

Since the mixing process, which is essential in bipropellant rockets, is
absent in monopropellant rockets (with thermal ignition, not with catalytic
ignition), we can reasonably predict that -ri will be relatively larger for
bipropellants, and smaller for monopropellants where the only delay,
prior to the thermal or chemical activation, is due to the time it takes to
atomize and disperse the propellant through the burnt gases. In both
cases we can expect a large influence of the injector configuration on r,.
By definition •r is unaffected by variation of the physical factors, so that

2-= •• . . . .(1.11.05)

at each instant. On the contrary r 'varies because the rate of the processes
that determine its duration changes with the physical factors. The quanti-
tative relation between r and the physical factors can be derived as follows.
The transformation into burnt gases takes place only when the prepara-
tory processes have accumulated up to a well determined level, E.. This
can be expressed for an element which burns at the instant t by the relation

-Jf(1') dt' =E .. .. (l.l1.06)

the integral being evaluated following the motion of the given element
from the instant t' = t-- -, when the rates began to be affected by the
physical factors, to the instant of combustion ' -= t.

-The rate f(t') must be computed using the instantaneous values of the
physical factors at each instant I' at the location where the element was at
that instant. Let us denote the spatial coordinates of the position of the
element at instant t' by xj(I'). Then

f (1') = f{px(I') , t1')], T[X(t') ,I'],.... .... (1.11.07)
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EQUATIONS FOR THE TIME LAO AND THE SPAGM A 1.&0911

In steady state equation (1.11.06) gives --

where the variation of I is now due only to the possible spatial non-uni-
formity of the physical factors t
If th) e velocities o = iQ{i ,( ...
If the velocities of the liquid droplets and the gases in the rocket chamber
are small compared with the sound velocity (which is generally true,

except-for throatless motors) the steady state values of physical factors
such as pressure and temperature are practically uniform in the chamber,
S= constant, T = constant (see Chapter 3). In this case, neglecting the
action of other physical factors, we can write equation (1.11.08) in the form

f. =•f( ,,...). f =E.

Let us again assume that p -- + -p', T = T +-T-, the perturbations
p', T', being small compared with f, T,... ; we can write r = f-+ -r'
and we can also expect T' to be small with respect to f. Equations (1.11.06)
and (1.11.08) can be written as

d t f t' + f (t'd E, 0=J dt' .... (1.11.09)-(

Now since r' is a small quantity we can write after neglecting higher ordertermse

Using equations (1.1..02) and (1.11.10) and again neglecting higher order
quantities, equation (1.11.09) becomes

•'" •7-- = -" = "- -- f--~(L') t d*' .... (l.ll.ll)

When the steady state conditions are practically uniform in the chamber,
= constant, and f (1')= constant -- (I - f), so that

Differentiation of equation (I.1 1.12) with respect to I gives

d n P() - p'(t - 1)

The corresponding expression for the non-uniform case can be found
by differentiating equation (1.11. 11).

In general the perturbation p' is a function of space and time so that

Ph -- A'xiQ) 0t
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S1.11 GENERAL CONSIDERATIONS

However, as already observed in Section 1.08, if p' changes so slowly that
its change during the wave propagation time can be neglected (low fre-
quency case), p' is practically uniform at every instant throughout the
combustion chamber. In this case the space dependence disappears from
the relation (1.11.14) and equation (1.11.13) reduces to its simplest form,
suitable for the case of chugging.

The quantity di-/dt plays an important role in the theory of stability

because it is closely related to the perturbations of the burning rate of a
given element.

Consider the total rate Yh,(4) of injection of propellant at a given instart

1, and consider a small fraction of this rate, 8th,(t), having at this instant
a total time lag -r-(t); the value of r, being generally different for dif-

ferent fractions and variable with time for each fraction. For the fraction

under consideration the amount injected between t and i + dt is Sihi(t) dt.
This amount burns between t + -t and t + -r + dt + dr,, that is, in the

interval dt + d••. with the so far undetermined average burning rate

8,nb(t + 7rt). Therefore we have
8?,h(t) dt =&h(- + m t" ) . (dt + dr"t)

If instead of giving the instant of injection and the -', pertaining to this

instant, we assign the instant of Combustion and consider the value of i't
corresponding to this instant, the preceding equation can be written, after
division by di, as

8rob(t) = 8&hi(t - ct) [1 - de/dt] .... (1.11.15)

where dTIdt has been replaced by the identical quantity de/dt. In the
steady state T is constant and

8"b =-- 8hi, .... (1.I11.16)

Subtracting (1.11.16) from (1.11.15) we find the relations between the
perturbations

[8h~)- =J [((dz(i! - if1)- &?ii) - (dT/dt)8?ih(t -ft

In writing this equation 'i• has been replaced by f, because the corresponding
perturbation "r, - f• introduces only higher order terms.

The equation (1.11.17) holds in general for any dr/dt. In particular,
if the derivations of this section are used, d•-/dt is given by equation (1.11. 13).

The corresponding more elaborate formula for the non-uniform case can

be obtained from equation (1.11.11).
If the injection rate is fixed, B i- = •, equations (1.11.15) and (1.11.16)

can be written simply as
8?hb = 80b,(l -d'/dI) .... (!.i1.18)

All the equations that have been derived so far can be wrTitten in terms

of the space variable instead of the time variable, when the vector velocity

"of the unburnt propellant element along its path is known. These equations
can be formulated for general three-dimensional flow in the combustion
chamber. We shall treat in Chapter 3 only the case of one-dimensional flow

in connection with the stability of the purely longitudinal modes of high

frequency oscillations which is the only one treated in this monograph.
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2
CHUGGING ANALYSIS

"(LOW FREQUENCY INSTABILITY)
(LOWLIS OF SvYoiMs

Superscript * indicates that the quantity is dimensional
Superscript' indicates a small perturbation
Subscripts. and indicate respectively the real part and the imaginary

part of the quantity, if not otherwise stated
* Subscripts and refer to oxidizer line and fuel line respectively

-• bar over a quantity indicates mean or steady state value
SM, mass of burnt gas in combustion chamber

lhb rate of burnt gas generation or burning rate in corn-
bustion chamber

th. •rate of burnt gas ejection out of combustion chamber
rate of injection of propellant into combustion chamber

A 'b steady state mass flow rate, the reference mass flow rate
Pb pfractional burning rate perturbation

fractional variation of burnt gas ejection :
¶ p• fractional variation of propellant injection

p pressure of gas in combustion chamber or local flow
pressure at stations indicated by the subscript

Te temperature of gas in combustion chamber
St dimensional time

0= AI/X mean gas residence time in the chamber based on the
mass MR, of burnt gas in the combustion chamber

z dimensionless time t10, or .0/0, = t/0(l( + b)
b coefficient of d/dz in the transfer function N, of the

ro ", et nozzle as defined in equation (2.01.08)
0, =0,(l + b) c, rected gas residence time or relaxation time for

chamber-nozzle combination used as reference time
't* ;' + r* dimensional total time lag from instant of injection to

instant of combustion of a given propellant element
*dimensional insensitive part of total time lag

,r* dimensional sensitive part of total time lag

7-= ' + = -r/0r, dimensionless total time lag

"-r "ri[0, dimensionless insensitive part of the total time lag
1" - ir*[O. dimensionless sensitive part of the total time lag
6 critical values of the dimensionless sensitive time lag

corresponding to neutral oscillations
critical value of insensitive time lag

n pressure index of interaction between combustion pro.
cesses and oscillations in the combustion chamber
defined in equation (1.1 1.01)

97 fractional pressure perturbation
25
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1" :• •CHUGGING ANALYSIS (LOW FREQUENCY IN•TABILITC)

S7 specific heat ratio cjc,, or adiabatic index of burnt gas
specific admittance ratio of neutral acoustical dis-
turbances in de Laval nozzle = ratio of local fractional
velocity variation to local fractional density variation
at the entrance of the nozzle

~:N. N(dl transfer function of mass flow through rocket nozzle
t d- defined as the ratio of fractional mass flow rate variation

F .. to fractional variatica of the impressed pressure
F (d/dz) transfer function of feedback circuit for servo stabilization

C, flow capacitance of feed line
C.= control capacitance of feedback circuit
D constant of feed pump characteristics

1 y equivalent spring constant ofr line capacitance
y position of the equivalenrt concentrated capacitance Ct

downstream of feed pump as fraction of feed line length
A effective area of feed line
A• effective area of injector nozzle
P pressure drop parameter of the feeding system
E elasticity parameter of the feeding system
iJ inertia parameter of the feeding system
.A* dimensional amplification coefficient

dimensional angular frequency
¶A =A*O, dimensionless amplification coefficient

D = * dimensionless angular frequency
s = A + iW a complex quanxity which is the Laplace transformation

variable and is the root of the characteristic equation
for oscillations with exponential time dependence

Sco dimensionless critical angular frequency of neutral
oscillation
flow reactance of feed line

1' flow susceptance of feed aine
h integers including zero indicating successive higher

unstable ranges of the values of the sensitive time lag
integral numbers of oscillation periods contained in

the sensitive time lag
r = too/mh mixture ratio or ratio of mass flow rate of oxidizer to

that of fuel
SH=j(y--I )I(i+ I) a parameter of steady state mixture ratio
K =1I 1 d T, a parameter representing the sensitivity of tbe adiabatic

2 T, d, flame temperature to mixture ratio variation
V combustion chamber volume

minimum value of n compatible with unstable oscillations
in a given system

N = N, + iwo•N overall transfer function of feeding system defined as !,[T
R + iS = N exp (-ioj6i)
f (17) fractional amount of propellant elements having scn-

sitive-time-lag < f with f (fw1 .) = 0 and f (f.,,) = 1
"26
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C magnification factor due to the effect of spreading the
sensitive time lag defined in equation (2.08.06)
effective sensitive time lag defined in equation (2.08.06)
critical value of f. for neutral oscillation

2.01. EQuATXom OF THE COMBUSTION CHAMaEa

THE actual situation in the combustion chamber is too complicated and
obscure to allow6 analytical treatment. However, in agreement with the

discussion of Section 1.03 a satisfactory working model is obtaiied by
neglecting the presence of the unburut propellant elements until, afktr the
time lag has elapsed, they are suddenly transformed into completely burnt
gases. The flow of the burnt gases in the chamber can be considered as the
flow of an ideal gas with distributed sources and determined by the laws of
conservation of mass, momentum and energy. Additional simplifications
are obtained if we assume that the Mach numbers up to the nozzle entrance
are sufficiently below unity so that, in steady state, the pressure and the
temperature of the gases are practically constant throughout the chamber.
Moreover, in the range of low frequencies pertaining to chugging, the
propagation of the pressure waves can be supposed to be practically instan-
taneous. Thus, as already noticed, the following assumptions, fundamental

for chugging, can be made:
(a) The gas pressure is practically uniform throughout the combustion

chamber at every instant and oscillates about the mean or steady state value
as a whole. Another simplifying assumption concerns the temperatures of
the gases. First, we can suppose that at the instant of generation, the burnt
gases have the same temperature irrespective of the particular conditions
of combustion. This means that in the case of a monopropellant rocket we
neglect the effects of differences in heat transferred to the propellants
before combustion and the variation of dissociation with pressure; moreover,
in the bipropellant case, we assume constant mixture ratio (this a!.a.Xmption
is dropped in Section 2.07). Once the burnt gises are generated they
undergo changes in pressure and therefore in temperature. In order to
compute these changes, we should know at every instant for each fraction
of burnt gases the pressure under which they were generated. With some
simplifying assumptions, this can be done, and has been dune in Section
2.10. showing that under these assumptions the effects of these temperature
variations are of secondary importance. The effect would completely
vanish if the adiabatic index y were taken as unity; and the actual values
of y for rocket gases are not far from unity. Therefore in order to simplify
the analysis and bring out the main features of chugging we can neglect
all temperature changes and make the following assumption:

(b) the temperature of the gases in the chamber is practically constant
and uniform irrespective of the pressure oscillations.

A last simplifying assumption concerns the time la&, about which we
shall make the assumption that

(c) the time lag is uniform, that is, it has the same value for all propellant
5 elements.

As aiready noticed in Section 1.03, this must be considered only as an
f ideal case, and the corresponding assumption will be dropped in Section
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2.09. Assumption c can be made with respect to both the insensitive and
the sensitive time lags, and hence for the total time lag; or 'nly for the

Oki sensitive time lag, when the insensitive time lag does not enter into the
picture. It should be noted that this assumption does not imply that all
elements have the same space lag because their velocities can be widely
different.

The simplifications arising from these assumptions are as follows:
Assumption a replaces completely the momentum equation, which therefore
does not need to be considered. Similarly assumption b takes the place of
the energy equation; moreover, with this assumption we do not need to
kl•ow the spacewise distribution of combustion. Also the timewise distri-
bution of combustion can be ignored with the introduction of assumption c.

With these assumptions, the dynamics of the gas system in the com-
busdon chamber is essentially governed by the balance of mass, that is,
the rate of burnt gas generation thb(t) must be equal to the sum of the rate
of ejection Yh(t) of the gas out of the combustion chamber through the

d"nozzle and of the rate M, at which mass is being accumulated in the
combustion chamber itself, i.e.

'h~) h dt MO(t) ... (2.01.01)

Since the combustion chamber voluhm, s constant and the gas tern-
perature is assumed to be independent of gas pressure, M,(t) is proportional
to the chamber pressure p(t). Thus the mass accumulation term becomes

lag. . I'atroducing the following fractional variations of gas

pressure, burning rate and ejection rate over their respective steady state
values.

9' Pe (2.01.02)

_ we can rewrite equation (2.01.01) as

0, dip/dt + p.(t) =/b(t) .... (2.01.03)

where O -- •9,1i represents the gas residence time, that is, the time an
average burnt gas element will spend in the combustion chamber in steady
operation before it enters the nozzle. In accordance with Section 1.05,
the fractional variations defined in equation (2.01.02) will be assLamcd small
in the following treatm-ent, and their products or powers will be neglected
as higher order small quantitie,. Equ?,tion (2.01.03) dearly indicates
that 0, is the proper characteristic time which can be used to reduce
equation (2.01.03) into dimensionless form. If p/ vanishes and p. is equal
to 97 as will be clear later, equation (2.01.03) shows that 0, represents the
chamber relaxation time. The average gas residence time is therefore one
of the fundamental constants characterizing the dynamics of the burnt gaso f m��-ucs28
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in the combustion chamber in problems of low frequency combustion
stability. D. F. GUNDER and D. R. FmArN 5 neglected the mass accumu- 1

lation term. As a result, they failed to notice the importance of this residence
time. In terms of the 'characteristic length' L* and the 'characteristic
exhaust velocity' c* that are more conventionally used in the field of rocket
engineering, this average gas residence time is easily shown to be

L*c* 1 2 " .i- L*o T, - +

where y is the ratio of the mean specific heats of the combustion gas. It
should be noted that the total residence time of a propellant element in
the chamber in steady state is bigger than the gas residence time by the
total time lag T- = T- + -* that elapses before the propellant is transformed
into hot gas. For convenience, dimensionless time and dimensionless total,
sensitive and insensitive, time lags are defined as

Z = t1O,; = -r* 10 = ,TýiO,, T, +T .... (2.01.04)

Let us now consider the fractional variation Aub of burnt gas generation
which, as already noticed, is complicated by the variation of the time lag. 3

At instant t, the propellant elements injected after the interval I- T-t
"have not yet burned. Hence, considering the total amount burnt from
the beginning of the operation, t = 0, to the instant t we can write

lhb(t') di' eiia(t') dt'

where th,(t') is the rate of injection of propellants into the chamber at the
instant I' and Yh1(t') is the rate of burnt gas genera-ion at the instant f'.
Differentiating with respect to t, we again obtain equation (1.11.15)

rhb(l) = (I - d~rtIdI). -hQ( - Tt*) .... (2.01.05) .

The first factor of the right-hand side can be obtained from equation
(1.11.13), and can be expressed in dimensionless form as

! d I -- = I + n['p(l) -g0(t--*)] ... (2.01.06)
dt

Introducing in equation (2.01.05) the fractional variations pJb = (ihb- ?)/&
and a = (thi - ih)/li and I - dT*/dt from equation (2.01.06) we obtain
after linearization

apb(z) = pi(z - ft) + n[q(z) - T(z - f)] .... (2.01.07) q

where the dimensionless time has been introduced.
Next we conr':.er the fractional variation p. of gas ejection. The mass-

outflow from the combustion chamber through a given de Laval nozzle S S
with supersonic exit in steady state operation is directly proportional to
the chamber pressure and inversely proportional to the square root of
chamler temperature. For the case of very low frequency oscillations
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2.01 CHUGGING ANALYSIS (LOW FREQUENCY INSTABIL=T)

the flow through the nozzle may be considered as q aasi-steady in the
first approximation; that is, *,-' ,p/VT•/ where p and T, are the in-
stantaneous gas pressure and gas temperature in the combustion chamber.
The quasi-steady assumption gives, for a small isentropic oscillation,

T 2 ', and the ratio between the fractional variations

p 21 2y
of the flow rate and of the pressure, that is, the nozle transfer function, is
given by p,/pq = (V + 1)/2y. When T,, is assumed to be const.,nt -sp,
the quasi-steady argument gives p, = -? and the transfer function for the
nozzle pji =- 1. The quasi-steady assumption is, however, not quite
correct, especially when the length of the subsonic portion of the nozzle is
not too small. A better approximation can be obtained by applying non-
steady one-dimensional analysis to the flow in the nozzle (refs. 2 and 2 and

S* Appendix B). In this one-dimensional analysis, the ratio of small fractional
oscillations of the velocity to small fractional oscillations of the gas density
at the nozzle entrance can be determined. Extending the accepted termi-
nology of acoustics, this quar tity will be called the specific admittance ratio.
The admittance ratio for -the particular case of isentrcupic flow in a nozzle
with linear steady state velocity distribution in the subsonic part has been
calculated far the whole range of frequencies. For low frequency oscillations
and general velocity distribution the specific admittance ratio at can be
represented approximately by

= + ikQ* .... (2.01.08)

2
where Q* is the angular frequency of the oscillations, and k is a propor-

tionality constant depending on the nozzle geometry. For isentropic flow
the nozzle transfer function is

91 q 7 2/ 7

For ordinary configurations and frequencies in the chugging range, the
imaginary part of this expression does not substantially exceed a value of
0"20. We see, therefore, that the modulus of the transfer finctiorn in chugging
conditions is never appreciably different from (7 + l)/2V which is the
quasi-steady value; but the phase can be quite significant. These results
were obtained for isentropic flow. In order to be consistent with the
assumption b of this section we modify the expression for .,, so that for zero
frequency the transfer function is unity. Using the dimensionless angular
frequency A? instead of JQ* we therefore write

Y I = +ibD .... (2.0..09)

where b =Q*kjQDy is a function of the nozzle geometry which can be
computed explicitly from equation (B.60). Finally we observe that the
analysis of the flow in the nozzle has been based on the assumption ofpurely
harmonic oscillations; that is, the previous expression for N. refers to
neutral oscillations. For near-neutral oscillations and frequencies in the
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chugging range, we shall write the nozzle transfer function in operational
form as follows

lie- =A, (1 + b d. .(2.01.10)

For neutral oscillations equation (2.01.10) reproduces the previous results.
Introducing equations (2.01.07) and (2.01.10) into equation (2.01.03),

we obtain a linear equation of mass conservation in dimensionless form
for the two fractional perturbations p' and pi including approximately the
effect of non-steadiness of the nozzle flow.

(1 + b) ± + 97(z) = pi(z - ft) + n[9'(z) - 97(z - f)] .... (2.01.11)

This is the fundamental equation that governs the dynamics of gas flow in
the combustion chamber under the assumptions mentioned previously.
Equation (2.01.11) differs from a linear ordinary differential equation of
first order by the presence of the dependent variables with retarded argu-
ments (z - iF) and (z - fe). The insensitive time lag enters only in the
variation of the injection rate pi. The characteristics of intrinsic stability
where the rate of injection of the propellant is constant, are therefore not
affected by the value of the insensitive time lag. If, on the contrary, the L
injection rate is affected by the'pressure oscillations, the insensitive time
lag wsill have an effect on combustion instability. The case where n = 0
(no sensitive time lag f) and pi variable, has been considered by . F.
GUNDER and D. R. Faitmr 5 , M. YAcITER and WAtmiNoGW, and M. Su.m-
MERFIELD 7 . The concept of sensitive time lag was introduced by L. CRocco,8 ,

who also showed theoretically the possibility of unstable combustion even
with constant injection rate and gave it the name of 'intrinsic instability'.
Several special cases with n -A 0, and pi variable have been analysed by
L. CRocco8 and H. S. TstpNA The generalization including the phase
lead component of the nozzle transfer function is due to SIN-I CHENG2 ,4

who showed that all the results of previous investigations concerning
chugging ca. s can be easily modified to include the effect of the non-
steadiness of the nozzle flow without introducing any complication.

The relation between pi and T is determined by the dynamics of the
feeding system. Therefore to complete the formulation for the analysis of
chugging we need an investigation into the dynamics of the feeding system.

2.02. EQUATION OF THE FEEDING SYSTEM, MONOPROPELLANT CASE

There are several types of more or less complicated feeding systeris. Here,
we shall consider systems where the pressurization is obtained by the use of -.-

pumps powered byt a servo-controlled, motor. Such systems are the most
extensively used today in large thrustounits, and they can include, as particular ms
cases, systems where the pressurization is due to gas pressure, as is common
in small units.

If the response of the servo-controlled motor is not very fast, as is the case
ordinarily, and if the inertia of the moving parts is not too small, one can, for
frequencies in the chugging range, suppose that the pumps are driven at
constant speed. Despite the great simplification achieved through this

3!



2.02 CHUGGING ANALYSIS (Low FREQUENCY INSTABIL-TY)

assumption, the dynamics of the feeding system is still quite complicated.
The propellants and the supply lines are not completely rigid but possess a
certain amount of elasticity, which can be represented by a distributed
capacitance responding to pressure variations. Gas bubbles cr parts with[ • less rigidity (like plastic seals) may introduce larger concentrated capaci-
tances. The distributed line capacitance and the inertia of the propellant
result in a finite speed of propagation of pressure disturbances in the lines.
As already ob'erved in Section 1.10, the analysis of the system with the
consideration of the wave processes in the lines is made practically im-
possible by the presence of valves, bends and other connections. However,

Line
rank cupdunc

Figwe 4. Schenmoicdiagramof ofuti,
the feedng system of a mono-
profltiont liuid rocke motor
with serve control. (By courtey
of te Amerian RKet Soc•ie.)

the wave processes can be disregarded if we make the assumption that the
corresponding characteristic frequencies are sufficiently higher than the
chugging frequency. In this case, we can reptesent a monopropellant
system wr.hernatically as shown in Figure 4. The elasticity of the propellants
and of the line and the possible presence of gas bubbles and other concen-
trated capacitances can be approximated by a single equivalent spring
loaded capacity C, located at a distance yl downstream of the tank outlet,
where I is the entire length* of the feed line joining the tank to the injector.
The location of the pump is unimportant provided it is close enough to
the tank. A variable capacitance C. controlled by feedback servo is intro.
duced right next to the injector with a view toward the possibility of con-
trolling the combustion instability in the combustion chamber. The servo
is activated by the signals picked up in the combustion chamber.

For small perturbations the fractional variation of the flow rate over its
steady state value is propcrtional to the fractional variation of delivery
pressure p. downstream of the pump

.... (2.02.01)

;•\ I *li the lines are not ofeaontant a section, I and 11 must be -onsidered as equivalent

"lengths and calculated as shown, for example, in references' atte. S
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If, instead of the absolute delivery pressure,'po were the relative head of --
the pump with respect to the tank conditions the proportionality coistant
-D would coincide whth the slope of the performance curve of the pump for
constant speed, with the relative values of the relative head plotted against
the relative values of the flow rate, both being unity at the steady-state
operation point where the slope is measured. In this case, D would represent
a characteristic constant of the pump at the design point. With the actual
meaning of po, D depends somewhat on the tank conditions, but again it is
a constant for fixed tank pressure. When D = 0, the flow rate can change
while the delivery pressure stays constant, so that D = 0 represents the
case of gas-pressurization- when D = co, the flow rate is constant despite
changes in line pressure, a condition which is characteristic of a constant rate
pump or of any other constant rate system, such as can be obtained with
cavitaling Venurij2 . Intermediate values ofD correspond to different types of
pumps or different operating points for the same pump. For conventional
centrifugal punmps, D is of the order of unity.

The capacity C, of the equivalent linle capacitance varz-s with the line
pressure p1. The equivalent spring constant y of the capacitance is defined
as the change in volume of the feed line produced by unit pressure rise in
the line. Cr.nsidering the propellant as incompressible, the difference of
the flow rates upstream and downstream of the capacitance is given as

0 - A 1 POXZ .... (2.02.02)

where Pa is the density of the propellant.
The instantaneous pressure drop in the feed line is due to the inertia of

the propellant and to the frictional loss. Both can be easily taken into
accounts. 7. However, since it is desirable to reduce the number of para-
meters in a general treatment like the present one, and since the dynamic
head in the feed line is usually much smaller than the pr.ssure drop across
the entire feeding system, the f-ictional loss is neglected and the pressure
drop in the line in unsteady operation is assumed to be due to the accelera- 4

tion of the flow only. Thus, for the feed line upstream of the equivalent line
capacitance, we have

P0~ .P .... (2.02.03)A dt ""

where A is the cross sectional area of the feed line*. Similarly, between the
line capacitance and the control capacitance, we have

~~ - (l -y)I din1 4,-

A -P A = d .... (2.02.04)A dt -

If the lines are not of constant cross section, A is the equivalent sectional area used in
the detetmination of the equivalent lengths I andy.
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where P2 is the pressure at the control capac;tance immediately upstream
of the injector. The pressure drop across the injector is

P2 - p = Jr/h;1p0A .... (2.02.05)

: where Ai is the effective orifice area of the injector. The inertia in the
injector passage can be taken into account in the inertia of the line by a
suitable increase of . It is assumed that the injector walls are rigid enough
so that Ai is not affected by pressure variations. For steady state operation,

.Po -- A = A -i = ½1hz/poA. .... (2.02.06)

In unsteady state operation, mh differs from fih by the rate of accumulation
of propellant in the control capacitance C.

, - I = dC Idt .... (2.02.07)

The rate of variation of the control capacitance depends on the design of
the feedback circuit. The signal that is picked up from the combustion
chamber is assumed to be the pressure variation in the chamber. Discussion
of the detailed design of the feedback circuit and the difficulties of practical
realization is beyond the scope of the present treatment. We shall therefore
specify only the overall feedback transfer function of the entire circuit
without inquiring how and if it can be obtained in practice. The character-
istics of an ordinary feedback circuit can usually be described by a linear

PEP algebraic relation between the input 9, the output C, and their time deri-
vatives with constant coefficients. Thus we can usually define the transfer
function of the feedback circuit in dimensionless operational form as

ii-..... (2.02.08)

r •where F (d/d&) is the ratio of two polynomials of the differential operator didz.

Equations (2.02.0l)-(2.02.08) describe completely the dynamics of the
feeding system. These eight equations enable us to eliminate the following
seven quantities ?k0, thl, po, pl, p2, A, and C,, to obtain a single relation
between chambe." pressure p and injection rate thi which describes the
overall behaviour of the feeding system. It is convenient to reduce all these
equations into dimensionless form; and we find that when this is done four
dimensionless parameters D, P, E, and J are sufficient in characterizing
the overall system dynamics for low frequency oscillations, where

P ---- E - J = .(2.02.09)
2P ' - o ' 2AdAO,

and D is the constant of the feed pump; P is the pressure drop parameter, a
relative measure of the pressure drop across the injector; E is the elasticity
parameter, a ratio of the rate of mass accumulation in the line capacitance
due to a characteristic rate of pressure change 2Afl/0, to the mean mass
flow rate in the system; and J is the inertia parameter, a ratio of the time
required to accelerate a given mass element from rest to the state of motion
in the feed line under the pressure 2Af to the characteristic time of the
systemin, that is, the gas residence time.
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The dimensionless equation of the feeding system dynamics relating p.
/ i and p is obtained as

Sd + d 2 s(P [I +DE(P + +JE4]

4. D(P + ½) -d +j d" + DJE(I _-y) (P 1 ) "d'
SdF

(.... (2.o2.10)
+ ([I + D(P +r½) + [DE(P + +½) dt J

+ [DJE(I- y) (P +1)+ JEy] dY) d3

+J 2Ey(l

Equation (2.02.10) essentially defines the overall transfer function
ppq) of the entire feeding system through the four characteristic dimension-
less constants J, E, D, P, and the constants defining the feedback servo
system. If the feed line does not contain gas bubbles or any other con-
centrated capacitance, the equivalent line capacitance should be located,
in the present assumption of uniform cross section, half way between the
pump outlet and the injector; that is, if the pump is -..aced at the outlet
from the tank, y = j. This is the case formulated by H. S. Tsw$-0. If
there is a gas pocket of considerable size in the feed line, the capacitance C,
should be located in the immediate neighbourhood of the pocket. Despite
the simplifying assumptions, equation (2.02.10) is still quite involved alge-
braically, and does not allow a general analytical discussion. Only twvo
special cases, one with constant rate of supply, D = oo. and the other with
constant feed pressure, D = 0, have been studied analytically by L. CRocco%.
However, the discussion of particular systems with given values of the
constants can be made without difficulty using the complete equation

2.03. GENERAL CoNsmERATioNs ON THE SYsTEM oF EQUATIONS.
INTRINsIC INSTABILTY

Equation (2.02.10) should be solved simultaneously with equation (2.01.11) -

for pi and q. It is interesting to note that, in equation (2.01.11), the nozzle
constant b can be very easily absorbed by a change of the characteristic
time fr'm 0, to 0, = 0,(l + b). The resulting equation in terms of the
new dimensionless time z' = z/(l + b) is identical in form with equation
(2.01.11) after putting b = 0. The overall transfer function pui[ of the
feeding system as defined by equation (2.02.10) can be obtained as a com-

F( d ) =Id1.dAl
bination ofy, P, D, E J and the expression-F

relative to the feedback control circuit; these quantities are independent of

the change of characteristic time. Therefore, for a given feeding system with
35
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2.03 CHUGGING ANALYSIS (LOW FREQUENCY INSTABLLITY)

a given feedback control circuit, if any, the transfer function #u/97 is inde-
pendent of the choice of the characteristic time, as can be physically expected.
The dynamics of the burnt gas in the combustion chamber for systems with
different exhaust nozzles is therefore governed by the same equationi (2.02. 10)
"and by the equation obtained from (2.01.11)

d9s-- + 97(z) =i~ - -7t) + n[q9(z) - z - :) .... (2.03.01)
d+

* with the new dimensionless time variable z = 1lo0. All the dimensionless
parameters like E, J, .Q and i- are of course defined in terms of the new
characteristic time 0,. For simplicity in writing, the prime, which is used to
distinguish between the dimensionless time expressed in terms of the uncor-
rected reference time and the new corrected reference time is henceforth
dropped with the understanding that if b is not zero, the characteristic time is
0, = 0,(l + b) instead of 0,.

The phase lead component of the transfer function of the nozzle is due
to the inertia of the gas in the subsonic portion of the nozzle which increases
the capacity of the combustion chamber in storing burnt gas in response
Sto increasing chamber pressure. In other words, a certain effective part of
the volume of the subsonic portion of the nozzle should be added to thechamber volume in evaluating the gas residence time or the relaxation time

"of the chamber-nozzle combination. If the nozzle is very short so that the
nozzle volume is negligibly small, it is expected that the assumption of
quasi-steady flow in the nozzle should be valid and little correction on the
gas residence time need be made.

Since both equations (2.02.10) and (2.03,01) are linear, the equation for
9i(z) after the elimination of #j is linear with constant coefficients but
involves 9(z - f,) and 9(z - f) in addition to 97(z). The presence of the
retarded variable changes the analytical nature of the equation con-
siderably as compared to that of an ordinary linear differential equation.
The fact that there are two retarded functions with two different lags
if1 and f is analytically a matter of minor importance but it makes the
calculation and the presentation of the results much more involved. For
this reason and because of the uncertainty of our knowledge of these time
lags, the two have been assumned to be equal, that is, all the processes are
sensitive throughout the time lag. As discussed in Section 1.11, this assump-
tion is justifiable for the monopropellant case. It is clear that this restriction
on the values of the time lags is not needed when - does not appear in
the equations, as for instance in the simplest case of intrinsic instability
to be treated in this section, or in the more complicated case of screaming.
Thus, for the general treatment of chugging, we assume f, = 0 and f, =
unless otherwise stated.

The analytical nature and the methods of solution of the equation of the
type

L1 (. ). [9(z)] = L (f)- [p(z - *)] .... (2.03.02)

as a gene-al form of the eliminant of equations (2.03.01) and (2.02.10) is
discusse! in Appendix A. Since equation (2.03.02) ;s a linear equation
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with constant coefficients, the solution of this equation is a linear combina-
tion of an infinite number of particular solutions of the type exp (sz) where
s is a complex quantity with its imaginary part representing the angular
frequency of the particular mode of oscillatory solution and the real part
representing the amplification coefficient of this mode. The infinite number
of values of s are defined as the roots of the following characteristic equation

L1(s) = e-"L(S) .... (2.03.03)

A given oscillatory mode is stable, neutral or unstable depending upon
whether the real part of s is less than, equal to or greater than zero, and a
sufficient condition for the system to be stable is that the characteristic
equation (2.03.03) has no root in the right half of the complex s plane.
We shall begin the discussion with several simple ideal cases with a view
to the fact that the influence on instability of certain important parameters
like the time lag and the pressure index n of interaction of the combustion
processes and chamber oscillatiom should qualitatively be the same for
simple conditions as for cases invoiving complicated feeding systems.

The simplest case in which the injection rate is assumed to be independent
of the pressure oscillations in the combustion chamber will first be con-
sidered. This fundamental case must be considered only as an ideal limit,
though it can be approached with the use of a displacement pump or of a
cavit.ting Venturi and with a careful design of rigid feed lines. For this
case, p = 0 and equation (2.03.01) becomes

+ (1 -. n) (= -ngP(z - f) .... (2.03.04)

so that the characteristic equation (2.03.03) becomes

s + n + ne-#' = 0 .... (2.03.05)

SI Let s = A + iQ and separate tht real and imaginary parts of equation
(2.03.05). We have

•'l• [ A + (I1--n) + n e-a4 co3.Qf 0 '7A
±(- +=.(2.03.06)

IQ- ne-A-1sin Qf = 0
The quantity .Q is the angular displacement of the oscillation during the
time lag, the ratio of .QDf to 2 7r is therefore the ratio of the time lag * to the
period of oscillation T.

,' - 2 * -- •.... (2.03.07)

From equation (2.03.06) it can be obtained that

""i pF p = h (Qf) .... (2.03.08)

which can be solved graphically for any set of given values n and f. Both
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f and h are universal functions and have been calculated8 as shown in
Figure 5. f ('f, n) is plottect against 'f for several values of n on the left-hard
side; and h (D?, 'f) is plotted against Df/2ir on the right-hand side. The
value of f (-7, n) is read for given values of 'f and n. A horizontal line is
drawn to cut the curves of h (D, 'F). At the intersections, the values of Df/27r
can be read and D? calculated. A can be determined from thc second
of equations (2.03.06) as

eQ1F Kn'F .... (2.03.09)

& 10

• sie; ad h /2, •) i pl;; ed;;;;nt g2/2• rnthight-handsdeTh

A-1

Figure 5. Graphe ) deermination of igenvalues Af + Qn of equahion (2.03.06)
-~~ (By cowksy~ of the American Rocket Society)

Thedoted traghtlins i th let-hnd idecurves are n'f for different
vdrawnltocutthcures of h ( -) =Aisplot the int the valuside curves.
The solution is stable, neutral or unstable depending upon K(A2, 'F) Z n'f.

An examination of the graphical solution leads to the following qualitative
conclusions:

(i) For a given system ('f and n given) there is an infinite number of
oscillatory modes corresponding to increasing values of D not exactly in
harmonic ratio. If the value of 'f is too small, the fundamental oscilla~ting
mode may be absent.

(hi) For a given system, K(A?, 'F) increases with higher modes of oscillation
while h (AD, 'f), f (,-, 'F) and n'f are all constants. If the jth mode is stable,
all the modes higher than the jth are stable. The-refore, the necessary and
sufficient condition for intrinsic stability is that the fundamental mode
shall be stable. -

(iii) For sufficiently small 'F all modes are stable regardless of the value
of n.
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The complete solution of equations (2.03.06) is only of academic ;ntercst.
it is more in the line of small perturbation theory to de'ermine thc stability
boundary of such ideal systems. Putting A = 0, equations (2.03.'06)
are compatible only when f takes some well determined values 6, that

we call critical values, corresponding to neutral oscillations. Then the

0-7S

0 0-5 1.0 1.5 let0 z-$ 3-0

,Figure S. Critical values for intrinsic inslabiliY fo diferent ralues of Ohw interaction indcx n
oj~urtesy of the Americam Rocket Society)

equations can be ý,olved, giving the followring critical values of 'i and 12; RIi.e. 6 and c- o(n )

cs 6 (1 )n. .. . (2.03.10)V"

r~nn

A~e ee hat eutal scilatins A 0'arenotpossible in olir ideal
sseifn<. bssostaifn<,th -sen is always intrinsically

stale o mttr wat he ale o th tie ag ay e.For n > I thc- values
of he ritcalquatites or he undmenal odeare calculated from
equtios 2.0.10 ad ae poted s sow inFigre6. The stable and

the nstbleregon or and w can be easily determined from.n the ordinary
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argument of smooth transition. It can also be'seen analytically b, deter-
dA dA-

maining the sign of or . evaluated from equations (2.03.06) et the

critical point.

> 0
di1 + [(n- l)+ l]

Thus for a system with a given value n > J, the system is intrinsically
stable if F < 6 and intriis;-,ally unstable if f > 6- The angular frequency
of an unstable oscillation is less than (o while that of a stable oscillation is
greater than w.

From Figure 6 it is clear that the critical time lag 6 always decreases whcn
in increases and its decrease is very fast when n is close to J. The unstable
range of time lags, - > 6, 6 widens with increasing a, which means that
increasing n ,s destabilizing. The destabilizing effect of increasing the
interaction index n is to be qualitatively expected on purely physical
grounds.

The presence of the constant b which represents the phase lead of the nozzle"transfer function increases the magnitude of the dimensional critical time

lag f* = 60,(l + b) by the multiplier (I + b), because 6 is a constant for
given n. Therefore the nozzle has a stabilizing effect in reducing the unstable

range of time lags by increasing the critical value of f*, as compared with
that of the limiting case of a very short nozmle in which the volume of its
subsonic portion is negligibly small compared with the combustion chamber
volume.

From Figure 5 we see that the fundamental mode of the oscillating solutions
does not exist when f (n, f) is less than 1/e. This situation arises either when
- is sufficiently small for any given value of n cr when F is sufficiently large
and n is larger than unity. It can easily be seen that the latter case with
n > I and large i corresponds to positive real roots for s and therefore to
monotonically diverging solutions. Under this condition, the system is
definitely unstable.

2.04. SYMrsMS UITH CONs'r r RATE FEED

For a liquid rocket with a displacement pump or a cav:tating Vernuri that
supplies propellant to the feeding line at a constant rate we have D =oo

(Figure 7). Consider such a system without servo control, F d 0
(1 d =0;

divide equation (2.02.10) by D and let D go to infinity. Equation (2.02.10)
is reduced to

PEd&- + I I+E Ez+ (0 -- y)JE pi----. .... (2.04.01)

It is clear that if the parameter J is computed from equitiou (2.02.09)
using I(1 -y) As line length, thc .actor (I -y) can be abse:ibed in J and
cancelled from the equation. The physical meaning of this is that in this
case the port'on of the feed line bet, te.n the pump ind the equivalent ine
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capacitance operates at constant flow rate and therefore does not contribute
to the dynamics of the system irrespective of its length. The only part of the
line which has an influence on the dynamics is the one between the capaci-
tance and the injector, of length 1(1 -y).

Substituting pi from equation (2.04.01) into equation (2.03.01) with
"-?= f and with the new definition of J we have

n + E J (z)

[nQ+ n I E +JE.d' +PE ±]( - =6)=0 .... (2.04(

By comparing equation (2.04.02) with equation (2.03.02) or postulating

Th7o

Amp

Figur- 7. &dIenatic diagrrn ofa co.tart rate ftding system
(By couvte" of the American Rockt Skci*) -

solutions of the exponential type exp (sz), the characteristic equation

(2.03.03) takes the following formn

(1 + Ps + JEs2) [1 + s - n + ne-1] + PEs e-18 0 .... (2.04.03)

Fur the deternination of the stability boundary, set s = ico, separate the
real and imaginary parts of equation (2.04.03) and solve for doa -- l"Ew
and 6. For convenience, let us define

V=JO- I o .... (2.04.04) -T

which, in analogy to the terminology in the flow of alternating current in
an ele:'tic circuit, may be tentatively called flow reactance of the feeding
line for oscillations of frequency w. We obtain:

•W=(n P•- _1 .... (2.04.05)
w2 - (2n- 1)
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[7 - taw' T --- tan-1  f n- tan-' .... (2.04.06)

6 as obtained from equation (2.04.06) is multivalued. The smallest
value of 6 corresponds to the physical situation where the duration of the
time lag is less than one oscillation period, m-nd the neutral oscillation cor-
responding to this lowest value of 6 can be given the name fundamental
low frequency mode. Larger values of 6 differ from the preceding one by
multiples of iT/c, and these critical ',alues of the time lag contain more than
one complete oscillation period. T'.e neutral oscillations corresponding to
these larger values of 6 are designatd by integral number h =0 , 1, 2, 3...
indicating the number of oscillati, . periods that is coiitained in the time
lag. The values of 6 larger than the funtdamental one, h = 0, may have an
interesting physical meaning as will be discussed in the following.

Equations (2.04.05) and (2.04.06) defitte a relation between W, n, P and 6.
Thus 6 depends only implicitly (through w) on the other parameters E and J
of the feeding :ystem. This relation is represented in Figures 8, 9 and 10 for

J _

7J - - Figure 8. General relation

I I •between the critical values of
I t ithe dimensionless sensitive time

lag 6 and the critical angular
_--_ firequencr of neutral oscillation

a), for dfferent pressure drop

Parameters trpiln .O

0 7
(O2

n =0, and 1 respectively, and for a series of values of P. For given n1 and
P cquation (2.04.05) showvs that a real WI, arid hence a real 6, is obtained
only if the following inequalities are sattisfied:

2n I <w2<(P+ 1) (P+ 2n- 1) ....- (.04.07)

The first ineqality 0> 2n - I indica0tes that if n < ad, hhe range of cc
reaches 0; but if n > 4, the range of possible critical frequencies starts
with the positive value (2n - l) , which coincidc with the critical frequency
of intrinsic instability. In both cases the range of critical frequencies
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J-0

Figure 9. General relation betueen
Ae crilkata1dues ofJte dmmonlss
stnsitive time lag h and the critical

anua requencY Of neutraL oscilla- 4
tion a), for djfferent pressure drop

* ~parasneters .pwith n

Figue 10 Genralrelaion etz01n
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extends up to a maximum value defined by the second inequal ity (2.04.07)
" ~as is well illustrated in the figures.
• I• For cacti value of w• within the possible range there are two fundamental

•- -•values of 6, the smaller co-rrepoding to the positive and the larger to the
•"• negative value of PJ as given by equation (2.04.05). Both signs are physically

Spossible, as issonby equation (2.04.04). Athtw iisoheinequality
'•'" (2.04.07), that is when W is infinite or zero, the two values of J coincide.
•. • Therefore, if one takes into account the multiple values of 6, the curves of

constant P appear as a multiplicity of half closed loops when n < j or of
•Y: completely closed loops when n > J. To understand the meaning of these

ie-- loops we must introduce the conditions of the feeding system, as expressed
•"• "by equation (2.04.04). ,Equating the values of Y1 given by this equation
•.-" and by equation (2.04.05) we obtain

-- 1 J (--+-p t _ n2

•.:-•=~J -- (n + P)2t= - .... (2.04.08)-- o •2 E - (2- 1)

:: which can be developed as an equation of third degree in 0P. Ile positive
exroots of this equation determine the critical frequencies as functions of

Forn, P, E, and o. Without entering into a complicated analytical discussion
valesof the roots, qualitative results can be obtained from the ollowing con-
pssideraons, as shown in detail in Appendix C.

-(1) Increafing the interaction index'n is strongly destabilizing in as much
pas the unstable ranges of n are widened u

lop(2) Increasing the pressure drop across the feeding system, (essentially

across the injector) generally has a stabilizing effect.

".2•(a) W*,hen n < 1, a sufficiently large pressure drop vith Af•iff <
an.d/( - 2e) can guarantee stable combustion for arbitrary elasticity

Cwh and inertia conditions of the feeding system and in particular for arbitrary
values of the time lag. de call this unconditional stability. If the pressure
drop is not large enough, the system is stable only when the t alue of the

•i time lag i: is ir a certain stable range or within ranges of values which
ofdepend on the elasticity and inertia of the feed system. oVe call this con-
ditional stability. An increase in the pressure drop (decrcase in P) tends

to decrease the unstable ranges of the values of and is therefore stabilizing.
(b) I".en n > c, no matter how large the pressure drop is, uncon-

/ :::;ditional stability cannot be obtained. The system can be stable only when
i •- the time lag is less than a ce,-tain critical value depending on the magnitudes

aof P, E, and . Increasing the pressure drop is in general stabilizing in
increasing the critical values 6 or the stable raege of f, except when Eis very small so that the flow reactance Jon -f a/b is very largeand negative igt

va(l) The elasticity parameter E and the inertia paramety. J have similar

S~complicated effects.drop(a) If the system is unconditiona!ly stable when n < t, any increase in
dE or n makes the system less stable ineti the sysse Wecl them is closer
to the condition of marginal unconditional stability. Any decrease in E
tor J makes the systemr more stable.(b) IW a ystem is nmtable whenow < la the giprn alues op E, J, und c,

"dthe system can be made unconditionally stable by suficien.ly decreasing

ofF ,adJ nrain h rsuedo singnrlsaiiigi

it co tec

to... te cditionofmarginal unconditional stability.Anydecresen E
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the paramnters E and/or J. The system can also be made cc..ditioually
stable by sufficiently increasing the parameters E and/or J. However, a
small change of E and/or J may make a stable system unstable and an
unstable system stable depending upon the circumstances.

(c) For systems with n > j and a given value of P, the system will alwaysbe unstable for any values of E and J if the time lag f of the system is larger

than a certain value corresponding to the maximum value of 6 of the
lowest loop as shown in Figure 10. An unstable system of this kind can be

Figre 1. Genera rda'op btweeu the critical time lag and dhe ratio of the critiCal time lag
to the period of oscillationsfor differe • pres drop faramders f jr with n =0

i(By cwem" of the Amencan Roifif Sociey)

made conditionally stable only by decreasing the pressure drop AAi across
the feed system accompanied by a proper change of the parameters Eand/or J. 

a
(d) For an unstable system with n > 4 and a given value of P, with the

time lag f less than the maximum value of 6 mentioned in (c), the system
can be made conditionally stable either by a sufficiently large decrease of
E and/or J (upper branch) or by a sufficiently large increase of E and/or J
(lower branch). Again a small change of E and/or J may make a stable
system unstable or make an unstable system stable depending upon the
original tonfiguration.

Before dosing this section we observe that while it is impossible to present
on a single graphical representation the quantitative results for general
E and J, this is possible if either E or J is given a fixed value. The equation -4-
obtained from (2.04.08) after extracting the square root with the suitable
sign furnishes the other parameter E as a function of n, P, and (o, if J is
selected, so that the curves of constant P and given n (such as those of
Figures 8, 9 and 10) can be calculated using E a3 a parameter for the assigned
value of J. This has been done for the particular value J = 0 in which
case the curves of constant E are drawn; and for the value E -o, in

45
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SYSTEMS WITH CONSTANT I U•WE. FEEru D

which case lines of constant J are traced on the figures (this case corre- 4 WN
sponding, as already mentioned, to a particular system with constant feed

T • pressure). The reults are shown in Figures U1, 12 and 13 where, however, for
clarity the plane (26/ir, W5/21r) has been used instead of the plane ((o, 2A•lV).
The ordinate w6/2,r has an interesting physical meaning, as shown by
equation (2.03.07). The case J = 0 for n = 0 and n = j exhibits the
characteristic behaviour, already discusscd, that a curve E = constant may

•CoirneeIon9 /4
Figure 14. Schematic diagram of
a constant pressure feeding system. ::t-"

(By courtes of the American &70,72.

Rockt Sodcib)

present two intersections with the lines P = constant, thus determining
finite unstable ranges off.

This behaviour is never present for n =1"; nor for n ==0 and n="
when E = co. The line J = constant shows only one intersection with
each of the lines P = constant. In this case the hyperbola of Figure 64
degenerates into two straight lines through the origin, one being vertical.
While the smaller root wo goes to zero and the corresponding 6 to oo, there
is only one significant root wo left. The conditions in this case are similar
to those of n > j represented by Figure 13.

2.05. SYSTEMS W-rTn CoNSrT•r PRESSURE FEED

In a liquid propellant rocket with constant pressure feed, as can be obtained
through simple gas pressurization, the pump characteristics are represented
by D = 0. A schematic diagram of such a system without servo control is
showi. ic. Figuire 14. The feeding system equation is obtained from equation
(2.02.10) by putting D = 0 and dropping the term F(d/dz) related to the
servo control, and can be written as

)P [1 + JEy 91

[I ++ J+y ,--...(20501

Substitute pi from equation (2.05.01) into equation (2.03.01) and taket= f for the reasons discussed in the preceding section. For the particular

47



--- MM--"--

S2.05 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

solution of exponential type exp (sz), equation (2.03.01) takes the form

1 + Js + JEys2 + J2Ey(I -- y)s3 ] (1 ± s - n + ne-t)
+ P e-15 (I + JEys') - 0.... (2.05.02)

Equating the moduli and the arguments of the two terms of equation
(2.05.02) when s = ito for neutral oscillations and f = - we have

{[i - JE.'o] 2 -. J.rO2[1 - JEy(l -y)w•]) [(1 - n)l -}- + ]

= [(1 - JEito2)n + (1 - JEyrO)P],
•/o,/+ nt- J2o2[1 JEy(1 -- y)o~l

... (2.05.03)
tani-L + ta Jco[l - JEy(l - y)to]"•"- ~tan- - - tan-'

1 -- n -- JEyo2
•- •+,nJco[1 -- JEy(I -- y)co•]

' .... = •" nt- tan-1 -- •
- n+l -- JE)1 j + .- P[I -j Ey2]

A general discussion of equations (2.05.03) with arbitraryy is practically
impossible. Therefore, leaving the general form of these equations for
numerical computations with practical values of the parameters, we shall
investigate here only those simple cases obtained with particular values ofy.
Suppose first that th-. capacitance is con'entrated at the injector end of the
line, that isy = 1. Then equations (2.05.03) are reduced to

[(1 -JEo) 2 ± + J'] [(I - n)2 + w2 ] = (1 - JEWo) 2 (n + P)* + n2 J• 2o2

£O it JVo
taw-' + tan-' V + tan"P- n-J1"•'• +%I ta-• l n I -- JE&• P + n I -- JFoW

It is easily observed that the quantity Eo - llJto can represent all the
feeding line parameters. We shall tentatively call this quantity 0, the flow
susceptance of the feed line when the oscillating flow has an equivalent
frequency vo in analogy to the terminology in alternating current circuitry.
Thus we have, solving for 2 and 6:

"45•- Eow -- I Wo) .... (2.05.04)

e(l24-( - n)2 -n 2

(n + P)12 -2 (1 - n)2  
... (2.05.05)

S7, -.-- tan- + tan-' !-- .... (2.05.06)-- •+ to 1 -n n

Comparing equations (2.05.05) and (2.05.06) with equations (2.04.05)
and (2.04.06) we see that the flow susceptance 0, in a constan t pressure
system with y = I, plays the same role as minus the reciprocal of the flow
reactance, -11W$t, in a constant rate system. In fact, the relation between
6 and n, P, w as obtained from equations (2.05.05) and (2.05.06) is exactly
the same as the one obtained from equations (2.04.05) and (2.04.06); a
point corresponding to a given value of 45 is ue srame as the point cor-
responding to the identical value of --ll/P in the two different problems.
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• " Thus, the curves of Figures 8, 9 and 10 apply also to the constant pressure

system. The inequality (2.04.07) applies too, with 5 = -:oo at the upper 79

of 0 and- the lower ones to negative values. The discussion of the equation
AE I (n+p)2 -- 1 .... (2.05.07)!~ ~ ~ ~j +A;•- 2y 2 -- (n +P)2 - (I -- n)2 -- Ws

which is obtained from equations (2.05.04) and (2.05.05) can be conducted
in a manner similar to the discussion of equation (2.04.08).

This has been done in Appendix D with qualitative conclusions similar
to those of Section 2.04.

We have thus far discussed the constant pressure case with the particular
value y = 1. For v = 0, equation (2.05.03) becomes exactly the same as if
we put E = 0. Thus the general behaviour of the system would seem to be
fundamentally !--.Langed by the location of the equivalent line capaci-
tance, though the magnitude of the quantitative results may be significantly
affected. An investigation on the effect of intermediate values ofy has not -

yet been made.
Before closing this section let as observe that if we were interested in

analysing the combustion stability with more complicated feeding systems,
fbr example with some finite value of D, or the use offeedback servo control,
the algebra involved in the analytical procedwue illustrated in Sections 2.04
and 2.05 becomes increasingly heavy and make% it ',:r.ult to draw general
conclusions.

2.06. SERvo STABiLzAToIN

The importance of the characteristic constants, D, P, E and J of a feeding
system has been illustrated by the previous special cases. It has been
shown that a chugging liquid propellant rocket motor can be stabilized
in certain circumstances by increasing sufficiently the pressure drop in the
feeding system, by proper adjustment of the feeding line length, etc. Un-
fortunately, however, this is not always true, especially for large n, and
even when it is true, it may result in impracticable length or size of lines or
in txcessive weights when large pressure drops are required. H. S. TsIEN9

analysed the possibility of stabilizing a chugging motor by introducing a
feedback servo link as was suggested by W. BOLLAY2 1 . The purpose of this
servo system is to modify the overall characteristics of tie feeding system
in response to the chamber pressure oscillation without modifying the values

- *. of D, P, E and J which are favoured from other design points of view. In
view of the heavy algebraic manipulations involved in analysing the feeding
system, especially when an arbitrary control capacitance is introduced,
Tsien preferred the use of the Satche diagram and the associated Nyquist
diagram. The principles involved in this graphical analysis are explained
in Appendix A. This graphical method can be used advantageously in
determining whether a given system with known constants is stable or
unstable. The procedure is to write the characteristic equation (2.03.03) as

G(s) =- e-18 - g (s) -0 .... (2.06.01)
Aith g (S) =

49

NE
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where LI and L2 are polynomials of s with known constant coefficients.
Let s trace the contour C in the complex s plane in a clockwise direction.
The contour C consists of the imaginary axis and a semicircle with infinitely
large radius enclosing the entire right half of the complex plane. While s
is tracing the contour C, e-" will follow the unit circle about the origin when
s is on the imaginary axis, and will lie inside the unit circle when s is
on the semicircle. The value of g (s) = L1(s)/L 2(s) is calculated from
point to point and plotted in the complex s plane. Usually, it is only neces-
sary to compute g (s) while s is on the imaginary axis. The closing arc
o' g (s) when s is on the semicircle can be obtained just by observation.

Figure 15. Schematic Satch.
*e t diagram for a liquid rocket

twah 0 < n < 4. The system
is intrinsically stable for
arbitraty ralues of the time lag.
(Bv courtey of the American

Rocket Society)

This plot in the complex s plane is called the Satche diagram. The vector
with vertex on the plot of e-41 and tail on the plot of g (s) with the same
value of s represents the complex quantity G(s). A plot of L,(s) is also
made while s traces the same contour C. This is the associated Nyquist
diagram. If the vector G(s) makes a, complete counterclockwise revolutions
and the vector L2(s) makes a,, complete clockwise revolutions while s traces
the contour C, then the difference a, - a,, represents the number off zeros
of G(s) in the right half of the complex s plane. A system is stable if
a, - a, = 0, which means that there is no root of the characteristic equation
with positive real part. To illustrate the use of the Satche and associated
Nyquist diagrams, we first consider a few simple ex-.mples.

For the case of irtrinsic instability, we obtain ri'om equation (2.03.02)
g (s) = Iq(s)/L2 (s) = -- (I - n)/n - •rn .... (2.06.02)

While s is travelling on the imaginary axis from - N,) to +ioO, g (s) traces
a straight line parallel to the imaginary axis extending fron -- (I - n)/n +ioo
to -(I - n)/n - ioo. When s is at infinity on the real axis, g (s) is also
real but is negatively infinite. The closing arc of the trace of g (s) is there-

:v. fore a semidcircle through the negative infinity. If 0 < n < J, the trace ofg (s) is completely outside the unit circle and does not encircle the unit circle,

Figure 15. An observation of this diagram shows that the vector G(s) =
e" - g (s) will not make any counterclockwise revolutions, i.e. a. = 0.
Since L2 (s) is a constant independent of s, we have a, = 0. The system is
"therefore always stable regardless of the value of f.
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On the other hand, if n > J, the straight line portion of the plot of g (s)
intersects the unit circle, Figure 16. In this case stability is possible only
if the vector e-' remains to the right side- of the straight line -(1 - n)/n
when the vector g (s) lies inside the unit circle. This condition is satisfied if

cos [f (2n - 1)1] > -(1 -- n)/n

The critical values w) and 8 are thus found as:

w = (2n - 1)i } (2.06.03)
6 = [ir - cos-•l(l - n)In}l](2n - 1)1 J

which agree with equations (2.03.10) as are given in Section 2.03.

Fi~gtre 16. Schematic Stiche diagram
of a liquid rocket with n > 1. The
.~yst st able only for sutkde ys=al valas of the liti ag. (By

courtesy of the American Rocket 6W

society)A

I
In the analysis of a more general system, the Satche diagram becomes a

j little more involved, and it is no longer possible to determine the frequency
of neutral oscillation in a simple manner as in the case of intrinsic instability.

From eqxations (2.02.10), (2,03.01) and (2.06.01) we obtain the function
for the plot of the Satche diagram as

g (s) s+(I-n) s + (1-n)
A Cn -- N
n+ +F(,)

where ••

A = P[1 + DE(P + 1 )s + JEys2 ]

B= [ + D(P + )+ [DE(P + )+J]s +L
+ [DJE(I -y) (P + j) + JEy]s2 + 'PEy(l -y)s3  .... (2.06.05) W

C =D(P + I)s + Js2 + DJE(l -y (P + i)s3

+ JPEy(l _y)S4

The quantity N(s) in equaidon (2.06.04) represents the ratio of the
fractional variation of the injection rate and the fractional variation of
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combustion chamber pressut.- or the transfer function of the feeding
system. With s W A, the ftutctioui N is in general complex and can be
written as

N(D?)-N ( + WAN,(9Q) -[ + ~F(iA)1 .... (2.0.06M)

where both X~, and N, are real functions of D?. The imaginary part must
approach zero as A? approaches zero. F(0) = NT,(O) is a real constant for a
given feed system. This constant represents the steady state value of the
ratic of the fractional variation of injection rate and the fractional variation
of chamiber pressuie. For systems that are not servo-controlled

N(O) =2N,(0) =-P/[l + D(P + <l 0 .... (2.06.07)

which is- always less than zero. This -last part has some importrw com&
quences as will be seen later [equation (2.06.13)].

To illustrate the application of the Satche diagram in determni~ng the
-i ~stability of a given system with known constants, let us consider the Molowing

examples as given by Tsicn9t .
t*V Consider a system in which the dynamuics of the feeding system. is defined

by the following constants [see equation (2.02.10)]

DNl J~ J=4, E=j1, and y J

The -index of intevaction n is selectedt as which is the value of marginal

intrinsic instability. The g (s) without servo control is

g (s) .... (2.06.08)
P 3+3%2+ 6s+ 6

Owing to the symmetry of the diagram when x takes positive or negative
values of A?, it is only necessary to plot the diagram for posiiive values of 91.
The diagram for A? =0-5-2 is shown in Figure 17. The closing arc when
s~ oo. i interseucs the negative real axis at c*D. WVhen-s traces the imaginary

axis, the curve of g (s) intersects the unit circle.
If a servo-controlled capacitance is introduced next to the injector and

the transfetr function of the servo link is

F~s~ 437*(s + 1-0528) (P2 + 0-7164s + 2-6304)

s@s + 2) (s + 3) (s + 05332) .s2 + 0-4668s + 3-7511)

then the function g (s) becomes .... (2.06.09)

(s + 2) (s +3)
s+6) .... (2.06.10)

t The data presented in the rest of this tection as showwn in Fiunts 17 and 18 an,. revio.
duced from ref. 9, by courtesy of the Ancrican Rocket Society
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This function g (s) is also plotted in Figure 17 and is seen to be completely

outside the unit circle. The assoiated Nyquist diagrams for both cases

do not encircle the origin. Thus we see that the yse witho, ut s herv contro
can becoime unstable if the time lag f is sufficietllagbthese

sysrm euiped iththeprescribed servo control is stable for all values o

the time lag; that is, the servo-controlled system is uncondit-ionally stable.

z ~As a second examnple take

n=j, P=, J=4j E=j and D=O (constant pressure feed)

Without using seivo control, we have

Figwe 17. Sclediagamrs qf a
rIwd with r Ifd

wWOh mns rownct;l' (b) Sackh dio-I
o, r whssof he spktm mBoUedil byv a

trwfer f wwtion spedfied by equation N -?I
(J0609).Z
X~N'w neasO CWflY Wirate rdlwis z&

of 0. (BY conrtes of Wh Ame&=a

RO?.kI* &d.0

Th Satche diagram for such a system is shown in Figure 18. The plot of

g (s) intersects the unit circle. If a servo-controlledcaciaeisntoud
next to the injector with transfer function

(s + 0.8126) (s2 - 0-04337s + 2-6506)
F~s = 4.85 ~ + r... . (2.06.12) L

the plot of g (.f) is ihifted completely out of the junit circle. Aan, we see

that a system which may Possibly become usai o eti auso
time lags can be made stable for all time lags by the use of servo control. .

In the first acample the g (s) curve has a tendency to make a loop outside

the- unit circle of e-1. In the second example the loop has grown up andI is tangent to the unit circle at about 2-0. If the constants are further
53
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41

so 4 Figure 18. Sate he diagrams of a monopropellant
-v-i- rcket with n = J and the followring feeding system

_5~ constants: E = J, J =4, P=~ D=O0, rnd

_ - - (a) Satche diagram of the system with-mn seize
1-s-8 1- cohtrol; (b) Soatde diagram oqf the system controllerd

byacapacitance unerramchanism with its transfer
fw'ction spfej~d by equation (2.06.12).,

S Numerals on emues indicate values of D?.
_ ~(By courtesy of the- Aerican Rocket Society)

liii 53L~it-8
adjusted, the loop may intersect the unit circle or even encircle the unit
circle. Fui-theriviore, more than one such loop may develop. Let us con-
sider the Satche diagram with one loop intersecting the unit circle as showvn

Figure 19. &hematic Satche diagram of a mono-
propS! ant rocket with a leop intersecting the unit circle 2

schematically in Figur 19. The three intersections are indicated by Ct,
'4ý B, and A, in the order of increasing D. When D =0, the vector G(0) lies

on the abscissa with head at the point (1,0) and tail at the point [g(0), 0].
When D2 increases, g (WA) and e move along their respective curves
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toward 'j as indicated by arrows in Figure 19. If f is sufficiently small,
e-il' will not have passed A, before g (iW) reaches A1. The system is
therefore stab~e. I

If f is slightly larger than a critical value corresponding to the situation
where g (iW2) and e-•tf reach AL simaltaneously (neutral oscillation or
stability boundary), thcn it easily follows that the system will become
unstable. If' the magnitude of f is further increased, so that e- Ir has
passed the point B• before g (i.) reaches B1, but e-i• has not reached
C1 before g (iW) leaves Ci, then an investigation shows that the vector i
G(s) will not make complete revolutions, and the system will remain
stable. •:

Finally if f is sufficipadtly large so that e-i• passes Ct before g (iWQ) reaches

C1, instability ;i again obtained. Thus we see that there are two distinct
ranges of values of - for unstable operation of the systew. defined by the
interval ber,,een points A1, B, and the region beyond the point C1. This
characteristi'z phenomenon has been observed in Appendices C and D as
shown schemat;,:z'h' • in Figures 66(a) and 69(a). It should be noted that
the intersection of &he loop with the unit circle does not necessarily intro-
duce discrete unstable ranges of the time lag. For example, if AI 'es on the
minor arc BiC1 of the unit circle, the intersection of the- loop with unit
circle BIA, does not introduce any discrete unstable ranges of F. The only
critical value of f is defined by the intersection C1. A simple observation
of the Satche diagram cannot always reveal the stability of the system,
and an investigation of the rotation of the vector G(s) must be made, which

is only possible when the value of the time lag i of the system is known.
Thus if the time lag is known only up to its order of magnitude and if
the Satche diagram is not simple as that shown in Figure 17, it is not straight-
forward to conclude from the Satche diagram ulhether the system is stable
or not.

Since we do not know the value of the time lag of a given system with
reasonable accuracy, we can coxisider a system as stable, from a practical
design point of view, only when we are sure that the system is stable for a
sufficiently wide range of the values of the time lag; or to be on the safe
side, for arbitrary values of the time lag. The latter case is what we have
called unconditional stability. This graphical method based en the Satche
and Nyquist diagrams provides a simple geometrical criterion for uncondi-
tional stability, especially when the associated Nyquist diagram of 4(s)
does not encircle the origin. Under this circumstance, the requirement for
unconditional stability is simply that the Satche diagram of g (s) must not A
intersect, nor encircle the unit circle. Thus if g (0) with D = 0 lies inside
the unit circle, the systemn cannot be unconditionally stable Lb:cause g (iW))
becomes very large when D is large. From equation (2.06.04t) we see that
for unconditional stability it is necessary that

-n < H[1 + A•(0)1 .... (2.06.13)

For systems without servo control N,.(0) is given by equation (2.06.07). Thus

equation (2.06.13) becomes

n < j(l - P/(1 +D(P + I)]) .... (2.06.14)
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It should be noticed that equation (2.06.13) is not a sufficient requirement
for unconditional stability, but only a necessary condition. It will be indi-
cated in Section 2.07 that the inequality (2.06.13) is both sufficient and
necessary for unconditional stability only for systems with small D or small E.

For a given feed system without servo control, the magnitude of N(0) or
.N,(0) can be computed easily from known values of P and D by using
equation (2.06.07) or experimentally determined by running a quasi-steady
state test of the feeding system alone under simulated operating conditions.
For liquid propellant rockets, if we increase the chamber pressure by a
definitw amount, the injection rate must eventually decrease. Hence the
quantity N,(0) is always negative without servo control as is evident from
equation (2.06.14) with both P and D positive. Therefore, if the value of
n for the propellant is larger than the value of [I +-L N(0)]/2 which is always
less than 1, and if we want to Jisign such a system for unconditional stability,
servo control will be necessary. The servo control must be powerful enough
to contribute a positive real part of sufficient magnitude to the value -f
N,(0) so that the necessary condition of equation (2.06.13) can be satisfit.
It is clear from equations (2.06.04) and (2.06.05) that, if the servo contn,
is to be effective in the limit when s = iW approaches zero, the transfer
function of the feedback circuit must have a simple pole at s = 0 when D
-is not equal to zero and have a double pole at s = 0 when D is zero. This
"is because the function C(s) has a common factor of .- or s2 depending on
D * 0 or D = 0. For systems without servo control, the fimction g (iW)
behaves like some positive power of D at large values of 2. That part of
the curve of g (iD) will not intersect the unit circle. Therefore, th• control
of the feedback ci-cuit can be cut off at large frequencies. In mathematical
terms, if the transfer function F(s) is written as the ratio of two polynomials
of s, the denominator of F(s) is of higher degree in s than the numerator.
With this in mind, it is only necessary for us to investigate the required
behaviour of the transfer function F(WQ) at sufficiently small values of D
where we can represent the transfer function as

F(s) = (f/'s)[l + ajs + a• + a3 • +..] when D 7L 0 S....(20.5
F(s)=(f/s)[[I- bls+bp-•+b 3 s +...] whenD I-0
Substitute the series expansion ofF(s) and equation (2.06.05) into equation
(2.06.04) and apply the conditionz that the modulus of g (s) must be bigger
than unity for arbitrary values of D. By comparing the coefficients of
different powers of D, we can obtain a series of algebraic inequalities which
form the necessary and sufficient conditions such that the feedback servo-
mechanism will result in an unconditionally stable system. The condition
which is obtained from terms independent of D corresponds to the con-

% 'dition of equation (2.06.07) for an uncontrolled system, that is

> P+2n--I -
+2n- forD . (206.16)

-f> (P + 2n-- l)/J forD =01
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It is easily verified that these conditions are satisfied by the transfer functions 4
F(s) given by equations (2.06.09) and (2.06.12) for the two examples
respectively. A

This condition (2.06.16) is particularly important because it sets a
minimum output and therefore a minimum amplification required from
the feedback circuit in actuating the variable capacitance of the servo-
mechanism. It is obvious from equations (2.06.16) that a more powerful
servo control is required if the inturction index n is larger. By increasing
the parameter D, that is, by usir.ng pumps which are less sensitive to the
delivery pressure variations, the requirement on the servo control is some-
what relieved, but in no case can -f be less than 2n - 1. For a constant
pressure feed system (D = 0), this minimum power requirement is decreased
for given values of n by increasing the inertia parameter J and by decreasing
the pressure parameter P (increase in pressure drop across the feed system).

The inequalities that are obtained from *he coefficients of terms of higher
powers of D are the requirements to be satisfied by the a or b coefficients
characterizing the nature of the feedback circuit. IL is simple to show that
the curve of g (iW) is normal to the real axis at Q - 0. For feed systems with

. small D or small E its curvature in the neighbourhood of Q = 0 is sufficiently

small so that the curve will not penetrate into the unit circle. Therefore,
instead of setting up the inequalities for the a or b coefficients, a sufficient
condition may be that the introduction of the feedback circuit does not
modify the curvature of g (iD) at AQ = 0. This condition is satisfied if the
transfer function F(s) is such that the polyi. 3ial in the numerator of CF(s)

does not involve terms in s and sP, that is, if a1 and a. are selected as:-

or b, and b, as: .... (2.06.17)

b2  -JEy(l -y) for D 0

An example of a simple transfer function fulfilling these required conditions
has been used by F. E. Marb!e for systems with E -0 as

f I-als

with a, and a2 given by equations (2.06.1:). This particular form of transfer
function cuts out at large frequencies as Q- and appears to be somewhat
simpler than those given in equations (2.06.09) and (2.06.12), which are
obtained by determining the F(s) that will result in a selected stable g (s)
curve. It should be noted, however, that such a simple transfer function
can apply only to feed systems with small D or small E. The transfer functions
applicable to arbitrary values of the feeding system parameters are given by"[ Sr,-I CH E.NC;".
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2.07 CHUGGING ANALYSIS (Low FREQUENCY wNSTAmILmrY)

2.07. BIPROPELLANT ROCKETS

In bipropellant systems, the dynamic behaviours of the ,uel and the oxidizer
lines are in general not identical. Thus the responses of the fuel flow and

Yi• the oxidizer flow to the pressure oscillations in the combustion chamber a.e
Vý in general different, and the mixture ratio r = othjiiz will vary with pressure

oscillations. Since the adiabatic flame temperature of a given propellant
combination depends to a certain extent on the strength of the mixture,
the pressure oscillation in the combustion chamber will induce a variation
of the stagnation temperature of the burnt gas. This variation is not present
in a monopropellant system. Therefore for the analysis of bipropellant
systems, the equation of mass balance in the combustion chamber must
be corrected for this temperature variation. Except for this correction
all the other assumptions that have been made for the analysis of mono-
propellant systems have been transferred to the bipropellant casc.

The equation of mass balance in the combustion chamber is written in
dimensionless form as

d M¥ + i~(=)= ,(,,. .... (2.07.01)

" The fractional variatio' of the burning rate lb(z) is given by equation
(2.01.07), where, following what has been done in the monopropellant
case, we assume the entire time lag to be sensitive, that is i-r = ,

t P(Z) p,(z - •) + nl'P(z) - qp(z - .... (2.07.02)

The fractional variation of the injection rate pi is conveniently expressed$
"-in terms of the fractional variations of the oxidizer flow rate P, =

: (o- r(t)ho.) and the fuel flow rate pf = (irh - i,)/Ai,,
ipi ( + II)° p. - (1 • H)pf .... (2.07.03)

k where H is related to the steady state mixture ratio F by

S= - I)M(P + 1) .... (2.07.04)

For ordinary bipropellant combinations, we have f > I and as a result H
is generally positive. The fractional variations of oxidizer and fuel flows,

W/t ips and pf, are related to the fractional pressure vari, tion 4 through the
dynamics of the oxidizer and the fuel feed systems respect,,-Aly as represented
by equation (2.02.10).

The fractional variation of the -nass .4ection rate pi is a function of the
fractional variations of local pressure and local gas temperature enu. ing
the nozzle. Let us consider the case when the no77le flov. is quasi-steady.
Then

p - = ( )-.! - .... (2.07.05)

where T., is the instantaneous temperature of the gas at combustion chamber
exit, that is, the entrance to the nozzle. In the monopropellant case 't',, tha J I

1- 4 ,, Pe = n since we assumed the gas temperature to be independent of the
pressure oscillations. In the bipropellant case the gas entering the nozzle
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at the instant I was generated at the instant t - 0,, and the stagnation
temperature of the gas is determined by the mixture ratio r of the propellant 4 -
injected into the chamber at the instant t - - 0,. Therefore under the -I

previous assumptions T'J/T, is a function of r(z - 1)/f alone. Sincer and r--ho/.-ht--F(l .-k lo-- ), we can approximately •'

evaluate T 14./Tg as

TVJTP(z)1 I +0. 1 +2K( I)

1 + 2K[#0 (z - f - 1) - I,,(z - 1)] .... (2.07.06) -

where 2K = (F1/T•) (dTJ/di) is a property of the propellant combination and
is a ffunction of the steady state mixture ratio and the combustion chamber
pressure. For conventional bipropellant combinatius,, K is usually a small
positive quantity. ti. ,ions (2.07.05) and (2.C,7.06) give the fractional
variation of ejection rate of the burnt gas under quasi-steady asaumption as -

.u.(z) = (z) - J0,(z) = T(z) - Kfp.(z - -:) I- f.(z - -l)

.... (2.07.07)

Observe that in equation (2.07.07) the effects of pressure and tempeiature
oscillations are taken into account-separately. Thus, the-major effect of the

" f entropy oscillation is included. The effect of the deviation of nozzle flow __

N •from quasi-steady condition is more complicated when entropy variations
cannot be neglected 2,.2,15. It is, however, to be ex-pected that the deviation
will be small for sfficiently low frequencies. We shall therefore restrict the r -J present discussion to quasi-steady nozzle conditions.

C6nsider now the mass accumulation term z (Mv1Rg). With uniform

pressure but non-uniform temperature in tfe combustion chamber, the
density of the burnt gas varies from-point-to point. Thus,

.MVp P dV' I + -I dV' -

.Ai.

This integral can be evaluated by means of the complicated methods given L
in Chapter 3 for the case of arbitrarily distributed combustion. Neglecting
higher order terms, we have A4

d(M dt d 1 T•. .•, --- • - d L Jvl• -1) dVW .... (2.07A0) !

In order to avoid complications and to obtain a rough estimate of the
effects to be expected, Crocco' used the extreme. assumption that all the
propellant elements bum in the immediate neighbourhood of the injector
end and that each propellant element preserves its temperature regardless
of the pressure variation during the gas residence time 0 which is taken
to be the same for all propellant elements. With these simplifying assump-
-tions, which result in consta. it flow velocity, the two variables V'iV and
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-z are propotional to each other and have the same limits 0 and 1 at the
two ends of the combustion chamber volume. Thus the spacewIse inte-
gration can be transformed into a tinAewise integration with dV'IV = -- dz'.
Therefore

where all the quantities are evaluated at the instant z and T is the tem.-•; ! ~~perature of the gas generated a• h ntn .Tuuigeuto (2.07.06)
t te istnt Thsusing euto

to obtain 1',/74* and 1'lIT,. we have
d IMAJ d9p(z)

I•••- 2K[p.(z - - pf(z - f)] .... (2.07.09)

Combining equations (2.07.01), (2.07.02), (2.07.03), (2.07.07) and
27, (2.07.09), we obtain the cquation of mass balance in the combustion

I ! chamber of a bipropdllant rocket motor as
d9)

(I +( - n)•+n•p( - -)
:• i •=-K[1&o(z - f - 1) - u,(z- •- i )]

+ (+ H+ 2K)o.(z - f) + (- H- 2K)p,(z- ) .... (2.17.10)

There are three unknown quantities q, p. and pf in equation (2.07.10).
Two more equations relating po and pu, with T' are supplied by the equations

I of the dynamics ef the feed systems, one for the oxidizer line and one for
4 the fue! line. Each of the two equations is in the form of equation (2.02.10)

with subscripts . and f added to-indicate different quantities pertaining toI the oxidizer and the fuel lines respectively.

If the-fuel system and the-oxidizer system are such-that the dimensionless
parameters D, P, E and J for both system are identical, the respondse of
the oxidizer and of tie fuel flow will be expected to be identical-in dimension-
less form, and p. = =¢ p. The bipropeliant system then behaves in
just the same manner as a-monopropellant system with the equation of mass
balance and the equation of the feeding system dynamics reduced to the
form of the monopropellant case.

A study of the system formed by equation (2.07.10) and two equations of
the form of equation (2.02.10) is not very practical if the constants involved
in the equations are left arbitrary. The graphical method using the Satche
and Nyquist diagrams c&n be advantageously used for the investigation of
specific examples. The characteristic equation for the system with solutions
for 9(i) of the exponential type exp (sz) can be obtained-by climinating p.

' and pf from equation (2.07.10) and equations (2.02.10) for the oxudizer
and the fuel systems respectively. The elininant or the condition of non-
trivial solutions for 9, p. and pu can be most conveniently obtained by
equating the determinant formed by the coefficients of 9), p. and p, in

'4 the three equations to zero. This determinant can be easily expanded and
rearranged to give the following form of the characteristic equation

L,(s) - e-'[L(s) + Fo(s)Lo(s) + F,(s)L,(s)] .... (2.07.! 1)
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Li(s) =[I ±s- n]B.Bf
E,(s) = n.B - (Ke-i + (~-H - 21i)]AB,B

- -Ke- + (i + H+ 2K)JAB, -.... (2.07.12)
L0(s) = t~e' - (i + H + 2K)]BF,
Lf(s) = -tKC78 + (-I - H - 2K)IB0 C, .

with A, B and C given by equations (2.06.05) in terms of the constants of
the feeding systems with subscripts . and / denoting the quantities for
the oxidizer and the-fuel system respectively.

The function G(s) for the plot of the, Smtche diagram is G(s) -eiii- g (s)

Te g (s) =L 1(s)/[Lt(s) + F.(s)L.(s) + F. (s)L, (s)] . ... (2.07.13)
Teprinciple of the use of the Satche and Nyquist diagrams is explained

in Appendix A, and the method of construction and several discussions of the
diagrams have been described in Section 2.06. Examples for the bipropellant
cases are given by Marble and Cox'0 as follows:

ExapleI. Feeding system constants F.,(s) F. F(s) =0

D. Df 1, ,, -1, *2-6 J,=1-5, BcE f E,0
Then,

-L5 n) -[35~ l .,~*

3,2

The Satche diagram- and -the associated Nyquist diagram when n =0-2,

f 2-5, T,50100 F, d~v 360, H 0-2125 and K 009 are shownx

in Figures 20(a) and (b) respectively. The Satche diagram shows that
g (s) is completely outside the unit circle, and the Nyquist diagram of 4(s)
does not encircle the origin. The system is, therefore, unconditionally

When n =0-6, the Satche diagram is shown in Figure 21. It is found that
the system can become unstable (when f is in. certain ranges of values).

In these examples, the constants of the feed systems for the oxidizer and
the fuel lines are not very different; therefore, the behaviouir of such a
bipropellant system is quite similar to that of a monopropellant system, and
the variation of the mixture ratio r is expected to be small and :o of great
importance.
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Example 2.
Fs)= Ff (s) = C

Do=D=l-, Po--I, I,=4, J°=4, J,=l, E•=E,=O

-'0,0--1$0.0

•:I i i--

-*--0

I' •- 2. -- 0 - --

S '• Figure 20. $atcie diagram (kjt) and assoiated N3gus diagram (right) of a bipropelhan
S• ,rocket witi n = 0-2, 2-5,, -- 5010TF, dTddY = 360, H = 0.2125, K = 0.09

"• • • and the following feeding ý,stA constants: E. = 0, J. = 2"0 P. = 1, D. = 1,
•" ••Ef J= O, 1t--5'$, P, = 1,1D)1 = 1. Alumerals on thecurres indicate ralmsof 9

N} ()=--(55 Q n) r4 + 4(1 n )

-- f- +-3-1 -

(i) -2K + H) -- 4

Sn -- i +- - i sin D)

-~2 20a 2(b

= +15(iD2 cos D• + 9 sin D)} ... (2.07.15)

Figue-2The Satche and Nyquist diagrams for n 0.2, F 2o0f •po =4706,

dF/d = 850, 0=- 0167 and K 0.189 are sho0wn as Figure 22 opposite.
a eoogdThe system is unconditionally stable. These diagrams are distinguished

0Jfrom those in example I by having ularge loops. These loops originate
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20

Z- 71-JO

60 F0

-SO~~i --0 4' 1

~~~~~~~~~~~~~~~Figure 22.adadirm((a).aoe n soitdJ~qitdarmo irpln

Fgr21 acedarmoa irplatrocket with n 026, P 2-0, T, 576F TJ? 85,H 06,K 0.108
dllt=30 -15 .9and the following feeding system constants: E 0 .=4 0 1 , 1 ,=0

J,=1,,=4D, J Xwe~lson the curve s indicate values of Q

p ~74
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time lag of unity. The magnitude of these loops depends on K and on
the quantity BfAo - B0Af which increases with increasing difference
of the parameters of the oxidizer and fuel lines. If the combustion
temperature of the propellants becomes more sensitive to the mixture ratio
variation, or if the constants of the fuel and oxidizer lines differ to a greater
*.z•.zent, these loops will grow in size and intersect the unit circle and eventu-
ally encircle the unit circle. Thus, even with the present simplifying
assumptions about the quasi-steady flow in the nozzle, the temperature

r -,izý variations produced by the mixture ratio oscillation may affect considerably
the stability conditions. Physically when the gas leaving the combustion
chambei is at a temperature lower than the mean chamber 'temperature
due to the unbalance of the mixture ratio of this particular element, the

-° mass outflow rate is increased. This increase of mass outflow rate tends to
decrease the chamber pressure. With proper timing, this decrease of
chamber pressure may occur dining a pressure defect period and help in

* •exciting unstable oscillations. It can be observed from equation (2.07.15)
that the loop will not develop until DŽ is increased to the order of 7r. The
intersections of the loop with the unit circle will correspond to neutral
orcillations of frequencies of this order of magnitude, while the previous
intersections are usually less than unity. As has been indicated in Section
1.10, these unstable oscillations will be- classified in the intermediate
frequency range. For such cases, a more careful anal)yis taking the frequency
level into account should be developed.

•' • The necessary condition for the unconditional stability of a bipropellant
rocket corresponding to equation (2.06.13) for a monopropellant rocket is

+ < + + (K± H) (N,. - N,,)) .... (2.07.16)

which for systems without servo control reduces to

n < dl + -- .... (2.07.17)• ~~~1 -l+D.(P0 +q-i) 1l+-D,(P,+ -DtJ

For ordinary bipropellants, K + H is positive but less than j. From
equation (2.07.17), we can see that if n of the propellant combination is
less than 4, the system can be made unconditionally stable by increasing the
pressure drop across the feed system and decreasing the pressure sensitivity
of the feed pump. If D. = DI, it is clear that it is more effective, in ordinary
bipropellant systems with K + H > 0, to decrease P. than P.. In other
words, increasing the pressure drop across the oxidizer feed sstem has a
greater stabilizing effect. If P. = P,, it is more effective to increase D,
than D/. In, general by comparing the two terms pertaining to the oxidizer
and the fuel systems as given in equation (2.07.17) it can -be determined
easily whether it is more effective to change the oxidizer or the fuel system
to obtain unconditional stability.

When n of the propellant is greater than 4, it is necessary to control the
feed system by a feedback servomechanism to obtain unconditional stability.
Both the fuel and the oxidizer system can be controlled simultaneously by
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the same or by different feedback circuits as shown in Figure 23. It would-
be theoretically sufficient, however, to control either the fuel or the oxidizer
system. If the fuel system, is not controlled, F,(s) =0, and the oxidizer
system is controlled by a feedback servomechanism with transfer function
F.(s) where

F.(s) (fjs) [I + als+a s+ a3 s 3+.] when D. 0,

F.(s) (fQs2)[Il+b 1 s + bs2+ bs 3+. when D. 0.

S An~ffar AdaIpiu

'Servo

Figure 23. &Aemotkdiagrams ofthefceding systems of a bipropedlem rocket with =vent onrol

The-- -f. must satisfy the following requirement corriesponding to equation
(2.06.16) fbi: a monopropellant system,

-PIG - K H) Il±D.(P. +) 1
I+1+D(Pi+I) D.(P.+I) I+K-FH

when D. 0,
.4(2n-l)+P.(i+K±H)

+1+ Df(P, + 1) 1 Jo(* + K +H) . .(.0.1
when D, 0.

Similar expressions for -f. can be obtained simply by interchanging the N
subscripts, n,, an replacing K and IL by -K and -H. By comparing
the requirements of -f. and -f., it can be easily determined whether it is
more effective to control the oxidizer or the fuel system. If the fuel and the
oxidizeri feed systems have the same values of P and D (and J if D = 0),
it is more effective to control the oxidizer systemn for ordinary bipro-
pellant combinations with K+ H >0 because I + K+ His in general
bigger than I - K -H.

The coefficients a,, a. or b,, b2 of the transfer function of the feedback
circuit which does not change the curvature of the curve of g (WQ) at 0 =0,
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For the system with the Satche diagram shown in Figure 21, equation
(2.07.18) gives -f. > 1.247 and equations (2.06.17) give a, = 4/3 and
a2 = 16/9. This system can be made unconditionally stable by controlling
the oxidizer line with a feedback servomechanism having the transfer
function

i s= 1.40 1 - 1[33 s

(I ( 0.89s2)2

The resulting Satche diagram is shown in Figure 24 where the cure of g (s)

!•- SZ, -

Figure 24. Satche diagram qf the
-- - .] 3C biprmpellant rocket of Figure 21 with

= 0"6; (a),iot •3ra-controlled; (b)
M oxidizer line controlled 0y a capacitance

-~ 1, a I servo-mechanism with transfer function

F(S) = -- 140 1 - 1-33s
(I - 0.89--)-

Numerals' on cunt indicate ralues of.D

so

is shifted completely out of the unit circle. Lee, Gore and Ross, cited by
Randall32, have also plotted a number of cases for the particular configura-
tions with n 0 0, E = J = D 0 0, and stability boundaries are given ibr

- such systems.
The possibility of obtaining unconditional stability by the use of servo

control is also illustrated. It is thus -well demonstrated, theoretically, that
a liquid rocket can be made stable in the low frequency range for all values
of time lag. There are, however, important practical problems concerning
the proper design not only of the feedback circuit, but also the capacitive

•i servo control which finally converts the amplified electric signal into
mechanical vibrations of sufficiently large amplitude in the frequency

&.&7 range under consideration.
Previous considerations of servo stabilization arc made under the con-

Sditions that the different constants P, D, E, J andy are known for a given
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feed system. In practical systems, however, it is hardly po.sible to estimate il W- F
these constants with sufficient accuracy except the pressure drop para- "- -
meter P =fi/2Af. The pump characteristic D, being taken previously 4I= as a quasi-steady value, may change in the frequency range under con-
sideration. The application of equations (2.06.16), (2.06.17) and (2.07.18)
in designing a feedback circuit will require an ingenious evaluation of theparameters involved. t-

From a practical point of view, the ratio of the fractional variation ycf of injection rate to that of chamber pressure 4p, that is, the transfer function
N(iQ) = ya/p can in principle be determined, for different oscillating
frequencies A?, for the isolated feed system under simulated operating con-
ditions. This experimentally determined function N(Wi) = NA(Q) + iD2Ni(D2)
replaces the lengthy equation (2.02.10). Then the equation of mass balance
in the combustion chamber as given by equation (2.03.01) can be rewritten
for neutral oscillations-in a monopropellant system as

ihr + (1-n) + n e-f*-- e-"(R + iS)
-where R + iS - e-"N(iwo)

-e-iW'Nr(o,) + ioNj((a)] .... (2.07.19)

with bi indicating the insensitive time lag, when present. By separating
the real and imaginary parts of equation (2.07.19) and eliminating 6, we ._
obtain the critical values of n, corresponding to- neutral oscillations of
frequency wa in the given system

1 + 62 - [R2 (o) + sO(o)] (n = 1.-...o (2.07.20)
= I - R(w)

When either 6, = 0o r when bi is known, both R and S are known functions
of ca. A simple plot of niw can be made and a minimum value of n, let us
call it nin, corresponding to certain oa) --- o, can be found. If the value of
n of the propellant is less than this nmIn, it is obvious that no neutral oscilla-
lions could exist in the system and the system is unconditionally stable.
If n is slightly greater than nw,, and if the value of r is in the proper range
of values, unstable oscillations with frequency in the neighbourhood of co0
Uwill occur. Equations (2.07.20) and (2.07.19) are applicable to the bi-
propellant case as well if L(icw) = M,(o) + io) is defined as . .•

N= No( + 2K + H) + Nrf(I 2K-H) 1
(Nro - 2T,)K cos0- (N• - N,.,)Ko sin Cw / (072

NY N.o(I + 2K + H) + ,,(i - 2K - H) .... (2.07.21)

+ (2Y,, - A,.,)K sin wlo - (NT0 - Ni,)K cos w J
with subscripts . and f indicating qtuantities pertaining to the oxidizer and
the fuel systems respectively,

The expression for N(ko) as given by equation (2.02.10) or as defined in
equations (2.06.04) and (2.06.05) can be used to obtain the qualitative ..
behaviour of the curve of niw. It is easy to see that (dn/dw).,..0O vanishes -

at car =0, and it is found that n(0) is a minimum when D =0 or E =0,
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but is a maximum when D = oo. When D = 0(1), n(0) can be either a
maximum or a minimum depending upon the values of D, P, E, J and y.
No simple relation can be obtained. The fact that n(0)'is a minimum when
either D or E is small leads to the conclusion that, for such systems,
." = n(0) because both N, and N, approach zero when o is large and

n(cw) increa•ses like 0. Thus n(0) =-- J[l + N,(0)] becomes the criterion
of unconditional stability as has been discussed in detail in connection with
the Satche diagram. The present result indicates that the criterion of
n < n(O) = J[l + N,(0)] for-uncondiftohal stability can be both necessary
and sufficient only for systems with small D or small E. For systems in
which neither D nor E is small, n. would be better-determined from the
plot of n(.)[/o for experimentally determined N(ica). If servo stabilization
were necessary, the transfer function of the feedback circuit should be
selected so as to become most effective in the neighbourhood of the frequency
(q. where nm,, occurs as shown in ref. 22.

2.08. EFFECTS OF ThE NoN-umIFoRmwdY OF THE TimE LAG

It has been assumed in the previous analyses that all propellant elements
have the same value of sensitive and of insensitive time lag, and for sir-

® plicity the insensitive time lag has been assumed to be zero. Now we would
like to see the effect of the non-uniformity of the sensitive time lag -.

We have already stressed-the dependence of the time lag on the conditions
encountered by the propellants on their path from the injection orifices to

I the point where they are entirely converted into burnt products. We have
also noticed that the conditions encountered are different for different

j portions of propellants and therefore -the correspondung values of the timelags are, in general, differen- Tnowing the largest and the smallest values

of all the sensitive time lags, ;,. and f,, we can always define an average
reduced sensitive time lag r, and the total extent of spread- Af thus:

imax"(2.04.01)
=f fm, - i

Let f (-") be the fractional amount of the propellant having a sensitive time
lag lying between f.i1 and f. Then the fractional amount of propellant
having a sensitive time lag lying between - and -7 + df is given by
(df/dl) di df, and we haveP2f f (f,) " 1, f (f•,) ==0 and d= 1 .... (2.08.02)

Since IF is a monotonically increasing function of f-only, we can also con-
sider f as a ffmction off only. From equation (1.11.15), we find that the
rate at which the propellant elements, having steady state pressure sensitive
time lag lying between - andf + df, are burnt is

M (Z- T-). - ar)
VII
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where I - d'rldz is evaluated from equation (1.11.13) or, sn dimensionless . .
form, from equation (2.01.06)-with the value of F corresponding to this
group of propellant elements.

Let us cons .er the s-mplcst case of intrinsic instability, thm const.
The algebraic complication of the feeding system cart be dealt with, but is
not considered to be essential for the present purpose. The fractional
variation of the rate of burnt gas generation for all the propellant elements,
covering 'the entire range of variation of the sensitive time lag, is thus

-- -- I- -I df

or from equations (2.01.06) and- (2.08.02)

P I- nI o [c-z - -(z -

The equation of mass balance in the combustion chamber corresponding
to equation (2.03.01) with corrected reference time (1 + b)O is

[d + (I - n)] 97 -n 9f7'(z - .) df .... (2.08.03)

For solutions of the exponential type, 97(z) exp (sz), we have the char-
acteristic equation

s + 1--n) + n e"sf(O df =0 .... (2.08.04) a

which will be rewritten as
s + (I -- n) + Cne-"t, =0 .,....(2.08.05) 10-9

where C and -• are defined by1 ; 2l
C e-', = f(oe' di" .... (2.08.06)+

By comparison of equation (2.08.05) with equation (2.03.05), we see that
f, stands for the effective mean time lag, that is, the time lag of an equivalent
system in which the time lag for all the propellant elements would be the WI
same. The modulus C of the complex integral defined by equation (2.08.06)
represents a magnification or contraction factor of the overall effect, of the k n
time lag spread, on the variation of the burning rate. In general, both C
and f are functions of A and Dl. For neutral oscillations with A = 0
and s = •w, it is clear from equations (2.08.06) and (2.08.02) that

C = exp [--ko{?(f) -- • J] dr < f = I .... (2.08.07)

C is equal to unity when the time lags for all the propellant elements are
the same. When -the time lags are different for different elements, C is less
than unity.
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2.08 CHUGGING ANALYSIS (LOW FREQUENCY INSTIARILMT)

The critical values of the effective time lag 6,, and the frequency of the
neutral oscillation o, are obtained from equation (2.08.05)- -with i-/o)

Sand -,= 6, given as:

0) [(2n -l1)--(I-C 2 )n 2] 1

• cos w•6 = cos (21r6,1T) = -(1 - n)ICn ..... (2.08.08)

64 =[" - cos- 1 (1 - n)/cn]/[(2n - 1) - (1 - CI)n9i

Since the effect of the spread of time lag appears through the reduction
of the magnitude of C from unity to some value less than unity, equations
(2.08.08) show that the critical frequency o) of neutral oscillation is de-

i ....... creased and the critical time lag 6, is increased. In addition, we see that
for real o and 6o, n must be greater than 1/(1 + C) which is greater than j.
"This means that intrinsic instability is not possible unless n > 11/(1 + C) > 2.

STherefore, the effect of the spread of time lag is stabilizing and the stabilizing
effect appears as an increase of the minimum value of the interaction index,

Inmi,, compatible with intrinsic instability, and also as a decrease of the
unstable range of the time lag.

Equations (2.08.08) also indicate that the decrease of to and the increase
of 6, are larger if the magnitude ofC is smaller. In other words, the stabilizing
effect of time lag spread is largr, for smaller C. It should be noticed, how-
eVer, that Cdepends not only on the distribution and the extent of time lag
spread, but also on the frequency of the particular mode of oscillation under
consideration. The stabilizing effect of a given time lag spread varies
when the frequency of the 6scillation varies.

In-practical' systems, the distribution of the amount of propellant elements
"having their time Ia- in a given range has never been determined. It
probably depends to a great 'etent on the particular injection system, the
propellant combination and on many other factors. It is not very likely

! i that dfldf would be a constant, in which case there would be equal amounts
of propellant in each elementary time lag range. It is more likely that there

is a larger fraction of the propellant elements in the neighbourhood of some
mean value than near the extremes of the entire ra•oge . he function df/di:
is not necessarily symmetric about -,. But if it is symmetric, it is simple

V Cto show-that for neutral oscillations of frequency 0

Sits .. ..(2 .0 8 .09 )
C =2 Cf - in,)] df(20A)

that is, the effective time lag f, is the same as the mean time lag F,, For
other distributions f, would be slightly different from -7, and the diflfrence
would also depend on the frequency of oscillation in addition to the time
lag distribution. For illustrative purposes, the expressions for C for the
following two simple cases are given as:

Ikdf I sin wofl2
(i) = constant; C1 -

"df w Aj/2
= . .... (2.08.10)

df - " r(, -,,) cos wA-/2 3
~(ii) "dOS• -W o 'C= (--f17r)2

70f4
.• -_. -: -

_POP



'1*EFFECTS OF NOW-UNIFORMITY OF TIME LAG 2.08

Both C1 and C2 are equal to unity when o)Af = 0 and oscillate when 6oAf '4

increases. The amplitude of the oscillation decreases with -increiasing
1oA4 - 2MMIT, linearly in the case of 6, and quadratically in the case

of C.. Thus, when the actual extent of the time lag spread contains -mo'e4

"than one period of oscillation. owAf >21r, the stabilizing effect is

considerably larger than that wh-n &oAf < 21r. In Section 2.03 it is shown
. / " -9"

16
0"8 -.-. _ ,. " _

01I tic',. .

RAure 2. Effetq oa- 0 ,time /Va " -

Ing the tim lag on tineretical 0"5 L

critica tim syste int determinin thev intrinsi

injection ratesfor dioeren r t dites I o t sp rodead -t

in treinsircstaiityo f aidi syte totelwstvleo4~wt 0.8
S, s lt b

that the only interesting critical time lagn in determining the intrinsicn

.Stability of a system, is the one correqaponding to h =( 0 or e < c rie t Which

rcase soAu a < 2r because A2 is alwdtys lcu. g than 2 e o. Accordingly it is

sufficient to restrict our-discussion of the effects of time lag spread onsthe qual
7 ~intrinsic stability of a system to the lowest value of 6 with h = 0. %

Sample calculations, for the intrinsic stability boundary of the system, of
% ~~with time- lag varling between 0 and "?•=-2f, and With distribution •.

according t t the second typeu of equation (2.08.a0) are carried out based
':•-upon equations- 12.08.08) and (2.08. 10) with C = C. and A-7/2-7. 1. The •

results are gi, en-in Figure 25. The dotted curves give the corresponding

!• .eutral curves for the case without time lag spread. The previous quali- FT-

S~tative discussions on the decrease of critical frequency and the increase of

S] critical time, lag for aeutral oscillations are-verified.

In this section we have -only discussed the effect of time lag spread on
intrinsic instability. It is expected, however, that the qualitative effect of

the time lag spread will be. substantially the same for systems with variation

-of injection rate, both for the monopropellant and for the bipropellant case.

The detailed picture is, of course, considerably more complicated.
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2.09. EFFECT OF TEMPERATURE VARIATION DUE TO

PRESSURE OSCILLATIONS

It has been assumed that the temperature of the burnt gas in the combustion
chamber is not affected by the pressure osv.illations, so that T,- ,
vanishes for the monopropellant case and is a function only of the mixture
ratio for the bipropellant case. In actual conditions, even if we assume
Ihat the adiabatic flame temperature or the stagnation temperature of the
burnt gas is independent of the small variation of pressure under which

lw the burnt gas is generated, after the generation, the static temperature of the
1W burnt gas will change with local static pressure. If, in addition, the dissipative

action of viscosity and conductivity is neglected, the instantaneous tem-
perature of the gas can be determined -by the instantaneous gas pressure

through the equation of the isentropic change of state. Thus the fractional
devia .on of the gas temperature 12(z) from the adiabatic flame temperature

, at the instant z is directly related to the fractional deviation of the gas
pressure p(z) from the pressure p(z - z.) under which the burnt gas element

ý WE. was generated at the instant z - ZO:

S- . r l -A Z -ZO))]

Si .... (2.09.0 1)

The different burnt gas elements in the combustion chamber at a given
instant z are generated at different previous instants. Gaseous elements
near the chamber exit may have been in the chamber for a period almost
equal to the residence time, that is, z0 ~ 1, while elements near the injector
end may have just been -generated or may have spent a small frattion of
the average residence time Ol in the chamber, that is zo <• I. Therefore,
when the pressure in the combustion chamber oscillates with relatively
low frequency, and the gas pressure can be considered as practically unifbrm
at any instant, the temperature of the burnt gas -in the chamber is not
unilorm at any instant so that-the density of the burnt gas is not uniform.
In order to determine the mass of burnt gas stored in the combustion
chamber and then the rate of mass accumulation in the chamber, We must
know the temperature distribution at any instant. Equation (2.09.01)
indicates that this is possible only if we have additional information con-
cerning the distribution of combustion and the flow conditions in the
combustion chamber.

The treatment of the general case will be given in Chapter 3. In this
section we shall only illustrate the effwct of this temperature variation by
considering the following idealized ccnfiguration, in which all the pro-

t- pellant elements are transformed into burnt gas near the inhjector end and
the residence time of all the elements is the same as the average gas
residence time 0,. In this case, the axial velocity of the birnt gas is constant
throughout the chamber. The variable z% of a given gas element is thus
equal to the-fractional axial distance from the injector end, or to the frac-
element, Thus, in the evaluation of the mass stored in the chamber volume,
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the integration over the chamber volume with the differential variable
dV/V can be replaced by integration with-the differential variable dzo,

;:7thc:§rzi ca0 we have
The rate of mass accumulation as given by equation (2.07.08) can be

evaluated with the help of equation (2.09.01) and the fact that dVIV =dzo.

The fractional variation of the mass ejection rate, as derived froin equation

(2.07.05) under the assumption of quasi-steady flow, is _

i'e~) p - [Tp(z) - q(z - 1)] .... (2,09.03)

by the temperature variation explicitly because the index n of interaction is

supoe forncud the nfetoftmeuralur vaoiution. ofu expoeneutiatye

+ T V +~j[~t+,p -n)- p-'(Z T) .... (2.09.04)

The folowng tworealc equations can bt e netaobutaione by equaneting the poue,

and the arguments of both sides of equation (2.09.05)

n*=!+2.I cos to)
2 2,1

ii~j I.... (2.3,9.06)

coe5 7 - tan-'l n:~~io w

In the first of equations (2.09.06) we see that when (0 0, x is equal to
and that this is the minimum value of n compatible with any real solutions
of (o and 6. This means that intrinsic instability is impossible if n is less
than Ijjus.. as in the case investigated in Sectiin 2.03 where the temperature
oscillation of the burnt gas elements is neglected.
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For small values of wo where cos o) = 1 and sin w = a) the critical values
of w and 6 can be easily solved from equations (2.09.06) for given values of n
slightly greater than j

(2n- n)](iIA~

Ni +

v-

d it C'nwled, fo. Figurip 26. Ejfect of gas
fo ~~tnpsck - _____ ,v tmpraur oscillation on

HE cofeded Urs wvida constant injection

Z 5Q___ rate for diferent ralues of
-. _____ the interaction index nM,

0FOX-

0 015 -70 7.5 2- M

F Comparing equations (2.09.07) and equations (2.03.10) we see that for a
given value of n which is only slightly greater than 1, the critical value of (o
is increased and that of 6 decreased by the multiplying factor 2-y/(y + 1)
and (r, + l)/2 V respectively when the temperature variation of a given burnt
gas element is taken into consideration. For most ofthe combustion gases at
high temperature, the value of y is only slightly larger that unity and the

- - ~correction factor 2V/(7 + 1) is not very much different from unity. This
correction is therefore not 'likely to be of great importance especially xiiini
we are-interested primarily in the qualitative -trend of the results.

When n is significantly larger than j,wc is not small and the critical values
of (a and 6 must be determined from equations (2.09.06). For illwstrative
purposes, the results when y = 1-20 are given in Figure 26 as solid fcurves.
The corresponding results when -the temperature variation of the gas

9 elements is neglected are also plotted as dotted curves for comparison.
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It is clearly seen that the effect of the temperature variation of the gas i _ -
Selements is to decrease S and increase to for given n and that the minimum = ••

• ~~~~~value of n compatible with any neutral or unstable oscillations is not affected. i. - :']
S~~The qualitative trends are consistent with those as obtained from equations _-

(2.09.07). " •:
For more complicated monopropellant systems in which the injection- -

rate responds to pressure oscillations in the chamber or for bipropellant :
systems, the qualitative trend of the effect of the temperature variation of a
given burnt gas element is not expected to differ fundamentally.
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3

ANALYSIS OF SCREAMING
(LONGITUDINAL HIGH FREQUENCY

iNSTABILITY)

LIST OF SYM1tOLS

Superscript * indicates that the quantity is dimensional
Superscripts (0), (1) indicate the solutions obtained from the 0th or first

iteration
Superscript' indicates a small perturbation
Subscript indicates the quantity evaluated at the stagnation region

near the injector end
Subscript indicates the isentropic stagnation value of the quantity
Subscript indicates the quantity pertaining to unburnt (mostly in

liquid phase) propellant element

Subscripts, and indicate respectively the real-part and the imaginary
part of the quantity, if not otherwise stated

"- over a quantity indicates mean or steady state value
W~ over a quantity indicates the quantity pertaining to the

case with large w
-x* axial distance from injector end
L axial length of the combustion chamber from injector

end to entrance of de Laval nozzle
Sx -- x*/L dimensionless distance from injector end

47 speed of sound in stagnant burnt gas at injector end

0,l= L/C. characteristic time required for sound wave to travel the
chamber length L in stagnant burnt gas

U •_:mean axial velocity of burnt gas at each trarsverse
section

u - u*/c* dimensionless axial velocity of burnt gas

fit mean axial velocity of unburnt propellant elements at
each transverse section

us= u74 dimensionless axial velocity of unburnt propellant
elements

.a steady state value of u

AM Mach number of flow of burnt gas entering nozzle
"t* time
t t* '01, dimensionless time

P* _pressure of burnt gas
pressure of burnt gas in stagnation region near injector
end
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LIST OF SYMBOLS

P-= P*IP* dimensionless pressure of burnt gas
density of burnt gas

p,* density of unburnt propellant element

density of burnt gas in stagnation region near injector end

p p*/p* dimensionless density of burnt gas
p,= ppo* dimensionless density of unburnt propellant element

temperature of burnt gas
T2* temperature of burnt gas in stagnation region near

injector end
T =T*ITo* dimensionless temperature of burnt gas
h* enthalpy of burnt gas
hp* enthalpy of unburnt propellant element

h = (---/c*)h* dimensionless enthalpy of burnt gas
hP dimensiciless enthalpy of unburnt propellant element

w* instantaneous rate of burnt gas generation in the
chamber volume from the injector end x* = 0 to x*

w =w*lp*c.* dimensionless rate of burnt gas generation before x*
wi= PIoU1 dimensionless injection rate
k* drag roefficient of the motion of the unburnt propellant

element, = drag/velocity of unburnt element relative tosurrounding gas
k =k*O•, dimensionless drag coefficient

p' perturbation of burnt gas pressure,

perturbation of burnt gas density
hP perturbation of burnt gas enthalpy
u perturbation of burnt gas velocity

o of velocity of unbumt propellant element
perturbation of density of unburnt propellant element

-r perturbation of rate of burnt gas generation before x
time independent part of p'

a time independent part of p'

Sr time independent part. of u'
time independent part of up S

q4:• time independent part of w'
_• q ~time independent part of w' ..

, adiabatic index of burnt gas = ratio of specific heats

A* dimensional amplification coefficient
dimensional angular frequency

A = A*O dimensionless amplification coefficient
D D*O= dimensionless angular frequency
co critical value or neutral angular frequency
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ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

s = A + iW a complex quantity which is the Laplace transformation
variable and is the root of the characteristic equation
for oscillations with exponential time dependence exp (st)

at ; t+ i., specific acoustic admittance ratio of de Laval nozzle
)= I/F reduced angular frequency

B = (1 + ai)/(1 - ma) a parameter of boundary value at nozzle entrance
x= I

Vp axial position of concentrated combustion front from
injector end as a fraction of combustion chamber length

r-= + r* dimensional total time lag from instant of injection to
instant of combustion of a given propellant element
dimensional insensitive part of total time lag

.-* dimensional sensitive part of total time lag
r= + -r -= T/0, dimensionless total time lag
-. -- IO[, dimensionless insensitiv' part of total time lag

K •- = 7*/[0, dimensionless sensitive part of total time lag
S6 critical value of sensitive time lag r corresponding to

neutral oscillation

= r- u dt insensitive space lag, that is axial distance travelled by
J0* 0 an unburnt propellant element during its insensitive

time lag

$f 4i integers indicating the numb=!r of half wavelengths
contained approximately in the combustion chamber
length with I = 1, 2, 3... corresponding to the funda-
mental, second, third, acoustic mode respectively

m integers indicating the number of oscillating periods
contained approximately in the sensitive time lag

SZ, + ix• a complex function defined in equation (3.04.02)
X, Y, If, Z, E, F functions of different perturbations and mean quantities

defined in equations (3.07.08) and (3.07.09)
_Q time independent part of burning rate perturbation due

to timewise condensation and rarefaction under vari-
"ation of sensitive time lag [as defined in equation
(3.08.17)]

S' entropy perturbation of burnt gas
U, V functions defined in equations (3.09.16)

jz da
k = cos ox' -- dx' function defined in equation (3.11.03)

ny(l - e-ui) function defined in equation (3.11.04)
A, B, C, D functions defined in equations (3.11.06) and (3.11.07)
1, J functions defined in equations (3.11.09)

A,, B1 , C1, DI; CA, ), , functions defined in equations (3.11.18)

r, A functions defined in equations (3.11.19)
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SYSTEMS WITH CONCENTRATED COMBUSTION 3.01 i-

P C magnification factor due to effect of spreading the 2_4
sensitive time lag dcfined in equation (3.05.03)
effective sensitive time lag defined in equation (3.05.03)
critical value of ;F for neutral oscillation

0 O( order of magnitude of quantity in parentheses

3.01. SYsTEMs wrTH CONmCETrATED COMBUSTION

As ALREADY explained in Chapter 1, when the frequency of gas oscillation
in the combustion chamber is sufficiently high, the wavelength of standingoscillations may be comparable to the length of the combustion chamber

and the gas pressure inside the combustion chamber is not uniform at any 4
instant in unsteady state operation. In this case, not only the time interval
but also the spatial range, in which each propellant element senses pressure.
oscillations, are important parameters in determining the contribution of
this propellant element to the variation of the burning rate. Therefore, .

both the time lag and the space lag of each propellant element must be
known for the analysis cf high frequency oscillations. The spatial range, in
which each propellant element senses pressure variations, is determined by
the total space lag and the velocity of the unburnt propellant element Uuring
the sensitive time lag. Both the time lag and the space lag are in general
different for different propellant elements. For the analysis of longitudinal
oscillations in a combustion chamber of length L and of uniform cross
sectional area, we shall consider dte gas flow as one dimensional, and the
only spatial coordinate which needs to be tonsidered is the axial distance,
x*, from the injector end.

I As a result, the only relevant characteristir time of such longitudinal
oscillations is the wave propagation time, which is required for a sound wave
to travel from the injector end, x* =-0, to the combustion -chamber exit,
x* - L, in steady state operation. Owing to the heterogeneous state in the
rocket chamber even in steady state operation, the actual wave propagation
time is not well defined. Therefore, we select the characteristic wave propa-
gation time On as the time required for a sound wave to travel a distance L
(- length of combustion chamber) under conditions corresponding to the
stagnant burnt gas near the injector face. In ordinary combustion chambers,
where the velocity of mean mass motion is small compared to the speed of
sound, 2 0 ir will ýe approximately equal to the timt required for a sound
wave to travel the length of the combustion chamber back and forth. Let us
call co* the speed of sound in the stagnant burnt gas, then On. = L/co. We
shall also express the velocity u* of mass motion as a fraction of c, and
write u -- u*lc,. Likewise, the prevsure, density, and temperature of the
burnt gas at stagnant condition will be taken as reference quantities. Thus,
the dimensionless time, velocity, length, gas pressure, density, and tem-
perature are defined as: .

St* u* x* p* *i*
t , u=P=-, x p=-, p-- and T

.... (3.01.01)

We shall first consider the simplest case in which all the propellant
elements have the same sensitive time lag and the same total space lag;
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accordingly they burn at the same axial position in steady state operation.
In such an ideal system, all the propellant elements injected into the com-
bustion chamber at a given instant move downstream through the burnt gas
that was generated previously and was recirculated back to the injector
end.

INo gas is tbrmed from these elements till they reach the position x = V,
corresponding to the total space lag where all the propellant elements are
transformed into burnt gases simultaneously and instantaneously. The burnt
gases move downstream toward the exit of the combustion chamber, x = 1,
without further chemical reactions. In steady state operation, the burnt
gas upstream of the concentrated combustion front at x =-" i has no mean

ýP -ý .axial velocity, though there is an active recirculating motion of the burnt gas
in this region. At the combustion front x = i, the mean axial velocity of

2 'the burnt gas changes discontinuously to a finite value a because of the
sources of burnt gases concentrated on this front. Both the burnt gases
upstream and downstream of the combustion front are in active recirculating
or turbulent motion. They differ only in the respect that the downstream
burnt gas possesses a mean axial motion while the upstream-burnt gas does
not.

Since burnt gases in both regions are generated from the same pro-
pellant under similar conditions, the stagnation temperature, pressure, and
density of the burnt gases in both regions are essentially the same. Thus,
the concentrated combustion front in steady state is only a discontinuity
of mean axial velocity while the temperature, pressure, and density are
approximately the same across the combustion front. This is an important
difference between the combustion front that we are considering here and
the usual flame front, in which heat is added to an existing flow of cold gas
with the consequence that the flame front is a discontinuity of the mean flow
"velocity, the gas density, and the temperature.

The burnt gas generated from the combustion front at a given instant
r mixes with the previously generated burnt gas and moves downstream in
the cylindrical duct with a constant velocity a, till it enters the nozzle
-where the gas is accelerated in the coiveging portion, goes through the
sonic velocity at the throat, and leaves the nozz," at supersonic velocity

f •through the diverging section. The &'3metry of the de Laval nozzle
determines, in steady state operation, the Mach number M of the gas flow

k •;entering the nozzle. This Mach number M of the flow entering the nozzle
is usually sufficiently small (see Section 3.06) so that AP< I and the
dimensionless mean gas velocity a is approximately equal to Al. Under
this assumption, the dimensionless pressure, density, and temperature of
the burnt gas in steady state operation are practically unity throughout the
combustion chamber ( 1 1, 1 1, 1), and the flow of burnt gas in
the region upstream of the concentrated combustion front can be con-
sid'red as isentropic if fluid friction and heat transfer are neglected. The
same assumption will be made without further discussion for the region
downstream of the combustion front. A detailed discussion of these assump-
tions will be given in later sections in connection with systems with arbitrary
combustion distribution. With these assumptions the unsteady flow of
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" I ~~~following equations: ] -;

a-- x*•(,o*-*) =0 ?

aOu a* a . .... (3.01.02)
p*• + P'u* =* •

/,*/'o* = P*!Po*)1
Expressed in terms of the dimensionless quaitkies defined in equations "- . .

(3.01.01), equations (3.01.02) can be written in the following form:-•- i ••

'P + (PU),, 0 -

put + Pu., /, ..... (3.0l.0O2) .

i where subscripts denote partial differentiation with respect to the variable
Sindica ted .

i For the analysis of the stability of small oscillations in the system, we
shall consider the unsteady gas flow, as consisting of a small perturbation
superposed on the steady state flow, with the perturbations assumed to be
sq small that the squares or the products of these perturbations can be
neglected as compared to terms linear in these perturbations. Thus
substituting A

p l+p', p= I+p" and u •+ u'

into , quations (3.01.03) under the approximation that A12 = U-2 1, we
obtain the following linearized equations for the perturbations of pressure,
density and velocity: .4 +J":0_=

U, 0

SYSTEMS .... (3.01.04)

-•- ~Equations (3.01.04) are Simply the wave equa•tions governing the propa- ./

f~

gation of small disturbances in a one dimensional uniform flow field withe

constant flows velocity fi. The general solution of these wave equations iswell known and is given as:

t - ax) + ( -a)
S1 .... (3.01.05)

P = , ur,/ ' =. - 4X) -Us'(' - a)
where u and i are arbitrary ffimnctiones defining the downstream poa-
(gating and the u (0tream propagating velocity disturbances; l la, o +

Frand tlheaa-(sI- ) are the speeds of propagation of the downstream w
and the upstream moving-waves respectively relative to the wall of theurato

1,211
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combustion chamber. This general solution, as given by equations (3.01.05),
applies equally well in the flow region 1, bounded by 0 < x < tP where
a = 0, and in the flow region 2, bounded by p < x < 1 where i .= AL
The solutioni in region I must satisfy the boundary condition at the injector
end, x = 0, namely that both the mean flow velocity and the velocity dis-

t turbances must vanish at any instant. The solution in region 2 must satisfy
the boundary condition at the combustion chamber exit, x = 1, that the
ratio of the fractional velocity perturbation to the fractional dnsity perturba-
tion must be equal to the nozzle specific admittance ratio determined-in
Appendix B. Moreover, solutions in regions I and 2 must be properly related
so that the boundary conditions at the concentrated combustion front can be
satisfied. With all these boundary conditions, the functions u' and u' can be
determined for a given initial disturbance. The solution of such an initial
value problem is, however, not necessary since we are interested primarily in
the stability ofsmall'arbitrary disturbances in the system. We shall therefore
restrict our investigation to the stability of the solutions of exponential type:

U, = c' exp [s(' - a,x)]Vat.. (3.01.06)

u. =C. exp [s( - a:)]

R where s A + Wi2 is a complex c _nstant. For simplicity, let us write the
perturbations as:

U = V(x) exp (sI)

p" = a(x) exp (SI) .... (3.01.07)

p p' f=r(x) e-p (st)
then

v(x)- c, exp [-arsx] + c. exp [-asx]
SF•X) (3.01.08)

___ o(x) = c, exp [-asx] - c, exp [-asx]

Let subscript 1 denote solutions in region 1 and subscript 2 denote solutions
in region 2. Tlen the boundary condition at x =0 gives

S'Jr= -1 .... (3.01.09)

1k: The boundary condition at x I 1 gives
- . • tr1 I+w•

n. -- = exp [s(at - a.)] .... (3.01.10)

whee i = at, im is the nozzle specific admittan'ce ratio. For convenience
let ,,s define

•:,•-• ~ ~~B = 1+ oc)/(1 -- o) .. 30.1

"Thus the solutions in region I and region 2 are given as

vl(x) - c., exp (--sa,,x){l - exp [-s 1 (a&, - a.)x]} .... (3.01.12a)
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= =-c., exp (~sia.,x){l + exp [-s,(a,, - 4,,)XJ} . ... (3.01.!2b) 3

V2(xV) = C52 eXP (-S2a.,x){ B exp [S2(a,, -a,,,)(I - x)]}

9F2(X) ....L.)( -x)} (3.01.13)

These two sets of solutions are to be matched-at the concentrated -corn-
bustion front z = tp. At discussed previously, the concentrated combustion ~r
front is not a discontinuity of pressure, density, or temperature of the burnt
-gas, but is--only a discontinuity of flow velocity. Hence the boundary
condition at the concentrated combustion front consists of two parts:

(1) The steady state value, as well as the small perturbations of pressure
and density are continuous at any instant across the concentrated com.-_
bustion firont*. That is

P2 Pi, and P t=p at x tP

These are cq~ivalent to the conditions:

U2 = 7 2  I C at x= .. (3.01..14)

$2= S1 =£

(2) The-fractional increase of the difference of-mass flow rates across the
P1 j concentrated combustion front is equal to the fractional increase of the

burning rate at the concentrated combustion front.[ JThe firactional increase of the difference of the mass flow rate is

... (3.01.15)

TO avoid the complicat~ions, of the feeding system let us conside~r the casewher th inectin rte s kpt cnstnt egadles ofthepresureoscllaion
wher th±inectin rte s kpt osatreadeso tepesr oclain
in thc combustion chamber. The instantaneous burning rate 8th,, of-eachMR
individual propellarat element having steady state sensitive time lag l1yingM
between -? and if + df is given by equations% (1.11. 13) and (1. 11. 18). In the
present case where all elements have the same sensitive time lag, gt, for each,
element can be replaced by the total variation of the burning rate t,,i - rnb of
all the elements. Thus the fractional increase of the total burning rate is

Pt (h 'i)Pl -dt/dfi nfp'(wVot) - p'(ý,t - f)] -. .. '.3.01.16)

I * This is due to the fact that the combustion front in a rocket is a mass source where
burnt gas is at essentially the same temperature as the previously burnt gas in both sides of
the combustion front. This situation should be carefully distinguished from the flame fro.-t
where heat is added to Che flow of the cold gas upstream of the flame without substantial

mass addition. 8I8
Ao
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3.02 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

where ip is the total space lag defining the position of the combustion front
and 4 is the insensitive space lag corresponding to the position of the pro-
pellant element which burns at the instant I and became sensitive at the
instant t - T. Thus with u, designating the axial velocity of the propellant
element !

'p-- a 5_ ,(') d,' i

W. Since a, is of the order of M or less, ip - =0 (M). -. Therefore, if the
sensitive time lag is of the order of unity in the dimensionless form, i.e. if'

0= (0.), then Vp - 4 = 0 (M). Accordingly, t , 'p and equation

(3.01.16) becomes
li• b n e# -p(•)[ e- ] . .(3.01.17) -

Under this approximation 4 N p, the position of the concentrated com-
bustion front Vp will not oscillate because V - • is the only variable part of
the total space lag. Equating Pb from equation (3.01.17) to the fractional
increase of the difference of mass flow rate, from equation (3.01.15) we

4 - obtain the following boundary condition at x = tp

•v V-2 v1 + ±i(l - yn) a + rhna exp (-sf) =0 e.. (3.01.18)

' FRISubstituting a2(,) and al(',) from equations (3.01.12) and (3.01.13)
into equation (3.01.14), we have

1 + exp [-s(a' - a.),p] (3.01.19)
•"• . c., 1+B exp- [s(a, -- a,) (I -- )]

VIE! Combining equations (3.01.12), (3.01.13), (3.01.14) and (3.01.19) wiei..
equation (3.01.18) we obtain the following characteristic equation for the
determination of the complex quantity s = A + iW

NMI 1 -- B exp [2s(l -' )] I -exp (-2sp)

l +Bexp [2s(1+ )] I + exp (- 2so)

= a(l -yn) + yn exp (-si:] .... (3.01.20)

where a, - a. = 1/(1 + a) + 11(1 - a) = 2/(1 - ) has been taken equal
to 2 under the approximation M-a • u 1. By replacing s by A + ii?
and letting A = 0 in equation (3.01.20), we can obtain two real equatior s
after separating the real and the imaginary parts of the resulting equation.
The stability boundary for high frequency oscillations in such a system with
concentrated combustion can then be obtained bv eliminating DQ from the
two real equations.

3.02. HIGH FREQUtNic INSTABILITY IN SYsmus wrrH COMBUsIiON
CONCENTRATED AT THE INJEcTOR END AND SHORT NOZZLE

Consider first the simplest case where the combustion chamber is very
long, so that all the combustion is practically completed in the neighbourhood
ofthe injector end, and the length of the subsonic portion of the nozzle is much
smaller than the length of the combustion chamber. For this case Vp _0
and the nozzle flow can be reasonably expected to be quasi-steady with
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COMBUSTION CONCENTRATED AT INJECTOR END 3.02 3...
at 1y-)/2. Thus let i =O0, B =- (I + Ry - l)M}f{l - jYy - )M},
s = i and f -- 6 in equation (3.01.20), where w and 6 are the critical value
of the dimensionless frequency of oscillation and the sensitive time lag cor-
responding to neutral oscillations. The folloWing two real equations are
obtained by separating the real and imaginary parts in equation (3.01.20)
after neglecting AP as compared with unity.

f( cW7 _In) -

.... (3.02.01)
tan o ayn sino5= -- Jo

WiVL n yn is of the order of unity, tan- w must be of the order of Af, and
cos; A) "s approximately unity. Approximate solutions for ow and 6 are thus:

i• ~ ~.....(3.02.02)-•

6 ((2m +1)7 sin1

where both m and I are positive integers, 0, 1, 2, etc. I indicates the number
of half-wavelengths that are contained approximately in the combustion
chamber length. In other words, the value of I designates the order of the
successive higher modes of oscillation with frequencies corresponding to the
lth acoustic mode in an organ pipe of length L, closed at-both ends. m indi-
cates the number of oscillation periods that are contained in the critical
sensitive-.time lag and therefore- designates the successive higher unstable
ranges of values of the time lag f. The lowest frequency of neutral oscillation
is obtained when 1 = 0 where

Oj = [I - (I - .... (3.02.03)

This frequency is based upon the characteristic time 0,, =1c4. The gas
residence time used as reference time for the low frequency analysis is - •
0, L/fi* = 0.1g. This lowest frequency expressed in cycles per gas
residence time 09 is therefore

r I -(1 .-+-

which coincides with the result given in equation (2.03.10) when ' = 1.
This last restriction y = I is due to the assumption made in the low frequency
analysis that the gas temperature is constant regardless of the pressure
oscillations, strictly correct only wheny = 1. The product co represents the
phase shift of the oscillation d ,ring the time lag and is independent of the MIA

characteristic time. The second equation of (3.02.02) with m = 0 and the
upper sign is easily seen to reduce. to the second equation (2.03.10) when
7 = 1. The solutions when I=-0 are therefore identified to be the low
frequency result and will be discarded in the analysis for high frequency
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3.02 ANALYSIS OF SCRE-AMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

oscillation. The fundamental mode of high frequency oscillation is thus
taken to be the one with I = 1.

Either by determining the sign of A when co = 17r or by determining the
sign of dA/dQ on the stability boundary, the unstable ranges of frequencies
are found as

< 17 + yn2 -I ±)] . . .. (3.02,04)

and the unstable ranges of the time lag as

17r+7f41-(l-2yn)

12~l7r - ryni! I r (_ + 1)21 .... (3.02.05)

A&HvI ,,ov"/ef/ ~~1~~

/ Shaded par:i/sfuI region:

0 0.1 0+ 6 0 0.0 72 V 71.6 1.6 70 m
FigureV2. Unstable ranges of the sensitire time lag ifir the fwimamertal (I = 1) and the
second modes correspunding to d~i~ferent values of the interaction index n (short nozzle, entrance

Mach number Ml = 0-213). (B~y courtesy of the American Rocket Society)

where 1 = 1, 2, 3, ... and m= 0, 1, 2, 3 ..... From equation (3.02.04)
with 1 = 1, 2 ... and when 7n is of the order of unity, we see that the
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COMBUSTION AT AN ARBITRARY AXIAL LOCATION 3.03

frequencies of the unstable oscillations are always close to the natural (organ
pipe) frequencies which under the present dimensionless scheine are 11r.
It is clear from equations (3.02.01)-(3.02.05) that in order to have real
solutions of the stability boundary, the interaction index n must be suffi- 4
ciently large so that

n >' (7 + 1)/4y or nm, = (y + 1)/4 y .... (3.02.06)

Under the present approximations, the minimum value of n compatible with
unstable oscillation is thus slightly less than one half because the value of S
y of the combustion gases is always slightly larger than unity. From a more
careful analysis in later sections, it will be shown that this minimum value

When n is equal to this minimum value (y + 1)/4y, we have

to = lr and tub = (2m + l)7r .... (3.02.07)

with vanishing unstable ranges of 9 and i. When n increases from this
n.,,, both unstable ranges of Q and i increase. When n becomes very large, _.

almost any values of f fall in the unstable range. The unstable ranges of
i for m = 0, 1 and 2 and 1 = l and 2 are plotted versus n in Figure 27 when
v[ 1-20 and M = 0.213.

3.03. SYSTEMS ,k COMBUSTION CONCENTRATED AT AN

SARBITRARY AXIAL LOCATION ANiD SHORT NOZZLE

Consider next the more general case where the combustion chamber is
much longer than the subsonic portion of the nozzle, so that the nozzle
flow is approximately quasi-steady, but the insensitive time lag is sufficientlyf large so that the space lag is not negligibly small compared with the
combustion chamber length. Then the two real equations obtained by
separating the real and the imaginary parts of equation (3.01.20) become

_ V- -0%
yncoswb= (1 -- yn) 2cos;(l -(I )o

sin cul/
"7n sin wab = cos pocos(1 -- i)co (3.03.01)

For real values of wo, cos2 (1 - ,p)wo is always less than, or at most equal to,
unity; thus the following inequality must be satisfied in order to have real
solutions for the frequency to of neutral oscillation:

6{21y[yn + n - l - [( - 1)/2]21 cos-2 Vw Ž sin2 o >1 0 .... (3.03.02)

When n is equal to n,,, = (-y + 1)/4y, the inequality (3.03.02) shows that
the only possible values of w are given by sin to = 0 and the non-zero values
of wo must be hr. Then equations (3.03.01) indicate that the only possible
value of tp is given by cos2(l - ip-)&- = I or Vp = 0, 1/1, 211, etc., and the.
only possible values of the critical time lag 6 are given by cos w6 = -- 1,
with the consequence that there is no unstable range of the time lag -?. In -•

other words, when n =n.,, (7 + 1)/4y, neutral oscillation of the lth mode
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can occur only when both ti,. :ombustion is concentrated at an antinodal ;
S~position of thc Ith mode of ?ressure oscillation and the time lag has the

optimum value in coordinating the pressure oscillation and the resulting
.•o•=burning rate oscillation. For any other combustion distribution, the lth
.. •-.:• mode of oscillations is stable with n = nma= (y + 1)/4y' and must be
•;•\•damped out eventually, even with optimum timing. This fact indicates that
:•: the combustion distribution which is most capable of exciting unstable

oscillations of the/lth mode is the one with combustion concentrated at the
S-•. antinodal positions of the lth mode of piessure oscillation. This is physically

•--• reasonable because under the approximation of •i _'- 4, the propellant

-. • :elements, during the sensitive time lag, sense only the pressure variations at
•.• the combustion front. Thus when the combustion front is at the aratinodal
"• Ipcsitions of the lth mode of pressure oscijlation, all the propellant elements

,-0:- -- can sense the maximum amount of the variations of the pressure and oiher
•: associated properties. Accordingly, the system is most liable to instability
• of the lth mode.
•- • With combustion concentrated at the antinodal position of the lth mode,

'z=:-if the magnitude of the interaction index n increases from the minimum
•-• value n-,,, the magnitude of the variation of the burning rate is greater than
•! that required to maintain neutral oscillations of the lth mode wvith optimum

timing. Consequently, it can be expected that when n is greater than
S~(y + 1)/4y, neutral and unstable oscillations can be obtained when both

of the following conditions are fulfilled: the dimensionless sensitive time lag •
is contained in certain finite ranges about any of the optimum values

•: ~given by cos lir6 = -- 1, and the combustion "s concentrated in certain finite
•- ranges in the neighbourhood of the antinodes of the Ith mode of oscillation.
• ~Furthermore, when n is greater than (7 + 1)/4y but not much larger than
•--• unity, the inequalities (3.03.02) show that any neutral oscillation will have a

, • : frequency to not significantly different from l!" as explained previously.
•i Thus, there must be some position of the combustion front between 0 and 1

"• ~that will make cos •uoo = cos {1p[Ifr + O(ai, } = 0. For these values of %,
i• which are somewhere in the neighbourhood of 1/2/, 3/21, etc., the only

i•-• possible real value of ow compatible with inequality (3.03.02) is m.-r. How-
ever, the simultaneous vanishing of cos ipow and sin o• makes cos (1 -- 0o

• • equal to zero which is incompatible with the first equation (3.03.01) because
S•. jyn cos cutj • y0n is always finite. This fact indicates that when •0 takes

some value in the neighbourhood of 1/21, 3/21, etc., no neutral oscillation
can exist; in other words, the lth mode is always stable when combustion

•:• is concentrated in the neighbourhood of the node of pressure oscil~ation.
S~This again can be expected on purely physical grounds becau. around a

•: pressure node, the propellant elements cannot sense any pressure vaia dons.
• ~Therefore for a given value of n > (y + )1)4 r, unstable and neutral oscilla-

tions of a given mode are possible when combustion is toncentrated at some
% axial position in the neighbourhood of a pressure ant:node; and oscillations
S~of a .given mode are always stable when combustion is concentrated around

S:• a pressure node. The stable region about a node is separated from the
S •- : regions of possible instability about the neighbouring antinodes by critical
S• values of •, which we call •. These positions w0 of the combustion front are

-:: characterized by the fact that both the two critical values of the frequencies
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o) and the two critical values of the time lag 6 coincide so that there cannot
"be any unstable oscillations of the given mode, and only neutral or stable
oscillation is possible at the given value of n. Thus, the values of ,ry cor-
responding to a given value of n can be determined by putting sin Wu = 0

i in equations (3.03.01) as K
-1 Fy-l. 1

IŽ >' I. -- I cos- 2yn- 1 11 0 .... (3.03.03)

For the fundamental mode there is only one node at p = 4 and there are
two values of V, symmetric with respect to 4. For the lth mode, there are
21 values of V. defining I stable regions about 1 nodes. Calculated results
are plotted as shown in Figure 28 for 1 1, 2 and 3, and y = 1-20. For a

1I i 'ii
PS VI-J 44 1

0 N .5 0-:5 a," 045

Figure 28. Critical ralues V, diiding the unstable range and the stable range of thefractional
axial position V of the concentrated combustion front corresponding to different ralues of the R"
interaction index n (V is measured fiom the injector face as a fraction of the chamber Length).

(By cou"t~ of t1w American Rocket Soie~yj

given value of n, this plot gives the value V, which separates the region in
which a concentrated combustion front is always stable for any values of i,
from the region in which a concentrated combustion front can possibly

* become unstable when i is in the proper. range of values. From another
point of view, this curve gives the minimum value of n, i.e. n.1n, compatible
with unstable oscillations of the given mode when combustion is concen-
trated at the position p = V,,. Figure 2S shows that when the combustion
is concentrated at the node of the lth mode of pressure oscillation, that is
'p = 1/21, 3/21, etc., n,,n is infinitely large; therefore the Ith mode of
oscillation is always stable for any large but finite values of the interaction
index. If the combustion is concentrated a, the antinodal positions 'P = 0,
1/1, 2/1, etc., the magnitude of n required to excite unstable oscillation is the
smallest compared to other positions; and therefore, such positions are the
most undesirable positions for the combustion front if a stable system is
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3.03 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

desired. Since the injector end is an antinode of all modes of pressure
oscillations, the configuration with combustion concentrated at the injector
end is the most undesirable one from the stability considerations alone. This
qualitative conclusion, however, does not help us very much in selecting
the most desirable position for the concentrated combustion front, because

ra-j• Short nozzle

f =. -04,33 .

unstabl

iX "Its f -O'1

°-• I i = ___o __, 'I !

P 02 00*r' * 0-8 10

V -i

Figure 29. Unstable ratzges of the sensitive time lag T for the first three mades when the
comnbustion isconcentrated at d!,7erent fractional axial positions vefir n =0-833 (short nozzk).

(By courkey of the American Rock~,t .Society)

the nodal position of a given mode will be the antinodal positions for other
modes. For example, the node of the fundamental mode, " p is the
antinode of the second mode. Thus, while the configuration wi~th com-
bustion concentrated at the middle of the chamber will guarantee the
stability of the fundamental mode, it is most liable to cause an unstable
oscillation of the second mode. An important modification of these results
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SYSTEMS WITH CONCENTRPAED COMBUSTION AND LONG NOZZLE 314

will be shown in the next section, due to the presence of a nozzle which has
its sub3onic part not negligibly short as compared to combustion chamber
length, in which cse the quasi-steady state condition of the nozzle flow
cannot be applied.

The critical values wo and 6 can be obtained from equation (3.03.01)
with a numerical iteration procedure which converges very rapidly. The
unstable ranges of the time lag i for oscillation of the first few high frequency
modes are plotted against the position ip of the concentrated combustion
front as shown in Figure 29 withy = 1-20, M = 0.213 and n = 1/7 = 0.833.
We observe that the regions of instability of tbe various modes have a
tendency to cover all the available area. That is, a system with any values
of i: and V would encounter some unstable mode of oscillation. If such were
the actual case, it would be hardly possible to design a rocket with concen-j trated combustion and n > n.1n, stable for all high frequency modes.
It will be shown in the next section how the possibility for the higher modes
to become unstable is significantly reduced by the presence of a nozzle.

3.04. SYSTEMS 'wrr CONCENTRATED CO~Mus1nON
AND LONG NOZZLE

In practical cases, the subsonic portion of the nozzle is not too short, usually
- or * of the combustion chamber length. For such a nozzle, and for the

--- on-- g nozzle

'---1---4

Fi~uwe 30. Lowest mustable ranges of the sensitire time lag • for the€ first :..
•three modes corresponding to different i¢dals of the interaction index n. ••-

(By €ourtesy of the American Rodet Socidy)

frequency range under consideration, the nozzle flow is significantly dif-.
S~~fereut fronm the quasi-steady conditions. The nozzle specific admittance ratio --•So•~~~= (v/a)/(6/) "is in general found to be a complex function of the frequency --'

S~~of oscillation and of the geometry of the nozzle ,as shown in Appendix B. -•
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For a special shape of nozzle with linear steady state velocity distribution a

in the subsonic portion, the real and imaginary parts of the specific admit-
tance ratio o = cc,(#) + ioc,(f) are given in Figures 59 and 60 as a function
of the reduced frequency fl, and the Mach number of the gas entering the
nozzle ,M. The parameter fl is the ratio of the angular frequency of the
osci!ation to the dimensionless velocity gradient a, in the subsonic portion of
the nozzie in s*-ady state operation. Thus P = 0o40a = 0)1,.b/[{21(y + 1))i - a]
with 1.b indicating the length of the subsonic portion of the nozzle as a
fraction of the combustion chamber length. The complex quantity
B = (I + ocf)/(! - oa) as defined in equation (3.01.11) can be calculated
for given frequencies w, and given entering Mach number M when the
steady state velocity grad;ent a, in the subsonic portion of the nozzle is
known. The following calculation is performed with a = 7r. This value
corresponds to an 1,.b in the neighbourhood of 1/3. With this value of ai,
we have wo = flir so that integral values of P correspond to the pure acoustic
modes in an organ pipe with closed ends.

For determination of the stability boui Iary rewrite equation (3.01.20) as

yn exp [-iwob] = + - ix, + (yn - 1) .... (3.04.01)
where

I rI+- Bexp [2iwo(l - s)]

gcsvktco'( -4I + B)Mco[sc"sin(l -V)] +~o(-~)o+ r + •)MFsin 2 (1 - op)o - m 5M sin 2(1 - V)co]

•-• (l/if) -din w cos (1--•)w
•~~(t -- + '- )M cos wo sin (I -- tp)¢ + cg• cos (2 -- •)oj

,•, ~Cos W[Cos; (1--•)o

.... (3.04.02)

For given values of a and ,p with y = 1.20, y. + iZx can be calculated for
each value of to. Equating the moduli of the two sides of equation (3.04.01)
and solving for n -we- find

n = (1 - X,)/2y + x~/I2y(l - X,)} .... (3.04.03)

The corresponding critical values of the time lag are found by equating the
imaginary parts of equation (3.04.01) as

6= (11) sin-1 [y.Irn] = (11w) cos-I [1 - zlr] .... (3.04.04)

where the value of the inverse circular function is taken in the quadrant
consistent with both of the two equalities in equation (3.04.04).

The unstable ranges of f, when M = 0-213 and when the combustion is
concentrated at the injector end, have been determined for different values
of n. The results are plotted as shown in Figure 30 along with the results
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obtained in the previous s:ction for a very short nozzle. It is seen that the:Ali W
minimum value of n compatible with unstable oscillations of a given mode
is significantly increased from the value (y + 1)/4y pertaining to all modes
in the case of a very short nozzle. Even more significant is the fact that
when the finite length of the nozzle is considered, n1 j, increases for higher
modes of oscillation. The minimum values of n compatible with unstabie

uX~ -PŽ11B
A •~oi~nejtzzke

0 0.8 14 .f

Figure 31. Minimum ralues of the inteaction index, nan, compatible
with ur~stablk oscillations as a function of the reduced agdul-, frequenrt fi

(By couri.s of the American Rocket Sociey)

oscillations of the first few modes, when combustion is concentrated at the
position t,, have been plotted for comparison in Figure 28. The values used
in the computations are 7 1.20 and M = 0.213. The absolute minimum 7R.
value nmi, for arbitrary location of-the concentrated combustion front is
plotted in Figure 31 against the reduced frequency parameter f# for y = 1-20 -7ý
and two values of the Mach number M = 0-213 and 0-301. The stabilizing
effect of the length of the nozzle is dearly seen to be increasing for higher
modes of oscillations, and the damping effect of a long nozzle is much
larger than that obtained from a very short nozzle.

The critical values f = 6 and Vi are plotted in Figure 32 for the case
= 1-20, n = 117 = 0.833 and M = 0.213. The unstable ranges of time

lag i are shown as shaded regions. For comparison, the dotted curves
indicating the stability boundary of Figure 29 are also included. From
Figure 32 it is clear that while the result, with a very short nozzle, shows
definite uwn-tablc regions for all higher modes of oscillation, the result with
a conventional nozzle-shows that only the fundamental mode can possibly
become unstable when the combustion is concentrated near the two ends
of the combustion chamber. More specifically a system using a propellant
combination with n = 0.833 is intrinsically unconditionally stable if the
combustion front is located in the region from 28-478 per cent of the corn-
bustion chamber length. Either from Figure 28 or based upon physical
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3.04 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTAB'LITY)

grounds, the unconditionally stable range of positions of the concentrated
combustion front is expected to increase if the value of n of the pro~pellant
combination is less than 0.833. Thus, unconditional stability can be
obtained when the combustion front is situated in a region from 2&-78 per

:cent of the chamber length if the n of the propellant combination is less

.0--

•:: --'~ --. -=-t=,

207 0111107

• _Figure 32. E fcta of the no.zde geomettr on the untable anmges of the sensitive time lag i•,
•'" •when the combustion is oncentrated at different fractional axial positions tpfor n = 0.833.

•-(Stability boundaries for modes higher than the second for short norado are not repr~oduced in
S- •this figure.) (By courte47 of Ihe American Rocket Sxicty)

•-: -::than 0.833. On the other hand, if the n of the propellant combination is
S<•.•: larger than 0.833, the stable region will decrease; and with sufficiently

•- ~large n, unstable regions for the second mode, and eventually the successive .
•':"higher modes, may appear. In Figure 33 the stability boundary 6/•p and
.- :•_ .,the unstable regions o? •/,p are shown with n -- 1.00. For this value of n,
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SYSTEMS WITH CONCENTRATED COMBUSTION AND LONG NOZZLE 3.04 I
small unstable regions for the second mode are obtained near each of the
three values V > 0, V j and ip < 1 respectively. Thus either the funda- i

mental mode or the second mode can become unstable when both the
combustion is concentrated in a certain region and the time lag is in the

a-Z I %

-or7 nozzle---- 1

--11

-- /f=Oitt

S-.-"r,•..uo',._d-a" i unslo',Ie .. ""- ..J---

~~ X\
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Figure 33. Effect of the nozzle geometry on the unstable ranges of the sensitire time lag iv,

when the combustion is concentrated at diferent fractional axial positions v' for n = 1'00.
(Stability boundaries for modes higher than the third for short nozzle are not feproduced in

""this figure.) (By courtesy of the American Rocket Societ)

proper range. Both modes can become unstable simultaneously (for Md

example, with V = 0 and • = 0'6). The dotted curves again outline the
unstable regions of Figure 29 for the purpose of comparison. The strong
stabilizing effcct of the nozzle toward higher modes of oscillation is demon-
strated to be of great importance.

The following qualitative conclusions concerning the stability behaviour
95
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3.04 ANALYSIS OF SCREAMING (LONGITIrDINAL HIGH FREQUENCY INSTABILITY)

of liquid rockets with all propellant elements having the same total space
lag and the same sensitive time lag are therefore obtained.

(1) The minimum value of n.,l, compatible with unstable oscillation
of a given frequency increases when the concentrated combustion froat is
shifted away from the nearest antinode of the pressure oscillation of that
mode, and becomes very big when the neighbouring node of pressure
Ubcillation of that mode is approached. This means that the oscillation of a
given frequency is most unstable when combustion is concentrated at an
antinode and becomes completely stable when combustion is concentrated
at a node. Since the injector end is an antinode of all modes of oscillation,
any mode of oscillation is most likely to become unstable when the com-
bustion is concentrated at the injector end. Under this configuration the
minimum value of n compatible with unstable oscillations of the fundamental
mode is smaller than the values of nmin of any other higher mode.

(2) For a system with a fixed value of n of the given propellant com-
bination, a given mode of oscillation is always stable when combustion is
concentrated in any of the discrete stable regions about the nodes of that
ITm xe of pressure oscillations. The extent of such stable regions increases for
higher modes of oscillations, and these stable regions cover the whole length
of the combustion chamber axis when the value of n.. of that mode becomes
greater than the value of n of the given propellant combination.

(3) Rockets with a longer subsonic portion of the nozzle as compared
with the combustion chamber length are more stable than rockets with a
shorter subsonic part. A nozzle with a negligibly short si'bsonic part, as
compared with the combustion chamber length, is the nozzle configuration
that is most likely to exhibit unstable combustion.

(4) If combustion is mostly concentrated in a region the width of which is
- -= only a small fraction of the combustion chamber length, the stability

"behaviour of the fundamenital and the next few higher modes of oscillations
"can be satisfactorily analysed by using the simplified model of a concentrated
combustion front. If the combustion is distributed so that the combustion
zone covers a considerable portion of both the stable and unstable regiom
of V of a given mode of oscillation, there is no obvious position that can be
attributed to the concenirated combustion front in order to analyse approxi-
mately the strability behaviour of this mode with the simplified model.
Since the number of pressure nodes increases for higher modes of oscilla-
tion, the extent of ,ach stable or each unstable region of e, decreases.
The simplified model is therefore not quite satisfactory for the analysis of
the stability of the higher modes of oscillations even if the combustion zone
is narrow. Fortunately, the stabilizing effect of the nozzle increaseý with
the higher modes of oscillation and we can expect these higher modes to
be stable under ordinary circitmstances. Therefore, we are interested only
in the fundamental mode And the next few higher modes of oscillation

4 - and the simplified model of concentrated combustion gives a very con-
venient idea of the high frequency stability behaviour of systems with com-
bustion distributed over a sufficiently narrow region. On the other hand,
if the combustion is distributed over a considerable portion of the com-
bustion chamber axis, the simplified model of a concentrated combustion
front is not suitable and a more careful formulation is necessary.

96
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EFFECT OF TIME LAO SPREAD 3.05

3.05. ErFECT OF TIME LAG SPREAD ON SYSTEMS
WITH CONCENTRATED COMBUSTION I

It has been assumed in the previous sections that all the propellant elements
have the same sensitive time lag in addition to the same total space lag.
Both assumptions, of course, represent only ideal limiting cases. In the I
following sections, we shall discuss the effect of lifting these assumptions,
one at a time. in order to obtain a more realistic result. Let us first consider
the case where the space lags of all propellant elements are the same
but the sensitive time lags of different propellant elements are different.
Since the wiburnt propellant elements are assumed to occupy negligible
volume, the steady state flow of the burnt gas on e.ither side of the concen-
trated combustion front is not affected by the spread of the sensitive timelag. The solutions for smaill perturbations as given by equations (3.01.12) 1

and (3.01.13) are still valid in each of the two regions. The effect of the
spread of time lag appears only in the boundary condition at x-= tp where
the t-.o solutions in regions (1) and (2) are to be matched.The first part of the boundary condition at the concentrated combustion

front is still given by the continuity of the pressure and the density of burnt
gas at any instant across the combustion front as shown in equation (3.01.14).
The second part of the boundary condition at x --.-. relates the instan- -

taneous velocity discontinuity to the local burning rate. The spread of
the time lag changes the burning rate and therefore the velocity discon-
tinuity. Let us denote the fractional amount of the propellant elements
having dimensionless sensitive time lag less than or equal to -f by f (f) with
f(Trin) = 0 and f ( = 1. As shown in Section 2.08, we can define

.in- .= ,.' + •..i)I 2
, and

= i -

The fractional burning rate perturbation is

IPb = n eat {9(,) - q{[(t -. .)] e-} df (3.05.01)

wher'e both I and i are now non-dimensionalized by the use of the wave - ]
propagation time 0., and ý(t - f) means that ý must be evaluated at the

instant t - 1. Since by defnnition df 1, we can rewrite equation a:49-M

(3.05.01) for isentropic small oscilations with T(V) yb(•i) =FL- 0 as f52

PYb = OW,, e- r(9) [I - Ce-¢.] .... (3.05.W2)Swith

C = o[(t-) e-1 df .... (3.05.03) -En

The constants C and , have the physical meaning explained in Section 2.08.
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3.05 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

With equation (3.05.02) the second part of the boundary condition at the
concentrated combustion front becomes

2- v, + V(1 xn)a + •7naC exp (-sf,) = 0 .... (3.05.04)

The characteristic equation for the determination of the complex quantity
s =-- A + iQ becomes

(1 -- yn) + ynCexp (-s-r,)

1 (I - B exp [2s(l - V') aS• ... .= : -- ta n h st
- a - + B exp [2s(l - iv)] (3.05.05)

-Y.r + ix,

which is the same as equation (3.01.15) except that the factor C exp (-s7.)
replaces exp (-si:).

With the simplifying assumption V • •i already used in previous sections,
equation (3.05.03) becomes identical with equation (2.08.06) and thus, for
aneutral oscil!atiors where s = ia,

C=I e-iw'f-f)df~ <I

If in addition df/di is symmetric with respect to in, we have

C = 2 cos [co(F - ',m)] df .... (3.05.06)
.10

The critical values n and 6, can be determined from equations (3.05.05)
-and (3.05.06) with known types of distribution of time lag. To illustrate
the effect of the spread of time lag, let us consider first the case where the

A pextent of time lag spread -- Af is sufficiently small, so that C will be sub-
stantially constant for a given mode of oscillation regardless of the small
variations of ca, and the magnitude of C will be slightly less than unity.
For these cases, the determination of the stability bou Wdary is especially
simple.

By separating the real and imaginary parts of equation (3.05.05) we have
for neutral oscillations

VnG cosc5 W. -.,n- (I - )
V} .... (3.05.07)

ynC sin Wca6 = -I.

Both X, and X, are given explicitly in equation (3.04.02) as known functions
of w for a given rocket. The critical values of n and 6, corresponding to
neutral oscillation of frequency cw can then be calculated from

( ) (I C)- .... (3.05.08)

,= (1/1o) sin-[ j/(ynC)]
• •.-.:.98
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EFFECT OF TIME LACY SPREAD 3.05

The results with C =0-9 for different positions; i of the concentrated
combustion front are given in Figures 31(a) and (b), and 35(a) and (b).

____ _ - -i Secd~ - -

.1undament~al mode I I

2 -4_ VI 0 1

V* \ _ - -

Tyff0 --1-* -

WOSO 015 7-05 175 WS 1-.95 2-05
(a) N(B-

Figure 34. Critical values of the interaction index n required to maintain neutral oscillations
of reduc-d frequency Pi (long nozzle) when the combustion is spatialty concentrated at different

firactiwondal axi~al positions ip and the Sensitive time leg is sphre-ad in a small range- corre-sphondinng
to magnification factor C = 0-9: (a) fundamenOa mode (natural frequency of the chamber
with closed ends, fi1); (b) second mode (natural frequency of the chamber with dosed

ends, =2)
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FigureI- 35 Crtia rle6,o n fetr miietelacrs dingt eta
oscik-gins o redcedfequec cet at

Ft igren 35fricticnal axalueositions use andethe scnsitice time lag, corsrespoding to smallralz

corresponding tro magnification factor C =0-9: (a) fimdamenta mode (natural frequency of
the chamber uith clocd ends, fi );(b) second mode (natural frequency of the chcsber

with' dsd ends, f=2),
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The unstable ranges of the effective time lag -7 for systems with n = 1
and diflirent positions of the concentrated combustioa front are shown in
Figure 36. The result without time lag spread, C = 1, is also shown by the
dotted line for comparison. It is observed that the unstable ranges are
reduced when C = 0.9 as compared to those when C = 1. The spreading

IW M

"24 4

I =

""I..3.* iI

;o--L--4--PfDZ3-.-- - --

0-5 0.1 04

: Figure 36. E ffert of the small timtuise spreadof the se, stitir time lag M;Le crtitý41 ralues 6,
conrptponding to ntutral oscillations u'htn ,f ombustion is tma~uiraied spa--.Wr at the

j fial axial positiOr n - (ong nozzle)

• •of the tinte lag is therefore stabilizing. In Figure 37 the minimum value of

•I . =-=,0
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EFFECT OF TIME LAG SPREAD 3.05
increasing monotonically when C decreases from unity. When the magni-

"- - tude of C is too much smaller than unity, the curve is shown dotted because
the approximation of constant C is no longer valid even for small variations
of (o. Qualitatively the stabilizing effect of spreading the time lag increabts
with decreasing (C.

Figure 37. Elfect of the fimeise spread of the
sensitive time lag on Oh minimum value of the- -

interaction index, n . compatible with unstable joscillations u~th comabustion cowcedrated at an

arbitrary axial position. A smaller value of C
indicates a larger spread of the sensitive time lag; 06

C 1 indicates no spread 1

o 02 0.4 0o6 O9 M
C-.

0I,0• /• FundW re7e oto j"

-0 0
1-j

0i .- t'------Iz-

DI X ost' g g pm0X 05 0*9 t5 --.55

A- 4I 4"I

-- A-,7 2:-77

Figure 38 Figure 39
Figure 38. Critical values of the interaction index n required to maintain neutral oscillation
of redwcd frequency P of the fudamental mode with combustion spatially concentrated at the

fractional axl position V and far the maximam amont of senstie time lag spread
Figure 39. Critical values of the elective sensitive time lag 5, corresponding to neutraloscillations of reduced frcqwney fP of the fIndamenta mode wth combusbn spatially

concentrated at the fractional axial position i and for the maximum amount of sensitire timne
lag spreae
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3.05 ANALYSIS OF SCREAMING (LONGITUDINAAL HIGH FREQUENCY INSTABILITY)

Next consider the case when the extent of time lag spread is no longer
small so that the variation of C with o must be taken into account. Con-
sider the following example where the distribution function is specified as

df 7r ( f -- fin .... (3.05.09)

which is symmetric with respect to f,,, and is maximum at -f.. Equation
(3.05.06) gives

cos oAi/2
C - (NAf//r)5 .... (3.05.10)

11 f~lun*,rnnlo/ 10

- Alf

AP

.- *-0 0"1 0"3 043 C V as PC 07 ' 0"9 IV

"JFigure 40. Eyfred of the large tim.,wise spread of sensitize time lag on the critical ralues 6,
Sfor .he ikost mutable rcanges of the funfamental mode as a function of the fractional axal

position ip of the concentated combustion, n = 1,00

Thus C is a functron of the angular displacement of the oscillation during
the extent of the time lag spread. The critical values n and 6, corresponding
to frequency Co of neutral oscillations have to be determined from equations
(3.05.G7) and (3.05.10) simultaneously. The critical values n and 6 for the
largest possible extent of spread, Af = 2f, with fm~n = 0, and imax = 2-.,
are shown in Figures 38 and 39 and the unstable ranges of ., for A-r/2:, = 1,
•, 4, and I are shown in Figure 40 for n = 1. The effect of spreading the
time lag is again shown to be stabilizing and the stabilizing effect increases
with increasing fractional extent of spread. It should be noticed, however,
that the stabilizing effect is rather small if A1-/2f, < I which will probably
include a large number of practical situations.

The previouw results are obtained only under the assumption that the
sensitive space lag is negligbly small compared to the total space lag,
so that r • and the oscillations of the position of the concentrated
combustion front are ,:eglected. If s is not taken to be equal to V, then
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SYSTEMS WITH DISTRIBUTED COMBUSTION 3.6

C exp (-sf,) is defined by equation (3.05.03) not by equation (3.05.06). It i V
is obviously seen that the previous formulation is not adequate for a certain
mode of oscillation when the combustion front is in the neighbourhood of a
pressure node of this mode. The modification of the results is, however,
shown2s to be non-essential. The effect of the fact that $ <: is that the
stable region about each node is shifted slightly downstream. The effect
of spreading the time lag is still stabilizing.

3.06. FORMULATION FOR SYSTEMS WITH DISTRIBUTED COMBUSTION

The analysis for systems with concentrated combustion shows that the
position of the concenitrated combustion front is quite important in deter-
mining the stability of the system. It is therefore necessary to analyse the
stability behaviour of systems with combustion distributed arbitrarily
along the combustion chamber axis. The analysis of systems with concen-
trated combustion is mathematically simple because the gas flow on both
sides of the concentrated combustion front is uniform and the propagation
of pressure disturbances in such a uniform flow field can be easily determined
from the simple wave equation as the ordinary acoustical solution wihen
both the Mach number of the gas flow is small and the entropy perturbations
are neglected. In the case ofdistributed combustion the flow field is no longer
uniform and there are mass, momentum, and energy sources throughout
the combustion chamber. It is evident that the equations governing the
motion will be different from those of a simple wave at all points where
such sources are present.

A particular treatment of this problem has been previously published by
the authors with the restrictive assumption that the combustion is uniformly
distributed in the axial direction and with a few other simplifying assump-
tions. In the rest of this chapter the problem has been treated for the inost
general distribution of combustion and without making use of the aforesaid
simplifying assumptions. As a result the equations are considerably more

* involved and a different method of solution, which proves to be quite general
and powerful, has to be used. The equation can be formulated Without
difficulty for the model discussed at Section 1.03. For this model the whole
flow is divided into two phases: a flow of burnt gases, with a rate p'u* per
unit area; and a flow of liquid propellants (in droplets), with a rate p,*u'.
Here p* and u* are the actual density and velocity of the gaseous phase,
u* is the velocity of the liquid phase supposed uniform for a given section,
and p,* the mass of droplets per unit volume of gas. The volume of the
droplets is neglected. The equation of mass conversion can be expressed
by writing that the rate of mass accumulatiun between sections x* and
xi + dx* plus the outgoing flow of mass is zero, that is,

(p* + p1) + (p*u* + p/u7) =0

This can also be written as
ap* a_ pi aw_+--a (p*"*) - - P *- ( -r ) = .... (3.06.01)

where t* and x* are the physical time and space variables and the quantity
103
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3.06 ANALYSIS OF SCREAMING (Lo,-.orruDiNAu HIGH FREQUENCY INSTABILITY)

w* represents the instantaneous rate with which burnt gases are produced
in the whole volume between x* = 0 (injector face) and x*.

Similarly the conservation of momentum states that for the element
-- p-mm ibetween x* and x* + dx* the rate of accumulation of momentum plus the

outgoing flow of momentum must be equal to the total force acting on the
boundaries a? the element. Neglecting friction on the walls wve can write

a ap

+PIN) + (p*U*S + pu /

The conservation of energy can be expressed by writing that the rate of
increase of the total stagnation energy content of the element under con-
sideration, plus the outgoing flow of total stagnation entdalpy, must balance
the energy introduced into the element shrough the boundaries. Neglecting
heat exchanges through the walls the last-mentioned energy is zero.
Therefore we can write

: :•:: a 0,*, + J,*,* )] + [ p*U,,*" ,') + -~i*h (.o1 .•,- a *

[p*e.* + pl(h* + 4u2) + puh pu( 2)] == 0

.... (3.06.03)
Here e co= er -t u*) and heg, h* + ca* represent the stagnation
interval energy and the stagnation enthalpy for the gaseous phase. For the
liquid phase, the internal energy and the enthalpy are very nearly the same;
the corresponding common value is intended to include the chemical
energy of the propellants. In writing the preceding equations, it has been
assumed that the velocity and heat content of the droplets are the same for
all droplets at any given station and that, in accordance with the one-
dimensional treatment, the droplets are uniformly distributed over the
section.

The four equations (3.06.011, (3.06.02) and (3.06.03) contain eight
unknowns p , u*, p, T* (of which e* and h* are functions). w,
and h*. The four additional equations needed are easily located.

First, we have the equation of state for the gas phase
P = .... (3.06. )

The second equation expresses the functional relationship between the
burning rate we and the other variables. Such a relationship will be
obtained later, based on the assumptions of Section 1.11.

A third equation is obtained from the dynamic behaviour of the droplets.
Assuming that the force exerted by the gases on the droplets is inversely
proportional to the Reynolds number one can wcr-rite

du* Wu W u
+tf"= k*(u* - u7*) .... (3.06.05)

where the acceleration of the droplet has been obtained followvng the
droplet path. The coefficient k( depend!, on various parameters, including
the diameter of the droplets, and therebre should be variable when the
droplets are losing weight by evaporation and combustion. Here,
however, we shall overlook this variatien and assume for k* a convenient
constant value.
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SYSTEMS WITH DISTRWBUTED COMBUSTION 3.06

The fourth equation could be obtained from the heat balance of the
droplets. This would give us an equation for h., or for the temperature of
the droplets. The droplets are actually picking up heat and increasing
their h,* in the initial part of their journey; they release it again when
they burn. The extent of increase of h,* is, however, seriously limited by
the presence of evaporation. In order to avoid additional complications in
our problem, and to take into account the fact that while h, is increasing,
the kinetic energy of the droplets is decreasing, we shall replace the heat
balance equation by the simpler relation

-hP* + 4u72 = const. = hýo --- ½uo6- .... (3.06.06)

It can be shown that reasonable deviations from this constancy would only
introduce higher order effects in the following developments.

We can now proceed to the non-dimensionalization of the preceding
equation. This can be done by using the reference values PO', PIO TO' and
co= (yRTD)1 as in Section 3.01, which are the pressure, density, and
temperature of the gas and the sound velocity in the gas at the injector
face (x* = 0), and by choosing as representative length the length of the
combustion chamber L. We take thereforex* t4 P

x ~ O = T; t Z-;;=-" - =- }
x=T;p~ 1=1A

P.... (3.06.07) -

U* U1 - y-lI
U, h .h..~ h*;h hP

00 =o, •'•R T* •1oo

where y is the adiabatic index for the gases, assumed to be constant together
with the specific heats within the range of variation of T*. This assumption
allows us to write in this range

dh=dT and Ah=AT .... (3.06.08)

independently of the behaviour of the specific heats out of this range.
The non-dimensional equations can be written as

ap + (pu) 8w apt D(plut)
.... (3.06.01a)

a(Pu) a(put ) 1 ap a(pluz) a(pIt4)

p t-h-+ u-h*) -- •. •J-(h"-, . ... (3.06.03a) •

P = .... (3.06.04a) 7

at+t 1r k(u -- u) .... (3.06.05a)
Sh, +-j(. ) =hp .... (3.06.06a)
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Jam-== 3.06 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

where we have introduced the two quantities k = (L/lc)k* and hp,=
{(7 - I)/(yRTP')} (h*' + Iub,*2). In the derivation of equation (3.06.03a)
from (3.06.03), use has been made of the relation p*e5* p*h -p*,
the two equations (3.06.01) and of equation (3.06.06). If the flow is steady
the corresponding relations are immediately obtained from the preceding
equations by suppressing the time derivations, and integrating with the
following boundary conditions: at x = 0, u = 0, p = 1, p = 1, T = 1,
aU = u10 p, PIu = w,, h = h . Here w, represents the known injection rate
per unit area of chamber divided by pofc•. Indicating the steady state
quantities with a su,)erposed bar we find:

P-= W; Plt = - .... (3.06.09)

=1-y(pii
2 + pI,2~- p,~ = 1- yf&(ii - ,i+w(a a)

•5-.~~~ W .. ( .6. I ON

S.. t, = •+ ½( - )fi = hi,,, o , f5 AT5 .... (0-.06.11)

au, da,/dx = k(a - al) .... :3.06.12)

The first equation (3.06.11) can be rewritten, using equation (3.06.08), as

This system can be easily solved if instead of prescribing the burning rate, I
i.e. starting from a known zw(x), we assume a known a(x). In this case the
integration of equation (3.06.12) provides a#(x); T(x) is provided by
equation (3.06.1 la) and f, p and zv are found from the preceding equation as

I-v y'wi(a, - U1.)g• I • -- 1 --+)•'•(a 2 -- a. .... (3.06.13); • P=I--½(7- ')u-2 u-l i7 l# 7a

If the combustion must be complete at the end of the chamber (x = 1),
• • where the velocity takes the prescribed valu, utk, from the last of equations

(3.06.13) we obtain
W 1 Wf 1 +( l.0' + 1 -- 2 uI

This relation can be inserted in equations (3.06.13) to obtain A, and ,-- in terms of a(x) and a#(x) only.
Let us discuss now the order of magnitude of the fundamental quantities

involved. The velocity a1 in the final section of the chamber is connected
with the Mach number M and depends on the area ratio of the nozzle.
For a throatless motor, M= 1. For ordinary motors, however, M is generally
around 0.1. Therefore, excluding the case of a tubular motor we shall
consider M as a small quantity and we shall compare the magnitude of the
other quantities with M. For such small values of M we have very closely
RI = A. The sound velocity in the burrt gases of a rocket is generally
around 3000 f/s. Thus the velocity 's :s around 300 f/s. The injection
velocity ul. is generally below this value even for high injection pressures.
Immediately after injection f - a, is negative so that equation (3.06.12)
shows that a, decreases. In the same time a increases, until at a certain
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* PERTURBATION EQUATIONS WITH ARBITRARILY DISTRIBUTED COMBUSTION 3.07

station a becomes equal to a,. After this station a stays larger than a1 and a5 -
increases again, though lagging behind at. We conclude that al is always
smaller than, or equal to, the larger of the two quantities it, and a1, and
therefore in general is of the same order as M; in mathematical form both
a and a, are O(MI). Consider now the quantity k. In the simplest case
where a = 0 the integration of equation (3.06.12) gives ii, a=t - kx.
The velocity of the droplets is therefore reduced to zero at a finite distance

i 1otok, which might be called 'penetration'. For the usual densities of
the burnt gases in a rocket chamber the penetration is of the order of a few
inches. On the safe side, let us assume that the penetration is equal to half
the length of the chamber, i.e. x0 - 4 and k - 241,.- Thus k is probably
larger than a10 but of the same order, that is k is of O(M). As a result of the
order of magnitude ofa and a, we see from equations (3.06.11 a) and (3.06.13)
that the deviations of 1, 3 and fi from unity and of zD from a are O(M2 ).
Up to terms of this order we can therefore write * -

/$ ---/ =• ---I; ZZ = a ... (3.06.14)--\

The practical equality of zv and a has the consequence that the description
of a combustion process in steady state can be obtained equally well by
prescribing the rate of burning or the velocity distribution. 4ý

Within the approximation (3.06.14), the second equation (3.06.09) can
be written

.... (3.06.15) -

3.07. PERTURBATION EQUATIONS WITH ARBITRARILY

DISTRIBUTED CO'MBUSTION

We can now proceed to obtain the perturbation equations corresponding
to equations (3.06.Ola)-(3.06.06a). We consider each of the dependent
variables as the sum of the steady state value plus a perturbation, so small
that the terms higher than those linear in therse perturbations can be
neglected. We indicate with a prime these perturbations and as before we
investigate the stability of soluticns of the exponential type:

pI p ' 1 l ll W

P .. P . = P- =. . = ea .... (3.07.01)°a(x) •,(x) r(x) •(v),(x) qj(x)

where the denominators are independent of time. The exponents = A + iD
is generally complex. Our purpose, as in the preceding sections, is to
determine the conditions under which the solution is stable, neutral or
unstable, that is A - 0, or simply to determine the stability boundary,
where A = 0, and the unstable side of the boundary. At neutral conditions,
tb, denominators of (3.07.01) represent the complex amplitudes of oscilla- -F-
tion of the corresponding quantities. The perturbations are therefore
given as complex quantities of which only the real part has a physical
meaning. The alternate interpretation of these complex perturbations as

- - rotating vectors in the complex plane allows us to consider their complex
amp',itudes as fixed vectors; it is clear that the angle between any 'wo

t !U the diametcr of the deoplets is dereasing from evaporation, k increases st,7adily and
becomes infinite at the end. In this case f finally catches up with i.
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3.07 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

vectors represents the phase angle between the corresponding oscillating
quantities. Letting p = p -I- p', u = i + u', etc. in equations (3.06.01a),
(3.06.02a) and (3.06.03), subtracting the corresponding steady state equa-
tions and neglecting terms other than those linear in the perturbations we
obtain, after introduction of equations (3.07.01) and suppression of th'b
factor exp (st),

s•+•j, (Av + ) = dq = - (Pm + fg .... (3.07.02)
dxdd

s~fv ~ d +-2a)
s(Av cr) - (2Aav+a

dx

31 dp d
-- - S(A1n + fik - -jx (2A,a,- + ,) .... (3.07.03)

Frrm the energy equation (3.06.03a) replacing hA = h8 + h = hP, + h•
t Lcaise of equation (3.06.10)], we obtain

y -lI p' h,ax= at a
or

We can introduce in this equation h, = h' + (y - I )'u', that is, since by
equation (3.06.08) h' = T' and by equation (3.06.04a) AT' = P- p',
we can substitute

Ah.= P'- Pp' + (y- l)Au'
The result is

t -p') =-(Y - l)p au' - [9W - Tp'+ (V-l0Pitt'}]• .. ~ ~~~~~at ax['- ''+ ,-I),•'1

Replacing from equation (3.07.01) we obtain the energy equation in the
following form

S; T: o + (7 -- 1) 1)A= d£ - h+('- -- Pv[={- d -- Ta~ + (.y -- I)pa}]

::• .... (3.07.04)
"The equation of state (3.06.04a) has already been used to eliminate T' and
is not needed any more. Similarly, equation (3.06.06a) need not be used
further. The equation (3.06.05a) representing the motion of the droplets
gives

fi d + + d 1 + k) k, =

This first order equation for j? can easily be integrated. However, a simple
approximate solution, valid under the present circumstances, can be
given by observing that k is O(M), and therefore from equation (3.06.12)
da,
Ix also is O(M) while on the other hand the modulus of s is around a
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multiple of ir for nearly neutral oscillations in the high frequency range as
will be shown later. Therefore, the predominant term of the left member
of the equation is s•j and one can write approximately

S=kls.,v .... (3,07.05)

This approximate solution satisfies the boundary condition (3.07.06)
given in the next paragraph. We see that the fluctuations of droplet velocity I
are, for small k, considerably damped with respect to tl'ise of the gas
velocity, and for neutral oscillations, s = iow, *I follows v with a 900 phase
shift. Equations (3.07.02)-(3.07.05), together with the equation, still to be
derived, for the burning rate, are in principle sufficient to -olve our problem
under' appropriate boundary conditions. It is interesting to observe that
the only traces left of the equations (3.06.05) or (3.06.03a) governing the
motion of the droplets are in the relation a#(x) and in the equation (3.07.05),
that is in a form much less restrictive than the original equation of motion
(3.06.05), particularly if k is considered, in general, as an empirical factor
correlating the two velocity fluctuations, and capable of taking complexSvalues.••--

Let us now write the o ,ditions at the injector end, x = 0. Here
u(x, t) - 0 at each instant, so that u'(0, t) = 0. If the injection velocityI
aand the injection rate are supposed to be unaffected by changes in the
chamber conditions (a logical assumption for sufficiently high frequencies)
we have '(0, t) = 0 and '(0, t) = 0. Similarly w(0, t) = ZD(0) =--= 0 and
therefore w'(0, t) = 0. Hence from equations (3.07.01) we have

v! = = = q0 = 0 .... (3.07.06)

At the nozzle end we assume complete combustion, which means that
for x = 1, A and p are 0 i, every instant. The terms deriving from the
motion of the droplets in equations (3.07.02) and (3.07.03) disappear; __

dq/dx vanishes and the two r, ti tining equations become those of the 4Z
adiabatic motion of a gas. Evidendy, equation (3.07.05) becomes meaning-
less. At x = 1 it is therefore necessary only to prescribe the behaviour
of the de Laval nozzl,; in the presence of osciliations, as in previous
sections; this is done by equating the ratio of the fractional variations of
velocity and density to the specific nozzle admittance ratio (Appendix B).

Equations (3.07.02)-(3.07.04) are quite involved. We shall now put
them in a different form which allows a simple iterative approach to the
solution. It is immediately checked by direct substitution and with the
help of equation (3.07.04) that equations (3.07.02) and (3.07.03) are
exactly equivalent to the following two equations:

Sd 1v • dY

d( 9 ) + v sZ-• }.... (3.07.07)I d +• $ •'-V s ý -w
V dx 9,,d910 --
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3.07 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

wLere:

Z.= ( 1- -+ 'I+ ---

TO 9'o

PO PO o TO T'OT

-: Equations (3.07.07) can be rewritten as:

a. -- Y 9s os ..... (3.07.09)

Sa + + s -i = -(Y + Z) = -sle

-:• It is directly checked that these equations are equivalent to the two
• followin~g integral equations, obtainable by solving the non-homogeneous
•: ~linear system (3.07.09) as if X, E and F were known functions of x:

If' 7 0i- 0•o,

s [F(x') cos (x-- ') + E(x') sinh s(x - x')] dx'

ax: ýq, Gr 4 ..... (3.07.109)

_ _Y = --C1 cosh sx -- C sinh rx

asx F(x') sinh s(x -- x') + E(x') cosh s(x - x')] dx'

It On the left-hand side. the different quanthies are evaluated at station x;

,• but we can now int.•oduce the boundar> conditions (3.07.06) at x = 0,after observing that from these conditions and from t(0) = 0 we derive
liaW(0) s0 and (3(0) 0.

SThe arbitra'y contants 4 and 2 can he romp, ".ely eliminated if weSprscribe the valae of T(0) = qo. Equations (3.07.10) become:

Y -- C cosh .x - 1 W

TOI

+So [F(x') csh s(x - x') yE(xA) sinh s(x - x')] dx'but we ...c.(3.07.61)

- = -sinh sx ± 7, 14I
TO

s [yFkx') sinh s(x -x') -- "E(') cosh s(x - x')l dx'

1110
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• ~~THE BURNING RATE 3.08 -- ,:

These two integral equations together with equations (3.07.04) and (3.07.05), •
plus the equation for the burning rate to be derived in Section 3.08, will

Si be used for the solution of our problem.

i ,, .3.08. THE BURNING RATE

° In ",ection 1. 11 we have formulated certain relations concerning the time
i ag and its variations. These relations were written in terms of dimensional

S quantities. However, it is immediately verified that the introduction of tihe
S non-dimensional quantities defined by (3.06.07) leaves the equations in
Sexactly the same form. It is also apparent that the rate function, f, can be

multiplied, by any arbitrary factor if E'. is also multiplied by the same
factor, so that we do not have to give explicitly the factors of non-dimensionali-
zation off~a E., provided they are t-qual. Therefore, we caa utilize directly -- '

S the relations of Section IA I as if they had been written originally in terms or H
S non-dimensional variables. Pan'icularly simple relations were derived for-;
Suniform steady state conditions in the chamber. If, in accordance with :
i th,, discussion of Section 3.06, quantities of O(AP2) can be neglected with--

Srespect to unity, the state of the gas can be. considered uniform, the d'imen- -
Ssionless; steady state values of pressure, density and temperature being "L
S equal to unity [equations 13.06.14)]. However, we can observe that all :

of the following developments of this section and of those- following can in :L
principle be repeated for non-uniform conditions. -

Consider the fraction of the injected propellants burning in steady state-
between stations x and x + dx. W•e assume for the moment that the time /
lag V(x) is the same for all the elements of the fraction considered, though it"

- .- _÷

can be different for fractions burning at differeat stations x. The burning
rate of the fraction considered is, by definitioit, -

dff,.)•

In non-steady operation the same fraction burns between stations x and =
.x + dxL and, again, by definition, its burning rate is

blt,= w(x, t) 6•X

if the rate of injection is constant we can apply equation (1.11.18) and
obtain

au!(x,) d1(•)( d-)
•x dx=L d -- d ... (3.08.01)

Int,!grati~ng over all fractions burn~ing in steady state between 0 and ., and in
Snon-steady statc I- .-tween 0 and x(g, 1), and noticing that zB(0) = w(0, t) = 0 !
S we obtain ) ( - dz7,(x')

Tdt dx dx' .... (3.08.02)

Under the integral, deu dt is given by equation (1.11.10) computed at( 0
time t and st ition x', that is bb

n on-di-mnsiona q i di by (36 .0 7 (x')] Ieave (3,08.03)

excl h sm om t sas 1parn1 htte1aefnton ,cnb

mutpid yayabtayfco i 0 i lomlile ytesm
fatr ota edonthv ogv xpiil h atr o o-iesoai
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R(x) being the station where, in steady state, an element burning station x
enters the sensitive phase. Of course, f and f are related by

- (x) .... (3.08.04)

so that when a.(x) is known, it is equivalent to assigning f(x) or !(x). From
equation (-1.08.02) we can find the perturbation of the burning rate

w'(x,) = w(x,tf) - zZ(x) = z•(9) - W-(x) - o d"rdt -ix ' . .... (3.08.05)Sdx'

It is now necessary to evaluate x(Fr, t). At every instant, the relation between
the station ý(9, t) where an element enters the sensitive phase and the
insensitive time lag -ri is given by

u,(x') --- .... (3.08.06)

where the velocity u, has to be evaluated at the station x' and at the time
t'(x') wher, the element considered was at station x':

u,(x') = u,[x', t'(x')] = f#(x') + z4[x', t'(x')] .... (3.08.07)

Hence in terms of the spatial variable equation (1.11.05) can be written
as:

fdx' ~ dx' ( dx' dd'
J~1 (')-Jo zX(' -J ,(' ... . (3.08.08)

Neglecting terms of higher order in the perturbations we can write

Thus after introduc ion of equation (3.08.07), equation (3.08.08) becomes

S: • - € = •(,•: • t.,' .... (3.08.09)

when the dependence of u; on x' has to be considered as indicated in
equation (3.08.07). Similarly in terms of the spatial variable, equation
(1.1 1.09) becomes for uniform conditions [F'(x') = const., fi(x') = 1]:

fdx' dx' P dx'
f (x') =-- E.• -F(x') =' a . (3.08.10)

From equation (1.11.02), we have

f(x') = f[x', i'(x')I f[l ±+ n.p{x, t'(x')}] .... (3.08.11)

The integration on the right-hand side of equation (3.08.10) can be split
into tb:e integi 'ons from ý to •, from 6 to x and from x to 17. Neglecting M
higher order terms we 1 ave:

dx' •- •dx" x
12 ,.... (3.08.12)

I12
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and finally, making use of equations (3.08.12), (3.08.11), (3.08.09) and
(3.08.07), equation (3.08.10) gives

j1W dx' -n f - dxiA.... (3.08.13)

In this expression one can clearly distinguish between the effect of time lag
changes, represented by the aecond integral, and the effect of the velocity
changes, represented by the first integral, which constitutes a purely kine-
matic phenomenon.

It is clear that since we are limited Lo terms of first order in the pe,,turba-
tions, the right-hand side of equation (3.08.13) can be written with k and 4
instead of x and ý. We can now comp!ete the evaluation of equation(3.08.05); since, by neglecting higher order quantities, we can write

dav (x~)iv(x) -- z•(R) (x -- 9)d (.

'raking x -- from equation (3.08.13), this relation can be inserted into
equation (3.08.05) together with equation (3.08.03) and we obtain finally

_ dix(x), I" p'[x, t'(x')] C! u([x',] d(xv)),

-1- alx) - n-- in I 1"(x') -- I • ) oI .... (3.08.14)

Here we have everywhere replaced k by x, .nd •(x) or •(k) by ý(x), the
resulting changes being negligible became tl.ey are of higher order in the
perturbations. Also, according to equation (3.06.13), rz has been replaced

The time t'(x`) is related to x' by the relation

W(x') = t - _______

and since it is only used in the computation of the perturbations it can be
replaced by the corresponding steady state expression

cdx"
t'(x') = I - .... (3.08.15)

The expression (3.08.14) for w' just obtained consists of a first term, which is
o- ginated directly by the time variations of the local burning rate, and will -"

th-.efore be called .he timeimse contribution to the variation of the total
burning rate up to station x, and of two additional terms which are due to
the displacement of the location where a given element burns and will be
called the spa•zewise contribution.

It will be seen in Section 3.09 that the timewise contribution is of an
order of magnitude larger than the spacewise contribution and therefore
represents the more important contribution of the two. This result justifies
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the previous developments of this chapter for systems with concentrated
combustion. Observe also that the same timewise contribution is the only
one present in the low frequency case.

"For a solution of the exponential type, replacing from equations (3.07.01),
making use of equations (3.07.05) and (3.08.15) and cancelling the comi-non
factor exp (st), we obtain from equation (3.08.14)

(-(X) n (x) +i-(x) d )[ nt(

- n' • 'o aQ(x')

TO d CX) o a(Vix)eftLX.(3

k f q (-')e fX('):0 • ,,ix ) dx' .(3.08.16,

Swhdere the first term represents the timewise contributioal, and the second two

terms the spacewise contribution to the burning rate variation. The
quantity

Q(X) L [ITO 9(10 e &d' .... (3.08.17)

plays an important role in the following developments.
For practical purposes we are interested primarily in the determination of

the stability boundary, that is s = io4.'. For brevity in writing, we shall, how-
ever, still use s in the following development with the understanding that
s is equal to ito. By analysing the order of magnitude of the terms, we shal!
first show that equations (3.08.16) and (3.08.17) can be simplified when
the maximum local values of da/lx are of order unity, and when T(x) is o',
order unity (that is ?* is of the same order as the wave propagatien time 0,,).

Let us assume that
__ 1, 1 ld9 1dv
p' o' a ' v I d9' Id are O(!) .... (3.08.18)

an assumption that will be checked later to be true when to is not too large..
SIf (x) is O(1), equation (3.08.04) shows easily that

x - R(x) = u,(x)•i(x) + 0(MI2)

so that x - i s O(M). Thus, because of (3.08.18), q({)/To differs from
"T(x)1To by a quantity of OMi§. Hence equation (3.08.17) can be written

.•._ as
fC da(x')

O(x) f tx'T [I -- e--'',')] dx' .... (3.08.19) •

Since exp [-s-(x)] - -exp [-ioit(x)] is always O(i) the whole integral
is of the same order as fi(x), that is O(M), no matter how large da(x)Idx
may be locally.

The second term of equation (3.08.16) can be obtained by observing that
since x - x' <. x .- is 0(M), pt(x')jq0 differs from 97(x)/qTo by a qoantity

+ (u will indicate thc value of the reduced frc-qucnc,.v . for neutral conditiun, that is at

the stability boundary.
I The c•s• of large (o and the corresponding modifications is ah'n dis.uised in the following

section.
§ For large v) this formula has to be -Aodified, ass shown at Section 3.13.
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of O(M). so that the value of the integral is of 0(1) and can be expanded
in the form

e z -- . + O(M) 9 I(X) e-(•I + O(M)
.1-s o 9'o -1

.... (3.08.20)

Integration by parts the integral in the third term with v(O) = 0 leads to

1 vx-1 e-'), 5di +o(m) .... (3.08.21)

The barred quantity in square brackets represents a proper mean value of
the corresponding expression. Since

d (v Ildv I Al V

~a ~ is 0(1)TV Tj-0 TO. %dx at dxV q00

because of the relations (3.08.18) and because, from equation (3.06.11),
dri,/ddv is O(M); and since for s = i/ also the exponential in parentheses
in equation (3,08.21) is 0(l), we conclude that the value of the third
integral is 0(1/M) and can be expressed as

1 v(x) + 0(1) .... (3.08.22)
sd,(x) T'O

Replacing into equation (3.08.16) the expressions (3.08.20) and (3.08.22)
for the two integrals, and recalling that k is O(M) and that dti(x)/dx is at
nmost 0(11 we obtain

_ n Q(x) + - •,x) 'd) -- e-

k da(x) v(x) .... (3.08.23)
sA dx 97o

with Q(x) given by equation (3.08.19). The only terms retained are at - -

nmost O(M) if n is 0(1). We can conclude that under the present assump-
tions q(x)!/To is O(M), though d Qldx, and therefore dq/g0 dx, is locally of
the same order as da/dx and therefore can be 0(1).

3.09. SOLUTION BV ITERATION FOR MODERATE Co

S-We are. now going to examine the order of magnitude of the terms of
equations (3.07.11) for the case of neutral oscillations s = io. Let us
first consider the integral terns. They can be reduced to the following

j7sF(x') eý'(-) dx'; j sE(x') e=A-') dx' .... (3.09.01)

" From equations (3.07.08) and (3.07.09) wve have:
ysF = q -su + a s, -o + 7sA, - + O(Af) .... (3.09.02)

S7sE =I's - --•v +'S 2- • + ys ,•

ysE (32 - i •- ± r - + ys -0 (AP-) .... (3.09.03)
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where all the terms not written explicitly are definitely of O(MA) because of
the assumptions (3.08.18) and because of the results of Section 3.06 about the
order of magnitude of the steady state quantities. Let us first consider
the contribution to the integrals (3.09.01) due to ysq/o70. This contribution
can be split into three terms by the use of euation (3.08.23), the integrands
being all of O(M). The second of these three terms can be written as

ny f i--, [1 -- ] e•'1 ') d[a(x')]

The modulus of this integrand is at most equal to the product of the maxi..
mum modulus of

970

which for s = ;(o is of the same order as ai, that is O(M), times the variation
of a, which is also O(M). Thus this second term is O(MA2). The same
result is derived for the third term, which can be written as

S! e±5 -- e) d[a(x')] = O (M 2)
S f.l0 910

because both the integral and k are O(M) (see Section 3.06). Hence all
contributions to the integrals (3.09.01) from (3.08.23) are 0(MW2) except
the one due to the first term, so that the spacewise contribution to the
burning rate can be completely neglected in the following development,
and only the timewise cc'.tribution retained. For (a = 0(1) it is clear
that the integral in equation (3.09.04) is O(M); when to is large, that is,
when Isl is large, one can integrate by pars so that this first term can be
written

"e'•(z-e ) dx' -- nys e( dx'

_ L e-z-",dx']

T- F' {Q(x) -- QW (I - e-'ý) etEX-e) d[a(x')]

.... (M9.04)
which is O(M) no matter how large da/dx is locally, and how large to is.
Thus we conclude, in general, that for n of 0(l), the expression (3.09.04)
is O(M).

Consider ne~xt in the integrals (3.09.01) the contribution due to the term
in (9 - *)/q0 of equation (3.09.02). Rewrite e=uation (3.07.04) in the
form

"[ (+ (y-• - •-+(-lp

.X \ _2 s [o '"' 9o -Ji7- ¢ 30.5

+- T (7 -- 1)I• s? .... (3.09.05)
L 9lo 92O 916J 7 91o
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and integrate this linear equation to obtain

+ (y -p o ~ p v 11 (x') d•x' d

910 910 910 f Io 9o
S.... (3.09.06)

An alternate form of this expression is

19) a y -l v 1L- / e"fx'Td a(x')
7 TO 'PO ii70 U

.. 3.09.07)

The expression (3.09.06) represents the time independent factor of the
stagnation enthalpy perturbation, ohA e-"IT/9 (as is immediately checked
from Section 3.07), and the expression (3.09.07), the time independent
factor of the entropy perturbation, •S' e-"/cvo. For neutral oscillatio-'Is,
s = iw; both quantities, and therefore h'f 9)o and S'/),o can be 0(l) as carn
be checked from equations (3.09.06) and (3.09.07). Therefore the quantity
(q_ - Ta)/q•-- . (q - a)/9) 0, representing the temperature perturbation,
is also of 0(1), a result consistent with the assua. iptions (3.08.13). Neglecting
terms of O(M2), equation (3.09.05) becomes

T)-aC Y-I9) rv\ 1 d [r 9-,ay-Iy
TO y\) k 9 'S ax- TO yj-9--0)

From this expression we find that

C r. -- ! ee.(z-') dx' =s a e"X-•') dx' + 0(A 2)

• T fo o "9_0

* .... (3.09.08)
since the value of

7 d r--G+ - I ov

is evidently of O(M2). We see also that the value of the integral (3.09.08)
is of 0(M). An interesting observation is that, as equation (3.09.08) shows,
within terms of O(M), the value of the integral can be determined using
the isentropic relation a -- rp, despite the fact that the entropy variation -
itself can be of 0(l). This shows that some sort of compensating effect
depresses the order of* the integral

"Fa~ (-. - e-- dx'

t-om O(M) to O(MP).
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The contribution to the integrals (3.09.01) of the third term of the
expression (3.09.02) can be written, using equation (3.07.05), as

_7 -' 0 e"x-') dx' = k e±-'(-e) dx' + O(M 3 ) .... (3.09.09)
7 9'O o P'O

and i- of O(M). The contribution of the fourth term of equation (3.09.02)
can be evaluated as follows. Let us first determine the order of magnitude
of ý[9)0. Equation (3.07.02) can be rewritten as

d(•• s_ ldq
" 1P :o -u' o = qod O M .... (3.09.10)

because of equation (3.07.05) and assumptions (3.08.18). The solution of
"this equation satisfying the boundary condition (3.07.06) can be put in
the farm

0 [lq + (] d 'e dx'a_

.99)]• • (e-• 7)o) dx'

which shows that al(ý/90) is at most O(M), because (I •To) (dq/dx) is at most
0(1). Thus neglecting the contribution of the term O(M) in equation
(3.09.10) we can write

7 f l a-;e' ) cx =-, .- f e-i, e d

-• -- 7 g sa,-e•x-' ',()O(J1@) .... (3.09.11)
y 9e0 I•oJ

since it is immediately recognized that both integrals are at most O(M 2).
Finally it is immediately chei.ked that of the contributious from the various
terms of the expression (3.99.03) only the first one is O(M) :

(3 - 7)s 7a ee±-P1xz) dx'- qfo 99

FT(3 ri 7V d [es(x-z')] = O(M) .... (3.09.12)fo P0

and the others are all O(A•)):

ys 3At -}-•ill +''--)dx' = 0 (MW) .... (3.09.13)

The results represented by the equations (3.09.04), (3.09.08), (3.09.09),
(3.09.11), (3.09.12) and (3.09.13) can be summarized by saying that for
the purpose of evaluating the integrals (3.09.01). and therefore those of
equations (3.07.11) within terms of O(M), the expressions '3.09.02) and
(3.09.03) can be replaced by the following:

7sF =s(riQ-- U); ;7sE= -isV .... (3.09.14)
l11

}r



SOLUTION BY ITERATION FOR MODERATE CO ;.2~v

with:

(X) = (I - e-"f) . x'; .... (3.09.15)

i ~ ~~U(x) = , 1) fi- - _ P,,
TO0 S T .... (3.0.16)

V(x) =i(3 - y) 9 3-.)

These quantities, and the corresponding terms of the integrals (3.09.01)
are all of O(M).

In the preceding analysis we did not take into account the effects of the
magnitude of s = io except for equation (3.09.04) which was shown to
retain the same order of magnitude no matter how large &) is. In the same
manner one can show that the- rders of magnitude of equations (3.09.09),
(3.09. i1) and (3.09.13) are unchanged no matter how large o is. However,
the same is not true for equations (3.09.08) and (3.09.12). In both cases
it can be seen that the integral on 'he left-hand side stays of O(M) no
matter how large w is, and therefore the whole expression is 0(cuM). ZM%
Its order of magnitude depends on the value ol ..-; if co is 0(I/M), for
instance, it becomes 0(1), and keeps increasing for increasing wo. It will
be seen later that if n is 0(1), co must be close to 11r, 1 being an integer.
We conclude that if M = 0.1 and I = 1, woM is around C-3 and can still
be considered of 0(M); but for 1 >, 2 it is more proper ,- considcr the
quantities (3.09.08) and (3.09.12) to be of 0(1)1. Thus the previous results
about U and V being of O(M) apply only if w has moderate values. It
will be seen in Section 3.10 how this restriction upon the validity of the
iteration procedure that follows can be easily eliminated.

Following the same lines as those already used one finds that equation
(3.07.08) gives:

= q * + 0(M 2)]
9I,.... (3.09.17)

yW 2ii+ 0(M2)

and that these two quantities are also of O(M). Hence, introducing s =/io,

with o) of 0(1) at most, equations (3.07.11) can be written as:

97/97 = cos tox + O(M) } P...(.09.18)
= --i sin &ux + O(M)

"This form of the equations suggests the following iteration procedure valid
for moderate values of (o. Neglect first the terms of O(M) with respect to
*he terms of 0(1); the r"ulting solution of zero order:

9•°O/9;o = cos (Ox; V(°O)I4p0 = -i sin cox .... (3.09.19)

t The magnitude of the expression (3.09.08) is reduced by the presence of the factor
1- ), which for rockets can be considered of O(M). No reduction of magnitude exists

for the expression (3.09.12).
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3.09 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

coincides with the acoustic solution satisfying thel condition v = 0 at x = 0.
This is an exact solution of the problem when M = 0. If M is exactly zero,
there is no combustion and we can replace the nozzle at x = I with a
closed end; so that at x = 1, v must again be zero. The phenomenon is
now reduced to the one dimensional oscillation in a pipe closed at both
ends. Tht corresponding eigenvalues (o satisfy the equation sin 0) = 0,
so that they take the values w = hIr (1 = 0, 1, 2...) characteristic of the
oigan pipe oscillations. The oscillations are always neutral at these well
defined frequencies.

If there is combustion and M is small but different from zero, two things
happen. Terms of O(M) are added in equations (3.09.18); and the
boundary condition at x = 1, instead of v = 0, will be giver. by

y'I/= F .... (3.09.20)

even if we neglect the terms of O(M) in (3.09.18), in which case the form
of the solutions is still given by (3.09.19).

The specific admittance ratio of the nozzle, ot, has been determined for
isentropik' oscillations in Appendix B, and has already been used at
Section 3.04 for the case of concentrated combustion. The change of the
boundary conditions affects the values of (o for neutral oscillations. Hence
leaving to for the moment as the unknown eigenvalue to be determined
later, we can compute the additional terms of equation (3.0c.18) by using
the expressions of °(O)/ogo and Vv(°o/90' from equations (3.09.19) of dhe 0th
iteration. if the quantities:

:•. f~~~r da, dx, 3092
Q(O(x) = costox'[le '] .... (3.09.21)

0k
U(°)(x) - (7 - 1)a cos cx+O k sin wOx } 0. (3.09.22)
V(O)(x) = (3 - yi)a sin (ox

are introduced in equatious (3.09.14), and theri in equations (3.07.10),
together with the 0th approximations for the quantities given in (3.09.17),
one obtains:

S== cos (Ox + i 2a sin tx

- fo Q( - U(c)(x')} Cos co(x - X')

+ V(°)(x') sin co(x - x')] dx'.... (3.09.23)

- •, sin wx +y --va cos cox
To 9•0

IM's

- _ fo[{nyQ(O)(x') - U(O)(x')} sin o(x - x')
f0

- V())(x') cos w (x - x')) dx'
120
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SOLUTION BY ITERATION FOR LARGE (0 3.10

The expression for q(O) is obtained from equation (3.08.23) after introducing
the relations (3.09.19). The result of this first iteration is correct up to terms
of O(M) provided cw is not too large. In principle it would be possible to _ 4

Ji0- proceed further with additional iterations; however, all the terms of
O(M') that have been neglected in the developments of this section should
be introduced, and the result would become very involved. The corre-
sponding refinement does not appear to be justified in view of the roughness M
of certain of our assumptions, and is certainly not required if M is sufficiently
small, in the neighbourhood of 0.1, say.

3.10. SOLUTION BY ITERATION FOR LARGE W)

The procedure outlined in the previous section cannot be applied if 0) is
0(1/M) or larger. It is possible, however, to locate the terms that arc respon- M
sible for the inconvenience and introduce the necessary alterations so that
the procedure may , "nverge at higher w. The trouble comes rorm the
expressions (3.09.0b) and (3.09.12), that is from the second ter ;. in the
right-hand member of equation (3.09.02) and the first term in the right- -3
hand member of equation (3.09.03). If we rewrite them in the following
way:

S- (2 - y)sa + sA T _'
91o 9,-'o

(3~ ~ - siA~ + (2 - y)sa £
910 T'O 910

it is possible to show that the contribution of the first terms of these two
expressions to equations (3.09.23) is of O(sM); the contribution of the
terms in 2 - -y is always O(M) no matter how large cw is; and finally
the contribution of the third term of the first expression, representing the
deviation from isentropic conditions, is O(sM5 ). This suggests that in
order to eliminate terms of 0(sM) from the equations (3.09.24) we start

* from equation (3.07.09) modified as follows:

S~=s W--X----+izY SE1S --+ o ..... (3.10.01)

Y ++ + a• -L• +L tae'

The homogeneous equations obtained from relations (3.10.01) by putting
P= = Y= V= 0 have the solution

o eJOI Ic-shsx;= e0 c 0s Sad( sinh sx .... (3.10.02)
9'0 T'o

satisfying at x -- 0 the conditions (o)= 970, -0) 0. With the same
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Sm3.10 -.NALYSIS OF SCREAMING (LONO-ITUDINAL HIGH FREQUENCY IWN FABILITY)

known P~ and P~, the solution:

9- -7J

-se' j 'o y~' cosh s(x - x')

+ yAE(x') sinh s(x - x')] dx' ... (3.10.03)

- ±ty1

9'0 910
jo e Jz'[-YF(X') sinh s(x - x')

analogous totesse 3.71) gi since AP and Pare not known but

cnanthe unknowns, equations (3.10.03) can Le t.~nsidered as a system of

integral equations. Using the same techniques a. d in Section 3.09 we can

check that for s = iw the integrals appcaring hi (3.10.03) contain either

terms of an order of magnitude which does not change with w and is at

most 0(M), or terms with order of magnitude increasing with (o, bitt at

most 0(&)M2 ). Thus we can say that with to up to 0(l1M) equations
(3.10.03) can be written as:

-' +' ±0(M); 9' o

and we can apply the iteration technique previously discussed. The zerco

order iteration is now given by equations (3.10.02) with;r iw, instead of

equations (3.09.19). Wec can see that the only eliffrc betee the two isa

phase change, the amplitude remaining unchanged; and that the difference

in phase is equal to ox0 dx' and is of the order of I radian ifco is 0(l /M,)t.

The first iteration is obtained by introducing into equ..tioni (3.10.03) the

values of T~(0), 100O), D(O), P(O computed fromn the solutions (3.10.02) of the
0th iteration:

9 = e i.',r decosco~x + i2a sin ox

i) e 0ftI Q(O cos Wo~ x)

± V(0 ) sin to(x - x')] dx'} . 31.)

V___ __ 0

e- 40 [(n& - U0)) sin coklx - x')

-(O cos o,(x - x')] dx'}

tThis phase shift is substantially at. effect or the mear. motion of the gases on the absolute
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SOLUTION OF T71E E.ENVALUE PROBLEM FOR - CONSTANT 3.11

where k4o0, f0o) have been obtained again from equatioms (3.09.17) with
S(O)/70o, etc. In the quantitiest:

Q!o0 •(x) --_• '°)[1 -etufai]..-]duff

jZ (O) (X') dadxe

W o TO dxo
Vo) k _ ;,fm°

-(0) (0 ) .... (3.10.05)
+7 -- - --0) + (7 - ) i - 2 -

T~o %P+ i0
V(°)(x) i (2 - -) 3( 1) 72oa

only those terms have been retained which, after the integrations of equa-
tions (3.10.04), produce termn of O(M) or O(oM 2). The first two terms of
P0 O) and the first of i,1o) correspond to those of equations (3.09.22) except

for the fact that y - 1 and 3 -- 7 are replaced by 2 -- y. Observe that
the phase shift of the new 0th iteration is cancelled by the exponential
factor under the integral sign of equatkins (3.10.04) so that these terms
resvlt in the same expressions (except for the change in the numerical

factor) for both iteration procedures. However, the additional factors of
equations (3.10.05) are new. From equation (3.09.07) we obtain the value
of the term -,:

u-= 0  + _0 e"+.z, "T - dx' •-

To 0 o

All new terms are of O(w,112) and becou-se important only when o is O(1/M).

3.11. SOLUTION OF THE EDGENVALUE PROBLEM FOR "- = CONSTANT ®

The stability problem can be. stated as follows. In a chamber with a given
nozzle, for which we know the specific admittance ratio a as a function of
the frequency, we prescribe a given combustion law, represented by a r-P

known distributi:,n of space and time lags and by a value of the interaction
index n. As has been observed while discussing equations (3.06.13), the
steady state combustion distribution is represented by the distribution

W(x). Similarly the unsteady effects on combustion are represented by the
distribution of sensitive time lags i(x) and by the interaction index n.

Now the question is: for given m, fi(x), f (x) and n, will an arbitrary
perturbation of the steady state conditions be amplified or damped? Mathe-
raaticallv the answer to this question is given, as in previous sections, by
analy-sing the sign of the real part A ofs $= A + iD. In practice, as has been
stated several times, we need only determine the neutral condition under )
which A changes its sign. if m and f(x) are fixed, there neutral conditions
will be possible only when a certain relation involving f(x) and n is satisfied;
and they will take place with a well determined critical frequency (o.

T This formula is not quite exact under the assumption of this section. The changes to
be nade are indicated in Section 3.13. They have not been introduced to avoid the
additional complication of the following developnments.
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3411 ANALYSIS OF SCP-AMING (LONGITUDINAL HIGH FREQUENCY INSTABILTY)

Equation (3.09.20) represents such a functional relationship betweci the
three qaantities, and since it is a complex relationship, it corresponds to
two real cries. If for simplicity we a:sume (as we will in the rest of this
section) that the sensitive time lag is the same for all elements, equation
"(3.09 ?0) represents two equations between the three quantities 6, n and W,
where 6 is the critical value of the constant time lag i. This means that
for a given value of n, equation (3.09.201 will determine the values of 6 and
wo for which neutral oscillations can be obtained; in other words they
represent the characteristic equations for the set of eigenvalues 6 and t.
However, the direct solution of these equations would require laborious
numerical calculations because (o appears in a very involved form, and it
would be hard to find the qualitative trends. We can obtain results in a
much faster and easier way by reversing the procedure. that is prescribing
the value of co and looking for the eigenvalues 6 and n compatible with
neutral oscillations for that value of oj.

An idea of the ranges of co that will be particularly interesting can be
obtained firom equation (3.09.20) after neglecting in the left-hand side
quantities of O(M); that is from the equation

: :••sinh s/cosh s == al(ac + iac)t .... (3.11.01)

which can be obtained from system (3.09.19) or from (3.10.02). It is clear
that if. o- 0 this equation cannot be satisfied for A = 0. Let us therefore
take s = A + iW, and split equation (3.11.01) into the corresponding two
real equations:

sinh A cosh A sin Q cost2
sinh2 A + cos;Q = sinh2 A + cost =D

;R- If o,0 and aitq are 0(M) these equations are satisfied, within our order
of approximation, by:

sinh A =--tf tan l 1 -aiit
cosh A I cos D2 I

We see that since cc, is positive the oscillation must always be damped,
and that the damping is related only to the value of a, while c,,/l affects
only the frequency, which is given 'y

A? = ar -- .an-4('%F1 ) .... (3.11.02)

One can show that if aq is O(1) but at is still O(M), the frequency is
given by the same relation (3.11.02) and the damping by

sinh A = -a~.I(l +OPP
so that now the damping is affected also by the value of (xa but still ofi
is the most important element in determining its order of magnitude. If
finally both otiy and 5ati are O(1), both tan-D and tanh A become O(1),
depending in a mixed way upon atal and ctt. We conclude that though
equation (3.11.01). obtained from equation (3.09.20) neglecting the effects
of combustion and the other terms of O(M), does not provide any eigenvalue

t Note i = iý where i, is to be found in the graphs af Appendix B.
124
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SOLUTION OF THE EIGENVALUE PROBLEM rOR f - CONSTANT 3.11
for neutral oscillations, it provides, however, a well determined value
(3.11.02) of the frequency when the damping A is of O(M). If the corn-
bustion terms generate enough energy to balance the damping and produce
neutral oscillations, it can be expected that the frequency w-ll stili be
around the v•alue given by equation (3.11.02). Another important result
is that the real and imaginary parts of cc have separate and well defined
functions at least so long as they stay of 0(l). The real part is substantially
responsible for damping, and the imaginary part for the change in frequency
with respect to the closed-end organ-pipe condition.

Coming back to the determination of the eigenvalues n and 6 for given co,
let us discuss first the case of moderate (o. For constant 6 the value of
,i Q(O) which appears in !qu;tio;.w.: (3.09.23) can be written as

- s w%, d dx' Z-K(x, w) . ... (3.11.03)

where the quantity
S=ny(1 -- e-fo) .... (3.11.04)

's now the only quantity appearing in the equation (3.09.20) containing the
parameters n and 6 of non-steady combustion.

As already stated in Section 3.07 we suppose that the combustion is
completed at x = 1. From this assumption, consistent with the calculations
of Appendix B where no combustion has been supposed to take place in
the nozzle, it follows that at x = 1, da/dx = 0, so that the last two terms of
equation (3.08.23) vanish. Thus applying equations (3.09.23) at x 1
we obtain:

2 IL) cos (o + i[2a, sin w - CC(w) + A(¢w)] F,
S= .... (3.11.05)

S= --i sin ,o) -- cos w + D(,)+ B(o,))

where the functions A, B are given by:

A(w) -r[Uo)(x', cos W(l - x') - V(°)(x') sin w(l - x')] dx'

B(w) = w [U(0ý(x') sin wo(l - x') + V(O)(x') .os &)(l - x')] dx'

that is, after using relation (3.09.22), by:

A(,) =0cos W ii dx' - (2 - j)0) a cos ((l - 2x') dx'

+ 5 0[sin t - sin(1 -- 2,')] dx'
.... ~(3.11.06) --.

B(o) =0 sino.J a dx' - (2 -- 7)w a sin c(l - 2x') dx '

k
- A [cos w - cos w(l - 2x')] dx'
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46 3.11 AXALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILTiY)

and the quantities C and D are given by the following equivalent expressions:

C(to) -to K(x', to) cos to(l - x') dx'

-= • sin w(l - x') dx'

J0 dxa

f= d [sin to + sin (l -2x')] dx'
Jo dx'

(9 •i cos o(l - 2x') dx'
0 .: .... (3.11.07)

"D(w) K(l, to) -o) K(x', 'i) sin to(I x') dx'

C'dK- I -- ;cos w(l x') dx'

~'da=J0 [cos o + co.3 u(l - 2x')] d

,= a cos o - * a R sin to(l - 2x') dx'

Kti-: In the first term of each of the equations (3.11.05) we recognize the term
which becomes of 0(1) where to is 0(1/M), while the remaining terms are
"at most of O(M). The order of magnitude of A, B, C and D is O(M) if
to is of 0(1); but if to is O(M) the order of magnitude decreases to O(M2)
for A and C and to O(M3 ) for B, the order of magnitude of D being

Vt. unchanged.
Replace equations (3.11.05) in (3.09.20) with m = xr + ii and solve

the ensuing equation for F. The result is

V-(I, + iI)(j, + ij,) .... (3.11.08)
"with:

lr((o) (7 + 4)aos (j -- 2otdf sin co - B(w) - mif4A(to)w1

Sl(wo) =sin ±A Oit3 cGsW + 2orq sinm + maA()o)

-J(co) = D() -- tifC(o)

3k JA(W) = jC(o)
From equations (3.11.08) and (3.11.04) one obtains the eigenvalues n and
-as:- 1 /2 +-1,2

1nro) = 2- ± I .... (3.11.10)
2;, 1,J, + l.a,

(Co) =[ (2m+ l)7--2tan -L 2tan-'.,] .
VJr

Before we discuss these results, let us observe that if or, and ci were of 0(1)
some terms, being of O(M2), should be suppressed from the system (3.11.09).
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SOLUTION OF THE EIGENVALUE PROBLEM FOR 'F = CONSTANT 3.11

However, for small M, both a., and o, can become large for sufficiently
high frequency. This is shown clearly in Figures 62 and 63 of Appendix B
where the values of otA and oi, computed for linear velocity distribution
in the nozzle, are plotted against the reduced frequency # defined in. the
appendix. We see that though both oca, and oa01 decrease when M de-
creases, they decrease quite slowly with the result that for high P and
low M they must be considered as of 0(1) rather than of O(M).

The relation between the reduced frequencies P and o is obtained from
the definitions of both as

p --.... (.1.12a)

where !, represents the length of the convergent part of the nozzle divided
by the chamber length, and it = [2/(7 -4- 1)]l is the non-dimensional
value of the critical velocity, reached at the throat of the nozzle. If, for
example, (1C - fl)ll,.1, = 7r, which means that the length of the convergent A
part of the nozzle is roughly a third of the chamber length, and if o0 is not
far from one of the organ-pipe eigenvalues 11r, the corresponding fP is around
1, that is. around unity for the fundamental mode, around two for the second,
and so on. This is, however, only a particular case and a change in 1u1
affects proportionately the values of ft. The examination of the Figures 62
and 63 shows t1 "t if we confine oursplves to values of M around 0. 1 and
if/f goes from 0.,• O(M), then 'a- is 0(M24P) and xa1 goes from 0 to O(M2 ).
If ft is around unity both ;, 1 and m are around O(M); however, M Al
stays considerably smaller than M (say, around M/2) and ;,a1 stays con-
siderably larger than M (around 2M). With increasing /f, ot tends to
stiy O(M) up to ft around three, and becomes 0(1) for larger /P while
already at 8 = 2, miza changes to 0(1) and tends to decrease again ocly
for much larger /f.

With these orders of magnitude in mind, let us examine equations (3.11.10)
and (3.11.11). Suppose first'that w is O(M), then we obtain immediately:

I, 7=f + ( ,P); =oi + ( );J.=ill + 0( o);Ji (M')

"and from ecpations (3.11.10) and (3.) 1.11), reglecting higher order terms,
we have: •:•

co = yGa(2n - i)" .. .(3.11. 12b) '

W = (2m + 1)7" - 2 tan- (2n -- 1)i r=•U

These results can be compared with those of the low frequency intrinsic
instability, equation (2.03.10). For the comparison, the reduced frequency
just derived has to be multiplied by the ratio of the two different character-
istic times used, 0,I0,, which is found to be equal to I/i,; no change, how-
ever, is to be auplied tc v.,. It is easily checked that the results coincide,
except for the non-essential numerical factor ., in the expression of the
critical frequency. This factor arises because, in the low frequency part,
the oscillations were assumned isothermal, while in the present calculations
no predetermined oscillation behaviour was assumed. The present result
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shows that actually the situation is better described by an i3entropic oscilla-
tion, and equations (3.11.12b) are to be considered more accurate than the
previous ones. Except for the slight numerical difference, we now have an

g-7 indirect check of our basic assumption of Chapter 2 that the wave mecha-
nism can be neglected at low frequencies and the gas can be assumed to
oscillate as a whole. Actual calculations for increasing values ")f 0) would
show the limits of validity of this assumption.

Suppose next that o is 0(1), but that the value of P is below three, so that
c-trA is O(M). Equations (3.11.09) show that in this case I, is O(M), J. is
O(M) and J, is O(M) and I, is, in general, of O(1). Thus from equation
(3.11.0) n is O(lI/M2 ). If, however, tan (o = -- cla + O(M), 1, becomes
of O(M). In the denominator of (3.11.10) IjJ/ can be neglected as compared
to IJ,., and we obtain

n=-

both terms of which are of 0(1). If we now take

tan•w = -ocai± + O(AP) .... (3.11.13)

,I turns out to be of O(M2), while I, and J, will have changed their values
only byan amount of O(M2 ') but are still of O(M). Thus in the ranges of (o
£pecified by equation (3.11.13), n takes a minimum value

•.i = (l/2y,) (~IdJ,) .... (3.11.14)

it is to be observed that only the smallest positive value of wo satisfying
equation (3,11.13), that is, neglecting terms of O(M2), only

o)= r - tan- 1(ai) .... (3.11.15)

can be considered of 0(1). This coincides with the first value (3.11.02). As
already shown, if l,.b is about one third of L, the corresponding vaiue of
is around unity. in which case both aft and oyi, are O(M). If, however,
the length of the nozzle is increased both odfi and (xii increase. Corre-
spondingly, the value (3.11 1.15) of o decreases, but the decrease is limited to
ia maximum amount of the arder of 25' because the maximum value of
%fa never goes much above 0.4, as appear.; clearly from Figure 63. Thus
starting from a value close t- 1800, wo would first decrease rapidly, reach a
minimumr around 1550 and then increase again slowly. The value of j
would therefore increase at first slower than l,.,b, and later faster, but al-

•-- togetaier it is blund to increase. When fl. !aches values around and above
three, &ai; which has been st:'adily increasing, must be considered to be
"no longer of O(M) but rather of 0(l). As a consequence 1, is O(1) instead
of O(M), while J, and J. are both O(M); 1, is 0(1) in general but reduces
to O(M) if ov is around the value (3.11.15). It is immediately deduced that
n is now always of O(l/M), even around the value (3.11.15) of wv where,
however, it still takes its minimum value. Thvswith increasing ',., due toSthe increase of' , nm, increases stead'.y; and the variation of n from n,,

when cw shifts from the value (3.11.15) becomes less sharp; in other words
the minimum of n becomes less marked.

Finally let us examine the situation for higher wv, up to 0(1/M). One
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SOLUTION OF THE EIGENVALUE PROBLEM FOR f=coNsTA~r 3.11

can treat equations (3.10.04) applied at x I 1 exactly like equations ZE

(3.1 1.9•)5"1, and again solve for F obtairng

(31IJ, + dadai-veo + o i ,ing

with:

+~w o(r,) iýcos (o - 2;ifsino)
-- A -- ~tl,• -- 1

(w) sin wo+ ac- 1, cos co + 2a sir. oJ~ -- A ± az.., -- •x.• .... (311.17)

J,(,o) = - mf.i- af,
J,(W) = b1 + MAC - X,

The different functions appearing in these expressions are given by:

.5(o) =-- -(2 - ,)o .a cosao,(1 -- 2x') dx'

+ pJ,[sin w - sin ao)(1 - 2x')] dx'

-- 7w costo(I - x') dx' d(,w, x") W

x cos [c(u"(x'. x")] dx"

•(0) =c u-a[I(l + 3y,) sin (o

-1(7 - 3y) sin wo(l - 2-x')] dx' x
- f coscw (I - x') dx' Af(w, x)

x sin [mI'(x', x")] dx"
.(3.11.18)

w) = -( 2 -- )w i!sin w(1 - 2x') dx'

-- • £A[cos co - cos ou(I - 2x')] dx'

-- rr sin •(1 - x') dx' A(CO, x")

x cos [,oP(x',. X)] dxw

0f(,o) = - 2v '[1(1 + 3y) cosco

- 1(7 - 3y) cos w(i - 2x')] dx'

-- yo sin w(I - x') dx' JA(o, x-)

X sin [wor(x', x)]j:29
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=~) of cos ca(l - x') dv' fcos (ox"1

x Co ( a~ dx' cx

4(0)) w cos(ol( - x') dx' Cuos cox"

X sin,(wfazcix-) da w
"eO - d x '

e cont.

r1.) dx' Cos dx'
-Jsin 0)(l - x') joc

=Cos dx"+iot' o~nff x

dxa

quantties ive sin eqain (3I1.8 an (3.1.7) The tCrs con-

Hsere) that cxsirs, iforsO(1, xhe)uandiis 1 A1(o , 4,) are: O()a

therefo ebengetdieqain(.11).Ascs(of
cagerpaegyIad h uniisJ ,C L a etasomdt
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DISCUSSION OF THE RESOU.TS 3.12

the A, B, C and D of (3.11.06) and (3.11.07), the only difference being
that the first term of the two equations (3.11.06), which represented the
cause of trouble for wo of O(1/M), are now absent. f4

All the quantities given in equations (3.11.18) are at most of O(M)
even when co is 0(11/M), as are those given in equations (3.11.17). 3 (Wo)
and J,(co) are always O(M); ,(ow) is O(M) if wti2 is O(M), (f < 3), and
it is 0(1) if ýi is 0(1), (I# > 3); and Ij(o) is 0(1) in general, but it is
O(M) when to i% in a range of O(M) around the values

co == 17r - tan-' (afi) .... (3.11.20).

Therefore, proceeding as before, we find that if f < 3, n is 0 (1 IM) for
general co, but takes a minimum value of 0(1) when o is around the values
(3.11.20); if on the contrary fi • 3, n always stays of 0(1/M). These
conclusions coincide with those of the previous discussion for oj of O(1),
with the exception that n never becomes 0(1 /M) even for these larger
values ofow.

3.12. DiscussioN OF THE- RESULTS

The qualitative results of the previous section are represented schematically
in Figure 41, where n is represented as a function ofwo in the range 0 < o < 3-.v.
It is supposed that in all this range P stays below three so that oc, 1 never
becomes of 0(1), though increasing with o(. Near to = 0 we have the
portion of the curve corresponding to equation (3.11.129). With increasing
o), n becomes of 0(l/M2) reaches a maximum and decreases again to a
minimum of 0(l) for I = 1, given by relation (3.11.15). Then it increases
again, reaches a new maximum, which is likely to be lower than the first
one, and decreases to a new minimum (higher than the first) for 1-=-2;
there are other minima of increasing height for 1 = 3, 4 and so on; and
other maxima of decreasing height in between. Thus the curve tends to
become flatter, with less sharp m;nima and maxima, as o increases.

The values of 5, equation (3.11.11), can be qualitatively discussed by
observing that around the minimum of n both Ii]I. and JjJJ are O(M) if
o) is 0(1) and if afi1, ,oaf are of 0(M). Thus in the corresponding ranges
the value of 6 will be close to the value obtained by neglecting the last two
terms of equation (3.11.11), that is close to the rectangular hyperbolac
w6 = (2m + l)7r. When o is of 0(1/M) both IJI/ and JJJ,. become of
0(1), and therefore we find a divergence of 0(1) of wo from (2m + 1)7r,
which is not a very substantial divergence. If cA is 0(1) the divergence
takes its maximum value around J7r. Altogether the values of 6 in the
ranges around n.,, will not differ too much from those of the hyperbolae,
which have been drawn schematically in Figure 41. With the help of this
figure it is easy to discuss the stability characteristics of our system. Suppose
we know the interaction index n proper of the system, we can draw on trit,•

figure the corresponding horizontal line. This has been done in t.e figure
with the particular value n = 1. There are 5 intersections with thr curve
n(o), one, wo, near w = 0; two, C02, W3 close to the value (3.11.15) of
10Y = I); two, M4, WS close to the value (3.11.20) with 1 :-.- 2. For higher
values of I no intersection is found. For each intersection -,;e can draw a
vertical line which will intersect all 6 hvperbolae. The intersections at
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o = w, on the hyperbolae are cut of the range of the figure. They cor-

respond to equation (3.11.12b). From the discussions of Chapter 2 we know

that the lowest of these low frequency intersections is the only important

one, because as a general trend the system with larger f is always unstable,

and no low frequency instability can be rresent in a system with smaller f.

,.C - ., -o~i/0 1/M

4i\/N 8  O'i/),

1-

IVI
7n-0J

nmO

01

Figure 4). Composite sduniicth diagram of the tbi~czrceitc of a liquid p 1p1ln
rocket. Solid curva: critical ralues oJf de interaction index n corresong to neutral os•cia-

tions of djfferent modes (I = 1,2, 3 ... ). Dolted curves: critica vaue, of the sensitive

time lag i for different n•mbers of oscillation periods contained in " (m = 0, 1, 2...)

If, however, we extend our considerations to the high frequency range

several new ranges of i appear where instability is present. Each range is

bounded by the two intersections corresponding to a given value of I with

ha given hyperbola (a given m)n; for instance we have a range between 0;

and o03 and one between ow4 and wo) on each hyperbola. We have a value of 74
- (for given m) and of c) at each intersection. These values constitute, for

132

-W -4-4-ý

I:



D!5CCMSION OF THE RESULTS 3.i2 *

the prescribed n, two eigenvalues of our system, that is, the values compatibler : with neutral oscillations. If f has a value between the two eigenvalues
6 corresponding to a given value of 1, the system is unstable, only self-ampli-
fying oscillations are possible, with a frequency contained between the two
corresponding eigenvalues of wo.

We see that the spectrum of the unstable ranges of can be quite compli-
cated, and its complexity increases with the number of intersections of the
n(to) curve with the prescribed value of n. The spectrum of the unstable
frequency ranges is, however, much simpler and it shows that high frequency
instability is always connected with frequencies close to the organ-pipe
frequencies of the system, but generally lower than the corresponding
organ-pipe frequency by an amount determined by the value of 0cfi of
the nozzle.

As has been mentioned the larger the number of ranges of instability in the
to spectrum, the larger is the complexity of the -r spectrum, and the more
difficult it is to obtain stable conditions. Fortunately due to the increase
of ;ac1 the values of nmi. steadily increase with to, so that for 1 sufficiently -

large it goes out of the range in which n can be expected to be, and no
intersections can exist. There is therefore always a trend toward increased
stability for higher modes of organ-pipe oscillation, as has already been
found in the case of concentrated combustion. If one wants to improve
the stability characteristics of a given system the best way is to reduce
the number of intersections. This can be obtained either by decreasing the
value of n, characteristic of the system, or increasing the level of the
minima of the curve n(o). The first result can probably be reached
through modifications in the injection system and through changes in the
reactivity of the propellants. The nature of the required modification and
its effectiveness is still to be. investigated. But it is very clear how th,. recond
result can be attained acting only on the geometry of the nozzle. In fact
if one increases 4 ,,b, as has already been seen, cc,a increases at most up to a
limited maximum, so that to decreases by an amount which is around 250
at most. At the same time ara, increases steadily with 1b, and asymptoti-
cally reaches a maximum value close to 1 for infinite length. Hence no
matter what is the value of to (or 1) corresponding to a minimum of n, one
can always obtain, through a sufficient increase of l,,b, that tiie oti grows
enough to raise the value of nm.n above the practical range of the inter-
action index n. The effect on Figure 41 of a steady increase of '. world be
an increase of all nin; the one corresponding to 1 = 3 would be the first
to increase fast and disappear from the range of the figure, followed by the
one at 1 = 2; and finally by the one at I = 1 when the length of the con-
vergent portion of the nozzle becomes comparable with the length of the
chamber. Observe that in practice this condition would be overabundant,
and an 1,., sufficient to bring nmI for I = 1 above the known value of ni
of the system would be perfectly adequate.

On the subject of the strong effects of the length of the nozzle on longi-
tudinal stability we should add some remarks. The stabilizing effect is not
merely due to the additional length, but it is closely connected with the
shape of the convergent portion of the nozzle. This can be shown easily
with the following argument. Our discussion has been based fo far on the
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results of Appendix B concerning a nozzle with linear velocity distribution,
such as those represented schematically in Figures 42(a), (b) and (c). Here

-: for a given length of combustion chamber, represented in our reduced
"units by unity, we have increased 1,., from the value l,"b of Figure 42(a) to

ii / /

((b)

- /|the value lI,& of Figure 42(b)
E preserving, however, the linearity

Si of the velocity distribution. As
already seen, the result of the
change is a marked improvement
of stability. Let us now cons;der
the opposite extreme of Figure

- -- U 42(c), where the length 1,.b has
been increased by the same
amount Al,,b = 1b- as
shown in the figure through the
mere insertion of a cylindrical
section between the end of the

-, -chamber (where combustion is
completed) and the entrance of the
nozzle, which is kept identical with

F . nthat of Figure 42(a). Obviously the
(c) cylindrical insert can be considered

Figure 42. Scematic diagrams indikaling change.s, either a part of the nozzle where
in geometry of r:ozzle the velocity remains constant, or a

portion of the combustion chamber where no combustion takes place. If we
consider it in the last way, then substantially we are reduced to the same
case as Figure 42(a) with a chamber of different length and of different
velocity distribution. Disregarding the effects of the velocity distribution,
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which cannot be expressed in a simple way, and concentrating on the
effects of the nozzle we see immediately that for the new chamber length
the eigenvalues w• will be found around the values

(o= 174(1 + A,)-tan-' (xa

The corresponding value of P), given by equation (3.11.12a) with 1;0 in
place of 1,01 will also be decreased from that of Figure 42(a), approximately
in the proportion 1/(1 + Alb) (not exactly, because oc,ft also changes
slowly with P). Therefore oca 1 must decrease, by an amount which can be
substantial, when the length of the combustion chamber is increased without
changing that of the convergent part of the nozzle. We conclu6e that the
increase of length works in opposite directions for the two cases of Figure
42(b) and of Figure 42(c), being stabilizing for the first, destabilizing for
the second.

Physically this result can be interpreted in b.llowing way. The
stabilizing effect of the corverg,:nt part of the nozzi& is due to the manner in
which the incoming waves are reflected back to the chamber. The reflection
of waves at each point is determined substantially by the corresponding
velocity gradient. The longer the region over which the velocity gradient is
spread and the larger the frequency, the more the reflection pattern will be
dispersed, and the smaller the chance of resonance and instability. Of course
the cylindrical insert of Figure 42(c) does not spread the reflection pattern
but only decreases the resonant frequencies, thus reducing the spreading
effects of the nozzle and the stability characteristics. It is possible that
the nozzle with linedr velocity distribution in the subsonic region, originally
introduced by H. S. TswEN24, probably with the sole intent of simplifying the
mathematics, has also the rema*rkable property of the largest stabilizing
effect for a given lu. This has not been rigorously proved, but could follow
from the fact that for this type of nozzle the velocity g.adient has the most
uniform distribution. It can be observed that if "1 is not to3 small, the
generatrix of an axisymmetrical nozzle with linear velocity distribution has
approximately a circular shape. It must also be observed that all the
previous results are based on the assumption of one dimensional flow in the
nozzle, an assuription which is approximately true only if 1,.b is not too
small. Let us finally stress the-fact that the supersonic portion Jf the nozzle
has nothing to do with the behaviour of the combustion chamber and can
be selected arbitrarily, provided it does not interfere with the conditions at
the sonic throat.

So far we have in this section discussed the general shape of the results
and the effects of the nozzle geometry. Let us now examine the effects of
the velocity distribution in the combustion chamber, and in particular let
us concentrate our attention on its effects on the values of n,.la. These
values can be obtained from numerical calculations based on the formulae
given in Section 3.11 for any of the cases discussed. But for a general idea
we can limit our discussion to the case when w can be considered of 0(1)
and ata, cx,91, are both of O(M). In this case nin can be derived from
equation (3.11.14), with I, and J,. given by equation (3.11.09) simplified
in the following way:

I, = ( + r)i cos w - B(co); J, = D(cu)
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B(ca) and D(w) can be obtained from equations (3.11.06) and (3.11.07)
in simplified form using the fact that w is within O(M) from 17r so that
cos 0a I +1 and sin w is O(M). Then, neglecting quantities of O(M2),

B(ca) =cos w[4( 2 - y)w. f al sin 2(ox' dx' - k f f sin 2 &)x' dx']
0 0

D(ca) = cos 0)[fl + Wc a sin 2cox' dx']

Finally from equation (3.11.14) there results

(y a+t-)1 - (2 - y)c al sin 2cox' dx' +k f sin2 Cx' dx'

2/ [a, +0-w a sin 2cox' dx']
S~.... (3.12.01)

where A. can be obtained from equation (3.06.15) once a5 is known.
This formula which has the great advantage of simplicity has been used to

calculate the effects on n~mI of changing the velocity distribution. In general
the last term in the numerator has been set equal to zero; it has only been
taken into account in a few cases. But it is clear from the fact that this term
as well as the denominator of equation (3.12.01) is always positive that it
results in an increase of nnd., that is, an improvement of stability. This is a
logical result indeed, since this term substantially rrr&ents the dissipative
effects of the droplets drag in the unsteady part of their relative motion
with respect to the gases. In practice, however, as some calculations show,
the contribution of this dissipative term is relatively insignificant.

The examples that we are going to discuss are carried out for the first
mode a) = 7r as well as for the second mode o) = 2;r. For this second mode
at least one of the assumptions on which equation (3.12.01) is based fails to
be satisfied. In fact it is true that for a sufficiently small I.,, for instance 1/6,
it is possible to keep P well below 2 at w) = 21r, and therefore keep both
Sxa, and ;•a1 of O(M); but on the other hand w) cannot be considered of
O(I) and the more complicated expressions derived for co of 0(1/M) should
"be used. This has not been done because it would lead to the following
inconsistency. In equations (3.11.18) terms containing the quantities A
and ' appear, which, as already mentioned, are due to the entropy varia-
tion. These terms should be considered in the calculations. On the other
hand the nozzle admittance ratio used in the calculation only applies to
"isentropic oscillations. It is believed that the entropy oscillations have
more substantial effects on the behaviour of the nozzle than on the be-
haviour of the combustion chamber, and it is therefore inconsistent to use a
more accurate formula taking these effects irto account in the combustion
chamber while they are neglected in the nozzle.

Let us observe, moreover, that the effects of the entropy oscillation on
the behaviour of the nozzle can be important even at lower frequencies,
where they have negligible effects on the combustion chamber. All the
results of the discussion and of the calculations of this section must therefore
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DISCUSSION OF THE RESULTS 3.12

be accepted with reserve, until the availability of data on the non-isen-
tropic behaviour of the nozzle will allow more reliable calculations. For
this reason we have used equation (3.12.01) even for the second mode,
for which the results are not to be considered accurate but only indicative.

For simplicity, we shall first neglect the damping contribution of the
droplet. Thus let k = 0 and let us consider the systems with combustion
uniformly distributed from the injector end x = 0 to x = and with no
combustion from x = e to the combustion chamber exit x = 1. Thus the
mean velocity in steady state is

x
fi(x) 91 - when 0 < x <

fi(x) =- il when 1! •< x <

As was done in the examples of previous sections, let us assume that the steady
state velocity is linear in the convergent portion of the nozzle and consider

&ectd mode

I.0

Figure 43. Effect of the spareuise spread of

combustion on the minimum ralue of the interaction 1
index, n.10, compatible with unstable oscdllatins -' -Fundoetal
of Me fundamental and the second mode. Corn- mode
bustion spread linarly starting from the itdctor A.

face as slown in the figure

4-4

only the case that the steady state velocity gradient is equal to 7" in the
present dimensionless scheme. The length of the subsonic portion of such a
nozzle is approximately 1/3 of the combustion chamber length. With -
a• nozzle = 7r, we see that the reduced frequency parameter f/ = w/i. for the
nozzle takes integral values 1, 2, 3 etc. when the frequency of the oscillation is
equal to the frequency of the first, second and third organ-pipe mode3 with 3

closed ends. The Mach number of the flow entering the nozzle is taken to
be M = 0.21 " (at " 0.213) for the following calculations. The value of nm.,
computed from equation (3.12.01) for the cases just mentioned is given in
Figure 43 for both the fundamental and the second modes. When € increases 7-
from zero, that is when combustion is spread farther and farther away
from the injector end, we see that for either the fundamental or the second ýY
mode, the value of n .1 increases gradually and reaches a maximurm when
the combustion terminates somewhere downstream of the neighbouring
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node of the given mode of pressure oscillation. Then nn,,,, decreases toward
the next antinode and as demonstrated in Figure 43 the next minimum of
n.in for the second mode occurs in between the second antinode and the
second node, and tile value of that minimum is considerably higher than the
magnitude of ia when • 0. This trend is expected to persist for all
higher modes.

It is important ito observe from Figure 43 that ti;e second mode is always
more stable than the fundamental because the corresponding values of n
are always higher. This is in line with the results of the general discussion
developed previously. However, observe that the two curves of n,,,, come
rather close together for values of 4. in the neighbourhood of the node of
the fundamental mode; and that, owing to the inaccuracy involved in
using equation (3.12.01) for the calculations of nIn for the second node,
the n.1n of the second mode in this range of ý. may actually be the smaller
(as will be shown later, the nmIn of the seccad mode will be the smaller in
the present calculation if combustion is not uniformly distributed from
x - 0 to x = 4e. However, for this range of values of - the n.,n for the
second mode is still in the range of 1.5-2.0 as is that of the fundamental
mode in a wider range of ý,. The smaller value of nmln for both the funda-
mental and the second mode is essentially given by the nm1 u of the funda-
mental mode. For a system ,ith given combustion distribution, it is the
smallest value of nmlln of all the high frequency modes that determines the
unconditional stability of the system. Therefore for the comparison of

- unconditional stability of different systems, the second mode is rather
unimpor nt, at least for the cases with uniformly distributed combustion
considerec in this example. It can probably be inferred even without any
numerical results for higher modes that the presence of all the other higher
modes is not of significant importance so far as the smallest value of nm.n
of all high frequency modes is concerned. As already observed in the
general discussion, this is essentially a consequence of the increase of atr
with frequency as can be visualized quite simply from the following con-
siderations. First, the curve of nmln for a given mode plotted against 4
behaves like a damped oscillating function starting with a minimum at

= 0. The mean value about which nmht of a given mode oscillates can
be approximately given as 312 + (a, - 1)/y which increases for higher
modes of oscillation due to the increase of 0t,((o) for higher modes. Secondly,
the initial value of n,,,, at • -- 0 can also be given approximately as
(at, + 7)/27 which is also larger for higher modes. Consequently the value
of n.& given in Figure 43 for the fundamental mode can be considered as
the nft which characterizes the relative unconditional stability of different
systems when all high frequency modes are considered, except possibly in,
the neighbourhood of • = 075, where n.1. for the fundamental mode
attains its maximum.

From Figure 43 we set that the configurations with combustion uniformly
distributed from injector end to a position somewhere in the downstream
half of the chamber possess a value of n,,,, ranging from 1-5-20 when all
high frequency modes are considered. Thus such systems will be un-
conditionally stable if the interaction index n of the propellant combination
is less than 1-5. It is ve.y likely that this condition is fulfilled byiI
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conventional liquid propellant combinations even though no value of n has
been determined experimentally. Thus the result of Figure 43 indicates
that under the combined effects of the nozzle and of the spatial distribution
of combustion, the configuradion with combustion uniformly distributed
over a major portion, say eight or nine tenths of the chamber length, is
one of the most effective in obtaining longitudinal stability in a liquid
propellant rocket.

If the combustion is uniformly distributed over a region less than one
third of the chamber length from the injector end, Figure 43 indicates
nm,, < 0"8. Thus if the interaction index n of a propellant combination is,
say, 1.0 or slightly less than 1, a rocket which is stable with combustion
distributed uniformly over the major portion of the chamber axis can very
likely be made to scream by sufficiently increasing the length of the com-
bustion chamber without modifying the geometry of other parts of the
rocket motor. As an extren- case, if a sufficiently long cylindrical section
is added to the motor so that the width of the combustion zone becomes
small as compared to the total length of the chamber, the system is reduced
essentially to the one with a concentrated combustion front near the injector
end. Unstable oscillations can occur when the value of 4 is sufficiently
reduced by lengthening the chamber so as to give nm,, less than the value
of n of the propellant combination. As observed in the general discussion,
by incrcasing the length of the chamber the relative length of the convergent
portion of the nozzle l,.b is decreased, with the result that ar decreases too.
This further decreases the value of n. 1. from that proper of the systemr
before the increase in chamber length. Thus the destabilizing effect of
increasing the chamber length consists of two parts, one from the direct
modification of the combustion distribution relative to the acoustic wave
form and the other from the moxdified reaction of the nozzle. W

It has just been pointed out that when 4 = 0 the system is of the con-
figuration considered in Section 3.04.. Comparing the values of n. obtained
from Figure 43 for 4 = 0 with the corresponding n,,,i deter -mined in Section
3.04 and plcted in Figure 28, one finds that the present result is slightly
higher than the corresponding previous result. For this particular case
with 0 = 0. it can be shown easily that the expression for nmln deduced
from equations (3.04.02) and (3.04.03) differs from the simplified form of
equation (3.12.01) with 4 = 0 only in that the constant y in the numerator
of cquation (3.12.01) is replaced by unity [k in equati-rn (3.12.01) is assumed
to be zero]. This is due to the fact that in the previous analysis of concen-
trated combustion, the flow field in the combustion chamber is assumed
isentropic while in the general analysis of Section 3.11 which led to equation
(3.12.01) the major effect of the entropy variation of different burnt gas F

£ elements generated under different pressure conditions is taken into account.
While the entropy variation is of the same order as the pressure perturbation
as explained previously its net effect on the qualitative behaviour of n.,,,
is not important with the possible exception of its influence on the behaviour
of the' nozzle, neglected here. With this entropy correction taken into
consideration, the value of n, for 4 = 0 and very short nozzle becomes
4+ (7 - 1)/4y instead of I - (y - 1)/4 7 as obtained in Section 3.04.
It is interesting to note also that ½ is the value of n,,, for low frequency
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instability of the intrinsic type [equation (2.03.10)] which was obtained
under the assumption of isothermal chamber conditions.

Let us consider acxt the systems with combustion uniformly distributed in
an intermediate region $, around the mean positien 1P with ½4 •< to. If 4• is
very much smaller than t, the system approaches the configuration with
combustion concentrated at the axial position ip. The present result wil1
therefore indicate how well the approximate scheme of concentrated
combustion can represent the actual conditions. For such systems we have:

= x - ( -- < x < i, +

The values of nminl as calculated from equation (3.12.01) for different values
* of ip are plotted versus 4 for the fundamental mode of oscillation in

* Figure 44. The values of nitn for different i with 4 = 0 correspond to

Fundcmetnu/ mode•

I=. [ Figure 44. Effect of the spacewise spread ofcorn-

{. F I bustion on the minimum value of the interaction
"Tindex, nm j, compatible with mutable -,sdllationsI I of the fundamental mode. Combustion spread

- ___I linearly in an intermediate region as shown ;n Mew

lo~orn 1figure

4_424

of O~ 0's0 0-9 M~

"the values of n.,, given in Figure 28 but for the reason mentioned in the
previous example the present values are slightly larger. It is dearly seen
that so far as the magnitude of nnn is concerned, the spatial spread of
combustion about the mean position Vs = 1/6 and V, = 5/6 has practically
no effect (being slightly stabilizing) for the total extent of spread as large as
1/3 of the chamber length i.e. 1/16 of the wavelength of the fundamental mode.
When the mean position is shifted toward the antinodal position (ip = 4)
of the fundamental mode, the effect of spatial spread of combustion becomes
destabilizing and the destabilizing effect, that is the decrease of nn,, fr6n,
the value of thnin corresponding to concentrated combustion at the mean
"position ip, increases significantly when V approaches 4. This phendmenon
can be physically expected on the ground that the spatial slope of the
"amplitude of the pressure oscillation 9)_ is exactly zero at an antinode and is
small in its vicinity, while that near a node is large. Thus the maximum
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DISCUSSION OF THE RESULTS 3.12

possible amount of excitation of unstable oscillation is not substantially
changed by the small spread of combustion near an antinode. Since the
damping action of the nozzle is little affected by the spatial spread of com-

-bustion, the unconditional stability of a given mode in the system as indi-
cated by n,,j• is not substantially changed. It should further be noted
that a nod-" of the fundamental mode is the antinode of the second mode.
Therefore the destabilizing action of the spatial spread of combustion in the
nodal region of a given mode is not important because the n,,In of this

- mode will still be considerably higher than the nn,,. of some other mode
having an antinode near the combustion zone. With this in mind and
with the help of the computed results it can be inferred that so far as the
unconditional stability of a system is concerned, the effect of the spatial
spread of combustion in a region less than, say, 1/8 of the ch imber length
is insignificant; and the much simplified model of concentrated combustion
is adequate for the analysis and comparison of the overall relative un-
conditional stability of such systems.

In Figure 44 there is a dotted line connecting the eids of the rw, versus
curve.; for different V. The lower branch of this dotted curve corresponds
to the configurations ,ith combustion uniformly distributed from injector -÷
end to x = 2tp. The upper branch curie corresponds to the configura-I tions with combustion uniformly distributed from x 1 -- 2f - I to
the combustion chamber exit x = 1. Thus when $c 0, the lower
branch corresponds to concentrated combustion at the injector end and the
upper branch corresponds to concentrated combustion at the chamber exit.
The fact that the upper branch always gives a larger value of ni. for the
same extent of spatial spread of combustion means that the configuration
with more combustion distributed in the downstream end of the chamber
is likely to be more stable. This is primarily because the frequency of oscilla-
tions for minimum n is slightly below the corresponding organ pipe value.

So far we have only considered the cases in which the combustion is
uniformly distributed in a certain region. The next object is to investigate
the relative importance of the manner in. which the combustion is distributed
in this region. Consider systems with a given by:

a = al for 0 < x <5

il = fil for $,<_x 1

with the positive exponential index j indicating the manner of combustion
distribution. When j-- 1, this becomes the case of uniformly distrilbuted
combustion as has been discussed in the previous example. When j > 1,
more of the combustion is shifted towards the tail end of the combustion
zone as compared with the uniformly distributed case. Likewise when
j < I more of the combustion is shifted towards the head end of the com-
bustion zone. In Figure 45, the c3mputed values of nm,, for the findamental
mode are given for j = 0. 4, 1, 2, 3, oo and plotted against the total extent
of spread $. The case j = 0 corresponds to the configuration'with com-
bustion concentrated at the injector end with nm•, independent of $. When
j gradually increases, more 3,nd more combustion is shifted towards the
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other end x = 4, and when j becomes very large, j = o, all combustion
is concentrated at x = 4, and the nw,, calculated for j = oo corresponds to
that determined in connection with the simplified model of concentrated
combustion. The curves of nmja versus , for different values of j are of
similar shape and the transition of the curves from that ofj = 0 to j = 0o
is quite clear. The increase of Orlmn when 4, reaches the node of the pressure
oscillation becomes more significant for the cases with largerj. As has been
indicated previously, this is physically clear because more combustion is
carried to nodal regions where the amplitude of the pressure oscillation is
smaller, that is, where the capability of each propellant element in exciting
unstable oscillation is smaller.

S-- Fundamen/ol moae

6-

5 Figure 45. Effect of the spacewise spread of
'L " . combustion on the minimum value of the interaction

index, nml=, compatible with unstable oscillations
S .4' of the fundamental mode. Combustion distributed

according to the power law

- Ifrom teinjectorface totercinlaalpsin
- n the x = as shown in the figure.

o 0.2 6' ,~6 0.5 8

If the nj. of the second mode is determined from equation (3.12.01)
and superposed on Figure 45, we find again that whenj < 2.5 the nm,, for the
second mode is always larger than the n0 . for the fundamental mode at
the same value of •. Even forj = 3 the nj.. for the second mode becomes
slightly lower than the ni,, for the fundamental mode only in the small
range of 4, around = 0-7, and the smallest nmin of all high frequency
modes is still given essentially by the n..n of the fundamental mode. It
should be noticed that (x/,) 3 profile is already quite flat when x/l is less
than, say, ½ and almost 50 per cent of the combustion is completed in the
narrow zone of 0.8 < x/l_, < 1.0. The combustion is thus quite concentrated
toward •. It is only when j is considerably larger than 3 that the n.,,
of the second mode plays its role in determining the smallest nj, when 4,
is in the nodal region of the fundamental mode. Even in this case, so far as
the overall unconditional stability of all high frequency modes is concerned,
all the other higher modes will still be unimportant.

In most of the practical cases, with combustion fairly uniformly distributedover certain regions, only the fundamental mode is the important one in

o4etermining the unconditional stability of the system.
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Now the integral term involving k in the numerator of equation (3.12.01)
will be considered. A. has been observed previously k/a1 is of the order of

unity and the integral divided by al i.e. u-- sin2 oix' dx' is of the order
.0 U I

of unity, and both factors of the integrand are positive. Thus this term
essentially constitutes an increase of the value of n.,,,,. This termi represents
the damping due to the unsteady motion of the droplets. For illustrative
purposes a few points have been calculated with the following simplified
form of a,

a u1 (I - 4x)

for 0 <- x < x0, where 98(x0) = a(x0) in the rest of the chamber, x0 < x < 1,
a, is assumed to be the same as a of the gas, i.e. a1(x) = ii(x). The constant
k is taken to be 1/20 in the present dimensionless scheme which corresponds
roughly to a penetration distance in still air of one quarter of the chamber
length. The mean gas velocity is taken for example:

a(x al -. x/¢ for 0 < x <

a(x) -a for •< x <

The nn1. fo'" the fundamental mode obtained for the configurations with
0.2 and 4 - 0.5 shows a very small increase as compared to those

neglecting this damping term. The accuracy of the present calculation
does not justify this correction which cannot be differentiated in the scale
of Figure 43 for the particular values of k and u, selected. For extreme
conditions, the damping term due to the oscillation of the droplets may
have some effect.

3.13. NON-UNIFORmaIY OF f

The developments of the last three sections apply to the simplest case. when
f is uniform for the whole combustion chamber and of 0(l). However, thederivations of Section 3.08 were obtained under the more general assumption•

that i: is a function of x without limiting its magnitude. The only restriction
in Section 3.08 was the unifo-mnity of f among all propellant elementsburning at a given station. It is not difficult to remove all these restrictions,

including the last one. However, the devclopments become much more
complicated, and explicit solutions for the eigenvalues are in general
impossible. In this section we will briefly indicate how the formulae are
modified, and will confine our discussion to a few points only. %;

As in Section 3.08, we can subdivide all propellant elements that bum
at a given station x into fractions, each i;-action possessing a well defined
value of i. Thus if df represents the fraction considered, all elementsii burning at x can be ordered in such a way that f increases steadily from its
minimum value, , corresponding to f = 0, to its maximum value f-.,
corresponding to f = 1. At a given station x, the sensitive time lags of
dif :rent propellant elements, fr(x, f) will be a monotonically increasing
f ii ion of f. A faction df contributes to the total burning rate q a

ion dq. It is clear that the expression of dq/df divided by To is given
by equations (3.08.16) and (3.08.17) derived previously, and is a function
of x and f, because both f(x, f) and ý(x, f) are functions of x and f. The last
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is connected to i by the relation corresponding to (3.08.04)

C P f)

which can be alsc written as

U,-X x - f(x, f) = fi,,(x, f)iF(x, f) .... (3.13.01)

where i, represents each element burning at station x for the proper average
of a1 during its sensitive time lag. In general, #1t can be different for
different propellant elements, even if they have the same sensitive time lag
!:(x, f) and burn at x. In this last.case the value of al usz:d in the derivations
of Section 3.06 should be considerd as a proper average value between
these different propellant elements.

The value of dq/df will thus consist of three terms, of which only the
first one, representing the timewise contribution to the burning rate, need
be retained, because the other two have only higher order effects on the
final results. This can be easily shown following the same procedure as
is given in Section 3.09. Integrating with respect to f from 0 to I we can write

-=Q(X)

where Q(x) is given by the generalized equation corresponding to (3.08.17):

p 'z ,'~ e,' da
Q(X) df I 1 0~ __ 910 ~~ t t  dx'SJo () Xf)] -_,W u'

: e] d.... (3.13.02)

In order to obtain tie value of Q(O) to be inserted in equation (3.09.24) or
(3.10.04) one uses again the 0th iteration solution (3.09.19) or (3.10.02).
In both cases. the exp-ession for T,(f) contains the quantity cos to which,
due to equation (3.13.01), can be written as

cos W= cos M -atia) .... (3.13.03)

Similarly the exponential factor of (3.10.02) for neutral oscillations can
be written as

e e o e- .... (3.13.04)

where a,. stands for a proper mean value in the interval from • to x. We
see that if f is 0(1) and to is 0(1) we can neglect the term wo1, r, of O(M),
with respect to (ox in equatio: (13.13.03), and our previous relation,

(= (x), leadi'ig to equation (3.08.19) it perfectly justified. If f is
0(1) butwo is 0(1/M) the exponent of the second factor of equation (3.13.04)
is O(M), so that within the proper order of approximatioai one can write•: :exp Fo a adte'fcto

a d exp iW f &C, and the corresponding factor can
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be extracted out of the second integral of equation (3.13.02) and used as a
common factor for the whole integrand. However, in this case coa,.,• becomes
O(1) and cannot be neglected in equation (3.13.03). To be consistent, this
term should and can be included in the development of Section 3.10,
without introducing any difficulty. However, this has not been done in
order to avoid the additional formal complication. Finally, if + is 0(1IM)
the complete expressions (3.13.03) and (3.13.04) must be used. When
equation (3.13.02) is introduced into equation (3.09.24) or (3.10.04) and
the condition (3.09.21) is written explicitly, !he problem of determining
the eigenvalues explicitly is found in general impossible, because i is now
contained in a complicated fashion and cannot be extracted as a simple
factor H = n(l - el) as was done in Sections 3.11 and 3.12. However,
one can still solve for n

n = (A, + iNi)I(D+ iD,)

"of which both numerator and denominator are complex and depend in a
complicated way on co and f(x, f). Obviously if n must be real this splits T
into two real equations

nl - NyjD,. = N~jIW

The (numerical) solution or the equation XD,= lYiD, with respect to
, o for given f(x, f), and the following evaluation of n from the preceding
formula provide the two eigenvalues of n and w for the given f(x, f). We
see that while in principle the problem is solved, the procedure is too long
and tedious to permit a general discussion of the results even qualitatively.

Let us consider the simple case when • is independent of x but is not
uniform for the various fractions, i.e. -- f (f) only. In addition if we
assume that both oi and iF are O(1). equation (3.13.02) becomes

S~~~~~Q(x) = (l - -,..od d

with d

cc eC-8n df --:

where both C and - are real finctions of A, D? and of the parameters
characterizing the distribution of the sensitive time lags. For neutral
oscillations where A = 0, J? = wo and f, = 6, and for any arbitrary but
general type of time lag distribution, both C and 6, are functions of the
frequencies of neutral oscillations and therefore can be considerably dif-
ferent for different modes of oscillation. While the method of determining
the eigenvalues of n and 6, for different frequencies of neutral oscillations
has been found to be very convenient when C = 1 (corresponding to uniform
time lag for all propellant elements) and 6, = constant, it becomes rather
complex when both C and 6, depend an to.

The two quantities C and 6, are the same as those defined in Sections
2.08 and 3.05. It has been noted there that if the function iF(f) - -?m is anti-
symmetric with respect to the mass average f- = '(0-5) = (fmF, + 'F•)/2
the effective average 'f. and mass average -F,, coincide and are constant
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3.13 •NALYSIS OF SCREAMING (LONGITUDINAL HIGH0 FREQUENCY INSTABILITY)

for a given system and therefore independent of the frequency of neutral

oscillation. As a result, the solution of the eigenvalue problem becomes

slightly simpler for systems with such antisymmetric distribution than

for those without. It is only slightly simpler because the magnification

ZP- factor C be'ng in general a function of oAil = w(f•i - ) still depends

upon co for a given type and extent of time lag distribution. Therefore we

shall for illustrative purposes consider first those systems in which the total

extent of time lag spread is so small that C is essentially constant when (o

varies slightly in the neighbourhood of -r and that the distribution of i - -

is antisymmetric about -,. Thus C can be taken as the constant evaluated

with co =7r. As has been shown in Section 3.05, the magnification factor

C for neutral oscillations in systems with i: = 0(1) is always less than

unity and for systems with small time lag spread where C can be taken as

corntant for a given mode, the magnitude of C is always close to but less

than unity.
Thus, following the identical procedure as in Section 3.11, one finds the

"following equation with both C and 6, constant

ny(l - Ce-i'e) - (I, + iI,)/(J7 + iJ,) .... (3.13.05)

which is similar to equation (3.11.08) except for the constant factor C on

the left-hand side. If C = I (uniform time lag for all elements), equation

(3.13.05) reduces exactly to equation (3.11.08). The quantities I and J
are still given by equation (3.11.09). Eliminating 6, from the two real

equations corresponding to equation (3.13.05) we obtain
( )_2 (1 C2) (12 + 12) (J2 + J)

r - =r • ... .3 1 .6
Sn1 4 (I ,J + IJ,)2

where
1 12+J2

1 2 l= Jr 4+IJ

is the critical value of the interaction index when there is no time lag spread

(C = 1). Since C < 1 for i = 0(1), it sapparent that n > n, when there is

time lag spread. In other words, more excitation is required to maintain

neutral oscillation of any frequency in a given system with time lag

spread than without. Naturally, nmin 1 > ninmn; in other words the system

with time lag spread is unconditionally more stable for any spatial distri-

bution of combustion.
Equation (3.13.06) also indicates that the ratio of n/n1 increases with

decreasing C, as does njdni,.. This means a larger stabilizing effect for a

larger spread of time lag. All these results agree wvith the results of Section

3.05 for the simple case of spatially concentrated combustion. As a matter

of fact equation (3.13.06) reduces after some manipulation to equation

(3.05.08) when I and J are evaluated for the concentrated combustion.
For the cases in which A- = m - fmin is not sufficiently small, C must

be considered as a function of to even for small variations of o0 around

7r or its in:egral multiples. The eigenvalues 6 and a) can be determined
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for a given value of n and a given distribution of time lag following the
procedure analogous to the one uscd in reference 23. The calculation has -
not been carried out but it can be expected to give essntially the sa~me
qualitative results as to the effect of the spread of the sensitive time lag.
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DISCUSSION AND COMPARISON
WITH EXPERIMENT

4.01. GENERAL NOTIONS
IN this chapter we shall look into the possibility of comparing the theoretical
results presented in the previous chapters with published experimental
findings. It has been brought out in Chapter 1 that, because of our meagre
knowledge concerning the physicochemical processes of combustion in a
liquid rocket chamber, any analytical approach to the problem must start
with some hypothetical simple model. No matter how rational the simple
model may seem to be, the ultimate justification of the postulated simple
model lies in the qualitative, and possibly quantitative, agreement between
the theoretically predicted trends and the experimental findings. The
present theoretical treatments are concerned only with the problem of
incipient instability, not with the properties of the fully developed unstable
oscillations of large amplitude. On the other hand, the known available
experiments on unstable operation belong essentially to the domain of
fully developed instability, characterized by the fact that the amplitudes,
instead of undergoing steady amplification, stay in-average around a
certain level determined by non-linear effects.

Thus, even if the onset of instability is of a linear nature, as a:sumed in
the theoretical treatment, the observed facts contain a strong non-linear
influence and one must not expect a close quantitative agreement between
theoretical predictions and experimental results. A better situation would
result if one tried to determine experimentally the stability boundary by
changing some well determined parameters of the system. However, this
determination has not yet been attempted, and would probably meet many

-- difficulties. One difficultv is that it is not easy to change one parameter at
a time in a rocket motor. For instance, the easiest way of varying the mixture
ratio in a bipropellant motor is by changing the injection pressure of one
of the two propellants. However, this change is accompanied by a change
in injection velocity of one of the propellants and therefore a change in the
flow situation in the combustion chamber. The whole process of com-
bustion may be affected so that it would be impossible to isolate the effects
of the mixture ratio change alone. From this point of view, it would be
"preferable to keep the injection pressures unaltered and change only the
area of the injection ports. But this solution would substantially increase the
complexity of the tests because it would require mechanical modifications
to the.injectors for every small change of mixture ratio. The same can be
said for changes in the chamber pressure which should not be obtained
through a simple change of injection pressure with fixed geometry, but should
rather be obtained through changes in geometry with fixed pressures, or
with pressure drops following an independently determined law.

Another difficulty, common to many other processes involving combustion,
probably resides in the fact that this kind of test is not exactly reproducible.
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As in other processes in which combustion plays an essential role, small A_
uncontrollable changes in local conditions or in the characteristics of the
system may produce considerable dispersion of the observed results. For
instance, a system which ordinarily is stable may occasionally exhibit
instability without any plausible or controllable reason; and a system
usually unstable may have some stable runs. The conditions, of course, can
become more confused in an intermediate condition where it would be
nearly impossible to determine the stability situation from a few runs. This
difficulty can in principle be solved, as in similar cases, only through a
statistical approach; but with rockets this statistical approach means a
considerable increase of the time and of the economic loads.

The statistical determination of the stability boundaries would be the
most effective way of checking the theoretical results, and also of showing
the possible existence of independent non-linear instabilities. Non-linear
phenomena may result in two kinds of effects. They may simply shift the
stability boundaries with respect to those pertaining to very small dis-

* turbances and linear theory, with the result that the stable ranges may
shrink or expand when the amplitude of the initial disturbance increases.
On the other hand, they may introduce new regions of instability when the
amplitudes exceed certain levels. The first category of effects is relatively
uninteresting, since the corresponding conditions for stability can be obtained
continuously from the linear ones, and are likely to be affected by the
different parameters of the system in the way the linear theory predicts.
If only this category of effects were present, it would be sufficient to design
a motor with such parameters that it would operate in stable conditions
and sufficiently far away from the stability limits determined by linear
theory; this would be enough to assure against instability even when dis-
"turbances of sufficient amplitude to introduce non-linear effects are applied
to the system. The possible presence of new instability ranges for large
disturbances is a more serious effect, and its possibility could be checked
through the experimental determination of the stability boundaries, 0

possibly with the introduction of controlled disturbances in an otherwise P
smooth system. =

SWe emphasize again that the fact that actual instabilities generally
Soperate in the non-linear range does not mean that the reason for instability
cannot be explained by a linear theory. Actually observation has often 7ý.

t shown large amplitude oscillations produced during a previously stable
run through the gradual amplification of small disturbances. Observations
of this kind exist both for low frequency oscilladions-, and for high frequency Mk
oscillations;. One observes, not infrequently, a cyclic (though not periodic) R
appearance and decay of these unstable ,onditions during a run. A be-
haviour of this t.pe would be expected if the conditions of stability were
marginal and small changes in some parameters were determining the
transition from stability to instability and backt. In these cases it seems
logical to infer that the instability is of a linear type. In the other cases,
in which the run is oscillatory from the start, no definite conclusion can be

t Analogous effects have been found in solid propellant rockets where, however, the -•

f continuous change in the geometry of the propellant grain during operation might be
responsible for the peculiar behaviour-.
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reached, but nothing can be inferred against the linear explanation, because
the existence of the ignitior transients may produce strong disturbances
at the beginiing of the operation that never decay completely if the system
is unstable.

The only possible test which would definitely indicate the presence of
non-linear instability is the one already mentioned where a system is
triggered to instability by a strong disturbance (such as the transients of a
hard ignition), but remains stable if the disturbance level is low.

As already explained, the best test of the theorctical treatment, con-
stituted by the determination of the stability boundary, has not yet been
made. The only experiments available to date belong to the realm of fully
developed instability, to which the linear theory does not apply even when it
contains the essential explanation for the appearance of instability. Never-
theless, in the absence of better tests, some of the data obtained from these
experiments may be compared with the theoretical results and some of the
theoretical stability trends may be checked.

One of the quantities that seems likely to be less influenced by non-linear
effects is the frequency of the oscillations. For instance if z shock wave of
plausible strength, instead of a wave of small amplitude, is travelling back
and forth in a combustion chamber, the propagation speed and the wave
propagation time change only by a few per cent, and the result is a change
in frequency of the same order2. This is true despite the considerable
change in the shape and the amplitude of the corresponding pressurt and
velocity waves. Fortunately, the frequency is also the quantity easiest to
measure from pressure records or optical observations. For this reason
most of the comparisons between theory and experiments are based on
the values of the frequency.

In accordance with our theoretical treatment, we shall consider separately
the range of low frequencies and high frequencies. No fundamental dis-

- -- agreement seems to exist in the world of rocket research about the definition
of the high frequency range, which is definitely connected, in agreement
with oar theory, to the natural modes of oscillation of an acoustic chamber
obtained from the actual rocket chamber by replacing the nozzle with a
closed end. To the knowledge of the authors, there is also funoamental
agreement about the most probable cause for high frequency instability,
which is definitely attributed, in agreement with the idea first advanced
by the senior authors, to the interaction of pressure waves and burning
rates. It is true that this interaction is often visualized as being related to
shock waves, rather than continuous waves, but as already explained
previously the fact that shock waves can be generated progressively after a
period of amplification of continuous waves shows that the csmenco of the
phenomenon is independent of its non-linearity and only the quatititative
results may be more or less affected.

Some discrepancy is present, however, in the definition of the low frequency _

range. For practical values of the parameters, tb, frequencies predicted by
the theories of chugging are below 100 c/s. This is the raige that we
attribute to low frequency oscillations in rockets of usual dimensions. Only
in extremely small rockets will the low frequency range extend to a frequency
as high as 200-300 c/s. Instabilities in this range have often been observed

150
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with results that substantiate the theoretical predictions (Section 4.02).
However, in their recent survey of the problem cf rocket combustion
instability2, C. C. Ross and P. P. DAINER broadened the definition of
low frequency instability by including observed frequencies of the order of
300 c/s, and were forced to conclude that the existing theories of low fr•-
quency instability cannot explain the observed phenomena. They also
attempted a different explanation for the observed frequency, an explanation I
which can be definitely shown (Section 4.04) to be without correct physical
basis. The tr-,,h is, clearly, that instabilities with frequencies as high as
300 c/s can be inc 1':ded neither in the low frequency type of instability, nor
in the high frequency type, and that we have here a clear example of an
instability of the intermediate frequency type, such as those mentioned in
Section 1.10, ifr which no detailed theoretical treatment is as yet available.
The conclusion of Ross and Datner's discussion that the predictions of the
present theories of chugging do not correspond to experimental observation,
with the possible exception of a seldom observed type of instability which
th'y ailled 'divergent', is based on experiments that are not pertinent to the

S] • prob!cn, as is proved by the fact that other sets of experiments3 4 give, on
the cz'ntrary, a satisfactory justification of the fundamental correctness of
these thcories. W

4.02. COMPARISON BETWEEN EXPERIMENTS AND THEORY-

CHUGGING
The experimental information about chugging is too incomplete and
scattered to provide material for accurate comparisons with theory. The --

most important sources of information are the recent work of M. BARt-•RE
and A. MouTiE34, the paper by A. 0. TiScHLER and D. R. BELLmAN3 and
that by C. C. Ross and P. P. DATNER:. It should be pointed out that with

I the exception of reference 34 the experimental results are reported without
details of the test conditions so that it is impossible to determine how many
variables have been changed between different tests.

Time -atReference time 10s $a -b

Figrt 46. Delopment of low frequ.nc" unstable oscillations. (By croteq .f Officet .ational
d*Etudes et de Rucherches Abonautiques)

The following qualitative experimental observations are either reported

by Barrere and Moutet or can be inferred from their reported data:
1. Low frequency instability is developed from the progressive amplifi-

cation of small oscillations during a transition period, without any sub-
stantial change in frequency (Figure 46). -

2. Osc:'lations of flow rate and pressure in the feed lines are of the same
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frequency as, but with a smaller fractional amplitude than, oscillations of
chamber pressure.

- 3. The frequency of unstable oscillation increases when the characteristic
__ length of the motor, L4', is decreased (Figure 47).

wilth n= A4/an. V2A 7:6ln101
NO, iH(gtaff

110-0
C~~w'~c ~Wst Ma~f "v)/'

Figure 47. Frequency of unstable oscillat ions i'ersus characteristic chamtber lengtAi IA
(By courtesy of Ofise National d'&udis et de Recherches Aironautiques)

- ~4-Z

Figure 48. Frequency of unstable oscilations wesus chamber pressure. (By courktey of O~ffice
National d'Ehu~jdes de Recherches Abimmudiqwe)

4. The freqixency of unstable oscillation increases as the steady state
chamber pressure is increased (Figure 48)..3

5. The frequency of unstable oscillation is rather insensitive to the
variation of the steady state mixture ratio. From the measured frequencies
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one can derive a value for the interaction index n of a given propellant
combination by means of an approximate theoretical formula. The resulting
value of n is independent of the shape of the chamber, the value of L* and
the value of the inertia parameter J of the feeding system.

7. The calculated value of the interaction index n of a given propellant
combination shows a strong dependence on the chamber pressure; n
increases as p, increases.

8. When the chamber pressure is increased, the stability of the motor-• is improved.
S~~9. The low frequency type of instability is found to be the predominating

type in liquid propellant rockets operating under low chamber pressures and
low injection pressures. Under relatively high chamber pressures, high
frequency modes of the acoustic type develop concurrently, and may
become preponderant in some cases.

Let us discuss these items in turn:
=! iItem 1. This observation is of fundamentaLimpottance because it demon-

strates that low frequency oscillations of large amplitude can develop
progressively from small amplitudes, thus proving the existence of the
linear type of instability analysed in this monograph. The so-called
'divergent' type of instability reported by Ross and Datner2 might possibly
be an example of the same phenomenon.

Item 2. This observation has been made by many and was also specifically -

mentioned by Ross and Datner2. This indicates the importance of the
feeding system characteristics to the low frequency stability of the rocket,
and the necessity of considering the complicated dynamics of the feeding 2--

Items 3, 4 and 5. These behaviours have also been reported by Tischler
and Bellman'S.. The effect of L* on the frequency is dearly indicated by
the theory through the corresponding change of residence time 0,. The
effect of chamber pressure p, can also be derived from the theory through
the decrease of the time lag when the chamber pressure is increased.

Item 6. These observations tend to substantiate the assumption that the _

bination for a given injection pattern. However, not too much weight

should be attributed to this result, due to the reasons mentioned in -con-
nection .ith Item 7.

Item 7. This result might indicate that the interaction between the
combustion process and the chamber oscillations is more intense and
complicated than that indicated by the law assumed in the monograph. -

However, this result should not be considered too seriously. The value of n
-has in fact been derived by Barrere and Moutet, from the observed values
of the frequency and the known characteristics of the feeding system, with
the help of an equation which substantially coincides with equation (2.07.20)
with D = E = K = 0. Without discussing the validity of the approxi-
mations involved in neglecting the possible effects of the imperfect rigidity
of the feeding system (E #0) and of the variation of temperature (K =A 0),
we have to recall that equation (2.07.20) is valid only under the conditior,

Sof incipient instability. The fundamental difference between the conditions
of incipient instability and those of fully developed unstable oscillations,
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where non-linear effects are certainly present, has been emphasized in
Section 4.01. Hence, the values of n as evaluated by Barrere and Moutet
include errors from a number of possible sources due to the difference
between these two conditions, and cannot be taken as a satisfactory deter-
mination of n except ir. a very qualitativr. way. More direct and precise
determination oL" n, and of the other parameters characterizing the time lag,
are discussed in Section 4.05.

Items 8 and 9. As explained in Section 1.11, the time lag should con-
sistendy decrease for increasing pressures. The effects observed here could
be interpreted as a simple consequence of this decrease. However, other
complicated effects of the chamber pressure, injection pressure, and changes
in recirculation pattern might be present.

4.03. COMPARISON BETWEEN EXPERIMENS ANDi THEORY-

SCREAMING

Very useful information can be drawn from the experiments of K. BERMAN
and S. H. CHENEY, Jrla&, 2, corroborated by those of H. ELLIS and his
group2 7. Both are based on the use of a slit window cylindrical chamber
and on simultaneous pressure measurements. Both are concerned with
the longitudinal type of high frequency instability.

The main results of the works of Berman and Cheney can be summarized
as follows:

1. High frequency instability is characterized by the presenue of pressure
waves travelling back and forth in the combustion chamber.

2. Under appropriate-conditions self-sustained pressure oscillations can
be observed in the combustion chamber. In certain cases, these oscillations
consist of continuous pressurewaves; in other cases, they may be complicated
by the presence of shock waves. In the latter, the amplitudes are usually
larger.

3. Self-sustained oscillations containing shock waves are preceded by- a
- -- transition stage during which only continuous waves are observed. During

this transition stage the amplitude of these waves increases until shock waves
are eventually established (Figure 49).

Figure 49. Derelopmenit of highfirueqny unstable oscillations. (By courtesy of American Rockct
Society ard the General Eletri Company of America)

4. With or without shock waves, the observed frequencies of self-sustained
oscillations in the high frequency range are closely associated with the
fundamental acoustic mode in the combustion chamber with both ends
closed (Figure 50). The effect of shock waves is a slight increase in frequency.

5. For self-sustained high frequency oscillations of relatively large ampli-
tude, a dark region is observed to commence from the region next to the
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injetorend henver yprssure pulsef reaches there from downsra._ _

This dark region once produced moves downstream with the -ga~ses. The Y
dark region indicates the presence -of gases of lowtr temperature:. The
periodic occurrence of this dark region at a given position indicates-a local
temperature oscillation, and therefore a local entropy oscillation which in
fact must propagate at the speed-of the mass motion.

S__I

_H W

__RI

Figure 50 Frequency of te unstabl eoscillations in the highfrequency range as aflatctio of
chambef length. (By courtesy of .4merimu RxAck &icily and the-General Electri Company

6. By decreasing- the convergent co nical angle of the Subsonic portion
of the nozzle, a relatively weak -self-sustained picillafion in an unstable
motor can be made to disappear and a self-sustained strong oscillation
can be made weaker. -

7. High frequency instabilit in a given motor assembly can be induced -

by sufficiently increasing the length of the combustion chamber. This
change does not substantially affect the combustion zone. The-Instability
becomes more severe when the chamber length is increased fartheir. At7 a
chamber length -below 10 inches (with chamber of 3 inches diameter) it
was very difficult to obtain high frequency instability.__

8. High frequency instability canbe induced in a given motor by lowering
the pressure in the prop ellant tank which results in a sitz-altaneous decrease

t Thecpressure pulses need not be shock waves as wasputtforth by Bermanand Cheney.
The upstream moving continuous pesre waves also result in periodic variations of the

- -s ~luminosity near the inj-.ctor end. The changc in luminosity produced by a shock wave,-
which is of considerably larger amplitude than a continuous wave, is of course-more easily
obser ed.

.,ernian mosnotand Cheney- conjectured that 'thz non-luminu reinrpresents a cool
- p ~mixture, consisting of an off-ratio fuel-oxidizer composition'- However, this is not necessarily _

so. In view of tht, fact that the radiation intensity-of a given gas increases veryfast with its
absolute temperature, ak slight decrease in gas temperature can reduce isluminosity -
significantly.
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of the chamber pressure, the pressure drop across the injector, and the
flow rate.

Items 1-3 above confirm the basic postulates of the theory developed in
Chapter 3. Items 4, 6 and 7 verify the predictions (Sections 3.04 and 3.11).
Item 5 is in agreement with the theoretical prediction (Section 3.09) that an
entropy wave is produced whenever pressure oscillations are present (even
for the case of continuous waves), and that the entropy wave should be well
discernible whenever pressure waves are of sufficient magnitude. The
importance of such an entropy wave on the stability behaviour in the high
frequency-range has. however, not yet been investigated either theoretically
or experimentally. About item 8 we observe that, as discussed in Section
4.01, a variation of pressure drop is accompanied by changes in many
other essential parameters such as chamber pressure, injection velocity,
time lags, etc. According to the theory, the variation of any of these para-
meters could justify the observed trend. Therefore, no precise conclusion
about causes and effects can be formulated.

With so much discussion about Berman and Cheney's work, we shall now
turn our attention to the work of Ellis and his associates27. The following
observations can be obtained from their report:

1. The measured instantaneous chamber pressure distribution along the
"___ " chamber length shows that, in the case of high frequency instability, pressure

waves propagating both in the upstream and in the downstream directions
are significant, but in the case of low frequency instability the non-uniformity
of chamber pressure produced by pressure waves is relatively insignificant.

2. The frequency of unstable oscillations in the high frequency range
varies inve"-ely with the chamber length.

3. Simulta ieous optical determinatioxs of velocity in the chamber and
pressure measurements at corresponding stations give consistent results in
both phase and frequency.

4. Simultaneous preqsitre measurements in the chamber, and optical
measurements of the txhaust shock pattern for low frequency pressure
"oscillations, give consihtent results. The observations of Ellis and his group
substantiate Berman and Cheney's results which are mostly based on optical
measurements of velocity.

Finally, it has been mentioned in Section 1.08 that modes of oscillation
other than purely longitudinal may be expected to exhibit instability.
This is confirmed by experiments reported by Ross and Datncr2. The
frequencies of the observed %instable pressure oscillations in these tests,
when the length to diameter ratio of the combustion chamber is less than
three, are in good agreement with the frequencies of the 'sloshing' mode in
the combustion chamber as calculated from acoustic theory.

We avepoited 4.04. INTERMFDIATE FREQUENCIES

SWe have pointed out in Section 4.01 that the explanation advanced by Ross
and Datner to explain the frequencies in the intermediate range encountered
during certain tests, cannot stai.d the rigour of scientific criticism. These
authors have actually suggested the identification of the observed frequency
of pressure oscillation in the operating rocket with the resonant fiequmncy
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of the same rocket in no-flow conditions, when it oscillates as a Helmholtz F
cavity resonator.

IThe classical Helmholtz resonator is substantially constituted of a chamber
of comparable dimensions in all directions with an opening of relatively
small di-rneter and length. The accumulations of mass, and the time re-
quired for the wave propagation in the opening can be neglected. Since
the diarieter of the opening is also small, the rates of variation of pressure
in the chambe. are ?-nall and the wave propagation effects can be neglected. 4
These are the basis for tht. Helmholtz calculations. We see immediately
that these calculations can apply to a rocket chamber without flow only
when the nozzle is small in comparison with the chamber. When, however,
the size of the nozzle is comparable with that of the chamber, or even tihe W
nozzle length is considerably larger than the chamber length, it is quite
possible that the wave propagation time in such a long system cannot be
ignored (even if it could be considered negligible for the chamber alone).
Furthermore, if the throat diameter is comparable with that of the chamber,
the pressure variation can be quite fast and both of the original assumptions ..
about Helmholtz resonators are no longer valid. Since the geometry ofJ
the chamber-nozzle combination of conventional rockets is of this type,
the Hclmhohz calculation is not valid. I. ELwAs and R. GoiuoNb, on the
suggestion of Dr von Kirmin, devised a method to overcome this difficulty.
Their analysis is still for the no-flow condition, corresponding to rockets
under non-operating conditions. This method of Elias and Gordon was
used by Ross and Datner to determine analytically the acoustic frequencies
of cavifv resonators for purposes of comparison with experimentally deter-
mined frequencies of unstable oscillations in operating rockets of the same -2
geometry.

It is important to observe, as Elias and Gordon themselves have noticed,
that the computed frequencies under no-flow conditions are quite close to
those of the organ-pipe oscillations in a constant area duct of the sam,. total
length as the chamber-nozzle combination with one closed end and one
open end. The total length, consisting of the chamber length plus the length
oi'the convergent and divergent portions of the nozzle, therefore, corresponds "
to approximately one quarter wavelength. This result of Elias and Gordon's
work simply means that any change of cross section at any intermediate
longitudinal station is not very important, and the natural frequency is
essentially determined by the total length of the gas column. Elias and
Gordon have stressed the fact that their calcniations are for non-operating
rockets only, and that certain factors, including supersoni- outflow, should
be considered in extending their calculations to operating conditions. The
following simple consideration will immediately reveal to what extent
Elias and Gordon's estimate of the acoustic frequency must be corrected.
when the flow in the nozzle is increased from zero to the value corresponding
to supercritical flow (when supersonic velocities are established in the diver-
gent part of the nozzle).

An important characteristic of supersonic flow fields is that a small
disturbance introduced at a given point can influence the flow field only in
the downstream nappe of the Mach cone of this point. The flow field upstream
of this Mach cone will not 'know' whether a disturbance is introduced or
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not. nis is because of the fact that a small disturbance is propagated in
all directions with the local speed of sound relative to the mass motion.
When the speed of mass motion is greater than the speed of sound,
any upstream directed signal will be washed downstream of the point of

- -initial disturbance. In the case of no-flow, the boundary condition at the
-• exit of the nozzle (which can be approximately expressed by the constancy

of the local pressure) will influence the acoustic oscillations inside the cavity.
But in the supercritical case with supersonic outflow, the conditions at the
exit cannot influence the acoustic oscillations in the cavity in any way.
Moreover, the entire divergent portion of the de Laval nozzle where the
flow is supersonic has nothing to do with the acoustic oscillations in the
cavity so long as there remains a sonic region somewhere in the vicinity of
the throat during the oscillation. Accordingly, when the rocket is operating,
the length of the gas column of the divergent portion of the nozzle must be
discounted in the calculation of the natural frequency of the acoustic
oscillations.

This is still not the whole story. Because of the absence of any reflected
waves from the supersonic region, two important things happen. The
first is that the boundary condition at the sonic throat is not the same as
at the open end of a classical organ pipe. There is no reflected wave from
downstream to compensate the incoming pressure wave and maintain a
constant local pressure (ov density, in the case of isentropic oscillation).
The local specific acoustic admittance ratio (vib)* at the sonic "hroat is
not infinite (as it is for the open end of an organ pipe-, but L l iefinite
function (Appendix B) of the ratio P of the frequency oscillation to the
local velocity gradient, i.e./f = D/(da/dx),*

jv\ 2(y - 1)±+f 2  3-7

The modulus of td" ratio is always less than unity. Thus the condition at
the sonic throat is not very different from that at a closed end (corresponding
to vib = 0). Only the reflection from the sonic throat is weaker and
is displaced in phase. The second factor is that the convergence of the walls
in the convergent portion produces reflections analogous to those at a closed
end even before the waves reach the sonic throat. Thus the entire convergent
duct with sonic outflow behaves more like a dosed end than like an open
end. The specific admittance ratio (v/l) at the entrance of the nozzle can
be determincd for specific shapes of the convergent nozzle as described in
Appendix B.

As a result of this situation, a good approximation in estimating the
frequencies of the charaucristic oscillations with the rocket in operating

conditions can be obtained by considering an organ pipe with both ends
closed and somewhat longer than the chamber length. This is shown better
by the analysis of Chapter 3 where the frequen,.-es of the unstable oscillations
are found in general slightly lower than the organ pipe modes in the chamber
with closed ends. The difference depends on the magnitude of ;al which
is not only a function of the geometry of the nozzle but also of the frequency
of the oscillation under consideration.
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The equivalent length of art organ pipe with closed ends is schematically 30M
shown in Figure 51 for rockets both in noa-operating conditions (a) and in
operating conditions (b). We recognize from the figure that the equivalent
length for case (b) is around one fourth of the equivalent length for case (a).
It is thus apparent that with chambers similar to those, considered by Olias
and Gordon, and by Ross and Datner, a frequency if 300 c/s in non-operating

E£ulvalent closed ends ol.ganppe--.--

L tae.... .
(a) Ab low

A

(b) D/Ye pr),ff /oZZle
~~..JLfective withS__. 1------- -- 4  sup. , ritic l flow

Figure 51. Eqwiralent organ pipe length for rockets wider operating
and non-operating conditions

conditions corresponds to a frequency of the order of 1200 c/s in operating
conditions and coincides with the fundamental organ-pipe mode. The
shift from the one to the other frequency would take place conti.uously if
the flow was gradually brought from zero to its critical value. The agree-
nment between the calculated resonant cavity frequency with no flow and
the frequency of oscillation in the operating rocket mentioned by Ross and
Datner cannot be considered as anything except mere coincidence. It can
be said with assurance that if other tests on the same rocket had been con-
ducted with the divergent cone of the nozzle mostly cut off, unstable oscilla-
tions of the same intermediate frequency would still be observed there, but
the method of Elias and Gordon would predict a considerably different
frequency. Therefore, the justif.-ation ,or the observed intermediate range
of unstable frequencies cannot be found in the theory of resonant cavities,
but in some more fundamental mechanism. Such a fundamental mechanism
has already been mentioned briefly in Section 1.10, and is substantiated by
the experiments of Berman and Cheney'lf. Figure 52 shows schematically
the principle involved. The space lag of all propellant elements is assumed
t-) be the same; therefore the combustion takes place at a definite station
(combustion front). At a certain instant, an upstream moving pressure
pulse reaches the injector face, is reflected and attenuated by its own course.
The effect of the pressure pulse on the injection rates of the two propellants
is in general different due to the different response times of the two injection
"systems. An off-ratio mixture is thus produced, travels downstream and,
after the total time lag •rt has elapsed, burns as it reaches the combustion
front. An entropy pulse (defect or excess) is thus created by the combustion
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of the off-ratio mixture. After it has been carried downstream by the motion
of the gas, the entropy pulse penetrates the convergent portion of the nozzle
and generates a new pressure pulse which propagates upstreama toward
the injector face. If this pressure pulse is sufficiently strong, the conditions
for self-amplification and instability are created. It is easily seen that the
period of the cycle is approximately equal to the sum of (1) the combustion

& To Mtime edi •-• I/€" /09

U-wnw m'q.I7W _ -- - -- - --
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(b)
Enfitoy weret

Aim h1Arected pressu pulse Abizzie nd

Figure 52. (a) Schematic diagram fo- the successie processes during a period of unstable
oscillation in the unsteady frequenc range; (b) radiation streak photograph showing low

frequency WOe instability obtained with an assemnbly consisting of a conrentional impisrg-
ing head, a 10-inch long motor body and a 410 convergent angle nozzle. Frequency of

oscillation was about 240 cls. (By courtesy of the General Elect.ic Company ofAmeica)

time lag, (2) the time for propagation of the entropy wave from the cum-
bustion front to the nozzle, and (3) the time for propagation of the pressure
pulse from the nozzle to the injector face. Berman and Cheneyv~a made a
rough estimate of the frequency, as hat just been explained, and found
that the predicted and the measured values of the frequency are in agree-
ment. A photograph is quoted from reference I", and corresponding pro-
cesses are marked on the photograph and-the schematic diagram, Figure 52.
A careful analysis of the stability conditions for oscillations in this inter-
mediate frequency range is still to be developed.

4.05. MEASUREIMENTS OF THE Tm I.A L
The time lag between the injection and the production of bvt., gases, and
its sensitivity to the chamber conditions are the fundamental iauses of the
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kinds of instability discussed by the theories of the present monograph.
Instead of justifying these theories by comparison with experimental results
on unstable rockets, one can pursue the more fundamental approach of
checking the properties of the time lag through a direct measure of its 5
duration and of its dependence on the chamber conditions, that is, with the
symbols used in this monograph, of the values of i and n.

The difficulties of measuring these quantities lie not only in the require-
ment of accurate and reliable instrumentation, but also in the fact that the
proper value of the time lag to be measured is the average of the tiue lags
of different propellant elements. This has been made clear by t.he develop-
ments of Sections 2.08 and 3.13. Thus the technique of the 'pulse' which
has been suggested and applied does not appear satisfactory, except for
very rough evaluations. If a pulse is introduced in the injection rate, a
pressure pulse will appear in the chamber pressure at a later time. Assuming
that the beginning of the two pulses is sharply defined, the corresponding
time interval represents the minimum value of the timre lag. However,
there is no way of measuripg the maximum value of the time lag, because the
pressure pulse does not end at the instant the burning rate has dropped
again to normal, but extends beyond this instant through a kind of relaxation
process (Figure 53).

In Figure 53(a), the chamber pressure p. response, to a step increase in
feed line pressure p,, would enable us to determine f.", if the response of
pc is sharply defined initially. In Figure 53(b), the square pulse in feed line
pressure could, in the ideal case, yield both &I. and f.,,Z if the turning
points ofp, response were sharply defined. Figure 53(c) represents a typical
pulse we can put in a feed line and the typical response of chamber pressure
which is smeared out over a considerable range; and here it is difficult to
obtain .i, and impossible to get fm,. In other words, even if the minimum
and maximum time lag coincide, and the injection rate pulse is of negligible
duration, the pressure pulse has a tail which makes it impossible to measure
the actual value of the maximum time lag. Therefore, it is impossible to
obtain accurately, from the pulse method, the proper average value of the
ti-time lag, even when the chamber pressure pulses are sharply defined. The
situation is made worse by the absence of sharp definition of the pulses due
to the unavoidable roughness of combustion.

A more rational method17 consists of the production of sustained sinu-
soidal modulation of the injection rate, which produces a corresponding
sustained oscillation of the chamber pressure. The amplitude and phase
relations between the two oscillations (or, synthetically, the transfer function
of the particular system under consideration) is a complicated function of
the geometry, chamber, nozzle, frequency, residence time, time lag, inter-
action index and so on. The functional relationship relating the transfer
"function to these quantities is provided by the theoretical formulations of
previous chapters. In principle it is possible, by performing the tests in a
sufficient range of frequencies, to derive the values of -7,, f, n, and the resi-
dence time 0,..

Preliminary measurements on a monopropellant motor have already been
made with encouraging results. The accuracy of the instrumentation was
not yet sufficient for the determination of the four mentioned unknowns;
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but the total time lag and the residence time have been obtained. Figure 54
shows the results for the total time lag at different pressure levels. The
scatter of the results is too large in these experiments to obtain an exact

'bn

Figure 53. Schematic diagram of the respomse of chmbe presure to a.feed line pressure persibation

E V-my- - -0 -lS
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Figure 54. Preliminagr data on the steady state total time lag as afwmclion
dof me chamber pessure

definition of the dependence of the steady state time lag on pressure, but
the generi, trend shows an evident decrease, in agreement with the dis-
cussions of Chapter 1. It is hoped that more .etailed experimental informa-
tion on the time lag and the related quantities will soon be available.
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APPENDIX A

ANALYTICAL NATURE AND METHODS OF
SOLUTIONS OF EQUATION (2.03.02)

- THE equation of mass balance in the combustion chamber and the equation
of the dynamics of the feeding system can be reduced by elimination to a
"single ordinary linear differential equation (2.03.02) involving a retarded
variable of the form

"L1[o(z)] =:'L2[9 7(z - 6)] .... (A.01)

where L1 and L. are polynomials of the ordinary differential operator
d/dz with coefficients independent of z. The degrees of the polynomials
aie determined by the nature of the feeding system dynarmics. Particular
forms of equation (A.0i) have been discussed by many authors2- 1 . Equa-
tion (A.01) differs from an ordinary differential equation in the fact that
the operator L, operates on the dependent variable p as a function of the
retarded independent variable z - 6 instead of the independent variable z.
If 6 is constant and if 97(z - 6) can be expanded into a Taylor series about z, O-

equation (A.01) will stand as an ordinary differential equation of infinite
order with constant coefficients. This transcendental equation will therefore -

admit an infinite number of solutions of exponential type e8 where s is a root
of the characteristic equation of the ordinary differential equation and is
in general a complex quantity. The characteristic equation is given as

f (s) = L,(s) - e- L 2(s) = 0 .... (A.02)

Since the coefficients in the operators L, and L2 are real, the infinite numberj of roots s of the characteristic equation must exist as complex conjugate am
pairs. Each complex conjugate pair of s leads to two exponential solutions
which combine to form an oscillatory solution with varying amplitude.
The general solution of equation (A.01) will be a linear combination of an
infinite number of oscillatory solutions having amplitudes which will

j either grow or die out exponentially; only in rare circumstances will the
amplitude remain constant. The imaginary part of the complex quantity s
then represents the angular frequency, and the real part, the amplification
coefficient of the particular oscillatory mode. The stability of a fedback
system governed by equation (A.01) requires simply that no root s of the
characteristic equation (A.02) shalR have a positive real part. In other
words, the function f (s) has no O's in the right half of the complex plane
with positive real part. It should be noted, however, that this stability
criterion is a sufficient condition (for the system to be stable) if and only if
the arbitrary disturbance introduced into the system can be resolved into a
sum of the oscillatory components as arc determined by the infinite number
of roots of the characteristic equation (A.02). The present elementary
approach does indicate that, in determining the constants in the general
solution, we need an infinite number of initial values corresponding, for
instance, to the specification of the initial disturbance T(-z) during the
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interval -6 < z < 0. But there is no indication that the infinite number
of exponential solutions will form a complete set, the linear combination of
which call represent arbitrary initial disturbance functions. Furthermore
the assumption that p(z - 6) can be expanded into a Taylor series about
z is rather restrictive as to the applicability of the foregoing elementary
considerations.

A somewhat more elegant mathematical approach using Laplace trans-
forms is directly suggested by the presence of the retarded variable, which
is the only source of difficulty in equation (A.01), because the retarded
variable is removed by the Laplace transform. Let us define the Laplace
trazsf,.-m of the dependent variable 97(z)

4) (s) = 9)(z) dz .... 03)

"whe:c s is an arbitrary complex quantity being used as an independent
variable of the transform. it is rather difficult to trace the physical meaning
of the transform (D and:i the variable s from the mathematical definition of
the transform when 9(z) is defined by equations much more complicated
than equation (A.0I). In the present case if we multiply equation (A.01)
by e- dz, integrate from 0 to oo and introduce the initial conditions, we
have after manipulation,

D(s) [L1(S)- e- 6 I..(s)] Fs) - e- L.(s) dzz'
_:--::.... (A.04)

where F1 (s) is a new polynomial of s, the coefficients of which depend on
q (0), T(-6) and the coefficients of L,(s) and L2 (s). The transform will
exist if 97(z) is sectionally continuous and satisfies certain conditions at
z = 0 and z = co. These conditions will in general be satisfied by 4p(z) in
physical problems which may not possess a Taylor series expansion.

From equation (A.04) the Laplace transform 4D(s) of 97(z) is easily found.
The function g•(z) can then lbe obtained using Mellin's inverse transform

3E- theorem by evaluating the following integral
10f Fl(s) - " L.(s) C-s" 9(z') dz'

S(z) = e" e' ds .... (A.05)
L( -e L(s)

over the contour I' enclosing all the poles of the integrand. This contour
integral can be evaluated by the use of the theorem of residues. It is inter-
esting to note that the integral has no poles other than those introduced by
the O's of the denominator. Let s,, be one of the O's, then there is a term
in 9(z) of the type c,,e-, where c,, is a constant depending on the initial
disturbance, the operators LI and L. and the value of s,,. The function
4p(z) is thus given as

,a -0

where s, satisfies equation (A.02). This result, equation (A.06), is identical
with, but more general than, the one obtained previously based on ele-
met.ary considerations. The physical meaning of the transformation
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variable s can thus be inferred. The imaginary part represents the angular kn1K• frequency while the real part represents the amplification coefficient.
The stability of a feedback system represented by equation (A.01) can

be determined in general by investigating the O's of the function f (s) as
given by equation (A.02). A sufficient stability criterion is that no O's of
f (s) exist in the right half of the complex s plane.

We are interested in two types of practical problems. The first is to
determine whether a given system with known numerical constants is stable
or unstable. The other problem is to investigaw the qualitative tirends of
the stability behaviour of a certain type of system when various parameters
are changed. The first problem is concerned with the determination of the
stability of a given system before it is built. The second problem is intenIed
to supply information to the designer on how to design a stable system and
how to modify a given unstable system to make it stable. In the first prob-
lem, that is, when we are analysing a given system, the function f (s) =

L,(s) - e-"L2 (s) involves only numerical coefficients. Thus we can use
Cauchv's theorem with advantage. The theorem states:

'iff (s) is analytic inside a given domain D bounded by a contour C except
for a finite number of poles in the domain, then when s traces the contour C
in a clockwise direction, the vecior representing f (s) in a complex plane will
rotate about the origin, and the number of complete clockwise revolutions -

that f (s) makes is equal to the difference between the number of O's and -
the number of poles off (s) in the domain D'.

For a stability investigation, the domain D is the right half of the complex
s plane and the contour C is conveniently chosen as consisting of the imaginary

axis and an infinitely large semicircle in the right half plane connecting ±ioo
as shown in Figure 55. The plot of f (s) in the complex plane is known as the
Nyquist diagram. The sum of the number of complete clockwise turns of
the Nyquist diagram about the origin and the number of poles of f (s) in the _

domain is equal to the number of O's of f (s) in D. If the system is to be
staF ,the Nyquist diagram must make as many complete counterclockwise
tui s about the origin as thei-e are poles of f (s) in D. If in addition f (s) is -

analytic everywhere inside D, as for the function f (s) defined by equation
(A.02), the stability criterion is that the Nyquist diagram of f (s) should not
encircle the origin.

The Nyquist diagram of f (s) is considerably complicated by the presence
* of the factor e-6 introduced by the retarded variable. For example, when

s is purely imaginary, the real and imaginiry parts of e are periodic
and 90' out of phase. Thus e-l introduces a number of loops in the Nyquist
diagram and makes it necessary, in the numerical evaluation of f (s), to take
small steps of D in order to have a reasonably accurate plot. M. SATCRE 31

proposed an ingenious method to avoid these loops in problems involving a
retarded variable. Divide equation (A.02) by L2(s) and define

C(s) eC -g (s) =0 .... (A.61)

with g (s) L, (s)/L,(s), where we have introduced artificially a finite
number of poles in the function G(s) corresponding to the O's of L2(s).
The stability criterion is still the same as it was before, that is, no O's of
G(s) may exist in the domain D. Instead of making a vector plot of G(s),
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Swe interpret the vector G(s) as the difference of the vector e-0 and the
vector g (s), that is, G(s) is a vector with vertex lying inside or on the unit
circle of e-86, with its tail or. the corresponding point of the vector diagram
of g (s) (Figure 56). A system is stable if the vector G(s) makes as many
complete counterclockwise revolutions when s traces the ccntour C as there
..are 0's of L2(s) in the domain D. The number of O's of L2 (s) in D can be

determined by making a Nyquist diagram for L2(s) separate!:,. The deter-
mination of the stability of a given system therefore consists of tracing two'
Nyquist diagrams for the two functions g (s) = Lk(s)/L2 (s) and L2 (s). We
shall call the combination of the Nyquist diagram for the function
g ks)= L1(s)/L 2(s) and of the unit circle for e- the Satche diagram.

÷oo 6-to

Figure 55. Schematic diagram of Figure 56. Schematic Satche diagram
integralion contour

An examination of the Satche diagram and of the associated Nyquist diagram
for L4(s) will reveal whether the system is stable.

In the second problem mentioned, that is, when we are interested in
determining the qualitative trenos of the stability behaviour as a function
of the constants of combustion n, i and of the parameters of a certain type
of system, the graphical method using the Satche and Nyquist diagrams
becomes undesirable. The analytical treatment of equation (A.02) is more
advantageous. Wet are primarily interested in determining the stability
boundary (or neutral boundary) of a certain type of system. The stability
boundary for a given oscillatory mode is expressed by a relation between
the combustion constants n, - and the parameters of the system such that
the oscillatory mode in question is neither stable nor unstable, in other
words, the real part of s vanishes for that mode. The stability boundary

r'ides the space formed by the combustion constants and the parameters
of the given type of system into different domains in v'hich the system is
stable on one side of the boundary and unstable on the other side. If, by __

varying a certain parameter of the system, the stability boundary of a given
mode is shifted in such a way that the unstable domain is diminished, this
variation of the particular constant or parameter is stabilizing in so far as
that oscillatory mode is concerned.
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"The stability boundary is defined by equati an (A.02) wheni s = io where 2 W:1
o is the frequency of the neutral oscillation. By separating the real and
imaginary parts, we obtain two real equations from which we can eliminate
(o; the eliminant is the equation of the stability boundary. From another
point of view, the two real equations represent the stability boundari ini parametric form. This point of view is important because the elimination

of o cannot be carried out explicitly with ease except when L,(s) and L2 (s)
are in greatly simplified form. It should be noted that the parameters of
the feeding system dynamics are responsible for most cf the complications
of the operators LI and L2. It is like!v that the effect of certain important
parameters characterizing the combustion chamber and the processes of
combustion on the qualitative stability behaviour should not be funda-
mentally changed by the complication of the feediig system. The analytical
study of certain simple feeding system configurations can be expected to
give a number of important results.

ý NS
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APPENDIX B

SUPERCRITICAL GASEOUS DISCHARGE WITH
HIGH FREQUENCY OSCILLATIONS

THE problem of the behaviour of a nozzle working in the supercritical
range in oscillatory conditions was first treated by H. S. TsiJNp24. He
investigated the case in which the oscillations in the incoming flow are

- -isothermal, and therefore non-isentropic, and determined the departures
from the steady state behaviour in the range of very low frequencies, as well
as the asymptotic response to very high frequencies. The treatmeit was
extended by L. CRocco 25 with the purpose of including the non-isothermal
case and especially of determining the nozzle behaviour in the inter-
mediate range of frequencies. In this appendix, account is given of these
developments and of a few other unpublshed results. It should be noted
that all symbols in this appendix represent dimensional quantities unless
otherwise stated.

B.01. THE EQUATIONS

Calling p, p and u the pressure, density and velocity in steady stab, com-
pletely determined by the shape of the nozzle, and p ±p', p + p' and
u + u', the corresponding value-. in unsteady conditions, and assuming the
perturbations p', p' and u' to be small compared with the unperturbed

- quantities., Tsi.en has written the continuity and momentum equations in the
following form, retaining only the first order terms in the perturbations:

(P) + a....(B.01)

a u\P'u) du af(u) p'du pa I'
a (u) + + 2 I ..... (B.02)

x being the distance along the nozzle and t the time. The third equation
between the dependent variables p'/p, p'lp and u'/u is the energy equation or,
morm imply, the equation expressing the constancy of entropy of any fluid
mass when we follow its motion:

0 .... (B.03)

where S' is the entropy perturbation, c, is the constant volume specific heat,
and y th,. adiabatic index.

In these equations u, du/dx and p/pu are to be considered known functions
of x determined by the nozzle shape. Due to the linearity of the three
equatic .s above, the harmonic form of oscillatory time dependence can be
chosen and, using the complex representation, the dependent variables
can be written as:

p'/p - •(x)e•'"; p'/p = a(x)e-1; u'lu v(x)e .... (B.04)
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where w is the angular frequency of neutral oscillation and p, a and v are
complex functions of x alonet. At the nozzle entrance, x = xe, the three
functions have certain values q9o, a and v,. The problem in which we aret
interested is to find the distributions of q, a and v along the nozzle, but
especially to determine the relations between i,, a, and v.. These relations
will in fact constitute the boundary conditions to be applied to the rest of
the flow system as a result of the presence of the nozzh.. Observe that if
the quantities (B.04) are interpreted as rotating vectors of which only the
projection on the real axis has a physical meaning, the quantities q9, a and v
will represent fixed vectors, the magnitude of which is the amplitude of the
oscillation of the corresponding quantities. The angle between any two
such vectors represents the corresponding phase shift.

Equation (B.03) is immediately integrated as

-A SI p~ I

the arbitrary function f being in general determined by the known time
dependence of the entropy at x = x.. For the exponential time dependence
assumed in equations (B.04) we obtain

w(X) - ya(x) = E exp (-- -o - .... (B.05)

where the constant represents the amplitude of the entropy oscillation
* divided by c,. With the assumption (B.04) and the relation (B.05) equations

(B.01) and (B.02) are reduced to the following system of ordinary differential
equations in v and a:

dv da,.U dx+ + + twa - 0

dv c2da diu duu-•+ u-.+ 2 - i v-(7-1 .... (B.06)

u-~ ~ + Zexdx)

in which c is the velocity of sound. It is easily seen that these equations
present a singularit), at u =- c, that is, at the sonic throat, where therefore
only one family of solutions remaine regular.

Equations (B.06) could be solved numerically for any specified nozzle
shape. However, an analytical solution can be obt4 ..,ed if, following
Tsien we confine our attention to nozzles in which u increases linearly
with x in the subsonic portion of the nozzle. This condition i. , ot too
restrictive, since many actual nozzles have practically a line2 velocity

IlThe definition of these quantities is somewhat different from that of the same symbols in
Chapter 3. The difference is especially important for r.
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distribution near the sonic throat which is the region where an analytical
solution is particularly usefult. We take therefore:

du u c*, c, - u
d• = x --- .- '• = L• .... (B.07)

in which c, represents thc so-called critical sound speed attained at the throat
where x = x,, lsu6 = (x, - x,)/L represents the ratio of the length of the
subsonic portion of the nozzle to the chamber length L. The subscript ,
is used to denote conditions at the nozzle throat.

Moreover, we take, with Tsien, a new independent variabh' :

Z= (xlx*)2 = (U/c,) 2  .... (B.08)

"in terms of which we have:

c=,4{j(y+l' -=(y- l)4} (.+

logz .... (B.09)
f dx = x * lox. u 2C* Z,

where z, represents the assigned value of z at the nozzle entrance; and
we define a reduced angular frequency:

X w C..... (B.l0)

Introducing equations (B.07) and (B. 10) into equations (B.06) and

eliminating d,/dx, we find

(2 + ifl)w= (-y - 1 + ifl)c - ( + I) (I - zdc

[I - if[l2v. (y - l) + i/2?. (y 1). l/z. (B.Il)

and by eEmrinating v with take help of (B.I1) from one of the eqt..ions
(B.06) we obtain

2da I 2!S \ d a ifl(2 + i4)•- ~~z(l--z)- •-2+7+ l]d or+1

-ifi F _2(y + 1). . ... (B.12)

Equation (B. 12) is a non-homogeneous complex hypcrgeo-netric equation,
with singvlarities at z = 0, z = 1, and z = oo. Of these singularities, only
the one at z = I is important for our problem, since the others are out of the
range of interest in the variable z, which must be contained between a
non-vanishing minimum at the entrance of the nozzle and a finite maximum
at its exit.

f If u, is not too small, the gcneratrix of a nozzle with such a linear distribution is nearly
an arc of a circle.
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SB.02. THE CONDITION AT THE SONIC THROAT -gm_

Tsien has observed that since the motion is supersonic in the divergent
part of the nozzle no wave can be transmkt-d backwards to the throat,
and therefore. the propagation of the oscillations mast always take place in
the.downstream direction. He has therefore ued the condition that the
propagation velocity U(x) must always be positive. If U is defined by the
formula

+ _. =0

substituting from (B.04) we have U =: -kiol(da/dx). The condition that U
must remain of the same sign throughout the nozzle means that it must
never vanish, and therelbre (dacdx)/o' musc remain finite. This condition -°A
is not satisfied if the solution is singular, with the important consequence M
that only a solution which is regular is compatible with the condition of

* dowinstream piopagation. This conclusion, which is true for the most
general case considered in equations (B.06), allows a more concise and
mathematically more definite expression of the condition at the throat.
The same result is obtained on a more physical basis by considering that a
wave of finite amplitude at the sonic throat cannot send any but infini-
tesimal waves upstream, since the upstream propagation velocity is zero, 7

and therefore only waves of infinite amplitude at the sonic throat can send
finite waves upstream. The absence of upstream-moving waves is therefore
connected with the suppression of all singularities at the sonic throat.

• B.03. SOLUTION FOR Low FREQUENCIES IN THE NON-ISOTHERMAL CASE

Tsien has treated the case of isothermal oscillations. His treatment is
immediately extended to the non-isothermal case. Assuming a prescribed
temperature oscillation at the entrance of the nozzle

-(T'IT)., Oeei- .... (B.13)

we 'ave the relation

.... (B.14)

between 97, and g•.

On the other hand equation (B.05) gives
91C -- 0a = . . . . (B .15 ) . &

and therefore we obtain the relation

-- (0 -- )/(,- l) .... (B.16)

which determines the amplitude of the density oscillation at the entrance
of the nozzle when 0 and e are assigned. Of course., instead of prescribing
arbitrary values of 0 and r, one tould prescribe arbitrary values of P, and
a7, and determine the corresponding values of 0 and E. In Tsien's case 0 = 0.

At low frequencies, we can expand all quantities in powers of ifl, since
equations (B.l 1) and (B.12) contain only this combination of i and/f.
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We take therefore

Ua(z, a) = °lO(z) + Ifla(n)(z) + ....... (B.17)

V(z, •) = ,(l)(z) + iflv(z) - ... .... (B.18)

Substituting equation (B.17) into equation (B.12) and equating the
coefficients of the same powers of ift, the resulting equation breaks up into:

z(1- Z) ~2 z .... (B.19) -

z(l -Z) d'u( _ 2 dat") 2 dc413)
dz 2 dz

1+ am + .... (B.20)

The solution of (B.19) which is non-singular at z = I is a(0) = const.,
and therefore, since the solution (B.17) must hold at f = 0, we obtain
"from relation (B.16)

•- (O° - (0-)(- ). (B.2

Introducing this value into equation (B.20), and integrating the first
order equation in dat1 )/dz we obtain the expression

1 10(log z - z)

+c .... (B.22)

where the integration constant C has to be determined in such a wavy that
the right hand side of equation (B.22) vanishes at z = 1, so that dao(1 /dz
may remain finite at this point. We obtain

Sdao) 0 Iogz + I- z

V [log z +lI- z I_(.23
2y :d F - 1) (1 -- Z)2 A

It can be immediately checked that this expression is regular at : = 1.
An additional integration, with the condition following from relations
(B.16) and (B.21),

a() 0 .... (B.24)

would give the (non-singular) expression for o(l)(z).
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Now introducing equations (B. 17) and (B. 18) into equation (B.1i1) and
again equating the coefficients of like powers of if) one obtains, using
equations (B.2 1), (B.23) and (B.24),

0• = vO) - 0/2

0 2 log z, + .... (B.25)- Ax+

and therefore, recalling relations (B. 17) and (B. 18):

v1. __V() + iftv() +I.

__7 -- + - (1r). <i t 1) ... (B.26) "'

2 0-e
This quantity, representing the complex ratio between the fractional

variations of velocity and density at the entrance of the nozzle, and ana-
logous to the specific admittance ratio of acoustics, can be used as a boundary
condition for the rest of the flow system in an oscillatory state. We see that - -

equation (B.26) depends only on/f, z and the ratio Ole. The first ternm of
the series (B.26) applies to the steady state and contains the isothermal
case 0 = 0 where the velocity cannot change (v, = 0), the isentropic
case e = 0, vJa,= 1(y - 1), and the isopyknic case 0 = ev, o=0 as
particular cases. Equation (B.26) shows that even for moderate fi, the
boundary condition imposed by the nozzle can change coi siderably since
both the phase and the amplitude ratio between velocity and density
fluctuations are affected considerably.

The same procedure can be used, without substantial difficulty, to -

compute higher order terms in ifl.

B.04. SOLUTION FOR HIGH FREQUENCIES IN THE NON-ISOTHERMAL. CASE
Following a procedure similar to the one used by Tsien we first determine
the particular solution or, of equation (B.12)

a, = Z(Z) (zlZo)-i.:"- 2
and substitute it into equation (B.12). An equation for Z(z) is obtained

which man be solved by taking the series

Z(z) = Z(0(z) + (Ol/ift)Zm() +...--

and equating the coefficients of like powers of ifl. The result is-'"'

Q -(I + ... .(B-27)

2 z 2

Replacing result (B.27) in equation (B.I1), the corresponding value of
v is found to be zero; by pushing the expantsions to higher powers it is
actually found that the first non-vanishing term in the series for r corre-
sponding to the particular solution (B.27) is the term in (if)-)2 . Thus a,
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"fulfils the condition of regularity at z = 1, but not the condition (B.16)
at z = ze.

Therefore a solution of the homogeneous equation corresponding to
(B. 12) must be determined. If we take a = exp [ifl.(z)] and introduce it
into this homogeneous equation, we find that the derivative d;./d z = y(z)
satisfies the Riccati equation

z(l - z)dy 2"+-if + 2 __1 _ .
;:" " dzz-- 2(y + 1) 72I+ 1y-~~ --ZY

Introducing in this equation the series

y(z) =y,(G(z) + ± ,y((z) +...

and equating the terms with equal powers of ifl we obtain

y(O) = ( ,+1--l+ -- 1 .... (S(7 + 1 01Z (l--+) 2 z (B 28

=M .Y + (I )( - ) z} - 2y'O) -2{1 +!(- 1) (1- z)/z}!(l-z dz 7+ ,+

.... (B.29)

where only the solutions remaining regular at z = 1 have been considered.
The solution of equation (B.12) can now be put in the form

ao = C exp [# dz . ,() dz ±...] + a, .... (B.30)

where the constant C is determined by the condition (B.16) at z z z, and
is expressed by

( )--

Coming now to equation (B. 11) and recalling that or, does not contribute
to v up to term-s of order (ifl)-, up to this order we can express v as

v= (0) + - (1) +... Cexp (fl ) dz ± f M dz
S.... (B.32) •_

and, after substitution into equation (B. 1) and comparison of terms with
like powers of ifi, we find

= +- I ) (l+ 1) ( -- z /}
: )•(•) •-- 7 -- 1 I -- 2 ill') -- (7 + 1)( -- zf ) j

y(M) being given by equations (B '9) and (B.29).
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Finally computing v at z = % from equation (B.32) and recalling the
condition (B.16) we fi;ad

a, _ 10-l6 fle-8+II

2 z, 2

with i0, 4"' given by equations (B.33), (B.28) and (B.29) at z = z.
Higher order terms in the expansions (B.27), (B.30), (B.32) and (B.34)

can easily be computed. Again we see that vj[ao depends only on/f, z and
0/e. For 0 = 0 and oo, equation (B.34) gives Tsien's result.

B.05. SOLUTIONS FOR Ai.L FREQUENCIES IN THE ISENTROPIC CASE
It is possible to take advantage of the analytical properties of equation
(B.12) to extend the computations to the whole range of frequencies. In
order to avoid the complication connected with the determination of the __

particular solution of equations (B.12), we shall consider here only the
isentropic case. With e = 0 equation (B.12) is reduced to a homogeneous
hypergeometric equation, of which the solution remaining non-singular at
z = 1 is given by !he known hypergeometric series in powers of I - z

ab
F(a, b, c; 1 -z) =1+a(1 -z)

S~a(a + 1) b(b + 1) (1 Z )2

+ c( 1) 2! + .... (B.35)

with a, b and c given by:

c =a+b+l=2 1+ 2(1/ i ~.... (B.36) L•

1 ab -- + 2+1 2)

In principle, therefore, our problem is solved by taking

a =C. F(a, b, c; 1 - z) .... (B.37)

and computing v from equation (B. 11) with t = 0 and with dF/dz obtained
from the differentiation of the series (B.35). The ratio vdjq is therefore K
determined and is independent of C.

However, -this procedure cannot be followed in practical cases since. z,
is generally quite small24 and 1 - z, is close to one, in a iegio, where the
convergence of the series (B.35) is too poor. The difficulty can be overcome
with the help of the properties of the solutions of hypergeometric equations.
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Simpler developments are obtained by using a series proportional to (B.35Y
+ r(a)r (b)

f (a, b, c; 1- z) -r(= ) F(a. b,c; I - z)

P(s + a)I'(s + b)
,-0 - ) l(s + l)J(s + c) .... (B.38)

where r(x) represents the gamma function of argument x. This non-sin'ular
solution around z = 1 can be expressed as a linear combination of the
fundamental system of the hypergeometric equation around z = 0.

One such relationship, particularly useful in the present case, isM

f (a, b, c; I - z)
g(c--a,c-b, 1 +c-a--b;z) B

- Zf-�~P( - a)r(c - b) cos (c -a - b)ir .. (B.39)

where

g (a', b', c'; z) = -r cot (c'7r)[f (a', b, c'; z)

-z-'' f (a' + 1 - c', b' + 1 - c', 2 - c'; z)] .... (B.40)

the two functions f being given by the corresponding series (B.38). With
the particular value (B.36) of c, the value of c' to be used in relation (B.40) is
given, following (B.39), by c' = 2. When c' is an integer n, the quantity in
the brackets of equation (B.40) vanishes, and the factor preceding the
brackets becomes infinite. The corresponding value of g can be found
through a limiting process to ben, for n > 1,

g (a', Y', n; z)• • - -- •.-, r(-s)r(s + a')r(s + Y')
= -f(a', b', n; z) logz + E (-z) ' (+

P(s J- n)
I(s + a)(s + b)

-0o r( + l)r(1 + n)
•-" -- $,(s + )--V(s + n)] ... (B.41)

where V(x) represents, as usual, the logarithmic derivative of the gamma
function with respect to the argument x.

Finally from equations (B.38), (B.39) and (B.41), with a, b and c given
by equations (B.36), and therefore n =2, we find

f(a, 5, c; I - z) =log z E A z'

+ •i 2+i1) .... (B.42)
__+,.__ f i2 + iA-=1

with the coefficients A, given by the recurrence relation

A 8
1~~~ 2(~ ) ~ ~ )± l y l ss+ l) I

a•vd with
D. =t(s +a) +tV(s +b) - V(s) - V(s + 1) .... 'B.43)
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The computation of D, can be performed with the help of the series
expression of wp(x) I I Iog. -

where B1 = /6, B2 - 1/30,... are the Bernoulli numbers.
We obtain

D. =log + -+s l(+)
I _ __+ 1)

+ I ~lr[(s a)-2 1+(s b)- 2 1

- S-F, - (s + l)01"] .... (B.44)

The convergence of the last series is very fast for high values of s. --
D, has therefore been computed for this series (B.44) only for the highestr value of s needed in the evaluation of relation (B.42), and for thlt other
values of.), from the recurrence relation

D,+ , s+a s- b s sD,

The solution (B.37) can be expressed as

a= Cf(a, b, c; 1 - z)

with the constants C' and C conn.cted through equation (B,38); and the
* expression (B.42) provides the series expansion suited for computations at

S= z,. Actually to determ ine the downstream boundary condition of the -

chamber, equivalent to the presence of the nozzle, we need only calculate
v/u at z = z, which may be determined from series (B.42) using equation
(B.11). The quantity (1/f) (df/dz) = (l/F) (dF/dz) is independent of the
values of the integration constants C or C' and can be used in evaluating
v/u. The real and the imaginary part of this quantity, the first divided by
# 2 and the second by Pi for convenience of scale, are given for y = 1-2 in -

Figures 57 and 58. The number of terms used in the computation was
sufficient to give very accurate values up to z = 0-2 for series (B.42) and
reasonably accurate data up to z = 0.3; the corresponding limits for the
series (B.35) are z = 0.8 and z = 0"7. Between 0.3 and 0.7 the dotted
curve is only interpolated. The lines for fi = 0 are entirely computed from
the equations:

lim. R.. P. ••] -" ( )( -z" •:•

"[2 fz logdz~y (I -")

+ ()+ Z logz(logz + I-z)]+ Z+7 l ogz- l-Z

I do logz+ l-z
A-0o (ordzl (V +J 1) (1 -- z)l ::

which can be derived with the procedure used previously for small •.
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Figure 57. 1I2 times the real part of (da/di)I* as a function of local steady stateflow
Mach number Mffor isentropic oscillations of the reducedfrequency P in the nozzle. Calclation
is based on the seies (B.35) and (B.42). cr is the amplitude of density oscillation.

(By' courte.• of L'Acrotecnica, Roma)
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APP. B SUPERCRITICAL GASEOUS DISCHARGE

For o ~ o the first of the two quantities goes to zero, but the second one
_ takes the expression

urn -i. -a ajl =Y(O)Lf \ dzjj]

Y(0) being given by equation (B.28). li ,th quantities teid logarithmically to
infinity at z =0, a value which can nev'er occur in practice.

0-5 - -

I I
A- A-5

Figure59 Fiure 6
Fiur 5. 7wrelpat ~,ofth se jicaditaneraio~casa untonofth rdue

freqem fio h snrpcoclaini He o.ea ~frnJolahnmes

Figure 60. The imaglas part -at of the sped/ admittance ratio .ota asafunction of the redce
frequenfeuYcy Pi of the isentropic oscilltio~n in the nozzle at different flow Mfach numbers.

(By courtesy of L'Acrotecnica, Roma)

From (11/. (da/dz),, and equatio ,. -1) the quantity M = vlfr, has
Tieen computed. Figure~s 59 and 60 show the real and the imaginary part of a B
as a function of fl. The Mach number of the mean flow entering the nozzle
is used instead of z,, in these figures where

=~ +& 1 )i12 += 4&+ )(ic 2 (± 1)/[l + J ly~
.... (B.45)

c. repressenting here the stagnation sound velocity. Figure 61 gives a repre-
sentation of ot in the complex plane, from which the phase and amplitude
relations between the velocity aind density fractional fluc~uatioas are
inmieh4.ately deduced. For a givni Mach number at the nozzle entrance
the ratio of the amplitudes increases steadily with increasing frequencies, U
while the phase goes from zero to a maximum which is always an important
fraction of ir/12 and then decreases back to zero. 20

Finr'lly in Figures 62 a-".! b3 the real and imagina-: parts of c1e, with a,
given by condition (B.45), are plotted against P) for various values of M.
The knowledge c' these t%-,, quantities is sufficient to represent completely
the effect of a supercritical nozzle on the e--haviour of a system when the
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oscillations are isentropic; and the velocity distribution is linear. If the last
condition is still true but the entropy oscillates, the solution of equation

M' IS'

Figure 6). Polar plot of the specfic admittance ratio Oc Mr +, imti for isen tropic oscillations
r ~in the no,-zie. (By courtey of L'Aerotccnica, Rtnua)

:z~zIf-tzo
I 7

05.0

I igur, 62 Figare 63
Figure 6?. otfi, as a function of the rrdured frequerng #of iientropic oscillations in the nozzle
at differevrt flow- Aach numbers Af . .rmeponding to the differei Maue~s of the dimensionrk~s

relocity a,2 as difined in Chapter 3

Figure 63. x,7 as a function of the reduced freqzrU Pc ( of isentroiiic oscillations in the

less nelocily ti, as S~fined in Chapter 3

(B1.12) can be obtained as the sum of the calculated homogeneous solution
and a partkular solution of thc non-homoglencous cquation. This, par-

ii~mlr soltioncan b obtined without ft'ndamental difficul tie fromth
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homogeneous solution. It only in' Aves a certain amount of numerical
computation. The case of a non-linear velocity distributi~ is, however,
more involved and is briefly discussed next.

B.06. NON-LINEAR VELOCITy DISTRIBUTION

For a general velocity distribution the system (B.06) can be non-dimensional-
ized relating, for instance, the velocities to the critical sound velocity c.
and the lengths to l40. L. If we take

xl/,,,b.L= 4, (0 < $ < 1); ulc* =w(4), (w, <w <1)

where w is considered anr arbitrary, monotonically increasing function of 4,
with w(1) = 1, and if the entropy oscillation is zero, the system of equations
(B.06) is transformed into the following:

w -v- o "da + ifla = 0 .... (B.46)

dv (+l1 .- 1 \dc d . dww-• -, + (2 +iw a- =1 o 0
d4 2wM d4d$ d4S.... (B.47) •_

where fi WubS. Llc*, and where use has been made of the relation
(icc)2 = i(' "+, 1) -- (.- I) w•

Eliminating dv/d4 from equations (B.46) and (B.47) one obtains the
equ- "on
y+ll--w~dc ( dw ) [ aw

+ w- u da+ 2-4+i T5 0 .... (B.48)

For general w(4), no analytical treatment of the system is possible; one can,
hewever, determine a series solution it, the vicinity of I - 1 which wil!
satisfy the condition of regularity. This series will give a sufficiently accurate
value down to a certain 4 < 1; from there on, one has to proceed with I
numerical irtegration. From equation (B.48) we find at w I- 1 and for
non-singular da/d4

(v) 7 - 1) (dwldý)* + i13
a, 2(dw/d•)* + ifl

no matter what the nozzle shape is. The oscillation of the Mach number at
the throat is thus given by

-[ ( r ) 2[2(dw/d4)* + ifl)]

and is therefore non-vanishing fbr fi 0. Thus the sonic line oscillates
around the throat, and the amplitude of the oscillations could be related to
that of the other quantities.

t Note that the definition of/ in this sertion differs slighily front that given in equation
(B.0.182
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For very low and very high frequencies and a general velocity distribution
it i3 possible to find, as in the case of a linear distribution, series expansions in
positive or negative powers of ifl. Here we shall only determine the series3 expansion for small frequencies which is particularly useful for the problem
of low frequency instability. Introducing into equations (B.46) and (B.48)
tile series

U1,10o(0)( ; V=•o ,
h=O 0Y

and equating the coefficients of (if)h to zero, we obtain the following re-
currence relations

~±ll~~ida~h)÷ dwVh) dr l)~ ()-gh1 ~h

[do" d(' = _Oah-_) .... (B.49)

7 -+ 1 1 -- uA do~h) 2 wP• 7 1 dw 6(h) Oth-l) _V(A-l)-=

2 t d!: dý al
S. . . . (B .5 0 ) • -

For h- 0 the right hand members of these equations must be taken as
zero. In the same way as for the linear velocity distribution it can be found -

that the only regular solution for h 0 is with 0,o) and o(O) constants and
related by

-10, - 1)O) -1.0 = const. .... (B.51)

This relation simply expresses the fact that for quasi-steady solutions the
Mach number variations at each section of the duct must be zero, because
the Mach number :' each section in quasi-steady state is determined only
1" the ratio of the area of the section to the section of the throat. Since at the
entrance section equaaion (B.16) still applies, we see that again the boundary
condition (B.24) holdi for arbitrary k

4•e) -0 (h= l, 2...) .... 5(Bs2)

Now integrating equation (B.49), we obtain

- - 1-- d + C .... (B.53)

where C is an arbitrary constant to be determined. Replacing this value of
0" in equatiorn ,1B.50) we find

I. 1[( daIh)da( " ]
R. dz-

'2 1:- u-°) u- r,

_ [(-i) - -)] __ f d - C)d

which can be integrated immediatAy and, after integratiop by parts, gives

2+l
-- g-- (1 - •)"

- - - - -- (1 W2) 7d 4)
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APP. B SUPERCRMICAL GASEOUS DMSCHARGE

Here the new integration constant has been determined in such a way as
to make the right hand member vanish at w 1, in order that ah may
remain regular. The constant C is obtained by applying the boundary
condition (B.52) at • • This gives:

- -(1 (- E) d -- = dAf-) d-- d d
We -l- •¢ .... (B.55)

"the last equality being the consequence of equations (B.52) and (B.53).
With the help of equation (B.55), equation (B.54) can be written as

(1 - 2)a(A) - d
2 ={vfAd W

-(1-0w) ri.: d$ - ] ... (B.56)

where the value of A?,) is determined in terms of' the (h - l)th quantities
by equation (B.55). From equation (B.53) one obtains then

,+ "w2)v) = -(I wv,2-1 dý
2 f

+ - -- I (Q w) r d -k) .... (B.57)"[- WO - 2 " LI°-' '

The recurrence relations (B.56) and (B.57) allow calculation of all the
functions ah, vW-• starting from the values (B.51). For the determination
of at = vla, only the quantities vA) are required, because o4,) are given
by condition (B.52). The first two values are given by:

; (0) =l Z, (I w) d$

2 2- 2PfIdI fj'1 7 ?-lw) ,6(0'-)= + 1 (0 \ -• - (l -- w) W 2 w

Further terms can be found without fundamental difficulty.
Up to the second term of the expansion (P,()/q(O)) the specific admittance

ratio m = rjq, of the nozzle expressed in terms of the original physical
variables is given by

a -= 1(7 - 1) -+ i .... (B.58)

where the quantity k coincides with the quantity introduced in equation
(2.01.08) and is explicitly given by

the integration being performed on the whole convergent portion of the
nozzle. This constant k represents the effect of the inertia of the gas in the
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convergent portion of the nozzle in causing a phase difference between the
oscillations of velocity and pressure of the gas entering the nozzle for low
frequencies. From the quantity k one can determine the quantity b of '1S : 0equation (2.01.09). If the reduced frequency is defined through the corrected
gas residence time 0, = 0,(l + b), so that

of /* = 0,(l + b)

b is given by the solution of the equation Ty

b(1 + b) kiyO0  .... (B.60) -O

In practical cases b is sufficiently smaller than unity so that its value is
approximately given by the right hand side of equation (B.60). It has been
explained in Sect-i 2.03 that the net effect of the presence of this phase
lead component of the nozzle transfer function is to modify the reference time
characteristic of the low frequency oscillation from the gas residence time
in the chamber, i.e.

0, =R/1 mass in the chamber/mass outflow rate to new reference time

(1 + b)= (0, + b)MRI,

This indicates that, so far as the analysis of the stability of the low frequency
oscillations is concerned, the effective inertia of the gas in the convergent
portion of the nozzle is equal to b times the inertia of the gas in the chamber.
The following question naturally arises as to how this effective inertia bM
compares with the actual inertia of the gas in the subsonic portion of the

nozzle. But owing to the varying density of the gas in the nozzle and to
the engineering practice of defining !he gas residence time in terms of the
chamber volume, V,, we would rather compare the volume V,. of the sub-
sonic portion of the nozzle with the effective volume bV,. In other words,
we would rather, following the conventions in acoustics, determine the end
correction of the supercritical nozzle in terms of the additional length of the
chamber (corresponding to the additional length of the organ pipe in
accistics). Thus let z denote the end correction of the chamber volume per
unit volume of the convergent section of the nozzle. Then

S= bVV= =0jV,. /IN

where i• is the mass outflow rate which can be evaluated at the sonic throat
and Po is the stagnation density of the gas as an approximation to the
chamber condition. V,, can be obtained by integrating the sectional area
of the nozzle over the entire length of the convergent portion. Thus, with
b0, given approximately by kj, and k given by equation (B.59), one obtains
after some manipulation the following

r93 Th ineg f'(i. 54:S2]~7, w t,

The integrals can be evaluated at least numerically or graphically when
185
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w($) is known. For a given type of w(4) this factor 7 depends only on the
entering velocity wt, and the adiabatic index y of the gas. For a given value
of y, w, = u,1c* is a function only of the contraction ratio of the nozzle
A*IAC. Thus, this correction factor I is a function of the geometry of the
nozzle or w(4) alone.

The value of we. for conventional rocket motors is usually of the order of
0.1 (except for throatless rockets) and w increases monotonically toward the
maximum value of unity at 4 = 1. Conventional nozzles are usually
constructed with a surface of revolution generated by a circular arc near the
sonic throat and preceded by a tangent cone. Thu- w($) increases from w,
rather slowly in the conical region and then increases almost linearly toward
the throat. As a result w(4) remains small of O(w,) for a considerable range
of $, the more considerable if the convergint angle of the conical part
becomes smaller. If one writes equation (B.61) as

1 1

I + I2, -1 (y - 1)E, .2 .... (B.62)

S7+- 2 !(y+ 1)2 E3  + 1)3

-: ~where E, = 0 ($:) dý: w• •

one easily observes that 0< E,+1 < Ej < I (j -- 1, 2, 3, etc.) and

that all E's with j >,1 become smaller when the value of w( ') becomes
sr .ler for given 4. It is also clear that the ratio of the two integrals in
equation (B.61) is less than unity and therefore

1I 1 1

7<;. .<'
Y 7

Sample calculations based on equation (B.61) for a conventional nozzle with
w(4) given as

w () - ).-3w) for w < w1

w(M) = I -- for w> i'-

with ; indicating the following dimensionless distance from the sonic throat

= I/C,* . (du/dx)* (,. . L - x)

where (dujdx)* is the dimensional velocity gradient at the throat,

indicate that the ratio of these two integrals is very close to unity. For
the case with w, --- 0-1 and wq = 0-3 the ratio of thc two integrals is 0.96.
Calculated results show that for a given value of we the ratio of the two
i:-egrals slowly decreases with increasing wl ; the effect is, however, rather
insignificant. For a given value of w,, if we decrease the entering velocity
w,, the ratio of the two integrals also decreases, and the effect of decreasingi
w, is considerably larger than that of decreasing w,. But in any practical
case, the ratio of the two integrals will remain in the range of 0:9-1-0 and
a good average value would be 0-95 for the type of nozzle discussed previously.
This qualitative result can be exDecied as a result of investigating the Y
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expanded form of the two integrals as given in equation (B.57). Thus the

end correction factor xis in most of the practical cases given approximately by

X = 0"95/Y .... (B.63)q and the factor 1 -0 w is relatively insignificant. For combi, tion gases with
y of the order of 1.2-1.23, one should therefore add 75-80 per cent of the A
nozzle volume to the combustion chamber volume in calculating the
corrected residence time.

It should be noticed, however, that the previous result is for the case of
isentropic oscillatiops which can at its best be roughly correct for cases in
which entropy oscillations are not too large. When the entropy oscillation
is taken into account, the solution of equation (B. 12) should be used in !E

- obtaining the factor b from which the factor 7 can be dete.rmined without
difficulty. P

-U-
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APPENDIX C

DISCUSSION OF EQUATION (2.04.09)
IN the plane (ra, P2) the left hand side of equation (2.04.09) representsa

hyperbola with centre at the point (0, -2JIE) and a vertical asymptote

coincidirg with th, axis of the ordinates and the second asymptote with
slope J2, as shown in Figure 64. The only branch of the hyperbola with a
physical meaning is the upper branch, tangent to the axis Vt, = 0 at the
point (1EJ, 0).

The right hand side of equation (2.04.09) represents a rectangular
hyperbola with a horizontal asymptote at P 2 = -1 and a vertical asymptote

V<0 W•>0

the kft Pd side of equation (2O.009)

I -:

at 0 = 2n - 1. Thus for n < I the vertical asymptote lies in the region
of negative 0; for n > ,, in the region of positive 0 2 ; and for n-- i:
coincidm with the axis 0 = 0. The solutions of equation (2.04.09) are
given by the intersections of the hyperbola of Figre 64 with those of Figure 65.
Only those intersections that lie in the first quadrant with positive W2 and
712 correspond to real solutions of w and Wt. A simple inspection of Figures 64
and 65(a) shows that if n < ½ there are two such intersections when P is
sufficiently large and there are no such intersections when P is small enough.
For n > I Figures 64 and 65 show clearly that there is one, and only one, U
intersection no matter how large P is. The border case n = 4 presents the

behaviour of both cases, n > 4 and n < 4. In this case equation (2.04.09)
becomes one of second degree and can be solved explicitly I

W02J I 2j )2 + P(P l +i1'

(C.01)
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The following results are then obtained:

(a) if P(P + 1) > l E2 there is one, and only one, positive root W2. The
behaviour is the same as that for n> >.

(b) if I/E2 > P(P + 1) > (l/J) (I1E - l/4J), there are two positive roots
or none, depending upon 2J Z E.

(c) if finally P(P + 1) < (l/J) (lIE - 1/4J), there is no real root. Cases W
b and c show a behaviour similar to the case n < A.

ty2

OEM

-7-----------_-•--_--2--. '- -" '---- ------- :

Figure 65(a) Figure 65(b)

Figurz 65 (a), (b), (c). Sckzaic plot of
W as expremed by Lze right hand side of
equation (2.04.09) for: (a) i < . (b)

n=, (c) n> >

Figure 65(c)

For given values of n, P, E and J, once the corresponding real values of o,
"if any, are found from equation (2.04.09), and the corresponding sign of V
is determined, then equatioa (2.04.06) gives a corresponding set of values

___ for 6. From observation of Figures 8, 9 and 10 we see that when there are
* two roots for c, the larger root corresponds to the smaller values of 6 and

vice versa. If 6 takes one of these values, an oscillation with A = 0 and
w? = o is possible, that is, we are on the stability boundary. If, without any

change in n, P, E and J, the time lag is changed, then A must be different
from zero. It will be larger than zero (in one side of the boundary, cor-
responding to instability, and smaller than zero on the other side, where
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the combustion is stable. It is important to determine, in addition to the
S~stability boundary, the stable and the unstable sides. This can be done

nin the easiest way by differentiating equation (2.04.03) with respect to .-,
for constant n, P, E and J, with s = A + i2 and deriving the value of
dA/d• on the stability boundary. After manipulation it is found that
(dA/d7)a -0 is equal to an essentially positive quantity times the expression

(2n - 1) [(P + n)2 - n2] + (0o2 + 1 - 2n) 2(2J 2t0
2 + I - 2J/E)

Hence (d 4/df)a -0 has the same sign as this expression or, in the particular
case n = ½, as the quantity 2J2o2 + 1 - 2J/E.

Let us discuss in detail this particular case.- n = ½. Suppose first the
conditions are such that the solutions (C.01) are both positive. Then A
goes through zero as an increasing function of -? for the larger root (o2

(corresponding to the smaller 6, as already noticed), and as a decreasing
function of -? for the smailer root toi (corresponding to the larger 6). We
conclude that when there are two real roots w of equation (2.04.09) A is
positive for f lying between the two critical values 6 corresponding to the
two roots of wo. Taking into account the fact that 6 is multivalued, we find
that the behaviour of A as a function of i for fixed values of n, P, E and J
is schematically shown in Figure 66(a). The points A,, A2, A. are the values
of 6 corresponding to the larger root, to2; they correspond to the inter-
sections of the vertical line through .o = w02 with the proper branch of the
successive loops of Figure 9. Similarly the points B,, B 2, B3 correspond to
the smaller root wl. We see that for each value of h there is a well determined
range of instability. If one takes into account all the possible values of h,
the combustion is stable when a- is below the value corresponding to A,,
or when it is contained in the range BA 2. For the example of Figure 66(a),
there is only one such range of stability in addition to OA1. However, it is
clear that for other numerical conditions there can be more than ono, such
range (however, always a discrete number); or there can be none. It is
interesting to stress the fact that no matter what the magnitude of the
time lag and the order of the unstable range, the frequencies are within
the same range, between (o, and C2- What changes is only the number of
periods of oscillation h contained in the time lag. In Figure 66(a) we have
represented the case n = ½ with two roots of w. By changing the operating
or the design conditions (for instance d,.,:easing the pressure drop parameter
P, which means increasing the pmessute dr-'p), one can always reduce the :EL
interval between a), and 0)2, until the tom. roo:s come together [when the
hyperbolae of Figures 64 and 65(b) arc tangential to each other]. The
corresponding ranges of instability AB1, A. q2 , etc. are then reduced to
zero. If from now on we continue the change of conditions in the same
direction we find the case in which equation (2.04.09) has no real roots.
The corespending distribution of A is schematically represented in
Figure 66(b). A is now negative for all values of the time lag, and the
combustion is always stable. If the change in conditions from those cor-
responding to Figure 66(a) to those corresponding to Figure 66(b) is gradual,
the decrease of the unstable ranges will correspond to an increase in the
width and the number of the ranges of stability such as BA 2 ; until even-
tuallv all the stability ranges together will spread over all the possible value!.
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oft', and the condition of Figure 66(b) will be reached. When the values of
the parameters n, P, E and J of a given system are such that the situation

M I of Figur., 66(b) occurs, the system is always stable for arbitrary values of T.sj

We denote such systems as unconditionally stable. When the values of
n, P, E and J are such that the situation of Figure 66(a) occurs, the system 49

is stable only when the value of f is confined in a certain discrete number of

(a) n, C1/

, ! Ij*1A1  , *A A3 a. •,,A 8'=

1/atab/e ranges h=O ,7,2...

+~ ~ Q4 n+< 1 -/;+
No unsfo1 le /nge

~Sfa~k(c) n;ý-?

I -
11AI J+, /1,,A /

6* ~ 1 A 1 y A33 , j _

Figure 66. Quialitative diagram of the amplification cotfcie'nt A as afunction of the sensitive
time lag f of a liquid propellant rocket u'ith constant :-ate f¢ed

ranges of values. We designate such systems as conditionally stable. When
a system is unconditionally jtab!c, the hyperbolae of Figures 64 and 65 do
not intersect. Any change in the prameters of the system, which brings
"the two hyperbolae together to be gential to each other and eventually
to intersect, tends to decrease the 'unconditional stability' and vice versa.

The preceding discussion shows that in the case n = ½, it is always possible -T
to change the situation of Figure 66(a) to the one of Figure 66(b) by decre. .ing
the value of P so that the hyperbola of Figure 65(b) is shifted suffiriently to
the left so as not to touch the hyperbola (f Figure 64. It is also clear that
without any change in P, thus leaving the hyperbola of Figure 65(b) un-
changed, the saxm, results can be achieved by cha-iging the feeding system
parameters E and J owrough the displacement of the hyperbola of Figure 64.
For instance, a decrease in the value of E displaces the point of tangency
of the hyperbola with the axis of the abscissa to the right without changing
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the slope of the asymptote. Thus, decreasing E has a stabilizing effect.
The same is true for decreasing J. Therefore, if a system is unconditionally
stable, the unconditional stability is improved by decreasing E, J or P.
On the contrary, either when P increases, or when E or J or both increase,
the system can become marginally unconditionally stable when the two
hyperbolae become tangential to ea&. other. Any further small change of
the parameters in this direction will lead the hyperbolac to intersect -and
to define a number of discrete ranges of the values of f corresponding to
unstable operation of the system. This system is conditionally stable. It
will still remain stable if its time lag f is in the stable range but it will
become unstable if the time lag f of the system falls in the unstable ranges.

Let us consider the conditionally stable configuration. If E and J are
kept constant while P increases further (pressure drop decreases), the
discrete unstable ranges of .i grow in size, and gradually overlap each other
till all the discrete stable ranges disappear except the lowest stable range
OA, as shown in Figure 66(a). This lowest stable range OA, is kept decreasing
in size while P increases even when P(P + 1) becomes greater than I1Ex
corresponding to the situation of Figure 66(c). On the other hand decreasing
P tends to increase the stable ranges of f until the situation corresponding
to Figure 66(b) occurs. Alternatively if we keep P constant and let E or
J increase, each discrete unstable range of f like A4B. in Figure 66(a) is
shifted towards larger values of ÷ and each discrete range like A4B. grows
in size with B. shifted more than A.. As a result, while the discrete stable
ranges disappear-in succession as E or J increases, the lowest stable range
OA, increases in extent with A, moving towards larger f in contrast with
the situation of increasing P. Thus, if E or J increases fromý the value
corresponding to a marginally unconditionally stable configuration, discrete
unstable ranges of f appear and increase in extent with increasing E or J.
But after a certain critical magnitude of E or J is reached before all the
discrete stable ranges disappear, the total extent of the unstable range of -
will decrease with further increase of-E or J.

Now consider an unstable system with given P. if there is no discrete
T-_ stable range of + except OA1 for the given value of P, then conditional

stability can be obtained only by a suflicieutly large increase of E or J.
If there is a discrete stable range like BA,4. and if the time lag f of the system
lies in A1•B then conditional stability can be obtained-either by a sufficiently

V• •large inctease of E or J to make f lie in OA, or by a proper decrease of
E or J to makef lie in A1 B. If the decrecse of E or J is too big, the system
may become unstable again. If there are more than one discrete stable
ranges like B,4A, B,.3, etc., the time lag of the unstable system may lie in the
unstable range A48,. In this case, with a gradual increase of E and/or J,
the system will become stable at first and then become unstable with further
increase of E and/or J and ultimately with sufficiently large increase of
Eand/orJ' the system will become stable again. From Figures 9,64 and 65(b),
it can be observed that with n - f, the stable range OAtot the values off

- can be made indefinitely large by indefinitely increas;ng E and J. even
when the condition P(P + 1) > lI/'2 is reached corresponding to the
situation of Figwe 66(c). Therefore, for the cases with n = & and a given
value of P (corresponding to a given pressure drop Ap across the feed
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DISCUSSION OF EQUATION4 (2.04.09) APP. C

system) it is always possible to obtain stability by a sufficiently large increase
of E and J to enlarge the stable range OA so as to include the time lag f
of the system. But by sufficiently decreasing E and J,.unconditional stability
can also be obtained.

We have thus far discussed the case = n when the conditions are such
that there are two real roots of equation (2.04.09) or more. It has been
remarked that as under such circumstances the case n = j has a similar be-
havioar to the case n < J, one can extend all the results of the previous
discussion simply by continuity argument to the more general case of
n < J. It can be observed, howevtr, from Figures 64 and 65(a) or from
equadon (2.04.09) that for n < J there are either two solutions of w or
none, no matter what the value of P is. Therefore a condition like P(P + 1)

< IE2 for the existence of two real solutions of o) will not at.pear when

Let us now discuss the remaining nossibility for n-j quoted under
item a in the discussion following equation (2.04.10); that is, the case
where there is only one positive solution for o& of equation (2.04.10) or_52
one real root w of equation (2.04.09). The real root of o clearly corresponds
to the upper sign of equation (2.04.10) in which case, the expression
2JWa + I - 2J!E is positive and therefore (dA/di:)A0.o > 0. Hence A
"goes through a single zero as an increasing function of f and the correspond-
ing schematic representation is as shown in Figure 66(c). It is clear that the
only stable range cf f is OA4 and that out of this range the oscillation is
always unstable. From Figures 64 and 65(c) we find that when n >Sthis is the only possible behaviour for any values of P and E while for the
case n this behaviour occurs only when P(P + 1) > l1E2 . Thus, for

these cases, the only interesting critical value 6 is the lowest one corre-
sponding to h = 0, and the only interesting loop of Figure 10 for n > I is
the lowest one. -Unconditional stability is therefore no longer possible for
n > 1. We observe that this behaviour is qualitatively very similar to the
one found for the case of intrinsic instability corresponding also to n > j.
This is not surprising because the case with constant injection rate where
the intrinsic instabiliiy is found, is included as the particular case E =0
in the more general case discussed in this section. The corresponding value
of W is -co, which corresponds to the lower limit of the inequality (2.04.08),
w = (2n - 1)'; that, is, the point of minimum o in Figure 10.

We shall thus concentrate our discussion on the lowest loop only in
Figure 10. The upper branch and the lower branch of this loop correspond
to different values of the system parameters E and J. For a given value of _

P and J if the elasticity parameter E increases from zero, Y' increases
algebraically but remains negative, and the value of 6 moves from the
value [1r - tan-'{(2n - 1)'i(l - n)}]/(2n - 1)i at the minimum value of
(o- = (2n - 1)i along the upper branch, as illustrated in Figure 10, towardsZ larger values of (o. Thus a small increase of E from E = 0 is stabilizing. M
But if E is kept increasing, 6 decreases after passing the maximura and a
further increase ofEis destabil;zing till the value ofE =J[Pa + 2nP+ 2n - 1]
is reached where•W = 0, andw• is at its maximum value. IfE stili increases
from this value, the point 6 bgins to move along the lower branch of the
loop toward smaller values of wo. Thus 6 increases with increasing E; that
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is, the effect of increasing E is again stabilizing. This qualitative trend
persists all the way for . approaching co, that is, when X is irfinite [equation
(2.02.09)] or p1 is constant [equation (2.02.02)]. This is a particulat case
of the more generad constant pressure system discussed in another section.
The value of IF for E =- oo is given by Jw which is always positive lying
on the lower branch with its actual position determined by the value
ofn, P and J It is only when J -> oo-that this end point coincides with the
point of minimum w.

The effect of increasing J from 0 to oo for given values of P and E is
similar except that when J = 0 the critical value of f is somewhere on the
upper branch with (a > (2n - 1)1 the value being again determined by
"the magnitudes of n, P and E.

"For given values of E and J, the effect of ix-cre'asing P or decreasing the
preslre drop across the feeding system can be investigated in a similar
way and is found to be in general destab'liziag except when E is very small
so that $- is large but negative.

It should be observed that for given values of n > I and a given value
of P, there is a maximum value of 6, as illustrated in Figure 10, corresponding
to a small value of E. If the value of i: of the system is bigger than this
maximum value of 6, the systcm is definitely unstable. Stability cannot be
achieved by any variations of E, or J, or both, but can only be achieved by
increasing the parameter P through the reduction of the actual pressure
drop in combination with proper changes in E and J. Or a different pro-
pellant with smAlcr values of n and f must be used under such circum-
stances. From another point of view, for a system with given values of P
and a > 4, the optimum combination of the elasticity and inertia of the
feeding system is to have the system operating at this point of maximum
6, corresponding to a certain small value of E. Any changes of E or J from
this condition make the system less stable.

Finally let us observe that when n < I it is always possible to make a
system unconditionally stable with a sufficiently small value of P. that
is, a sufficiently large pressure drop Aj across the feeding system. In fact
the inequality (2.04.08) shows that if P < I - 2n no real value of w can
exist, and therefore we are certainly in the case of Figure 66(b). Hence
SAfiff 4. 1/(1 - 2n) represents a sufficient stability criterion when
n < 1. However, we see immediately that when n approaches I it becomes
more and more difficult to satisfy this condition because of the exceedingly
large values of Afi required. When n > I no such sufficient stability
criterion can be found. In fact we have seen that systems with n> >
will become unstable if the time lag - of the system is above a certain
finite value of 6 for given pressure drop Af of the system no matter how
large the pressure may be.
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DISCUSSION OF EQUATION (2.05.07)

THE left hand side of equation (2.05.07) can be represented as a hyperbola
in the (02, 0') plane, as shown in Figure 67 and the right hand side by
rectangular hyperbolae schematically represented in Figures 68(a), (b) and
(c) for the three cases n < 1, n= ½, n > . From the comparison of
Figures 67 and 68(a) we see that when n < * there is always a real root w
of equation (2.05.07) in the region where 0 < 0, and there can be two

II
< I

0 
2

I '
I •,• '•"I-1 o ,t_.. . J ' a . - - a A z

Fig= 7. Sumatc plt of as exprtmedbytelfhadse
of equait (2.05o.7)

* additional real roots or none in the region 0 > 0, the appearance of these
two roots being favoured by a large value of P and by large values of E
and J. The same behaviour is found for n = I from the comparison of
Figures 67 and 68(b). Finally for n > j comparing Figures 67 and 68(c)
we see that here, too, one can find one or three roots w. However, when
there is one, this rc-:t is not necessarily on thL side 0 < 0. Moreover, there

i can be three roots for only some intermediate values of P, E and J. For
sufficiently small or large values of the three parameters there is only one
root. Following a method similar to the one used in the Appendix C one
can show that (dA/d:)a-o is positive for the smallest and largest roots,
and negative for the middle root when there are three roots, and that it.
is always positive when there is a single root. T"his result, when transferred
to the (A, i:) plane, gives the behaviour showr. in Figures 69(a), (b) and (c)
where, however, the curves corresponding to h = 1, 2, 3, etc., have not
been shown in order not to complicate the figure. Here again the larger
root ov. :orresponds to the smaller value of 6 and vice versa. Curve 69(a) W
shows the behaviour of A li: when there are three real roots to equation k
(2.05.07). This behavioLr can be found for all values of n, but more
commonly for n < I. There are two ranges of stability OA, and B1C1 for
h 0. From the combination of these ranges with those pertaining to
the higher integral values of h, it is seen that the stability range 0., is
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left unchanged but the other range B1C1 may be reduced or suppressed
by the unstable ranges pertaining to higher values of h*. When n < I
it is possible to change from the condition corresponding to Figure 69(a)
to the situation of Figure 69(b) by decreasing P (that is, increaskig 4fi)

A or E or J. The unstable range A,1B1 between the t-wo larger roots co is

a1 Rag 68. Sdiai . f0 str~
I ytetgthId of eqa to (20.7
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considered as belonging both to the constant pressure and to the constart
rate system. For instance, when we take J = co in a system with constant
pressure feed, the resulting formulae coincide exactly with those obtained

!L for J - 0 in the constant rate case. The infinite length of the feed lines is

Und./tt • t4

-~~ . (a) .f

o IISO* rangs -edu~

°I I"3'-
A A

Figre 69. Qualitiw diagram of tel am'p1mfkation coefficient A as a faiio of tw eseniie i
time lag f of a liquid propellant rocket with constant presmefad

"sufficient to produce a constant rate of supply tc the capacitance as in-an
earlier section. With J = oo the hyperbola of Figure 67 degenerates into
two straight lines and we see immediately that while the smaller root W
for n ,< I goes to zero with the corresponding 6 approaching 00, there
are only two significant real roots or none; and for n > j one and only one
root is always present.

Similarly the case E = 0 of the constant pressure system is identical with
the case E = oo of the constant rate system, discussed at the end of Appendix
C, and it is immediately checked that no matter what the value of n, there
is only one real root of (o. It is clear that the constant pressure case with
J = oo is represented for various E by the upper parts of Figures 11, 12 and
13, and with E = 0 for various J by the lower parts of these figures.

F Finaily we observe that the inequality (2.04.08) holds also for the constant
pressure case, and again the sufficient criterion of unconditional stability
Af/i = I. I/(l - 2n) holds for n < 1. We observe also that when n > O
we may obtain the best conditions of stability by making 0 positive and of
such magnitude that the representative point on the loop P = constant O
of Figure 10 lies neac the point of maximum 6. In this range the effect of
increasing Afi is reversed, like the constant rate system as analysed in
Appendix C.
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