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FOREWORD

- Tue authors would like to expréss their appreciation for the encouragement,
support and interest of the United States Air Force in making possible the
.preparation of this monograph as a national contribution to N.A.T.O.

The: theeretical work mentioned here stems from a broader interest
in the phenomena associated with ~ombustion instability in liquid pro-
pellant rocket motors, which forms the basis for a research programme
presently being carried out at Princeton University under the sponsorship
of the Bureau of Aeronautics, United States Navy.
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1
GENERAL CONSIDERATIONS

1.01, STATEMENT OF THF PROBLEM

EXPERIMENTAL observations shew thac the combustion in a vocket
combustion chamber operating with liquid propellants is never perfectly
sracoth. Even when the introduction of the propellants through the injectors
and the exhaust of the burnt gases through the nozzle are carefully designed,
in order to obtain steady conditions, a certain amount of non-steadiness is
always present, as is deduced from observation of the pressure recorded at any
location in the chamber. Similar fluctuations of temperature, velocity,
composition, etc., can also be assumed, even in the absence of direct indica-
tions, It is impossible to decide at present how much of this non-steadiness is
due to_pure fluid dynamic causes generating turbulence, and how much to
the combustion processes themselves. What is certain is that an extremely
turbulent condition is always present in the chamber, and is probably the
cause for the intensity of the noise produced by the rocket operation, in
accordance with theoryl. The amplitude of the fluctuations is different for
different motors and, in the same motor, for different operating conditions,
When the fluctuations are small, the combustion is said te be smooth, and
when they are large it is said to be rough; but these terms have no precise
definition.

The results of combustion roughness on the operation of the rocket can be
very different. In certain cases a considerable amount of roughness does.not
prevent successful operation and practical use of the rocket. -In others very
detrimental -effects are produred, such as severe vibrations or interference
with the controls and safety devices, mechanical failure of parts of the rocket
or of the accessory systems, a.d finally, thermal failure (bura out) of some
part of the internal rocket walls. It is the occurrence of these detrimental
effects, and their importance in determining the life and the operating
characteristics of a rocket system, that makes it necessary to gain some under-
standing of the underlying processes. A possible line of attack would be to
describe in detail the phenomenological aspects of the question, trying to
systematize the experimental information in order to derive general results,
Leaving the detailed description following this inductive approach to
another monograph of this series?, we shall use a more deductive one. In
other werds, we shail make use of our present knowledge of the combustion
process, even if only qualitative, with the following objectives:

(a) to establish a rational explanation for the existence of a detrimental and
of a non-detrimental type of rough combustion

{b) to distinguish a number of mechanisms which may be responsible for

the appearance of the detrimental type

(¢) to give for some of these mechanisms plausible quantitative formulaticns

(d) to analyse in detail the resulss of the theoretical developments.
Ttem a of our programme is discussed briefly on a purely qualitative basis in
Sections 1.02 to 1.05. Sections 1.06 to 1.10 deal with item & suggesting and
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1.02 GEMERAT. CONSIDZRATIONS

discussing qualitatively a few basic mechanisms without entering into any
analytical development. In Section 1.11 a quantitative relationship is
established as a working tool for the theoretical treatment of the different

- mechanisms (item ¢). The rest-of the monograph is entirely devoted to the

development of the theory and discussion of results (item d).

1,02, Tue CompusTioN Procsss

In order to be able t¢ understand the reasons for the different behaviour of
the combustion process in different cases it is necessary to discuss briefly how,
in fact, combustion of one or iwo liquid propellants takes place. The
process starts with the injection of the propellants, brought through an appro-
priate feeding system from the tanks to the injector, where a pressure excess
exists with respect to the chamber pressure. The puipose of the injector is to
make use of the pressure drop through the injection ports for the conditioning
of the propellants for combustion. The requirements are different for
different categories of propellants. In monopropéllant systems the decompo-
sition of the propellant is produced only by the contact with high temperature
gascs producéd prciously. It is therefore necessary to obtain:

(1) alarge surface of contact between the liquid and the gases

(2) a convenient proportion between the mass of the propellant and the

mass of the hot gases surrounding it

(3) a good renewal of the hot gases to activate surface exchanges.

Requirement I is satisfied through good atomization of the liquid,
requirement 2 through proper dispersion of the droplets in the gaseous mass,
and ‘requirement 3 through positive recirculation of the hot gases in the
atomization region.

In biprepellant systems a necessary preérequisite for any chemical reaction
to take place is the mixing of the two propellants. Therefore one must
obtain from the injection system: :

(4) a fast, as uniform as possible, mixing between the two propellants.

The fulfilment of this requirement would be virtually sufficient for
seli-reacting propellants (hypergolic propellants or monopropeliant and
liquid catalyser). For non-hypergolic propellants, however, mixing is not a
sufficient condition and combustion must again, as for the monopropeilant,
case, be activated by exchanges with the hot gases; thus the injjector has
still to fulfil the requirements from 1 to 3 in addition to requirement 4. The
same is likely to be true for most of the systems using hypergolic propellants.
Only during ignition do such systems generally rely on the reactivity of the
propellants alone, and once ignition is .obtained such systems operate
substantially as other bipropellant systems, though in improved conditions.
There are of course other important requirements of the injection system,
but they have no direct connection with the combustion process.

If we follow an element of propeliant (monopropellant case), or two cle-
ments of propellants destined to react together later (bipropeliant case), from
the moment of injection into the combustion chamber to the total conversion
into the final products of combustion, the element will describe a more or
less complicated path during which processes such as atomization, heating,
vaporization, diffusion and turbulent mixing, and chemical reactions take
place in an intricate way. The chemical reactions are generally important

2
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TIME LAG AND SPACE LAG ' -1.03

only in the last stages, after the propellants have been properly conditioned,
The evolution of the substance from the initial conditions of the propellants
to the final conditions of the burnt gases is gradual. A quantitative descrip-
tion of the evolution would require a detailed knowledge of all the inter-
mediate processes. This is impossible at present. However, an approximate
description can be obtairied, based on the consideration that the most
important changes are produced by the chemicai reactions and therefore
only toward the end of the evolution. The well known exponential effect of
temperature on the rates of reaction will tend to accentuate this effect in the

Figure 1. Schematic diagram
of enrigy release or volume of
an elemen: versus time

Approximaltion
- Monopropellon! . =
or well mired
bjpropelionts

Yoiume of an element
or enerqy release

7 \Poorly mirecr
bipropeliants

Time iag

monopropellant or in the well mixed bipropellant system, while the effect
will be less sharp if mixing is still incomplete in the last stages of the evolu-
tion. Therefore if we were able to plot a certain representative quantity like
energy release, or voluine of the element, versus-the time elapsed from the
injection instant, the result would appear as shown by Figure 1.

1.03. Tive LAac Anp Space Lac

The approximation to be taken is now evident. It consists of replacing the
gradual evolution by a discontinuous process, in which the element does not
produce any appreciable energy release or volume increase up to a certain
time, whereupon it is suddenly transformed into the final products of reaction.
In this way the impossible task of describing the combustion process through
the quantitative knowledge of its intermediate histery i< made much simpler
because the only quantity one needs to know for the timewise description of
the combustion is the time clapsed between the injection and the sudden,
conversion into hot gases, that is the time lag.

If one is interested in the spacewise description of the combustion the time
lag must be replaced by a space lag, a vectorial quantity indicating the
location of the chamber where the sudden transformation of the element con-
sidered into hot gases takes place. Of course the space lag can be related to
the time lag if the vectorial velocities of the elements are known during the
time lag itsclf. It is clear, however, that the lack of indication about these

velocities can be completely replaced by the iadependent knowledge of both -

time lag and space lag, the two quantities being, in principle, susceptible of
3
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1.03 GENERAL CONSIDERATIONS

scparate experimental determination. A very convenient consequence of the
approximation introduced is that the propellant elements are present in the
ci:amber either in the liquid form, with negligible volume and negligible
contribution to the properties of the gases filling the chamber, or in the form
of final products of complete combustion, It follows that the chamber can be
considered to be filled only with burnt gases, through which liquid droplets
are travelling without affecting the properties of the gases to any appreciak:le
extert.

How closely this approximation represents the actual situation depends
probably on the particular case under consideration. If in the case con-
sidered the propellants stay mainly in liquid frrm during most of the time lag,
and vapours or other intermediate gaseous pruducts have a very short lifetime
and give place nearly immediately to the combustion products, then the
approximation can be quite good. In the opposite case, when the propeliants
are vaporized early and remain in gaseous form during most of the time lag,
the assumption that the gases present in the chamber are only the final
product of combustion may introduce noticeable errors in the evaluation of
the mean properties of the gases filling the chamber. Nevertheless, the fact
that at present there is no way of predicting quantitatively the real process of
evolution, makes it necessary te accept also in this case the approximate
description of the process. Generally, the frequencies of fongitudinal oscilla-
tions measured in efficiently operating rockets are below the so-called
organ-pipe frequencies computed from the sound velocity in the burnt gases.
This fact has been interpreted as a proof that the temperature of the gases

~decreases considerably, when going from the nozzle to the injector end.

huwever, it will be shown in Chapter 3 that considerable departures from
the organ-pipe frequencies toward lower values are produced by the simple
presence of a de Laval nozzle. These departures may justify the observed
decrease in frequency without having to accept a decrease in mean tempera-
ture of the gases in efficient rockets. ] :

We are now-ablé to describe auantitatively the whole process of combustion

"in a combustion chamber by specifying the proper time lag and tlie space lag
of every eiement of propellant injected at any location of the injector.
Generally ti se two quantities are different for different elements and they
can be spread in a smaller or larger range; the case in which one or the other
quantity has the same value for all elements must be considered only as an
ideal limiting case. In agreement with the approximation we have just
discussed, the combustion chamber is filled only with the final product of
combustion and the presence of liquid propellants on their way from the
injection point te the location corresponding to the space lag can be ignored
except for the small correction of momentum exchanges as will be clear later.
If we neglect this momentum exchange, the points where *he sudden con-
version of the propellants into combustion gases is cffected, can be con-
sidered (in the acrodynamic sense) as sources of hot gases. It is clear that
the flow propertics in the combustion chamber are determined by the distri-
bution and intensity of these sources. If we assumed, for instance, that the
injection rates were independent of time, and that time and space lags were
constant too, the resulting intensity of the sources wouid also be independent
of time, This would result in a steady flow in the comoustion chamber and

4
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ROUGH COMBUSTION AND UNSTABLE COMBUSTION i.04

among other quantities, the local pressure would be perfectly constant. But
we have already mentioned the fact that such a perfectly smooth combustion
does not exist in: practice. Therefore one of the aforesaid assumptions must
be wrong. That is, the injection rate or the time lag or the space lag (or more
than one quantity at one time) must be non-steady.

1.04. Roucu ComBusTiON AND UnsTABLE COMBUSTION

In‘fact, the above conclusion is not tco surprising. Suppose for a moment
the injection rates are constant, a condition which can ideally be obtained
by appropriate design of the feeding and injection systems. The. physico-
chemical processes taking place during the time lag proceed at rates which
are more or less affected by such factors as pressure, temperature o the
gases and of the liquids, relative velocities and so on. If these factors are
changed, the rates change too and the time lag with them, faster rate,
resulting in shorter time lags. If the factors undergo fluctuations around
a mean value, the time lag for each propellant element is also a fluctuating
quantity. When, a1 a certain location, the time lag is, for instance, increasing,
the result is a dilution in time of the combustion process and hence a
decreased burning rate. On the contrary the burning rate is increased
when the time lag is decreasing. Therefore fluctuations of the rate-affecting
factors result in fluctuations of the burning rates, or in our simplified com-
bustion model, in fluctuations of the strength of the sources of hot gases,
even with constant injection rates. It is evident now that if we relieve this
Iast restriction, the variations of the injection rate will introducs addmonal
fluctuations in the burning rates or the strength of the sources.

On the other hand, the system consisting of the gases in the chamber, the
propeliant in the feeding system, and the mechanical parts of the chamber
and of the feeding system, is capable of nor-steady effects even in the absence
of non-steady effects in the process of combustion. Processes such as the
oscillations of the gases in the chamber, the liquids in the feeding system, or
the mechanical parts, can always be produced if properly cxcited. These
processes are generally distinguished by a characteristic time which cor-
responds to the period, if the process is periodic, and to some kind of
relaxation time if the process is aperiodic.

Now two conditions are po:sible2

(1) None of these processes is excited; the fluctuations in the chamber
are maintained by some internal effect related to the fluid dynamics of the
system, such as, for instance, some kind of flow instability of boundary layers
or shear flows, producing fluctuations of the same general character as in
crdinary turbulent flows. In this eventuality, the correldtion between
fluctuations at two different locations or instants vanishes as soon as the
space or time interval is not too small. Practically, the fluctuations at
onc point or instant are independent of those at different points or instants
and therefore have a random character. As a result the integrated effect
of the fliictuations on a finite extension of surface or time has a tendcncy to
vanish and therefore no additionai mechanical or thermal load is te be:
expected on the rocket and on the accessory systems, even when the fluctua-
tions have considerable amplitudes. This case corresponds therefore to
the non-detrimental type of rough combustion.
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-1.04 GENERAL CONSIDERATIONS

(2) One of the non-sicady processes of the system is excited. As a résult
of the excitation of this process, that can be called the coerdinating process,
organized oscillations of some of the rate-affecting factors or of the injection
rates are present, which ir turn result in organized oscillations of the burning
rates (or the source strengths). These provide the necessary exciting force
for the maintenance of the coordinating process itself. It is to be observed
that the effect produced on the bummg rate by the instantaneous departure
of one of the physical factors from its mean value is not felt immediately,
but is displaced in time and space due to the existence of the time and
the space lags. ‘The behaviour of such a systen: must present analogtcs
to the behaviour, of the ciosed loop systeuss with time delay considered in
servo control treatment. We know that these systems can be stable or
unstable depending on the specific conditions of the case under considera-
tion, The fundamental character of an unstable system is such that supposing

initially the system is running smoothly (which is-ideally possible from a
static point of view), any small disturbance applied, say, to the pressure
distribution in the chamber, has a tendency to amplify. Actually, its
amplitude would grow without limits if non-linear effects were not present
to limit the amplitude to a finite value. Therefore a necessary condition
for the excitement and maintenance of ‘the coordinating process is the
instavility of the system and it is proper to attribute to case 2 the name of
unstable combustion. On the other hand, the condition of case 1 can be called
stable no matter how large the random fluctuations of the physical factors
arc, because applied disturbances have a tendency to die without being
able to excite any coordiating process. It must be observed that the causes
that produce the random fluctuations are. present also ‘in unstable con-

ditions. ‘Therefore in unstable combustion random fluctuations-are super-
_posed on the oscillations -corresponding to the coordinating process. Thus
the fundamental difference between unstable and rough (but stablc) com-

bustion residés in the presence of these organized osullaﬂons, and-in the
fact that, because of the orgamzmg -effect of the coordinating process, a
well defined corrélation is. established between the fluctuations at two
different points or instants; no matter how large the space or time interval is.
When these organized oscillations are present the integrated cffect on a
finite surface or period can be different from zero with the result” that
increases in pressure forces, mechanical vibration levels, and thermal loadsare
to be expected. Thus we reach the important conclusion that the detrimental
type of rough combustion can be identified with unstable combustion.

In general, because of the selfamiplifying character of small oscillations
in unstable combustion, the amplitudé of the pressure fluctuations is
expected to be larger than thosc in cases of stable rough ccmbustion. How-
ever,.this is not necessarily true, and one can very well conceive an unstahle
condition where strong non-linear effects limit the amplitude at a dower .
Jevel thaxn that of other cases with stable bat very rough combustion. 1t is
therefore clear that the level of pressure fluctuations is not an objective
index for the discrimination between stable and unstable combustion, and
thercfore between safe and dangerous conditions. A more objective basis
is found in the presence of periodic oscillations with well defined frequencies,
or, in the casc when the roughness of combustion makes it difficult to

6




NON-LINEAR EFFECTS 1.05

detect such periodic oscillations if their amplitucic is not very large, in the
determination of. the correlatxon bctwccn pressures measured at different
wms.

| 05 I\on-:.mm ErrFeCTS

In the preceding discussion we have characterized the unstable combustion
by the property ‘that small d’sturbances are self-amplifying. This is what,
in analogy to other unstable systems, can be called linear instability, because
for very small disturbances all the effects are proportional to their causes

and the equations describing the system are of a linear type. However, one
must observe that if combustion is linearly unstable, small initial disturbances
are soon amplified to such an extent that important non-linear effects may
appear. -Among such effects we mention for éxample the fact that certain -
rates depcnd exponentially on temperature with the consequence that the
mean rate is larger than the rate corresponding to the mean temperature,
Another importart non:linear effect is the generation of shock waves from
the coalescence of compression waves in the combustion chamber. An
1mportant result of the presence of non-linear effects is that a system,
stable against smali disturbances, may become unstable when the amplitude
of the disturbance is increased above a certain limit. Below this limit any
disturbance would die out with time; but above this limit self-maiatained
oscillations are prodiucced. This is what, in analogy tc other systems, is
called non-linear instability. Its possibility is interesting for rocket operation
because if the non-lincar limit is not too low it is possiblc to avoid this kind
of combustion instability just through careful protection against functxonal
or accidental disturbances.. -

One- possible mechanism for non-linear instability can he conceived to
consist of a direct action of shock waves on the raies of chemical reactions.
If it is assumed, in-accordance ‘with some experimental indications™¥, that
a shock wave produces an- effect, -on chemical’ processes, larger than the
combined effects of the pressure and temperature increases through the
shock wave itself, then the interaction.between fluctuations in the chamber
and burning rates is emphasized when shock waves appear. The result of
this assumption-is ihat a system presenting stable combustion for small
disturbances may become unstable when the disturbance is large enough
to generate shock waves.

Though it is recognized thet non-lincar effects can be important, the
fact that their physical essence. is still obscure and that their analytical
treatment involves grait difficulties makes it necessary for the moment to
discount non-linearities in developing a theory. Therefore in the following
we shall consider only linear eflects, which can be treated through the
method of small perturbations. This mcans that the treatment will be
strictly applicable only to cases where the effects of instability are not so
strong as t6 produce large amplitude osciliations. In other- words; the
theory can be applied mainly to conditions of incipient instability and
therefore to the determ.nation of stability limits. As an a posteriori justifica-
tion we observe that linear treatment actually predicts the possibility of
unstable combustion in the observed ranges of frequency and that there
sceras to be a general qualitative agreement betwzen the theoretical pre-
dictions on stability limits and many experimental observations.
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1.06 GENERA®" CONSIDERATIONS

1.06. MecHANisMs OF UNsTABLE CoMmBUSTION: CHUGGING

In order to illustrate the considerations of Section 1.05 and to formulate a
quantitative treatment in a few representative cases, it is necessary to specify
closer plausible mechanisms for the production of seif-maintained oscillations
in a rocket. Let us consider a rocket in steady state operation. By steady
state we do not indicate here the absence of any fluctuations in the physical
quantities, but merely the steadiness of the average quantities; and in
eifect we know from the discussion of th= last sections that stable operation
with steady values of the average quantities is possible even with rough
combustion because the integrated effect of the random fluctuations en
large areas or volumes is zero. Suppose now that we produce artificially a
sudden increase of pressure in the combustion chamber, corresponding to
an excess of gas content of the chamber with respect te the steady state
content. Suppose also that the feeding system is designed in such a way
as to be insensitive to chamber pressure variations and that the ume lag
is unaffected by pressure. As a particular case, the time lag could be
negligibly small. This means that both the injection rate and the burning
‘rate will keep the same value they had before the application of the dis-
turbance. It is clear that the balance between burning rate and exhaust
rate-is disturbed, the latter now being too large. The excess of gas content
must therefore decrease with time and the pressure excess with it, until
eventually they Loth vanish and the steady state condition is re-established.
The actual process of adjustment is complicated by the presence of waves
" travelling back and forth in the combustion chamber, which introduce
non-uniformities in pressure and other physical quantities. However, for
ordinary rockets, with the exception of the extreme case of a throatless
" motor, the change in chamber pressure during the total time of propagation
- back and forth of-a wave is contained in narrow limits. Asa conscguence,
the amount of non-uniformity of the physical” quantities at any given
instant is small, and one obtains a sufficiently accurate description of the
process by neglecting the propagation time of the waves and assuming
uniform conditions in the chamber. The problem can be solved simply,
and results in an exponential -decay of the disturbance with time, dis-
tinguishéd by a characteristic time constant or chamber relaxation time,
Tor conventional systems the chamber relaxation time is generally between
one thousandth and one hundredth of a second, the wave propagation
time being generally several times smaller.

Let us nex: consider, as a second example, a simple monopropellant
rocket with feeding system comnsisting of a constant pressure tank, au injector,
and a connecting pipe. Suppose, for the sake of simplicity, that at every
instant the exhaust rate is exactly equal to the burning rate and to the
injection rate (these assuraptions being correct only for zero time lag and
zero chamber relaxation time). In steady state the pressure drop from the
tank to the chamber must he sufficient to provide the proper injection rate.
Suppose now a sudden increase of the flow in the feeding system is produced
artificially and the rates of injection, burning and exhaust also increase
instantaneously as postulatéed. The chamber pressure therefore also under-
goes an insiantancous increase and the pressure drop a decrease, which is
not compatible with the increased injection rate. Thus when the system is
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left to itself, the flow rate and the chamber pressure must gradually decrease
until eventually the steady state conditions are restored. Again the process.
is complicated by the presence of wave moving back and forih in the
propellant lines, which results in ne- aniform flow raies along the lines,
However, if the variation of the flow rate dunng the total time for propa-
gation of a wave back and forth in the line is- relatively siall, the mean
process of ad_)ustment is described with sufficient accuracy by ncglcctmg the
wave motion and assuming that the flow rate at-every instant is uniform at
2] sections, so- that- the propeilant moves as.a- smgle incompressible slug.
With- this approxmu.txon, sufficiently correct in many- cases, thc mean
process is again found to be an exponéntial decay of the flow rate excess
{at least for -perturbations small enough to prcscrvc the lu-canty), dis-
tinguished by a characteristic time constant, or line relaxation time.. .

For conventional feeding systems the line relaxation time is generally
of the same order as the chamber relaxation time. Howevcr, it can vary
independently of the latter and its magnitude can lic in a wider range.
Of course the assumptlons ‘of these two examples are not very realistic.
Howcvcr, the results give-an idea of the behaviour of more complicated
systems in the ideal case of vaaishing time lag.

"n all cases an artificially applied disturbance must decay with time,
aperiodically or penodlwlls. An exception may be provided by servo-
controlled feeding systems; in this case the flow system may be destabilized
by the presence of the servo contrél; and the amphﬁmtnon of small dis-
turbances  may be the result. With ‘the cxclusxon of .this_case, all rocket
systems would be stable if the time lags were zero. Despite the fact that
the -:lccay of distiirbance is not in_ general given by a sunplc exponential
factor, it is possible to derive for this ideal case an approximate rate of decay
orrelaxation time. This‘is of the same. order as the. larger of the previousty
defined chamber relaxation and line relaxation times, and- therefore
much longer ‘than the propagauon timie -of waves in the chamber, and
often also of the wave ‘propagation - time in - ‘the- propcllant lines. “Thus,
if the coridition is also-satisfied in-the general.case, the procéss of decay
can_be analysed neglecting the two-types of wave motion. The order of
magmtudc of the relaxation time for conventional systems.is between a few

riilliseconds and a few hundredths of a sccond, while the wave propagation
time in the chamber is gcncrally of the-order of onc millisecond or less.
The -wave propagation time in the lines can vary in a wider. range. Itis
also difficult to define a wave propagation time in complxmtcd feeding
systems because of the. hctcrogcncxty of the lines. Gencrally it is of the
order of a few milliseconds.

What is the result of introducing a finite combustion_ time lag? The
answer is the same as for other types of systems: the time lag has a de-
stabilizing effect. Thus if one increases-the magnitude o. the time lag, a
system with aperiodic decay of disturbances will become: osclllatory and
damped; and eventually ‘the damping rate can. changc its sign and the

system can become unstable. That this final condition is pomble can'be

shown on a purely qualitative basis through the followmg veasoning. Sup-
pose a system with a constent pressiire supply is working in oscillatory con-
ditions, so ‘that the chamber pressure ‘oscillates around the mean value.

9.
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1.06 GENERAL CONSIDERATIONS

As a result the pressure drop also oscillates, going through a minimum when
the chamber pressure is maximum and vice versa, The injection rate will
also be affected with a certain delay, of the order of the line relaxatiun
time, and the burning rate will follow the injection rate with a delay equal
to the time lag, supposed, for simplicity, to be the same for all propellant
clemenis: Thus the time phase between the minimum of the burning rate
and the maximum of the chamber pressure is approximately equal to the
sum of the line relaxation time and the combustion time lag,

Oscillations of

| )
i | ,

’ Chambw - /-\‘ A

- pressure l\/

t

]

|
Injection - A -
pressure . H { t
drop : ;\/:

' !
Inpectiim Ol |
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Burning
rofe

¢ Figure 2. Schematic diagram

of the rarious oscillating quan-
v tities versus time with constant
time lag

[ﬁ'ech‘f
¥ g ot

i:=Line relexation time
¥ =Combusiion time log
O, Chomber relaraficn fime

On the other hand, the effect of burning rate oscillations is felt in the
chamber with a delay of the order of the charaber relaxation time. Therefore
if the sum of the two relaxation times and the combustion time lag is
approximately equal to a half period of oscillation, the decreased contri-
bution of combustion to the chamber pressure resulting from a maximum
in the chamber pressure will be felt when the chamber pressure goes through
a minimum and vice versa. The conditions for self-amplification of the
oscillations are thus created. Figwe 2-shows schematically the relative
situation of the oscillations of the various quantities in accordance with the
foregoing discussion.

From this approximate consideration, not only is an unstable situation
seen -to be possible, but also an approximate condition for instability is
obtained. This appreximate condition of instability is that the sum of
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ANCTHER MECHANISM FOR CHUGGING 7 107

the relaxation time of the system plus the combustion time lag must be of
the order of half a pcnod of oscillation. We shall sec in Chaptcr 2 that-a
more accurate quarititative expression of thxs time condition is essential in-the
theory of unstable combustion.

We have now demonstrated the first mechanism for unstable combustion,
in which the coordinating prozess consists of the relaxation process of the
system, through oscillations of the injection rate and thetefore of the burning
rate. This mechanism is not only practically -important because it occurs
frequently, but is also historically important because it was the first to
be recognized as possible in 1942 by ven Kidrmin and his group, and also
the first to be subject to analytical treatment>?. The, corresponding range
of frequencies can be estimated from the time condition. If the time lag
is small, compared with the system relaxation time, the system is stable.
Therefore, in order to have unstable combustion, the time lag must be at
least of the same order as the system reiaxation time. In which case, from the
time condition, we see that the period of. the oscillation must be around -
four times the time lag; and both are of the order of the relaxation time,
If, on the other hand, thé relaxation time is small compared with the time
lag, the period of oscillation is approximately double the time lag and both
are larger than the relaxation time. Supposing that the time lag is around
5 msec (which gives the correct order of magnitude), the resulting frequencics
are of the order of 50-100 c/s. Combustion instability with frcqucncits of
this order is generally called, in the language of rocket enginéering, chugging,
or low frequency mstabxhty

1.07. AnotHER MechnaNisM FOR CHUGGING
An alternative mechanism for the production of chugging®, independent
of the injection process, is based on the fact, alrcady discussed in-Section 1.04,
that the time lag under oscillating conditions is also an oscﬂlatmg quantity. -

* Suppase-that the essential factors affecting the rates of the processes during

the time lag are the pressure and thie témperature, and that the. temperature
oscillations are correlated with the pressure-oscillations. Since it is certain
that in steady state an increase in pressure produces a decrease in time lag,
the same will be true for non-steady conditions. That is, the time lag is
shorter than its mean value when the pressure (averaged during the time lag
itself) is above its mean value, and vice versa. The way of averaging the
pressures during the time lag will be discussed later; but on purely quali-
tative grounds, we can say that if the pressure is oscillating, the time lag goes
through a minimum when the pressure is around a maximum during the
time lag and vice versa. This is illustrated in Figure 3, where, again, the
same time lag is assumed for all propeliant elements. If the injcctiori rate
is constant, and the time lag is closc to a minimum or a maximum, the
conditions will be close to those obtained for constant time lag, and therefore
the departure of the burning rate from its mean value will be zero. On the
other hand, if the time lag is increasing or decreasing, there is a dilution or
concentration of combustion. Therefore the burning rate goes through a
maximum when the rate of decrease of the time lag is a maximum, and
through a minimum when the rate of increase is 2 maximum. Thus the
resulting burning raic oscillations must lag a quarter period behind the

11
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* 107 GENERAL CONSIDERATIONS
3 . time lag oscillations, as shown in Figure 3. Finally the effect produced on -
— i the chamber pressure by the oscillations of the burning rate is felt with a :
: 3 delay of the order of the chamber relaxation time. If this effect is in phase L.
i with the chamber pressure oscillations, as in Figure 3, the most favourable N 3 :
é ~ conditions for self-amplification are created. Again, the time condition can T
P be expressed in a similar way to the one discussed before, and if the time . L §
lag is given the same value of a few milliseconds, the resulting range of S
‘ frequencies is the same as before. S
i Oscillations of =
e - S% - Chamber . . i o
- %\?% | _ pressure ) i ¢ £ g
A ’ ‘ | '
. S B { !
—: ‘E %‘E} ! l 1
E S /g i ¢
B v % i \/ -
3 i Figure 3. Schematic diagram
4 r—-r—-! 1 | of the various oscillating quan-
- 7 | { . tities versus sime with rariable
s Burning ' /\ time lag
’ refe ] 1 ; T e
- E I\:*/ ' \
—! - 1
_ :03 ;'— {
co : .o
Effect of ot i N
B i 6yrn/byr;af,-‘ R/; \t . .
: A3 “ ?‘E - %f!mriod L—; 7 l :
1 § F=Com3ustion time lag
3 1 : OFChamber reloxotion fime
: 3 We consider that chugging can be produced independently of the feeding
FEn . system characteristics. The coordinating process for this type of instability,
- ; that has been called intrinsic instability, resides in the chamber rclaxation
B process through the action of the oscillations of the physical factors on the
5 i g:% burning rate. The mechanisms described thus far, for the production of
: R instability, are distinct; however, since they are-characterized by com:
§ = parable frequency conditions they can also be present simuitancously, each

one reinforcing the other. It is to be expected, for instance, that a chamber
intrinsically unstable cannot be stabilized by the presence of a conventional
feeding system. However, through the appropriate use of servo controls
in the feeding system, one can think of producing stabilizing effects, a
possibility suggested by H. S. Tsiex?. All these questions will be subjected
to analysis in the following chapter, where the instability limits resulting
from both types of coordinating processes are determined, and Tsien’s idea
12
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of servo stabilization is shown possible, It must, however, be observed
that in order to provide an effective control of thls type, mechanical servo
controls must be made to work in the range of frequencies characterizing
chugging, that is, with mechanical time lags of the order of one hundredth
of a secorid at most, much shorter than ordinary mechanical lags, which
are around one tenth of a second. F. E. MareLE! has suggested that
servo stabilization can be obtained with a frequency of the servo control
equal to a subharmonic of the unstable frequency.

Of course, as we have already noticed, servo controls can bé destabilizing
as well as stabilizing. The corresponding range of frequency for ordinary
sefvo controls, with titne lags 2round one tenth of a second, results in oscil-
lations of frequencics below 10 cfs, and therefore is likely to be well distinct
from chugging, and practically unaffected by the combustion phenomenon.
For this reason, we think that this type of instability must be considered
separately from chugging. ‘

The same practical independence between the instabilities originatcd by
the two- types of coordinating processes, discussed in this and in the pre-
ceding section, is-to be expected in the following case. We have thus far
supposed that the time lags responsible for the two types are of the same
magnitude. However, in Section 1.11 we shall discuss the possxbxhty that
only one part of the total lag is dependent on the physxcal factors. in the
chamber. The remaining portion of the time lag is then prachcally un-
affected by changes of the physical factors. If this posslbxhty is accepted,
then considering again the case of intrinsic stabxhty (thhout varjations of the
injection rate) we sec immediately that the portion of the time lag which is
unaffected by changing conditions has no effect on the stability; and that
only the variable part of the time lag is important. Therefore the pefiod of
the oscillations for intrinsic instability can be much smallér than that for a

feeding system type of instability. If the magnitudes are sufficiently different’ —

from each other (as for instance if the variable part of the time lag were of one
or two thousandths compared with a total tirhe lag of five thousandths) then
the interaction between the two processes can become practlcally negligible.
At the same time the frequency of intrinsic instability would i increase, and

become closér to the frequency characteristic of wave motion in the lines-

and in the chamber. The assumption of neglecting wave motion eflects
becomes more questionable. Asa matter of fact above a certain frcqucncy the
wave motion can become essential, as will be discassed in the next sections.

- For this reason, and with the purpose of avoiding toe complicated com-
putations we have confined the analytical trcatment of Chapter 2 to the case
when ail of the time lag is affected by the physxcal factors. The effects of
the coordinating process discussed in this section and its interaction with
the feeding system in exciting instability are nagnified by this assumption.
The analytical resulés must therefore be considered :only as representative
of this limiting case.

1.08. MEecHANisMs OF UNsTABLE COMEUSTION: SCREAMING
Hitherto, in discussing low frequency instability we have never specified

the location of the chamber where particular elements of propellant burn.
Our discussion has only dealt with the time lags, but nat with the space
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1.08 GENERAL CONSIDERATIONS

lags. In other words, for the analysis of chugging it is not necessary to know
the source distribution in the chamber, but only the integrated value of all
sources. ‘This sxmphﬁcatxon is a direct conséquence of the assumption
that the wave propagation time in the chamber is ncghgxble, so that the
effect of the burning taking place at a given lozation is immediately trans-

. mitted throughout the chamber no matter where it happens. This is the

reason why the only condition given for the appearance of instability is a
time condition. ;

It is-evident that this sxmphﬁcatwn is no longer possible when the wave
propagation time cannot be neglected with respect to. the period of the
oscillations. In this case, contrary to the assumption of Sections 1.06 and
1.07, the local -variation-of physical factors during the wave -propagation

" time can bé large, with the result that non-uniformities of preéssure, tempera-

ture, etc. are present at fixed instants in the chamber. -Asa consequence of
the non-uniformity of the rate-affecting factors, the effect of their variation
on:the rates of burning (and on the source strengths) depends on the location
in the chamber where the propellants were when the rate bcgan to be
affectéd and the location where combustion takes place. It is therefore
necessary to know, in the high frequency case, the spatial distributicn of
combustion.

Let us consider a definite location in the chamber and the propcllants
burning at this location in a system with fixed injection rates. And for sim-
plicity, let us suppose that the propellants have been at this location during
all-of the time lag instead:of moving. Then-wé see that we have, locally,
‘the same situation we have discussed for the whole chamber in the case of
intrinsic instability. Thus if a pressure oscillation with a definitc frequency
is present at the locatxon consxdcrcd oscxllauons in. ﬂxc - burning rate are.

dlately found: that xf the time- lag i is very short comparcd thh the penod
the oscillations ‘of the ‘burning rate are in quadraturé with those of the
pressure and therefore the system is stable. But if the timé¢ lag (which is
supposed to be the-same for all. propellant elements) is equal te a half

period, and the effects of pressure on the rate of the procésses are uniformly

distributed dunng the time lzg, then the two oscillations are in phase, so
that thé optimum conditions for self-amplification and instability are
created.

Thus far the frequency of the oscillations has been taken arbitrarily. - How-
ever, it is clear that the effect of the establishment of the self-amplification

_conditions is maximum if the chamber is close to resonant conditions, that

is, if the frequency is close to the frequéncy of one of the natural modes of
oscillation of the gases in the chamber considered without effects of com-
bustion. The time condiiion for this case is therefore that the time iag
must beé close to the half period of one of the natiiral modes. Naturaily, as
in the case of intrinsic instability, if only one part of the time lag is affected
by variation of the physical factors, only. that part of the time lag must
satisfy this time condition. The constant part of the time lag does riot
influence the phenomenon, because we have assumed here that the rate of
injection is unaffected by pressure oscillations, However, the same result
must be true in the more gcncral case of a feeding system sensitive to pressure

4 -
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vanatxons, provided ‘the frequency is suﬂiclcntly large so that -the- pcrxod
is much shortér than the line relaxation time, and provided-that the wave
motion is not excited in the propcllant lines. (We shallreturn-to the last
question in Section 1.10,) In fact, in both cases, the xnjechon rates are
practically unaffected by pressare oscxllattons, and the time -condition
remains approximately the same, that is, the tinie lag must be close toa
half period. This condition can be made more genéral when we consider
the possibility that more than one period is contained in the duration of
the time lag. Froma sunple graphxcal construction like the one of Figuré 3,
one finds that, supposing again for simplicity that the rates are affected
uniformly for the duration of the time lag (more cxactly for the vari-

able part of the time lag), the pressure’ oscillation is in phase with the -

burning rate oscillation if the time lag is 3, 5, 7 etc. times the half period.
Thereforz a more general statement of -the time condition is that the
time lag must-be an odd multipie of the half period of ore of the natural
modes,

A brief qualitative dxscussxon about the natural modes is necessary here.
As in Section 1.03 the chamber can be supposed approximately to be filled
with products of complete combustion, and the preserice of unburnt propel-
lants can be disregarded in first approximation. However, even with this
simple assumption, the gas is not iri the same condition as'in a closed chamber
without outflow, and thereforé the characteristics ‘of the natural modes
cannot-be the same as-in the com:spondmg problém of acoustics. The
difference is twofold. First, there is an- average flow of the gases superposed
on the oscillations; second, and more important, the gases are- dnscharged
from the chamber through a de Laval nozzle, The consequences of
- the first difference are mnot too xmportant, -provided .the ‘maximum flow
‘Mach number-in. the chamber is sufficiently below unity, a condition
generally satisfied in -rocket motors- ‘thh ‘the-éxception -of ‘the throatless
motor).. Howevér, the presence of a sonic nozzle may -have considerable
effects on the behaviour of the. chamber if the. frequencies are high, In
efféct it can be shown quantitatively (Appendxx .B) and understood quah-
tatively-that if the frequency of the-oscillation is very low, then the quasi-
steady flow through tlie nozzle foliows -approximately the laws of: steady
flow so that, for instance, the'Mach number at the nozzle entrance stays
constant (being détermined by the area ratio of the nozzle).

In these conditions the nozzle can be replaced by the condition of constant
Mach number at its entrance, and again for low subsonic values of the Mach
number the behaviour of the chamber does not differ substannally from the
acoustic case. These conditions are approximately satisfied in the iower
part of the range of frequencies characterizing chugging. But alrcady in
the higher part considerable departum can_be cbtained. And since the
departure increases with incréasing frequency, the acoustical approxi-
mation, for the frequencies proper of the natural modes, becomes unreliable,
In other words, * 1¢ propagation of waves aiong the nozzle and their re-
flection in the subsonic part modify the reaction of the nozzle to osciilating
conditions by changing the phase between pressure and velocity oscillation,
with the result-that work is necessary to maintain the oscillations; even if
the dissipative damping forces are negligible. Thcrcfore, due to the outflow
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1.08 GENERAL CONSIDERATIONS

of gases, cven in the absence of damping forces, a continucus supply of
work is necessary to maintain the oscillations, while in the corresponding
acoustical case no energy is needed. Despite this essential difference,
however, the nature and frequencies of the natural modes are not sub-
stantially affected, so that we can make use of the predictions of acoustical
theory in order to complete the picture. This can be done very easily for
cylindrical chambers {which is the most common case) where longitudinal
and transverse (radial and angular) modes can be distinguished, the former,
with gas properties uniform on each circular section of the cylinder, and
the latter, uniform on each line parallel to the axis. Also, combinations of
longitudinal and transverse modes are possible; actually they are particu-
larly important in a rocket chamber, since a purely transverse mode cannot
be generated, due to the presence of the nozzle and to the backward re-
flection of longitudinal waves when a transverse wave is present. This
effect also constitutes 2 difference from the purely acoustical case in a closed
cylindrical chamber terminated by plane walls,

A general feature of all modes, purely longitudinal or combined, is s the
presence of nodal surfaces on which the pressure does not oscillate. In the
case of the rockets, these nodal surfaces take a particular importance, because
it is clear that if the combustion processes (or the sources) are concentrated
in the vicinity of a nodai surface, then the corresponding mode cannot
become unstabie because it cannot generate the amount of work necessary
to maintain the oscillation. On the contrary, the larger the fraction of the
combustion concentrated in the vicinity of what we may call the antinodal
regions (where the amplitude of pressure oscillations is large), the larger
will be the variations of the burning rates in these regions and that of the
amount of work generated, and therefore the larger the tendency toward
instability. It is evident, therefore, that the largest probability for the
appearance of instability of a-given mode is for the ideal case of combustion
concentrated on the surface where the amplitude of pressure oscillations is
maximum. For purely longitudinal modes this means combustion con-
centrated on the antinodal sections of the given mode. It is clear now that
for the appearance of this type of instability, it is necessary to satisty not only
a time condition, concerning the time lags, but also a space condition con-
cerning the distribution of the combustion. The presence of a time and a
space requirement has been known for a long time in the problem of singing
Sflames¥% which presents some analogies to screaming in rockets, although
it is based on a different coordinating process. If both conditions are
fulfilled, a kind of instability is created, characterized by a frequency close
to the frequency of one of the natural modes, in which the coordinating
process resides in the natural process of oscillation through its action on the
burning rates. In rocket language it is recognized as high frequency instability,
or screaming. ‘This mechanism for production of high frequency instability
h: 3 been suggested by L, Crocco?® and studizd in detail by L. Crocco and
Sin-I CHENG!» 32 in the case of purely longltudmal osciilations. The
treatment is partly reproduced and generalized in Chapter 3 . this mono-
graph. The more complicated case of combined longitudinal and transverse
modes has not yet been treated analytically; this case is of pract -al interest
and is worth attempting at a future date.
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1.09. EFFECT ON STABILITY OF SPREADING THE COMBUSTION

In the discussions of the preceding sections, the time lag has been assumed
to be uniform for all propellant elements. Also, we have concluded that
high frequency instability of a given mode is most likely to appear when
combustion is concentrated on the antinodal surfaces. The ideal case,
where these two conditions are satisfied together, that is, where the com-
bustion is concentrated both in_time and space, is the inost unstable case,
because the time and space conditions are fulfilled in the most definite way.
in other words, in this case, all of the combustion process can be used in
generating, through oscillations, the maximum amount of work to overcome
the stabilizing forces. This result is true for both screaming and chugging;
in the latter case, the timewise concentration alone is effective.

If, however, the combustion is spread timewise and/or spacewise, even if
the time and space conditions are in-average-satisfied, only those frac-
tions of the combusiion processes which are close to individually fulfilling the
conditions will produce work. The further away the individual fractions
are from satisfying these conditions, the less work they will generate and
ultimately instead of producing they will absorb work and become
stabilizing. ) -

We conclude that for a given average value of the time lag, the larger
the range of time lags for the individual fractions of propellants, the more
stable is the combustion process, for both chugging and screaming. For
screaming, starting from the ideal case of combustion concentrated in the
antinodal region of a given mode, an unstable combustion can become stable
by spreading the combustion away from the antinodal region. Of course, the
opposite can be true for another mode, for which initially the combustion is
concentrated in a nodal region, and. for which the combustion can switch
from stable to unstable conditions when it spreads toward the antinodal
regions, Ifall the possible modes are considered together, the nodal regions
practically fill all the chamber, so that the most favourable distribution for
a given mode can be unfavourable for other modes. A priori, the best overall
situation is likely to be obtained when the combustion is uniformly distri-
buted in the chamber, and the time lags are also spread over the widest
possible range. In this case there will be a convenient balance of stabilizing
and destabilizing fractions for each mode. However, the possibility
must be kept in mind that certain modes can be more detrimental than
others; and also that the damping cffect due to the presence of the nozzle,
well established for longitudinai modes, might not be as strong for transverse
modes. In this case, some distributions other than uniform might be mo:..
advantageous in having a larger stabilizing effect on the more detrimental
or the less damped modes.

The quantitative study of the effect of spreading the combustion time-
wise or spacewise is given in Section 2.08 for chuggirig, and in Section 3.05
and the following for screaming, in the case of longitudinal oscillations.

1.10. OrHER MECHANISMS FOR UNsTABLE COMBUSTION
One can imagine several other coordinating processes which might produce
instability. Vortex shedding with determined frequencies!3, flow fluctua-
tions in the injectors!4, and in the spray of two impinging jets!3, combustion
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phenomena in .dies, oscillatory chemical kinetics, fow phenomena in
nozzles, and so on, may be distinguished by character stic times different
from cither the relaxation times or the period of the natural modes. There-
fore, they may be able to produce unstable conditions with frequencies
different from those of clugging and screaming. However, too little is
known about these processes, and any attempt to formulate, even quali-
tatively, a mechanism based on them would merely represent a guess without
substantial value. o
One interesting mechanism, related to the discussion of the preceding
sections, is the coordinating process of the wave motion in the propellant
lines and the consequent oscillation of the injection rate. This oscillation
produces a delayed oscillation in the burning rate and therefore in the
chamber pressure and the pressure at the injection port. The oscillation
; of pressure at the injection port finally closes the loop, by providing the
: necessary driving force for the maintenance of the oscillations in the lines,
: provided that the proper time condition is satisfied. The frequency dis- N
_ tinguishing this type of instability from other types is determined by the .
: wave propagation time in the lines, and of course this frequency can vary in S
; a wide range. Hence instability can be produced with frequencies inter-
' ) mediate between those of chugging and screaming. A particularly inter-
esting situation arises, however, when the frequency due to wave propagation
in the lines, falls in the same range as chugging or screaming frequencies,
in which zase the two types of instability will reinforce each other and
i particularly bad conditions are to be expected.
) The difficulty in developinz an analytical treatment of these - Tects, is
that generally the propellant fines cannot be represented realistically by a
simple connecting pipe of constant cross section between the tank or the :
) pumping system and the injector ports. The injector passages are generally }
quite complicated and the lines are interrupted by valves of several types 5
necessary for starting and shut-off. As a consequence of this fact, and the
fact that different parts of th internal walls have different elastic constants,
the oscillatory characteristics of the system are quite complex and it is:
difficult to estimate a length on which to base a fundamental frequency.
As a resuit of this complicated situation a theory has not yet been developed
for this kind of instability. Only a rudimentary consideration of the effect of
wave propagatior. in feed lines on low frequency oscillation has been pre-
sented!®. In principle, an analytical treatment should be possible and it
seems that efforts in this direction should be worthwhile.

We have already noticed that particularly strong effects are to be expected
when the frequency, characteristic of the prop. Hlant lines, coincides with
one of the screaming frequencies. Now we can add that it is sufficient that
this condition be satisfied for only ore of the characteristic frequencies of
the feeding system, and that due to the complicated design, it is very likely
that some frequencies fall in the range of screaming frequencies no matter
how long the entire lines may be. In particular, due :o the fact that the
sound velocity is of the same order in the propellants and in the burnt
gases, it is possible to have direct resonance between the propellant side
and the gas side of certain types of injectors in a direction parallel to the
injector face.

GENERAL CONSIDERATIONS
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EQUATIONS FOR THE TIME LAG AND THE SPACE LAG L1l

An interesting suygestion for a coordinating mechanism in bipropellant
systems, which would produce frequenciss in a range intermediate between
chugging and screaming is the following. In oscillating conditions, the
energy content of the products of combustion can also-oscillate because of
oscillations in the mixture ratio. Thus the temperature of the products, taken
at the mean pressure, will osciliate too, and so will the entropy. Tne entropy
excess “or deficiency moves with the products until it reackes the nozzle,
where it produces pressure waves travelling back to the injectors. A closed
loop i$ thus determined because th:e pressure oscillations at the injector may
entertain the mixture ratio oscillations. A theory based on this mechanism
has not yet been developed, but a rough calculation shows that the proper
frequencies should be higher than for chugging and lower than for screaming.
This mechanism is substantially the same as that suggested by K. BErman
and S. H. CHENEY, Jr'® to explain some of the phenomena they have
observed. Itsheuld be noticed, however, that Berman and Cheney stress the
dependence of this effect on the presence of shock waves and discontinuities
of temperature. In the opinion of the present authors these non-linear
phenomena are not essential for the mechanism.

An analogous mechanism could operate on monopropellant systems,
where the necessary entropy oscillations would result only from the oscilla-
tion of the pressure of combustios..

1.11. Equations ror THE TiMe LAG AND THE SpAce Lac

An analytical treatment of the phenomena qualitatively discussed in the
preceding sections requires that each individual process of the phenomenon
be given a quantitative formulation. Within the approximation of the
assumptions of Section 1.03, we have already seen how the phenomenonof
combustion <=1 be conveniently represented through a suitable distribution
of sources in steady state operation, after which the problem s practically
reduced to a problem of fluid dynamics.

The same would be true for non-steady conditions, if the strength of the
sources were unaffected. However, the opposite case is true. It is aecessary,
therefore, to know quantitaiively how the source distsibution, both in time
and space, is determined by the physical factors; in other words, how time
and space lags depend on the time and space history of the physical factors
themselves.

Among the physical factors that are likely to have the largest influence,
arc the pressure and temperature of the gases and the relative velocities
between the propellants and the gases. If one knew the details of the
processes taking place during the time lag, it would be possible to express
the rates of these processes at each point along the path of the propellants
as a function of the aforesaid physical factors, which are supposed to be
known at every instant and location. But we do not know the details of either
the processes or their rates; moreover, it is doubtful if the values of such
factors as temperature and relative velocities, as computed for our com-
bustion model, would represent consistently theactual values which determine
the rates, becausc the presence of vapour or other intermediate substances,
even if it does not substantially affect the fluid dynamics of the burnt
gases, probably has an important effect on the rate of the processes. For
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1.11 GENERAL CONSIDERATIONS

this reason, it is better not to describe separately the effects of the different
phyzical factors, but to make the simplifying assumption instead, that the
rate of the processes can be correlated with the values of the local pressure.
This does not mean that the other factors are assumed to exert negligible
influence on the rates, but merely that their variations, and therefore their
cffects, are correlated to thosc of the pressure. Mathematically this can
be expressed as follows®. The rate of the processes at a given location and
time are a function f (p, 7', Z . . .) of pressure, temperature, and any other
physical factor Z. If starting froin a certain steady condition, where the
local values of these factors are §, T, Z we apply small perturbations p’,
T*, Z', the new process rate wiil be -
_ _ .of , of s of |
fp, T,Z2..)=fpT.2..)+p a[’+T 8T+Z -
where the partial derivatives are computed at p=p, T =T, Z = Z etc.
If we assume that T and Z are correlated to p, so that T = T'(p) and

dz

. ar
Z = Z(p) we can write T’ = p' (—) 2 =p ( ) so that the
dpJp =5 dp)p =

preceding expression becomes

__ AT aT oF Az ot
f(P,T,Z...)_f(ﬁ,T,Z...)[l-}-pf(—a}--r-a;-a-i+a’-—a-z+...)]

where the barred quantity has to be evalvated at p =5, T = T, % = 2.

P (af dT of L dZ of
"=T .aﬁaaﬁaﬁz*"')
and let us call » the ‘interaction index’.

Then the instantaneous rate is given by

£§(p,T,2...)=1(p, T,Z...)[l +n%] vee(1.11.02)

which is exactly the same as if f was assumed to depend only on # and.to be
proportional to p". Thus in the assumpticn that the physical factors are
correlated we can disregard the explicit effects of all the factors except
that of the pressure and represent the relation between the rate and the
instantaneous local pressure as

... (1.11.01)

frpm ve o (1.11.03)

Then variations are related by cquaﬁo;x (1.11.02). To illustrate the idea
with some cxamples let us consider the case in which the variations of state
are isentropic, so that

p v P
and assume a heat transfer process from the gases to the droplets following
the law

F p™(T — T})
T, being the temperature of the droplets and m an exponent close to unity.
20
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EQUATIONS FOR THE TIME LAG AND THE SPACE LAG

We obtain fiom equation {1.11.01)

y—1 T y—1
n=m-+} ~— o m A —
'4 T-—T, : ¥

if 7,< 1. Therefore the- interaction index is likely to be slightly larger
than m, but still close to unity. On the other hand, for a chemical process,
we can assume for the rate 4 temperature dependence of the Arrhenius type

f~ p™ exp (—4|RT,)

where 4 represents an overall activation cnergy, and T, the effective
temperature in the reacting zone, different from 7. Assuming again an
isentropic relation between 7', and p we find

n=m+ [(y = )y} [4IRT,]

and we see that the interaction index can, in this case, be considerably
greater than m if T, is ir: the proper range, so that even if m is of the order
of unity, as seems to be likely for most of the practical combustion prucesses,
n may take values considerably larger. The purpose of these t-vo examples
is not to suggest the possibility of a precise determination of the index of inter-
action, because we do not have sufficient information, but merely to show
that for processes which are likely to be present and important in rocket
combustion, the index of interaction can be around unity and larger. They
show also that among the physical factors affecting the variations of the
rates, the pressure is probably the most important one because, for the
processes considered, m is likely to be an essential fraction of n. This justifies
to a certain extent the choice of the pressure as the single physical factor
with respect to which the interaction index is defined, instead of, for
instance, the temperature. It must be noticed, however, that the two
influences (or more than two)-could in principle bé separated if we knew
more about the processes involved.

The fact that the pressure alone has an important influence on the

processes is also supported by some experimental results. Itis known that the-

minimum volume . (or minimum L*), compatible with an efficient operation
of rockets, decreases with increasing pressure, and that in certain cases
its variation is roughly inversely proportional to the pressure. Since L*
is a measure of the residence time, and the minimum residence time i3
propottional to the time lag, it is concluded that in ceriain cases, the time
lag can be roughly inversely propertional to the pressure, and therefore
the rates of the processes leading to combustion are directly proportional
10 the pressure. Since the temperature of the burnt gases can be assumed
to be practically unaffected by changes in the pressure level, this is purely
a pressure effect. This deduction is substantiated by recent, more direct
preliminary measurements of the time lag'?. Such a marked effect of
the pressure on the burning rate is not proper only of the combustion in
rockets. Even in ordinary laminar flames the fact that flame velocities
are only very slightly affected by pressure!® indicates a mass burning rate
nearly proportional to pressure. Similarly the sclf-ignition iag of fuels
injected in atomized er vaporized form into a hot air stream has been found
to vary approximately as the inverse of the pressure!®.
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111 ' GENERAL CONSIDERATIONS j’li-"% ;

Equations (1.11.02) or {1.11.03) apply to a particular phase of the pro-
cesses taking place during the time lag. Of course we cannot expect that .
all of these processes are equally aflfected by variations in the physical -
factors. For instance such processes as atomization or mixing, that con-
stitute a necessary- pre-requisite for the other processes, are likely to be
practically unaffected by the physical conditions in the chamber and to
depend substantially only on the injector configuration. Thus if we could
follow in detail the history of a particular element of propellant on its path,
we would find that the interaction index changes along the path, starting
with negligible values immediately after injection, then increasing gradually
while the processes sensitive to physical conditiens begin taking over, and
finally staying around unity for the rest of the time lag. Again, it is not
possible to describe the process in detail with our present knowledge of
the combustion processes in rockets. However, we can replace it with a
plausible schematic process, which is apparent after the previous quaii- .
tative considerations. We can assume that the index of interaction is zero v 8
for a certain portion of the time lag, 7, that we shall call the insensitive < o
time lag, and discontinuous' hecomes equal to a value n {of order unity)
for the rest of the time lag, 7, which will be called the sensitive time lag.
The iotal time lag 7, is the sum of the two

=7+ ....(1.11.04)

Since the mixing process, which is essential in bipropellant rockets, is
abscnt in monepropellant rockets {(with thermal ignition, not with catalytic
ignition), we can reasonably predict that 7, will be relatively larger for
bipropellants, and smaller for monopropellants where the only delay,
prior to the thermal or chemical activation, is due to the time it takes to
atemize and disperse the prepellant through the burnt gases. In both
cases we-can expect a large influence of the injector configuration on 7,
By definition 7, is unaffected by variation of the physical factors, so that

7i=7." . ....(1.11.05)

at cach instant. On the contrary = varies because the rate of the processes
that determine its duration changes with the physical factors, The quanti-
tative relation between 7 and the physical factors can be derived as follows.
The transformation into burnt gases takes place only when the prepara-
tory processes have accumulated up to a well determined level, E,. This
can be expressed for an element which burns at the instant ¢ by the relation

o
1
=y
A
23
b
o
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t
f f(r') dt' = E, ...(1.11.06)
{—r

#
bt
L
]
Fs.
ad
#

the integral being evaluated following the motion of the given element
from the instant ¢’ = ¢ — 7, when the rates began to be affected by the
physical factors, to the instant of combustion ¢’ = ¢,

The rate f(¢') must be computed using the instantancous values of the
physical factors at zach instant ¢’ at the location where the clement was at
that instant. Let us denote the spatial coordinates of the position of the
clement at instant ¢’ by z,(¢'). Then

f(') = f{plz{') , )}, Tlzft'), ¢} ....(1.11.07)
22




EQUATIONS FOR THE TIME LAG AND THE SPACE 1LAG HR
In steady state equation (1.11.06) gives ‘
¢ .
f(¢)dt =E, ....(1.11.08)
-3

¢
where the variation of f is now due only to the possible spatial non-uni-
formity of the physical factors

f(¢') =E{Blat)?, Tla(t)] .. }

If the velocities of the liquid droplets and the gases in the rocket chamiber

are small compared with the sound velocity (which is generally true,
except-for throatless motors) the steady state values of physical factors
such as pressure and temperature are practically uniform in the chamber,
J = constant, T' = constant {see Chapter 3). In this case, neglecting the
action of other physical factors, we can write equation (1.11.08) in the form

f.7=f(51,..).7=E,

Let us again assume that p = § +p', T = T 41", the perturbations
p’s T, being small compared with §, T,...; we can write 7 =% - 7'
and we can also expect 7° to be small with respect to 7. Equations (1.11.06)
and (1.11.08) can be written as

¢ -+ ¢ _
“ £(¢) dr’ + _( f(:').dr=E¢=f f)dr ....(111.09)
Jt—F t—r t—¥F

Now since 7’ is a small quantity we can write after neglecting higher order
terms
{~F -
f () ar mx' f(t—F) e F(t—7) ....(L1LIO)
t—r
Using equations (1.11.02) and (1.11.10) and again neglecting higher order
quantities, equation (1.11.09) becomes

s +___m tFW), o g
S f(‘_ﬂj:_,ﬂl,)p(t)dt RENIRE

When the steady state conditions are practically uniform in the chamber,
£ = constant, and f (#') = constant = f (¢ — 7), so that

t
r—F= -—'.‘" Py dr ... (111.12)
By
Differentiation of equation (1.11.12) with respect to ¢ gives
3_: =) —pC—7) e (L11.13)

‘The corresponding expression for the non-uniform case can be found
by differentiating equation (1.11.11).
In general the perturbation p’ is a function of space and time so that
P& =—=¢xa, 1
Pt—7)=pxt—7t—7 eoeo(1.11.14)
23
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1.11 GEWERAL CONSIDERATIONS

However, as already observed in Section 1.08, if " changes so slowly that
its change during the wave propagation time can be neglected (low fre-
quency case), p’ is practically uniform at every instant throughout the
combustion chamber. In this case the space dependence disappears from
the relation (1.11.14) and equation (1.11.13 reduces to its simplest form,
suitable for the case of chugging. .

The quantity dr/d¢ plays an important role in the theory of stability
because it is closely related to the perturbations of the burning rate of a
given element. i

Consider the total rate 1i,(¢) of injection of propeilant at a given instart
#, and consider a small fraction of this rate, 3,(f), having at this instant
a total time lag 7,(t); the value of 7, being generally different for dif-
ferent fractions and variable with time for each fraction. For the fraction
under consideration the amount injected between ¢ and ¢ -+ dt is 3i,(t) dt.
This amount burns between £ + 7, and ¢ 4 7, + dt 4 dr,, that is, in the
interval dt + dr,. with the so far undetermined average burning rate
3 (t + ). Therefore we have .

. S (t) dt = 3, (L + 7) . (dt + d7p)

If instead of giving the instant of injection and the 7, pertaining to this
instant, we assign the instant of combustion and consider the value of 7,
corresponding to this instant, the preceding equation can be written, after
division by di, as ) :

i (1) = Sm,(t — 7,)-[1 — dr[di] ....(1.11.15)
where dr /dt has been replaced by the identical quantity dr/dt. In the
steady state 7 is constant and )
S, = & ....(1.11.16)

Subtracting (1.11.16} from (1.11.15) we find the relations hetween the
perturbations

[81i, (1) — 3R} = (B (¢ — 7)) — ;) — (d7]dt)dm(t — 7,)
«...(L11.17)
In writing this cquation 7, has been replaced by 7, because the corresponding
perturbation 7, — 7, introduces only higher order terms.

The equation (1.11.17) holds in general for any d7/di. In particular,
if the derivations of this section are used, dr/dt is given by equation (1.11.13).
The corresponding more elaborate formula for the ron-uniform case can
be obtained from equation (1.11.11).

If the injection rate is fixed, 3, = 3, equations (1.11.15) and (1.1 1.16)
can be written simply as

8, = 3, (1 — dv/dr) ....(1.11.18)

All the equations that have been derived so far can be written in terms
of the space variable instezd of the time variable, when the vector velocity
of the unburnt propellant element along its path is known. These equations
can be formulated for general three-dimensional flow in the combustion
champer. We shall treat in Chapter 3 only the case of one-dimensional flow
in connection with the stability of the purely longitudinal modes of high
frequency oscillations which is the only one treated in this monograph.
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CHUGGING ANALYSIS

(LOW FREQUENCY INSTABILITY)

Superscript *
Superscript /

List oF SymBoLs
indicates that the quantity is diménsional
indicates a small perturbation

Subscripts , and ; indicate respectively the real part and the imaginary

part of the quantity, if not otherwise stated

Subscripts , and , refer to oxidizer line and fuel line respectively

bar over a quantity indicates mean or steady state value
mass of burnt gas in combustion chamber

rate of burnt gas generation or burning rate in com-
bustion chamber

rate of burnt gas ejection out of combustion chamber
rate of injection of propellant into combustion chamber
steady state mass flow rate, the reference mass flow rate
fractional burning rate perturbation

fractional variation of burnt gas ejection

fractional variation of propeliant injection

pressure of gas in combustion chamber or local flow
pressure at stations indicated by the subscript
temperature of gas in combustion chamber

dimensional time

mean gas residence time in the chamber based on the
mass M, of burnt gas in the combustion chamber
dimensionless time #/0, or ¢/6, = ¢/0,(1 - b)

coeflicient of d/dz in the transfer function N, of the
ro - et nozzle as defined in equation (2.01.08)

c. rected gas residence time or relaxation time for
chamber-nozzle combination used as refzrence time
dimensional total time lag from instant of injection to
instant of combustion of a given propellant clement
dimensional insensitive part of total time lag
dimensional sensitive part of total time lag

7,= 7;+ r=1} [0, dimensionless total time lag

T = 7"‘lor
T = 7*%[0,

dimensionless insensitive part of the total time lag
dimensionless sensitive part of the total time lag

critical values of the dimensionless sensitive time lag
corresponding to neutral oscillations

critical value of insensitive time lag

pressure index of interaction between combustion pro-

cesses and oscillations in the combustion chamber
defined in equation (1.11.01)

fractional pressure perturbation
25
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CHUGGING ANALYSIS (LOW FREQUENCY I.'\ISTABIL!T\')

7
“n
d
" ()
F (d/dz)
G
CG
D
4
y .
4
4,
P
E
J
A#
Q*
A= A*0,
2= 0%,
s=d4 4+ 110
@
v
d
h .
r = 1 [m,
H==}(7—1)/(7+1)
g 1747,
T 27, df
vV
e

N =N, + ioN,
R+iS
£(7)

specific heat ratio ¢,fc, or adiabatic index of burnt gas
specific admittance ratio of neutral acoustical dis-
turbances in de Laval nozzle = ratio of local fractional
velocity variation to local fractional density variation
at the entrance of the nozzle

transfer function of mass flow through rocket nczzle

defined as the ratio of fractional mass flow rate variation
to fractional variatica of the impressed pressure

transfer function of feedback circuit for servo stabilization

flow capacitance of feed line

control capacitance of feedback circuit

constant of feed pump characteristics

equivalent spring constant of line capacitance

position of the equivalent concentrated capacitance C,

downstream of feed pump as fraction of feed line length

effective area of feed line

effective area of injector nozzle

pressure drop parameter of the feeding system

elasticity paramcter of the feeding system

inertia parameter of the feeding system

dimensional amplification coefficient

dimensional angular frequency

dimensionless amplification coefficient

dimensionless angular frequency

a compiex quamty which is the Laplace transformation

variable and is the root of the characteristic equation

for osciliations with exponential time dependence

dimensionless critical angular frequency of neutral

oscillation

flow reactance of ‘ecd line

flow susceptance of feed iine

integers including zero indicating successive higher

unstable ranges of the values of the sensitive time lag

= integral numbers of oscillation periods contained in

the sensitive time lag

mixture ratio or ratio of mass flow rate of oxidizer to

that of fuel

a parameter of steady state mixture ratio

a parameter representing the sensitivity of ths adiabatic

flame temperature to mixture ratio variation

combustion chamber volume

minimum value of n compatible with unstable oscillations

in a given system

overall transfer function of feeding system defined as g,/

= N exp (—iw9,) :

fractional amount of propellant elements having sen-

sitive-time lag << 7 with f (fqin) = 0 and f (Fnax) = 1
26 -
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EQUATION OF THE COMBUSTION CHAMBER 2.01

c magnification factor due to the effect of spreading the
g sensitive time lag defined in equation (2.08.06)
7, effective scnsitive time lag defined in equation (2.08.06)
d, critical value of 7, for neutral oscillation i

2.01. EquatioNn oF THE CoMBUsTION CHAMBER

THE actual situation in the combustion chamber is too complicated and
obscure to ailow analytical treatment. However, in agreement with the
discussion of Section 1.03 a satisfactory working model is obtaired by
neglecting the presence of the unburnt propellant elements until, aiier the
time lag has elapsed, they arc suddenly transformed into completely burnt
gases. The flow of the burnt gases in the chamber can be considered as the
flow of an ideal gas with distributed sources and determined by the laws of
conservation of mass, momentum and energy. Additional simplifications
are obtained if we assume that the Mach numbers up to the nozzle entrance
are sufficiently below unity so that, in steady stave, the pressure and the
temperature of the gases are practically constant throughout the chamber.
Moreover, in the range of low frequencies pertaining to chugging, the
propagation of the pressure waves can be supposed to be practically instan-
taneous. Thus, as already noticed, the following assumptions, fundamental
i for chugging, can be made:
; (a) The gas pressure is practically uniform throughout the combustion
ckamber at every instant and oscillates about the mean or steady state value
as a whole, Another simplifying assumption concerns the temperatures of
the gases. First, we can suppose that at the instant of generaticn, the burnt
gases have the same tcmperature irrespective of the particular conditions -
of combustion. This means that in the case of a monopropellant rocket we
neglect the effects of differences in heat transferred to the propellants
before combustion and the variation of dissociation with pressure; moreover,
in the bipropellant case, we assume constant mixture ratio (this ac_amption
is dropped in Section 2.07). Once the burnt gases are generated they
undergo changes in pressure and therefore in temperature. In order to
compute these changes, we should know at every instant for each fraction
of burnt gases the pressure under which they were generated. With some
simplifying assumptions, this can be done, and has been dune in Section
2.10, showing that under these assumptions the effects of these temperature
variations are of secondary importance. The effect would completely
vanish if the adiabatic index y were taken as unity; and the actual values
of y for rocket gases arc not far from unity. Therefore in order to simplify
the analysis and bring out the main features of chugging we can neglect
all temperature changes and make the following assumption:

(6) the temperature of the gases in the chamber is practically constant
and uniform irvespective of the pressure oscillations,

A last simplifying assumption: concerns the time lag, about which we
shall make the assumption that

(¢) the time lag is uniform, that is, it has the same value for all propellant
clements.
A As aiready noticed in Section 1.03, this must be considered only as an
ideal case, and the corresponding assumption will be dropped ia Sectien
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2,01 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

2.09. Assumption ¢ can be nade with respect to both the insensitive and
the sensitive time lags, and hence for the total time lag; or anly for the
sensitive time lag, when the insensitive time lag does not cnter into the
picture. It should be noted that this assumption does not imply that all
elements have the same space lag becausc their velocities can be widely
different.
The simplifications arising from these assumptions are as follows:
. Assumption « replaces completely the momentum equation, which therefore
does not need to be considered. Similarly assumption b takes the place of
the energy equation; moreover, with this assumption we do not need to
know the spacewise distribution of combustion. Also the timewise distri- -
bution of combustion can be ignored with the introduction of assumption .
With these assumptions, the dynamics of the gas system in the com-
busiion chamber is essentially governed by the balance of mass, that is,
the rate of burnt gas generation r,(f) must be equal to the sum of the rate
of sjection ,(f) of the gas out of the combustion chamber through the

<
v

23
3
P

: 5 d . <1 .
2 o nozzle and of the rate a-t-M, at which mass is being accumulated in the
3 o

& combustion chamber itself, i.e.

i

i ‘3:1(9

RN G AT N Drte

mm=mm+%mm ....(201.01)

Since the combustion chamber volum: is constant and the gas tem-
perature is assumed to be independent of gas pressure, M, (¢) is proportional
to the chamber pressure p(f). Thus the mass accumulation term becomes

M, d [1-)—(9] Iatroducing the following fractional variations of gas

. d—t ﬁ
pressure, burning rate and ejection rate over their respective steady state
values,
- i(f) — h n,(t) —
¢=£—Tp; M,:”_zb%__; ”¢r=!.n..’.£_)'§__. ....{2.01.02)

we can rewrite equation (2.01.01) as

8, dpjde -+ p(8) = pt) ....(2.01.03)

, where 0, = M, [ represents the gas residence time, that is, the time an
average burnt gas clement will spend in the combustion chamber in steady
operation before it enters the nozzle. In accordance with Section 1.05,
the fractional variations defined in equation (2.01.02) will be assumed small
in the following treatiment, and their products or powers will be neglected
as higher order small quantities. Equation (2.01.03) clearly indicates
that 6, is the proper characteristic time which can be used to reduce
equation (2.01.03) into dimensionless form. If u, vanishes and g, is equal
i to ¢ as will be clear later, equation (2.01.03) shows that 0, represents the
: chamber relaxation time. The average gas residence time is therefore one
of the fundamental constants characterizing the dynamics of the burnt gas
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s

in the combustion chamber in problems of low frequency combustion
stability. J). F. Gunper and D. R. FriIaNT® neglected the mass accumu-
lation term. As a result, they failed to notice the importance of this residence
time. In terms of the ‘characteristic length’ -L* and the ‘characteristic
exhaust velocity® ¢* that are more conventionally used in the field of rocket
engineering, this average gas residence time is easily shown to be

. _r#1

0 = Lrer _1( 2 71 L*
" RT, vy ?+l) "ot

where ¥ is the ratio of the mean specific heats of the combustion gas. It
should be noted that the total residence time of a propellant element in
the chamber in steady state is bigger than the gas residence time by the
total time lag 7% = 7% + 7* that elapses before the propellant is transformed
into hot gas. For convenience, dimensionless time and dimensionless total,
sensitive and insensitive, time lags are defined as

z=10,; +=7*6, T, =7F0, T =7,+7 ....(2.01.04)

Let us now censider the fractional variation y, of burnt gas generation
which, as already noticed, is complicated by the variation of the time lag.
At instant ¢, the propellant elements injected after the interval ¢t — 7
have not yet burned. Hence, considering the total amount burnt from
the beginning of the operation, ¢ == 0, to thc instant ¢ we can write

t t—~rf
I iy (') dt' = f m(t') dt’
(1} [}

where 7i,(t') is the rate of injection of propellants into the chamber at the
instant ¢’ and #i,(#') is the rate of burnt gas generation at the instant ¢'.
Differentiating with respect to ¢, we again gbtain equation (1.11.15)

() = (1 — dr¥/ds) . sig,(t — 7¥) ....(2.01.05)

The first factor of the right-hand side can be obtained from equation
(1.11.13), and can be expressed in dimensionless form as

d} dre .
I— b=l — =1 4alp) —pt—7)]  ...(20106)

Introducing in equation (2.01.05) the fractional variations p, = (i, — )/
and p; = (mi; — m)/m and 1 — d+*/dt from equation (2.01.06) we obtain
after lincarization

#(2) = plz — 7)) +nlo@@) —@(z—7)]  ....(2.0107)

where the dimensionless time has been introduced.

Next we consifer the fractional variation g, of gas ¢jection. The mass-
outflow from the combustion chamber through a given de Laval nozzle
with supersonic exit in steady state operation is directly proportional to
the chamber pressure and inversely proportional to the square root of
chamher temperature. For the case of very low frequency oscillations
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the flow through the nozzle may be considered as qaasi-steady in the
first approximation; that is, s, ~ pf4/T, where p and 7', are the in-
stantaneous gas pressure and gas temperature in the combustion chamber.
The quasi-steady assumption gives, for a small isentropic oscillation,
’ ’

B, =% — —;-17-; = }-:-;—;-} ¢ and the ratio between the fractional variations
of the fiow rate and of the pressure, that is, the nozzle transfer function, is
given by u./g = (y + 1)/2y. When T, is assumed to be constant 7, ~ p,
the quasi-steady argument gives g, = @ and the transfer function for the
nozzle u g =!. The quasi-steady assumption is, however, not quite
correct, especially when the length of the subsonic portion of the nozzle is
not too small. A better approximation can be obtained by applying non-
steady one-dimensional analysis to the flow in the nozzle (refs. 2 and % and
Appendix B). In this one-dimensional analysis, the ratio of small fractional
oscillations of the velocity to small fractional oscillations of the gas density
at the nozzle entrance can be determined. Extending the accepted termi-
nology of acoustics, this quar tity will be called the specific admittance ratio.
The admittance ratio for-the particular case of isentrapic fiow in a nozzle
with linear steady state velocity distribution in the subsonic part has been
calculated for the whole range of frequencies. For low frequency oscillations
and general velocity distribution the specific admittance ratio « can be
represented approximately by

1 .
4 5— + ik ....{2.01.08)

o=

where Q% is the angular frequency of the oscillations, and % is a propor-
tionality constant depending on the nozzle geometry. For isentropic flow
the nozzle transfer function is

For ordinary configurations and frequencies in the chugging range, the
imiaginary part of this expression does not substantially exceed a value of
0-20. We see, therefore, that the modulus of the transfer function in chugging
conditions is never appreciably different from {y 4 1)/2y which is the
quasi-steady value; but the phase can be quite significant. These results
were obtained for isentropic flow. In order to be consistent with the
assumption b of this section we modify the expression for N, so that for zero
frequency the transfer function is unity. Using the dimensionless angular
frequency £ instead of 2% we therefore write

N,=1+4ibQ ....{2.01.09)

where b = Q*kj2y is a function of the nozzle geometry which can be
computed explicily from equation (B.60). Finally we observe that the
analysis of the flow in the nozzle has been based on the assumption of purely
harmonic oscillations; that is, the previous expression for N, refers to
neutrzl oscillations. For near-neutral oscillaticns and frequencies in the
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chugging range, we shall write the nozzle transfer function in operational
form as follows

Be N = 4 . 1
L= X, (l+bdz) ...(201.10)

For neutral oscillations equation (2.01.10) reproduces the previous results.

Introducing equations (2.01.07) and (2.01.10) into equation (2.01.03),
we obtain a linear equation of mass conservation in dimensionless form
for the two fractional perturbations @ and g, including approximarcly the
effect of non-steadiness of the nozzle flow.

(1 +8) L) 1 o) = iz~ 7) + nlple) — @z~ 9] ... (2OLI)

This is the fundamental equation that governs the dynamics of gas flow in
the combustion chamber under the assumptions mentioned previously.
Equation (2.01.11) differs from a linear ordinary differential equation of
first order by the presence of the dependent variables with retarded argu-
ments {2 — 7} and (z — 7,). The insensitive time lag enters only in the
variation of the injection rate pu,. The characteristics of intrinsic stability
where the rate of injection of the propellant is constant, are therefore not
affected by the value of the insensitive time lag. If, on the contrary, the
injection rate is affected by the pressure oscillations, the insensitive time
lag will have an effect on combustion instability. The case where n =0
(no scnsitive time lag 7) and g, variable, has been considered by D. F.
Gunper and D. R. Friant$, M. YacuTER and WALDINGERS, and M. Sum-
MErFIELD?. The concept of sensitive time lag was introduced by L. Crocco®,
who also showed theoretically the possibility of unstable combustion even
with constant injection rate and gave it the name of ‘intrinsic instability’.
Several special cases with 7 £ 0, and u, variable have been analysed by
L. Crocco® and H. S. TsiEn®. The generalization including the phase
lead component of the nozzle transfer function is due to Sin-I CrENG®,
who showed that all the results of previous investigations concerning
chugging ca.-s can be easily modified to include the effect of the non-
steadiness of the nozzle flow without introducing any complication.

The relation between y; and ¢ is determined by the dynamics of the
feceding system. Therefore to complete the formulation for the analysis of
chugging we need an investigation into the dynamics of the feeding system.

2.02. EquatioN oF THE FEEDING SvsTEM, MONOPROPELLANT CASE
There are several types of more or less complicated feeding systeras. Here,
we shall consider systems where the pressurization is obtained by the use of
pumps powered by a servo-controlled motor. Such systems are the most
extensively used today in large thrust units, and they can include, as particular
cases, systems where the pressurization is due to gas pressure, as is common
in small units.

If the response of the servo-controlled motor is not very fast, as is the case
ordinarily, and if the inertia of the moving parts is not too small, one can, for
frequencies in the chugging range, suppose that the pumps are driven at
constant speced. Despite the great simplification achieved through this
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] 2.02 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

assumption, the dynamics of the feeding system is still quite complicated.
The propellants and the supply lines are not completely rigid but possess a
certain amount of elasticity, which can be represented by a distributed
capacitance responding to pressure variations, Gas bubbles cr parts with
less rigidity (like plastic seals) may introduce larger concentrated capaci-
tances. The distributed line capacitance and the inertia of the propellant
result in a finite speed of propagation of pressure disturbances in the lines.
As already ob-erved in Section 1.10, the analysis of the system with the
‘ consideration of the wave processes in the lines is made practically im-
possible by the presence of valves, bends and other connections. However,

Rt iah o DAL SRR R kB s e
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.  Amplifier

Signol pickup

Figure 4. Schematic diagram of Combustion
the feeding system of a mono- /['dmmta‘
propeliant  liquid rocket motor

with servo control. (By couriesy

! of the American Rocket Society) Nozzle

the wave processes can be disregarded if we make the assumption that the
corresponding characteristic frequencies are sufficiently higher than the
chugging frequency. In this case, we can represent a monopropellant
system schematically as shown in Figure 4. The clasticity of the propellants
: and of the line and the possible presence of gas bubbles and other concen-
: trated capacitances can be approximated by a single equivalent spring
loaded capacity C, located at a distance y/ downsircam of the tank outlet,
where [ is the entire length* of the feed line joining the tank to the injector.
, The location of the pump is unimportant provided it is close enough to
: : the tank. A variable capacitance C, controlied by feedback servo is intro-
£ . duced right next to the injector with a view toward the possibility of con-
2 Z trolling the combustion instability in the combustion chamber. The servo
t is activated by the signals picked up in the combustion chamber.
¥ ; For small perturbations the fractional variation of the flow rate over its
R steady state value is propcrtional! to the fractional variation of delivery
Z. pressure p, downstream of the pump
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! ® I the lines are not of constant cross section, £ and 5! must be considered as cquivalent
lengths and calculated as shown, for example, in references ® anc 5.
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EQUATION OF THE FEEDING SYSTEM, MONOPROPELLANT CASE  2.02

If, instead of the absolute delivery pressure, p, were the relative head of
the pump with respect to the tank conditions the proportionality constant
—D would coincide with the slope of the performance curve of the pump for
constant speed, with the relative values of the relative head plotted against
the relative values of the flow rate, both being unity at the steady-state
operation point where the slope is measured. In this case, D would represent
a characteristic constant of the pump at the design point. With the actual
meaning of p,, D depends somewhat on the tank conditions, but again it is
a constant for fixed tank pressure. When D = 0, the flow rate can change
while the delivery pressure stays constant, so that D = 0 represents the
case of gas-pressurization; when D = oo, the flow rate is constant despite
changes in line pressure, a condition which is characteristic of a constant rate
pump or of any other constant rate system, such as can be obtained with
cavitating Venturis3®, Intermediate values of D correspond to different types of
pumps or different operating points for the same pump. For conventional
centrifugal pumps, D is of the order of unity.

The capacity G, of the equivalent line capacitance varizs with the line
pressure f,. The equivalent spring constant y of the capacitance is defined
as the change in volume of the feed line produced by unit pressure rise in
the line. Ccnsidering the propzllant as incompressible, the difference of
the flow rates upstream and downstream of the capacitance is given as

o d
tho — iy = pot 21 -..(2.02.02)

where p, is the density of the propellant.
The instantanecous pressure drop in the feed line is due to the inertia of

the propellant and to the frictional loss. Both can be easily taken into
account® ?, However, since it is desirable to reduce the number of para-
meters in a general treatment like the present one, and since the dynamic
head in the feed line is usually much smaller than the pr.ssure drop across
the entire feeding system, the frictional loss is neglected and the pressure
drop in the line in unsteady operation is assumed to be due to the accelera-
tion of the flow only. Thus, for the feed line upstream of the equivalent line

capacitance, we have

—p, = ditg
p—n=22 ....(2.02.03)

where 4 is the cross sectional area of the feed line*. Similarly, between the
line capacitance and the control capacitance, we have

(1 — ) diy

b — = % ....(2.02.04)

* If the lines are not of constant cross section, 4 is the equivalent sectional arca used in
the determination of the equivalent lengths  and i,
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where p, is the pressure at the control capacitance immediately upstream
of the injector. The pressure drop across the injector is

be — p = Vg [ pod} ....[2,02.05)

where 4, is the effective orifice area of the injector. The inertia in the
injector passage can be taken into account in the inertia of the line by a
suitable increase of /. It is assumed that the injector walls are rigid enough
so that 4, is not affected by pressure variations. For steady state operation,

Bo— B = AP = 3fi¥poA? .. ..(2.02.06)

In unsteady state operation, i, differs from ri; by the rate of accumulation
of propellant in the control capacitance C,

ity — 1it; = dC,Idt ....(2.02.07)

The rate of variation of the control capacitance depends on the design of
the feedback circuit. The signal that is picked up from the combustion
chamber is assumed to be the pressure variation in the chamber. Discussion
of the detailed design of the feedback circuit and the difficulties of practical
realization is beyond the scope of the present treatment. We shall therefore
specify only the overall feedback transfer function of the entire circuit
without inquiring how and if it can be obtained in practice. The character-
istics of an ordinary feedback circuit can usually be described by a linear
algebraic relation between the input ¢, the output C, and their time deri-
vatives with constant coefficients. Thus we can usually define the transfer
function of the feedback circuit in dimensionless operational form as

Ml gt egs 9l

1 d\ _C
5 F(a_z) =/ ... (2.02.08)

Fiaeranes
I LRpalelY

: where F (d/dz) is the ratio of two polynomials of the differential operator d/dz.

; Equations (2.02.01)-(2.02.08) describe completely the dynamics of the

feeding system. These cight equations enable us to eliminate the following ;

seven quantities g, 1y, Po, 1, 2 A; and C,, to obtain a single relation ‘

between chambe: pressure g and injection rate s, which describes the

i overall behaviour of the feeding system. It is convenient to reduce all these
equations into dimensionless form; and we find that when this is done four
dimensionless parameters D, P, E, and J are sufficient in characterizing
the overall system dynamics for low frequency oscillations, where
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P_2A13’ E= 70, " J_2AﬁA0, ....(2.02.09)

and D is the constant of the feed pump; P is the pressure drop parameter, a

relative measure of the pressure drop across the injector; E is the clasticity

parameter, a ratio of the rate of mass accumulation in the line capacitance

" due to a characteristic rate of pressure change 2Ap/0, to the mean mass
2 flow rate in the system; and J is the inertia parameter, a ratio of the time i
o : required to accelerate a given mass element from rest to the state of motion i
: in the feed line under the pressure 2Ap to the characteristic time of the

system, that is, the gas residence time.
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The dimensionless equation of the feeding system dynamics relating ¢
and , is obtained as )

s v"w-w*mwﬂm E%

d & '
{P {1 +DE(P+ ) & + B d—zi]
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+ [D(P+¢)§;+J§:-2+DJE<1 e
(-5 g F () e

“ 7 q ... .(2.02.10)
{0+ D+ 01+ DEE D+ g

2
+ [DJE(1 — ) (P + }) + JEj] ;";2

B setetsle ) Miwindas ol o o S AR

[6ddaincty

d3
B =) g} pi=0

Equation (2.02.10) essentially defines the overall transfer function
u:{p of the entire feeding system through the four characteristic dimension-
less constants J, E, D, P, and the constants defining the feedback servo
system. If the feed line does not contain gas bubbles or any other con-
centrated capacitance, the equivalent line capacitance should be located,
in the present assumption of uniform cross section, half way between the
pump outlet and the injector; that is, if the pump is *..aced at the outlet
from the tank, y = }. This is the case formulated by H. S. Tsen®. If
there is a gas pocket of considerable size in the feed line, the capacitance C;
should be located in the immediate neighbourhood of the pocket. Despite
the simplifying assumptions, equation (2.02.10} is still quite involved alge-
braically, and does not allow a general analytical discussion. Only two
special cases; one with constant rate of supply, D = 00, and the other with
constant feed pressure, D = 0, have been studied analytically by L. Crocco®.
However, the discussion of particular systems with given values of the
constants can be made without difficulty using the complete equation

(2.02.10).
2.03. GeneEraL CONSIDERATIONS ON THE SysTEM oF EqQUATIONS.
INTRINSIC INSTABILITY

Equation (2.02.10) should be solved simultaneously with equation (2.01.11)
for u; and @. Itis interesting to note that, in equation (2.01.11), the nozzle

=0 A S

RS

7

N
SOREALY

constant & can be very casily absorbed by a change of the characteristic £
time from 0, to 0, = 0,(1 4 b). The resulting equation in terms of the
new dimensionless time z' = z/(1 4 ) is identical in form with equation ﬁ}é

(2.01.11) after putting 5 = 0. The overall transfer function /¢ of the
feeding system as defined by equation (2.02.10) can be obtained as a com-

. a d . d /d) _dC,
binatien of y, P, D, E o J . and the expression o F (?z) = / me

relative to the feedback control circuit; these quantities are independent of
the change of characteristic time. Therefore, for a given feeding system with
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2.03 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

a given feedback control circuit, if any, the transfer function u,/p is inde-
pendent of the choice of the characteristic time, as can be physically expected.
The dynamirs of the burnt gas in the combustion chamber for systems with
different exhaust nozzles is therefore governed by the same equation (2.02.10)
and by the equation obtained from (2.01.11)

E%Z) + (@) = plz — 7) +nlp(x) — 9z — D] ....(2.03.01)

with the new dimensionless time variable z = ¢/0,. All the dimensionless
parameters like E, J, £ and 7 are of course defined in terms of the new
characteristic time 6,. For simplicity in writing, the prime, which is used to
distinguish between the dimensionless time expressed in terms of the uncor-
rected reference time and the new corrected reference time is henceforth
dropped with the understanding that if b is not zero, the characteristic time is
0, = 0,(1 + b) instead of 6,.

The phase lead compenent of the transfer function of the nozzle is due
to the inertia of the gas in the subsonic portion of the nozzle which increases
the capacity of the combusticn chamber in storing burnt gas in response
to increasing chamber pressure. -In other words, a certain effective part of
the volume of the subsonic portion of the nozzle should be added to the
chamber volume in evaluating the gas residence time or the relaxation time
of the chamber-nozzle combination. If the nozzle is very short so that the
nozzle velume is negligibly small, it is expected that the assumption of
quasi-steady flow in the nozzle should be valid and little correction on the
gas residence time need be made.

Since both equations (2.02.10) and (2.03.01) are linear, the equation for
@(z) after the climination of u; is lincar with constant coefficients but
involves ¢(z — 7,) and @(z — 7) in addition to ¢(z). The presence of the
retarded variable changes the analytical nature of the equation con-
siderably as compared to that of an ordinary linear differential equation,
The fact that there are two retarded functions with two different lags
7, and 7 is analytically a matter of minor importance but it makes the
calculation and the presentation of the results much more involved. For
this reason and because of the uncertainty of our knowledge of these time
lags, the two have been assumed to be equal, that is, all the processes are
sensitive throughout the time lag. As discussed in Section 1.11, this assump-
tion is justifiable for the monopropellant case, It is clear that this restriction
on the values of the time lags is not needed when 7, does not appear in
the equations, as for instance in the simplest case of intrinsic instability
to be treated in this section, or in the more complicated case of screaming.
Thus, for the general treatment of chagging, we assume 7, =0 and 7, = 7
unless otherwise stated.

‘The analytical rature and the methods of solution of the equation of the

Ll(a‘iz) [p(a)] = L,(;:) lpe—91  ....(203.02)

as a gene-al form of the eliminant of equations (2.03.01) and (2.02.10) is
discussex in Appendix A. Siunce equatior: (2.03.02) is a linear equation
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SYSTEM OF EQUATIONS., INTRINSIC INSTABILITY 203
with constant coefficients, the solution of this equation is a linear combina-
tion of an infinite number of particular solutions of the type exp (sz) where
s is a complex quantity with its imaginary part representing the angular
frequency of the particular mode of oscillatory solution and the real part
representing the amplification coefficient of this mode. The infinite number
of values of s are defined as the roots of the following characteristic equation

Ly(s) = e~*Ly(s) ....(2.03.03)

A given oscillatory mode is stable, neutral or unstable depending upon
whether the real part of s is less than, equal to or greater than zero, and a
sufficient condition for the system to be stable is that the characteristic
equation (2.03.03) has no root in the right half of the complex s plane,
We shall begin the discussion with several simple ideal cases with a view
to the fact that the influence on instability of certain important parameters
like the time lag and the pressure index n of interaction of the combustien
processes and chamber oscillations should qualitatively be the same for
simple conditions as for cases invoiving complicated feeding systems.

The simplest case in which the injection rate is assumed to be independent
of the pressure oscillations in the combustion chamber will first be con-
sidered. This fundamental case must be considered only as an ideal limit,
though it can be approach=d with the use of a displacement pump or of a
caviteting Venturi and with a careful design of rigid feed lines. For this
case, p, = 0 and equation (2.03.01) becomes

[d% 4+ (1 — n)] o(z) = —np(z — 7) ... .(2.03.04)
so that the characteristic cquation {2.03.03) becomes
s4+1—n-+net =0 ....{2,03.05)

Let s = A + iQ and separate the real and imaginary parts of equation
(2.03.05). We have

A+ —n +nedcaslsr=0

... .{2.03.06)
Q—ne4fsinQ7 =0
The quantity 27 is the angular displacement of the oscillation during the
time lag, the ratio of Q7 to 2= is therefore the ratio of the time lag # to the
period of oscillation T'.

QF 0% 5
I 9 T ....(2.03.07)
From equation (2.03.06) it can be obtained that
f (%, n) = n7t—n¥
Q7 Q7 )
T sin Q7 [“ m—-*m.] =h(Q7  ....(203.08)

which can be solved graphically for any set of given values # and #. Both
37
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2.03 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

f and h are universal functions and have been calculated® as shown in
Figure 5, f(7, n) is plottea against # for several values of n on the left-harad
side; and h (£, 7) is plotted against 27/27 on the right-hand side. The
value of f(F, n) is read for given values of # and n. A horizontal line is
drawn to cut the curves of h (£2, 7). At the intersections, the values of 27/27
can be read and 2 calculated. A can be determined from the second
of equations {2.03.06) as

4F s SINQF _ nF .
oft = nr Sp T = ...(2.03.00)
K]
75
Y
R B \\ k(07
\s6%
§ ho7) |
22 hfr)
70 ﬁzz'.:‘ 20 2
23

Figure 5. Graphical determination of eigenvalues A + iQ of equiation (2.03.06)
{By courtesy of the American Rocket Society)

The dotted straight lines in the left-hand side curves are n7 for different
values of n. K(£2,7) = Q7F[sin 27 is plotted in the right-hand side curves.
The solution is stable, neutral or unstable depending upon K(Q, 7) 2 7.

An examination of the graphical solution leads to the following qualitative
conclusions:

{t) For a given system (7 and n given) there is an infinite number of
oscillatory modes corresponding to increasing values of 2 not exactly in
harmonic ratio. If the value of 7 is too small, the fundamental oscillating
mode may be absent.

(if) For a given system, K(£2, 7) increases with higher modes of oscillation
whils h (@, 7), f (~, 7) and n7 are all constants. If the jth mode is stable,
all the modes higher than the jth are stable. Therefore, the necessary and
sufficient condition for intrinsic stability is that the furdamental mode
shall be stable.

(iif) Feor sufficiently small 7 all modes are stable regardless of the value
of n.
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SXSTEM OF EQUATIONS, INTRINSIC INSTABILITY - 203

The cumplete solution of equations (2.03.06) is only of academic interest.
It is more in the linc of small perturbation theory to deiermine the stability
boundary of such ideal systems. Putting A =0, equations (2.03.06)
are compatible only when # takes some well determined values 4, that
we call critical values, corresponding to neutral oscillations. Then the

7-00

4
o

] o5 7:0 75 20 ) 30

n —=»

Figure 6. Critical values for intrinsic instability for different calues of the interaction index n
_ri ourtesy of the American Rocket Society)

equations can be solved, giving the following critical values of 7 and ;
ie. dand ¢

w=(2n— 1)}

cos b = —(1 —n)/n ....(2.03.10)

&= [1.— — cos™! ! : "] (20 — 1)1

We see that neutral oscillations (/1 = 0) are not possible in onr ideal
system if n < }. This shows that if » < 1, the system is always intrinsically
stable no matter what the value of the time lag inay be. For n > } the values
of the critical quantities for the fundamental mode are calculated from
equations (2.03.10) and are plotted as shown in Figure 6. The stable and
the unstable region for 6 and w can be easily determined from the ordinary
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2,04 C.JUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

argument of smooth transition. It can also be seen analytically by deter-

mining the sign of %-1_1 or g—g evaluated from equations (2.03.06) «t the
T

critical point.

dA w®
(a—""-)!)=w T 14 o[n—1E4T] >0

Thus for a system with a given value n> }, the system is intrinsically
stable if # < 4 and intriusically unstable if 7 >» 4. The angular frequency
of an unstable osciilation is less than w while that of a stable oscillation is
greater than w.

From Figure 6 it is clear that the critical time lag & always decreases when
n increases and its decrease is very fast when n is close to 4. The unstable
range of time lags, ¥ > 4, § widens with increas:ng #, which means that
increasing n .s destabilizing. The destabilizing effect of increasing the
interaction index n is to be qualitativcly expected on purely physical
grounds.

The presence of the constant b which represents the phase lead of the nozzle
transfer function increases the magnitude of the dimensional critical time
lag #* = 60,(1 4 b) by the multiplier (1 4 b}, because d is a constant for
given n. Therefore the nozzle has a stakilizing effect in reducing the unstable
range of time lags Ly increasing the critical value cof 7*, as compared with
that of the limiting case of a very short noz:le in which the velume of its
subsonic port.on is negligibly small compared with the combustion chamber
volume.

From Figure 5 we see that the fundamental mode of the oscillating solutions
does not exist when f (r, 7) is less than 1/e. This situation arises cither when
7 is sufficiently small for any given value of n cr when 7 is sufficiently large
and n is larger than unity. It can easily be seen that the latter case with
n > 1 and large 7 corresponds to positive real roots for s and therefore to
monotonically diverging solutions. Under this condition, the system is
definitely unstable.

2.04. Svystims witH Constast RATe FEED

For a liquid rocket with a displacement pump or a cavitating Venturi that
supplies propellant to the feeding line a‘ a constant rate we have D = o0
(Figure 7). Consider such a system without servo control, F dg =0

z
divide equation (2.02.10) by D and let D go to infinity. Equation (2.02.10)
1s reduced to

d d @
< < —WES =90 ....(204
PEZ 9+ [1 +ELZ+( y)JEdzz] pi =9 (2.04.01)

It is clear that if the parameter J is computed from equation (2.02.09)

using {(1 — y) as line length, the .actor (I — ¥) can be abse:ved in J and

cancelled from the equation. The physical meaning of tais is that in this

case the portion of the feed line bet /e¢n the pump and the equivalent line
49
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SYSTEMS WITM CONSTANT RATE FEEZD 2.04

capacitance operates at constant flow rate and therefore does not contribute
to the dynamics of the system irrespective of its length. The only part of the
line which has an influence on the dynamics is the one between the capaci-
tance and the injector, of length /(1 — ).

Substituting g, from equation (2.04.01) into equation (2.03.01) with
#, = 7 and with the new definition of J we have

d d . Jd2
(l —n+d—z)(l +Ea-z""‘u"—!2) @(z)
d dz d] .
+[n(l‘},'Ea—z+JE-d—;-2)+PEd—z] ¢(4—6)=0 ....(2.04'[

By comparing equation (2.04.02) with equation (2.03.02) or postulating

Line
egpocitonce
Connecting
i

Figure 7. Schematic diagram of a co:taxt rate feeding system
(By courtesy of the American Rockot Society)

solutions of the exponential type exp (szj, the characteristic equation
(2.03.03) takes the following form

A4+ Es+JEQ)[1 +s5s—n+ne?] +PEse =0 ....(2.04.03)
Fur the deter.nination of the stability boundary, set s = iw, separate the

rcal and imaginary parts of equation (2.04.03) and solve for Jw — 1/Ew
and 4. For conveniencs, let us define

Y —Jo — 1/Ew ... (2.04.04)

which, in analogy to the terminology in the flow of alternating current in
an ele~t-ic circuit, may be tentatively called flow reactance of the feeding
line for oscillations of frequency w. We obtain:

PR —r -
Ws—m‘-l ....(2.04.03)
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2,04 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)
1 ; O nd-P1 1
= — -— = —-ta—l — -1 ....{. 0
] - [77 tan — n ok }- tan Y"} (2.04.06)

0 as obtained from equation (2.04.06) is multivalued. The smallest
value of & corresponds to the physical situation where the duration of the
time lag is less than one oscillation period, ..nd the ncutral oscillation cor-
respoading to this lowest value of § can be given the name fundamental
low frequency mode. Larger values of § differ from the preceding one by
multiples of m/w, and these critical values of the time lag contain more than
one complete oscillation period. TFe neutral oscillations corresponding to
these larger values of  are designarzd by integral number £ =<90,1,2,3...
indicating the number of oscillati. . periods that is coutained in the time
lag. The values of § larger than the fun:lamental ene, 2 = 0, may have an
interesting physical meaning as will be discussed in the following.
Equations (2.04.03) and {2.04.06) define a r=lation between w, #, P and 6.
Thus & depends only implicitly (through w) on the other parametecs E and J
of the feeding system. This relation is represented in Figures 8, 9 and 10 for

TR
s *\x\\\’ \\ Fgwe 5. Goaral it

NN N between the critical values of
\ \ \ the rgmmsfanien Jmsliliz? h'lm:
i ! g ) lag & and the critical angular
D f\ | |
o\ |

3

Jreguency of reutral oscillation
W, for different pressure drop

7\ N\\\: parameters Aplp with 2 = 0
;&33 R n= i
os . N :
e
0 7 2 3 ¥ 5 [; 7
(AL o

n =0, 4 and 1 respectively, and for a series of values of P. For given n and
P cquation (2.04.05) shows that a real ¥, and hence a real 9, is obtained
only if the following inequalities are satisfied:

M1 <ALPEN(P+2—1) oo (£04.07)

The first inequality w* > 2r — 1 indicates that if n < §. the range of @
reaches 0; but if n> 1, the range of possible critical frequencies starts
with the positive value (2n — 1}, which coincides with the critical frequency
of intrinsic instability. In both cases the range of critical frequencies
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2.04 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

extends up to 2 maximum value defined by the second inequatity (2.04.07)
as is well illustrated in the figures.

For each value of @ within the possible range there are two fundamental
values of §, the smaller corresponding to the positive and the larger to the
negative value of ¥ as given by equation (2.04.05). Both signs are physically
possible, as is shown by equation (2.04.04). At the two limits of the inequality
(2.04.07), that is when ¥ is infinite or zero, the two values of d coincide.
Therefore, if one takes into account the multiple values of 8, the curves of
constant P appear as a multiplicity of half closed loops when # < } or of
completely closed loops when n>> 4. To understand the meaning of these
loops we must introduce the conditions cf tlic feeding system, as expressed
by equation (2.04.04). Equating the values of ¥ given by this equation
and by equation (2.04. 05) we obtain

1 (n + P)2 — n?

o 2 -{»J’w2 F— (=) 1 ....(2.04.08)
which can be developed as an equation of third degree in w?. The positive
roots of this equation determine the critical frequencies as functions of
n, P, E, and J. Without entering into a complicated analytical discussion
of the roots, qualitative results can be obtained from the following con-
siderations, as shown in detail in Appendix C.

() Increasing the interaction index n is strongly destabilizing in as much
as the unstable ranges of 7 are widened.

{(2) Increasing the pressure drop across the feeding system (essentially
across the injector) generally has a stabilizing effect.

(@) When 2 < §, a sufficiently large pressure drop with A§ff <
$.1/(1 — 2n) can guarantee stable combustion for arbitrary elasticity
and inertia conditions of the feeding system and in particular for arbitrary
values of the time lag. We call this unconditional stability. If the pressure
drop is not large enough, the system is stable only when the value of the
time lag 7 is ir a certain stable range or within ranges of values which
depend on the elasticity and inertia of the feed system. We call this con-
ditional stability. An increase in the nressure drop (decrcase in P) tends
to decrease the unstable ranges of the vaiues of 7 and is therefore stabilizing.

() When 2 > 3, no matter how large the pressure drop is, uncon-
ditional stability cannot be obtained. The system can be suable only when
the time lag is less than a certain critical value depending on the magnitudes
of P, E, and J. Increasing the pressure drop is in general stabilizing in
increasing the critical values 0 or the stable range of 7, except when E
is very small so that the flow reactance ¥ = Jw — 1/Ew is very large
and negative.

(3} The elasticity parameter E and the inertia paramete. J have similar
complicated effects.

(a) f the system is unconditionally stable when n << §, any increase in
E or J makes the system less stable in the sense that the system is closer
to the condition of marginal unconditional stability. Any decrease in E
or J makes the system more stable.

(b) If a system is unstable when n <  with given values of E, J, and P,
the system can be made unconditicrally stable by sufficiently decreasing
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the paramcters E andfor J. The system can also be made co..diticually
stable by sufficiently increasing the parameters E andfor J. However, a
small change of E andfor J may make a stable system unstable and an
unstable system stable depending upon the circumstances.

(¢) For systems with # > } and a given value of P, the system will always
be unstable for any values of E and J if the time lag # of the system is larger
than a certain value corresponding to the maximum value of § of the
lowest loop as shown in Figure 10. An unstable system of this kind can be

075

Figure 11. General relation between the critical time lag and the ratio of the critical time lag
to the period of oscillations for different pressure drop darameters Ap[pwithn =0
(By courtesy of the American Rocket Society)

made conditionally stable only by decreasing the pressure drop Af across
the feed system accompanied by a proper change of the paraweters E
andfor J.

(d) For an unstable system with n > } and a given value of P, with the
time lag 7 less than the maximum value of § mentioned in (¢), the system
can be made conditionally stable ecither by a sufficiently large decrease of
E andjor J (upper branch) or by a sufficiently large increase of £ andfor J
(lower branch). Again a small change of E and/or J may make a stable
system unstable or make an unstable system stable depending upon the
original configuration. :

Beiore closing this section we observe that while it is impossible to present
on a single graphical representation the quantitative results for general
E and J, this is possible if either E or J is given a fixed value. The equation
obtained from (2.04.08) after extracting the square root with the suitable
sign furnishes the other parameter E as a function of n, P, and o, if J is
selected, so that the curves of constant P and given n (such as those of
Figures 8, 9 and 10) can be calculated using E a3 a parameter for the assigned
value of J. This has been done for the particular value J = 0 in which
case the curves of constant £ are drawn; and for the value £ = o0, In
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2.04 CHUGGING ANALYsIs (Low FREQUENCY INSTABILITY)
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Figure 12. Generq} relation betwween the eritical time lag and the ratio of the eriticay time lag
to the period of osciliations Jor different pressuse drop parameters A Bip with n
Y courtesy of the American Rocket Society)
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which case lines of coastant J are traced on the figures (this case corre-
sponding, as already mentioned, to a particular system with constant feed
pressure). The results are shown in Figures 11, 12 and 13 where, however, for
clarity the plane (26, wd/27) has been used instead of the plane (@, 24/x).
The ordinate wd/27 has an interesting physical meaning, as shown by
equation (2.03.07). The case J =0 for n =0 and n =1} cxhibits the
characteristic behaviour, already discussced, that a curve E = constant may

Fressure
reguistor
B Line cdoacit
al— ine capacifcnce Cy,
-l Injection nozzie
| Susply e % \
~__L& \
g
p b’mmcf///y lina
Figure 14, Schematic diagram o NP
a constant pressure feeding system. m/ P

(By courtesy of the American
Rocket Society)

Exhavst
nozzie

present two intersections with the lines P = constant, thus determining
finite unstakle ranges of 7.

This behaviour is never present for n=1; nor for n==0 and n =1}
when E = . The line J = constant shows only one intersection with
each of the lines P = constant. In this case the hyperbola of Figure 64
degenerates into two straight lines through the origin, one being vertical.
While the smaller root @ goes to zero and the corresponding 4 to 00, there
is only one significant root @ left. The conditions in this case are similay
to those of n > } represented by Figure 13.

2.03. Svystems witH ConsTANT PressuRe FEeD

In a liquid propellant rocket with constant pressure feed, as can be obtained
through simple gas pressurization, the pump characteristics are represented
by D = 0. A schematic diagram of such a system without servo control is
showi. ar. Figure 14. The feeding system equation is obtained from equation
(2.02.10) by putting D = 0 and dropping the term F(d/dz) related to the
servo control, and can be written as

dz2
P[l +JE_yd-2-§] @

N R Y DS rascan

chiad2:i5E Lrga—nElu—o 9.05.01
VT 5 B S+ PE (L)) (5l me=0 ... (205.00)

Substitute p, from equation (2.05.01) into equation (2.03.01) and take
#, = 7 for the reasons discussed in the preceding section. For the particular
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2.05 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)
solution of exponer:tial type exp (s2), equation (2.03.01) takes the form

[+ Js + JEys® 4 J2Ey(1 — 5)s%] (1 + s — n +- ne=")
. + Pe (1 + JEpst) == 0. .. .(2.05.02)

Equating the moduli and the arguments of the two terms of equation
(2.05.02) when s = iw for neutral oscillations and 7 = § we have

{[i —JEP?? -+ Pl —TEy(1 —)o[(1 — n)? + ]
= [(1 - JEfwin + (1 — JEp?)PPR
+ 22l — JEy(1 — y)o*P?
L .. .(2.05.03)

a0 Jo[l — JEy(1 — y)w?]
fa g tan 1 — JEyv?
- — N
— 7 + tan" nJw[l — JEy(1 — y)w?} Wb

1l — JEpw?] + P[I — JEwo®]

A general discussion of equations (2.05.03) with arbitrary y is practically
impossible. Thercfore, leaving the general form of these equations for
numerical computations with practical values of the parameters, we shall
investigate here only those simple cases obtained with particular values of 5.
Suppose first that the capacitance is concentrated at the injector end of the
line, that is y = 1. Then equations (2.05.03) are reduced to

[(1 — JE®)? + J20?] [(1 — n)? + 0] = (1 — JEw®)}(n + P)* + n®J%0?

E

4 @ 4 Jo — aq M Jo _
tant g a7l e = A e T — @

It is easily obscrved that the quantity Ew — 1/Jw can represent all the
feeding line parameters. We shall tentatively call this quantity @, the flow
susceptance of the feed linc when the oscillating flow has an equivalent
frequency o in analogy to the terminology in alternating current circuitry.
Thus we have, solving for @2 and §:

& = En — 1}Jo .. ..(2.05.04)
5= o4 (1 —n)2—n®

T+ PR —w?— {1 —a)?

....(2.05.05)

s=1 [-n'——taxrl-—a-)——+tan‘1n+P¢—tan"1¢] «...(2.05.06)
w 1—n n

Comparing equations (2.05.05) and (2.05.06) with equations (2.04.03)
and (2.04.06) we sce that the flow susceptance @, in a constant pressure
system with y = 1, plays the same role as minus the reciprocal of the flow
reactance, —1/%, in a constant rate system. In fact, the relation between
é and n, P, » as obtained from equations (2.05.05) and (2.05.06) is exactly
the same as the one obtained from equations (2.04.05) and (2.04.06); a
point corresponding to a given value of @ is wee same as the point cor-
responding to the identical value of —1/¥ in the two different problems.
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Thus, the curves of Figures 8, 9 and 10 apply also to the constant pressure
system. The incquality (2.04.07) applies too, with @ = 00 at the upper
limit of @, and @ = 0 at the lower limit of w (the latter being real only for
n > §). The upper branches of the curves correspond to positive values
of @ and the lower ones to negative values. The discussion of the equation

s _of 1 (n + P)2 — n? _

E2p 2J+J2w=—(n+P)2—-(l—n)2—-w2 1 ....(2.05.07)
which is obtained from equations (2.05.04) and (2.05.05) can be conducted
in a manner similar to the discussion of equation (2.04.08).

This has been done in Appendix D with qualitative conclusions similar
to those of Section 2.04.

We have thus far discussed the constant pressure case with the particular
value y = 1. For y =0, equation (2.05.03) becomes exactly the same as if
we put E = 0. Thus the general behaviour of the system would seem to be
fundamentally »ic.ianged by the location of the equivalent line capaci-
tance, though the magnitude of the quantitative results may be significantly
affected. An investigation on the effect of intermediate values of » has not
yet been made.

Before closing this section let us observe that if we were interested in
analysing the combustion stability with more complicated feeding systems,
for example with some finitc value of D, or the use of feedback servo control,
the algebra involved in the analytical procedure illustrated in Sections 2.04
and 2.05 becomes increasingly heavy and makes it <% cult to draw general
conclusions.

2.06. SERVO STABILIZATION

The importance of the characteristic constants, D, P, E and J of a feeding
system has been illustrated by the previous special cases. It has beea
shown that a chugging liquid propellant rocket motor can be stabilized
in certain circumstances by increasing sufficiently the pressure drop in the
feeding system, by proper adjustment of the feeding line length, etc. Un-
fortunately, however, this is not always true, especially for large n, and
even when it is true, it may result in impracticable length or size of lines or
in excessive weights svhen large pressure drops are required. H. S. TsEn®
analysed the possibility of stabilizing a chugging motor by introducing a
feedback servo link as was suggested by W. Borray®!, The purpose of this
servo system is to modify the overall characteristics of tl.e feeding system
in response to the chamber pressur= oscillation without modifying the values
of D, P, E and J which are favoured from other design points of view. In
view of the heavy algebraic manipulations involved in analysing the feeding
system, especially when an arbitrary control capacitance is introduced,
Tsien preferred the use of the Satche diagram and the associated Nyquist
diagram. The principles involved in this graphical analysis are explained
in Appendix A. This graphical method can be used advantageously in
determining whether a given systen: with known constants is stable or
unstable. The procedure is to write the characteristic equation (2.03.03) as

Gis) =¥ —g(s) = ....(2.06.01)
with g () = L1(5)[Ly(s)
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where £, and L, are polynomials of s with known constant coefficients.
Let s trace the contour C in the complex s plane in a clockwise direction.
The contour C consists of the imaginary axis and a semicircle with infinitely
large radius enclosing the entire right half of the complex plane. While s
is tracing the contour C, e~* will follow the unit circle about the origin when
s is on the imaginary axis, and wiil lie inside the unit circle when s is
on the semicircle. The value of g (s} = L;(s)/Ly(s) is calculated from
point tc point and plotted in the complex s plane. Usually, it is only neces-
sary to compute g (s) while s is on the imaginary axis. The closing arc
of g (s) when s is on the semicircle can be obtained just by observation.

8
7

_ps Figure 15. Schemalic Satch:

' ¢ diagram for a liquid rocket

! =) 7 with0 < n < 3. The system

4 is intrinsically stable for

arbitrary values of the time lag.

(By courtesy of the American
Rocket Society)

I-n
e T-‘J

O<n<¥h

This plot in the complex 5 plane is called the Satche diagram. The vector
with vertex on the plot of e~ and tail on the plot of g (s) with the same
value of s represents the complex quantity G(s). A plot of L,(s) is also
made while s traces the same contour C. This is the associated Nyquist
diagram. If the vector G(s) makes a, complete counterclockwise revolutions
and the vector L,(s) makes a, complete clockwise revolutions while s traces
the contour C, then the difference 4, — a, represents the number of zeros
of G(s) in the right half of the complex s plane. A system is stable if
a, — a, = 0, which means that there is no root of the characteristic equation
with positive real part. To illustrate the use of the Satche and associated
Nyquist diagrams, we first consider a few simple ex~mples.
For the case of intrinsic instability, we obtain from equation (2.03.02)

o : g (s) = Ly(s)[Ly(s) = —-(1 — n)}fu~ s/n ....(2.06.02)
- While s is travelling on the imaginary axis from — i to i, g (s) traces
b a straight line parallel to the imaginary axis extending frorr —(1 — n)/n +i00
2 to —(! — n)/n — ic0. When s is at infinity on the real axis, g (s) is also
E ) real but is negatively infinite. The closing arc of the trace of g (s is there-
) fore a semicircle through the negative infinity. If 0 << 7 < 1, the trace of

o : g (5) is completely outside the unit circle and does not encircle the unit circle,
3 : . Figure 15. An observation of this diagram shows that the vector G(s) =
3 : e’ — g (s) will not make any counterclockwise revolutions, i.e. a,= 0.
. : Since L,(s) is a constant independent of 5, we have ¢, = G. The system is
e ’ therefore always stable regardless of the value of 7.
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SERVO STABILIZATION 2.06

On the other hand, if n > }, the straight line portion of the plot of g (s)
intersects the unit circle, Figure 16. In this case stability is possible only
if the vector ¢~* remains to the right side of the straight line —{1 — n)/n
when the vertor g (s) lies inside the unit circle. This condition is satisfied if

cos [7(2n — 1] > —(1 —-n)/n
The critical values @ and J are thus found as:
o= (2n— I}
6 = [ — cos{(1 — n)[n}}/(2n — 1)}

which agree with equations (2.03.10) as are given in Section 2.03.

}‘.MQMM)

! 9(&) n>%

Figure 16, Schematic Satche diegram
of a liquid rocket with n > 4. The
system is stable only for sufficiently "
small values of ihe time lag. (By
courtesy of the American Rocket
Society)

\

In the analysis of a more general system, the Satche diagram becomes a
little more involved, and it is no longer possible to determire the frequency

of neutral oscillation in a simple manner as in the case of intrinsic instability. _

From equations (2.02.10), (2.03.01) and (2.06.01) we cbtain the function
for the plot of the Satche diagram as

Std=m s+ —n 90604

gl =~— pra

nt 2+ SFE
where
A= P[1 4+ DEP + 1)s + JEps?]
B=1[1+4 D(P+ })] + [DEPP 4 }) + J]s
4 [DIE(I —3) (P + }) + JElst + J2Ey(1 —3)s } - - - -(2.06.05)
C = D(P + 1)s + Js* 4+ DJE(1 — y) (P 4 })s°
+ J2Ep(l — y)st J

The quantity N(s) in equation (2.06.04) represents the ratio of the
fractional variation of the injec:ion rawe and the fractional variation of
51
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2.00- CHUGGING ANALYSIS (LOW FREGUENCY INSTABILITY)

combustion chamber pressw.., or ithe transfer function of the feeding
system. With s = {Q, the fw.tion N is in general complex and can be
S written as .

N(Q) = N,(Q) +iON,(Q) = -[% + %F(z’.Q)] e (206.00)

where both N, and XN, are real functions of Q. The imaginary part must
approach zero as £ approaches zero. N(0) = N,(0) is a real constant for a
given feed system. This constant represents the steady state value of the
ratic of the fractional variation of injection rate and the fractional variation
of chamber pressuve. For systems that are not servo-controlled

ey

N(©) ==N,(0) = —P|[l + DP+ 1] <0 ....(206.07)

which is always less than zero. This last part has some imporir . conse-
quences as will be seen later {equation (2.06.13)].

To illustrate the application of the Satche diagram in determizing the
stability of a given system with known constants, let us consider the foilowing
examples as given by Tsien®t.

Consider a system in which the dynamics of the feeding system is defined
by the following constants [see equation (2.02.10)]

D=1, P=3 J =4, E=1} and y=14%

The -index of intevaction n is selected as 3, which is the value of marginal
inwrinsic instability. The g (s) without servo control is

 (@541) (253 432 + 95 4-6)
i ST IE 6 I6 ....(2.06.08)

) gs) =

S ek o

Owing to the symmetry of the diagram when s takes positive or negative
values of ©, it is only necessary to plot the diagram for posiiive values of Q.
The diagram for £ = 0-5-2 is shown ir Figure 17. The closing arc when
|s| — oo intersects the negative real axis at 0. When's traces the imaginary
axis, the curve of g (s) intersects the unit circle.

If a servo-controlled capacitance is intreduced next to the injector and
the transier function of the scrvo link is

(s 4 1-0328) (s® + 0-7164s -+ 2-6304)
S5+ 2) (5 = 3) (s + 0-5332) (2 + 0-4668s + 3-7511)

&

i

A

F(s) = —4-875

then the function g (s) becomes ' ---(20600)
g =—28FDELS . -(2.06.10)
S -+ 6

t The dat:cfrmted in the rest of this section as shown in Figures 17 and I8 arc repro-
duced from ref. 9, by courtesy of the Amcrican Rocket Society.
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SERVO STABILIZATION 2.06

This function g (s) is also plotted in Figure 17 and is scen to be completely

outside the unit circle. The associated Nyquist diagrams for both cases

do not encircle the origin. Thus we sec that the system without servo control

can became unstable if the time lag # is sufficiently large, but the same

system equipped with the prescribed servo control is stable for all values of

the time lag; that is, the servo-controlled system is unconditionally stable.
As a second example take

n=4% P=3% J=4 E=} and D=0 {constant pressure feed)

B ) e T

ES
s
23

Without nsing‘ servo control, we have
@t Ee 248 +2) N
g(3)=—1% SR T4 4 ....(2.06.11}

2

3 g =g -1 0 ;
A i AR £ :
E> 0¥ ad eE :
- N1 V] " ik § :
S ;5:3, %‘} g
: ‘7‘4 2.0 2 ;gg&:;j _
Ve N ; ;
L 5 20 m\ ; :
L2 a1\ ;
Figure 17. Sakche diagrams of a \ 2|, ‘
ropellant rocket with . = % and | ;z'c \ :
E the following feeding syslem conslants: A ;i .
3 E=§,J=-&,P=3,D=1.asd 2 32 16 :
r=% i :
: (a) Salth:diagrmc{iheqm \16 2 :
: without serio centrol; (B) Satche dia- \ .m" o e 3 )
s gram of the system controlled by a \ﬁﬂ v e :
E: capacitance servomechenism with ils b

trasfer function specified by equation , i Vs sal ES

i (2.05.09). ’ - I &%

3 Numerals on curves indicale values 4 A

of Q. (By coxrtesy of the Amevican ] ¥l . g

Rocket Suciety) \s‘ o

: AT 7

L ! Py

3 \s$ °
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The Satche diagram for such a system is shown in Figure 18. The plot of

g (s) intersects the unit circle. If a servo-controlled capacitance is introduced

next to the injector with transfer function
(s 4 0-8126) (s* — G-04337s + 2-6306)
\ - ....(2.06.12
CTOCFIETH (2:0612)
the plot of g (s is shifted completely out of the unit circle. Again, we se¢
that a system which may possibly become unstable for certain vaiues of
, time lags can be made stable for all time lags by the use of servo control.
i In the first example the g (s) curve hasa tendency to make a loop cutside

the unit circle of e, In the second example the loop has grown up and
is tangent to the unit circle at about Q = 2.0. If the constants are further
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Figure 18, Satche diagrams of a monopropellant
rocket with n = § and the following feeding system
constants: E=3%, J =4, P=8, D=0, ond

y=4

(a) Satche diagram of the system without servo
control; (b) Satcke diagram of the system controlled
by a capacitance zervomechanism with its transfer
Jurction specified by equation (2.06.12).

Numerals on curces indicate values of .

(By courtesy of the” American Rocket Sociely)
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adjusted, the loop may intersect the unit circle or even encircle the unit
circle. Furthermore, more than one such loop may develop. Let us con-
sider the Satche diagrarm with cne loop intersecting the unit circle as shown

.

-0

860}

Figure 19, Schematic Salche diagram of a mono-
propellant rocket with a loop intessecting the unit circle

schematically in Figure 19. The three intersections are indicated by C,,
B, and 4 in the order of increasing 2. When Q = 0, the vector G(0) lies
on the abscissa with hiead at the point (1,0) and tail at the point [g{0), 0].
When Q increases, g (i2) and ¢ move along their respective curves
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SERVO STABILIZATION 2.06

toward ,; as indicated by arrows in Figure 19, If 7 is sufficiently small,
e~i will not have passed 4, before g (i2) reaches 4;. The system is
therefore stable.

If 7 is slightly larger than a critical value corresponding to the situation
where g (iQ2) and e reach 4, simaultancously (neutral oscillation or
stability boundary), then it easily follows that the system will become
unstable. If the magnitude of 7 is further increased, so that ¢~i®% has
passed the point B; before g (i{}) rcaches B,, but ¢~ has not reached
C, before g (i) leaves C;, then an investigation shows that the vector
G(s) will not make complete revolutions, and the system will remain
stable.

Finally if 7 is sufficisatly large so that ¢~ passes G, before g (iQ) reaches
C,, instability is again obtained. Thus we see that there are two distinct
ranges of values of # for unstable operation of the system. defined by the
interval betesn points 4,, B; and the region beyond the point C,. This
characteristic phenomenon has been observed in Appendices C and D as
shown schemat;c2:! - in Figures 66(a) and 69(a). It should be noted that
the intersection of the loop with the unit circle does not necessarily intro-
duce discrete unstabic ranges of the time lag. For example, if 4, 1'es on the
minor arc ByC; of the unit circle, the intersection of the loop with unit
circle By 4, does not introduce any discrete unstable ranges of 7. The only
critical value of 7 is defined by the intersection C;. A simple observation
of the Satche diagram cannot always reveal the stability of the system,
and an investigation of the rotation of the vector G{s)} must be made, which
is only possible when tne value of the time lag 7 of the system is known.
Thus if the time iag is known only up to its ordér of magnitude and if
the Satche diagram is not simple as that shown in Figure 17, it is not straight-
forward to conclude from the Satche diagram whether the system is stable
or not.

Since we do not know the value of the time lag of a given system with
reasonable accuracy, we can cousider a system as stable, from a practical
design point of view, only when we are sure that the system is stable for a
sufficiently wide range of the values of the time lag; or to be on the safe
side, for arbitrary values of the time lag. The latter case is what we have
called unconditional stability. This graphical method based cn the Satche
and Nyquist diagrams provides a simple geometrical criterion for uncondi-
tional stability, especially when the associated Nyquist diagram -of Ly(s)
does not encircle the origin, Under this circumstance, the requirement for
unconditional stability is simply that the Satche diagram of g (s) must not
intersect, nor encircle the unit circle. Thus if g (0) with £ = G lies inside
the unit circle, the systera cannot be unconditionally stable because g (iQ)
beeomes very large when £2 is large. From equation (2.06.0<) we ses that
for unconditional stability it is necessary that

<1+ N0)]

For systems without servo control N, (0) is given by equation (2.06.07). Thus
equation (2.06.13) becomes

n< {1 —PJ[1 + D@+ B}
35

....(2.06.13)

oo +(206.14)
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2,06 CHUGGING ANALYSIS {LOW FREQUENCY MiSTABILITY)

It should be noticed that equation (2.06.13) is not a sufficient requirement
for unconditional stability, but only a necessary condition. It will be indi-

- cated in Section 2.07 that the inequality (2.06.13) is both sufficient and

necessary for unconditional stability only for systems with small D or small E.

For a given feed system without servo control, the magnitude of N(0) or
N,(0) can be computed easily from known values of P and D by using
equation (2.06.07) or experimentally determined by running a quasi-steady
state test of the feeding system alone under simulated operating conditions.
For liquid propellant rockets, if we increase the chamber pressure by a
definit: amount, thz injection rare must cventually decrease. Hence the
quantity N,(0) is always negative withcut servo control as is evident from
equation (2.06.14) with toth P and D positive. Thercfore, if the value of
n for the propellant is larger thaa the value of [1 4- N,(0)]/2 which is always
less than §, and if we want te Jdisign such a system for unconditional stability,
servo control will be necessary. The servo control must be powerful enough
to contribute a positive real part of sufficient magnitude to the value f
N,(0) so that the necessary condition of equation (2.06.13) can be satisfic- .
It is clear from equations (2.06.04) and (2.06.03) that, if the servo contry!
is to be effective in the limit when s = iQ approaches zero, the transfer
function of the feedback circuit must have a simple pole at s = 0 when D

is not equal to zero and have a double pole at s = 0 when D is zero. This

is because the function C(s) has a common factor of « or s? depending on
D #£ 0 or D =0. For systems without servo control, the function g (iQ)
behaves like some positive power of £ at large values of . That part of
the curve of g (i€2) will not intersect the unit circle. Therefore, thz control
of the feedback circuit can be cut off at large frequencies. In mathematical
terms, if the transfer function F(s) is written as the ratio of two polynomials
of s, the denominator of F(s) is of higher degree in s than the numerator.
With this in mind, it is only necessary for us to investigate the required
behaviour of the transfer function F(i©2) at sufficiently small values of Q
where we can represent the transfer function as

F(s)=({f{s)[1 + a5+ as®+ag+...] whenD#0
F{s) = (f/s¥) [1 + bys + bps® 4 055>+ ...] whenD =0

}‘mawm

Substitute the series expansion of F(s) and equation (2.05.05) into equation
(2.06.04) and apply the conditionr that the modulus of g (s) must be bigger
than unity for arbitrary values of 2. By comparing the coefficients of
different powers of £2, we can obtain a series of algebraic inequalities which
form the necessary and sufficient conditions such that the feedback servo-
mechanism will result in an unconditionally stable system. The condition
which is obtained from terms independent of £ corresponds to the con-
dition of equation (2.06.07) for an uncontrolled system, that is

P42n—1
il M —1 . 0
DF+p T rDEON 06

~f>{P+2n-1)J for D=0

—f>
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SERVO STABILIZATION 2.06
It is easily verified that these conditions are satisfied by the transfer functions
F(s) given by equations (2.06.09) and (2.06.12) for the two examples
respectively. .

This condition (2.06.16) is particularly important because it sets a
minimum output and therefore 2 minimum amplification required from
the feedback circuit in actuating the variable capacitance of the servo-
mechanism. 1t is obvious from equations (2.06.16) that a more powerful
servo control is required if the intcraction index n is Jarger. By increasing
the parameter D, that is, by usirz pumps which are less sensitive to the
delivery pressure variations, the requirement on the servo control is some-
what relieved, but in no case can —f be less than 2n — 1. For a constant
pressure feed sysiem (D = 0), this minimum power requirement is decreased
for given values of n by increasing the inertia parameter J and by decreasing
the pressure parameter P (increase in pressure drop across the feed system).

The inequalities that are obtained from *he coefficients of terms of higher
powers of © are the requirements to be satisfied by the @ or b coefficients
characterizing the nature of the feedback circuit. I. is simple to show that
the curve of g (i) is normal to the real axis at 2 = 0. For feed systems with
small D or small E its curvature in the neighbourhood of £ = 0 is sufficiently
small so that the curve will not penetrate into the unit circle. Therefore,
instead of setting up the inequalities for the 4 or b coefficients, a sufficient
condition may be that the introduction of the feedback circuit does not
modify the curvature of g (iQ) at 2 = 0. This condition is satisfied if the

transfer function F(s) is such that the polyr. 1ial in the numerator of CF(s)
does not involve terms in 5 and 2, that is, if a; and a, are selected as:

{al = -JID(P +}) '
a,=J2D}P 4 )*—JE{1 —j) forD#y

or b, and b, as: b ... (2.06.17)

by = —JEy(1 ~y) for D=0

*

An example of a simple transfer functicn fulfilling these required conditions
has been used by F. E. Marble for systems with £ =0 as

Fs) = i (Tl'—:;%:';")z ....(2.06.18)

with a, and a, given by equations (2.06.17). This particular form of transfer
function cuts out at large frequencies as 2-4 and appears to be somewhat
simpler than those given in equations (2.06.09) and (2.06.12), which are
obtained by determining the F(s) that will result in a selected stable g (s)
curve. It should be noted, however, that such a simple transfer function
can apply only to feed systems with small D or small E. The transfer functions
Aapplicable to arbitrary values of the feeding system parameters are given by
Sin-1 CHENG™.
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2.07 CHUGGING ANALYSIS {LOW FREQUENCY INSTABILITY)

2.07. BirrOPELLANT ROCKETS

In bipropellant systems, the dynamic behaviours of the iuel and the oxidizer
lines are in general not identical. Thus the responses of the fuel flow and
the oxidizer flow to ihe pressure oscillations in the combustion chamber are
in general different, and the mixture ratio r = sz, [ri1, will vary with pressure
oscillations. Since the adiabatic flame temperature of a given propellant
combination depends to a certain extent on the strength of the mixture,
the pressure oscillation in the combustion chamber will induce a variation
of the stagnation temperature of the burnt gas. This variation is not present
in a monopropellant system. Therefore for the analysis of bipropellant
systems, the equation of mass balunce in the combustion chamber must
be corrected for this temperature variation. Except for this correction
all the other assumptions that have been made ior the analysis of mono-

propeliant systems have been transferred to the bipropellant casc.
The equation of mass balance in the combustion chamber is written in

dimensionless form as
d (M,

(7)) + no = e

g

....(2.07.01)

The fractional variatio~ of the burning rate p,(z) is given by equation
(2.01.07), where, following what has been done in the monopropellant
case, we assume the entire time lag to be sensitive, that is 7, = 7,

1(2) = piiz — 7) +nlplz) — @z — %] ....(207.02)

The fractional variation of the injection rate y; is conveniently expresseds

in terms of the fractional variations of the oxidizer flow rate u,=

(1h, — ,)|, and the fuel flow rate y, = (i, — m,) [,

pi= G+ Hyp, - G~ Hyp,
where H is related to the steady state mixture ratio 7 by

H=35—1)F+1) .. ..(2.07.08)

For ordinary bipropellant combinations, we have 7 2~ 1 and as a result &
is generally positive. The fractional variations of oxidizer and fuel flows,
#, and g, are related to the fractional pressure vari-tion ¢ through the
dynamics of the oxidizer and the fuel feed systems respecti cly as represented
by equation (2.02,10).

The fractional variation of the ‘nass ~iection rate g, is a function of the
fractional variations of local pressure and lccal gas temperature ente ing
the nozzle. Let us consider the case when the nozzle flov. is quasi-steady.

Then
, p( T,\¢
.ue=",h-’=)§(a’g) =1

2%

....(2.07.03)

....{2.07.05)

where T, is the instantaneous temperature of the gas at combustion chamber
exit, that is, the entrance to the nozzle. In the monopropellantcase 7, = T,
asd y, = @ since we assumed the gas temperature to be independent of the
pressure oscillations. In the bipropellant case the gas entering the nozzle
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BIPROPELLANT KOCKETS 2,07

at the instant ¢ was generated at the instant ¢ — 6,, and the stagnation
temperature of the gas is determined by the mixtire ratio 7 of the propellant
injected into the chamber at the instant ¢ — §* — 0,. Therefore under the
previous assumptions T, [T, is a function of r(z — 7 — 1)/F alone. Since
|r—7| L7 and r=m,[m, =71+ u, — pu,), we can approximately

evaluate T, [T, as
Y

T, )0z =140,~1+42K (: —1)

=1+ 2R{p(z —F— 1) —pu,z—~7—1] ... .(2.é7~06) N

where 2K = (#/T,)(dT,/d7) is a property of the propellan: combination and
is a function of the steady state mixture ratio and the combustion chamber
pressure. For conventional bipropellant combinations, K is usually a small
positive quantity, E.. tions (2.07.05) and (2.(7.06) give the fractional
variation of ¢jection rate of the burnt gas under quasi-steady assumption as

#(2) = p(z) — 40,(z) = p(z) — K[p(z — 7 — 1) — pt,{z — 7 — 1)]
v ..(2.07.07)

Observe that in equation (2.07.07) the effects of pressure and temperature
oscillations are taken into account separately. Thus, the major effect of the
entropy oscillation is included. The effect of the deviation of nozzle flow
from quasi-steady condition is more complicated when entropy variations
cannot be neglected?® 2425, Itis, however, to be expected that the deviation
will be small for sufficiently low frequencies. *Ne shall therefore restiict the
present discussion to quasi-steady nozzle conditions.

Cousider now the mass accumulation term aé (M,[A1,). Withuniform

pressure but non-uniform temperature in tke combustion chamber, the
density of the burnt gas varies from point-to point. Thus,

i‘.@:ﬁ.%fi'f—"l- [1 .l..f(?g_l)dlﬂ]:
e 3 2 A il Ll 2 R b

This integral can be evaluated by means of the complicated methods given
in Chapter 3 for the case of arbitrarily distributed combustion. Neglecting
higher order terms, we have

d /M) dp d[1 (/[P .
&(ﬁ)=5+&[vfy(.ﬁ-l)dv] -+ (2.07.08)

In order to avoid complications and to obtain a rough- estimate of the
effects to be expected, Crocco® used the extreme. assumption that all the
propellant elements burn in the immediate neighbourhood. of the injector
end and that each propellant element preserves its temperature regardless
of the pressure variation during the gas residence time 0, which is taken
to be the same for all propellant elements. With these simplifying assump-
tions, which result in consta.t flow velocity, the two variables V[V and
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2,07 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

—=2 are proportional to each other and have the same limits 0 and 1 at the
two ends of the combustion chamber volume. Thus the spacewise inte-
gration can be transformed into a timewise integration with dV’[V = —dz'.

Therefore
d M\ do (T, T,
z(w)-&-(7-7)
where all the quantities are evaluated at the instant z and T',, is the tem-
perature of the gas gencrated ac the instant 2, Thus, using cquatxon (2.07.06)
to obtain T,/T, and T,/T, we have

d (M) d
a-z(—-’) "’(’)+2Kr & —F—1) — ple—7—1)]

M,
~2K[pz—F) — ple— 7] ....(207.09)

Combining equations (2.07.01), (2.07.02), (2.07.03), (2.07.07) and
(2.07.09), we obtain the cquation of mass balance in the combustion
chambcr ofa bxprope.lant rocket motor as - -

+ (1 — n)g + np(z — 7)

= —K[pz— 7 — 1) — pyla — 7 — 1))
+ (4 + HA+2B) (e — ) + (3 — H~ 2K)py (e — 9. (2:97.10)

‘There are three unknown quantities @, u, and g, in equation (2.07.10).
Two more equations relating p, and u, with @ are supplied by the equations
of the dynamics cf the feed systems, one for the oxidizer line and one for
the fuet line. Each of the two.equations is in the form of equatlon (2 .02.10)
with subscripts , and , added to indicate different quantities pertaining to
the oxidizer and the-fuel lines respectively.

If the fiiel system and the-oxidizer system are such that the dimensionless
parameters. D, P, E and J for both systems are identical, the resporse of
the oxidizer and ofue fuel ﬂow will be expected to be identical in dimension-
less form, and u, = py = u. The bipropellant system then behaves in
just the same manner as a'monopropellant system with the equation of mass
balance and the equation of the feeding system dynamics reduced to the
form of the monopropellant case.

A study of the system formed by equation (2.07.10) and two equations of
the form of cquatlon (2.02.10) is not very practical if the constants involved
in the equations are left arbitrary. The graphical method using the Satche
and Nyquist diagrams can be advantagcously used for the investigation of
specific examples. The characteristic equation for the system with solutions
for ¢(z) of the cxponcntlal type exp (sz) can be obtained by climinating g,
and g, from equation (2.07.10) and equations (2.02.1C) for the oxidizer
and the fuel systems respectively. The eliminant or the condition of non-
trivial solutions for ¢, u, and u, can be most conveniently obtained by
equating the determinant formed by the coefficients of ¢, #, and p, in
the three cquatlons to zero. This determinant can be easily expanded-and
rearranged to give the following form of the characteristic equation -

Ly{s) = e[Ly(s) + F()Lo(s) + FiOL (] ....(207.11)
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L) =[1 +5 — nBB,

Ly(s) = —nB,B, — [Ke™* + (} — H — 2E)}4,B,
— [—Ke* + (3 + H+ 2K)]A,.B, ... (2.07.12)

L(s) =[Re* — (} + H+ 2K)]BC,

L{s) = —[Ke—* + (} — H — 2K)1BC,

with A, B and C given by equations {2.06.05) in terms of the constants of
the feeding systems with subscripts , and , denoting the quantities for
the oxidizer and the fuel system mpccuvely

The function G(s) for the plot of the Satche diagram is G(s) = e~ — g (1)

where
g () = L)L) + FOLE) +FOL]  ....(207.13)

The principle of the use of the Satche and Nyquist diagrams is explained
in Appendix A, and the method of construction and several discussions of the
diagrams have been described in Section 2.06. Examples for the bipropellant
cases are given by Marble and Cox! as follows:

Exampie 1.
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Feeding system constants F,(s) = F,{s) =0
D,=D,=1, P,=P;=1, J,=20, J;=15, E,=E, =0

Then,
L@ ={Fa-n—[F+s0~n| o
rf[2+20—n] -0

L,(iQ):—{?En-{--é—Bn.Q‘} t.Q{ n—l(H+2K)+}

T

ik
RN

. My 03
N . ! C
A D S R M R MMt DL sat s s sttt vomt bl o kand Do o

Qg i

e

b AT

— 5 K[iQcos 2 + Qsin 9] c-(207.14)

The Satche diagram and the associated Nyquist diagram when 7 = 0-2,

7 =25, T, = 5010°F, ddd.’ = 360, H = 02125 and K = 0-09 are shown
in Figures 20(a) and (b) respectively. The Satche diagram shows that
g (s) is compietely outside the unit circle, and the Nyquist diagram of L,(s)
does not encircle the origin. The system is, therefore, unconditionally
stable.

When n = 0-6, the Satche diagram is shown in Figure 21. 1tis found that
the system can become unstable (when 7 is in certain ranges of values).

In these examples, the constants of the feed systems for the oxidizer and
the fuel lines are not very different; therefore, the hehaviour of such a
biprope=llant system is quite similar to that of a monopropellant system, and
the variation of the mixture ratio r is expected to be small and ot of great
importance.
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2,07 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

Example 2.
F(s) =Fy{s) =

D,=D,=1, P,=1, P=4, J,=4%, Jy=1, E,=E =0

\.(

20 <J : %0 :

20
\m

v NS0

oot — A —

\ | 0 .12-1¢7§K

-0 -80 -+ [/ w

et

Z0(a) 20(b)
Figure 20. Satche diagram (left) and associated Nyquist diagram (rigit) of @ bipropellant
rocket with n = 02, ¥ = 25, ), = 5810°F, AP, /d7 = 360, H = 02125, K = 0-09
and the following feeding system constunts: E,=0, J,=20, P,=1, D, =1,
E, =0,J, = 15, Py =1, D; = 1. Numerals on the curves indicate values of 2

Then
L,(iQ) = {34- (1 —n) — [529 1+ 4(1 — n)] !22}
.~ {[55 ,-49
+19{[T+-§—(l—n)] -—4!2’}
, 55 31 9,
L,(iQ) =—{%n+-z-——‘-2-(211 +H)—-4ns?2}
—ig{%gn-{--lg-— 15(2K+H)} —K{g(cos.Q——isinQ)
-+ 15(i£2 cos 2 4 2 sin .Q)} ... (2.07.15)

The Satche and Nyquist diagrams for n =02, 7 = 2.0, T, = 4706°F,
dT,/d7 = 850, H = 0167 and K = 0-189 are shown as Figure 22 cpposite.
The system is unconditionally stable. These diagrams are distinguished
from those in example 1 by having large loops. These loops eriginate
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Figure 21, Satche diagram of a bipropellant rocket with n = 0-6, 7 = 2:5, T, = 5010°F,
dT,/d7 = 360, H = 0-2125, K = 0-09 and the fellowing feeding system constants:
E£,=0,J,=20,P,=1,D, =1, E,=0,d,=15,P, = 1, Dy = L. Numerals

on the curve indicate values of
&§C
70
c-o[

-’ 0

a ) -

‘20{ - 50
\I‘ 20 ~ 20
=40
30207
S 10
-50 -50 - -20 4 g 20

Figure 22. Satche diagram [(a) above) and associated Nyquist diagram of e bipropellant

rocket with n = 02, ¥ = 2-0, T, = 4706°F, dT,/d7 = 850, H = 0-167, K = 0-189

and the following feeding system conslants: E, =0,J, =4, P, =1,D,=1, E, = 0,
Jy =1, Py =4, D, = 1. Numesals on the curves indicale values of Q

in the trigonometric terms of L,(i2), which arise because the effect of
the temperature variation on the rate of ejection is delayed by an amount
0, with respect to the instant when the burnt gas is generated. Conse-
quentiy the trigonometric terms in L,(iQ) are associated with a reduced
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2,07 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

time lag of unity. The magnitude of these loops depends on K and on
the quantity B,4, — B,4, which increases with increasing difference
of the parameters of the oxidizer and fuel lines. If the combustion
temperature of the propellants becomes more sensitive to the mixture ratio
variation, or if the constants of the fuel and oxidizer lines differ to a greater
vatent, these loops will grow in size and intersect the unit circle and eventu-
ally encircle the unit circle. Thus, even with the present simplifying
assumptions about the quasi-steady flow in the nozzle, the temperature
variations produced by the mixture ratio oscillation may affect considerably
the stability conditions. Physically when the gas leaving the combustion
chambe: is at a2 temperaiure lower than the mean chamber temperature
due to the unbalance of the mixture ratio of this particular element, the
mass outflow rate is increased. This increase of mass outflow rate tends to
decrease the chamber pressure, With proper timing, this decrease. of
chamber pressure may occur during a pressure defect period and help in
exciting unstable oscillations. It can be observed from equation {2.07.15)
that the loop will not develop until 2 is increased to the order of . The
intersections of the loop with the unit circle will correspond to neutral
orcillations of frequencies of this order of magnitude, while the previous
intersections are usually less than unity. As has been indicated in Section
1.10, these unstable oscillations will be classified in the intermediate
frcquency range. For such cases, a more careful analysis taking the frequency
level into account should be developed.

The necessary condition for the uncondmonal stability of a bxpropcilant
racket corresponding to equation (2.06.13) for a monopropellant rocket is

1 N, .
{1 + -L"-i'—" + (K4 H) (N,, — ,,)}‘M ....(2.07.16)

which for systems without servo control reduces to

3p_au+x+m_nu~x—m
T+ D5+ 1 1+D5+1)

For ordinary bipropellants, K - H is positive but less than 1. From
equation (2.07.17), we can see that if n of the propellant combination is
less than §, the system can be made unconditionally stable by increasing the
pressure drop across the feed system and decreasing the pressure sensitivity
of the feed pump. If D, = D,, it is clear that it s more effective, in ordinary
bipropellant systems with K 4 # > 0, to decrease P, than P,. in other
words, increasing the pressure drop across the oxidizer feed system has a
greater stabilizing effect. If 2, = P,, it is more effective to increase D,
than D,. In general by comparmg the two terms per!ammg to the oxxdlzcr
and the fuel systems as given in equation (2.07.17) it can.be determined
easily whether it is more effective to change the oxidizer or the fuel svstcm
to obtain unconditional stablhty

\When » of the propellant is greater than §, it is necessary to control the
feed system by a feedback servomechanism to obtain unconditional stability.
Both the fuel and the oxidizer system can be controlled simultancously by

64

} ... (2.07.17)

]
ol --nm-

Sty e m



BIPROPELLANT ROCKETS 207

the same or by different feedback circuits as shown in Figure 23. It would i
he theoretically sufficient, however, to control either the fuel or the oxidizer - ! o &
system. If the fuel system is not controlled, Fy(s)=0, and the oxidizer 2 S
systcm is controlled by a feedback servomechanism with transfer functxon = S j;

F,(s) where ‘ A '
RO =G0 +as+ad+ad+..] wheaD,£0, | =,
Fj{) = (6 [1 + bys + by + by® +...] when D, =0. SR

Servo

frer 3 :
Arptiner | Signal pikp

ST Ak

Ovdizer

="
— > ) i
:’ucl

e B s A s T

AP T ON

Figure 23.  Schematic diagrams of the feeding systems of a bipropellant rocket with sero control ;

Thea —f, must satisfy the following requirement corrésponding to equasion
(2.06.16) for.a monopropellant system,

o(*+K"I‘H> : BYE i .
[‘2"“"+1 +DF, 1D 1 3 .

+P.(;—K~—H)]1+D,(P,+;) 1 - T
T+D,7,+ V] D, +1H I+EFH BT
when D, # 0, DRI )

>[e-v+ra+x+a | 3 I

A—K—Hj) 1 :
A DE R AT e I |
when D, = 0.

" Similar expressions for —f, can be obtained simply by mlcrchangmg the -
subscnpts and , and rcplacmg K and Hby —K and —H. By comparing -
the u:qmrcmcnts of —f, and —f}, it can be easily determined whether it is B
more cffective to control the oxidizer or the fuel system. If the fuel and the C B
oxidizer feed systems have the same values of P and D (and J if D = 0),
it is more effective to control the cxidizer system for ordinary bipro-
pellant combinations with K + H > 0 because 1 4 K + H is in general

A T

.
AT T
" rpe e L

TR DR

H
2

bigger than } — K — H. g N
The coefficients a,, a, or b,, b, of the transfer function of the feedback . g%
circuit which does not change the curvature of the curve of g (iQ2) at 2 =0, %

are still given by equation (2.06.17) with the proper subscripts.
' 65
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2.07 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

For the system with the Satche diagram shown in Figure 21, equation
(2.07.18) gives —f, > 1247 and equations (2.06.17) give g, = 4/3 and
a, = 16/9. This system can be made unconditionally stable by controlling
the oxidizer line with a feedback servomechanism having the transfer
function

1.40 1 — 1335
o) =——rn—osmpe

The resulting Satche diagram is shown in Figure 24 where the curve of g (s)

N -3¢ .0 20

N/

- Figure 24. Salche diegram -of the
39 ‘ biprepellant rocket of Figure 21 with

20 n = 0-6; (a) sot servo-controlled; (b)
oxidizer line controlled by a capacitance
L4 -4 servo-mechanism with transfer function
140 1 —1-33s
F = e ————e e
20 £6) s T =089y
%0 Numzrals on curve indicate values of 2
Yo
=70 =
- 50

is shifted completely out of the unit circle. Lee, Gore and Ross, cited by
Randall32, have alse plotted a number of cases for the particular configura-
tions with n =0, E = J = D = 0, and stability boundaries are given for
such systems.

The possibility of obtaining unconditional stability by the use of servo
control is also illustrated. It is thus well demonstrated, theoretically, that
a liquid rocket can be made stable in the low frequency range for all values
of time lag. There are, however, important practical problems concerning
the proper design not only of the feedback circuit, but also the capacitive
servo control which finally converts the amplified electric signal into
mechanical vibrations of sufficiently large amplitude in the frequency
range under consideration.

Previous considerations of servo stabilization are made under the con-
ditions that the different constants P, D, E, J and y are known for a given

66

VA VPN T

g

N1 i e St

Cdee g AmCCORenn

YN




BIPROPELLANT ROCKETS 2,07

feed system. In practical sysiems, however, it is hardly po:sibie to estimate
these constants with sufficient accuracy except the pressure drop para-
meter P = p[2Ap. The pump characteristic D, being taken previously
as a quasi-steady value, may change in the frequency range under con-
sideration. The application of equations (2.06.16), (2.06.17) and (2.07.18)
in designing a feedback circuit will require an ingenious evaluation of the
parameters involved.

From a practical point of view, the ratio of the fractional variation u;
of injection rate to that of chamber pressure ¢, that is, the transfer function
N(@{i€Q) = p,jo can in principle be deterinined, for different oscillating
frequencies £, for the isolated feed system under simulated operating con-
ditions. This experimentally determined function N(i12) = N () +i2N ()
replaces the lengthy equation (2.02.10). Then the equation of mass balance
in the combustion chamber as given by equation (2.03.01) can be rewritten
for neutral oscillations-in a monopropellant system as

i + (1 = n) 4 ne i = e-1¥{R 4 iS)

where R+ iS = e (o)
= e~ @U[N (0) + ioN{w)] = ....(2.07.19)
with §; indicating the insensitive time lag, when present. By separating
the real and imaginary parts of equation (2.07.19) and eliminating 6, we
obtain the critical values of n corresponding to- neutral oscillations of

frequency « in the given system

e — [R0) + F)]

T= ) ....(2.07.20)

When either §; = 0 or when §; is known, both R and $ are known functions
of w. A simple plot of nfw can be made and a minimum value of n, let us
call it a1, corresponding to certain » = w,, can be found. If the valae of
n of the propellant is less than this n.;,, it is obvious that no neutral oscilla-
tions could exist in the system and the system is unconditionalily stable.
If n is slightly greater than n,;,, and if the value of 7 is in the proper range
of values, unstable oscillations with frequency in the neighbourhooed of w,
will occur. Equations (2.07.20) and (2.07.19) are applicable to the bi-
propeliant case as well if N(iw) = N, (w) + iwN;{w) is defined as
— (N — N K cosw — (N;, — N; ) Ko sinw (2.07.21)
N, =N} + 2K+ H) + ¥, (} — 2K — H) R
+ (N,, — N, )K sinwjo — (N;, — N;)K cosw
with subscripts , and , indicating quantities pertaining to the oxidizer and
the fuel systems respectively.
The expression for N(iw) as given by equation (2.02.10) or as defined in
equations (2.06.04) and (2.06.05) can be used ‘to obtain the qualitative

behaviour of the curve of #fw. It is easy to see that (dn/dw), .o vanishes
at =0, and it is found that n{0} is a minimum when D =0 or E =0,
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2.08 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

but is 2 maximum when D = c0. When D = O(l), n(0) can be either a
maximum or a minimum depending upon the values of D, P, E, J and .
No simple relation can be obtained. The fact that 2(0) is a minimum when
cithér D or E is small leads to the conclusion that, for such systems,

= n(0) because both N, and N, approach zero when o is latge and
n(w) increases like 2. Thus n(0) == }{1 4 N,(0)] becomes the criterion
of unconditional stability as has been discussed in detail in connection with
the Satche diagram. The present result indicatés that the -criterion of
n < n(0) = {1 4 N,(0}] for-uncondifisnal stability can be both necessary
and sufficient only for systems with small D or small E. For systems in
which neither D nor E ie small, n,;; would be better-determined from the
plot of n(w)/w for experimenitally determined N(iw). If servo stabilization
were necéssary, the transfer function of the feedback circuit should be
selected so as to become most effective in the neighbourhood of the frequency
Ny w, where n;, occurs ds shown in ref. 22,
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2.08. Errecrs or TEE NON-UNIFORMITY OF THE TIME Lac

It has been assumed in the previous analyses that all propellant clements
have the same_value of sensitive and of insensitive time lag, and for sim-
plicity the insensitive time lag has been assumed to be zero. Now we would
like to see the effect of the non-uniformity of the sensitive time lag 7.

We have already stressed the dependence of the time Iag on the conditions
encountered by the propellants on their path from the injection orifices to
the point where they ar= entirely converted into burnt products. We have
also noticed that the conditions encountered are different for different
portions of propellants and therefore-the corresponding values of the time
lags are, in genctal different Xnowing the largest and the smallest values
of all the sensitive time lags, Fraax- and - Fip; We can always define an average
- reduced sensitive time lag 7., and theé total cxtcnt of spréad A7 thus:

S Fo = }(Fnax + Toutn) o
: Are fm‘f“_’_‘_ Fo ....(2.08.01)
Let f (7) be the fractional amount of the propellant having a sensitive time
lag lying between Tain and 7. Then the fractional amount of propcllant

having a sensitive time lag lying between 7 and 7 4 d7 is given by
: (df/dF) dF = df, and we have

fmax df
f(Fox) =1 §(Tuw) = and f Fdr=1....(208.02)
min

s o v rOAE

Since { is a monotonically increasing function of 7.only, we can also con-
sider 7 as a function of f only. From equation (1.11.15); we find that the
rate at which the propellant elements, having steady state pressure sensitive
time lag lying hetween 7 and 7 + d, are bumt is
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EFFECTS OF NON-UNIFORMITY OF TIME LAG 2.08

where 1 — d7/dz is evaluated from equation (1.11.13) or, in dimensionless
form, from equation (2.01.06)- with the value of ¥ corresponding to this
group of propeliant elements.

Let us cons ler the simplest case of intrinsic instability, s; = const.
The algebraic complication of the feeding system can be dealt with, but is
net considered to be essential for the present purpose. The fractional
variation of the rate of burnt gas generation for all the propellant clements,
covering the entire range of variation of the sensitive time lag, is thus

i, —my [ d7
= (1= E)-1] e
or from equations (2.01.06) and-(2.08.02) 7
1
po=n]v) = ['oc =9 ar]

The equation of mass balance in the combustion chamber corresponding
to equation (2.03.01} with corrected reference time (1 4- 5)0, is

{diz + (1 — n)] ¢=—n J;lq)(z —7)df ces .(2.08.93)

For solutions of the expenential type, ¢(z) ~ exp (52}, we have the char-
acteristic equation

s+(l—n)+nflc“"mdf=0 ....(2.98.04)
which will be rewritten as °
s+ (1 —n)4Cne—* =0 «v++{2.08.05)
where C and 7, are defined by
Ce¥e = J:e"‘*m df ....(2.08.06)

By comparison of equation (2.08.05) with equation (2.03.05), we see that
7, stands for the effective mean time lag, that is, the time lag of an equivalent
system in which the time lag for all the propellant elements would be the
same. The modulus C of the complex integral defined by equation (2.08.06)
represents a magnification or contraction factor of the overall effect, of the
time lag spread, on the variation of the burning rate. In general, both C
and 7, are functions of A and £. For neutral oscillations with 4 =0
and s = iw, it is clear from equations (2.08.06) and (2.08.02) that

1
J; exp [—io{F(f) — 7,}]df

C is equal to unity when the time lags for all the propellant clements are
the same. When the time lags are different for different elements, C is less
than unity.

C=

1,
< f df=1 ....(2.08.07)
0
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2.08 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

The critical values of the effective time lag 8, and the frequency of the
neutral oscillation @, are obtained from equation (2.08.05). with s = iw
and 7, = ¢, given as:

o =[Enr—1) — (1 — C¥n?j}
cos wd, = cos (270,|T) = —(1 — n)[Cn ....(2.08.08)
8, = [ — cos™ (1 — n)fen}[[(2n — 1) — (1 — C*)n]t

Since the_cffect of the spread of time lag appears through the reduction
of the magnitude of C from unity to some value less than unity, equations
(2.08.08) show that the critical frequency o of neutral oscillation is de-
creased and the critical time lag §, is increased. In addition, we sec tnat
for real w and §,; s must be greater than 1/(1 4 C) which is greater than 1.
This means that intrinsic instability is not possible unless n > /(1 + C)>14.
Therefore, the effect of the spread of time lag is stabilizing and the stabilizing
effect appears as an increase of the minimum value of the interaction index,
fiin, compatible with intrinsic instability, and also as a decrease of the
unstable range of the time lag.

Equations (2.08.08) also indicate that the decrease of @ and the increase
of §,aré larger if the magnitude of Cis smaller. In other words, the stabiliziug
effect of time lag spread is larg~= for smaller C. It should be noticed, how-
ever, that C.depends not only on the distribution and the extent of time lag
spread, but also on the freqiiency of the particular mode of oscillation under
consideration. The stabilizing effec: of a given time lag spread varies
when the frequency of the oscillation varies. :

In practical systems, the distribution of the amount of propellant elements
having théir time lags in-a givén range has never been determined. It
probably depends to a great éxtent on the particular injection system, the
propellant combination and ont many other factors. It is not very likely
that dffd# would be a constant, in which case there would be equal amounts
of propellant in each elementary time lag range. It is more iikely that there
is a larger fraction of the propellant elements in the nzighbourhood of some
mean value than near the extremes of the entire range 3 he function dffd7
is not necessarily symmetric about 7,. But if it is symmetric, it is simple
to show that for neutral oscillations of frequency @

TC = T”l

s ‘ ....{2.08.09)
C=2 I cos[a(7 — 7,)] df
[ 4

that is, the effective time lag #, is the same as the mean time lag 7,. For
other distributions 7, would be slightly different from 7, and the difterence
would also depend on the frequency of oscillation in addition to the time
lag distribution. For illustrative purposes, the expressions for C for the
following two simple cases are given as:
. df 1 sin wA7/2
(1) d—‘l-'—K;-' = canstant; Cl = —Z’_A-’?I_2~ 3
....(2.08.10)

. dr o (7 —Tn). n  COs WA7[2
) HF=m " a7 BT = @Ay
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EFFECTS OF NON-UNIFORMITY OF TIME LAG

Both C, and Cj are equal to unity when wA7 = 0 and oscillate when AT
increases. The amplitude of the oscillation decreases with increasing
wA7 = 2nA7|T, linearly in the -case of C; and quadratically in the case
of C,. Thus, when the actual-extent of the time lag spréad contains-more
than one period of oscillation. wA7>2m, the stabilizing effect is
considerably larger than that wh-n wA7 < 2. In Section 2,03 it is shown
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that the only intéresting_ critical ‘time lag, in determining the intrinsic

stability of a system, is the one correspending to h == 0 or wé < = in which
case AT < 27 because A7 is always le.s than 27,. Accordingly it is
sufficient to restrict our discussion of the effects of time lag spread on-the
intrinsic stability of a system to the lowest value of § with h = 0.

Sample calculations, for the intrinsic stability boundary of the system,
with time lag varying between 0 and T = 27,, and with distribution
according to the second type of equation (2.08.10) are carried out based
upon equations {2.08.08) and (2.08.10) with C = G, and A7[27,, = 1. The
results are given .in Figure 25. The dotted curves give the corresponding
neutral curves for the case without time lag spread. The previous quali-
tative discussions on the decrease of critical frequency and the increase of
critical time lag for neutral oscillations ave: verified.

In this section we have -only discussed the effect of tirae lag spread on
intrinsic instability. It is expected, however, that the qualitative effect of
the time lag spread will be substantially the same for systems with variation
-of injection rate, both for the monopropellant and for the bipropellant case.
The detailed picture is, of course, considerably more complicated.
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2,09 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

2.99. ErrecT OF TEMPERATURE VARIATION DUE TO
. PRrEsSURE OSCILLATIONS
It has been assumed that the temperature of the burnt gas in the combustion
chamber is not affected by the pressure oscillations, so that 7', — T,
vanishes for the monopropellant case and is a function only of the mixture
ratio for the bipropellant case, In actual conditions, ever if we assume
‘hat the adiabatic flame temperature or the stagnation temperature of the

_ burnt gas is independent of the small variation of pressure.under which

the burnt gas is generated, after the generation, the static temperature of the
burnt gas will change with local static pressure. If, in addition, the dissipative
action of viscosity and conductivity is neglected,- the instantaneous tem-
perature of the gas can be determined by the instantancous gas pressure
through the equation of the isentropic change of state. Thus the fractional
devia’.on of the gas temperature T',(z) from the adiabatic flame temperature
T, at the instant z is dircctly related to the fractional deviation of the gas
pressure p(z) from the pressure p(z — 2z,) under which the burnt gas eiement
was generated at the instant z — 2,:

T2) =T, y—1 p(&) =plz—2) _,y—1
L ety o ey [p(z) — @z — 2)]

....(2.00.01)

The diffefent burnt gas clements in the combustion chamber at a given
instant z are generated -at different previous instants. Gaseous elements
near the chamber exit may have -been in the chamber for a period almost
equal to the residence time, that is, z, ~ 1, while clements near the injector
end may have just been:generated or may have spent a small fraction of
the average residence time 0, in the chamber, that is 2, < 1. Therefore,
when the pressure in the combustion chambec osciliates with relatively
low frequency, and the gas pressure can be considered as practically uniform
at any instant, the temperature of the burnt gas in the chamber is not
uniform at any instant so that-the density of thé burnt gas is not uniform.
In order to determine the mass of burnt gas stored in the combustion
chamber and then the rate of mass accumulation in the chamber, we must
know the temperature distribution at any instant. Equation (2.09.01)
indicates that this is possible only if we have additional information con-
cerning the distribution of combustion and the flow conditions in the
combustion chamber. :
The tréatment of the general case vill be given in Chapter 3. In this
section we shall only illustrate the effect of this temperature variation by
considering the following idealized ccrfiguration, in which ali the pro-
pellant élements are transformed into burnt gas near the injector end and
the residence timé of all the elements is the same as the average gas
residence tirae 6,. In this case, the axial velocity of the burnt gas is constant
throughout the chamber. The variable 2, of a given gas element is thus
equal to the-fractional axial distance from the injector end, or to the frac-
tional chamber volume upstream of the axial station-of the corresponding
element, Thaus, in the evaluation of the mass stored in the chamber volume,
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EFFECT OF PRESSURE. OSCILLATIONS 2.09

the integration over the chamber volume with the differential variable
dV]V can be replaced by integration with the differential variable dz,,
with0 <z, << 1

The rate of mass accumulation as given by equation {2.07.08) can be
evaluated with the help of equation (2.09.01) and the fact that dV|V = dz,.
For the monopropellant case, we have

dM,] dp y—1[de :
a;[.ﬂ:]_&-———r[a—z--f-cp(z-—l)—cp e (2.00.02)

The fractional variation of the mass ejection rate, as derived from equation
(2.07.03) under the assumption of quasi-steady flow, is

@) = — e Yo Lo —pz—1)]  ....(2.0909)

The fractional variation of the rate of burnt gas generation g, is not affected
by the temperature variation explicitly because the index n of interaction is
supposed to include the effect of temperature variation. Thus the equatien
of raass balance in the combustion cha.nber for the analysis of intrinsic
instability is

S+~ pe— D] + g =nlp — 9l — )] ... 20908

The chamcteristip equation for ‘the neutral solution of exponential type,
¢(2) ~exp (s2), is

._.+ [l—c"']+(l —n) = —pe-i=d _ . (2,09.05

The following two real equations can be obtained by equating the moduli
and the arguments of both sides of equation (2.09.05)

=-+—-—-(1 cos w)

%
y— —1
+ [—»—}- smw] /2[1 + e (1 — cosw)]
% .. ..(2.09.06)
gz;+y~ sin @
®d = 7 — tan™!
l—n+ (1 — cos w)

4

In the first of equations (2.09.06) we see that when w = 0, 2 is equal to }
and that this is the minimum value of n compatible with any real solutions
of w and §. This means that intrinsic instability is impossible if # is less
than { jus: as in the case investigated in Section 2.03 where the temperature
oscillation of the burnt gas elements is neglected.
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2.09 CHUGGING ANALYSIS (LOW FREQUENCY INSTABILITY)

3 For small values of w where cos @ ~ 1 and sin w ~ w the critical values
of w and J can be easily solved from vquations (2.09.06) for given values of n
slightly greater than 1.

A A 2 RN
4 i == @n—1p s
; e -
s ; 1 w1 ..(2.09.07) R
5 f —n i §
a . 0 = |7 — cos? (2n — 1)} Yo
: o n 2
b 10 20
£ V4 -
& /
' x ’ ga
3 : 7 S
E j /‘”>/ . o
4 ‘ 075 va #5 ol
<. . . . ‘I
E. o/ / / w
i SE [ | Corrected for Figure 26. Efect of gas -
f ; ./ Tempercture vaoriotien l temperature oscillation on :
2 o504 *0 | the critical calues in sys-
§ / = ~Uncorrectsd coiw lems with constant injection
2 Yl§ / ~ rate for different values of
4 S . B the interaclion index n
[ J/ '
3 i
: 025 - . NS
s \ M U v d
3 . Ny N
kS : -
S = e S
b= - :gﬁ* { i 0

Comparing equations (2.09.07) and equations (2.03.10} we sece that for a
given value of n which is only slightly greater than }, the critical value of ©
is increased and that of 9 decreased by the multiplying factor 2y/(y + 1)
and (y 4 1)/2y respectively when the temperature variation of a given burnt
gas element is taken into consideration. For most of the combustion gases at
. high temperature, the value of y is only slightly larger than unity and the
. correction- factor 2y/(y -+ 1) is not very much different from unity. This
correction is therefore not likely to be of great importance especially when
3 we are-interested primarily in the qualitative trend of the results,

> When # is significantly larger than 1, @ is not small and the critical values
of  and 6 must be determined from equations (2.09.06). For illystrative
purpnses, the results when y = 1-20 are given in Figure 26 as solid curves.
The corresponding results when ‘the temperature variation of the gas
clements is neglected are also plotted as dotted curves for comparison.
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EFFECT OF PRESSURE OSCILLATIONS 409

It is clearly seen that the effect of the temperature variation of the gas
clements is to decrease & and increase o for given n and that the minimum
value of n compatible with any neutral or unstable oscillations is not affected.
The qualitative trends are consistent with those as obtained from equations
(2.09.07). ’

For more complicated monopropellant systems in which the injection
rate responds to pressure oscillations in the chamber or for bipropellant
systems, the qualitative trend of the effect of the temperature variation of a
given burnt gas element is not expected to differ fundamentaily.
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ANALYSIS OF SCREAMING
(LONGITUDINAL HIGH FREQUENCY

Superscript *
Supcrscripts (0), (1

Superscript ’
Subscript ,

Subscript ,
Subscript ,

Subscripts , and ;

u == u*jc;

u, = ujfey

&

M

t*
t=1*0,
p#

»
o

INSTABILITY)

List oF SymeoLs
indicates that the quantity is dimensional

indicaie the solutions obtained from the Oth or first
iteration

indicates a smail perturbation

indicates the quantity evaluated at the stagnation region
near the injector end

indicates the isentropic stagnatien value of the quantity

indicates the quantity pertaining to unburnt (mostly in
liquid phase) propellant element

indicate respectively the real part and the imaginary
part of the quantity, if not otherwise stated

over a quantity indicates mean or stzady state value
over a quantity indicates the quantity pertaining to the
case with ilarge @

axial distance from injector end

axial length of the combustion chamber from injector
end to entrance of de Laval nozzle

dimensionless distance from injector end
speed of sound in stagnant burnt gas at injector end

characteristic time required for sound wave to travel the
chamber length L in stagnant burnt gas

mean axial velocity of burnt gas at cach transverse
section
dimensionless axial velocity of burnt gas

mean axial velocity of unburnt propellant elements at
each transverse section

dimensionless axial velocity of unburnt propeilant
clements

steady state valuc of u

Mach number of flow of burnt gas entering nozzle
time

dimensionless time

pressure of burnt gas

pressure of burnt gas in stagnation region near injector
end
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T = T*|T*

h*

hy

h= (7 =1[c2)h
bP

w*
w=u*lple
W; = Pty

k*
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M
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LIST OF SYMBOLS

dimensionless pressure of burnt gas

density of burnt gas ]

density of unburnt propellant element

density of burnt gas in stagnation region near injector end
dimensionjess density of burnt gas )

dimensionless density of unburnt propellant element
temperaturc of burnt gas

temperature of burnt gas in stagnation region near
injector end

dimensionless temperature of burnt gas

enthalpy of burnt gas

enthalpy of unburnt propellant element
dimensionless enthalpy of burnt gas

dimensicnless enthalpy of unburnt propellant element

instantancous rate of burnt gas generation in the
chamber volume from the injector end x* = 0 to »*

dimensionless rate of burnt gas generation before x*
dimensionless injection rate
drag roefficient of the motion of the unburnt propellant

element, = drag/velocity of unburnt elcment relative to
surrounding gas

dimensionless drag cocfficient

perturbation of burnt gas pressure

perturbation of burnt gas density

perturbation of burnt gas enthalpy

perturbation of burnt gas velocity

perturbation of velocity of unburnt propellant element
perturbation of density of unburnt propellant element
perturbation of rate of burnt gas generation before x
time independent part of p’

time independent part of p’

time independent part of «’

time independent part of )

time independent part of p,

time indcpendent part of o’

adiabatic index of burnt gas == ratio of specific heats
dimensional amplification coefficient

dimensional ansular frequency

dimensionless amplification coefficient

dimensionless angular frequency

critical value or neutral angular frequency
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B = wla,

ANALYSIS OF SCREAMING (LONGI’I‘UD!NAL HIGH FREQUENCY 1NSTAB!LITY)

a complex quantity which is the Laplace transformation
variable and is the root of the characteristic equation
for oscillations with exponential time dependence exp (st)

specific acoustic admittance ratio of de Laval nozzle
reduced angular frequency

B = (1 4 a#)/(! — a7) a parameter of boundary value at nozzle entrance

14
T =t 4t

.
7i

x=1
axial position of concentrated combustion front from
injector end as a fraction of combustion chamber length

dimensional total time lag from instant of injection to
instant of combustion of a given propellant element

dimensional insensitive part of total time lag
dimensional sensitive part of total time lag

7, = 7; + 7 =17 /0, dimensionless total time lag

T = Ti./ew
T =10,
é
Ty
E = J. u, d¢
]
l
m
Xr + iZt

XY, W,ZEF

Q
s
uv

o , da
k= J:) cos wx’ 7
E =ny(l — e~
4,B,C, D

LJ

dimensionless insensitiv~ part of total time lag
dimensionless sensitive part of total time lag

critical value of sensitive time lag + corresponding to
neutral oscillation

insensitive space lag, that is axial distance travelled by
an unburnt propellant clement during its insensitive
time lag

integers indicating the numbzr of half wavelengths
contained approximatelv in the combustion chamber
length with /=1, 2, 3... corresponding to the funda-
mental, second, third, acoustic mode respectively

integers indicating the number of oscillating periods
contained approximately in the sensitive time lag

a complex function defined in equation {3.04.02)

functions of different perturbations and mean quantities
defined in equations (3.07.08) and (3.07.09)

time independent part of burning rate perturbation due
to timewise condensation and rarefaction under vari-
ation of sensitive time lag [as defined in equation
(3.08.17)]

cutropy perturbation of burnt gas

functions defined in equations (3.09.16)
dx’ function defined in equation (3.11.03)

function defined in equation (3.11.04)
functions defined in equations (3.11.06) and (3.11.07)
furictions defined in equations (3.11.09)

A4, B,,C, Dy; 4, B,,C,, D, functions defined in equaticns (3.11.18)

I, A

fanctions defined in equations (3.11.19)
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SYSTEMS WITH CONCENTRATED COMRBUSTION 3.01
c magnification factor due to effect of spreading the
] sensitive time lag defined in equation (3.05.03)
7, effective sensitive time lag defined in equatien (3.05.03)
é, critical value of 7, for neutral oscillation
o( ) order of magnitude of quantity in parentheses

3.01. SvsTEMs wiTH CONCENTRATED COMBUSTION

As ALREADY explained in Chapter 1, when the frequency of gas oscillation
in the combustion chamber is sufficiently high, the wavelength of standing
oscillations may be comparable to the length of the combustion chamber
and the gas pressure inside the combustion chamber is not uniform at any
instant in unsteady state operation. In this case, not only the time interval
but also the spatial range, in which each propellant element senses pressure
oscillations, are important parameters in determining the contribution of
this propeliant element to the variation of the burning rate. Therefore, .
both the time lag and the space lag of each propellant element must be
known for the analysis c{ high frequency oscillations. The spatial range, in
which cach propellant element senses pressure variations, is determined by
the total space lag and the velocity of the unburnt propellant element Guring
the sensitive time lag. Both the time lag and the space lag are in general
different for different propeilant elements. For the analysis of longitudinal
oscillations in a combustion chamber of length L and of uniform cross
sectional area, we shall consider the gas flow as one dimensional, and the
only spatial coordinate which needs to be considered is the axial distance,
x*, from the injector end.

As a result, the only relevant characteristic time of such longitudinal
oscillations is the wave propagation time; which is required for a sound wave
to travel from the injector end, x* = 0, to the combustion chamber exit,
x* = L, in steady state operation. Owing to the heterogeneous state in the
rocket chamber even in steady state operation, the actual wave propagation
time is not well defined. Therefere, we select the characteristic wave propa-
gation time 0j;- as the time required for a sound wave to travel a distance L
(= length of combustion chamber) under conditions corresponding to the
stagnant burnt gas near the injector face. In ordinary combustion chambers,
where the velocity of mean mass motion is small compared to the speed of
sound, 20 will be approximately equal to the time required for 4 sound
wave to travel the length of the combustion chamber back and forth. Let us
call ¢§ the specd of sound in the stagnant burnt gas, then 6. = L. We
shall also express the velocity «* of mass motion as a fraction of ¢§- and
write u = u*[¢y. Likewise, the pressure, density, and temperature of the
burnt gas at stagnant condition will be taken as reference quantities. Thus,
the dimensionless time, velocity, length, gas pressure, density, and tem-
perature are defined as:

* u* x* ﬁ# pt e
l==-'0-:, 1(2}—:-, x=z, p=p~—;*, p=-—‘-)i and T:—i‘?
....(3.01.01)

We shall first consider the simplest case in which all the propeliant
clements have the same sensitive time lag and the same total space lag;
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3.01 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY) !

accordingly they burn at the same axial position in stcady state operation,
In such an ideal system, all the propellant elements injected into the com-
bustion chamber at a given instant move downstream through the burnt gas
that was generated previously and was recirculated back to the injector
end.

No gas is formed from these elements till they reach the position x =y,
corresponding to the total space lag where all the propellant elements are
transformed into burnt gases simultaneously and instantaneously. The burnt
gases move downstream toward the exit of the combustion chamber, x =1,
without further chemical reactions. In steady state operation, the bumt
gas upstream of the concentrated combustion front at x = g has no mean
axial velocity, though there is an active recirculating motion of the burnt gas
in this region. At the combustion front x = y, the mean axial velocity of
the burnt gas changes discontinuously to a finite value @ because of the
sources of burnt gases concentrated on this front. Both the burnt gases
upstream and downstream of the combustion front are in active recirculating
or turbulent motion, They differ only in the respect that the downstream
burnt gas possesses a mean axial motion while the upstream burnt gas does
not.

Since burnt gases in both regions are generatcd from the same pro-
pellant under similar condmons, the stagnatmn temperature, pressure, and
density of the burnt gases in both rchons are wscntxally the same. Thus,
the concentrated combustion front in steady state is only a discontinuity
of mean axial velocity while the temperature, pressure, and dcnsity are
approximately the same across the combustion front. This is an important
difference between the combustion front that we are considering here and
the usual flame front, in which heat is added.to an existing flow of cold gas
with the consequence that the flame front is a discontinuity of the mean flow
velocity, the gas density, and the temperature.

The burnt gas generated from the combustion front at a given instant
mixes with the previously generated burnt gas and moves downstream in
the cylindrical duct with a_ constant velocity #, till it enters the nozzle
where the gas is accelerated in the converging portion, goes through the
sonic velocity at the throat, and leaves the nozzle at supersonic velocity
through the diverging section. The g:ometry of the de Laval nozzle
determincs, in steady state operation, the Mach number M of the gas flow
entering the nozzle. This Mach number M of the flow entering the nozzle
is usually sufficiently small (see Section 3.06) so that M2 1 and the
dimensionless mean gas velocity @ is approximately equal to A, Under
this assumption, the dimensionless pressure, density, and temperature of
the burnt gas in steady state operation are practically unity throughout the
combustion chamber (f =1, 5 =1, T = 1), and the flow of burnt gas in
the region upstream of the concentrated combustion front can be con-
sid=red as isentropic if fluid friction and heat transfer are neglected. The
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same assumption will be made without further discussion for the region
: downstream of the cembustion front. A detailed discussion of these assump-
tions will be given in later sections in connection with systems with arbitrary
combustion distribution. With these assumptions the unsteady flow of
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SYSTEMS WITH CONCENTRATED COMBUSTION 3.01

the burnt gas in each of the two uniform flow regions is governed by the
following equations:

op* d
%% 4 L (ot =0
u* out ap* L ...(5.01.02)

* **,___.a_——-—
Pl TP 3a= " 5=

P*lpo' = \p*[po*)”

Expressed in terms of the dinensionless quantities defined in equations
(3.01.01), equations (3.01.02) can be written in the following form:-

p¢+ (pu), =0
1
puy -+ puu, = — ;Apz

pp7 =1
where subscripts denote partial differentiation with respect to the variable

indicated. .

For the analysis of the stability of small oscillations in the system, we
shall consider the unsteady gas flow, as consisting of a small perturbation
superposed on the steady state flow, with the perturbations assumed to be
so small that the squares or the products of these perturbations can be
neglected as compared to terms linear in these perturbations. Thus

substituting

....(3.01.03)

p=1+p, p=14+p" and u=a+4u
into «quations (3.01.03) under the approximation that A2~ # <1, we
obtain the following linearized equations for the perturbations of pressure,
density and velocity:

P+ dpy -1, =0

u, + du, 4+ p. =90 ....(3.01.04)

P=yp
Equations (3.01.04) are simply the wave equations governing the propa-
gation of small disturbances in a one dimensional uniform flow field with
constant flow velocity #. The general solution of these wave equations is
well known and is given as:
u = ul(t — ax) 4+ u{t — ax) ,

, 1., , , .+..{3.01.05)
p= ;If = U (t —ax) —u,(t — ax)

where u, and u, are arbitrary functions defining the downstream propa-
gating and the upstream propagating velocity disturbances; 1ja, =1+
and lfa, = —(1 — &) are the speeds of propagation of the downstream
and the upstream moving waves vespectively relative to the wall of the
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3.0]1  ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

combustion chamber. This general solution, as given by equations (3.01.05),
applies equally well in the flow region 1, bounded by 0 < x <y where
# =0, and in the How region 2, bounded by y < x <1 where 2 ~ M.
The solution in region I must satisfy the boundary condition at the injector
end, x = 0, namely that both the mean flow velocity and the velocity dis-
turbances must vanish at any instant. The solution in region 2 must satisfy
the boundary condition at the combustion chamber exit, x = 1, that the
ratio of the fractional velocity perturbaticn to the fractional d=nsity perturba-
tion must be equal to the nozzle specific admittance ratic determined-in
Appendix B. Moreover, solutions in regions 1 and 2 must be properly related
so that the boundary conditions at the concentrated combustion front can be
satisfied. With all these boundary conditions, the functions u; and u; can be
determined for a given initial disturbance. The solution of such an initial
value problem is, however, not necessary since we are interested primarily in
the stability of small arbitrary disturbances in the system. We shall therefore

restrict our investigation to the stability of the solutions of exponential type:
u, =c,expfs(t—a A
T Pt — )] ....(3.01.06)
uj = c,exp [s(t — a)]

where s == A 4 i is a complex constant. For simplicity, let us write the
perturbations as:

= v(x) exp (st) W
p = o(x) exp {(st) - . ...(3.01.07)
’ ¥ = ¢(x) ep (1) J ’
then - ]
¥(x} = ¢, exp [—a,5x] -+ ¢, exp [—a3]
L ....(3.01.08)
o = g — g exp (e

Let subscript , denste solutions in region 1 and subscript , denote solutions
in region 2. Then the boundary condition at x = 0 gives

e fe,, = —1 ....(3.01.09)

The boundary condition at x = 1 gives .
g _ 1t — 5
P g = P [s(a, — a,)] ....(3.01.10)

whete & = «, J- ix, is the nozzle specific admittance ratio. For convenicnce
let »s define

B = (1 4 ai}/(!] — ait) ... -(3.0L11)
‘Thus the solutions in region 1 and region 2 are given as

n(®) =&, exp (—a2, {1 — exp [—si(a, — a,)d1} ....(301.12a)
82
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SYSTEMS WITH CONCENTRATED COMBUSTION

‘ﬁ"f'i)‘ = 0'1("’)’

= —=¢, exp (—s5;8,x){1 + exp [—s,(a, — a,)x]} ... .(3.01.12b)
1o(x) = G, exp (—s,8,2){1 — B exp [sa(e,, — a,)(1 — 1)1}
%@=Mﬂ ...(3.01.13)

= —c, cxp (—spa, {1 -+ Bexp [sa(a, — a,) (1 — )1}

These two sets of solutions are te be matched -at the concentrated -com-
bustion front x = . As discussed previously, the concentrated combustion
front is not a discontinuity of pressure, density, or temperature of the burnt
gas, but is-only a discontinuity of flow velocity. Hence the boundary
condition at the concentrated combustion front consists of two parts:

(1) The steady state value, as well as the small perturbations of pressure
and density are continuous at any instant across the concentrated com-
busticn front*. That is

=t and pp=p at x=yp

These are eqiivalent to the conditions:

=i =9 |
G, =0y, =0 atx=y9 ..,.(3.0114)
52=51=

(2) The fractional increase of the difference of mass flow rates across the
concentrated combustion front is equal to the fractional increasé¢ of the
burning rate at the concentrated combustion front.

‘The fractional increase of the difference of the mass flow rate is

[(5: ) @+ )~ (B + pi)ui] et [a 17z 1_,]
pu Z=yp u z=p

: ....(3.01.15)

To avoid the complications of the feeding system let us consider the case
where the injection rate is kept constant regardless of the pressure oscillations
in the combustion chamber, The instantaneous burning rate 8m, of -each
individual propellant element having steady state sensitive time lag lying
between 7 and 7 + d7 is given by equations (1.11.13) and {J.11.18). In the
present case where all elements have the same sensitive time lag, 31, for each
element can be replaced by the total variation of the burning rate 1, — i, of
all the elements. Thus the fractional increase of the total burning rate is

po = (i, — Ty = —drjdt = n[p' () — /(64— F)]  ....(3.0L16)

* This is due to the fact that the combustion front in a rocket is 2 mass source where
burnt gas is at essentially the same temperature as the previously burnt gas in both sides of
the combustion front. This situation should be carcfully distinguished from the flame front
where ggat is added ts ibe Hlow of the cold gas upstream of the flame without substantiai
mass addition.
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3.02 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

where p is the total space lag defining the position of the combustion front
and £ is the insensitive space lag correspanding to the position of thé pro-
pellant element which burns at the instant ¢ and became sensitive at the

instant £ — 7, Thus with % designating the axial velocity of the propellant
element

p—t=[ awya
t—F

Since #, is of the order of M or less, p — § = O (M). 7. Therefore, if the
sensitive time lag is of the order of unity in the dimensionless form, i.e. if

*=0(6,), then p — § =0 (M). Accordingly, §~y and cquatlon
(3.01.16) becomes

H, =net —q:(fp)[l — e™¥] ....(3.01.17)

Under this approximation & ~ y, the position of the concentrated com-
bustion front ¢ will not oscillate because p — £ is the only variable part of
the total space lag. Equating g, from equation (3.01.17) to the fractional
increase of the difference of mass flow rate, from equation (3.01.15) we
obtain the following boundary condition at x = ¢

vy — #y + @(l — yn)o + dyno exp (—s7) =0 ¢~ (3.01.18)

Substxtutmg o,(y) and oy(y) from equations (3.01.12) and (3.01. 13)
into equation (3.01.14), we have

%,

e __ 1+ N [—s(a, _ a:)!p]
G, 1+ B exp‘[s(ar - a:)(l - 'P)]

Combining equations (3.01.12), (3.01.13), (3.01.14) and (3.01.19) witl
equation (3.01.18) we obtain the followinrg characteristic equation for the
determination of the complex quantity s = A4 4 i

] —Bexp [25(1 —y)] 1 —exp (—2sy)
1+ Bexp[25(1 +y)] 14 exp (—2sy)

== &[(1 = yn) + ynexp (—s7)] ....(3.01.20)

where a, — a, = 1/(1 + @) + 1/(1 — &) = 2/(1 — i) has been taken equal
to 2 under the approximation M*~ ##<< 1. By replacing s by A4 +iQ
and letting 4 = 0 in equaticn (3.01.20), we can obtain two real 2quatior s
after separating the real and the imaginary parts of the resulting equation.
The stability boundary for high frequency oscillations ix such a system with
concentrated combustion can then be obtained by eliminating 2 from the
two real equations.

....(3.01.19)

3.02. Hicu FreEQUENCY INSTABILITY IN SvsteMs wiTH COMBUSTION
CONCENTRATED AT THE INJECTOR END AND SHoRT NozzLE
Consider first the simplest case where the combustion chamber s very
long, so that all the combustion is practically completed in the neighbourhood
of the injector end, and the length of the subsonic portion of the nozzle is much
smaller than the length of the combustion chamber. For this case p =0
and the nozzle flow can be reasonably expected to be quasi-steady with
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COMBUSTION CONCENTRATED AT INJECTOR END UL

a=(y —1)/2. Thus let p=0, B={1 + Ky — HM}/{l — ¥y — )M},
§ = iw and 7 == § in equation (3 01.20), where w and 4 are the critical value
of the dimensionless frequency of oscxllatlon and the sensitive time lag cor-
responding to neutral oscillations. The fcllowmg two real equanons are
obtained by separating the real and i 1magmnry parts in equation (3.01 20)
zfter neglecting M2 as compared with unity.

y—1
yn €05 w0 = —(1 — yn) — o
....(3.02.01)
. tan w
yn sin wd = =

Wi yn is of the order of unity, tan-w must be of the order of M, and
cos® w 's approximately unity. Approximate solutions for w and  are thus:

< 21}
e
1 fr . fy+1
s =5{(2m FYrF lf-; — sin1 (”21'" - 1)]}

where both m and [ are positive integers, 0, 1, 2, etc. [ indicates the number
of half-wavelengths that arc contained approxlmatcly in the combustion
chamber length. In other words, the value of ! designates the order of the
successive higher modes of oscillation with frequencies corresponding to the
lth acousiic mode in an organ pipe of length L, closed at both ends. m indi-
cates the number of oscillation periods that are contained in the critical
sensitive-time lag and therefore designates the successive higher unstable
ranges of values of the €me lag #. The lowest frequency of neutral oscillation
is obtained when [ = 0 where

... (3.02.02)

i y + 1}
0 =ynu [l - (I -_ '-2—7;1—) ] e .(3.02.03)
This frequency is based upon the characteristic time 0, = Lc§. The gas

residence time used as reference time for the low frequency analysis is
0,=Lji* = O,Iu. This lowest frequency expressed in cycles per gas
rwdcnce time 0, is therefore

y + 1\t
" [l B ( T 2 ) =]
which coincides with the result given in equation (2.03.1C) when y = 1.
This last restriction ¢ = 1 is due to the assumption made in the low frequency
analysis that the gas temperature i$ constant regardiess of the pressure
oscillations, strictly correct only when y = 1. The product wé represents the
phase shift of the oscillation d xing the time lag and is-independent of the
characteristic time. The second equation of (3.02.02) with m = 0 and the
upper sign is easily seen to reduce to the second equation (2.03.10) when

y = 1. The solutions when [ = 0 are therefore identified to be the low
frequency resuit and will be discarded in the analysis for high frequerncy
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3.02 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

oscillation. The fundamental mode of high frequency oscillation is thus

taken to be the one with { = 1.

Either by determining the sign of A when @ = I or by determining the
sign of dA/dQ2 on the stability boundary, the unstable ranges of frequencies

are found as

i y+ 1)
lsr — ynit [l -—-( _—2_—}”‘_}] <L

i 7+ I\
L —{1—=
< lm 4+ ynu [1 (l 2}’")]

and the unstable ranges of the time lag as
Y PRy A R S
(2m + D)= [2 sin ( S 1 l_.
- y O
l1r+ynu[l—(l— 2yn>]

(2m + = + [— — sin™1

)

....(3.02.04)

2 -
< — 71 ....(3.02.05)
lm —ynii |1 — (l S
1
Short nozzle l Loy
sl »=ra0 m=2, L=1 i s -
H=021? 22248
M
/ Shaded parts = dnsfoble regions
5
” S ' %W//J LY vt 07 pes Bt S
’ | m=7,0=1 oo SACRR s,
! | e SO
1= OO = =
5 K‘« m=2,1=2
All modes P, s .
3)‘06/0 /774 NS AAREIRKRSS AT T .
2 }
‘m=7,8=2
SRR D mto,l=1
' > S !
1 e, 1
PN < =0, 122
i | > —T : ;
[/ 04 o4 o6 [2] (7'0 72 74 76 18 2/
RN ——
Figure 27.  Unstable ranges of the sensitive time lag 7 for the fundamental (I = 1} and the
second modes correspunding to different values of the tnteraction index n (short nozzle, entrance
Afack number M = 0-213). (By courtesy of the American Rocket Societs)
where [ =1,2,3,...and m=0, 1, 2, 3,.... From equation (3.02,04)

with [ =:1, p) «..and when yn is of the order of unity, we see that the
86
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COMBUSTICN AT AN ARBITRARY AXIAL LOCATION 3.03

frequencies of the unstable oscillations are always close to the natuzal (organ
pipe) frequencies which under the present dimensionless scheine are Iz,
It is clear from equations (3.02.01)-(3.02.05) that ir order to have real
solutions of the siability boundary, the interaction index n must be suffi-
ciently large so that

n>l+ Dy o =0 +DHy ....(30200

Under the present approximations, the minimum value of n compatible with
unstable oscillation is thus slightly less than one half because the value of
y of the combustion gases is always slightly larger than unity. From a more
careful analysis in later sections, it will be shown that this minimum value
of n is actually one hzlf.

When # is equal to this minimum value (y + 1)/4y, we have

w=Ir and wd=(2m+ )= ....(3.02.07)

with vanishing unstable ranges of 2 and #. When n increases from this
Myns both unstable ranges of 2 and 7 increase. When n becomes very large,
almost any values of 7 fall in the unstable range. The urstable ranges of
Fform=20,1and 2and / = 1 and 2 are plotted versus » in Figure 27 when
v = 1-20 and M == 0-213,

3.03. SvystEMs WITR ComBusTION CONCENTRATED AT AN
ARBITRARY AXIAL LoOCATION AND SHORT NozzLE

Consider next the more general case where the combustion chamber is
much longer than the subsonic portion of the nozzle, so that the nozzle
flow is approximately quasi-steady, but the insensitive time lag is sufficiently
large so that the space lag is not negligibly small compared with the
combustion chamber length. Then the two real equations obtained by
separating the real and the imaginary parts of equation {3.01.20) become

y—1

;mcoswé = (l — yn) -—m——z(lt—';)-&;

sin wfi
cos yw cos (I — plw

yn sin @ = ....(3.03.01)
For real values of w, cos? (1 — y)w is always less than, or at most =qual to,
unity; thus the following ineguality must be satisfied in order to have real
solutions for the frequency w of ncutral oscillation:

2 {plyn +n — 11 — [{y — 1)/2]%} coPyw =sintw >0 ....(3.03.02)

When n is equal to ny, = (¥ + 1)/4y, the inequality (3.03.02) shows that
the only possible values of w are given by sin w = 0 and the non-zcro values
of w must be /7. Then equations (3.03.01) indicate that the only possible
value of g is given by cos*(1 — p)lz =1 or p =0, 1/I, 2/l, etc., and the
only possible values of the critical time lag & are given by cos wd = —1,
with the consequence that there is no unstable range of the time lag 7. In
other words, when n = n,y, = (y + 1)/4y, neuatral oscillation of the Ith mode
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3.03 ANALYSIS OF SCREAMING { *:GITUDINAL HIGH FREQUENCY INSTABILITY)

can occur only when both tl.. ;ombustion is concentrated at an antinodal
position of the¢ Ith mode of pressure oscillation and the time lag has the
optimum value in coordinating the pressure oscillation and the resulting
burning rate oscillation. For any other combustion distribution, the Ith
mode of oscillations is stable with r = n, = (y 4 1)/4y and must be
damped out eventually, even with optimum timing. This fact indicates that
the combustion distribution which is most capable of exciting unstable
oscillations of the /th mode is the one with combustion concentrated at the
antinodal positions of the {th mode of pressure oscillation. This is physically
reasonable because under the approximation of p~ £, the propellant
elements, during the sensitive time lag, sense only the pressure variations at
the combustion front. Thus when the combustion front is at the antinodal
positions of the /th mode of pressure oscillation, all the propellant elements
can sense the maximum amount of the variations of the pressure and other
associated properties. Accordingly, the system is most liable to instability
of the Ith mode.

With combustion concentrated at the antinodal position of the /th mode,
if the magnitude of the interaction index n increases from the minimum
value ny,;,, the magnitude of the variation of the burning rate is greater than
that required to maintain neutral oscillations of the I/th mode with optimum
timing. Consequently, it can be expected that when n is greater than
(y + 1)/4y, neutral and unstable oscillations can be obtained when both
of the following conditions are fuifilled: the dimensionless sensitive time lag
is contained in certain finite ranges about any of the optimum values
given by cos Izd = —1, and the combustion s concentrated in certain finite
ranges in the neighbourhood of the antinodes of the /th mode of oscillation.
Furthermore, when n is greater than (y - 1)/4y but not much larger than
unity, the inequalities (3.03.02) show that any neutral oscillation will have a
frequency @ not significantly different from I as explained previously.
Thus, there must be some position of the coimnbustion front between 0 and 1
that will make cos yw = cos {y[iz + O(d, } = 0. For these values of ¢,
which are somewhere in the neighbourhood of 1/2/, 3/2l, etc., the only
possible real value of w compatible with inequality (3.03.02) is mz. How-
ever, the simultancous vanishing of cos yw and sin @ makes cos (I — y)w
equal to zero which is incompatible with the first equation (3.03.01) because
|y cos wd| < yn is always finite. This fact indicates that when ¥ takes
some value in the neighbourhood of 1/21, 3/2, etc., no ncutral oscillation
can exist; in other words, the Ith mode is always stable when combustion
is concentrated in the ncighbourhoed of the node of pressure osciliation.
This again can be expected on purely physical grounds becau.: around a
pressure node, the propellant elements cannot sense any pressure vasiaiions.
Therefore for a given value of 2 > (y + 1)/4y, unstable and neutral oscilla-
tions of a given mode are possible when combustion is concentrated at some
axial position in the neighbourhood of a pressure antinode; and oscillations
of a given mode are always stable when combustion is concentrated around
a pressure node. The stable region about a node is separated from the
regions of possible instability about the ncighbouring antinodes by critical
values of y which we call .. Thesc positions g, of the combustion front are
characterized by the fact that hoth the two critical values of the frequencies
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COMBUSTION AT AN ARBITRARY AXIAL LOCATION 3.03

o and the two critical values of the time lag 8 coincide so that there cannot
be any unstable oscillations of the given mode, and only neutral or stable
oscillation is possible at the given valuc of . Thus, the values of y, cor-
responding to a given value of » can be determined by putting sin w = 0
in equations (3.03.01) as

1 Py —
12 y.~1— 5 cos! [-’i——l— — 1] =0 ....(3.03.03)

For the fundamental mode there is only one node at y = } and there are
two values of y, symmetric with respect to 3. For the /th mode, there are
21 values of yp, defining [ stable regions about { nodes. Calculated results
are plotted as shown in Figure 28 for [ = 1, 2 and 3, and y = 1-20. Fora

29 - T l . ! l
- noxzle  Regions 5/
. ~==Lorg e L oions }
T ) 3
¥=3| IR §z=: St=1  Jyi=1
i ¥ T3 R \
Y =29 § ) N
442 __»\&\. 2 §l 3
- | foe N N > D
3 N R \9
RN @!& 3
- S =
04 = -4 , ! . s
% | Y5120
0 o085 015 055 035 45
?c .

Figure 28. Ciritical calues ., dividing the unstable range and the stable raage of the fractional

axial posilion y of the concentraled combustion front corvespording to different values of the

interaction index n (v is measured from the injector face as a fraction of the chamber length).
(By courtesy of the American Rocket Society)

given value of n, this plot gives the value g, which scparates the region in
which a concentrated combustion front is always stable for any values of 7,
from the region in which a concentrated combustion front can possibly
become unstable when # is in the proper. range of values. From another
point of view, this curve gives the minimum value of n, i.e. n,, compatible
with unstable oscillations of the given mode when combustion is concen-
trated at the position y = y.. Figure 28 shows that when the combustion
is concentrated at the node of the /th mode of pressure oscillation, that is
v = 1/21, 3[2l, etc., ny, is infinitely large; therefore the Jth mode of
oscillation is always stable for any large but finite values of the interaction
index. If the combustion is concentrated at the antinodal positions p = 0,
1/1, 2/1, etc., the magnitude of » required to excite unstable oscillation is the
smallest compared to other positions; and therefore, such positions are the
most undesirable positions for the combustion front if a stable system is
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3.03 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

desired. Since the injector end is an antinode of all modes of pressure
oscillations, the configuration with combustion concentrated at the injector
end is the most undesirable one from the stability considerations alone. This
qualitative conclusion, however, does not help us very much in selecting
the most desirable position for the concentrated combustion front, because

564
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Figure 29. Unstable raages of the sensitive time lag 5 for the first three maodes when the
combustion is concentrated at different fractional axial positions p for n = 0-833 (shert nozzle).
(By courlesy of the American Rock:t Society)

the nodal position of a given mode will be the antinodal pesitions for other
modes. For example, the node of the fundamental mode, ¢ = 1, is the
antinode of the second mode. Thus, while the configuration with com-
bustion concentrated at the middle of the chamber will guarantee the
stability of the fundamental mode, it is most liable to cause an unstable
oscillation of the second mode. An important modification of these results
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SYSTEMS WITH CONCENTRATED COMBUSTION AND LONG NOZZLE 3.(4

will be shown in the next section, due to the presence of a nozzle which has
its subsonic part not negligibly short as compared to combustion chamber
length, in which ccse the quasi-steady state condition of the nozzle flow
cannot be applied.

The critical values w and & can be obtained from equation (3.03.01)
with a numerical iteration procedure which converges very rapidly. The
unstable ranges of the time lag 7 for oscillation of the first few high frequency
modes are plotted against the position p of the concentrated combustion
front as shown in Figure 29 with y = 1-20, M = 0-213 and n = 1/y = 0-833.
We observe that the regions of instability of the various modes have a
tendency to cover all the available area. That is, a system with any values
of 7 and y would encounter some unstable mode of oscillation. If such were
the actual case, it would be hardly possible to design a rocket with concen-
trated combustion and 7 > myy,, stablé for all high frequency modes.
It will be shown in the next section how the possibility for the higher modes
to become unstable is significantly reduced by the presence of a nozzle.

3.04. SystEMs WITH CONCENTRATED COMBUSTION
AND LoNGg NozzLE

In practical cases, the subsonic portion of the nozzle is not too short, usually
1 or } of the combustion chamber length. For such a nozzle, and for the

&€ .
(L Unstable regions
2% — Short nozzle
~==Long nozzle
N=0p213
20 y=r 0. =7 I
- +— e
1 76
L8
72 2
m=0,1:1.f/
WM % m=0, 1=
< 273 e = 1
I - B m=0,2=3
m=0, &= . ..;’} &\\@33}: JE PR S
O¥ 1 VX2 . puap—Y. pen oty
m=0 Z::3 /,! . ST S \‘\\‘ A___—:.T'\-_T-:__ —
’ ’//:&‘—- At L s pulpne: Suslaia
0 [ 4 O-¥ [ X3 0 123 ¥ 16 78 20
n e—

Figure 30. Lowest unstable ranges of the sensitive time lag T for the first
three modes corresponding to different values of the interaction index n.
(By courtesy of the Amezricun Rocket Society)
frequency range under consideration, the nozzle flow is significantly dif-
ferent from the quasi-steady conditions. The nozzle specific admittance ratio
o == (v[&5)}(]p) is in general found to be a complex function of the frequency
of oscillation and of the geometry of the nozzle as shown in Appendix B.
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3.04 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

For a special shape of nozzle with linear steady state velocity distribution
in the subsonic portion, the real and imaginary parts of the specific admit-
tance ratio «¢ = a, () 4 ia,(f}) are given in Figures 59 and 60 as a function
of the reduced frequency f, and the Mach number of the gas entering the
nozzle M. The parameter g is the ratio of the angular frequency of the
osciilation to the dimensionless velocity gradient &, in the subsonic portion of
the nozzic in s” ;ady state operation. Thus = wfi, = wl,,/[{2[{y + )} — ]
with /,,, indicating the length of the subsonic portion of the nozzle as a
fraction of the combustion chamber length. The complex quantity
B = (1 4 ai))/(} — i) as defined in equation (3.01.11) can be calculated
for given frequencies w, and given entering Mach number M when the
steady state velocity gradient i, in the subsonic portion of the nozzle is
known. The following calculation is performed with @, = #. This value
corresponds to an [,,, in the neighbourhood of 1/3. With this value of ,,
we have w = fiw sv that integral values of § correspond to the pure acoustic
modes in an organ pipe with closed ends.

For determination of the stability boun 'ary rewrite equation (3.01.20) as

yn exp [—uwd] = x, 4 iy, + (yn — 1) ....(3.04.01)
where

iy = 1 [l — Bexp [2in(1 — y)]
% T M T+ Bexp [2io(I — )]
_ —q,

[cos? (1 — p)o + (0 + o§)MEsin? (1 — p)w — a;M sin 2(1 — p)w]

— tanh iwy ]

(1) sinwcos (1 — pla
— (a2 + )M cos wsin (1 — p)o + «; cos (2 — p)o

s ypofcos? (1 — p)o
+ (oF + o) M2sin? (1 — p)o — 2 M sin 201 — y)w)

....(3.04.02)

For given values of & and #» with y == 120, #, + iy, can be calculated for
cach value of w. Equating the moduli of the two sides of equation (3.04.01)
and solving for n we find

n= (1~ 22 + %21 — 2} .-.-(3.04.03)

The corresponding critical values of the time lag are found by equating the
imaginary parts of equation (3.04.01) as

0 = (o) sin™ [y,/yn] = (w) cos2 [ — g, Jyn]  ....(3.04.09)

where the value of the inverse circular function is taken in the quadrant
consistent with both of the two equalities in equation (3.04.04).

The unstable ranges of 7, when M = 0-213 and when the combustion is
concentrated at the injector end, have been determined for different values
of n. The results are plotted as shown in Figure 30 along with the results
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SYSTEMS WITH CONCENTRATED COMBUSTION AND LONG NozZLE 3.04

obtained in the previous section for a very short nozzle. It is seen that the
minimum value of n compatible with unstable osciliations of a given mode
is significantly increased from the value (y + 1)/4y pertaining to ali modes
in the case of a very short nozzle. Even more significant is the fact that
when the finite length of the nozzle is considered, ny;, increases for higher
modes of oscillation. The minimum values of n compatible with unstable

|
oo A =0/
172 =120~
&=t »
Long nozzfe //—’71:0- 201
I v
£ =
&’E SEPSY Short nogzhe
0¥ y;f/ i ———]
7
0 [2 a3 ¥

,c——.
Figure 31. Minimum values of the interaction index, nwin, compatible

with urstable oscillations as a function of the yeduced angul-r frequency
(By couriesy of the American Rocket Society) B

oscillations of the first few modes, when combustion is concentrated at the
position g, have been plotted for comparison in Figure 28. The values used
in the computations are y = 1-206 and M = 0-213. The absolute minimum
value ng;, for arbitrary locaticn of-.the concentrated combustion front is
plotted in Figure 31 against the reduced frequency paramcter 3 for y = 120
and two values of the Mach number M = 0-213 and 0-301. The stabilizing
effect of the Iength of the nozzle is clearly seen to be increasing for higher
modes of oscillations, and the damping effect of a long nozzle is much
larger than that obtained from a very short nozzle.

The critical values 7 =6 and y are plotted in Figure 32 for the case
y = 1-20, n = 1]y = 0-833 and M = 0-213. 'The unstable ranges of time
lag 7 are shown as shaded regions. For comparison, the dotted curves
indicating the stability boundary of Figure 29 are also included. From
Figure 32 it is clear that while the result, with a very short nozzle, shows
definite unstablc regions for all higher modes of oscillation, the result with
a conventional nozzle shows that only the fundamental mode can possibly
become unstable when the combustion is concentrated near the two ends
of the combustion chamber. More specifically a system using a propellant
combination with n = 0-833 is intrinsically unconditionally stable if the
combustion front is located in the region from 28--78 per cent of the com-
bustion chamber length. Either from Figure 28 or based upon physical
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3.04 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTAB'LITY)

grounds, the unconditionally stable range of positions of the concentrated
combustion front is expected to increase if the value of n of the propellant
combination is less than 0-833. Thus, unconditional stability can be
obtained when the combustion front is situated in a region from 28-78 per
cent of the chamber length if the n of the propellant combination is less

H ~ ]
H ™ /
i 52 “ £ 2
. 2 be J %
. i J )
M=z, =7 AN
[ Y \
s - .,
: L /d' ) L 9
: * > Short mozsis —~—
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3 »3+20
: ¥ =7 1= =021
\ =707 /10212
% /&{ 4 n= yyz 828 -
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-
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7 ] { %
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} 24 A= I
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=2,1=2 S~ ——t et S~ e e e
p- /m éz |'=" PR cpmimtgn
76 N " M\\\ {
7 |t
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Figuse 32.  Effect of the nozzle geomelry on the unstable ranges of the sensitive time lag 7,

when the combustion is concentrated at different fractiona! axial positions g for n = 0-835.

(Stability boundaries for modes higher than the second for skort nozzle are not reproduced in
this figure.) (By courlesy of the American Rocket Socizly)

than 0-833. On the other hand, if the n of the propellant combination is
larger than 0-833, the stable region will decrease; and with sufficiently
large n, unstable regions for the second mode, and eventually the successive
higher modes, may appear. In Figure 33 the stability boundary é/y and
the unstable regions of 7/ are shown with n = 1.00. For this value of #,
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SYSTEMS WITH CONCENTRATED COMBUSTION AND LONG NOZZLE 3.04

small unstable regions for the second mode are obtained ncar each of the
three values >0, p =~ } and p < 1 respectively. Thus either the funda-
mental mode or the second mode can become unstable when both the
combustion is concentrated in a certain region and the time lag is in the

56 — -
\ ’ {
AY / 3
§ ‘A; 1 N
‘; 1 \
N ' ]
’a’ '\ ! 1
_:" m=2,l=1 [ h
V2 A Y
/’ \\
-1 Short nozzle—m--  T~o_
N Long nozzie e S —— e
$-0 y: 1.20
I H=0213 @
Jr=—~= n=100 i F ' o o
m=1, =7 N\\&~ -

\ Skaded part unstoble iz =
N TR

|
im=2,2=7 I
4

o~

‘y)-—.

Figure 33.  Effect of the nozzle geomelsy on the unstable ranges of the sensitive time lag 7,

when the combustion is concentrated at different fractional axial positions v for n = 1-00.

{Stability boundaries for modes higher than the third for short nozzle are not reproduced in
tkis figure.} (By courlesy of the American Rocket Sociely)

proper range. Both medes can become unstable simultancously (for
example, with p =~ 0 and 7= 0:6). The dotted curves again outline the
unstable regions of Figure 29 for the purpose of comparison. The strong
stabilizing effect of the nozzle toward higher modes of oscillation is demon-

strated to be of great importance.
The following qualitative conclusions concerning the stability behaviour
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3.04 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

of liquid rockets with all propellant elements having the same total space
lag and the same sensitive time jag are therefore obtained.

(1) The minimum value of ny;, compatible witk unstable oscillation
of a given frequency increases when the concentrated combustion froat is
shifted away from the nearest antinode of the pressure oscillation of that
mode, and becomes very big when the neighbouring node of pressure
wcillation of that mode is approached. This means that the oscillation of a
given frequency is most unstable when combustion is concentrated at an
antinode and becomes completely stable when combustion is concentrated
at a node. Since the injector end js an antinode of all modes of oscillation,
any mode cf oscillation is most likely to become unstable when the com-
bustion is concentrated at the injector end. Under this configuration the
minimum value of n compatible with unstable oscillations of the fundamental
mode is smaller than the values of n,;, of any other higher mode.

(2) For a system with a fixed value of n of the given propellant com-
bination, a given mode of oscillation is always stable when combustion is
concentrated in any of the discreic stable regions about the nodes of that
mde of pressure oscillations. The extent of such stable regions increases for
higher modes of oscillations, and these stable regions cover the whole length
of the combustion chamber axis when the value of n;, of that mode becomes
greater than the value of n of the given propellant combination.

(3) Rackets with a longer subsonic portion: of the nozzle as compared
with the combustion chamber length are more stable than rockets with a
shorter subsonic part. A nozzle with a negligibly short subsonic part, as
compared with the combustion chamber length, is the nozzle configuration
that is most likely to exhibit unstable combustion.

(4) If combustion is mostly concentrated in a region the width of which is
only a'small fraction of the combustion chamber length, the stability
behaviour of the fundametal and the next few higher modes of oscillations
can be satisfactorily analysed by using the simplified model of a concentrated
combustion front. If the combustion is distributed so that the combustion
zone covers a considerable portion of both the stable and unstable regior
of p of a given mode of vscillation, there is no cbvious position that can be
attributed to the concenirated combustion front in order to analyse approxi-
mately the stebility behaviour of this mode with the simplified model.
Since the number of pressure nodes increases for higher modes of oscilla-
tion, the extent of .ach stable or each unstable region of y decreases.
The simplified model is therefore not quite satisfactory for the analysis of
the stability of the higher modes of oscillations even if the combustion zone
is narrow. Fortunately, the stabilizing effect of the nozzle increases with
the higher modes of oscillation and we can expect these higher modes to
be stable under ordinary circnmstances. Therefore, we are interested only
in the fundamental mode and the next few higher modes of oscillation
and the simplified model of corcentrated combustion gives a very con-
venient idea of the high frequency stability behaviour of systems with com-
bustion distributed over a sufficiently narrow region. On the other hand,
if the combustion is distributed over a considerable portion of the com-
bustion ckamber axis, the simplified model of a concentrated combustion
front is not suitable and a more careful formulation is necessary.
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EFFECT OF TIME LAG SPREAD 3.05

3.05. Errect oFr TiME L.AG SPREAD ON SvYSTEMS
wWiITH CONCENTRATED COMBUSTION

It has been assumed in the previous sections that all the propellant elements
have the same sensitive time lag in addition to the same total space lag.
Both assumptions, of course, represent only ideal limiting cases. In the
foilowing sections, we shall discuss the effect of lifting these assumptions,
one at a time, in order to obtain a more realistic result. Let us first consider
the case where the space lags of all propellant clements are the same
but the sensitive time lags of diflerent propellant elements are different.
Since the unburnt propellant elements are assumed to occupy negligible
volume, the steady state flow of the burnt gas on either side of the concen-
trated combustion front is not affected by the spread of the sensitive time
lag. The solutions for small perturbations as given by equations (3.01.12)
and (3.01.13) are still valid in each of the twc regions. The effect of the
spread of time lag appears only in the boundary condition at x = y where
the t.o solutions in regions {1) and (2) are to be matched.

The first part of the boundary condition at the concentrated combustion
front is still given by the continuity of the pressure and the density of burnt
gas at any instant across the combustion front as shown in equation (3.01.14).
The second part of the boundary condition at x = relates the instan-
taneous velocity discontinuity to the local burning rate. The spread of
the time lag changes the burning rate and therefore the velocity discon-
tinuity. Let us denote the fractional amount of the propellant elements
having dimensionless sensitive time lag less than or equal to 7 by f () with
f (Fmm) = 0 and f (7)) = 1. As shown in Section 2.08, we can define

Tm= ("-'max + ?mln)/2
and
A’T’ = 'ﬁm -_— ?mln

The fractional burning rate perturbation is
1
t,=net .,‘; {p(y) — g[&(t — 7)] e*7} df ....(3.05.01)

where both 7 and 7 are now non-dimensionalized by the use of the wave

propagation time 8,, and &(t — 7) means that £ must be evaluated at the
1

instant ¢ — 7. Since by definition fdf =1, we can rewrite equation
1]

(3.05.01) for isentropic small osciilazions with ¢(yp) = pd\y) 7% 0 as

My =7yne™ aly) {1 — Ce ¥ . -(3.05.62)
with
1 =
Ce—s?, — f FEQ___-’?! e—c? df R (3‘05.03)
v oy

The constants C and 7, have the physical meaning explained in Section 2.08.
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3.05 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

With equation (3.05.02) the second part of the boundary condition at the
concentrated combustion front becomes

vy — ¥ + (1 — yn)o + iynoC exp (—s7,) =0 «...(3.05.04)

The characteristic equation for the determination of the complex quantity
s = A + 12 becomes

(1 = yn) + ynCexp (—s7,)

1 (1 — Bexp [25(1 — p)i
{1 + Bexp [25(1 — )]

= Xr + iZi

=== — tanh stp}
fi

....(3.05.05)

which is the same as equation (3.01.15) except that the factor C exp (—s7,)
replaces exp (~—s7).

With the simplifying assumption £ ~ p already used in previous sections,
equation (3.05.03) becomes identical with equation (2.08.06) and thus, for
neuiral oscillations where s = iw,

C=

1
f e—ieit-indf | < 1
0

¥f in addition dffd7 is symmetric with respect to 7,,, we have

Fo= T,
%
C=2 ‘ cos [(7 — 7,)] df ...(3.05.06)
JO

The critical values # and §, can be detsrmined from equations (3.05.05)
and {3.05.06) with known types of distribution of time lag. To illustrate
the effect of the spread of time lag, let us consider first the case where the
extent of time lag spread —A# is suificiently small, so that C will be sub-
stantially constant for a given mode of oscillation regardless of the small
variztions of w, and the magnitude of C will be slightly less than unity.
For these cases, the determination of the stability bouidary is especially
simple.

By separating the real and imaginary parts of equation (3.05.05) we have
for neutral oscillations

ynC cos wd, = yn— (1 — 7,)
....(3.05.07)
ynC sin wdy = —y.

Both #, and y, are given explicitly in equation (3.04.02) as kuown functions
of o for a given rocket. The critical values of » and J, corresponding to
neutral oscillation of frequency @ can then be calculated from

(=) —[(1 — 2)°C— (1 —C¥) W

2y(1 —C% ....(3.05.08)
9, = (lw) sin™ [ x,/(ynC)]
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The results with C =09 for different positions y

of the concentrated

combustion front are given in Figures 34{a) and (b), and 35(a) and (b).
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Figure 34. Critical values of the interaction index n required to maintain neutral oscillations
of reduczd frequency B (long nozzle) when the combustion is spatially concentrated at different
Jractional axial positions v and the sensitive time leg is spread in a small sange corresponding
to magnification factor C = 0-9: (a) fundumental mode (natural frequency of the chamber
with closed ends, f = 1); (b} second mnzde (natur)m' Jrequency of the chamber with closed
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Figure 33. Crilical values 8, of wne effective sensitive time lag, corresponding to neutral

oscillations of reduced frequency B (long nozzle) uhun the combustion is spatially conceatrated

at different fractional axial positions yp and the sensitive time lcg is spread in @ small range

corresponding to magrification factor C = 0-9: (a) fundamental mode (natural frequency of

the chamber with elosed ends, B = 1); (b) second mode (natural frequency of the chember
with closed ends, f§ = 2)
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e gk 3.05 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)
i The unstable ranges of the effective time lag #, for systems with n = 1
3 and difterent positions of the concentrated combustion front are shown in

3 ' Figure 36. The result without time lag spread, C = 1, is also shown by the
a2 dotted line for comparison. It is observed that the unstable ranges are
reduced when C = 0-9 as corapared to those when € = 1. The spreading
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3 ) Figwre 36.  Effect of the small timewise spread of the se: sitive time lag cn ice eritizal values &,

- corresponding fo neulral osciliations when the combustion is conceniraied spas>illy at the
s jons ure ‘ . Iy
o Jracizmial axial positiors y for n = 1 (lang nozzle}

2 of the time lag is therefore stabilizing. In Figure 37 the minimum value of
, n compatible with unstable oscillations in systems with combustion con-
Z - centrated at an arbitrary axial location is plotted against C and is seen to be
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EFFECT OF TIME LAG SPREAD 3.05

increasing monotonically when C decreases from unity. When the magni-
tude of C is too much smaller than unity, the curve is shown dotted because
the approximation of constant C is no longer valid even for small variations
of w. Qualitatively the stabilizing effect of spreading the time lag increasss
with decreasing C.

14
12 ~
N\
. b S
Figure 37. Effect of the iimewise spread of the ~
sensitive time lag on the minimum value of the T
interaction index, nmin. compatible with unstable t 08 I “
oscillations with combustion concentrated at an 5 ~d
erbitrary axial position. A smaller value of C & 08
iridicates a larger spread of the sensitive time lag;
C = 1 indicates no spread
o4
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Figure 38. Critical values of the interaction index n reguired lo maintain neatral oscillation
of reduced frequency P of the fundamental mode with combustion spatially corcentrated at the
fractional axial pesition 1 and for the maximum amount of sensitive time lag spread
Figure 39. Critical values of the effective sensitive time lag O, corresponding te neutral
oscillations of reduced frequency B of the fundamentel mode iith combustin spatially
concentrated at the fractional axial po:ilialn ¥y mi{or the maximum amount of sensitive time
ag spread
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3.05 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

Next consider the case when the extent of time lag spread is no longer
small so that the variation of C with w must be taken into account. Con-
sider the following example where the distribution function is specified as

df T o F—7,

— s { 77 ————

d7  2A7 A7
which is symmetric with respect to 7,, and is maximum at 7,. Equation
(3.05.06) gives

....(3.05.09)

cos wAF/2
€= ———r ....(3.05,
T— (wA7]m)° (3.05.10)
&8 T |
Fundomental modk
y=140 |
24 - n=7
- n=o |
[ o= S8@AT[2
29 7-fedr)? A2 o
A_i M 2T, %
e ¥ 3
t-. —_— e ? —1
< s
7:2¢ N, z1 /
DY WY~
o ) .
. K\
0 a7 92 (%4 ce (<] e o7 o4 o9 /)

yP -
Figure 40. Effect of the large timawise spread of semsitive time lag on the critical values O,
Jor the lowest unstable ranges of the fundarmental mode as a function of the fractional axial
Dosition s of the concentrated combustion, n = 1-00

Thus C is a function of the angular displacement of the oscillation during
the extent of the time lag spread. The critical values » and 9, corresponding
to frequency o of neutral oscillations have to be determined from equations
(3.05.67) and (3.05.10) simultancously. The critical values n and 4, for the
Jargest possible extent of spread, A7 = 27, with 7, = 0, and 75, = 27,
are shown in Figures 38 and 39 and the unstable ranges of 7, for A7/27,, =1,
3, , and } are shown in Figure 40 for n = 1. The eflect of spreading the
time lag is again shown to be stabilizing and the stabilizing effect increases
with increasing fractional extent of spread. It should be noticed, however,
that the stabilizing effect is rather small if A+/27,, << } which will probably
include a large number of practical situations.

The previoti; resuits are obtained nnly under the assumption that the
sensitive space lag is negligibly smail compared to the total space lag,
s6¢ that £~y and the oscillations of the position of the concentrated
combustion front are seglected. If £ is not taken to be equal to g, then
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C exp (—s7.) is defined by equation (3.03.03) not by equation (3.03.06). It 5 Bl s
is obviously seen that the previous formulation is not adequate for a certain = .
mode of oscillation when the combustion front is in the neighbourhood of a

pressure node of this mode. The modification of the results is, however,

shown® to be non-essential. The effect of the fact that § < p is that the -

stable region about each node is shified slightly downstream. The effect

of spreading the time lag is still stabilizing.

3.06. ForMULATION FOR SysTEMs WITH DisTRIBUTED COMBUSTION

The analysis for systems with concentrated combustion shows that the

position of the concentrated combustion front is quite important in deter-

; mining the stability of the system. It is therefore necessary to analyse the

stability behaviour of systems with combustion distributed arbitrarily

i along the combustion chamber axis. The analysis of systems with concen-

) trated combustion is mathematically simple because the gas flow on both e .
: sides of the concentrated combustion front is uniform and the propagation )
; of pressure disturbances in such a uniform flow field can be easily determined

; from the simple wave equation as the ordinary acoustical solution wi:en

both the Mach number of the gas flow is small and the entropy perturbations

are neglected. In the case of distributed combustion the flow field is no longer

uniform and there are mass, momentam, and energy sources throughout

the combustion chamber. It is evident that the equations governing the

motion will be different from those of a simple wave at all points where

such sources are present.

A particular treatment of this problem has been previously published by
the authors with the restrictive assumption that the combustion is uniformly
distributed in the axial direction and with a few other simplifying assump-
tions. In the rest of this chapter the problem has been treated for the most
general distribution of combustion and without making use of the aforesaid
simplifying assuraptions. As a result the equations are considerably more
involved and a different method of solution, which proves to be quite general
and powerful, has to be used. The equation can be formulated without
difficulty for the model discussed at Section 1.03. For this model the whole
flow is divided into two phases: a flow of burnt gases, with a rate p*u* per
unit arca; and a flow of liquid propeliants (in droplets), with a rate plu}.
Here g* and «* are the actual density and velocity of the gaseous phase,
u} is the velocity of the liquid phase supposed uniform for a given section,
and p; the mass of droplets per unit volume of gas. The volume of the
droplets is neglected. The equation of mass conversion can be expressed
by writing that the rate of mass accumulation between sections x* and
x* 4 dx* plus the outgoing flow of mass is zero, that is,

T T

TR

[ TR

LEREOLR s £ 4 o

LAONLI Sounts et e

Liantd

B

o
)'%!i

d 7] .
e (P* +P0) 53 (%t + ply) =0 %
This can also be written as iglfé
op* J . op; d ow* R 4
.5-[_*..{‘_;; p*u'):-—s-l;—g;;(pfuf ﬂ?x_; ...-(3.06.01) ;:.%*é

where ¢* and x* are the physical time and space variables and the quantity
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in the whole volume between x* = 0 (injector face) and x*.

Similarly the conservation of momentum states that for the element
between x* and x* - dx* the rate of accumulation of momentum plus the
outgoing flow of momentum must be equal to the total force acting on the
boundaries o the element. Neglecting friction on the walls we can write
- 2 (ot oty + o (gt = — 2 (3.06.02)
or* $ 0=* L Ox*

The conservation of energy can be expressed by writing that the rate of
: increase of the total stagnation energy content of the element under con-
: sideration, plus the outgoing flow of total stagnation enthalpy, must balance
s - the energy introduced into the element through the boundaries. Neglecting
1 ) heat exchanges through the walls the last-mentioned energy is zero.
- - Therefore we can write
4 ' 0 )

. * x/2% * * * K% *
| s [ote} + pRUG + WI9)] + 5 [o*u®} + pul (8 + 4uf9)] = 0

....(3.06.03)
3 Here ¢f =¢* + (Ju*?) and A = h* + Ju*? represent the stagnation
interval energy and the stagnation enthalpy for the gaseous phase. For the
= liquid phase, the internal energy and the enthalpy are very nearly the same;
I the corresponding common value £} is intended to include the chemical
energy of the propellants. In writing the preceding equations, it has been
assumed that the velocity and heat content of the droplets are the same for
all droplets at any given station and that, in accordance with the one-
dimensional treatment, the droplets are uniformly disiributed over the
section.

The four equations (3.06.01}, (3.06.02) and (3.06.03) contain eight
unknowns p*, u*, p*, T* (of which ¢* and h* are functions), w?*, p;, uf’,
and &}, The four additional equations needed are easily located.

First, we have the equation of state for the gas phase

p* = p*RT* ....(3.06.04)
The second equation expresses the functional relationship between the
burning rate w* and the other variables. Such a relationship will be
: obtained later, based on the assumptions of Section 1.11.
A third equation is obtained from the dynamic behaviour of the droplets.

- Assuming that the force exerted by the gases on the droplets is inversely
L proportional to the Reynolds number one can write

E
E w* represents the instantaneous rate with which burnt gases are produced
£
E

S
ke

du} ouf ou
E“;. =_;T‘ +uf %:k*(u* —uf) . ..(3.06.05)

where the acceleration of the droplet has been obtained following the
: droplct path. The coefficient £* depend:, on various parameters, including
3 the diameter of the droplets, and therctore should be variable when the
droplets are losing weight by evaporation and combustion. Here,
however, we shall overlook this variaticn and assume for £* a convenient
constant value.
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SYSTEMS WITH DISTRIBUTED COMBUSTION 3.00

The fourth equation could be obtained from the heat balance of the
droplets. This would give us an equation for A¥, or for the temperature of
_ the droplets. The droplets are actually picking up heat and increasing
their £} in the initial part of their journey; they release it again when
they burn. The extent of increase of /7 is, however, seriously limited by

»
the presence of evaporation. In order te avoid additicnal complications in

our problem, and to take into account the fact that while &} is increasing, :
the kinetic energy of the droplets is decreasing, we shall replace the heat 3
balance equation by the simpler relation :

D
o bl

by 4 Juf? = const. = hjy = Lup? .. ..(3.06.06)

(

It can be shown that reasonable deviations from this constancy would only
introduce higher order effects in the following developments.

We can now proceed to the non-dimensionalization of the preceding
equation. This can Le done by using the reference values p3, p5, T§ and
co = (YRT$)} as in Section 3.01, which arc the pressure, density, and
temperature of the gas and the sound velocity in the gas at the injector
face (x* = 0), and by choosing as representative length the length of the
combustion chamber L. We take therefore

LY TSl E ] Teagey T ae o

% xt (‘l" pt P* T* P
x=f§‘="ll:";ﬁ=;§3P—-P.§T ok P;=;'§
: . o o 0 O ....(3.06.07)
: u* u w* y—1 r—1 1
= Uy = ey W= sh= h*; h = n*
TR NI TR T RTE T R Y

where y is the adiabatic index for the gases, assumed to be constant together
with the specific heats within the range of variation of T*. This assumption

: allows us to write in this range
; dh =dT and AL = AT ceen (3.06.08)

independently of the behaviour of the specific heats out of this range.
The non-dimensional equations can be written as

3 9p , ) _dw_ _ 9p_ pw)
; -a—’ + —-é;— —_’a—- — af ax ....(3.06.013)
Apw) , Apt) _ 13p  pa)  dpud)
o T e < Ty0x ot Ox -+ -~(3.06.02a)

5 o Bh) _y—13 ow
( F + ax) -—y-——a-; ( , — hl’u) "a—x' ceae (3.“6.@38)
p=pT ....(3.06.04a)

0 Ou,

a";+ c5n = ku—u) ...~ (3.05.C5a)
- hy + 3y — D = by, ... .(3.06.06a) :
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3.06 ANALYsIS OF SCREAMING (IL.ONGITUDINAL HIGH FREQUENCY INSTABILITY)

where we have introduced the two quantities & = (L/c3)k* and b, =
{&y — DI(YRTS)} (A, + 14'?). In the derivation of equation (3.06.03a)
from (3.06.03), use has been made of the relation p*ef == p*hFf — p*,
the two equations (3.06.01} and of equation (3.06.06). If the flow is steady
the corresponding relations are immediately obtained from the preceding
equations by suppressing the time derivations, and integrating with the
following boundary conditions: at x=0, u =0, p=1, p=1, T'=1,
Wy == Uy, prtty, = Wy, by, = h, . Here w, represents the known injection rate
per unit area of chamber divided by pgc. Indicating the steady state
quantities with a sv erposed bar we find:

pi = @; Pyl =w; — w ... .(3.06.09)

F=1—y(pi®+ pji — Pl."zf';) =1 — ylw(@ — @) + wd — a,)]
= o (106.10)

: h=h+iy—D@=h, =k, p=pT ....(5.06.11)
i, dit,/dx = k(i — ) ....(3.06.12)

The first equation (3.06.11) can be rewritten, using equation (3.06.08), as
T=1-—}y—Dhat ....(3.06.11a)

This system can be easily solved if instead of prescribing the burning rate,
ie. starting from a known @©(x), we assume a known i(x). In this case the
integration of equation (3.06.12) provides #,(x); 2(x) is provided by

] : equation (3.06.11a) and §, p and @ are found from the preceding equation &s
é - D= ﬁ _— w —_ 1 — )'wi(ﬁl — uI.) -
ST —D2@ i~ T+ip + D@ —pm, %19

If the combustion must be complete at the end of the chamber (x = 1),
where the velocity takes the prescribed value 4, from the last of equations
(3.06.13) we obtain

AT TR0+ 08 — v,
This relation can be inserted in equations (3.06.13) to obtain g, § and @
in terms of @(x) and @,(x) only.

Let us discuss now the order of magnitude of the fundamental quantities
involved. The velocity % in the final section of the chamber is connected
3 T ' with the Mach number M and depends on the area ratio of the nozzle.
- b For a throatless motor, M =1. For ordinary motors, however, M is generally
3 - ‘ around 0-1. Therefore, excluding the case of a tubular motor we shall
3 e - consider A as a small quantity and we shall compare the magnitude of the
i othier quantities with M. For such smzll values of M we have very closely
# = M. The sound velocity in the burnt gases of a rocket is generally
3 ) around 3000 ffs. Thus the velocity #; ‘s around 300 f/s. The injection
velocity u,"; is generally below this valuc cven for high injection pressures.
B ‘ Immediately after injection & — &, is negative so that equation (3.06.12)

’ i shows that 4, decreases. In the same time & increascs, until at a certain
106
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PERTURBATION EQUATIONS WITH ARBITRARILY DISTRIBUTED COMBUSTION 3.07

station & becomes equal to #,. After this station # stays larger than 4, and &,
increases again, though lagging behind i#t. We conclude that &, is always
smaller than, or equal to, the larger of the two quantities #, and &, and
therefore in general is of the same order as M; in mathematical form both
@ and &, are O(M). Censider now the quantity £ In the simplest case
where # =0 the integration of equation (3.06.12) gives #; = @, — kx.
The velocity of the droplets is therefore reduced to zero at a finite distance
xo = #; Jk, which might be called ‘penetration’. For the usual densities of
the burnt gases in a rocket chamber the penetration is of the order of a few
inches. On the safe side, let us assume that the penetration is equal to half
the length of the chamber, i.e. Xy = } and £ = 24, .- Thus £ is probably
larger than &, but of the same order, that is k is of O(Ad). As a result of the
: order of magnitude of i and #, we see from equations (3.06.11a) and (3.06.13)
: that the deviations of T, 5 and p from unity and of @ from & are O(M?%).
Up to terms of this order we can therefore write

F=p=T=1; @=a ....(3.06.14)

The practical equality of % and & has the consequence that the description
of a combustion process in steady state can be obtained equally well by
prescribing the rate of burning or the velocity distribution.

: Within the approximation (3.06.14}, the second equation (3.06.09) can
be writter:

o

T T

phuoiianin

ﬁlal = 1?1 -1 “ee (3.06.15)

3.07. PerturBATION EQUATIONS WITH ARBITRARILY
DisTriBUTED COMBUSTION

We can now proceed to obtain the perturbation equations corresponding
to equations (3.06.01a)-(3.06.06a). We consider each of the dependent
variables as the sum of the steady state value plus a perturbation, so small
that the terms higher than those linear in these perturbations can be T
neglected. We indicate with a prime these perturbations and as before we T
investigate the stability of soluticus of the exponential type: )

A R A ks o s A as m ary e e

p y i ol u', w' "
—_— — " — p——i pr—i — PP, 3.07.0]
pre R el el b A

whgere the denominators are independent of time. The exponents = A - iQ
: is gencrally complex. QOur purpose, as in the preceding sections, is to

determine the conditions under which the solution is stable, necutral or

unstable, that is 4 $ 0, cr simply to determine the stability boundary,
where 4 = 0, and the unstable side of the boundary. At neutral conditions,
thr denominators of (3.07.01) represent the complex amplitudes of oscilla-
; tion of the corresponding quantities. The perturbations arc therefore
given as complex quantitics of which only the real part has a physical
meaning. The alternate interpretation of these complex perturbations as
rotating vectors in the complex plane allows us to consider their complex
amplitudes as fixed vectors; it is clear that the angle between any ‘wo

1 17 the diameter of she droplets is dewreasing from evaporation, & increascs steadily and

becomes infinite at the end. In this case &, finally catchies up with @. -
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3.07 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

vectors represents the phase angle between the corresponding oscillating
quantities. Letting p = p -+ p’, u = @ + ', etc. in equations (3.06.01a),
(3.06.02a) and (3.06.03), subtracting the corresponding steady state equa-
tions and neglecting terms other than those linear in the perturbations we
obtain, after introduction of equations (3.07.01) and suppression of ths
factor exp (st),

d d d
5o _*— d_x (i)'v + ﬁo‘) = d—(: = -—-sg — a (f),?) + ﬂll) e .(3.07.02)

s(pv + ao) 4- i (Qﬁﬁv + i%o)

31d . _ d ___ y
= 7a¢ — s(Fm + &) — 3- @pdy + EY)  ....(3.07.03)

From the energy equation (3.06.03a) replacing 4, =k, 4+ h, = by, + h,
("ecanse of equation (3.06.10)], we obtain

_f(on, _or\ y—10p 0%
P(?'+ )_ y 3[""’%

or
a ( [ Yy — 1 ) a ]
— -h —_— e V= — _(pid
FN Py » 4 ox (pith,)
We can introduce in this equation k] = &' 4~ (y — l)ﬂ-u', that is, since by
equation (3.06.08) A’ = T and by equation (3.06.04a) 5T =p’ — Tp’,

we can substitute
phy=0"— Tp' + (y — 1) p’
The result is

3 (r ou’
b.t(l’. _ m,,) -y — ])pu—-—-———[u{[’ — Pp' + (y — Dpan'}]

Replacing from equation (3.07.01) we obtain the energy equation in the
following form

]

(£~ 2o+ 6 — Vaw)=— g o o + (7 — Do)

....(3.07.04)

The equation of state (3.06.04a) has already been used to eliminate 7" and
is not needed any more. Similarly, equation (3.06.06a) need not be used
further. The equation (3.06.05a) representing the motion of the droplets
gives
dy da -
7, 5 + ( o+ k) =k
This first order equation for 7 can easily be integrated. However, a simple

approximate solution, valid under the present circumstances, can be
given by observing that £ is O(AM), and therefore from equation (3.06.12)

:‘; also is O(M) while on the other hand the modulus of s is around a
108
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PERTURRATION EQUATIONS WITH ARBITRARILY DISTRIBUTED COMBUSTION 3.07

multiple of o for nearly neutral osciliations in the high frequency range as
will be shown later. Therefore, the predominant term of the left :nember
of the equation is s77 and one can write approximately

n=¢kls.v ....{3.07.05)

This approximate solution satisfies the boundary condition (3.07.06)
given in the next paragraph. We see that the fluctuations of droplet velocity
are, for small £, considerably damped with respect to thase of the gas
velocity, and fur neutral oscillations, s = it, % follows ¥ with a 90° phase
shift. Equations (3.07.02)-(3.07.05), together with the equation, still to be
derived, for the burning rate, are in principle sufficient to ~olve our problem
under appropriate boundary conditions. It is interesting to observe that
the only traces left of the equations (3.06.05) or (3.06.05a) governing the
motion of the droplets are in the relation #,(x) and in the equation (3.07.05),
that is in a form much less restrictive than the original equation of motion
(3.06.05), particularly if £ is considered, in general, as an cmpirical factor
corrclating the two velocity fluctuations, and capable of taking complex
values.

Let us now write the o ditions at the injector end, x = 0. Here
u(x, t) = 0 at each instant, so that (0, ¢) = 0. If the injection velocity
and the injection rate are supposed to be unaffected by changes in the
chamber conditions (a logical assumption for sufficiently high frequencies)
we have #;(0,¢) =0 and p,(0,¢) = 0. Similarly w(0,¢) = @(0) == 0 and
therefore w'(0, f) = 0. Hence from equations (3.07.01) we have

v°=§o=7]0=q0=0 -...(3.07.06)

At the nozzle end we assume complete combustion, which means that
for x =1, p, and p; are 0 <. every instant. The terms deriving from the
motion of the droplets in equations (3.07.02) and (3.07.03) disappear;
dq/dx vanishes and the two r(r:iining equations become those of the
adiabatic motion of a gas. Evideudy, equation (3.07.05) becomes meaning-
less. At x =1 it is therefore necessary only to prescribe the behaviour
of the de Laval nozuic in the presence of osciliations, as in previous
sections; this is done by equating the ratio of the fractional variations of
velocity and density to the specific nozzle admittance ratio (Appendix B).

Equations (3.07.02)-(3.07.04) are quite involved. We shall now put
them in a different form which allows a simple iterative approach to the
solution. It is immediately checked by direct substitution and with the
help of equatien (3.07.04) that equations (3.07.02) and (3.07.03) are
exactly equivalent to the following two equations:

e rm s |

Yo ....(3.07.07)
1d q)) v dw
~—{Z —_— ] — ——
rdx(% T RT T TE
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3.07 AsALYSIS OF SCREAMING (LONGITUDINAL RIGH FREQUENCY INSTABILITY)

where:
» . g

X=@—-Dgi—+1-="T)— ]

(y — De a Tt )% |
¥t (1= ) (= D) — (= D |

0 0 0 ....(3.07.08)
Z=al—(-pliplins

@y e Pn

5 L

W= 2pi — -- 2p,ft, — + i — + 4 =

P . Pty — + %+ ' %

Equations (3.07.07) can be rewritten as:

Ed;_(-”- ~ Y) +s (-i’i-+ w) = s{(W — X) =sE
VAP L (3.07.09)

) +e (- ) =
—f— W} — =Y}y =—5(Y 4+ Z) = —sF
d"'(}’%—r T Do (¥ + 2) i

A

It is directly checked that these equations are equivalent to the two
following integral cquations, obtainable by solving the non-homogenecus
linear system (3.07.09) as if X, £ and F were known functions of x:

14
7%

+ W & sirtsy + G, cosh sx

A3
—s [ [F(x") cosh s{x — x") 4~ E(x") sinh s(x — x")] dx’
Jo ... (3.07.10)
> Y = —C, cosh sx — Cysinh ix
%o

+

+ SJ.IIF(x') sinh s(x — x") + E(x’) cosh s(x — x’)} dv’
0

J
On the left-hand side. the different quantities are evaluated at station x;
but we can now introduce the boundary conditions (3.07.06) at x = 0,
after observing that from these conditions and from #(0) = 0 we derive
W(0}; = 0 and Y(0) == 0.
The arbitrarvy constants C; and C, can he comph “ely eliminated if we
prescribe the value of ¢(0) = ¢,. Equations {3.07.10) become:

hd = cosh sx - y W

Pa
*r
—s ‘ {yF{x') cosh s{x — x"j 4+ yE(x) sinh s{x — )] dx’
<o ... (3.07.11)
i == —sinh sx 4 »Y
To

-

I
.S ’ [yFx") sinh s(x — x") -- yE(x") cosh sfx — x")] ds’
0
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THE BURNING RATE 3.08

These two integral equations together with equations (3.07.04) and (3.07.03),
plus the equation for the burning rate to be derived in Section 3.08, will
be used for the soluticn of our probler.

3.08. Tre BurninG RATE
In Section 1.11 we have formulated certain relations concerning the time
lag and its variations. These rclations were written in terms of dimensional
quantities. However, it is immediately verified that the introduction of the
non-dimensional quantities defined by (3.06.07) leaves the equations in

_ exactly the same form. It is also apparent that the rate function, f, can be

multiplied, by any arbitrary factor if £, is also multiplied by the same
factor, so that we do nothave to give explicitly thefactors of non-dimensionali-
zation of { and £, provided they are equal. Therefore, we can utilize directly
the relations of Section 1.11 as if they had been written originally in terms of
non-dimensional variables. Particularly simple relations were derived for
uniform steady state conditions in the chamber. If, in accordance with
the discussion of Section 3.06, quantities of O/{M?2) can be neglected with
respect to unity, the state of the gas can be considered uaniform, the dimen-
sionless steady state values of pressure, density and tempsrature being
cqual to unity [equations {3.06.14)]. However, we can observe that all
of the following developments of this section and of those following can in
principle be repeated for non-uniform conditions.

Consider the fraction of the injected propellants burning in steady state
between stations x and x 4 dx. We assume for the moment that the time
lag 7{x\ is the same for all the elements of the fraction considered, though it
can be different for fractions burning at differeut stations x. The burning
rate of the fraction considered is, by definition,

dw(x
oy, == d(? ) o%

In non-steady operation the same fraction burns between stations x and
x 4+ dx and, again, by definition, its burning rate is
Owix, )
Oiity, = ———Ox
b a-\

If the rate of injection is cunstant we can apply equation (1.11.18) and

obtairn
Ow(x, 1) div!x) [ dr
dy = ——ds |l — = ....(3.08.01

o & ( dt) (3.08.01)
Integrating over all fractions burning in steady state between 0 and &, and in
non-steady state. I :tween 0 and x(#, ¢), and noticing that @(0) = w(0,¢) =0
we obtain

_ o [Fardaly) ., .
wix 1) = @) — | g g & ... (3.0°.02)

Under the integral, dr/dt is given by equation {1.11.13) computed at
time ¢ and station x’, that is by

drfdt = —n{p'(x', ) — pTEE) t — #(x7]}  ....(3.08.03)
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3.08 ANALYSIS OF SUREAMING {LONGITUDINAL HiGH FREQUENCY INSTABILATY)

£(x) being the station where, in steady state, an element burning - { station x
enters the sensitive phase. Of course, £ and 7 are related by

7 dx
f = #(x) ....(3.08.04)
gy Tl )
so that when #,(x) is known, it is equivalent to assigning 7(x) or £(x). From
equation {2.08.02) we can find the perturbation of the burning rate
.I d d -
w! (x,1) = w(x, 1) — B(x) = B(F) — 1B (x) — J STU & ....(3.08.03)
o dt dx
It is now necessary to evaluate x(%, t). Atevery instant, the relation between
the station &(%,¢) where an eclement enters the sensitive phase and the
insensitive time lag 7, is given by

<

dx’ .
‘; m:‘ri ....(3.08.0())

o

where the velocity u; has to be evaluated at the station x* and at the time
’'(x’) wheu the element considered was at station x':

w(e') = u e, ()] = g(x') + i, 0] ....(3.08.07)

Hence in terms of the spatial variable equation (1.11.05) can be written
as:

T J dx f dr_ " dx’ .(3.08.08)

oul@) b a@) T bzl T ) ()
Negiecting terms of higher order in the perturbations we can write
LA ek
H () (&)
Thus after introducion of equation (3.08.07), equation (2.08.08) becomes

L1

= u(x")
—E=q(8 | F5dv ... (3.08.
f-f=a | o (5.08.09)
when the dependence of #; ¢n x* has to be considered as indicated in
equation (3.08.07). Similarly in terms of the spatial variable, equation
(1.11.09) becomes for uniform conditions {T'(x') = const., plx)y =1}:

(% dx’ t dr' tody
}s sy () = f i W) =T o o (30810)

<

m

From equation (1.11.02), we have
fix") =[x, (N =Tl + p'{s", £ (x")}] ....(3.08.11)

The integration on the right-hand side of equation (3.08.10) can be split
into the integt  “ons from ¢ to £, from £ to x and from x to . Neglecting
higher order terms we | ave:

fdx F-—8 J‘f '  F—x

z "1(" ) i,(x)

Ll 1 : ....(3.08.1
B D) (3.08.12)
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and finally, making use of equations (3.08.12), (3.08.11), (3.08.09) and
(3.08.07), equation (3.08.10) gives

X — & = d(x) [ | %%dx'-—n A i,gx;dx'] ....(3.08.13)

In this expression one can clearly distinguish between the effect of time lag
changes, represented by the second integral, and the effect of the velocity
changes, represented by the first integral, which constitutes a purely kine-
matic phcnomenon.

It is clear that since we are limited io terms of first order in the perturba-
tions, the right-hand side of equation (3.08. 13) can be written with % and &
instead of x and §. We can now complete the evaluation of equation
(3.08.05); since, by neglecting higher order quantities, we can write

do (x)

w(x) — w(x) = (x — %)

‘Taking x -- % from equation (3.08.13), this relation can be inserted into
equation (3.08.05) together with equation (3.08.03) and we obtain finally

d
i) =n [ [#60 — pL8w, 1= 70| i ax

du(x) “ P, v (x )] J’ u/Ix, 1 (x")]

Jim  E(x") () dx'} ....{3.08.14)

§0x) —=

Here we have everywhere replaced % by x, and &(x) or &(%) by £(x), the
resulting changes being negligible because they are of higher order in the
perturbations. Also, according to equation (3.06.13), @ has been replaced
by .

The time #'(x”} is related to x’ by the relation

- s
== | e

and since it is only used in the computation of the perturbations it can be
replaced by the corresponding steady state expression

t4 dx"

t'(x') = — f —
Jz #(x")
The expression {3.08.14) for &’ just obtained consists of a first term, which is
o-'ginated directly by the time variations of the iocal burning rate, and will
th..efore be called .he timewise contribution to the variation of the total
burning rate up to station x, and of two additional terms which are due to
the displacement of the location where a given element burns and will be
called the spacewise contribution.

It will be seen in Section 3.09 that the timewise contribution is of an
order of magnitude larger than the spacewise contribution and therefore
represents the more important contribution of the two. This result justifies

..(3.08.13)
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3.08 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

3 the previous developments of this chapter for systems with concentrated
3 combustion. Observe also that the same timewise contribution is the only
one present in the low frequency case.

For a solution of the exponential type, replacing from equations (3.07.01),
making use of equations (3.07.05) and (2.08.15) and cancelling the common
factor exp (st), we obtaia from equation (3.08.14)

E O _ 0 (9 + iy 52 L f ¢ p(x) €8S
-4 ~ x _————
;O Py dx @ Po &)
S .  f7
’ T o (x! z @)

_ _f W) es 5D L soee)
1 = sJo @ Gix
; . where the first term represents the timewise contributio:l, and the second two
i3 terms the spacewise contribution to the burning rate variation. The
3 quantity
. - or Srut
4 olx)  glEE) _,..n] dEx)
E - Q(x J [ — e dx’ ....(3.08.17
: (= Po Po Tdx ( )

3 i plays an important role in the following developments.

For practical purposes we are interested pnmanl\ in the determination of
the stability boundary, that is s = iwt. For brevity in writing, we shall, how-
ever, still use s in the following developmient with the understanding that
s is equal to iw. By analvsing the order of magnitude of the terms, we shal’
L . first show that equations {3.08.16) and (3.08.17) can be simplified when
3 E . the maximum lecal valucs of défdx are of order unity, and when 7\x) is of
3 i order unity (that is 7* is of the same order as the wave propagaticn time 0,).
, B Let us assume that
- : ¢ o v ldop 1dv .
E: —, =, —, m— =, ————  ar {1 ....(3.08.

- Fo Fo T Po d¥ %d ¢ o) (3.08.18)
E an assumption that will be checked later to be true when o is not too largef.
3 - : £ #(x) is O(1), equation {3.08.04) chows casily that
| x — E(x) = 4,(x)7(x) + O(M?)
3 g so that x — £ is O{M). Thus, becausz of (3.08.18), ¢(&)/¢, differs from
3 o(x)/g, by a quantity of O{Af}§. Hence equation (3.08.17) can be written

E T as
E : px’) O (2

X — — dx ....{3.08.19
i ow=[ &p s (3.08.19
- Since exp [—s7(x)] = —exp [—iwr(x}] is always O(i) the whole integral

is of the same order as i(x), that iz O(M), no matter how large da{x)/dx
may be locally.

The sccond term of equation (3.08.16) can be obtained by observiny that
since x — x" K x — & is OLM), ¢(x") ¢, difiers from g{x)jg, by a quanti'.y

4 o will indicate the vaiue of thc reduced frequency .O for ncutral comim(m. lhat is at

3 . thc stability boundary.
- $ The case of large w and the corresponding modxﬁcatxons is alen discussed in the foliowing

section.
§ For large @ this formula has to be modified, as shown at Section 3.15.
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SOLUTION BY ITERATION FOR MODERATE ® 3.09

of O(M). so that the valuc of the integral is of O(1) and can be expanded
in the form

1 () - (182 _ o) —¥z
s [1 _ ey >] +O(M) = - T2 [1 — e=*%a) + O(M)
.(3.08.20)

Integration by parts of the integral in the third term with »(0) = 0 leads to

I »x) 17 df » )]( - :5‘.‘(_’;.,_)) M
pry e Rl [ dx( e l-—-e “ + O(M) ....(3.08.21)
The barred quantity in square brackets represents a proper mean value of
the corresponding expression. Since

_d i Ldy 1 uip v ;

‘i (o) “mE—am, *O0

because of the relations (3.08.18) and because, from equation (3.06.11),
da,/dx is O{M)}; and since for s = iw also the exponential in parentheses
in equation (3.08.21) is O(1), we conclude that the value of the third

integral is G(1/M) and can be expressed as

1 »x) ,
E;(—;‘) — 4+ 0Of1) ....(3.08.22)

Replacing inte equation (3.08.1€) the expressions {3.08.20) and (3.08.22)
for the two integrals, and recalling 1hat £ is O(AM) and that di(x)/dx is at
most O(1) we cbtain

3 —nQ) + S L E 1 — emr
k dia(x) v(x)
S T ....(3.08.23)

with @(x) given by cquation (3.08.19). The only terms retained are at
most O(M) if n is O(1). We can conclude that under the present assump-
tions q{x}/g, is O(M), though d Q/dx, and therefore dq/g, dx, is lccally of
the same ordes as di/dx and therefore can be O(1).

3.09. SorvTion Bv ITERATION FOR MODERATE @
We are now going to examinc the order of magnitude of the terms of
equations (3.07.11) for the case of neutral oscillations s = iw. Let us
first consider the integral termus. They can be reduced to the following
integrals:

i i*r

P 4
J ysF(x') e246-0) Ay’ J wE() e==dy’ ... (3.09.01)
[}] 0

From equations (3.07.08) and {3.07.09) we have:

q _§—0C n S \
iF = ys = — psii ——— L ysp, — + ysit, — + O(M?2)  ....(3.09.02)
Y Py o TSP s o 4 O(AF) ( )
ysE = (2 —'-')su—- +2,'5p,u,;;)- + psiiy { -f~ O(M?) ....(3.09.03)
0
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3.09 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

where all the terms not written explicitly are definitely of O(M2) because of
the assumptions (3.08.18) and because of the results of Section 3.06 about the
order of magnitude of the steady state quantities. Let us first consider
the contribution to the integrals (3.09.01) due to ysq/g,. This contribution
can be split into three terms by the use of euation (3.08.23), the integrands
being all of O(M). The second of these three terms can be written as

T
o [0 2 1 — e et dfageny
o %o

The modulus of this integrand is at most equal to the product of the maxi-
mum modulus of

i, 2 (1 — %) ezsle—2)
()
which for s = w is of the same order as i, that is O(M), times the variation
of a, which is also O(M). Thus this second term is O(M?). The same
result is derived for the third term, which can be written as

X &
Ef - e da(x}] = O(M?)
SJo Po

because both the integral and & are O(M) (sce Section 3.06). Hence all
contributions to the integrals (3.09.01) from (2.08.23) are O{M?) except
the one duc to the first term, so that the spacewise contribution to the
burning rate can be completely neglected in the following development,
and only the timewise cc‘tribution retained. For w = O(1) it is clear
that the integral in equanion (3.09.04) is O(M); when o is large, that is,
when |s] is large, one can integrate by pars so that this first term can be
written

X q x

f ys = == dx’ = ny:f Q(x") e=%=-2) dy’
o P 0

R Y T I

b dx

]

=Fm{ow - |

4 = —2) ar=ronal
(] — e~} eiX2-T) d
o%( e*)e [u(x)]]

... -(2.09.04)

which is O(M) no matter how large difdx is locally, and how large o is.
Thus we conclude, in general, that for a of O(1), the expression (3.09.04)
is O(M).

Consider next in the integrals (3.09.01) the contribution due ‘o the term
in (p — a)/gp, of equation (3.09.02). Rewrite cguation (3.07.04) in the
form

df_[¢ c R ]
- X _m_ —1 -
d"[u (% T Po + pi %)

@ o " »—1le ] -

sl —P -y —1 —~f=s - ....{3.09.05

’ [% %V )p %] Y % ¢ )
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SOLUTION BY ITERATION FOR MODERATE @ ‘ 3.09

and integrate this lincar equation to obtain

?_po ._1-~1=r_:_11f’-'2<_x'_>d(‘:"§)
o 0 = Dpi 7 ), e
... -{3.09.06)

An alternate form of this expression is

1g o y—1(_ 1r.{2d_z_' [ q;(x')]}

PO AN/ | PR S A Bt Jr7a g NI/

Y¢ %o 7y Pgtil® )
....(3.00.07)

The expression (3.09.06) represents the time independent factor of the
stagnation enthalpy perturbation, pk, e~*/@, (as is immediately checked
from Section 3.07), and the expression (3.C9.07), the time indenendent
factor of the entropy perturbation, pS’ e~*[c,@,. For neutral osciilations,
s = iw; both quantities, and therefore g, and S’ [g, £an be O(1) as car:
be checked from equations (3.09.06) and (3.09.07). Therefore the quantity
(p — To)/oe = (¢ — ©)/gy, representing the temperature perturbation,
is also of O(1), a result consistent with the assu..iptions (3.08.18). Neglecting
terms of O(M?), equation (3.09.05) becomes

w—o_z:_’(2~,;>’_")_£i[u(w~0+r~1ﬁ&)]
%o Y \%Pe %o sdx

%o 7 Yo

From this expression we find that

z

fe—o . -9 . '
ys ‘l i =P gy’ = (y — l)sf i — e= =) dx’ + O(M?)
Jo Yo s Po
....(3.09.08)

since the value of

[ (p—0c y—1 _3v
v J ez d 12( ﬁ—)]
"f S St |

o

is evidently of O{M2). We see also that the value of the integral (3.09.08)
is of O(M). An interesting observation is that, as equation (3.09.08) shows,
within terms of O(M), the value of the integral can be determined using
the isentropic relation ¢ = g@fy, despite the fact that the entropy variation
itself can be of O(i). This shows that some sort of compensating effect
depresses the order of the integral

“sﬁ (l — _6.) ezfe—2) qy’
0 7% %o

LS

from O(M) to O{M?).
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3.09 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

The contribution to the integrals (3.09.01) of the third term of the
expression (3.09.02) can be written, using equation (3.07.05), as

X
f p,q—”c—«t-ﬂ dx' =k f F3 f;f—”cw “ dx' 4+ O(M3) ....(3.09.09)
0 0

and ic of O(M). The contribution of the fourth term of equation (3.09.02)
can be evaluated as follows. Let us first determine the order of magnitude
of {/¢py. Equation (3.07.02) can be rewritten as

d L s ¢ . 1 dq
dx(u' q’o) +—l“1%——'$a;+0(M) ...-(3.09.10)

Eecause of equation (3.07.05) and assumptions (3.08.18). The solution of
this equation satisfying the boundary condition (3.07.06) can be put in

the form
< [T
Sily — == —f i, [ -— + O(A'I)] ( £ 'h)dx'
%

which shows that #,({/g,) is at most O(M), because (1/g,) (dq/dx) is at most
O(1). Thus neglecting the contribution of the term O(Af) in equation
(3.09.10) we can write

. * e [4)]
- $i, — ci'(z—z') dy = .- :f i, exMr-1) 4 [_.
y .[) ‘%o Tl %o |

~,’ sy = c-“""’d[ () 2 )] = OIM?) ... (3.00.11)
Yo

since it is immediately recognized that both integrals are at most Q(M2).
Finally it is immediately checked that of the centributions fromn the various
terms of the expression (3.99.03} only the first one is O(Af):

X
83— 7)sf i L ezeta-2) gy’
o %o

=¢(3~;)f u—d[c“("‘”‘ O(M) ....(3.00.12)

and the others are all O(M?):
I 4 L i
ys} (3p, i#, — 4 5 — )c"“"”dx' =0 (4 ....(3.09.13)
o P %
The resnlts represented by the equations (3.09.04), (3.09.08), (3.09.09),
(3.09.11), (3.09.12) and (3.09.13) can be summarized by saying that for
the purpose of evaluating the integrals (3.09.01). and therefore those of
equations (3.07.11} within terms of O(Af), the expressions /3.09.02) and
(3.09.03) can be replaced by the following:

»F = s(nyQ — U);  ysE = —is¥V ....{3.99.14)
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SOLUTION BY ITERATION FOR MODERATE 3.09
with:
e » 47
x)=1}] = (1 —e*) —dx; ....{3.09.15
aw=[Za-emng (5.00.15)

k
vw=(-niZ-252 ]
%o %o | ....(3.09.16)

V(x) = i(3 —y) u%:

These quantities, and the corresponding terms of the integrals (3.09.01)
are all of O(M).

In the preceding analysis we did not take into account the effects of the
magnitude of s = iw except for equation (3.09.04) which was shown to
retain the same order of magnitude no matter how large o is. In the same
manner one can show that the - vders of magnitude of equations (3.09.09),
(3.09.11) and (3.09.13) are unchanged no matter how large w is. However,
the same is not true for equations (3.09.08) and (3.09.12). In both cases
it can be seen that the integral on ‘he left-hand side stays of O(A) no
matter how large w is, and therefore the whole expression is O(wM).
Its order of magnitude depends on the value o »; if w is O(1/M), for
instance, it becomes O(1), and keeps increasing for increasing w. It will
be seen later that if n is O(1), w must be close to Iz, ! being an integer.
We conclude that if M = 0-1 and { == 1, wM is around C-3 and can still
be considered of O(AM); but for [ > 2 it is more proper i~ consider the
quantities (3.09.08) and {3.09.12) to be of O(1)1. Thus the previous results
about U and V being of O(M) apply only if @ has moderate values. It
will be seen in Section 3.10 how this restriction upon the validity of the
itevation procedure that follows can be easily eliminated.

Following the same lines as those already used one finds that equation

(3.07.08) gives:
q -9 2
Y =y — —yi— + O(M?
o = P . ..{3.09.17)
W = 2i %>+ O(M?)
%o
and that these two quantities are also of O(M). Hence, introducing s = iw,
with @ of O(1) at most, equations (3.07.11) can be written as:
¢lpe = cos wx + O(M)
yrlpe = —i sin wx 4+ O(M)

....{3.09.18)

This form of the equations suggests the following iteration procedure valid
for moderate values of w. Neglect first the terms of O(M) with respect to
the terms of O(]); the resulting solution of zero order:

o )g, =coswx; O gy = —isinwx ....(3.09.19)

1 The magnitude of the expression (3.09.08) is reduced by the presence of the factor
(y — 1), which for rockets can be considered of O(3). No reduction of magnitude cxists

for the expression (3.09.12).
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3.09 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

coincides with the acoustic solution satisfying the conditiony =0 at x = 0.
This is an exact solution of the problem when M = 0. If M is exactly zero,
there is no combustion and we can replace the nozzle at x = 1 with a
closed end; so that at x = 1, » must again be zero. The phenoracnon is
now reduced to the onc dimensional oscillation in a pipe ciosed at both
ends. Thez corresponding eigenvalues @ satisfy the equation sin w =0,
so that they take the values w = I ({ =0, 1, 2...) characteristic of the
organ pipe oscillations. The oscillations are always neutral at these well
defined frequencies.

If there is combustion and M is small but different from zero, two things
happen. Terms of O(M) are added in equations (3.09.18); and the
boundary condition at x = 1, instead of » = 0, will be giver. by

il = iy . ...(3.09.20)

even if we neglect the terms of O(M) in (3.09.18), in which case the form
of the solutions is still giver by (3.09.19).

The specific admittance ratio of the nozzle, «, has beea determined for
isentropi~ oscillations in Appendix B, and has already been used at
Section 3.04 for the case of concentrated combustion. The change of the
boundary conditions affects the values of w for neutral oscillations. Hence
leaving w for the moment as the unknown eigenvalue to be determined
later, we can compute the additional terms of equation (3.0°.18) by using
the expressions of ¢!®/@, and y'%/g, from equations (3.09.19) of tae Oth
iteration. 1if the quantities:

z , o 98 3
QO (x) = J; coswx'[1 —e~1@H®)] i dx ....(3.09.21)

U x) = (y — l)ﬁcoswx-{-kaﬁ, sin wx . .(300.22)

VO (x) = (3 — )i sin wx
are introduced in equations (3.09.14), and then in equations (3.07.10),

together with the Oth approximations for the quantities given in (3.09.17),
one obtains:

(1) 5
— == coswx -}t {2:2 sin wx

)
x
— o f [{ny @(x') — U®(x")} cos w(x — x')
()
+ VO (x') sin w{x — x')] dx'}
b .. ..(3.09.23)
1) . N ®
T = —isinowx =— — yii cos wx
%o Y %o Y

—w f z[{ny QU (x") — U9 (x')} sinw{x — x)
0
— V"(x") cos w{x — x")] dx’
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The expression for q'? is obtained from equation (3.08.23) after introducing
the relations (3.09.19). The result of this first iteration is correct up to terms
of O(M) provided w is not too large. In principle it would be possible to
proceed further with additional iterations; however, all the terms of
O(M?) that have been neglected in the developments of this section should
be introduced, "and the result would become very involved. The corre-
sponding refinement does not appear to be justified in view of the roughness
of certain of our assumptions, and is certainly not required if M is sufficiently
small, in the neighbourhood of 0-1, say.

3.10. SoLutioN BY ITERATION FOR LARGE w

The procedure outlined in the previous section cannot be applied if w is
O(1/M) or larger. Itis possible, however, to locate the terms that arc respon-
sible for the inconvenience and introduce the necessary alterations so that
the procedure may ¢ 'nverge at higher w. The trouble comes ‘rom the
expressions (3.09.05) and (3.09.12), that is from the second ter:. in the
right-hand member of equation (3.09.02) and the first term in the right-
hand member of equation (3.09.03). If we rewrite them in the following
way:
.p—a
5t = (y — 1 sz. su
pi = =—1 + %

‘}’0‘

_Q - _g— Yo
= sif — — (2 — su St ———
(p 2—9) 7

¢ —pal=aly@—pal

it is possibie to show that the contrxbunon of the first terms of these two
expr&ssiom to equations (3.09.23) is of O(sM); the contribution of the
terms in 2 — y is always O(M) no mat:er how large @ is; and finally
the contribution of the third term of the first expression, representing the
deviation from isentropic conditions, is O(sM?). This suggests that in
order to eliminate terms of O(sM) from the equations (3.09.24) we start
from equation (3.07.09) modified as follows:

(=) +e ) - (- 7)
—_—f——1 —+ W} - ——%
dx‘.% )+S 7’?’0+ Ju'}’o

=5(W—X—-ﬁl +x2Y) =k
%o /

d , @ )
W ——Y)}) - w
d(yo+ )_H(% ) s"(r%'*-

(Y + Z + u—q}- —-u"’) = —sF

0

The homogeneous equations obtained from relations (3.16.0]) by putting
E=F= Y = W = 0 have the solution

....(3.10.01)

o 5(0) [z
¢ o & cosh 5x; {AA o aae sinhsx  ....(3.10.02)
%o Po
satisfying at x =0 the conditions §® = ¢, ¥ =0. With the same
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3.10  ANALYSIS OF SCREAMING (LONCITUDINAL HIGH FREQUENCY INS CABILITY)

boundary conditions the non-homogeneous system (3.10.01) has, for

known £ and F, the solution:
3

— se’ [saer ’: e’ .":“" [yF(x') cosh s(x — x')

+ yE(x’) sinh s(x — x"}] dv’ ... .(3.10.03)

z z z
+ e !Oadz'f e’ [eaer [yF(x') sinh 3(x — x')
o
+ pE(x") cosh s(x — x')] dx’

analogous to the system (3.07.10). Agair. since E and F are not known but
contain the unknowns, equations (3.10.03) can Le Lsnsidered as a system of
integral equations. Using the same techniques ued in Section 3.09 we can
check that for s = iw the integrals appearing it (3.10.03) contain either
terms of an order of magnitude which does not change with « and is at
most O(M), or terms with order of magnitude increasing with o, but at
most O(wM?). Thus we can say that with w up to O(1/M) equations
(3.10.03) can be written as:

© 50

?_% Lomy; LB
P % o Po

and we can apply the iteration technique previousiy discussed. The zero

order iteration is now given by equations (3.10.02) with 5 = i, instead of

equations (3.09.19). We can see that the only difference between the twoisa

phase change, the amplitude remaining unchanged; and that the difference

z
in phase is equal to wJ‘ @ dx’ and is of the order of 1 radian ifw is O(1/M)t.
0

The first iteration is obtained by introducing into equi.tions (3.10.03) the
values of P, 7@, E@ [0 computed from the solutions (3.10.02) of the
Oth iteration:

n . [
o), wdr O
¥ _e. i {cos wx + 2 sin cwx

PN

%o
X . {7 -~ -~
—iw f e'""f, 0*% [(myQ@ — T®) cos wlx — x')
[ 4]
+ VO sin o(x — #')] dx'} ... .(3.10.04)
) go *'"f adr . . .
. =y=—+¢ 10 {—isinwx— yicoswx
(1] 0

'z N ¢ - ~
—o J; e“""fo Q@ — U®) sin iz — #')

— VO cos w(x — x')] dx’}

4+This phase shift is substantially an cffect of the mean moticn of the gases on the absoiute
velocity of wave propagation.
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SOLUTION OF THE EILENVALUE PROBLEM FOR ¥ == CONSTANT 3.11

where 5O, [#7® have been cbtained again from equations (3.09.17) with
/@, ctc. In the quantitiest:

z S0} (o = X
A PO(x) _: di
) = T3 00 o =il o dy’
@06 = [T -ty 32 g,
~ . a 7 (0) k _ -150(0)
UOx) = —(2 — y)i ?;:_‘;. — = b ’ ~
SO 4,50 (0 o [0 (3.10.05}
+ﬂ¢ —¥yo +(}'-—l)uyv ’ — o y¥
Fo Po
~ . - §(0) 3(.}, — 1) é;(o)
Vo (y =,[2_.)ﬁ/1 _ 2
{x) @2—v - 3 - '

only thosc terms have been retained which, after the integrations of equa-
tions (3.10.04), produce terms of O(M) or O(wM?). The first two terms of
U® and the first of V© correspond to those of equations (3.09.2%) except
for the fact that ¥ — 1 and 3 — y are replaced by 2 -— y. Observe that
the phase shift of the new Oth iteration is carcelled by the exponential
factor under the integral sign of equations (3.10.04) so that these terms
result in the same expressions (except for the change in the numerical
factor) for both iteration procedures. However, the additional factors of
equatiens (3.10.05) are new. From equation (3.09.07) we obtain the value
of the term

HO) . a0, 5(0) — Divs© . (2 dr =(0)
i 17 rdd + (}’ l)u}'i = —y J- cuu!; - _d_; (ﬁ ?_7___) dx’
Po 0 d¥'\" &
All new terms are of O(wM?) and becoraz important only when o is O(1/M).

3.11. Sorurion oF THE EIGENVALUE PROBLEM FOR 7 = CONSTANT

The stability problem can be stated as follows. In a chamber with a given
nozzle, for whick we know the specific admittance ratio a as a function of
the frequency, we prescribe a given combustion law, represented by a
known distribution of space and time lags and by a value of the interaction
index #. As has been cbserved while discussing equations (3.06.13), the
stcady state combustion distribution is represented by the distribution
#(x). Sirailarly the unsteady cffects on combustion are represented by the
distribution of sensitive time lags $(x) and by the interaction index n.

Now the question is: for given «, #(x), F(x) and n, will an arbitrary
perturbation of the steady state conditions be amplified or damped? Mathe-
ratically the answer to this question is given, as in previous sections, by
analysing the siga of the real part 4 of s == A + i£2. In practice, as has been
stated several times, we need only determine the neutral condition under
which A changes its sign. if o and #(x) are fixed, these neutral conditions
will be passible only when a certain relation invoiving 7(x) and = is satisfied;
and they will take place with a well determined critical frequency w.

1 This formula is net quite exact under the assumption of this section. The changes to
be made are indicated in Scction 3.13. They have not been introduced to avoid the
additional complication of the following developments.
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3.11  ANAUYSIS OF SCREAMING (LCNGITUDINAL HIGH FREQUENCY INSTABILITY)

Equation (3.09.20) represents such a functional relationship between the
threc quantitics, and since it is 2 complex relationship. it corresponds to
two real cnes. If for simplicity we assume (as we will in the rest of this
section) that the sensitive time lag is the same for all elements, equation
(3.09 20) represents two equations between the three quantities 4, #» and o,
where 0 is the critical value of the constant time lag 7. This means that
for a given value of n, equation (3.09.20) will determine the values of 6 and
o for which neutral oscillations can be obtained; in other words they
represent the characteristic cquations for the set of eigenvalues 4 and w.
However, the direct solution of these equations would require laborious
numerical calculations because « appears in a very involved form, and it
would be hard to find the qualitative trends. We can obtain results in a
much faster and easier way by reversing the proceduie, that is prescribing
the value of w and looking for the eigenvalues 4 and n compatible with
neutral oscillations for that value of w.

An idea of the ranges of « that will be particularly interesting can be
obtained from equation (3.09.20) after neglecting in the left-hand side
quantities of O(Af); that is from the equation

sinh s/cosh s = @ (a, 4 7o)t ....(3.11.01)

which can be obtained from system (3.09.19) or from (3.10.02). It is clear
that if &, 5% 0 this equation cannot be satisfied for A == 0. Let us therefore
take s = A + iQ, and split equation (3.11.01) into the corresponding two
real equations:

sinh Acosh4 _ . sinQ@cos 2 _
S A Foosf % Suh? A f o @ = T %

If ad, and o;ii, are O(M) these equations are satisfied, within our order
of approximation, by:

sinh A = “'a'ﬁl tanQ = —a‘ﬁl

coshAd~1 cos? O~ 1

We see that since «, is positive the oscillation must always be damped,
and that the damping is related only to the value of «,4,, while a4, affects
only the frequency, which is given by

Q= lo~ anYa,iy) .o {3.11.02)

One can show that if a; is O(1) but a4, is still O(M), the frequency is
given by the same relation (3.11.02) and the damping by

sinh 4 = —e/(1 4 §3)

so that now the damping is affected also by the value of a4, but still 2,
is the most important eclement in determining its order of magnitude. 1If
finally both a,i, and a,i; are O(1), both tan-2 and tanh A become O(1},
depending in a mixed way upon a4; and «4,. We conclude that though
equation (3.11.01), obtained from equation (3.09.20) neglecting the effects
of combusticn and the other terms of O(Af), does not provide any eigenvalue

1 Note &; = %,, where 4, is to be found in the graphs of Appendix B.
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SOLUTION OF THE EIGENVALUE PROBLEM TOR T == CONSTANT 3.1l

for neutral oscillations, it provides, however, a well determined value
(3.11.02) of the frequency when the damping A is of O(M). If the com-
bustion terms generate enough cnergy to basance the damping and produce
neutral oscillations, it can be expected that the frequency will stili be
around the value given by equation (3.11.92). Another important resuit
is that the real and imaginary pars of « have separate and well defined
functions at least so long as they stay of O(1). The real part is substantially
responsible for damping, and the imaginary part for the change in frequency
with respect to the closed-end organ-pipe condition.

Comiug back to the determination of the eigenvalues n and 4 for given o,
let us discuss first the case of moderate w. For constant § the value of
ny @ which appears in squitic:.« (3.09.23) can be written as

ey ‘.z ’ dﬂ ’ ~
ny QO =3 ' osomr a?dx = ZEK(x, w) .. +(3.11.63)
40
where the quantity
E =ny(l — ™) ....(3.11.04)

is now the only quautity appearing in the equation (3.05.20) containing the
parameters n and 4 of non-steady combustion.

As already stated in Section 3.07 we suppose that the combustion is
completed at x = ]. From this assumption, consistent with the calculations
of Appendix B where no combustion has been supposed to take place in
the nozzle, it follows that at x = 1, dii/dx = 0, so that the last two terms of
equation (3.08.23) vanish. Thus applying equations (3.09.23) at x =1

we obtain:
(1)

%— = cos @ + i[24, sin w — ZC{w) + 4(w)]
(] -
o ....(3.11.05)
}:—’%- = —isinw - i, cos w + ED(w) + B(w)

)

where the functions 4, B are given by:

1
d(w) = o ‘- (U cos w(l — x') — VO(x) sinw(l — x')] dv’
L o

Blw) =0 ‘: (U (x") sinw(l — x') 4 VO(a’) cos w(1 — x)] dx’

that is, after using relation {3.09.22), by:

1 1
d{w) =w coswf adx’ — (2 — y)w‘v it cos w(l — 2x") dx’
Jo J

kit
+35 “ plsinw — sinw(l — 2.1 dx’
0

T
o

1 1
B(w) =« sin wf ddx’ — (2 - y)wf asin w(l — 2x") dx’
0 0

. 1
- g “ pifcos o — cos w(l — 2¢")] d<’
Jo
125
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3.11 ANALYSIS OF SCREAMING {LONGITUDINAL HIGH FREQUENCY INSTABILITY)

and the quantities C and D are given by the following equivalent expressions:

-

1
Clw) = wf K(x', w) cos w(l — x") dx’
0
1dK
= f i sinew(l — x') dx’
1 dg
J‘ - [sinw + sinw(l — 2x")] dx’

= wf icos w(l — 2x") dx’

° 1 .(3.11.07)

D(w) = K(1, w) — wf K(', ¢)) sino(} — ') dx’
)

J‘ dx,cosw(l — x") dx’
= %Jﬂ (-i% [cos @ -+ cos (] — 2x")] @+

1
= il COS @ — wf asinw(l — 2x") dx’
o

In the first term of each of the equations (3.11.G5) we recognize the term
which becomes of O(1) where w is O(1/M), while the remaining terms are
at most of O(M). The order of magnitude of 4, B, C and D is O(M) if
w is of O(1); but if « is O(M) the order of magnitude decreases to O(M?)
for A and C and to O(M3) for B, the order of magnitude of D being
unchanged.

Replace equations (3.11.03) in (3.09.20) with a = 2, + iz; and solve
the ensuing equation for £. The result is

= (I, +il)|(J, + iJ) ....(3.11.08)

D s A w4

with:

AN O ST PO WL ¢ G

I{w) = (y 4 a,)i; cos 0 — 22,3 sin w — B(w) — a,i#Alw) ]
Iw) = sinw + a4 cos © + 2,48 sin o + «,f4(w) l (3.11.09)
J () = D{w) — «,#,Clo) J! ..o (311

PR

Ji(w) = &, i,Clo)

From equations (3.11.08) and (3.11.04) one obtains the eigenvalues n and
0 as:
1 12417

n (m) 5T —

- B 2)11"]?1 c:

dw) = 3; [(2m 4+ N7 —2 tan"‘-j—

r

....{3.1L.10)

J;
-1-2tan"-'—'] e (31011
r

Before we discuss these results, let us observe that if «, and 4; were of O(1)
some terms, being of O(M?2), should be suppressed from the system {3.11.09).
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SOLUTION OF THE EIGENVALUE PROBLEM FOR ¥ = CONSTANT 3.1l

However, for small M, both «, and «; can become large for sufficiently
high frequency. This is shown clearly in Figures 62 and 63 of Appendix B
where the values of a4, and «,,, computed for linear velocity distribution
in the nozzle, are plotted against the reduced frequency f defined iz the
appendix. We see that though both «.7, and «,%, decrease when M de-
creases, they decrease quite slowly with the result that for high g and
low M they must be considered as of OQ(1) rather than of O(M).

The relation between the reduced frequancies § and w is obtzined from
the definitions of both as

B = wlow|(F, — ) ... (3.11.12a)

where /,,; represents the length of the convergent part of the nozzle divided
by the chamber length, and ¢, = {2/(y 4 I)}} is the non-dimensional
value of the critical velocity, reached at the throat of the nczzle. If, for
example, (& — i,)/l,,, = 7, which means that the length of the convergent
part of the nozzle is roughly a third of the chamber length, and if @ is not
far from one of the organ-pipe cigenvalues {7, the corresponding g is around
{,that is,around unity for the fundamental mode, around two for the second,
and so on. This is, however, only a particular case and a change in [,
affects proportionately the values of . The examination of the Fagures 62
and 63 shows t* -t if we confine ourselves to values of M around 0-1 and
if B goes from 0 .. O(M), then « i, is O(M?) and a4, goes from 0 tc O(M?2).
If 8 is around unity both « %, and «,7, are around O(M); however, o,
stays considerably smaller than M (say, around M/2) and a4, stays con-
siderably larger than M (around 2M). With increasing B, a,i; tends to
stay O(M) up to § around three, and becomes QO(1) for larger § while
already at § = 2, «,#, changes to O(l) and tends to decrease again orly
for much larger 8.

With these orders of magnitude in mind, let us examine equations (3.11.10)
and (3.11.11). Suppose first that w is O(M), then we obtain immediately:

I, = yi, + O(M?); I, = 0 4+ O(M?); J. =i, + O(M?); J, = O(M3)

and from equations (3.11.10) and (3.11.11), neglecting higher order terms,
we have:

© = yiy(2n — i)}

i ] ....{(3.11.12b)
®é = (2m + D)7 — 2 tan~* (2n — 1)} J

These results can be compared with those of the low frequency intrinsic
instability, equation (2.03.10). For the comparison, the reduced frequency
just derived has to be muitiplied by the ratio of the two different character-
istic times used, 0,/0,., which is found to be equal to 1/#; no change, how-
ever, is to be aoplied tc 8. It is easily checked that the results coincide,
except for the non-essential numerical factor y in the expression of the
critical frequency. This factor arises because, in the low frequency part,
the osciiiations were assumed isothermal, while in the present calculations
no predetermined oscillation behaviour was assumed. The present result
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3.11 ANALYSIS OF SCREAMING {LONGITUDINAL HIGH FREQUENCY INSTASILITY)

shows that actually the situation is better described by an isentropic oscilla-
tion, and equations (3.11.12b) are to be considered more accurate than the
previous ones. Except for the slight numerical difference, we now have an
indirect check of our basic assumption of Chapter 2 that the wave mecha-
nism can be neglected at low frequencies and the gas can be assumed to
oscillate as a whole. Actual calculations for increasing values »f w would
show the limits of validity of this assumption.

3 Suppose next that w is O(1), but that the value of 8 is belew three, so that
S o diy is O(M). Equations (3.11.09) show that in this case I is O(M}, J, is
3 ) : O(M) and J; is O(M) and I, is, in general, of O(1). Thus from equation
w (3.11.10) n is O/1/M?). If, however, tan w = —a,i, + O(M), I, becomes
R ) of O(M). In the denominator of (3.11.10) IJ, can be neglected as compared
N . . to I,J,, and we obtain

k> == . 1 ( If I'_z )
T : "= \T T

: both terms of which are of O(1). If we now take
tan @ == -—oif; -+ O(M?) ....(3.11.13)

I, turns out to be of O(M?), while 7, and J, will have changed their values
. ; only by an amount of O(M?2) but a~e still of C(M). Thus in the ranges of @
& : specified by equation {3.11.13), n takes a minimum value

Peia = (1/29) (L}J,) oo-(31114)
it is to be observed that only the smallest positive value of w satisfying
equation (3.11.13), that is, neglecting terms of O(M?2), unly

o =7 — tanYai;) ....(3.11.15)

can be considered of O(1). This coincides with the first value (3.11.02). As
aiready shown, if /,, is about cne third of L, the corresponding vaiue of 3
is around unity_in which case both a4, and «, are O(M). If, however,
the length of the nozzle is increased both «4; and a4, increase. Corre-
spondingly, the value (3.11.15) of @ decreases, but the decrease is limited to
a maximum amount of the order of 25° because the maximum value of
2, never goes much abeve 0-4, as appears clearly from Figure 63. Thus
starting from a value close i~ 180°, w would first decrease rapidly, reach a
minimum around 155° and then increase again slowly. The value of g
would therefore increase at first slower than [,,,, and later faster, but al-
togetner it is buund to increase. When #. :aches values around and above
: : three, @& which has been st:adily increasing, must be considered to be
: - ) no longer of O(A/) but rather of O(1). As a consequence I, is O(1) instead
T : of O(M), while J, and J, are both O(M); I, is C(1) in general but reduces
2 - . to O(M) if w is around the value (3.11.15). Itis immediately deduced that
- n is now always of O(1/Af), even around the value (3.11.15) of @ where,
S however, it still takes its minimum value. Thvs with increasing /,,,, due to
S the increase of «,it;, ny,, increases steadily; and the variation of n from n,,
when o shifts from the value (3.11.15) becomes less sharp; in other words
the minimum of » becomes less marked.
Finally let us examine the situation for higher w, up to O{1/M). One
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can treat equations (3.10.04) applied at x =1 exactly
(3.11.%2), and again sclve for £ obtairing

=~ L+il,
R AN

with:
L) =(y + %) coso — 2u@ sinew

— B —a@d — x4,
I(w) =sinw + a@, cosw + 2u,4 sic @

— B, 4+ e A — a4,
J@) = L — ey — &,C
Ji(w) =D, + %G — a,,Cy

o) =—2—yo J:ﬁ cosw(l’'— 2¢') dx’

LYot
Sanic

Eay

k1 .
+§fﬁ@mw—ﬁmﬂb—bﬂd”
9

— yw J: cosw(l — x') dx’ J:'A(w, x")
X cos fl'(x', x")] dx*
1
L) = [ @01 + 3 snw
—}7 — 3y) sinw(l — 2¢)] d’

1 '3
——wa cosw (1 — x')y dx’ J A(w, ")
(] )
X sin {wl'x', x")] dx”

T, A2 Foth

T ENRT oy v Ge -

B)=—2— 9w fl asinw(l — 2x') dx’
o

P
-3 f pilcos @ — cos {1 — 2x)] dx’
0

— yo J: sinw(l — x’) dx’ I:A(w, %")
X cos {wl(x', x")] dx”
1
B(w) = —o [ #0401 +3) oo
— H7 — 3y) cos (i — 2x')] dx’
1 2
- ywj;sin ol —x") dx'J; d{w, x")
X sin [wl'(x', x")] dx”

29
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like equations

....(3.11.16)

L ... (3.11.17)

P

The different functions appearing in these expressions are given by:

3

[ ....(3.11.18)
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! '3
Clw) =w \ cosw(l — £} d+' J. cos wx”
0

Jo
= da
- m —_— »
X €os (wL i dx )dx”dx
1 2
Ci{w) =wJ~ cos w(l — x’) dx'f cos wx"
0 0

»

z” -
X sin (wJ adx”’) da dx”
2

dx'

1 x di
Diw) = f cos wx’ cos (w J' i dx") i dv'
0 1

1 s
—w ‘. sino(l — x') dx'f cos wx”
o

’ * o da o,
Xcos(wLudx)d—x;,dx

1 . z v da ,
Dy(w) = J; cos wx’ sin (w fx i dx ) 7

1 7
- wf sinw(l — x') dx'f cos wx”
) £

. .z". " di »
X sm (:,‘Ludx )d—;,;dx

LY

Here the expressions for I'(x’, ") and 4(w, 5”) are:
< (1
T« x") = f (-; + ﬂ) dx”
e \U

-fufg'adz" d ,ciuf:.adz"'

Aw,x") =¢ i [#(x") cos wx ]

== c0s wx" ( R + iwﬁ‘) — il sin wx”

diz

= cos wx” e wii sin wx”

ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

....(3.1L18)

[ ....(3.11.19)

The term wi?, in the second expression for 4, can be neglecied because its
contribution in the quantities defined in equations (3.11.18) is O(M3).
With this simplification, 4 and I" are real functions, and so are all the
quantities given in equations (3,11.18) and (3.11.17). The terms con-

taining A and I"are due to the entropy variation. Obscrve that if o J‘.ﬁ dr’
is O(M), that is, if w is O(1), the quantities 4, B,, C;, D, ..re O(M?)
therefore be neglected in equations {3.11.17). Also, cos {w f & dx”')
can be replaced by 1 and the quantities 4, B, C, D can be transi{mned to
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the 4, B, C and D of (3.11.06) and (3.11.07}, the only difference being
that the first term of the two equations (5.11.06), which represented the
cause of trouble for w of O(1/M), are now absent.

All the quantities given in equations (3.11.18) are at most of O(M)
even when w is O(1/M), as are those given in equations (3.11.17). J,(w)
and J (o) are always O(M); I (o) is O(M) if &4, is O(M), (8 < 3), and
it is O(1) if a5, is O(1), (f = 3) ; and I;(w) is O(1) in general, but it is
O(M) when w is in a range of O(M) around the values

DISCUSSION OF THE RES.ILTS

. == lr — tan~? (a,d;) ....(3.11.20)

Therefore, proceeding as before, we find that if § << 3, n is O(1/M) for
general o, but takes a minimum value of O(1) when  is around the values
(3.11.20); if on the contrary f > 3, n always stays of O{}/M). These
conclusicns coincide with those of the previous discussion for @ of G{1),
with the exception that » never becomes O(1/M?2) even for these larger

values of w.

3.12. DiscusstoN oF THE RESULTS

The qualitative results of the previous sectien are represented schematically
in Figure 41, where n is represented as a function of  in the range 0 < w < 3.
It is supposed that in all this range f# stays below three so that o, %, never
becomes of O(l1), though increasing with w. Near @ = 0 we have the
portion of the curve corresponding to equation (3.11.12a). With increasing
o, n becomes of O(1jM?) reaches a maximum and decreases again to a
minimum of O(1) for ! = I, given by relation (3.11.15). Then it increases
again, reaches 2 new maximum, which is likely to be Jower than the first
one, and decreases to a new minimum {(higher than the first) for { = 2;
there are other minima of increasing height for / = 3, 4 and so on; and
other maxima of decreasing height in between. Thus the curve tends to
become flatter, with less sharp minima and maxima, as w increases.

The values of §, equation (3.11.11), can be qualitatively discussed by
observing that around the minimum of » both I/I, and J;JJ, are O(M) if
w is O(1) and if a%,, oy are of O(M). Thus in the corresponding ranges
the value of § will be close to the value obtained by neglecting the last two
terms of equation (3.11.11), that is close to the rectangular hyperbolae
wé == (2m 4+ 1)7. When o is of O(1/M) both I/I, and J,J, become of
O(1), and therefore we find a divergence of Q(1) of wd from (2m <+ 1),
which is not a very substantial divergence. If o4, is O(1) the divergence
takes its maximum value around iw. Altogether the values of ¢ in the
ranges around #,;, will not differ too much from those of the hyperbolae,
which have been drawn schematically in Figure 41. With the help of this
figure it is casy to discuss the stability characteristics of our system. Suppase
we know the interaction index n proper of the system, we can draw on thc
figure the corresponding horizontal line. This has been done in e figure
with the particular value n = 1. There are 5 intersections with thr: curve
n(w), one, w,, near w = 0; two, w,, wy close to the value {3.11.13) of
ol =1); two, @4, w, close to the value (3.11.20) with [ = 2. For higher
values of [ no intersection is found. For each intersection we can draw a
vertical line which will intersect all 6 hyperbolae. The intersections at
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3.12 ANALYSIS OF ECREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

® = w, on the hyperbolae are cut of the range of the figure. They cor-
respond to equation (3.11.12b). From the discussions of Chapter 2 we know
that the lowest of these low frequency intersections is the only important
one, because as a general trend the system with larger 7 is always unstable,
and no low frequency instability can be rresent in a system with smaller 7.
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Figure 41.  Compusite schematic diagram of the stability characteristics of a liquid propellcnt

rocket. Solid curves: critical values of the interaction index n corves ing to neutral oscilla-

tions of different modes (1 = 1,2,3 .. J). Dotted curves: critical values 9, of the sensitire
time lag 7 for different numbers of oscillation periods contained in7 (m=0,1,2...)

" If, hewever, we extend our considerations to the high frequency range
several new ranges of 7 appear where instability is present. Each range is
bounded by the two intersections corresponding to a given value of / with
a given & hyperbola (a given m); for instance we have a range between «,
and wg and one between o, and wg on cach hyperbola. We have a value of
§ {for given m) and of o at each intersection. These values constitute, for
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the prescribed 5, two eigenvalues of sur system, that is, the values compatible
with neutral oscillations. If 7 has a value between the two ecigenvalues
o corresponding to a given value of /, the system is unstable, only self-ampli-
fying oscillations are possible, with a frequency contained between the two
corresponding eigenvalues of .

We see that the spectrum of the unstable ranges of 7 can be quite compli-
cated, and its complexity increases with the number of intersections of the
n(w) curve with the prescribed value of n. The spectrum of the unstable
frequency ranges is, however, much simpler and it shows that high frequency
instability is always connected with frequencies close to the organ-pipe
frequencies of the system, but generally lower than the corresponding
organ-pipe frequency by an amount determined by the value of o; of
the nozzle.

As has been mentioned the larger the number of ranges of instability in the
@ spectrum, the larger is the complexity of the 7 spectrum, and the more
difficult it is to obtain stable conditions. Fortunately due to the increase
of a i the values of ny, steadily increase with w, so that for { sufficiently
large it gocs out of the range in which n can be expected to be, and no
intersections can exist. There is therefore always a trend toward increased
stability for higher modes of organ-pipe oscillation, as has already been
found in the case of concentrated combustion. If one wants to improve
the stability characteristics of a given system the best way is to reduce
the number of intersections. This can be obtained either by decreasing the
value of n, characteristic of the system, or increasing the level of the
minima of the curve n(w). The first resuit can probably be reached
through modifications in the injection system and through changes in the
reactivity of the propellants. The nature of the required modification and
its effectiveness is still to be investigated. But it is very clear how the second
result can be attained acting only on the geemetry of the nozzle. In fact
if one increases /,,,, as has already been seen, «,, increases at most up toa
limited maximum, so that o decreases by an amount which is around 25°
at most. At the same time a4, increases steadily with /,,, and asymptoti-
cally reaches a maximum value close to 1 for infinite length. Hence no
matter what is the value of @ (or !) corresponding to a minimum of a, one
can always obtain, through a sufficient increase of /,,,, that tue a7, grows
enough to raise the value of n,,;, above the practical range of the inter-
action index n. The effect on Figure 41 of a steady increase of /,,, wonld be
an increcase of all n,;,; the one corresponding to { = 3 would be the first
to increase fast and disappear from the range cf the figure, followed by the
one at [ = 2; and finally by the one at / = 1 when the length of the con-
vergent portion of the nozzle becomes comparable with the length of the
chamber. Observe that in practice this condition would be overabundant,
and an [,,, sufficient to bring ny, for = 1 above the known value of n
of the system would be perfectly adequate.

On the subject of the strong effects of the length of the nozzle on longi-
tudinal stability we should add some remarks. The stabilizing effect is not
mercly due to the additional length, but it is closely connected with the
shape of the convergent portion of the nozzle. This can be shown easily
with the following argument. Our discussion has been based <o far on the
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3.12 ANALYSIS OF SCREAMING {LONGITUDINAL HIGH FREQUENCY INSTABILITY)

results of Appendix B concerning a nozzle with lincar velocity distribution,
such as those represented schematically in Figures 42(a), (b) and (c). Here
for a given length of combustion chamber, represented in our reduced
units by unity, we have increased /,,, from the value I, of Figure 42(a) to

! /
7 /
w / /
v/ —f—
7 b 234
/_‘---“-.i1 / --—-.—-—'21
1 Lo 1 5w
“\\ |~
@) (d)
z p the value L, of Figure 42(b)

&

Sub

b

7 Al 51T

{c)

Schematic diagrams indicating changes

Figure 42.
in geometry of rozzle

preserving, however, the linearity
of the velocity distribution. As
already seen, the result of the
change is a marked improvement
of stability. Let us now consider
the opposite extreme of Figure
4#2(c), where the length [ ,, has
been increased by the same
amount Aly, = Iy — L, as
shown in the figure through the
merc insertion of a cylindrical
section between the end of the
chamber (where combustion is
completed) and thcentrance of the
nozzle, which is keptidentical with
that of Figure 42{a). Obviously the
cylindricalinsert can be considered
either a part of the nozzle where
the velocity remains constant, or a

portion of the combustion chamber where no cembustion takes place. If we
consider it in the last way, then substantially we are reduced to the same
case as Figure 42(a) with a chamber of different length and of different
velocity distribution. Disregarding the effects of the velocity distribution,
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DISCUSSION OF THE RESULTS 3.12

which cannot be expressed in a simple way, and concentrating on the
effects of the nozzle we see immediately that for the new chamber length
the cigenvalues @ will be found around the values

o = lnf(1 + Al,,) — tan"! a4,

The corresponding value of f, given by equaiion (3.11.12a) with I, in
place of /,,,, will also be decreased from that of Figure 42(a), approximately
in the proportion 1/(1 + Al,,,) (not exactly, because a,i; also changes
slowly with 8). Therefore a,%; must decrease, by an amount whick can be
substantial, when the length of the combustion chamber is increased without
changing that of the convergent part of the nczzle. We conclude that the
increase of length works in opposite directions for the two cases of Figure
42(b) and of Figure 42(c), being stabilizing for the first, destabilizing for
the second.

Physically this result can be interpreted in ‘¢ . .ollowing way. The
stabilizing cffect of the converg :nt part of the nozzi is due to the manner in
which the incoming waves are reflected back to the chamber. The reflection
of waves at each point is determined substantially by the corresponding
velocity gradient. The longer the region over which the velocity gradient is
spread and the larger the frequency, the more the reflection pattern will be
dispersed, and the smaller the chance of resonance and instability. Of course
the cylindrical insert of Figure 42(c) does not spread the reflection pattern:
but only decreases the resonant frequencies, thus reducing the spreading
effects of the nozzle and the stability characteristics. It is possible that
the nozzle with linér velocity distribution in the subsonic region, originally
introduced by H. S. Tsien®, probably with the sole intent of simplifying the
mathenaatics, has also the remarkable property of the largest stabilizing
effect for a given /,,,,. This has not been rigorously proved, but could follow
from the fact that for this type of nozzle the velocity g-adient has the most
uniform distribution. It can be observed that if ii; is not too small, the
generatrix of an axisymmetrical nozzle with lincar velocity distribution has
approximately a circular shape. It must also be observed that all the
previous results are based on the assumption of one dimensional flow in the
nozzle, an assursption which is approximately true only if /,,, is not too
small. Let us {inally stress the*fact that the supersonic portion of the nozzle
has nothing to do with the behaviour of the combustion chamber and can
be selected arbitrarily, provided it does not interfere with the conditions at
the sonic throat.

So far we have in this section discussed the general shape of the results
and the cffects of the nozzle geometry. Let us now examine the effects of
the velocity distribution in the combustion chamber, and in particular let
us concentrate our attention on its effects on the values of n,;,. These
values can be obtained from numerical calculations based on the formulae
given in Section 3.11 for any of the cases discussed. But for a general idea
we can limit our discussion to the case when @ can be considered of O(1)
and e, &8, are both of O(3f). In this case n,, can be derived from
equation {3.11.14), with I, and J, given by equation (3.11.09) simplified
in the following way:

I =y 4+ a,)i,cosw — B{w); J,= D(w)
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3.12  ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

B{w) and D(w) can be obtained from equations (3.11.06) and (3.11.07)
in simplified form using the fact that w is within O(A) from /x so that
cos w =~ 41 and sin @ is O(M). Then, neglecting quantities of O(M3),

1 1

it sin 21’ dx” — k f P sin wx’ dx']

B(w) = cosw[(2 — y)wj |

0
- 1

D(w) = coswlit; + w ‘. i sin 2ewx’ dx’]
Jo

Finally from equation (3.11.14) there results

o1 1
(y + a)a; — (2 — y)w.’ isin 2wx" dx’ 4 k f Py sin? wx’ dx’
, 0

T
2y [ﬁl + wf i sin 2cox’ dx']
0

0

Byin =

... (3.12.01)

where £. can be obtained from equation (3.06.13) once &, is known.

This formula which has the great advantage of simplicity has been used to
calculate the effects on n;, of changing the velocity distribution. In general
the last term in the numerator has been set equal to zero; it has only been
taken into account in a few cases. But it is clear from the fact that this term
as well as the denominator of equation (3.12.01) is always positive that it
results in an increase of 7., that is, an improvement of stability. This is a
logical result indeed, since this term substantially renrésenis the dissipative
cffects of the droplets drag in the unsteady part of their relative motion
with respect to the gases. In practice, however, as some calculations show,
the contribution of this dissipative term is relatively insignificant.

The examples that we are going to discuss are carried out for the first
mode @ =~ 7 as well as for the second mode w ~ 27, For this second mode
at least one of the assumptions on which equation (3.12.01) is based fails to
be satisfied. In fact it is true that for a sufficiently small /,,,, for instance 1/6,
it is possible to keep # well below 2 at w = 2, and therefore keep both
o, and o, of O(M); but on the other hand @ cannot be considered of
O(1) and the more complicated expressions derived for w of O(! /M) should
be used. This has not been done because it would lead to the following
inconsistency. In equations (3.11.18) termas containing the quantities 4
and I" appear, which, as already mentionzd, are due to the entropy varia-
tion. These terms should be considered in the calculations. On the other
hand the nozzle adinittance ratio used in the calculation only applies to
isentropic oscillations. It is believed that the entropy oscillations have
more substantial effects on the behaviour of the nozzle than on the be-
haviour of the combustion chambcr, and it is therefore inconsistent to use a
more accurate formula taking these effects irto account in the combustion
chamber while they are neglected in the nozzle.

Let us observe, moreover, that the effects of the entropy oscillation on
the behaviour of the nozzle can be important even at lower frequencies,
where they have negligible effects on the combustion chamber. All the
results of the discussion and of the calculations of this section must therefore
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DISCUSSION OF THE RESULTS 3.12

be accepted with reserve, until the availability of data on the non-isen-
tropic behaviour of the nozzle will allow more reliable calculations. For
this reason we have used equation (3.12.01) even for the second mode,
for which the results are not to be considered accurate but enly indicative.
For simplicity, we shall first neglect the damping contribution of the
droplet. Thus let k¥ = 0 and let us consider the systems with combusticn
uniformly distributed fiom the injector end x =0 to x = §, and with no
combustion from x = £, to the combustion chamber exit x = 1. Thus the

mean velocity in steady state is
z‘i(x):ﬁl.-g- when 0 < x << &,

»c

a(x) = a, when &, < x < |

As was done in the examples of previous sections, let us assume that the steady
state velocity is linear in the convergent portion of the nozzle and consider

! [
Second mode

ri /
24 /

Figure 43. Effect of the sparawise spread of l

combustion on the minimum value of the interaction s 76l } /
index, nmn, compatible with unstable oscillations £ L Fundarmental
of the fundamental and the second mode. Com- R mode
bustion spread linearly stasting from the injector 72
JSace as skoun in the figure / /I
]
-—/ ' ]
7243 g ! P. ”“ZZ!.L.
el !

ol f el
!
0 62 0¥ o068 o8 10

—

4

only the case that the steady state velocity gradient is equal to 7 in the
present dimensionless scheme. The length of the subsonic portion of such a
nozzle is approximately 1/3 of the combustion chamber length. With
i, nozzle = =, we sce that the reduced frequency parameter f = i, for the
nozzle takes integral values 1, 2, 3 etc. when the frequency of the oscillatior is
equal to the frequency of the first, second and third organ-pipe modes with
closed ends. The Mach number of the flow entering the nozzle is taken to
be M = 0215 (&, = 0-213) for the following calculations. The value of nyy,
computed from equation (3.12.01) for the cases just mentioned is given in
Figure 43 for both the fundamental and the second modes. When £, increases
from zero, that is when combustion is spread farther and farther away
from the injector end, we see that for either the fundamental or the second
mode, the value of ny, increases gradually and reaches a maximvm when
the combustion terminates somewhere downstream of the neighbouring
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3.12  ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTARILITY)

node of the given mode of pressure oscillation. Then n,, decreases toward
the next antinode and as demonstrated in Figure 43 the next minimum of
fyin for the second mode occurs in between the second antinode and the
secoird node, and the value of that minimum is considerably higher than the
magnitude of n,;, when &, == 0. This trend is expected to persist for all
higher modes.
It is important (v observe from Figure 43 that the second mode is always
more stable than the fundamental because the corresponding values of n
are always higher. This is in line with the results of the general discussion
developed previously. However, observe that the two curves of n,,, come
rather close together for values of &, in the necighbourhood of the node of
the fundamental mode; and that, owing to the inaccuracy involved in
using equation (3.12.01) for the calculations of n,,, for the second node,
the ny,, of the second mode in this range of £, may actually be the smailer
(as will ke shown later, the n,;, of the seccad mode will be the smaller in
the present calculation if combustion is not uniformly distributed from
x =0 to x = &,. However, for this range of values of %, the ny, for the
second mode is still in the range of 1-5-2-0 as is that of the fundamental
mode in a wider range of £,. The smaller value of n;, for both the funda-
mental and the second mode is essentially given by the ny, of the funda-
mental mode. For a system with given combustion distribution, it is the
smallest value of ny,;, of all the high frequency modes that determines the
unconditional stability of the system. Thercfore for the comparison of
unconditional stability of different systems, the second mode is rather
unimpor nt, at least for the cases with uniformly distributed combustion
considereq in this example. It can probably be inferred even without any
numerical results for higher modes that the presence of all the other higher
modes is not of sigrificant importance so far as the smallest value of ny,
of all high frequency modes is concerned. As already observed in the
general discussion, this is essentially a consequence of the increase of a,
with frequency as can be visualized quite simply from the following con-
siderations. First, the curve of ny;, for a given mode plotted against £,
behaves like a damped oscillating function starting with a minimum at
&, = 0. The mean value about which ny, of a given mode oscillates can
be approximately given as 3/2 4 (&, — 1)jy which increases for higher
modes of oscillation due to the increase of a,{w) for higher modes. Secondly,
the initial value of ny,, at & =90 can also be given approximatcly as
(2, + y)/2y which is also larger for higher modes. Consequently the value
of nye given in Figure 43 for the fundamental mode can be considered as
the ng;, which characterizes the relative unconditional stability of different
systems when all high frequency modes are considered, except possibly in
the neighbourhood of &, = 0-75, where ny; for the fundamental mode
attains its maximum.

From Figure 43 we sec that the configurations with combustion uniformly
distributed from injector end to a position somewhere in the downstream
half of the chamber possess a value of n,, ranging from 1-5-2-:0 when all
high frequency modes are considered. Thus such systems will be un-
conditionally stable if the interaction index n of the propeliant combination
is less than 1:5. It is ve:y likely that this condition is fulfilled by
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DISCUSSION OF THE RESULTS 3.12

conventional liquid propellant combinations even though no value of # has
been determined experimentally. Thus the result of Figure 43 indicates
that under the combined effects of the nozzle and of the spatial distribution
of combustion, the confisuration with combustion uniformly distributed
over a major portion, say eight or nine tenths of the chamber length, is
one of the most effective in obtaining longitudinal stability in a liquid
propellant rocket.

If the combustion is uniformly distributed over a region less than one
third of the chamber length frem the injector end, Figure 43 indicates
Npa < 0-8. Thus if the interaction index n of a propellant combination is,
say, 1-0 or slightly less than 1, a rocket which is stable with combustion
distributed uniformly over the major portion of the chamber axis can very
likely be made to scream by sufficiently increasing the length of the com-
bustion chamber without modifying the geometry of other parts of the
rocket motor. As an extrermc case, if a sufficiently long cylindrical section
is added to the motor so that the width of the combustion zone becomes
small as compared to the total length of the chamber, the system is reduced
essentially to the one with a concentrated combustion front near the injector
end. Unstable oscillations can occur when the value of &, is sufficiently
reduced by lengthening the chamber so as to give ny;, less than the value
of n of the propellant combination. As observed in the general discussion,
by incrcasing the length of the chamber the relative length of the convergent
portion of the nozzle [, , is decreased, with the result that «, decreases too.
This further decreases the value of n,,, frum that proper of the system
before the increase in chamber length. Thus the destabilizing effect of
increasing the chamber length consists of two parts, one from the direct
modification of the combustion distribution relative to the acoustic wave
form and the other irom the modified reaction of the nozzle.

It has just been pointed out that when £, = 0 the system is of the con-
figuration considered in Section 3.04. Comparing the values of 7, obtained
from Figure 43 for &, = 0 with the corresponding n,,;, deter=:ined in Section
3.04 and plctted in Figure 28, one finds that the present result is slightly
higher than the corresponding previous result. For this particular case
with &, = 0. it can be shown easily that the expression for n,;, deduced
from equations (3.04.02) and (3.04.02) differs from the simplified form of
cquation (3.12.01) with &, == 0 only in that the constant y in the numerator
of vquation (3.12.01) is replacerd by unity [£ in equation (3.12.01) is assumed
to be zero]. This is due to the fact that in the previous analysis of concen-
trated combustion, the flow field in the combustion chamber is assumed
isentropic while in the general analysis of Section 3.11 which led to equation
(3.12.01) the major effect of the entropy variation of different burnt gas
clements generated under different pressure conditions ic taken into account.
While the entropy variation is of the same order as the pressure perturbation
as explained previously its net effect on the qualitative behaviour of ny,
is not important with the possible exception of its influence on the behaviour
of the nozzle, neglected here. With this entropy correction taken into
consideration, the value of ny,, for £ = @ and very short nozzle becomes
3 + (y — 1)/4y instead of } — (¥ — 1}/4y as obtained in Section 3.04.
It is interesting to note also that } is the value of ny, for low frequency
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instability of the intrinsic type [equation (2.03.10)] which was obtained
under the assumption of isothermal chamber conditions.

Let us consider azxt the systems with combustion uniformly distributed in
an intermediate region &, around the mean positicn ¢ with 3§, << p. If 3¢, is
very much smaller than y, the system approaches the configuration with
combustion concentrated at the axial position ¢. The present result will
therefore indicate how well the approximate scheme of concentrated
combustion can represent the actual conditions. For such systems we have:

=0 OS-"*{V’_%&:
i=17, {x— (p— &2}, y—d.<ysy+id
1= 43, <x<

The values of ngy, as calculated from equation (3.12.01) for different values
of p are plotted versus &, for the fundamental mode of oscillation in
Figure 44. The values of ny, for different y with &, = 0 correspond to
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the values of 2, given in Figure 28 but for the reason mentioned in the
previous example the present values are slightly larger. It is clearly seen
that so far as the magnitude of n,,;, is concerned, the spatial spread of
combustion about the mean position ¢ = 1/6 and y = 5[6 has practically
no effect (being slightly stabilizing) for the total extent of spread as large as
1/3 of the chamber length i.e. 1/6 of the wavelength of the fundamental mode.
When the mean position is shifted toward the antinedal position (p = 1)
of the fundamental mode, the effect of spatial spread of combustion becomes
destabilizing and the destabilizing effect, that is the decrease of ng, from
the value of 1y, corresponding to concentrated combustion at the mean
position v, increases significantly when y approaches 3. This phendmenon
can be physically expected on the ground that the spatial slope of the
amplitude of the pressure oscillation ¢, is exactly zero at an antinode and is
stnall in its vicinity, while that near a node is large. Thus the maximum
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DISCUSSION OF THE RESULTS 3.2

possiblt amount of excitation of unstable oscillation is not substantially
changed by the small spread of combustion near an antinode. Since the
damping action of the nozzle is little affected by the spatial spread of com-

- _bustion, the unconditional stability of a given mode in the system as indi-
s y g Y:

cated by ny,, is not substantially changed. It should further be noted
that a nod« of the fundamental mode is the antinode of the second mcde.
Therefore the destabilizing action of the spatial spread of combustion in the
nodal region of a given mode is not important because the ry,, of this
mode will still be considerably higher than the n,, of some other mode
having an antinode near the combustion zone. With this in mind and
with the help of the computed results it can be inferred that so far as the
unconditional stability of a system is concerned, the effect of the spatial
spread of combustion in a region less than, say, 1/8 of the chamber length
is insignificant; and the much simplified model of conceantrated combustion
is adequate for the analysis and comparison of the overall relative un-
conditional stability of such systems,

In Figure 44 there is a dotted line connecting the en.ds of the ny,, versus &,
curves for differenit . The lower branch of this dotted curve corresponds
to the configurations with combustion uniformly distributed from injector
end to x = £, = 2y. The upper branch curve corresponds to the configura-
tions with combustion uniformly distributed from x =1 - §, =2y — 1 to
the combustion chamber exit x = 1. Thus when £, ,=0, the lower
branch corresponds to concentrated combustion at the injector end and the
upper branch corresponds to concentrated combustion at the chamber exit.
The fact that the upper branch always gives a larger value of n,, for the
same extent of spatial spread of combustion means that the configuration
with more combustion distributed in the downstrecam end of the chamber
is likely to be more stable. This is primarily because the frequency of oscilla-
tions for minimum = is slightly below the corresponding organ pipe value.

So far we have only considered the cases in which the combustion is
uniformly distributed in a certain region. The next object is to investigate
the relative importance of the manner in which the combustion is distributed
in this region. Consider systems with @ given by:

for0 < x << &,

foré, < gl

with the positive exponential index j indicating the manner of combustion
distribution. When j == 1, this becomes the case of uniformiy distrituted
combustion as has been discussed in the previous example. When j > 1,
more of the combustion is shifted towards the tail end of the combustion
zone as compared with the uniformly distributed case. Likewise when
J < I more of the combustion is shifted towards the head end of the com-
bustion zene. In Figure 45, the computed values of n,,;, for the fundamental
mode are given for j == 0, 1, 1, 2, 3, 00 and plotted against the total extent
of spread &,. The case j = 0 corresponds to the configuration with com-
bustion concentrated at the injector end with a,, independent of £, When
J gradually increases, morc znd more combustion is shifted towards the
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k-]
3 other end x = £, and when j becomes very large, j = 00, all combustion

is concentrated at x = £, and the n,,, calculated for j = c0 corresponds to
that determined in connection with the simplified model of concentrated
combustion. The curves of ny, versus &, for different values of j are of
. similar shape and the transition of the curves from that of j = 0 to j ==
4 = is quite clear. The increase of ny, when &, reaches the node of the pressure
3 > oscillation becomes more significant for the cases with larger j. As has been
& indicated previously, this is physically clear because more combustion is
X carried to nodal regions where the amplitude of the pressure oscillation is
smaller, that is, where the capability of each propellant element in exciting
unstable oscillation is smaller.
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If the ny;, of the second mode is determined from equation (3.12.01)
and superposed on Figure 43, we find again that when j < 2-5 the 7, for the
second mode is always larger than the ny;, for the fundamental mode at
the same value of £,. Even for j = 3 the ny, for the second mode becomes
slightly lower than the n,;, for the furdamental mode only in the small
range of £, around &, = 0-7, and the smallest n,;, of all high frequency
modes is still given essentially by the ny;, of the fundamental mode. It
should be noticed that (x/£,)? profile is already quite flat when x/§ is less
- than, say, 3 and almost 50 per cent of the combustion is completed in the
§ narrow zone of 0-8 < x[&, << 1-0. The combustion is thus quite concentrated

toward £,. It is only when j is considerably larger than 3 that the ng,,
of the second mode plays its role in determining the smallest n,;, when &,
is in the nodal region of the fundamental mode. Even in this case, <o far as
the overall unconditional stability of all high frequency modes is concerned,
) all the other higher modes will still be unimportant.
3 In most of the practical cases, with combustion fairly uniformly distributed
. : over certain regions, only the fundamental mode is the important one in
Z - determaining the unconditional stability of the system.
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Now the integral term involving k in the numerator of equation (3.12.01)
will be considered. As has been observed previously %/#, is of the order of
Ql 7 o i}
unity and the integral divided by 7, i.e. | = : Z sin® wx’ dx’ is of the order
) Jo
of unity, and both factors of the integrand are positive. Thus this term

essentially constitutes an increase of the value of ng;,. This term represents
the damping due to the unsteady motion of the droplets. For illustrative
purposes a few points have been calculated with the following simplified
form of @,

iy = i, (1 — 4x)

for 0 << x <C %, where #,(xg) = 1i(xo) in the rest of the chamber, x, < x < 1,
i, is assumed to be the same as @ of the gas, i.e. #;(x) = 4(x). The constant
k is taken to be 1/20 in the present dimensionless scheme which corresponds
roughly to a penetration distance in still air of one quarter of the chamber
length. The mean gas velocity is taken for example:

a(x) = ay . /&, for0<x<é
a{x) == if; for§, <x<1

The ny, for- the fundamental mode obtained for the configurations with
&, =02 and §, = 0-5 shows a very small increase as compared to those
neglecting this damping term. The accuracy of the present calcufation
does not justify this correction which cannot be differentiated in the scale
of Figure 43 for the particular values of k¥ and #, selected. For extreme
conditions, the damping term due to the oscillation of the droplets may
have some effect.

3.13. Non-uNIFORMITY OF 7

The developments of the last three sections apply to the simplest case when
7 is uniform for the whole combustion chamber and of O{1). However, the
derivations of Section 3.08 were obtained under the more general assumption
that 7 is a function of x without limiting its magnitude. The only restriction
in Section 3.08 was the uniformity of ¥ among all propeliant clements
burning at a given station. It is not difficult to remove all these restrictions,
including the last one. However, the devclopments become much more
complicated, and explicit solutions for the eigenvalues are in general
impossible. In this section we will briefly indicate how the formulae are
medified, and will confine our discussion to a few points only.

As in Section 3.08, we can subdivide ail propellant elements that burn
at a given station x into fractions, each i~action possessing a well defined
value of 7. Thus if df represents the fraction considered, all elements
burning at x can be ordered in such a way that 7 increases steadily from its
mirimum value, T, corresponding to f = 0, to its maximum value Fjn,y,
corresponding to f=1. At a given station x, the sensitive time lags of
dif :rent propellant zlements, #(x,{) will be a monotonically increasing
fn tion of f. A fiaction df contributes to the total burning rate q a

don dq. Itis clear that the expression of dg/df divided by ¢, is given

by equations (3.08.16) and {3.08.17) derived previously, and is a function

cf x and f| because both 7(x, ) and &(x, {) are functions of x and f. ‘fhe last
143
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is connected to 7 by the relation corresponding to (3.08.04)

E T )
R— f a(x, f)=’("’ f)

&z, 1)
which can be alsc written as

x — E(x,f) = 4, (x, £)7(x, f) ....(3.13.01)
where 7, represenis each element burning at station x for the proper average
of i, durmg its sensitive time lag. In general, # can be different for
different propellant elements, even if they have the same sensitive time lag
#(x,f) and burn at x. In this last.case the value of #, us:d in the derivations
of Section 3.06 should be consider~d as a proper average value between
these different propellant elements.

The value of dq/df will thus consist of three terms, of which only the
first one, representing the timewise contribution to the burning rate, need
be retained, because the other two have only higher order effects on the
final results. This can be easily shown following the same procedure as
is given in Section 3.09. Integrating with respect to ffrom 0 to 1 we can write

— = nQ(x
P Q)
where @(x) is given by the generalized equation corresponding to (3.08.17):

0t = [ ar [ [2) HEED ] 8

= ) _ [P elEE O] ey g ] 92 gy
o 0 dy’

' Po
o ..{3.13.02)

In order to obtain the value of @¢9 to be inserted in equation (3.09.24) or
(3.10.04) one uses again the Oth iteration solution (3.09.19) or \3 10.02).

In both cases the expression for ¢(£) contains the quantity cos w3 which,
due to equation (3.13.01), can be written as

cos w$ = cos (wx — o, 7) ....(3.13.03)

Similarly the exponential factor of (3.10.02) for neutral oscillations can
be written as

H iw | % . .
&finer _ o flaee iaa, ....(3.13.04)

where i, stands for a proper mean value in the interval from £ to x. We
see that if 7 is O(l)and w is O(l) we can neglect the term wiiy 7, of O{M),
with respect to wx in equamr {3.13.03), ana our previous relation,
o8 = q:(x), leadi'ig to equation (5 08.19) i« perfectly jusnﬂcd If 7 is
0(1) but w is O(1/M) the exponent of the second factor of equation (3.13 04)
is O{M), so that within the proper order of approximatio: one can write

exp (zw “ i dx’ )= exp (t‘ J ] d:r) and the corresponding factor can
Jo 0
144
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be extracted out of the second integral of equation (3.13.02) and used as a
common factor for the whole integrand. However, in this case wi, 7 becomes
O(1) and cannot be neglected in equation (3.13.03). To be consistent, this
term should and can be included in the development of Section 3.10,
without introducing any difficulty. However, this has not beea done in
order to avoid the additicnal formal complication. Finally, if 7 is O(1/M)
the complete expressions (3.13.03) and (3.13.04) must be used. When
equation (3.13.02) is introduced into equation (3.09.24) or (3.10.04) and
the condition (3.09.21} is written explicitly, the problem of determining
the eigenvalues explicitly is found in general impossible, because 7 is now
contained in a complicated fashion and cannot be extracted as a simple
factor £ = n(l — ¢**) as was done in Sections 3.11 and 3.12. However,

one can still solve for n

n = (N, +iN)/(D, + iD)
of which both numerator and denominator are complex and depend in a
complicated way on w and #{x, f). Obviously if n must be real this splits

into two real equations
n=XN,D, = N,D,

The (numerical) solution of the equation .N,D; = N;D, with respect to
w for given #(x,f), and the following evaluation of » from the preceding
formula provide the two eigenvalues of 7 and w for the given 7(x,f). We
see that while in principle the problem is solved, the procedure is too long
and tedious to permit a general discussion of the results even qualitatively.

Let us consider the simple case when 7 is independent of x but is not
uniform for the various fractions, i.e. 7= 7(f) only. In addition if we
assume that both w and 7 are O(1). equation (3.13.02) becomes

_{ —xF ‘:‘p(x’)ﬂ !
Q(x) = (} — Ce™%) 3 N dx

with
1
Ce* = f e=#0 df
0

where both C and 7, arc real functions of A, £ and of the parameters
characterizing the distribution of the sensitive timc lags. For neutral
oscillations where A4 = 0, 2 = ® and 7, = §, and for any arbitrary but
general type of time lag distribution, both C and 4, are functions of the
frequencies of neutral oscillations and therefore can be considerably dif-
ferent for different modes of oscillation. While the method of determining
the eigenvalues of n and 4§, for different frequencies of neutral oscillations
has been found to be very convenient when C = 1 (corresponding te uniform
time lag for all propellant elements) and 4§, = constant, it becomes rather
complex when both C and §, depend an .

The two quantities C and §, are the same as those defined in Sections
2.08 and 3.05. It has been noted there that if the function #(f) — 7,, is anti-
symmetric with respect to the mass average 7,, = #(0-3) = (Fpax + Fiin)/2
the cfiective average 7. and mass average 7,, coincide and are constant
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3.13 ANALYSIS OF SCREAMING (LONGITUDINAL HIGH FREQUENCY INSTABILITY)

for a given system and therefore independent of the frequency of neutral
oscillation. As a result, the solution of the eigenvalue problem becomes
slightly simpler for systems with such antisymmetric distribution than
for those without. It is only slightly simpler because the magnification
factor C being in general a functior: of w47 = @(Fpux — Tmin) still depends
upon @ for a given type and extent of time lag distribution. Therefore we
shall for illustrative purposes consider first those systems in which the total
extent of time lag spread is so small that C is essentially constant when o
varies slightly in the neighbourhood of 7 and that the distribution of ¥ — 7,,
is antisymmetric about 7, Thus C can be taken as the constant evaluated
with @ = 7. As has been shown in Section 3.05, the magnification factor
C for neutral oscillations in systems with # = O(l) is always less than
unity and for systems with small time lag spread where C can be taken as
constant for a given mode, the magnitude of C is always close to but less
than unity.

Thus, following the 1dentical procedure as in Section 3.11, one finds the
following equation with both C and 9, constant

ay(l — Ce=iote) = (I, +il)[(J, + i) ....(3.13.05)

which is similar to equation (3.11.08) except for the constant factor C on
the left-hand side. If C =1 (uniform time iag for all elements), equation
(3.13.05) reduces exactly to equation (3.11.08). The quantities I and J
are still given by equation (3.11.09). Eliminating 6, from the two real
equations corresponding to equation (3.13.05) we obtain

n n\2 (1 —C) (41D J;+ID)
;-1-—.1—[-(-'!—1) yy . T T IJ .7 ....(3.13.06)
where
1 B+E
I—le,J,—i-I,Ji_

is the critical value of the interaction index when there is no time lag spread
(C=1). SinceC <1 for7=0(1), itisapparent that n > n, when there is
time lag spread. In other words, more excitation is required to maintain
neutral oscillation of any frequency in a given system with time lag
spread than without. Naturally, iy, > fymin3 in other words the system
with time lag spread is unconditionally more stable for any spatial distri-
bution of combustion.

Equation (3.13.06) also indicates that the ratio of nfn, increases with
decreasing C, as does figp[Myip. This means a larger stabilizing effect for a
larger spread of time lag. All these results agree with the results of Section
3.05 for the simple case of spatially concentrated combustion. As a matter
of fact equation (3.13.06) reduces after some manipulation to equation
(3.05.08} when I and J are evaluated for the concentrated combustion.

For the cases in which A7 = Fpax — T iS 00t sufficiently small, C must
be considered as a function of w even for small variations of « around
ar or its integral multiples. The eigenvalues 6 and @ can be determined
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for a given value of n and a given distribution of time lag following the
procedure analogous to the one uscd in reference 23. The calculation has
not been carried out but it can be expected to give essentially the same
qualitative results as to the effect of the spread of the sensitive time lag.
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DISCUSSION AND COMPARISON
WITH EXPERIMENT

4.01. GENERAL NOTIONS

In this chapter we shall look into the possibility of comparing the theoretical
results presented in the previous chapters with published experimental
findings. It has been brought out in Chapter 1 that, because of our meagre
knowledge concerning the physicochemical processes of combustion in a
liquid rocket chamber, any analytical approach to the problem must scart
with some hypothetical simple medel. No matter how rational the simple
model muy seem to be, the ultimate justification of the postulated simple
model lies in the qualitative, and possibly quantitative, agreement between
the theoretically predicted trends and the experimental findings. The
present theoretical treatments are concerned only with the problem of
incipient instabiiity, not with the properties of the fully develeped unstable
oscillations of large amplitude. On the other hand, the known available
experiments on unstable operation belong essentially to the domain of
fully developed instability, characterized by the fact that the amplitudes,
instead of undergoing steady amplification, stay in-average around a
certain level determined by non-linear effects.

Thus, even if the onset of instability is of a linear nature, as aisumed in
the theoretical treatment, the observed facts contain a strong non-linear
influence and one must not expect a close quantitative agreement between
theoretical predictions and experimnental results. A better situation would
result if one tried to detcrmine experimentally the stability boundary by
changing some well determined parameters of the system. However, this
determination has not yet been attempted, and would probably meet many
difficulties. One difficulty is that it is not easy to change one parameter at
a time in a rocket motor. For instance, the casiest way of varying the mixture
ratio in a bipropellant motor is by changing the injection pressure of one
of the two propellants. However, this change is accompanied by a change
in injection velocity of one of the propellants and thercfore a change in the
flow situation in the combustion chamber. The whole process of com-
bustion may be affected so that it would be impossible to isolate the effects
of the mixture ratio change alone. From this point of view, it would be
preferable to keep the injection pressures unaltered and change only the
area of the injection ports. But this solution would substantially increase the
complexity of the tests because it would require mechanical modifications
to the.injectors for every small change of mixture ratio. The same can be
said for changes in the chamber pressure which should not be obtained
through a simple change of injection pressure with fixed geometry, but should
rather be obtained through changes in geometry with fixed pressures, or
with pressure drops following an independently determined law.

Arother difficulty, common to many other processes involving combustion,
probably resides in the fact that chis kind of test is not exactly reproducible.
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GENERAL NOTIONS 4.01

As in other processes in which combustion plays an essential role, small
uncontrollable changes in local conditions or in the characteristics of the
system may produce considerable dispersion of the observéd results. For
instance, a system which ordinarily is stable may occasionally exhibit
instability without any plausible or controllable reason; and a system
usually unstable may have some stable runs. The conditions, of course, can
become more confused in an intermediate condition where it would be
nearly impossibie to determine the stability situation from a few runs. This
difficulty can in principle be solved, as in similar cases, only through a
statistical approach; but with rockets this statistical approach means a
considerable increase of the time and of the economic loads.

The statistical determination of the stability boundaries would be the
most effective way of checking the theoretical results, and also of showing
the possible cxistence of independent non-linear instabilities. Non-linear
phenomena may result in two kinds of effects. They may simply shift the
stability boundaries with respect to those pertaining to very small dis-
turbances and linear theory, with the result that the stable ranges may
shrink or expand when the amplitude of the initial disturbance increases.
On the other hand, they may introduce new regions of instability when the
amplitudes exceed certain levels. The first category of effects is relatively
uninteresting, since the corresponding conditions for stability can be obtained
continuously from the linear ones, and are likely to be affected by the
different parameters of the system in the way the linear theory predicts.
If only this category of effects were present, it would be sufficient to design
a motor with such parameters that it would operate in stable conditions
and sufficiently far away from the stability limits determined by linear
theory; this would be cnough to assure against instability even when dis-
turbances of sufficient amplitude to introduce non-linear effects are applied
to the system. The possible presence of new instability ranges for large
disturbances is a more scrious effect, and its possibility could be checked
through the experimental determination of the stability boundaries,
possibly with the introduction of controlled disturbances in an otherwise
smooth system.

We emphasize again that the fact that actual instabilities generally
operate in the non-lincar range does not mean that the reason for instability
cannot be cxplained by a linear theory. Actually, observation has often
shown large amplitude oscillations produced during a previously stable
run through the gradual amplification of small disturbances. Observations
of this kind cxist both for low frequency oscilla.ions®3t and for high frequency
oscillations®. One observes, not infrequently, a cyclic (though not periodic)
appearance and decay of these unstable ~onditions during 2 run. A be-
haviour of this type would be expected if the conditions of stability were
marginal and small changes in some parameters were determining the
transition from stability to instability and back}. In these cases it seems
logical to infer that the instability is of a lincar type. In the other cases,
in which the run is osciliatory from the start, no definite conclusion can be

+ Analogous cffects have been found in solid propellant rockets where, however, the
continuous change in the geometry of the propellant grain during opcration might be
responsible for the peculiar behaviourss,
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4,01 DISCUSSION AND COMPARISON WITH EXPERIMENT

reached, but nothing can be inferred against the linear explanation, because
the existence of the ignition transients may produce strong disturbances
at the beginuing of the operation that never decay completely if the system
is unstable.

The only possible test which would definitely indicate the presence of
non-linear instahility is the one already mentioned where a system is
triggered to instability by a strong disturbance (such as the transients of a
hard ignition), but remains stable if the disturbance level is low.

As already explained, the best test of the theoretical treatment, con-

stituted by the determination of the stability boundary, has not yet been
made. The only experiments available to date belong to the realm of fully
developed instability, to which the linear theory does not apply even when it
contains the essential explanation for the appearance of instability. Never-
5 : theless, in the absence of better tests, some of the data obtained from these
3 i ’ experiments may be compared with the theoretical results and some of the
: theoretical stability trends may be checked.
E - . One of the quantities that seems likely to be less influenced by non-linear
5 effects is the frequency of the oscillations. For instance if = shock wave of
plausible strength, instead of a wave of small amplitude, is travelling back
and forth in a combustion chamber, the propagation speed and the wave
propagation time change only by a few per cent, and the result is a change
in frequency of the same order?. This is true despite the considerable
change in the shape and the amplitude of the corresponding pressure and
velocity waves, Fortunately, the frequency is also the quantity easiest to
measure from pressure records or optical observations. For this reason
most of the comparisons between theory and experiments are based on
the values of the frequency.

In accordance with our theoretical treatment, we shall consider separately
the range of low frequencies and high frequencies. No fundamental dis-
agreement seems to exist int the world of rocket research about the definition
of the high frequency range, which is definitely connected, in agreement
with our theory, to the natural modes of oscillation of an acoustic chamber
obtained from the actual rocket chamber by replacing the nozzle with a
closed end. To the knowledge of the authors, there is also funcamental
agreement about the most probable cause for high frequency instability,
which is definitely attributed, in agreement with the idea first advanced
by the senior author3, to the interaction of pressure waves and burning
rates. It is true that this interaction is often visualized as being related to
shock waves, rather than continuous waves, but as already explained
previcusly the fact that shock waves can be generated progressively after a
period of amplification of continuous waves shows that the essence of the
phenomenon is independent of its non-linearity and only the quantitative
results may be more or less affected.

Some discrepancy is present, however, in the definition of tne low frequency
range. For practical values of the parameters, th. frequencies predicted by
the theories of chugging are below 100c¢/s. This is the range that we
attribute to low frequency oscillations in rockets of usual dimensions. Only
in extremely small rockets will the low frequency range extend 1o a frequency
as high as 200-300 ¢/s. Instabilities in this range have often been observed
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COMPARISON BETWEEN EXPERIMENTS AND THEORY-——CHUGGING 4,02

with results that substantiate the theoretical predictions (Section 4.02).
However, in their recent survey of the problem of rocket combustion
instability?, C. C. Ross and P. P. Dai1NER broadened the definition of
low frequency instability by including observed frequencies of the order of
300 cfs, and were forced to cenclude that the existing theories of low fra-
quency instability cannot expiain the ohserved phenomena. They alsc
attempted a diffcrent explanation for the observed frequency, an explanation
which can be definitely shown (Section 4.04) to be without correct physical
basis. The truth is, clearly, that instabilities with frequencies as high as
300 cfs can be inc ded neither in the low frequency type of instability, nor
in the high frequency type,-and that we have here a clear example of an
instability of the intermediate frequency type, such as those mentioned in
Section 1.10, for which no detailed theoretical treatment is as yet available.
The conclusion of Ross and Datner’s discussion that the predictions of the
present theories of chugging do not correspond to experimental observation,
with. the possible exception of a seldom observed type of instability which
thoy  alled ‘divergent’, is based on experiments that are not pertinent to the
problcin, as is proved by the fact that other sets of experiments® give, on
the contrary, a satisfactory justification of the fundamental correctness of
these theories.

4.02. CoMPARISON BETWEEN EXPERIMENTS AND THEORY—
Cruceing

The experimental information about chugging is too incompletc and
scattered to provide material for accurate comparisons with theory. The
most important sources of information are the recent work of M. BARR=RE
and A, MouTet34, the paper by A. O. TiscuLER and D. R. BELLMAN® and
that by C. C. Ross and P. P. DaATner®. It should be pointed out that with
the exception of reference 34, the experimental results are reported without
details of the test conditions so that it is impassible to determine how many
variables have been changed between different tests.

Time — Reference time = 1073 sec

Figire 46.  Derelopment of low frequency unstable oscillations,  (By courtesy of Office National
d"Etudes ¢t de Recherches Aéronautiques)

The following qualitative experimental observations are cither reported
by Barrere and Moutcet or can be inferred from their reported data:

1. Low frequency instability is developed from the progressive amplifi-
cation of small oscillations during a transition period; without any sub-
stantial change in frequency (Figure 46). )

2. Oscilations of flow rate and pressure in the feed lines are of the same
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4.02 DISCUSSION AND COMPARISON WITH EXPERIMENT

frequency as, but with a smaller fractional amplitude than, oscillations of
chamber pressure. :

3. The frequency of unstable oscillation increases when the characteristic
length of the motor, L*, is decreased (Figure 7).

- 72 ,
4 -
Thucretical curve o NOH A0 Tischien
o with n=2 Haptane \QR Beliman
L
S N (160,
8\ #0} & furfupy/\A.Moutet
€N
b3
g \\\\~ o NOsH l /1 Barrere
S - T Octane A. Meatet
$ .
3 %N
S Pe=W5 Kg/cmé
o
0 &0 ¥0 50 &0
Charoctaritfic length of motar L* ™

Figure 47. Fiequency of unstable oscillations versus characteristic chamber length i%,
(By courtesy of Office National d’Etudes et de Recherches Aéronautiques)
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Figure 48, Frequency of unstable oscillations versus chamber pressure. (By courtesy of Office
National d’Etudes et de Recherches Aéronautiques)

4. The frequency of unstable oscillation increases as the steady state
chamber pressure is increased (Figure 48).

5. The frequency of unstable oscillation is rather insensitive tc the
variation of the steady state mixture ratio. From the measured frequencies
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COMPARISON BETWEEN EXFERIMENTS AND THECRY—CHucema  4.02
one can derive a value for the interaction index n of a given propellant
combination by means of an approximate theoretical formula. The resulting
value of # is independent of the shape of the chamber, the value of L* and
the value of the inertia parameter J of the feeding system.

7. The calculated value of the interaction index n of a given propellant

combination shows a strong dependence on the chamber pressure; n
increases as p, increases.

8. When the chamber pressure is mcrcascd the stability of the motor
is improved.

9. The low frequency type of mstabxhty is found to be the predominating
type in liquid propellant rockets operating under low chamber pressures and
low injection pressures. Under relatively high chamber pressures, high
frequency modes of the acoustic type develop concurrently, and may
become preponderant in some cases,

Let us discuss these items in turn:

Item 1. This observation-is of fundamental impottance because it demon-
sirates that low frequency -oscilfations of largc ampiitude can develop
progressively from small amphtudm, thus proving the existence of the
linear type of instability analysed in this monograph. The so-called
‘divergent’ type of instability reported by Ross and Datnex?® might possibly
be an example of the same phenomenon.

Item 2. This observation has been made by many and was also specifically
mentioned by Ross and Datner®. This indicates the importance of the
fecding system characteristics to the low frequency stability of the rocket,
and the necessity of considering the complicated dynamics of the feeding
system. .

Items 3, 4 and 5. These behaviours have also been reported by Tischler
and- Bc:llmam35 The effect of L* on the frequency is clearly indicated by
the theory through thé corresponding change of residence time 6,. The
effect of chamber pressure p, can also be-derived from. the theory through
the decrease of the iime lag when the chamber pressure is increased. -

Item 6. These observations tend to substantiate the assumption that the
interaction index 2 is a characteristic property of the propellant com-
bination for a given injection pattern. However, not too much weight
shiould be attributed to this result, due to the reasons mentioned in-con-
nection «ith Item 7.

Item 7. This result might indicate that the interaction between the
combustion precess and the chamber oscillations is more intense and
complicated than that indicated by the law assumed in the moncgraph.
However, this result should not be considered too seriously. The value of n
-has in fact been derived by Barrere and Moutet, from the observed values
of the frequency and the known characteristics of the feeding system, with

the help of an equation which substantially coincides with equation {2.07.20)
with D = E = K = 0. Without discussing the validity of the approxi-
mations involved in neglecting the possible cffects of the imperfect rigidity
of the feeding system (E £ 0) and of the variation of temperature {K 5= 0),

we have to recall that equation (2.07.20) is valid only under the condition
of incipient instability. The fundamental difference between the conditions
of incipient instability and those of fully developed unstable oscillations,
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4.03 DISGUSSION AND COMPARISON WITH EXFERIMENT

where non-linear effects are certainly present, has been emphasized in
Section 4.01, Hence, the values of n as evaluated by Barrere and Mouiet
include errors from a number of possible sources due to the difference
between these two conditions, and cannot be taken as a satisfactory deter-
mination of n except i a very qualitative. way, More direct and precise
determination ol n, and of the otner parameters characterizing the time lag,
are discussed in Section 4.05.

Items 8 and 9. As explained in Section 1.1}, the time lag should con-
sistently decrease for increasing pressures. The effects observed here could
be interpreted as a simple consequence of this decrease. However, other
complicated effects of the chamber pressure, injection pressure, and changes
in recirculation pattern might be present.

4.03. CoMPARISON BETWEEN EXPERIMENTS AND THEORY—
SCREAMING -

Very useful information can be drawn from the experiments of K. BErRMAN
and S. H. CHENEY, Jr!®s 2, corroborated by those of H. ErLis and his
group®’. Both are based on the use of a slit window cylindrical chamber
and on simultancous pressure measurements. Both are concerned with
the longitudinal type of high frequency instability.

The main results of the works of Berman and Cheney can be summarized
as follows:

1. High frequency instability is characterized by the presen:= of pressure
waves travelling back and forth in the combustion chamber.

2. Under appropriate-conditions self-sustained pressure oscillations can
be observed in the combustion chamber, In certair cases, these oscillations
consist of continuous pressure waves; in other cases, they may be complicated
by the presence of shock waves. In the latter, the amplitudes are usually
larger.
3. Self-sustained oscillations conitaining shock waves are- preceded by a
transition stage during which only continuous waves are observed. During
this transition stage the amplitude of these waves increases until shock waves
are eventually established (Figure 49). -

20¢/s Timing morks,

Figure 49. Detelopment of high frequency unstable oscillations. (By courtesy of American Rocket
Seciety and the General Electric Compary of America)

4. With or without shock waves, the observed frequencies of self-sustained
oscillations in the high frequency range are closely associated with the
fundamental acoustic mode in the combustion chamber with both ends
closed (Figure 50). The effect of shock waves is a slight increase in frequency.
5. For self-sustained high frequency oscillations of relatively large ampli-
tude, a dark region is observed to commence from the region next to the
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COMPARISON BETWEEN EXPERIMENTS AND THEORY—SCREAMING 4.03

injector end whenever a pressure pulse} reaches there from downstream.
This dark region once produced moves downstieam with the gascs The
dark region indicates the presence - -of gases of lower tcmperaturc+. The
periodic occurrence of this dark region at a given position indicates-a local
temperature oscillation, and therefore a local entropy oscxllduon which in
fact must propagate at the speed-of the mass motion.

...&l::.
>

- 2 700
Cylindhical chomben fength .

Figure 50. Frequency of the unstable oscillations in the high frequency range as a fimction of
chamber length. (By courtesy of American Rocket Society and the-General Electric Company

K

6. By decreasing the convergent conical angle of the subsonic portion
of the nozzle, a relatively weak self-sustained o:cillation in an unstable
motor can be made to disappear and a selfsustzined strong oscillation
can be_made weaker.

7. High frequencv mstablhty ina ngcn motor assembly can be induced
by sufficiently increasing the length of the combustion chamber. This
change does not substantially affect the combustion zone. The _instability
becomes more severe when the chamber léngth is increased farther., Ata
chamber length below 10 inches (with chamber of 3 inches dixmeter) it
was very difficult to obtain high frequency mstablhty

3. ngh frequency instability can be induced in a given motor by lowering
the pressure in the propellant tank which results in a sin-ultancous décrease

1‘ The pressurc pulses need not be shock waves as was put {orth by Berman and Cheney.
The upstream moving continuous p'r{surc waves also result in periedic variations of the
luminosity near the injector end. c change in luminosity produced by a shock wave,
which i ;s! of considerably larger amplitude than a continuous wave, is of course more easily
obscr

1 wxrman_and Cheney conjectured that ‘thz non-luminous region represcnts a cool
mixturc, consisting of an off-ratio fucl-oxidizer compasition’: However, this is not necessarily
so. In view of the fact that the radiation intensity of 2 given gas increases very fast with its
absolute tcmperature, a slight decrease in gas temperature ¢an reduce its luminosity
significantly.
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4.04 DISCUSSION AND COMPARISON WITH EXPERIMENT

of the chamber pressure, the pressure drop across the injector, and the
flow rate. :

Items /-3 above confirm the basic postulates of the theory developed in
Chapter 3. Itemns 4, 6 and 7 verify the predictions (Sections 3.04 and 3.11).
‘Item 5 is in agreement with the theoretical prediction (Section 3.09) that an
entropy wave is produced whenever pressure oscillations are present (even
for the case of continuous waves), and that the entropy wave should be well
discernible whenever pressure waves are of sufficient magnitude. The
importance of such an entropy wave on the stability behaviour in the high
frequency range has. however, not yet been investigated either theoretically
or experimentally. About item 8 we observe that, as discussed in Section
4.01, a variation of pressure drop is accempanied by changes in many
other essential parameters such as chamber pressure, injection velocity,
time lags, etc. According to the theory, the variation of any of these para-
meters could justify the observed trend. Therefore, no precise conciusion
about causes and effects can be formulated. .

With so much discussion about Berman and Cheney’s work, we shall now
turn our attention to the work of Ellis and his associates??. The following
observations can be obtained from their report:

1. The measured instantaneous chamber pressure distribution along the
chamber length shows that, in the case of high frequency instability, pressure
waves propagating both in the upstream and in the downstream directions
are significant, but in the case of low frequency instability the non-uniformity
of chamber pressure produced by pressure waves is relatively insignificant.

2. The frequency of unstable oscillations in the high frequency range
varies inve.sely with the chamber length.

3. Simultareous optical determinations of velocity in the chamber and
pressure measurements at corresponding stations give consistent results in
both phase and frequency.

4. Simultancous pressir¢ measurements in the chamber, and optical
measurements of the cxhaust shock pattern for low frequency pressure
oscillations, give consistent results. The observations of Ellis and his group
substantiate Berman and Cheney’s results which are mostly based on optical
measurements of velocity.

Finally, it has been mentioned in Scction 1.08 that modes of osciliation
other than purely longitudinal may be expected to exhibit instability.
This s confirmed by exneriments reported by Ress and Datner®. The
frequencies of the observed unstable pressure oscillations in these tests,
when the length to diamcter ratio of the combustion chamber is less than
three, are in good agreement with the frequencies of the ‘sloshing’ mode in
the combustion chamber as calculated from acoustic theory.

4.04. INTERMEDIATE FREQUENCIES

We have pointed out in Section 4.01 that the explanation advanced by Ross
and Datner to explain the frequencies in the intermediate range encountered
during certain tests, cannot stai.d the rigour of scientific criticisin. These
authors have actually suggested the identification of the ohserved frequency
of pressure oscillation in the operating rocket with the resonant fiequency
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INTERMEDIATE FREQUENCIES ] 4.04

of the same rocket in no-flow conditions, when it oscillates as a Helmholtz
cavity resonator.

The classical Helmholtz resonator is substantially constituted of a chamber
of comparable dimensions in all directions with an opening of relatively
small dirmeter and length. The accumulations of mass, and the time re-
quired for the wave propagation in the opening can be neglected. Since
the diameter of the opening is also small, the rates of variation of pressure
in the chambe: are small and the wave propagation effects can be neglected.
These ave the basis for the Helmholiz calculations. We see immediately
that these calculations can apply to a rocket chamber without flow only
when the nozzle is small in comparison with the chamber. When, however,
the size of the nozzle is comparable with that of the chamber, or even the
nozzle length is considerably larger than the chamber length, it is quite
possible that the wave propagation time in such 2 long system cannot be
ignored (even if it could be considered negligible for the chamber alone).
Furthermore, if the throat diameter is comparable with that of the chamber,

. the pressure variation can be quite fast and both of the origiral assumptions

about Helmholtz resonators are no longer valid. Since the geometry of
the chamber-nozzle combination of conventional rockets is of this type,
the Helmholtz calculation is not valid, 1. ELias and R. Gorpon?®, on the
suggestion of Dr von Kérmén, devised a miethod to overcome this difficulty.
Their analysis is still for the no-flow condition, corresponding to rockets
under non-operating conditions. This method of Elias and Gerdon was
used by Ross and Datner to determine analytically the acoustic frequencies
of cavity resonators for purposes of comparison with experimentally deter-
mined frequencies of unstable oscillations in operating rockets of the same
geometry., .

It is important to observe, as Elias and Gordon themselves have ncticed,
that the computed frequencies under no-flow conditions are quite close to
those of the organ-pipe oscillations in a constant area duct of the same total
length as the chamber-nozzle combination with one closed end and one
open end. The total length, consisting of the chamber length plus the length
oi the convergent and divergent portions of the nozzle, therefore, corresponds
to approximately one quarter wavelength. This result of Elias and Gordon’s
work simply means that any change of cross section at any intermediate
longitudinal station is not very important, and the natural frequency is
essentially determined by the total length of the gas column. Elias and
Gordon have stressed the fact that their calcuiations are for non-operating
rockets only, and that certain factors, including supersoni~ outflow, should
be considered in extending their calculations to operating conditions. The
following simple consideration will immediately reveal to what extent
Elias and Gordon’s estimate of the acoustic frequency must be corrected,
when the flow ir the nozzle is increased from zero to the value corresponding
to supereritical flow (when supersonic velocities are established in the diver-
gent part of the nozzle).

Ar important characteristic of supersonic flow fields is that a small
disturbance introduced at a given point can influence the flow field only in
thedownstream nappe of the Mach cone of this point. The flow field upstream
of this Mach cone wili not ‘know’ whether a disturbance is introduced or
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4.04 DISCUSSION AND COMPARISON WITH EXPERIMENT

not. ais is because of the fact that a small disturbance is propagated in
all directions with the local speed of sound relative to the mass motion.
When the speed of mass motion is greater than the speed of sound,
any upstrcam directed signal will be washea downstream of the point of
initial disturbance. In the case of no-flow, the boundary condition at the
exit of the nozzle (which can be approximately expressed by the constancy
of the local pressure) will influence the acoustic oscillations inside the cavity.
But in the supercritical case with supersonic outflow, the conditions at the
exit cannot influence the acoustic oscillations in the cavity in any way.
Moreover, the entire divergent portion of the de Laval nozzle where the
flow is supersonic has nothing to do with the acoustic oscillations in the
cavity so long as there remains a sonic region somewhere in the vicinity of
the throat during the oscillation. Accordingly, when the rocket is operating,
the length of the gas column of the divergent portion of the nozzle must be
discounted in the calculation of the natural frequency of the acoustic
oscillations.

This is still not the whole story. Because of the absence of any reflected
waves from the supersonic region, two important things happen. The
first is that the boundary condition at the sonic throat is not the same as
at the open end of a classical organ pipe. There is no reflected wave from
downstream to compensate the incoming pressure wave and maintain a
constant local pressure (o density, in the case of isentropic oscillation).
The local specific acoustic admittance ratio (»d), at the sonic ‘hroat is
not infinite (as it is for the open end of an organ pip2) but i, - lefinite
function (Appendix B) of the ratio 3 of the frequency .- oscillation to the
local velocity gradient, ie. § == 2/{da/dx),

v\ _ 2y—1+p, . 3—;
(3)+‘ ey R ey

The modulus of tt “s ratio is always less than unity. Thus the condition at
the sonic throat is not very different from that at a closed end (corresponding
to [0 = 0). Only the reflection from the sonic throat is weaker and
is displaced in phase. The second factor is that the convergence of the walls
in the convergent portion produces reflections analogous to those at a closed
end even before the waves reach the sonic throat. Thus the entire convergent
duct with sonic outflow behaves more like a closed end than like an open
end. The specific admittance ratio (¥/4) at the entrance of the nozzle can
be determined for specific shapes of the convergent nozzle as described in
Appendix B.

As a result of this situation, a goed approximation in estimating the
frequencies of the characteristic cscillations with the rocket in operating
conditions can be obtained by considering an organ pipe with both ends
closed and somewhat longer than the chamber length. This is shown better
by the analysis of Chapter 3 where the frequendics of the unstable oscillations
are found in general slightly lower than the organ pipe modes in the chamber
with closed ends. The difference depends on the magnitude of x4, which
is not only a function of the geometry of the nozzle but also of the frequency
of the oscillation under consideration.
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INTERMEDIATF FREQUENCIES . 4.04

The equivalent length of an organ pipe with closed ends is schemaiically
shown in Figure 51 for rockets both in noa-operating conditions (a) and in
operating conditions (b). We recognize from the figure that the equivalent
length for case (b) is around one fourth of the equivalent length for case (a).
It is thus apparent that with chambers similar to those considered by Elias
and Gordon, and by Ross and Datner, a frequency of 300 ¢fs in non-operating

Eguivalent chsed ends organ pipg-—-—-
|

y 2L gty !
Pt R e |
- W——
@ : Ao Flow %
_._.__J(‘:!._\_-_.._-_........‘..._a
e ! > :
L " Zs@er

§ !
(v | 3 —+—=Divergent port 3f° nozzle
AT SN | ineffective with
"= V1S sypercritical Flow

o Lsup ;-—

Figure 51, Eguicalent organ pipe len‘gth Jfor rockets under operating
and non-operating” conditions

conditions corresponds to a frequency of the order of 1200 c/s in operating
conditions and coincides with the fundamental organ-pipe mode. The
shift from the one to the other frequency would take place conti..uously if
the flow was gradually brought froin zero to its critical value. The agrec-
meut between the calculated resonant cavity frequency with no flow and
the frequency of oscillation in the operating rocket mentioned by Ross and
Datner cannot be considered as anything except mere coincidence, It can
be said with assurance that if other tests on the same rocket had been con-
ducted with the divergent cone of the nozzle mostly cut off, unstable oscilla-
tions of the same intermediate frequency would still be observed there, but
the method of Elias and Gordon would predict a considerably different
frequency. Therefore, the justif.~aiion .or the observed intermediate range
of unstable frequencies cannot be found in the theory of resonant cavities,
but in some more fundamental mechanism. Such a fundamental mechanism
has already been inentioned briefly in Section 1.10, and is substantiated by
the experiments of Berman and Cheneyl®8, Figure 52 shows schematically
the principle involved. The space lag of all propellant elements is assumed
t be the same; thercfore the combustion takes place at a definite station
(combustion front). At a certain instant, an upstream moving pressure
pulse reaches the injector face, is reflected and attenuated by its own course.
The effect of the pressure pulse on the injection rates of the two propellants
is in general different due to the different response times of the two injection
systems. An off-ratio mixture is thus produced, travels downstream and,
after the total time lag 7, has elapsed, burns as it reaches the combustion
front. An entropy pulse (defect or excess) is thus created by the combustion
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4.05 DISCUSSION AND COMPARISON WITH EXPERIMENT

of the off-ratio mixture. After it has been carried downstream by the motion
of the gas, the entropy pulse penetrates the convergent portion of the nozzle
and generates a new pressure pulse which propagates upstreara toward
the injector face. If this pressure pulse is sufficiently strong, the conditions
for self-amplification and instability are created. It is easily seen that the
period of the cycle is approximately equal to the sum of () the combustion

() I + Period
i l]é'@/ time ‘_7bfa/ time
g
T
]
combstion |
—

3

Axlal distance from inf sfor race x

f Time ¢
(b)
Enfrogy ware
Time —o \ _Refected pressure pulse Nezzle end

l-——-ﬁmelay Injector

Figure 52, (a) Schematic diagram fo- the successive processes during a period of unstable

oscillation in the unsteady frequency range; (b} radiation streak photograph shocing low

Jrequency type instability obtained with an assembly consisting of a conventional imping-

ing head, a 10-inch long motor body and a 41° convergent angle nozzle. Frequency of
oscillation was about 240 cfs. (By courtesy of the General Electsic Company of America)

time lag, (2) the time for propagation of the entropy wave from the com-
bustion front to the nozzle, and (3) the time for propagation of the pressure
pulse from the nozzle to the injector face. Berman and Cheney!% made a
rough cstimate of the frequency, as haz just been explained, and found
that the predicted and the measured values of the frequency are in agree-
ment. A photograph is quoted from reference 183 and corresponding pro-
cesses are marked on the photograph and the schematic diagram, Figure 52.
A careful analysis of the stability conditions for oscillations in this inter-
mediate frequency range is still to be developed.

4.05. MEASUREMENTS OF THE TiME La:

The time lag between the injection and the production of bucrt gases, and
its sensitivity to the chamber conditions are the fundamental causes of the
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MEASUREMENTS OF THE TIME LAG 4.05

kinds of instability discussed by the theories of the present monograph.
Instead of justifying these theories by comparison with experimental resuits
on unstable rockets, one can pursue the more fundamental approach of
checking the properties of the time lag through a direct measure of its
duration and of its dependence on the chamber conditions, that is, with the
symbols used in this monograph, of the values of 7 and a.

The difficuitics of measuring these quantities lie not only in the require-
ment of accurate and reliable instrumentation, but also in the fact that the
proper value of the time lag to be measured is the average of the tiine lags
of different propellant elements. This has been made clear by the develop-
ments of Sections 2.08 and 3.13. Thus the technique of the ‘pulse’ which
has been suggested and applied does not appear satisfactory, except for
very rough evaluations. If a pulse is introduced in the injection rate, a
pressure pulse will appear in the chamber pressure at a later time. Assuming
that the beginning of the two pulses is sharply defined, the corresponding
time interval represents the minimum value of the time lag. However,
there is no way of measuring the maximum value of the time lag, because the
pressure pulse does not end at the instant the burning rate has dropped
again to normal, but extends beyond this instant through a kind of relaxation
process (Figure 53).

In Figure 53(a), the chamber pressure p, response, to a step increase in
feed line pressure $,, would enable us to determine 7, if the response of
b. is sharply defined initially. In Figure 53(b), the square pulse in feed line
pressure could, in the ideal case, yield both 7y, and Fy,y if the turning
points of g, response were sharply defined. Figure 53(c) represents a typical
pulse we can put in a feed line and the typical response of chamber pressure
which is smeared out over a considerable range; and here it is difficult to
obtain 7, and impossible to get 7,,,;. In other words, even if the minimum
and maximum time lag coincide, and the injection rate pulse is-of negligible
duration, the pressure pulse has a tail which makes it impossible to measure
the actual value of the maximum time lag. Therefore, it is impossible to
cbtain accurately, from the pulse method, the proper average value of the
time lag, even when the chamber pressure pulses are sharply defined. The
situation is made worse by the absence of sharp definition of the pulses due
to the unavoidable roughness of combustion.

A more rational method!? consists of the production of sustained sinu-
soidal modulation of the injection rate, which produces a corresponding
sustained oscillation of the chamber pressure. The amplitude and phase
relations between the two oscillations {or, synthetically, the transfer function
of the particular system under consideration) is a complicated function of
the geometry, chamber, nozzle, frequency, residence time, time lag, inter-
action index and so on. The functional relationship relating the transfer
function to these quantities is provided by the theoretical formulations of
previous chapters. In principle it is possible, by performing the tests in a
sufficient range of frequencies, to derive the values of 7, 7, #, and the resi-
dence time 0,.

Preliminary measurements on a monopropellant motor have already been
made with encouraging results. The accuracy of the instrumentation was
not yet sufficient for the determination of the four mentioned unknowns;
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4.05 DISCUSSON AND COMPARISON WITH EXPERIMENT

but the total time lag and the residence time have been obtained. Figure 54
shows the results for the total time lag at different pressure levels. The
scatter of the results is too large in these experiments to obtain an exact

Inpaction rofe
Chamber pressurep,
® ~——- ———
o B e
Time
)
Tnax
® 4’”"/_—.

= Trmin —°| Time

m;
# T i
Q
? e N
e 7. o
“ma Time
Figure 53. Schematic diagram of the response of chamber pressure to a
Jfeed line pressure perturbation
© 10, T
0 Frequency ~100 ¢fs
E ° Frequency ~ 50 ¢fs
§
5 3
L5 N\
& ) .
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33 -
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Mo chombar pressure Fo 10200 int{obe)
Figure 54. Preliminary data on the steady state total time lag as a function
of meun chamber pressure

definition of the dependence of the steady state time lag on pressure, but
the general trend shows an evident decrease, in agreement with the dis-
cussions of Chapter 1. It is hoped that more «ctailed experimental informa-
tion on the time lag and the related quantities will soon be availabie.
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APPENDIX A

ANALYTICAL NATURE AND METHODS OF
SOLUTIONS OF EQUATION (2.03.02)

THE equation of mass balance in the combustion chamber and the equation
of the dynamics of the feeding system can be reduced by climination to a
single ordinary linear differential equation (2.03.02) involving a retarded

variable of the form
L[g(z)] = Le[g(z — 8)]

where L; and L, are polynomials of the ordinary differential operator
d/dz with cocfficients independent of z. The degrees of the polynomials
are determined by the nature of the feeding system dynamics. Particular
forms of equation (A.01) have been discussed by many authors®-3!, Equa-
tion (A.01) differs from an ordinary differential equation in the fact that
the operator Ly operates on the dependent variable ¢ as a function of the
retarded independent variable z — § instead of the independent variable z.
If & is constant and if ¢(z — &) can be expanded into a Taylor series about z,
equation (A.01) will stand as an ordinary differential equation of infinite
order with constant coefficients. This transcendental equation will therefore
admit an infinite number of solutions of exponential type ¢% where s is a root
of the characteristic equation of the ordinary differential equation and is
in general a complex quantity. The characteristic equation is given as

f(s) =Ly(s) —e®Ls) =0 ... (A.02)

Since the coefficients in the operators L, and L, are real, the infinite number
of roots s of the characteristic equation must exist as complex conjugaie
pairs. Each complex conjugate pair of s leads to two exponential solutions
which combine to form an oscillatory solution with varying amplitude.
The general solution of equation (A.01) will be a linear combination of an
infinite number of oscillatory solutions having amplitudes which will
cither grow or die out exponentially; only in rare circumstances will the
amplitude remain constant. The imaginary part of the complex quantity s
then represents the angular frequency, and the real part, the amplification
coefficient of the particular oscillatory mode. The stability of a ferdback
system governed by equation (A.01) requires simply that no root s of the
characteristic equation (A.02) shall have a positive real part. In other
words, the function f (s) has no 0’s in the right half of the complex plane
with positive real part. It should be noted, however, that this stability
criterion is a sufficient cendition (for the system to be stable) if and only if
the arbitrary disturbance introduced into the system can be resolved into a
sum of the oscillatory components as arc dctermined by the infinite number
of roots of the characteristic equation (A.02). The present elementary
approach does indicate that, in determining the constants in the general
solution, we ne=d an infinitc number of initial values corresponding, for
instance, to the specification of the initial disturbance ¢(z) during the
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interval —0 < z < 0. But there is no indication that the infinitc number
of exponential solutions will form a complete set, the lirear combination of
which can represent arbitrary initial disturbance functions. Furthermore
the assumption that ¢(z — 8) can be expanded into a Taylor series about
z is rather restrictive as to the applicability of the foregoing elementary
considerations.

A somewhat more elegant mathematical approach using Laplace trans-
forms is directly suggesied by the presence of the retarded variable, which
is the only source of difficulty in equation (A.01), because the retarded
variable is removed by the Laplace transform. Let us define the Laplace
transform of the dependent variable ¢(z)

bs) = J- ¢~ g(z) dz ... (A03)
0

whe:e s is an arbitrary complex quantity being used as an independent
variable of the transform. it is rather difficult to trace the physical meaning
of the transformm @ ana the variabie s from thc mathematical definition of
the transform when ¢(z) is defined by equations much more complicated
than equation (A.01). In the present case if we multiply equation (A.01)
by e~** dz, integrate from 0 to 00 and introduce the initial conditions, we
have after manipulation,

) 0
D(s) . [Ly(s) — €70 Ly(s)] = Fy{s) — e Ly(s) [_dc'"'(p(z') dz’
) ... .(A02)

where F,(s) is a new polynomial of s, the cocfficients of which depend on
¢(0), p(—9) and the cocflicients of L,(s) and L,(s). The transform will
exist if @(z) is sectionally continuous and satisfies certain conditions at
2 =0 and z = o0. These conditions will in general be satisfied by ¢(z) in
physical problems which may not possess a Taylor series expansion.

From equation {A.04) the Laplace transform ®{s) of ¢(2) is easily found.
The function ¢(z) can then he obtained using Mellin’s inverse transform
theorem by evaluating the following integral

0
( Fi(s) — ™ Ly(s) ( e @(2') dz’
— J-s - -

o(z) =1, L — e L) e?ds ....(A.05)
over the contour I' enclosing all the poles of the integrand. This contour
: integral can be evaiuated by the use of the theorem of residues. It is inter-
csting to note that the integral has no poles other than those introduced by
- the 0’s of the denominator. Let s, be one of the 0’s, then there is a term
’ in ¢(z) of the type ¢,e, where ¢, is a constant depending on the initial
disturbance, the operators L, and L, and the value of 5,. The function
@(z) is thus given as

@lz) = 2 cen ... .(A.06)

- n=0

where s, satisfies equation (A.02). This result, cquation (A.06), is identical
with, but more general than, the one obtained previously based on ele-
mentary considerations. The physical meaning of the transformation
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variable s can thus be inferred. The imaginary part represents the angular
frequency while the real part represents the amplification coefficient.

The stability of a feedback system represented by equation (A.01) can
be determined in general by investigating the 0’s of the function f (s) as
given by equation (A.02). A sufficient stability criterion is that no 0’s of
f (s) exist in the right half of the complex s plane.

We are interested in two types of oractical problems. The first is to
determine whether a given system with known numerical constants is stable
or unstable. The other problem is to investigaw the qualitative tiends of
the stability behaviour of a certain type of system when various parameters
are changed. The first problem is concerned with the determination of the
stability of a given system before it is built. The second problem is intended
to supply information to the designer on how to design a stable system and
how to modify a given unstable system to make it stable. In the first prob-
lem, that is, when we are analysing a given system, the function f (s) =
L,(s) — e~®L,(s) involves only numerical coefficients. Thus we can use
Cauchy’s theorem with advantage. The theorem states:

‘Iff (s) is analytic inside a given domain D bounded by a contour C except
for a finite number of poles in the domain, then when s traces the contour €
in a clockwise direction, the vecior representing f (s) in a complex plane will
rotate about the origin, and the number of complete clockwise revolutions
that f (s) makes is equal to the difference between the number of 0’s and
the number of poles of f (s) in the domain D’.

For a stability investigation, the domain D is the right half of the complex
s plane and the contour Cis conveniently chosen as consisting of the imaginary
axis and an infinitely large semicircle in the right haif plane connecting 4-ic0
as shown in Figure 55. The plot of f (s) in the complex plane is known as the
Nyquist diagram. The sum of the number of complete clockwise turns of
the Nyquist diagram about the origin and the number of poles of f (s) in the
domain is equal to the number of 0’s of f(s) in D. If the system is to be
stal! , the Nyquist diagram must make as many complete counterclockwise
tw1 s about the origin as there are poles of f (s) in D. If in addition f (s) is
analytic everywhere inside D, as for the function f (s) defined by equation
(A.02), the stability criterion is that the Nyquist diagram of f (s) should not
encircle the origin.

The Nyquist diagram of f (s) is considerably complicated by the presence
of the factor e~* introduced by the retarded variable. For example, when
s is purely imaginary, the real and imaginary parts of e—* are periodic
and 90° out of phase. Thus ¢~# introduces a number of loops in the Nyquist
diagram and makes it necessary, in the numerical evaluation of f (s), to take
small steps of 2 in order to have a reasonably accurate plot. M. SaTcue3!
proposed an ingenious method to avoid these locps in problems involving a
retarded variable. Divide equation (A.02) by L,(s) and define

G(s) =e®—g(s)=0 oo (A7)

with g (s) = L,(s)[L,(s), where we have introduced artificially a finite
number of poles in the function G(s) corresponding to the 0's of Ly(s).
The stability criterion is still the same as it was before, that is, no 0’s of
G(s) may exist in the domain D. Instcad of making a vector plot of G(s),
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we interpret the vector G(s) as the difference of the vector e=** and the
vector g (s), that is, G(s) is a vector with vertex lying inside or on the unit
circle of e~*, with its tail or the corresponding point of the vector diagram
of g (s) (Figure 56). A system is stable if the vecior G{s) makes as many
complete counterclockwise revolutions when s traces the ccntour £ as there
are 0’s of L,(s) in the domain D. The number of 0’s of Ly(s) in D can be
determined by mzking a Nyquist diagram for L,(s) separatelv. The deter-
mination of the stability of a given system therefore consists of tracing two °
. Nyquist diagrams for the two functions g {s) = L,(s)/Ls(s) and Ly(s). We
' shall call the combination of the Nyquist diagram for (he function
g \8) = Ly(s)[Ly(s) and of the unit civcle for e~ the Satche diagram.

#ioo

o BhEn A

PNy

AR S

+goo

3 - B

6(s;)

- ioo -i -]
Figure 55. Schematic diagram of Figure 56, Schematic Satcke dicgrain
integration contour

An examination of the Satche diagram and of the associated Nyquist diagram
for L,(s) will reveal whether the system is stable.

In the second problem mentioned, that is, when we are interested in
determining the qualitative trenas of the stability behaviour as a function
of the cunstants of combustion 7, 7 and of the parameters of a certain type
of system, the graphical method usiny the Satche and Nyquist diagrams
becomes undesirable. The analytical treatment of equation (A.02) is more
advantageous. We are primarily interested in deterinining the stability
boundary {(or neutral boundary) of a certain type of system. The stability
boundary for a given oscillatory mode is expressed by a relation between
the combustion constants n, 7 and the parameters of the system such that
the oscillatory mode in questien is neither stable nor unstable, in other
words, the real part of s vanishes for that mode. The stability boundary
«ivides the space formed by the combustion constants and the parameters
of the given type of system into different domains in wwhich the system is
stable on one side of the boundary and unstable on the other side. If, by
varying a certain parameter of the system, the stability boundary of a given
mode is shifted in such a way that the unstable domain is diminished, this
variation of the particular constant or parameter is stabilizing in so far as
that oscillatory mode is concerned.
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SOLUTIONS OF EQUATION (Z.03.0Z) APP, A

The stability Loundary is defined by equatisn (A.02) when s = iw where
w s the frequency of the neutral oscillation. By separating the real and
imaginary parts, we obtain two real equatxons from which we can eliminate
w; the eliminant is the equation of the stability boundary. From another
point of view, the two real equations represent the stability boundary
parametric form. This point of view is important because the elimination
of w cannot be carried out explicitly with ease except when L,(s) and L,(s)
are in greatly simplified form. It should be noted that the parameters of
the feeding system dynamics are respensible for most ¢f the complications
of the operators L, and L,. It is likelv that the effect of certain important
parameters characterizing the combusiion chamber and the processes of
combustion on the qualitative stability behaviour should not be funda-
mentally changed by the complication of the feeding system. The analytical
study of certain simple feeding system configurations can be expected to
give a number of important results.

[ e




APPENDIX B

SUPERCRITICAL GASEOUS DISCHARGE WITH
HIGH FREQUENCY OSCILLATIONS

THE problem of the behaviour of a nozzle working in the supercritical
range in oscillatory conditions was first treated by H. S. Tsirn®. He
investigated the case in which the oscillations in the incoming flow are
. isothermal, and therefore non-isentropic, and determined the departures
from the steady state hehaviour in the range of very low frequencies, as well
as the asymptotic response to very high frequencies. The treatmenc was
extended by L. Crocco® with the purpose of including the non-isothermal
case and especially of determining the nozzle behaviour in the inter-
= mediate range of frequencies. In this appendix, dccount is given of these
- : developments and of a few other unpublished results. It should be noted
. that all symbols in this appendix represent dimensional quantitics uniess
otherwise stated.
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B.0Ol. Tue EqQuaTions
Calling p, p and u the pressure, density and velocity in steady stai., com-
pletely determined by the shape of the nozzle, and p 4+ §', p 4 p' and
u + o, the corresponding value- in unsteady conditions, and assuming the
perturbations p’, p’ and u’ to be small compared with the unperturbed
quantities, Tsien has written the continuity and momentum equations in the
following form, retaining only the first order terms in the perturbations:

a(p e (p o
Il i KT Kl e R
m(p) , uax(pTu) 0 ....(B.O)
a ul pl ul dll ) a ul) p, dll p a [J’

ali)+ G+ ra () Sa-5xl) oo
x being the distancc along the nozzle and ¢ the time. The third 2quation
between the dependent variables p’[p, p'/p and u’u is the energy equation or,
more simply, the equation expressing the constancy of entropy of any fluid
mass when we follow its motion:

3 a\s (3. a\(F ¢
(a-t-;-u-a—t);:::(?a-t—:-ué;)(-j)-—y-;): ....(3.03)

where §’ is the entropy perturbation, ¢, is the constant volume specific heat,
;. : and y the adiabatic index.

5 ) In these equations u, du/dx and p/pu are te be considered knewn functions
of ¥ determined by the nozzie shape. Due to the linearity of the three
. equatic .1 above, the harmonic form of oscillatory time dependence can be
N chosen and, using the complex representation, the dependent variables
. can be written as:

Pt = @lx)e®;  p'lp = a(x)c™; u'fu=p(x)! ... .(B.04)
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THE EQUATIONS APP. B

where o is the angular frequency of neutral oscillation and ¢, # and » are
complex functions of x ulone}. At the nozzle entrance, ¥ = x,, the three
functions have certain values ¢,, 6, and »,. The problem in which we are
interested is to find the distributions of ¢, ¢ and » along the nozzle, but
especially to determine the relations between ¢,, o, and »,. These relations
will in fact constitute the boundary conditicns to be applied to the rest of
the flow system as a result of the presence of the nozzle. Observe that if
the quantities (B.04) are interpreted as rotating vectors of which only the
projection on the rea! axis has a physical meaning, the quantities ¢, ¢ and »
will represent fixed vectors, the magnitude of which is the amplitude of the
oscillation of the corresponding quantities. The angle between any two
such vectors represents the corresponding phase shift.
Equation (B.03) is immediately integrated as

S p ’ 1 = d;
¢ B £ z, U
the arbitrary function f being in general determined by the known time

dependence of the entropy at x = x,. For the exponential time dependence
assumed in equations (B.04) we chtain

¢{x) — ya(x) = eexp (—iw sz—:) ....{B.03)

It

where the constant & represents the amplitude of the entropy oscillation
divided by ¢,. With the assumption (B.04) and the relation: {B.05) equations
(B.01) and (B.02) are reduced ts the foliowing system of ordinary differential
equations it » and o ’

d d ]
u-d—:-i-uag—é-iwo:ﬁ
dv 2de du du
il e o ——— —_— 7 —fy — 1) — [ ....{(B.
“ G udx+(2dx+"")” =g (B.06)
de . 3) [ . r
—-e(a;-i-w);u—z' exp \- lw‘,¢—u.) ‘

in which ¢ is the velocity of sound. It is easily scen that these equations
present a singularity at ¥ ==¢, that is, at the sonic throat, where therefore
only ore family of solutions remains regular.

Equations (B.06) could be solved numerically for any specified nozzle
shape, However, an analytical solution can be obtaucd if, following
Tsien  we confine our attention to nozzles in which u increases Yinearly
with x in the subsonic portion of the nozzle. This condition it ot too
restrictive, since many actual nozzles have practically a linea velocity

1 The definition of these quantitics is somewhat different from that of the same symbels in
Chapter 3. The difference is especially important for +,
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distribution near the sonic throat which is the region where an analytical
solution is particularly useful}. We take therefore:

L= t= ....(B.OT)

in which ¢, represents the so-called critical sound speed attained at the throat
where x = x,, I, = (x4 — x,)[L represents the ratio of the length of the
subsonic portion of the nozzle to the chamber length L. The subscript ,
is used to denote conditions at the nozzle thrcat.

Moreover, we take, with Tsien, a new independent variabic:

z = (xfxy)? = (ufey)? ... (B.UB)
in terms of which we have:

@ =&}y + 1 — iy — 1)z}

rdx e oo 2 ....(B.09)
—_— = — jog —

Jr, u 2c, gze

where 2z, represents the assigned value of z at the nozzle entrance; and
we define a reduced angular frequency:

50 _ Okl ... (B.10)

Cy Ce — U,

Introducing equations (B.07) and (B.10) into ejuations (B.06) and
eliminating dr/dx, we find

@+ifp=(—1+iflo— G+ (0 -9
—ip/2
te (;} [l —iff2y. (y—1) +iBf2v . (p+ 1) . 1fe]... . (B.11)

3 and by eliminating » with the help of (B.11) from one of the eq::. tions

- = (B.06) we obtain

3 2 24 d ; ;
B2 (o 28 de_pe i

D

y+1) & T 2

o (Z\TPREL — By — 132y 2+iﬁ‘1]
—-—tﬁe(-z-) l ST T a3 o312

(4

- Equation (B.12) is a non-homogeneous complex hvpergeoinetric equation,

- with singularities at z = 0, z = 1, and z = 0. Of these singularities, oaly
the one at z = 1 is important for our problem, since the sthers are out of the
range of interest in the variable z, which must be contained between a
non-vanishing minimum 2t the entrance of the nozzle and x finite maximum
at 1its exit.

1 If u, is not toc small, the generatrix of a nozzle with such a linear distribution is nearly
an arc of a circle.
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B.02, Tue CoNDITION AT THE SoNic THROAT

Tsien has observed that since the motion is supersonic in the divergent
part of the nozzle e wave can be transmiit~d backwards to the throat,
and therefore the propagation of the oscillations must always take place in
the downstream direction. He has therefore used the condition that the
propagation velocity U(x) must always be positive. If U is defined by the

formula

a(p U 0 (p' —0

als) +vw(7) -
substituting from {B.04) we have U = —iwo[{do/dx). The condition that U
must remain of the same sign throughout the nozzle means that it must
never vanish, and therefore (da/dx)/o musc remain finite. “This condition
is not satisfied if the solution is singular, with the important consequence
that only a soiution which is regular is compatible with the condition of
downstream propagation. This conclusion, which is true for the most
general case considered in equations (B.G6), allows a more concise and
mathematically more definite expression of the condition at the throat.
The sanie result is obtained on a more physical basis by considering that a
wave of finite amplitude at the sonic throat cannot send any but infini-
tesimal waves upstream, since the upstream propagation velocity is zero,
and therefore only waves of infinite amplitude at the sonic throat can send
finite waves upstream. The absence of upstream-moving waves is therefore
connected with the suppression of all singularities at the sonic threat.

B.03. Sorution For Low FREQUENCIES IN THE NON-ISOTHERMAL CAsSe

Tsien has treated the case of isothermal oscillations. His treaiment is
immediately extended to the non-isothermal case. Assuming a prescribed
temperature oscillation at the entrance of the nozzle

(T'|T)zmz, = Ot ....(B.13)
we tave the relation
¢c"'6c=0 ....(B.l4)

between ¢, and g,.
On the other hand equation (B.05) gives

¢, — 0, = ¢ ....(B.15)
and therefore we obtain the relation

. =(0—¢ly—1) ....{B.16)

which determines the amplitude of the density oscillation at the entrance
of the nozzle when § and ¢ are assigned. Of course, instead of prescribing
arvitrary values of § and ¢, one could prescribe arbitrary values of @, and
o, and determine the correspending values of 0 and e. In Tsien’s case € = 0.
At low frequencies, we can expand all quantities in powers of i, since
equations (B.11) and (B.12) contain only this combination of i and g.
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We take therefore
o(z, B) = o' 9(z) + :foV(2) ... ....{B.17)
¥(z, ) =vO(2) +ify(z) 4 ... ....(B.18)

Substituting equation (B.17) into equation (B.12) and equating the
coeficients of the same powers of i, the resulting equation breaks up into:

, 426 de™

F o E 2(1 —z) d‘; —% ;z =0 ....(B.19)
(=g &Oh g, d0% 2 do®

R dl —2) gz —2—g Ty¥ita

1 . ef 1 1

E - 0 S — ....(B.20)
= trF1e 2(r+1+72) (

The solution of (B.19) which is non-singular at z =1 is ¢'® = const.,
and therefore, since the solution (B.17) must hold at § =0, we obtain
from relation (B.16)

00 = (6 — &)j(y — 1) ....(B21)

Introducing this value into equation (B.20), and integrating the first
order equation in do'/dz we obtain the expression

da(l) 0
— Y e —_
(1 =22 = gz =9
e[ 1 1 11
& —-é[mlogz—;/—_—lz—;;]-{-c ....(B.22)

where the integration constant C has to be determined in such a way that
the right hand side of equation (B.22) vanishes at z = 1, so that de'tjdz
may remain finite at this point. We obtain

: de 0 logz+41-—z
& SF-1 (-2

& € logz4+1—2 y—1
b b e BN
: ": It can be immediately checked that this expression is regular at z = 1.

An additional integration, with the condition following from relations
(B.16) and (B.21),

B oM =0 ....(B.24)

would give the (non-singular) expression for ¢t!){z). T B
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Now int!:oducing equations (B.17) and (B.18) into equation (B.il) and
again equating the coefficients of like powers of i one obtains, using
equations (B.21), (B.23) and (B.24),

YO — 5O — ]2

\ 2 ....(B.25
,.$1‘=_Q(...2__ logz, 1) _;_f_(?'_j'_l log 2, +1) (8.25)
4\y—11—2 y\y—11-—2z

and therefore, recalling relations (B.17) and (B.18):

wlte wO il L
o, &0+ ife* ...

_y—1 0 r—1
=i 0—-e+0—-e'° 7 T BLY) ....(B.26)

This quantity, representing the complex ratio betwcen the fractional
variations of velocity and density at the entrance of the nozzle, and ana-
logous to the specific admittance ratic of acoustics, can be used as a boundasy
condition for the rest of the flow svstem in an oscillatory state. We see that
equation {B.26) depends only on 8, z and the ratio 8/e. The first term of
the series (B.26) applies to the steady statc and contains the isothermal
case § = 0 where the velocity cannot change (v, = 0), the isentropic
case e=0, vJo,= }{y — 1), and the isopyknic case 0 =¢ o=10 as
particular cases. Equation (B.26) shows that even for moderate f, the
boundary condition imposed by the nozzle can change coi siderably since
both the phase and the amplitude ratio between velocity and density
fluctuations are affected considerably.

The same procedure caa be used, without substantial difficulty, to
compute higher order terms in if.

B.04. SorLutioN FOorR Hic FREQUENCIES 1IN THE NON-ISOTHERMAL CAsE

Following a procedure similar to the one used by Tsien we first determine
the particular solution g, of equation (B.12}

) 0y = Z(2) (2fz.) "

and substitute it into equation (B.12). An equation for Z(z2) is obtained
which <an be solved by taking the series

Z(2) = Z9@) + (if)ZD(E) + ...
and equating the coefficients of like powers of if. The result is

e [z\ -2 1 1
6,,:-—-5;(;;) l+;}§‘}’+ll_}'—l+-'. ....(3*27)
2 =z 2

Replacing result (B.27) in equation (B.11), the corresponding value of

v is found to be zero; by pushing the expausions to higher powers it is

actually found that the first non-vaaishing termn in the series for ¥ corre-

sponding to the particular solution (B.27) is the term in (i)~%. Thus o,
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fulfils the condition of regularity at z == 1, but not the condition (B.16)
atz =z,

Therefore a solution of the homogeneous equation corresponding to
(B.12) must be determined. If we take o = exp [{#4(2)] and introduce it
into this homogencous equation, we find that the derivative d2/dz = y(z)
satisfies the Riccati equation

d 241 ]
20 =9 P =i 2 (14 ) o — i — 22

Introducing in this equation the series

1
26 =596) + V) + -

y+1
2

and equating the terms with equal powers of {3 we obtain
1 —
- = 1) ....(B.28)

»=—grna=a W'+ )

y +1 dy® 1 1
(1) — _ AT W
TR TR VN () 5% [“ e S

....(B29)

where only the solutions remaining regular at z = 1 have been considered.
The solution of equation (B.12) can now be put in the form

'z z
g =Cexp [zﬁJ‘ o dz 4 ‘.y‘" dz L .. ] +0, ....(B.30)
e v,

where the constant C is determined by the condition (B.16) at z ==z, and
is expressed by

1 £ le 1
e (0-) 45— F (B.31
7—1( 7,+lﬂ~/~/-:-l_l__‘/—1 (B3h)
2 2 .

Coming now to equation (B.11) and recalling that g, does not contribute
to ¥ up to terms of order (i)™, up to this order we can express v as

1 z 2
y= (1;(0) + 7 o+ .. ) Cexp (zﬂ£ #0dz + J: »dz + .. )
....(B.32)

and, after substitution into equation (B.11} and comparison of terms with
like powers of iff, we find

7 = {1 + 4y + 1) (| — )} 1o e
;)ﬂ) =y - 1 — 21)“» - (}' + ]) (l _z)).ﬂ) j o

> being given by equations (B 78) and (B.29).
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Finally computing » at 2z = 2, from equation (B.32) and recalling the
condition (B.16) we fiud

-

ve O—efy o, 1 fy—1 ¢ o L O0—cly o
Bl vy O0—ey+11 y—1 0—¢ ™
2 z, 2

+.o. B> ....(B39)

with 7, M given by equations (B.33), (B.28) and (B.29) at z = z,.
Higher order terms in the expansions (B.27), (B.30), (B.32) and (B.34)
can easily be computed. Again we see that v,[g, depends only on f§, z and

Ofe. For 0 = 0 and g — o0, equation (B.34) gives Tsien’s result.
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B.05. SoruTions FOR ALL FREQUENCIES IN THE IsENTRoPIC CASE

It is possible to take advantage of the analytical properties of equation
(B.12) to extend the computations to the whole range of frequencies. In
order to avoid the complication connected with the determination of the
particular solution of equations (B.12), we shall consider here only the
isentropic case. With ¢ = G equation (B.12) is reduced to a homogeneous
hypergeometric equation, of which the solution remaining non-singular at
z = 1 is given by the known hypergeometric series in powers of | — =

AMEES e 1

b
F(a,b,c;l—-z):l-{-‘-:-(l—z)

“("“*;c‘);(l”)'*' ha 2“!2)2+... ....(B.35)
“ with a, b and ¢ given by:
i ’ c=a+b+l=2(l+—i{g—-)
i y+1 ....(B.36) ‘
- =7 (+3) |
‘ : In principle, therefore, our problem is solved by taking :
og=C.F(a,b,c;1 —2) ....(B.37)

and computing » fror: equation (B.11) with &£ = 0 and with dFjdz obtained
from the differentiation of the series (B.35). The ratio v,/a, is therefore
determined and is independent of C.

However, -this procedure cannot be followed in practical cases since z,
is generally quite smull®* and 1 — z, is close to one, in a r1egior. where the
convergence of the series (B.35) is too poor. The difficulty can be overcome
with the help of the properties of the solutions of hypergeometric equations.
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APP. B SUPERCRITICAL GASEOUS DISCHARGE

Simpler developments are obtained by using a series proportional to (B.35
I(a)I(b)

f(a,b,c;1 —2)= 7@

F(a,b,c;1 —2)

2 I'(s 4 a)l'(s + b)
=‘§0(1 z)* To ¥ DG+ ..(B.38)

where I'(x) represents the gamma function of argument x. This non-sins;ular
solution around z= 1 can be expressed as a linear combination of the
fundamental systemn of the hypergeometric equation around z = Q.

Ore such relationship, particularly useful in the present case, is%

s f(a,b’c;l—z)
= —¢—bg(c—a’c"b’l+‘—a—-b;2) .
: =% I'(c — a)i'(c — b) cos (¢ —a — b)n ..\B.39)
3 where
g (@, b,¢32) = —mcot (¢'m)[f (a', ¥, ¢'; 2)

—2fa+ 11— +1—-,2—c"32)] ....(BA40)

o the two functions f being given by the corresponding series (B.38). With
B the particular value (B.36) of ¢, the value of ¢’ to be used in relation (B.40) is
- given, following (B.39), by ¢’ = 2. When ¢’ is an integer n, the quantity in
the brackets of equation (B.40) vanishes, and the factor preceding the
brackets becomes infinite. The corresponding value of g can be found
through a limiting process to be3, for n > 1,

) a-n P9I+ a)(s + ¥)
v g —n— T (=) (s +a') (s + b

= —f(a',b',n;2) logz + ...‘?11 (—2) TG Fa)

® D(s+a)(s+d) L, ,

AT TEF e m Wt el d)

—p(s+ 1) — (s +n)] ....(B41)

where p(x) represents, as usual, the logarithmic derivative of the gamma
function with respect to the argument x.

Finally from equations (B.38), (B.39) and (B.41}, with 4, 5 and ¢ given
by equations (B.36), and therefore n = 2, we find

f(a,5%¢c;1—2)= logzz 4.z

¥+ 1
+ ZA’D‘Z'+1,8§2izf;) ....(B42)

§ml

y

with the coefficients 4, given by the recurrence relation '
3 A i 25+ 1
: 4 = TmrneTn TP heEn 4 -
- and with _ -
D,=vw(s+a) +yls+b) —wpls) —pis+1) ....B43)
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ALL FREQUENCIES IN THE ISENTROPIC CASE LPP.B

The computation of D, can be performed with the help of the series
expression of yp(x)
. (—1)B,
pls) =log  — - +5 5 (L

where B; = /6, B, = 1/30, ... are the Bernoulli numbers.

e

We obtain

g I[1 1 B lb%ge ) 4 -
b, A +2[ +5+1— s(s + 1) As-i-l] %
+ 3 I Ele T G -

ety e (B4) "

The convergence of the last series is very fast for high values of s.
D, has therefore been computed for this series (B.44) only for the highest
value of s needed in the evaluation of relation (B.42), and for the other
values of .D, from the recurrence relation

U RN G i i

D‘+1_D‘—s+a+s—§-b—s Ts41
The solution (B.37) can be expressed as
o=Cf{a,b,¢c;1 —2)
with the constants C’ and C connucted through equation (B.38); and the
expression (B.42) provides the series expansion suited for computations at
z= z, Actually to determine the downstream boundary condition of the
chamber, equivalent to the presence of the nozzle, we need only caiculate
v[o at z = z, which may be determined from series (B.42) using equation
(B.11). The quantity (1/f) (dffdz) = (1/F) (dF/dz) is independent of the
values of the integration constants C or €’ and can be used in evaluating
v[g. The real and the imaginary part of this quantity, the first divided by
f# and the second by § for convenience of scale, are given for y = 12 in
: Figures 57 and 58. The number of terms used in the computation was
sufficient to give very accurate values up to z = 0-2 for series (B.42) and
reasonably accurate data up to z= 0-3; the corresponding limits for the
series {B.35) are z= 08 and z= 0:7. Between 0-3 and 0-7 the dotted
curve is only interpolated. The lines for § == 0 are entirely computed from CE
the equations: ]

- [ABAF o) = - s
[2f¢l%zdz+?_2-l(l—z)

B e

UL,

L)

DA IR Lt il e A i PLRLRR L A

11-—2

+ (z Y+ 1) logz—ZIng(logz_!- 1 —z)]

1 —z

im [31.2. (0F) | = 5en o=

which can be derived with the procedure used previously for small g.
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Figure 58. 1|B times the imaginary part of (do)dz)jo as & function of local steady stote

flow Mach number M for isentropic oscillations of the reduced frequency B in the noi e

Calculation is based on the series (B.35) and (B.42). o is the amplitude of density oscillation.
(By courtesy of L*Acrotecnica, Roma)

Norz: In the figures on the following pages, and throughout the text of Appendix B,
it should be obser- ed that the subscript , denotes conditions at the nozzle entrance and is used
interchangeably with the subscript 5, ~.g. &, = & = ufe, = [22/(y + DJe.
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APP. B . SUPERCRITICAL GASEOUS DISCHARGE

For 8 — oo the first of the two quantities goes to zero, but the second one

takes the expression
.l ldo
im|=1 )] =y
i [57-P- ()| =

79 being given by equation (B.28). b .th quantities tend logarithmically to

infinity at z = 0, a value which can never occur in practice.
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Figure 59 Figure 60

Figure 59. The real part-a, of the specific admittance ratio « as a furction of the reduced
frequency B of the isentropic oscillation in the nozzle at different flow Mach nunbers.
(By courtesy of L'Acrotecnica, Roma)
Figure 60. The imaginary part % of the specific admitlance rati. x as a_function of the
reduced frequoncy B of the isentropic oscillaiion in the nozzle at different flow Aach numbers.
(By courtesy of L’ Aerotecnica, Roma)

From (/¢ (do/dz), and equatio  _.l11) the quaniity « =7/o, has
heen computed. Figures 59 and 60 show the real and the imaginary part of «
as a function of 8. The Mach number of the mean flow entering the nozzle
is used instead of z, in these figures where
2= 3y +1)@ =3y + 1) (wlej? = v + DMY[L + 3z — DM

....(B45)
¢, representing here the stagnation sound velocity. Figure 61 gives a repre-
sentation of « in the complex plane, from which the phase and amplitude
relations bhetween the velocity and density fractional fluctuatious are
imnieciately deduced. For a giv:n Mach number at the nozzle entrance
the ratio of the amplitudes increascs steadily with increasing frequencies,
while the phase goes from zero to a maximum which is always an important
fraction of #/2 and then decreases back to zero.

Finclly in Figures 62 a~.} 63 the real and imagina- parts of ad,, with &,
given by condition (B.43), arc plotied against g for various values of M.
The knowledge ¢ these tw» quantities is sufficient to represent completely
the effect of a supercritical nozzle on the i ehaviour of a system when the
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ALL FREQUENCIES IN THE ISENTROPIC CASE APP. B

oscillations are isentropic and the velocity distribution is linear. If the last
condition is still true but the entropy oscillates, the solution of equation

H ! J 4
E Faso10 ,;_,g /
5 /r /
% 3 i 'I
ST
LTy /
S T 7 s\\
3 ~ / Vi A’
: VA TR
AN/ Z2Z IS AR
2 { 1
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L: < l/ ‘/ / / M—’G'f\’b(\ \\\
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Figure 61.  Polar plot of the specific admitlance ratio @ = x, + i, for isentropic oscillations
in the norzle. (By courtesy of L’Aerotecnica, Ruma)
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Figure 62 Figure 63

Figure 62. 2,9, as a function of the reduced frequency B of isentropic osciilalions in the nozzle
at differert flow Mach numbers M - rresponding to the differeni values of the dimensioriess
relocity @, as defined in Chapler 3
Figure 63. x4, a5 a funciion of the reduced frequ-acy B of isentropic oscillations in the
rozzle at different floww Mach mumbers M corresponding lo the dy,exent values of ibe dimension-
less velacity @, as defined in Chapter 3

{B.12) can bc obtained as the sum of the calculated homogeneous solution
and a particular solution of the non-nomoguncous cquation. This par-
dcular solution can be obtained without fundamental difficulties from the
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App. B SUPEDODY

homogeineous solution. It only ins -lves a certain amount of numerical
computation. The case of a non-linear velocity distributian is, however,
more involved and is briefly discussed next.

B.06. Now-LINEAR VELOCITY DISTRIBUTION

For a general velocity distribution the system (B.06) can be non-dimensional-
ized relating, for instance, the velocities to the critical sound velocity ¢,
and the lengths to I, . L. If we take

x/l:l:b‘L = E’ (0 <¢é < l); ulc* =w(§)’ (we Lw< l)

where w is considered an arbitrary, monotonically increasing function of §,
with w(l) = 1, and if the entropy oscillation is zero, the system of equations
(B.06) is transformed into the following:

dv do . .
waz.,-rw-d—é-f-zﬂo—() ....{B.46)

dv y+1 y-—-1 do dw ,\' . dw _
oge+ (e~ u) g+ q i) - - gEe=o

where 8 = w!,,, . L[c,T and where use has been made of the relation

(clex)? =y + 1) — 3y — ) ?
Eliminating dv[df from equations (B.46) and (B.47) one obtains the
equz ‘on

y+11 —wtde

dw Ldw .
5 —w-a—§+(2-d—§+zﬁ)r—{(y-—l}-d—g+zﬂ]0'=0....'\3.48)

-~

For general w(§), no analytical treatment of the system is possible; one can,
hewever, determine a series solution i the vicinity of & = 1 which will
satisfy the condition of regularity. This series will give a sufficiently accurate
value down to a certain £ << 1; from there on, one has to proceed with
numerical irtegration. From equation (B.48) we find at w2 ==1 and for
non-singuiar do/d&

(g) _(y = 1) (dw/dé), 13
o/y = 2dw/df), + i

no matter what the nozzle shape is. The oscillation of the Mach number at
the throat is thus given by

[(2) -5 = o0 g ®
Al AT A B TP IO SR
and is therefore non-vanishing for # # 0. Thus the sonic line oscillates

around the throat, and the amplitude of the oscillations could be related to
that of the other quantities.

1 Note that the definition of g in this scrtion differs sriiéhﬂy from that given in equation
(B.10;.
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RON=LINZAR VEILOOITY DISTRIBUTION APP. B

For very low and very higl: frequencies and a general velocity distribution
it is possible to find, as in the case of 2 linear distribution, series expansions in
positive or negative powers of if. Here we shall only determine the series
expansion for small frequencies which is particularly useful for the problem
of low frequency instability. Introducing into equations (B.46) and (B.48)
the series

o= 5 oMY v =3 sN(if)
h=0 h=0

and equating the coeflicients of ({8)* to zero, we obtain the following re-
currence relations

do'(h) d)t(h)
u'( FTIRNFY: ) = —attl ....(B49)
vt 1 | — u? det® d _
7 5 ww :;E +2§-l;—)p(h)_(7,_ l)atgd‘“’:a(”*”_y(h—l)
.. .(B.50)

For h =0 the right hand members of these equations must be taken as
zero. In the same way as for the linear velocity distribution it can be found
that the only regular solution for A = 0 is with % and ¢'® constants and
refated by

¥ = }(y — 1)¢'® = 10 = const. ....(B.31)

This relation simply expresses the fact that for quasi-steady solutions the
Mach number variations at each section of the duct must be zero, because
the Mach number 7 each section in quasi-steady state is determined only
by the ratio of the arca of the section to the section: of the throat. Since at the
entrance section equa.ion (B.16) still applies, we sec that again the boundary
condition (B.24) holds for arbitrary £

dM=0 (h=12..)) ....(B.52)
Now integrating equation {B.49), we obtain
 gid-D
WM = —gth j - d¢ +C ....{B.53)
1

where C is an arbitrary constant to be determined. Replacing tais value of
#* in equatior {B.50) we find

as L1 {h) 2
’ 1 [ do dw r;”"]

o
=) s dc
> -

|

dw?
= ufgth-1 — y2-1] 1 T (

3§ (2-1)
[ g ds-c)

Jow

which can be integrated immediat.ly and, after integratior by parts, gives

' - 1
2._2__ “ — ZL'2>G(")

= | wrvag— | —df—(1— uﬁ)( o =T )

v3 s 'S
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APP. B SUPERCRITICAL GASEOUS DISCHARGE

Here the new integration constant has been determined in such a way as
to make the right hand member vanish at w = 1, in order thai ¢, may
remain regular. The constant C is obtained by applying the boundary
condition (B.52) at § == &,. This gives:

. & gtA-1) 1 1 g1
(l-—w;)(f de-c)-.:fumﬂ-vde—f d&
1 w & & w

= —(1 — u)® ....(B.53)

the last equality being the consequence of equations (B.52) and (B.53).
With the help of equation (B.55), equation (B.54) can be written as

/+ 1 (l __wg) (A) ___f wv(h_l) df _ J“ld(»—l)
§

dé

*€ g(A-1)
o[

dé — vf,")] ....(B.56)

where the value of #® is determined in terms of the (k — 1)th quantities
by equation (B.55). From equation (B.53) one obtains then

J+ I (1 — u?)y m)=__f wyd-1 dE

(-1} ap & (A=)
+f A S Al U g de—;-g*)] ....(B57)
i w 2 3

, W

The recurrence relations (B.56) and (B.57) allow calculation of all the
functions ¢'M, »{» starting from the values (B.51). For the determination
of 2 = v,/g, only the quantities ¥» are required, because ¢/® are given
by condition (B.52). The first two values are given by:

g 1 i1 y—1 )
¥, 7

_— e — —_——uld
¢'® l—uf.L(w 7 ° ¢

£

#2 (1) 1 1 y—1
o =rrillom) ~ 2w | G- ) ¢
c »+1L\g® 1 —uw?le,w(l — wz) 2

Further terms can be found without fundamental difficulty.

Up to the second term of the cxpansion (»D]g'®) the specific admittance
ratio a =¥, /o of the nozzle expressed in terms of the original physical
variables is given by

a= Ly — 1) 4+ iQ*% ....(B.58)

where the quantity & coincides with the quantity introduced in equation
{2.61.08) and is explicitly given by

(__ - _l%) ds ... (B.59)

—ll’

the integration being performed on the whole convergent portion of the
nozzle. This constant £ represents the effect of the inertia of the gas in the
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NON-LINEAR VELOCITY DISTRIBUTION APP. B

convergent portion of the nozzle in causing a phase difference between the
oscillations of velocity and pressure of the gas entering the nozzle for low
frequencies. From the quantity £ one can determine the quantity & of
equation (2.01.09). Ifthereduced frequency is defined through the corrected
gas residence time 6, = 0,(1 -} b), so that

wl@* = 0,(1 + b)

b is given by the solution of the equation
b(1 + &) = /8, ....(B.60)

In practical cases & is sufficiently smaller than unity se that its value is
approximately given by the right hand side of equation (B.60). It has been
explained in Secti~1 2.02 ihat the net effect of the presence of this phase
lead component of the nozzle transfer function is to modify the reference time
characteristic of the low frequency oscillation from the gas residence time

in the chamber, i.e.
0,= M_|m = mass in the chamber/mass outflow rate to new reference time

(1 4+ b)8, = (1 + b) M, [

This indicates that, so far as the analysis of the stability of the low frequericy
oscillations is concerned, the effective inertia of the gas in the convergent
portion of the nozzle is equal to 4 times the inertia of the gas in the chamber.
The following question naturally arises as to how this effective inertia bM
compares with the actual inertia of the gas in the subsonic portion of the
nozzle. But owing to the varving density of the gas in the nozzle and to
the engineering practice of defining the gas residence time in terms of the
chamber volume, ¥, we would rather compare the volume V, of the sub-
sonic portion of the nozzle with the effective volume 5¥,. In other words,
we would rather, following the conventions in acoustics, determine the end
correction of the supercritical nozzle in terms of the additional length of the
chamber (corresponding to the additional length of the organ pipe in
acoustics). Thus let ¥ denote the end correcticn of the chamber volume per
unit velume of the convergent section of the nozzle. Then

2 ="bV.[V, =b0,[V, . 7i[p,

where 17 is the mass outflow rate which can be evaluated at the sonic throat
and p, is the stagnation density of the gas as an approximation to the
chamber condition. ¥, can be obtained by integrating the sectional area
of the nozzle over the entire length of the convergent portion. Thus, with
b0, given approximately by £jy and & given by equation (B.5S9), one obtains
after some manipulation the following

1 yp—=1
A i i

R Jo (B61)
St l —_ 2 1 ~ 1 ____1__ l “ o o
7 e f [l - /""—; w(é)"’] l——d§
Jo v 41 wi{&)
The integrals can be evaluated at least numerically or graphically when
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w(&) is known. For a given type of w(§) this factor 7 depends only on the
entering velocity w,, and the adiabatic index y of the gas. For a given value
of ¥, w, = ufc, is a function only of the contraction ratio of the nozzis
A,[A,. Thus, this correction factor y is a function of the geometry of the
nozzle or w(§) alove.

The value of w, for conventional rocket motors is usually of the order of
0.1 (except for throatless rockets) and w increases monotonically toward the
maximum value of unity at § = 1. Conventional nozzles are usually
constructed with a surface of revolution generated by a circular arc near the
sonic throat and preceded by a tangent cone. Thu- w(§) increases from w,
rather slowly in the conical region and then increases almost linearly toward
the throat. As a result w(£) remains small of O(w,) for a considerable range
of &, the more considerable if the convergint angle of the conical part
becomes smaller. If one writes equation (B.61) as

o1
l'—;l—_w;.
1— 3y — DE,
..(B.62)
. 1 E, + 2v — 1 L+ (2y—1)(3/ 2)E5‘:__.“
y+1 2y + 1) 3y + l“‘
where = w’(E)dE/f =5

one easily observes that O < EL .<E<]!l (j=1 2, 3, etc.) and
that all E’s with § > 1 become smaller when the valuc of w(*) becomes
st aller for given £ It is also clear that the rutio of the two integrals in
equation (B.61) is less than unity and therefore
L, <) 1 1 1
FITSR Ty
Sample calculations based on equation (B.61) for a conventional nozzle with
w(&) given as
4}
w8 = T = 3uy
w(il)=1—1 for w > uy
with Z indicating the following dimensionlcss distance from the sonic throat
2 =1JC, . (dufdx) (I . L — x)
where (dwjdx), is the dimensional veiocity gradient at the throat,

for w < w,

indicate that the ratio of these two integrals is very close to unity. For
the case with 2, == 0-1 and »5 = 0-3 the ratio of the two integrals is 0-96.
Calculated results show that for a given value of w, the ratio of the two
irtegrals slowly decreascs with increasing wy; the cffect is, however, rather
insignificant. For a given value of w;, if we decrease the entering velocity
w,, the ratio of the two integrals also decreases, and the effect of decreasing
w, is considerably larger than that of Jdecreasing w,. But in any practical
case, the ratio of the two integrals will remain i the range of 0-9-1-0 and
a good average valuc would be 0-95 for the type of nozzle discussed previously.
This qualitative result can be expecied as a result of investigating the
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NON-LINEAR VEILOCITY DISTRIRUTION APP. B

expanded form of the two integrals as givea in equation (B.57). Thus the
end correction factor y is in most of the practical cases given approximately by -

2 = 0:95[y ....(B.63)
and the factor | — w? is relatively insignificant. For combr:stion gases with
y of the order of 1-2-1:23, one should therefore add 75-80 per cent of the
nozzle volume to the combustion chamber volume in calculating the
corrected residence time.

It should be noticed, however, that the previous result is for the case of
isentropic oscillations which can at its best be roughly correct for cases in
which entropy osciliations are not too large. When the entropy oscillation
is taken into account, the solution of equation (B.12) should be used in

obtaining the factor b from which the factor y can be determined without
difficulty.
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APPENDIX C

DISCUSSION OF EQUATION (2.04.09)

In the plane (w2 ¥2) the left hand side of equation (2.04.09) represents a
hyperbola with centre at the point (0, —2JJE) and a vertical asymptote
coincidirg with the axis of the ordinates and the second asymptote with
slope J2, as shown in Figure 64. The only branck of the hyperbola with a
physical meaning is the upper branch, tangent to the axis P2 == 0 at the
point (1/EJ, 0).

The right hand side of equation (2.04.09) represents a rectangular
hyperbola with a horizontal asymptote at ¥2 = —1 and a vertical asymptote

vd

¥0i¥0

Figuwe 64.  Schematic plot of W* as exbressed by
the left kand side of equation (2.04.09)

at w® = 2n — 1. Thus for n < } the vertical asymptote lies in the region
of negative w?; for n > 1, in the region of positive w?; and for n==14, it
coincides with the axis @? = 0. The solutions of equation (2.04.09) are
given by the intersections of the hyperbola of Fignre 64 with those of Figure 65.
Only those intersections that lie in the first quadrant with positive w?® and
¥2 correspond to real solutions of w and ¥. A simple inspection of Figures 64
and 65(a) shows that if n < { there are two such intersections when P is
sufficiently large and there are no such intersections when 2 is small enough.
For n > } Figures 64 and 65 show clearly that there is one, and only one,
intersection no matter how large P is. The border case n = } presents the
behaviour of both cases, n > { and n <C 1. In this case equation (2.04.09)
becomes one of second degree and can be solved explicitly

2J 27 \? 1}
2t = — 1 - — Vo —
2%t = — 14 [(L 1) +4J{P(P+l, 132}]
C...(Co1)
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DISCUSSION OF EQUATION (2.04.09) APP, C

The following results are then obtained:
(@) if P(P + 1) > 1/E? there is one, and only one, positive root w? The
behaviour is the same as that for n >> §.
(b) if 1/E2 > P(P + 1) > (1JJ) (1/E — 1/4J), there are two positive roots
or none, depending upon 2J 2 E.
(¢) if finally P(P 4- 1) < (1J) (1/E — 1/4J), there is no real root. Cases
b and ¢ show a behaviour similar to the case n < }.

n<hi

2n-ti- \ a?
0

————————

-7
Figure 65(a) Figure 65(b)
w
Figure 65 (a), (b), (c). Schematic plot of
Y2 as expressed by the right hand side of
equation (2.04.09) for: {(a) a < $. (b)
n=4%{(c)n>}
~-wi2n-1
0|
1
=7

Figure 65(c)

For given values of n, P, E and J, once the corresponding real values of w,
if any, are found from equation (2.04.09), and the corresponding sign of ¥
is determined, then equation (2.04.06) gives a corresponding set of values
for 8. From observation of Figures 8, 9 and 10 we see that when there are
two roots for w, the larger root corresponds to the smaller values of § and
vice versa. If & takes one of these values, an oscillation with 4 = 0 and
Q = wis possible, that is, we are on the stability boundary. If, without any
change in n, P, E and J, the time lag is changed, ther: A must be different
from zero. It will be larger than zero un one side of the boundary, cor-
responding to instability, and smaller than zcro on the other side, where
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APP. C DISCUSSION OF EQUATION (2.04.09)

the combustion is stable. It is important to determine, in addition to the
stability boundary, the stable and the unstable sides. This can be done
in the easiest way by differentiating equation (2.04.03) with respect to 7,
for constant n, P, E and J, with s = A 4 i2 and deriving the value of
dA/d7 on the stability boundary. After manipulation it is found that
(dA[dF) 4 ¢ is equal to an essentially positive quantity times the expression

(2n — 1) [(P 4 n)? — n?] 4 (@® + 1 — 20)2(2J%% + 1 — 2J[E)

Hence {d 4/d7) 4 .o has the same sign as this expression or, in the particular
case n = 1, as the quantity 2J%0® + 1 — 2J/E.

Let us discuss in detail this particular cas: n = 4. Suppose first the
conditions are such that the solutions (C.01) are both positive. Then A
goes through zero as an increasing function of # for the larger root w,
{corresponding to the smaller 4, as already noticed), and as a decreasing
function of 7 for the smailer root w; (corresponding to the larger ). We
conclude that when there are two real roots w of equation (2.04.09) A4 is
positive for 7 lying between the two critical values 6 corresponding tc the
two roots of w. Taking into account the fact that 4 is multivalued, we find
that the behaviour of A as a function of 7 for fixed values of n, P, £ and J
is schematically shown in Figure 66(a). The points 4;, A,, 43 are the values
of 6 corresponding tc the larger root, w,; they correspond to the inter-
sections of the vertical line through w = w, with the proper branch of the
successive loops of Figure 9. Similarly the points B, B,, B3 correspond to
the smaller root w;. We see that for each value of 4 there is a well determined
range of instability. If one takes into account all the possible values of 4,
the combustion is stable when 7 is below the value corresponding to A,,
or when it is contained in the range B,4,. For the example of Figure 66(a),
there is only one such range of stability ir. addition to 04,. However, it is
clear that for other numerical conditions there can be more than one such
range (however, always a discrete number); or there can be none. It is
interesting to stress the fact that no matter what the magnitude of the
time lag and the order of the unstable range, the frequencies are within
the same range, between w; and @,. What changes is only the number of
periods of oscillation % contained in the time lag. In Figure 66(a) we have
represented the case n = } with two roots of w. By changing the operating
or the design conditions (for instance d:...icasing the pressure drop parameter
P, which means increasing the pressure drap), one can always reduce the
interval between w, and w,, until the tw¢ voots come together [when the
hyperbolae of Figures 64 and 65(b) arc tangentiai to each other]. The
corresponding ranges of instability 4;B;, 4 B,, etc. arc then reduced to
zero. If from now on we continue the change of conditions in the same
direction we find the case in which equation {2.04.09) has no real roots.
The correspending distribution of A is schematically represented in
Figure 66(b). A is now negative for all values of the time lag, and the
combustion is always stable. If the change in coaditions from those cor-
responding to Figure 66(a) to those corresponding to Figure 66(b) is gradual,
the decrease of the unstable ranges will correspond to an increase in the
width and the number of the ranges of stability such as B;4,; until even-
tually all the stability ranges together will spread over ail the possible value:
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DISCUSSION OF EQUATION (2.0+4.09) APP. C

of 7, and the condition of Figure 66(b) will be reached. When the values of
the parameters 2, P, E and J of a given system are such that the situation
of Figur: 66(b) occurs, the system is always stable for arbitrary values of 7.
We denote such systems as unconditionally stable. When the values of
n, P, E and J are such that the situation of Figure 66(a) occurs, the system
is stable only when the value of 7 is confined in a certain discrete number of

Stotée
range (@n< %
e
4 }"’i P 4 J '
BU RN
)
:/'\: \ ] ‘
o A BT A4 A B, A, I 8
) [ J [ JL r
T
be—h=0-f -b-——h=.’—-u1___.h.,g___.
Unstable ranges h=0,12,...
}
4 (W) ne %
Mo unsfaile range T
v,
() naiz
4|50, Unstable
H -
i
i
0, : —
VL A o A AT

Figure 66. Qualitative diagram of the amplificalion coefficiest A as a function of the sensitive
time lag 7 of a liguid propellant rocket with constant rate feed

ranges of values. We designate such systems as conditionally stable. When
a system is unconditionally stable, the hyperbolae of Figures 64 and 65 do
not iniersect. Any change in the p~rameters of the system, which brings
the two hyperbolae together to be  :3ential to each other and eventually
to intersect, tends to decreuse the ‘unconditional stability’ and vice versa.

The preceding discussion shows that in the case n = }, it is always possible
to change the situation of Figure 66(a) to the one of Figure 66(b) by decre: ,ing
the value of P so that the hyperbola of Figure 65(b) is shifted safficiently to
the left so as not to touch the hyperbola f Figure 64. It is also clear that
without any change in P, thus leaving the hyperbola of Figure 65(b) un-
changed, the sani2 results can be achieved by cha.ging the feeding system
parameters E and J tbrough the displacement of the hyperbola of Figure 64.
For instance, 2 decreas: in the value of E displaces the point of tangency
of the hyperbola with the axis of the abscissa to the right without changing

191

3
i
]

50w ety AR S B

. ) T T T A R e e S TS e

LT




WP AR et smtsk a0+ 5 ¢

ST TR, T y—m—"

T EL R T e Ry et SR N e s

APP, C DISCUSSION OF EQUATION (2.G4.09)

the slope of the asymptote. Thus, decreasing E has a stabilizing effect.
The same is true for decreasing J. Therefore, if a2 system is unconditionally
stable, the unconditional stability is improved by decreasing E, J or P.
On the contrary, either when P increases, or when E or J or both increase,
the system can become marginally unconditionally stable when the two
hyperbolae become tangential to eack: other. Any further small change of
the parameters in this direction will lead the hyperbolae to intersect and
to define a number of discrete ranges of the valuss of 7 corresponding to
unstable operation of the system. This system is conditionally stable. It
will still remain stable if its time lag 7 is in the stable range but it will
beccme unstable if the time lag 7 of the system falls in the unstable ranges.

Let us consider the conditionally stable configuration. If E and J are
kept constant while P increases further (pressure drop decreases), the
discrete unstable ranges of 7 grow in cize, and gradually overlap each other
till all the discrete stable ranges disappear except the lowest stable range
04, as shown in Figure 66(a). This lowest stable range 04, is kept decreasing
in gize while P increases even when P(P + 1) becomes greater than 1/E?
corresponding to the situation of Figure 66(c). On the other hand decreasing
P tends to increase the stable ranges of 7 until the situation corresponding
to Figure 66(b) occurs. Alternatively if we keep P constant and let E or
J increase, each discrete unstable range of 7 like 4,B, in Figure 65(a) is
shifted towards larger values of # and each discrete range like 4,B, grows
in size with B, shifted more than 4,. As a result, while the discrete stable
ranges disappear in succession as E or J increases, the lowest stable range
04, increases in extent with 4, moving towards larger 7 in contrast with
the situation of increasing P. Thus, if E or J increases from the value
corresponding to a marginally unconditionally stable configuration, discrete
unstable ranges of 7 appear and increase in extent with increasing E or J.
But-after a certain critical magnitude of E or J is reached before all the
discrete stable ranges disappear, the toral extent of the unstable range of 7
will decrease with further increase of EorJ.

Now consider an unstable system with given P. I there is no discrete
stable range of # except 04, for the given value of P, then conditional
stability can be obtained only by a sufficiently large increase of E or J.
If there is a discrete stable range like B, 4, and if the time lag ¥ of the system
lies in 4, B, then conditional stability can te obtained cither by a sufficiently
large increase of E or J to make # lic in 04, or by a proper decrease of
E or J o make 7 lic in 4,B,. If the decrezse of E or J is too big, the system
may become unstable again. If there are more than one discrete stable
ranges like B, 4,, By4,, ctc., the time lag of the unstzble system may lie in the
unstable range 4,8,. In this case, with a gradual increase of E andfor J,
the system will become stable at first and then become unstable with farther
increase of E andfor J and ultimately with sufficiently large increase of
E and/or J the system will become stable again. From Figures 9, 64 and 65(b),
it can be obscrved that with n = §, the stable range 04, of the values of 7
can be made indefinitely large by indefinitely increasing E and J, even
when the condition P(P + 1) > 1/E? is reached corresponding to the
situation of Figure 66(c). Therefore, for the cases with 2=} and a given
value of P (corresponding to a given pressure drop Ap across the feed
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DISCUSSION OF EQUATION {2.04.09) APP. C

system) it is always passible to sbtain stability by a sufficiently large increase
of E and J to eularge the stable range 04, so as to include the time lag 7
of the system. But by sufficiently decreasing E and J,.unconditional stability
can also be obtained.

We have thus far discussed the case n = } when the conditions are such
that there are two real roots of cquation (2.04.09) or more. It has been
remarked that as under such circumstances the case # = § has a similar be-
havicur to the case n < §, one can extend all the results of the previous
discussion simply by continuity arqument to the more general case of
n < 4. It can be cbserved, however, from Figures 64 and 65(a) or from
equation (2.04.09) that for n < 1 there are cither two solutions of « or
none, no matter what the vajue of Pis. Therefore a condition like P(P 4 1)
< 1/E? for the existence of two real solutions of @ will not appear when
n<i

Let us now discuss the remaining vossibility for n =} quoted under
item a2 in the discussion following equation (2.04.10); that is, the case
where there is only one positive solution for w? of equation (2.04.10} or
one real root @ of equation (2.04.09). The real root of w clearly corresponds
to the upper sign of equation (2.04.10) in which case, the expression
2J%0*® 4 1 — 2J/E is positive and therefore (dA/d7)4.¢ > 0. Hence A
goes through u single zero as an increasing function of 7 and the correspond-
ing schematic representation is as shown in Figure 66{c). It is ciear that the
only stable range cf 7 is 04, and that out of this range the oscillation is
always unstabie. From Figures 64 and 65(c) we find that when >}
this is the only possible behaviour for any values of P and E while for the
case n == § this behaviour occurs only when P(P +4 1) > 1/E%. Thus, for
these cases, the only interesting critical value § is the lowest une corre-
sponding to & = 0, and the only interesting loop of Figure 10 for n > } is
the lowest one. -Unconditional stability is therefore nc longer possible for
n > }. We observe that this behaviour is qualitatively very similar to the
one found for the case of intrinsic instability corresponding also te n > §.
This is not surprising because the case with constant injection rate where
the intrinsic instabilicy is found, is included as the particular case E=0
in the more general case discussed in this section. The corresponding value
of ¥ is — 0, which corresponds to the lower limit of the inequality (2.04.08),
@ = (2n — 1)}; that.is, the point of minimum w in Figure 10.

We shall thus concentrate our discussion on the lowest loop only in
Figure 10. 'The upper branch ard the lower branch of this loop correspond
to different values of the system parameters E and J. For a given value of
P and J if the clasticity parameter E increases from zero, ¥ increases
algebraically but remains negative, and the value of 4 moves from the
value {7 — tan~}{(2r — F)}/(1 — n)}]/(2n — 1)} at the minimum value of
© = (2n — 1j! along the upper branch, as illustrated in Figure 10, towasds
larger values of w. Thus a small increase of E from E == 0 is stabilizing.
But if E is kept increasing, 6 decreases after passing the maximura and a
further increasc of E is destabilizing till the value of E=J[P2 - 2nP + 2n—1]
is reached where ¥ = 0, and @ is at its maximum value. If E stili increases
from this value, the point é begins to move along the lower branch of the
loop toward smaller values of w. Thus 6 increases with increasing E; that

193

=




*
=

ot
)

¥

My,
«t
W

i

« Mg

"

APP. C

DISCUSSION OF EQLATION (2.04.09)

is, the effect of increasing E is again stabilizing. This quclitative trend
persists all the way for £ approaching o, that is, when g is infinite [equation
{2.02.09)] or p, is constant fequation (2.02.02)]. This is a particular case
of the more generzl constant pressure sysiera ciscussed in another section.
The value of ¥ for E =: o is given by Jw which is always positive lying
on the lower branch with its actual position determined by tane value
of n, Pand J 1Itisonly whenJ — 0o-that this end point coincides with the
point of minimum w.

‘The effect of increasing J from 0 to o for given values of P and E is
similar except that when & = 0 the critical value of 7 is somewhere on the
upper branch witk @ > (27 — 1)t the value being again determined by
the magnitudes of n, P and E.

For given values of E and J, the effect of increasing P or decreasing the
prescure drop across the feeding system can be iavestigated in a similar
way and is found to be in general destabiliziag except when E is very smali
so that ¥ is large but negative.

It should be cbscrved that for given values of n > } and a given vaiue
of P, there is a maximum value of 9, as illustrated in Figure 10, corresponding
to a small value of E. If the value of 7 of the system is bigger than this
maximum value of 9, the systcm is definitely unstable. Stability cannot be
achieved by any variations of E, or J, or both, but can only be achieved by
increasing the parameter P through the reduction of the actual pressure
drop in combination with proper changes in E and J. Or a different pro-
pellant with smudler values of # and 7 must be used under such circum-
stances. From another point of view, for a sysiem with given values of P
and 2 > }, the optimum combination of the elasticity and incrtia of the
feeding system is to have the system operating at this point of maximum
d, correspending te a certain small value of E. Any changes of E or J from
this condition make the system less stable.

Finally let us observe that when n < 1 it is always possible to make a
system unconditionally stable with a sufficiently sinall value of P, that
is, a sufficiently large pressure drop Ap across the feeding system. In fact
the inequality (2.04.08) shows that if P < 1 — 2n no real value of @ can
exist, and thereforc we are certainly in the case of Figure 66(b). Hence
Aplp > §.1](1 —2n) represents a sufficient stability criterion when
n < }. However, we see immediately that when n approaches { it becomes
more and more difficult to satisfy this condition because of the exceedingly
large values of Ap required. When n> 1 ne such sufficient stability
criterion can be found. In fact we have seen that systems with n > }
will become unstable if the time lag 7 of the system is above a certain
finite value of 0 for given pressure drop Ap of the system no matter how
large the pressure may be.
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APPENDIX D

DISCUSSION OF EQUATION (2.05.07)

THE left hand side of equation (2.05.07) can be represented as a hyperbola
in the ($2, »?) olane, as shown in Figure 67 and the right hand side by
rectangular hyperbolae schematically represented in Figures 68(a), {b) and
{c) for the three cases n < 4, n=}, n > §. From the comparison of
Figures 67 and 68(a) we see that when n < } there is always a real root w
of equation (2.05.07) in the region where @ < 0, and there can be two
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Figure 67. Schematic plot of d* as expressed by the left hand side
of equation (2.05.07)

additional real roots or none in the region @ > 0, the appearance of these
two recots being favoured by a large value of P and by large values of E
and J. The same behaviour is found for n = } from the comparison of
Figures 67 and 68(b). Finally for n > } comparing Figures 67 and 68(c)
we sec that here, toc, one can find one or three roots w. However, when
there is one, this roat is not necessarily on the side @ << 0. Moreover, there
can be three roots for only some intermediate values of P, E and J. Fer .
sufficiently small or large values of the three parameters there is only one
root. Following a method similar to the one used in the Appendix C one
can show that {dA/d7),.., is positive for the smallest and largest roots,
and negative for the middle root when there are thiree roots, and that it.
is always positive when there is a single root. This result, when transferred
to the (A, 7) plane, gives the behaviour showr in Figures 69(a), (b) and (c)
: where, however, the curves corresponding to k= 1, 2, 3, etc., have not
i been shown in order not to complicate the figure. Here again the larger
i root o corresponds to the smaller value of d and vice versa. Curve 69(a)

shows the behaviour of /i{F) when there are threc real roots to equation
i (2.05.07). This behaviour can be found for all values of #, but more
i commonly for n < . There are twe ranges of stability 04, and B,C, for

AR 0168 v s o AR A R ¥ L

i

Pt

i

¥ a8l
e

s,

)

X0
0

7%

1
i

&

h==0. From the combination of these ranges with those pertaining to
the higher integral values of 4, it is seen that the stability range 04, is
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APP. D DISCUSSION OF EQUATION (2.03.07)

left unchanged but the other range B,C; may he reduced or suppressed
by the unstable ranges pertaining to higher values of 4. When n<C
it is possible to change from the condition corresponding to Figure 69(a)
to the situation of Figure 69(b) by decreasing P (that is, increasing Ap)
or F or J. The unstable range 4;B, between the two larger roots w is

H ] []
¢ H :
I
Ha
o
B
i
H 1 n<®
1
i
3
P
an-7 [} 1
/e
1 1 J' 1
X e ¥
= (P4 7TPs2n-1) o
Y e e
Figure 68(a) Figure 65(b)

Fizure 68. Schemaii, 2 ed
b.;glt‘l:: right hmdnz?d‘;pal}‘:qfuahmds' “(?65‘.357)
@re<h b=} ()rn>}

P L L T L L L LT T Y L A

Figure 6€(c)

" now suppressed, and there is left only the instability range to the right of

C,. In this case, the unstable ranges corresponding to higher values of £
are unimportant. When z > } a switch from the situation of Figure 69(a}
te that of Figure 69(b) is also possible; however, it requires generally a
smaller value of P, E and J than that reguired in the previous case. On the
other hand when P, E and J are increased above certain values, the situation
of Figure 69(c) becomes possible, with the complete disappearance of the
stability range B,C;, all the points to the right of the point 4, being now
unstable. We see from the preceding discussion that the distinction between
the case n < } and the case n > } is less clear than in systems with a constant
rate of supply. However, a neat distinction can be found when, for par-
ticular values of the parameters, 2 given physical configuration can be
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DISCUSSION OF EQuATION (2.05.07) APP. D

cousidered as belonging both to the constant pressure and to the constant
rate system. For instance, when we take J = o in a system with constam
pressure feed, the resulting formulae coincide exactly with those obtained
for J = O in the constaut rate case. The infinite length of the feed lines is

<1 (k=0
A o T e
-“-”ﬁ’-"-i-—m/mp ke Stotte —eitnstable
3 [
N
0 A, 5, ¥
4 (b
fo—————— Sfoble range ;‘rl/”‘/"”'
H
"0 A 3
4 fo——  =Unstoble )
Noble
0 /B T

A 9 & asa 9 i
Fizure 69 %ﬁ%%ﬁt% gﬁia!umﬁwA ﬁmfmmm .
sufficient to produce a constant rate of supply tc the capacitance as in_an
carlier section. With J = oo the hyperbola of Figure 67 degenerates into
two straight lines and we see- immediately that while the smaller root @
for n<<  goes to zero with the corresponding & approaching co, there
are only two significant real roots or none; and for n > § one and only one
root is always present. :

Similarly the case E = 0 of the coustant pressure system is identical with
the case I = o0 of the constant rate system, discussed at the end of Appendix
C, and it is immediately checked that no matter what the value of n, there
is only one real root of @. It is clear that the constant pressure case with
J == o0 is represented for various E by the upper parts of Figures 11, 12 and
13, and with E = 0 for various J by the lower parts of these figures.

Finaily we observe that the inequality (2.04.08) holds also for the constant
pressure case, and again the sufficient criterion of unconditional stability
ABIp = % .1/(1 — 2n) holis for n < }. We observe also that whenn > }
we may obtain the best conditions of stability by making & positive and of
such magnitude that the representative point on the loop P = constant
of Figure 10 lies neac the point of maximum 4. In this range the effect of
increasing AP is reversed, like the constant rate system as analysed in
Appendix C. 197
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