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OPTICAL COMMUNICATION THROUGH MULTIPLE -SCATTERING MEDIA”®

ABSTRACT

A model is developed for the effects of multiple scattering upon optical -frequency
radiation. Attention is focused upon situations in which the scattering particles are
large compared to the carrier wavelength, so that forward-scattering predominates.
This is the case for atmospheric clouds at visible-light wavelengths, the physical
framework within which the analysis is carried out. The objectives served by the
model are those of acommunications engineer desiring to design a system for optical

communication through clouds.

Light traversing optically densc clouds suffers dispersion in space, time and fre-
quency. These effects are considerced both separately and in a compact unified for-
mulation. The spatial variation of the intensity of light beneath a cloud subjected to
continuous-wave illumination is modeled as the output of a multidimensional tincar
system. The approximate impulse responsc of the system is determined, in two
complementary forms, and the approximate response below the cloud under arbitrary
illumination is shown to be given by a linear superposition integral. In genecral, the
spatial behavior is representable as a joint function of angle of arrival and horizontal

coordinates over the ground.

The field on the ground is shown to be representable in terms of a complex Gaussian
random process. A complete statistical description of the process is therefore pro-
vided by its mean (which is zero) and its correlation function. The time-space cor-
relation funetion K(tl’tZ’?l’?".Z) is written in terms of a generalized scattering
function o(7,f, v'), combining all the time, frequency and spatial information. The
spatial impulse responses are shown to be special cases of the scattering function.
Expressions are derived for the spatial correlation function of the received field over
the ground, for both omnidireetional and dircetive antennas. The conventional range -
Doppler scattering function o(7,f) is derived for an upward-pointing narrow-beam

antenna. Polarization effects are not included in any of the analyses.

Some of the implications of these results are considered with respect to communica-
tions system design and performance. A system is proposed and analyzed to provide
an indication of the rates and error pcrformance that can be achieved with optical

signaling through a cloud.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

*This report is based on a thesis of the same title submitted to the Department of
Elcetrical Engineering at the Massachusetts Institute of Technology on 24 October
1968 in partial fulfillment of the requirements for the degree of Doctor of Science.
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OPTICAL COMMUNICATION
THROUGH MULTIPLE-SCATTERING MEDIA

CHAPTER 1
INTRODUCTION

Clouds and fog are common enough in most regions of thc earth to present a serious problem
to the designer of an optical communication system whose transmission path includes the atmos-
phere. One alternative is simplyto agree that the link will not be usable when these obstructions
are present. In many applications one might be unable to acccpt such a constraint, but willing
to trade receiver complexity and diminished communication rates for more nearly constant chan-
nel availability. This possibility motivated the research reported in this paper. The chief ob-
jective was the development of a realistic model for a cloud layer as an optieal-frequency com-
munication channel.

A small particle suspended in the atmosphere absorbs a portion of the light incident on it,
in general, and scatters the remainder in all directions. Thc particles in clouds are droplets
composed mainly of liquid water, and thcir diameters1 range from about 10 to 40 microns. Since
they arc large compared with the wavclengths of visible light, they tend to scatter most of the
incident energy at these wavelengths in the forward direction. Also, their absorption at visible-
light frcquencies is small. Thus a large fraction of the light entering a cloud emcrges at the
other side. A beam of light traversing a cloud will suffer dispersion in angle of arrival and deg-
radation of spatial cohercnce, while any modulating signal which may have been carried by the
beam will experience dispersion in time and frequeney. These dcleterious effects become pro-
gressively more severe as the particle concentration increases. For typical clouds, one finds
that most of the emerging light has been scattered more than once. All the results reported here
account for the presence of this multiple scattering.

We take the point of view that an observer standing bencath a cloud illuminated from above
is interested only in the light emerging from the bottom of the cloud. We do not attempt to cal-
culate intensity distributions or other characteristics of the backscattered light. All the energy
which is lost from the forward-directed signal in this manner is treated as though it were lost
by absorption in the cloud.

The analysis in this report depends heavily upon the condition that most of the light incident
on each individual particle is secattered in a generally forward direction. This is demonstrably
true for clouds at visible wavelengths, as we have already indicated; in general, it is true for
any situation in which the particle diameter is large compared with the wavelength of the incident
radiation. Although all our analyses are couched in terms of a somewhat idealized model for a
cloud, most of our results can be applied for communication through fog as well by simply letting
both the transmitter and the receiver bc located right at the cloud boundaries. Although natural
fog particles tend tobe somewhat smaller than those of clouds (their diameter distributions2 tend
to peak up in the neighborhood of 4 to 6 microns), they are still quite large compared with vis-

ible wavelengths. Thus the light scattered by fog particles is alsoquite stronglyforward-directed.



The applicability of our results to optical communication through atmospheric hazes is
somewhat questionable, and has not yet been investigated in any detail. Hazes generally contain
many particles roughly comparable in size to visible-light waveleng‘ths,3 which scatter substan-
tial amounts of light through large angles. This tends to violatc our assumption that any light
which is scattered through an accumulated total angle of about 27 radians is so attenuated as to
be negligible compared with the forward-scattered light.

Section 1.1 describes the effects of a cloud upon the angular and spatial propertics of the
transmitted light., Section 1.2 provides a brief description of the generalized space-time-
frequency scattering function presented in Chapter 4, which is the most general form of our

cloud-channel communication model. Section 1.3 outlines the body of this report.

1.1 SPATIAL DISPERSION OF LIGHT TRAVERSING A CLOUD

Chapter 3 of this report is an analysis of the angular and spatial distributions of light be-
neath optically thick clouds. The topic is treated separately, and an entire section of this intro-
ductory chapter is devoted to it, because it is potentially of interest in areas outside of commu-
nications theory. The incident light is assumed to have constant intensity, and thc results are
derived without reference to communications-oriented concepts such as bandwidth and modulation.

We define a simplified representation for both the incident and the scattered light as a su-
pcrposition of elementary waves, spccifying the distribution of light intensity in angle and in po-
sition on the horizontal plane. By using thc ideas and techniques of lincar system theory, we
show how this mathematical function is modified as the light traverses thc cloud. We find that
the intensity distribution below a cloud with arbitrary illumination incident on its upper surface
is given by a multidimensional linear superposition integral.

The results are obtained in two complementary forms. One of them is appropriatc for in-
cident illumination which is uniform over the entire horizontal plane, while the other must be
used for beams of finite cross-sectional area. We show that the first result is simply a spccial
case of the second.

As an example of the utility of these results, suppose that one illuminates the top of a cloud
with a group of constant-intensity uniform plane waves, having angles of arrival distributed over
some range. By application of the first kind of superposition integral, we immediately obtain
the distribution of intensity as a function of angle of arrival over the ground below the cloud. As
another example, suppose the top of the cloud is illuminated with a pencil beam incident at hor-
izontal coordinates (xo, yo). The second form of the superposition integral yields the distribution
of intensity over the ground as a joint function of angle of arrival and the horizontal coordinates

x and y.

1.2 CHARACTER OF CHANNEL

As one might well expect, the field incident on the ground beneath a cloud can be represcnted
as a complex Gaussian random process. The arguments leading to this conclusion arc precsented
in dctail in Appendix A. Since a signal traversing the cloud suffers time and frequency disper-
sion as well, we anticipate that a signal detected on the ground will be qualitatively similar to
one which was transmitted over a classical fading dispersive channel. The problem is compli-
cated, however, by the fact that the spatial and angular variation of the arriving field are both
important and useful. In Chapter 4 we present a generalized scattering function ¢(7, f, 7’), first

suggested by Kennedy,4 which combines all this information about the channel in a useful, compact



form. The vector argument v may be thought of as a unit vector pointing in some direction,
drawn through some point (x, y} on the ground plane. The function ¢( ) is defined in such a way
that the quantity o(7, f, \7’) dr dfdv' is the fraction of total reccived signal energy at the point

(x, y) on the ground borne by rays which experienced time delay and Dopplcr shift in the ranges
(r, 7 +dt) and (f, f + df), and had angles of arrival in the range dv' about v. We dcrive the func-
tion from basie assumptions, and prescnt a brief diseussion of the manner in which one would
proceed to a mathematical description of the optimum communication recciver from knowlcdge
of ¢( ) and the transmitted signal.

Declining to carry the general trcatment any further, we procecd to derivations and discus-
sions of various special cases of the scattering function and signal correlation functions. We
show that thc spatial superposition integrals of Chapter 3 are in faet special cases of ¢(7, f, v').
The other speeialized functions based on ¢( ) that we discuss include a time-independent spatial
correlation function of the field over the ground, angular and spatial correlation functions for
signals received by directive antennas, the range scattering function ¢(7) for an antenna aimed

in a given direetion, and the range-Doppler seattering function o(7, f) for the same antenna.

1.3 OUTLINE OF REPORT

A large body of literature exists on the subjcct of electromagnetic scattering by particles.
Chapter 2 is devoted to a brief survey of some of this material, with particular emphasis on
those results whieh will be exploited in the remainder of thc report. Chapters 3 and 4 have just
been discussed. Because their eontents are thought to be of particular interest, they have each
been accorded an entire seetion of this chapter for introductory comments.

In Chapter 5 we propose a sub-optimum eommunication system whieh eould be realized with
teechniques and components which are available or readily visualized as being available in the
future. Since it falls within the purview of classical fading dispersive channel analyses, we can
readily analyze its performance. The results give us some feeling for the pcrformancc onc
might expect with the optimum system.

Chapter 6 summarizes the conclusions we have reached in this report, and outlines areas
of potentially fruitful future research on optical cloud communication. The appendices dcal with
matters whieh arc peripheral to the main issucs in the body of the report, and with long and

complicated derivations.



~ CHAPTER 2
AVAILABLE RESULTS OF SCATTERING THEORY

The scattering of electromagnetic radiation by particles has been studied extensively for
many ycars. The scattering behavior of collections of particles has been thoroughly analyzed
for situations in which single scattering predominates. For a particle suspension so dense that
a substantial fraction of the light traversing it has been scattered more than once, however, the
problem becomes far more complex. A number of books and papers have been written about
specialized aspects of multiple scattering (of which this thesis report is an example), but the
status of rescarch on the general problem is still very fluid.

The first section of this chapter is a bricf survey of the literature on both single and multi-
ple scattering of light. In Sec. 2.2 we review those results of single-scattering theory which will

be utilized in the development of our linear-system model for multiple scattering.

2.1 HISTORICAL DEVELOPMENT

A concise review of the early history of the subject of clectromagnetic scattering by parti-
cles is given by van de Hulst5 in his Sec. 1.3. The problem of the scattering of electromagnetic
waves by a single homogeneous sphere was first solved in complete generality by Mie.6 His
approach was to reprcsent the fields in space as a superposition of spherical waves which werc
concentric with the scatterer. Thc solution of the boundary-value problem in this coordinate
system was straightforward. HHe obtained completely accurate and general formulas for the
scattered field in the presence of a sphere of arbitrary radius and arbitrary complex refractive
index, for incident radiation of arbitrary wavelength.

Virtually all electromagnetic scattering research since that time has bcen based upon the
fundamental work of Mie. The first logical extension of his results was thec analysis of light
scattering by low-density suspensions of particles. By assumption, the volume density of parti-
cles in such suspensions is small enough that light scattered more than once can be neglected
compared to unscattered and single scattered light. Many authors have attacked this problem;
excellent treatments of the subject are provided by, for example, van de Hulst1 and Newton.7
The usual approach has been to show that the angular distribution of light traversing such a
medium is simply a superposition of unscattered light and thc scattering pattern of a single par-
ticle, averaged over the distribution of particle sizes in the medium.

For denser suspensions of particles, however, a significant fraction of the emerging light
has been scattered more than once. The mathematical complexity of the multiple scattering
problem is enormous, compared to the simpler results described above. The first successful
treatment of the problem was that of Chandrasekhar‘,8 who attacked light propagation through
multiple-scattering media as a transport phenomenon. e derived an elegant diffusion equation
(his "Equation of Radiative Transfer") for the angular distribution of scattered intensity. His
work has been widely applied in such areas as the study of planetary atmospheres in radio astron-
omy. In practice, his equation is extremely difficult to solve, except when the particles scatter
isotropically, or nearly so. His ideas have been extended, and additional results of the same
gencral nature have been obtained by Sobolev.9 Like those of Chandrasekhar, his equations for
angular intensity distributions of diffuse scattered radiation are very difficult to solve except in
a few special cases.

Certain other multiple-scattering results have been obtained by Fr‘itz.1 =i He modeled

the scattering pattern of an individual cloud droplet as a superposition of forward-scattered



and isotropically scattcred intensities; the latter werc smaller by a factor of several hundred.
Ifis main results werc angular distributions of luminance and illuminance below an overcast sky,
which he obtained by thc approximate solution of a diffusion equation. Like the work described
in the preceding paragraph, Fritz's techniques do not have enough versatility to provide the ad-
ditional information (such as spatial correlation functions and timc and frequency spreading of
signals) rcquired for a useful optical communications model.

A substantial number of papers have appeared in recent literature, reporting experimental
work on single and multiple scattering of light. For example, Carrier and Nugfent1 = and Reisman,
et a_l.,14 have carried out measurements of light scattered by fogs in air as a function of angle.

Smart, ct a_l.,15 Woodwardié’17

and a number of other workers have madc angular intensity dis-
tribution measurements of light scattered by water suspensions of polystyrene latex sphcres,
where the particle concentration was high enough that multiple scattering was important.

Certain other results have recently been obtained which are more dircctly applicable to the
questions of intcrest in optical communication. Dell-Imagine18 used numerical integration of
Chandrasekhar's equation of radiative transfer to obtain the transient rcsponse of a cloud illumi-
nated from above by a plane wavc which was turned on at some instant of time. In a series of

four articles, Plass and Kattawar19_22

have reported on a Montc Carlo technique which accu-
rately follows the multiple scattered paths of photons through thick clouds. They have obtained
numerical simulations of the cloud albedo and of the angle depcndence of rcflccted and transmit-
ted light, as functions of various paramcters of the clouds and the particles, the wavclength and
incident angle of the incoming light, and the albedo of the planctary surface. Thcy have also ob-
tained information about the optical path lengths traverscd by photons penetrating clouds.

In Appendix G we carry out explicit comparisons of our results with some of those of Dell-

Imagine and of Plass and Kattawar.

2.2 BASIC DESCRIPTION OF SINGLE SCATTERING

The study of multiple scattering must begin with an understanding of the mechanism of plane-
wave scattering by a single particle. Thorough expositions of the theory of electromagnetic scat-
tering by homogeneous sphercs are contained in the original paper of Mic,6 in the classical book
by Stratton,23 and in the cited works of van de IIulst1 and Newton.7 In general, the amplitude,
phasc, state of polarization and direction of propagation of the scattered wave can be precisely
determined as functions of the parameters of the sphere and the incident wave. Although the for-
mulas of Mie are elegant in their generality, their application to specific cases involves a great
dcal of computational labor. Our task is somewhat simpler, because we choose to ignore polar-
ization effects. Furthermore, as we show in Appendix A, we need not retain phase information,
since phase coherence is lost in the multiple-scattering process. Thus the only rcsult we nced
from the Mie thcory is the sum of the intcnsity scattering patterns for thc two orthogonal polar-
ization componcnts, for a spherical particle of radius a at a given wavelength. Wc shall call it
Fa(e). Its argument is the angle between the incident-wave propagation vector and the direction
of propagation of scattered radiation. The function is conventionally defined in such a way that

the intensity of light scattered into the solid angle
dw = sin 6 dO6 d¢

is given by Fa(e) dw, when the particle is illuminated by a unit-intensity plane wave. Assump-

tions and approximations to be used in the present study will be developed in Chapter 3.



It is convenient to describe the behavior of a scattering particle in a cloud in terms of its
cross sections. Suppose a particle intercepts Pi watts of power from an incident plane wave of

intensity Ii' Let Psca watts of this power be scattered, while Pa watts are absorbed. By def-

bs
inition, we have

Csca ™ Psca/Ii : (2-1a)

@ by = Bty 3 (2-1b)
and

Cext = Pi/L (2-1c)

These quantities are the cross sections (in square meters) of the particle for scattering, absorp-

tion and extinction, respectively. By virtue of energy conservation, we have

G = Eq (2-2)

i€
ex a a

(S bs

The cxtinction cross section of a particle is not necessarily equal to its geometrical cross sec-

tion. For a spherical particle of radius a which is large compared to a wavelength, C s

i
ext
roughly equal to 27ra2 (see the discussion of the "extinction paradox" on pp. 107-108 of van de
Hulst1).

Within a medium containing scattering particles, a wave of initial intensity I0 traversing a

distance z suffers the well-known "extinction" attenuation

I(z) = IO exp[—vyz] . (2-3)

where [(z) is just the unscattered and unabsorbed residue of the original wave. For a so-called
"monodisperse" suspension containing dv identical particles of radius a per unit volume, wc

have

y=d.C _.(a) . (2-4)

v ext

In a "polydisperse"” suspension the particle radii obey some probability density function p(a) If

the average volume density of particles is dv, we have

y = de(\) cht(a) p{a)da . (2-5)

The coefficient y is frequently expressed as De-1, where De is defined as the "extinction dis-
tance" of the medium. When distance within the cloud is normalized to De’ it is called "optical
distance In particular, the "optical thickness" of a cloud is
e =
Ho=5 (2-6)
€
where 7 is its physical thickness.
As a general rule of thumb, one assumes that a single-scattering analysis is adequate for
a particular cloud when its optical thickness is about 0.1 or less. Thus the extinction attenua-
tion exp (—0.1) for propagation all the way through the cloud is very nearly unity. The single-

scattered intensity emerging from the cloud is very small, being roughly [1 — exp(— 0.1)] times

the unscattered intensity, and higher-order scattered radiation is of a higher order of smallness.



Now, we shall direct our attention in the present study to clouds whose optical thicknesses range
from pcrhaps 5 to 100. Thus the importance of multiple scattering in analyzing the behavior of
these clouds is manifest.

These few concepts comprise all the background that is necessary for the idealizcd cloud

model described in Chapter 3.



CHAPTER 3
SPATIAL IMPULSE RESPONSES

We begin this ehapter with a deseription of an idealized physical model for a eloud and the
partieles comprising it. We then define two eomplementary forms of a simplified elementary-
wave representation, whieh gives us an adequate mathematieal deseription of the angular and
spatial variation of the intensity of the ineident and seattered light. It is demonstrated that the
average effeet of the eloud upon the funetion representing the ineident illumination is analogous
to the effeet of a linear system upon its input. We define impulses in each of the two forms of
the elementary-wave representation, and obtain the response of the eloud to eaeh of the impulses.
We show that the effeets of the eloud upon an arbitrary ineident distribution ean be determined
by means of a superposition integral involving the appropriate impulse response.

In this ehapter we eonsider only the intensity of the seattered light beneath a eloud. More-
over, we restriet our attention to the average behavior of the intensity. We argue in See. 3.1
that the intensity of the seattered light measured by an antenna is a random variable with ex-

tremely small varianee, so that it is always very nearly equal to its statistical average.

3.1 IDEALIZED CLOUD

The physieal eonfiguration of the idealized eloud to he analyzed is illustrated in I'ig. 3-1.
Its boundaries are infinite parallel planes separated by 7 meters; it is parallel to the earth,
whieh is represented as an infinite plane h meters below the lower boundary of the eloud. The
statistieal properties of the eloud (e. g., particle
density and size distribution)are uniform every-

where within its boundaries. The reeeiving an- INGIDENT
tenna on the ground has some aperture size and i

beamwidth assoeiated with it.

We shall assume that the partieles in the
cloud are spherieal and that all have the same 4 B
complex refraetive index m. Their radii are
assumed to obey a probability density funetion
p(a), 0 < a < «, and the average volume density o
of particles is taken to be d  per cubic meter. 7 /
As we pointed out in Chapter 2, the extinetion 2

eross seetion Ce‘(t(a) and the intensity seattering ;f __,-",/:;9

4

pattern l«‘a(e)ar(‘ precisely specified by the Mie /i,-,

2
theory for each individual partiele, at a given 7 7 7 7
GRDUND PLANE

wavelength., The average extinetion eross see-

tion over all the partieles in the eloud is Fig. 3-1. Physical configuratian of idealized cloud.

Cext : go Cext(a) p(a) da . (3-1)

We shall find it expedient to depart from eonventional practices to a degree, with respeet to the
particle seattering pattern. For ealeulations involving polydisperse suspensions, one would

normally use the average seattering pattern defined by the relation



w0

F(o) - ( I’_(0) p(a) da

24}

This is a spatial average, in the following sense: a small volume of the scattering particle sus-
pension, illuminated by a plane wave, will look like a point source of scattercd radiation if ob-
served from a sufficient distance. As we shall show later in this section, it is rcasonable to
imagine a volume large cnough to contain an cnormous number of scatterers, but small enough
(and having its scatterers far enough from each other) that ecach particle scatters the incident
light indepcndently. The above dcfinition of F(0) then follows.

In the present case, however, the particle diameters (roughly 10 to 40 microns in typical
clouds24) are much larger than visible-light wavclengths. The scattcring pattern at a given
wavelength is therefore strongly peaked in the forward dircction. The intensity of radiation
scattered through = radians is roughly 50 to 60 times smaller than the forward-scattered inten-
sity, for largc spherical par'ticlcs.25 We shall assumc that backscattered light is lost, for our
purposes, exactly as though it had been absorbed. (1f it were to contribute to the cffects of light
scattcred forward by a given particle, the backscattcred light must undergo a sccond reversal

of direction. Such rays will then be attenuated reclative to the forward-scattered rays by a factor

of perhaps 2500.) Thus we restrict our attention to the forward-scattering pattcrn I«‘f a(()), which
we define for a given wavclength as
v m .
B @ , le|s5
P, ()4
i 0 s elscwhere : (3-2)
Thec avcrage forward-scattering pattern for the particles in the cloud is
TR - _
Fe(0) = g\ I f'a((ﬁ) p(a) da . (3-3)

(o]

The average total power scattered through angles less than 7/2 by a particle illuminated by a

unit-intensity plane wave will be called thc avcrage forward-scattering cross section

cfé S F(0) dw

27 m/2
= g\ de g\ de sin 6 Ff(e) (3-4)
10 Eo)

/2 S
= 2r g‘ do sin® T (0)
RA(0]

We lump the avcrage total backscattered light together with the absorption loss, describing the

result in terms of the average loss cross section CIZ . By virtue of energy conservation, we

have

c =HE A : (3-5a)

) (3-5b)

10



the average fraction of the incident power which is scattered forward. For convenicnce in the
thin-layer model analysis to follow, we define a normalized average single-particle forward

scattcring pattern

1

1(0)2 (€)' Fo) . (3-6)

Neglecting near-field cffects, we see that the average secattered intensity at a point at spherical

coordinates (r, ©, ¢) relative to a particle is

5

_t
2

CRN . fey , |e|<
ATHCTEE

it
2
o |, elsewhere (3-7)

independent of the azimuth angle ¢. The ineident illumination is a plane wave of intensity Ii’
and O is measured from its propagation veetor.

We remark in passing that the Mie theory does not hold for ineident illumination other than
a uniform plane wave. Thus Eq. (3-7) is not strictly ecorrect in a multiple-scattering environ-
ment, where some componcnts of the light incident on a particle are approximately spherical
waves that result from scattering by other particles. As a practical matter, however, this prob-
lem may be ignored. For a very dense eloud,26 dV is on thc order of 1010 per cubic meter,
The corresponding average particle scparation is roughly

d;1/3 = 5X40~% meter (3-8)

At this distance, a spherical phase front is flat over a region the size of a partiele (say, 5 mi-

crons) to within about 6.2 X 10_9

meter, whieh is roughly 0.012X at a wavelength of 0.5 mieron.
We assume that the locations of the scattering particles within the cloud obey a Poisson dis-

tribution. This follows from the assumption that individual particle loecations are statistically

independent of each other, and that the loeation of cach of them is a uniformly distributed random

variable over the volume of the cloud. Specifically, let there be

n = Vd
v

particles in a large but finite volume V in the eloud, and let a given particle be present in a
given region 6v of V with probability 6v/V. Let all n particles obey the same probability law,
independently of each other. Then the population k of 6v obeys a binomial distribution, with

n) 6v.k _ bvyn-k

Pr [k particles in év] = (k (7) (1 V) . (3-9)

Now, if n becomes large and 6v/V becomes small, while their product

Sv

n v - dv6v (3-10)

remains moderate, the Poisson approximation27 holds. Thus

(d 6v)k -d_év
lim Pr [k particles in év] = —vk,— e " : (3-11)

Voeoo

11



The exponential extinction of waves traversing the eloud follows from the Poisson assumption.
Suppose a plane wave of intensity [(x) within the cloud progapates through a layer of thickness dx
whose boundaries are parallel to the phase fronts of the wave. On the average, cach particle in
the layer removes 63

ess as a spatial average over a large areca of phase front). We assume that the resulting local

1(x) watts of power from the plane wave (we visualize the averaging proc-

perturbations in the wave become smoothed out rapidly enough that its plane wave character is
preserved everywhere. Now, a section of this layer with unit-area faces contains rivdx particles,
on the average. The average intensity of the unscattered remnant of the plane wave at x + dx is

therefore given by

. = Ay o - 3-1
I{x + dx) = [{x) Cextdvl(x) dx £ { 2)
which we integrate to obtain
= xt v
(x)=1 e ) (3-13)

8]

By similar reasoning, we find that the extinction losses of a spherical wave traversing a shell

of thickness dr are represented by the equation

2 2 P
(r~ + 2rdr) [{r + dr) = r 'I{r) — r Cextdvl(r) dr s (3-14)

which we integrate to yield

10 —Co‘<td r
I(I') = —2 e : Y
Aof

(3-15)

Throughout this chapter we consider the average intensity of the scattered light traversing
a cloud. In Appendix A and Chapter 4, we study the statisties of the light in greater generality.
It is meaningful and useful to study only the average behavior of the intensity, as we do here,
beeause the varianece of the intensity is extremely small. Thus it is always very nearly equal
to its average value. An heuristic argument in support of this assertion is now given, with par-
ticular reference to the total intensity I measured by an antenna on the ground aimed at the under-
side of the cloud. Because of their independent random phases, the contributions arriving at the
antenna from each partiele in its beam add ineoherently. Let the intensity contributed by the
ith particle be the random variable €. Now, the contributions from two particles will be statis-
tieally decoupled if the light rays illuminating one of them have no effect on the other. This will

be true when the distance r between the two particles obeys the condition

r << De . (3-16)

so that the probability of double scattering within a distance r is very small. Thus the cloud
particles in a volume V of dimensions small compared to the extinction distance De will provide
a sct of signal contributions at the antenna which are essentially statistieally independent of each

other. The total intensity reccived from the volume V is a random variable
b= (-1
k

where k ranges over the particles in V. Let the number of such particles be K; assume that

12



, and that its mean is

v

the varianee of (k is o

(3-18)

Nl{_‘l

for every k. Let us make the intuitively satisfying assumption that each 4 varies over a rea-

sonably small range, so that its standard deviation is no larger than a number roughly eompa-

rable to its mean. Thus
v

m—Ck R s (3-19)

k= ok

wherc Ck is a factor of fairly modest magnitude (possibly cven less than unity). l.et us upper-

bound the quantities Ck by the relation

c, < max {c)= @ (3-20)

Then

k-1
K 2 —2
(Iy) (Iy)
2 v 52 v
a o @ 2 < Cmax X (3-21)
k=1

Under these assumptions, then, the ratio of the standard deviation of I to its mean goes as

-2

estimate for the volume of V would be a few eubie meters, so that K is of the order of the par-

\Y
Now, the dimensions of V are on the order of, say, 0.1 DP. Thus a very conservative

tiele density, a huge number. We conclude that I, is always very nearly equal to its average

\Y%
value. The same statement holds for the total intensity I measured by the antenna, which is a
superposition of a number of nearly-eonstant components similar to IV.
3.2 PLANE WAVE SUPERPOSITIONS

An essential feature of the analyses in this chapter is the representation of the intensities
of arbitrary propagating fields as superpositions of elementary waves. We require the user of
our results first to represent the incident illumination in aecordanee with the techniques we
shall define below. The scattered illumination that we predict beneath the eloud is to be inter-
prcted in the same way.

Now, it is possible in prineiple to obtain a eomplete and precise representation for a gen-
eral propagating field in the form of a superposition of uniform plane waves (see, for example,
Strattonzg). Such a technique is more general than is necessary for the representation of the
scattered light within and below elouds. Beeause of uncertainty in our knowledge of the loeations
of cloud particles, we take all the seattered wavelets to have statistically indepcndent random

phases, uniformly distributed over (-7, ), as we explain in Appendix A. Thus all the wavelets
at a point in space, including any unscattered residue of the ineident radiation, add in an incoher-

ent fashion (i.e., their intensities add). For our purposes, then, an adequate description of the

field at each point in space (even for the incident radiation, before it enters the cloud) need specify

13



only the intensities and directions of propagation of all rays passing through the point., We shall
define two different kinds of simplified plane wave distributions whieh provide this information in
a convenient form. The first of these is appropriate for wave configurations which are uniform
over any plane parallel to the ground, while the second must be used to represent finite beams
whose intensity varies with the lateral coordinates x and y.

The first plane wave distribution function we shall employ depends only upon anglcs of ar-

rival. It will be ealled the angularintensity distribution function l{«, 8), with dimensions of watts-

meter_z—radian_z. Its arguments are the orthogonal angular eoordinates defined in Appendix B
by the rclations

« O ecos @ ,

B =6 sin¢ s (3-22)

where O and ¢ are the polar and azimuthal angles in spherieal coordinates. As we explain in de-
tail in Appendix B, the transformation is approximate in roughly the same sense as the statement

that

311(1)0 s 4 ) (3-23)

Thus liq. (3-22) is prceisely correct at © = 0 and is good within 20 percent for
6 & 1.03 radians . (3-24)

The resulting restricted angular range of I(«,3) causes no real problems. For the situations we
shall eonsider, the condition (3-24) is satisfied by that portion of the scattered light beneath a
eloud which is intense enough to be of value for optieal communication. Thus the approximation
is valid for our objective, whieh is the development of a useful approximate analysis of the cloud
as a eommunieation channel, not a preeise deseription of the physieal phenomena involved. We
define I(«, B) by means of the statement that [{(«, 8) da dB is the total intensity borne by those plane
waves whose angles of arrival lie in the intervals (a, o + da) and (8, 8 + dB). Thus a hypothetical

antenna with unit aperture area whose power gain is unity over a solid angle
dw = da dp (3-25)

and zero elsewhere simply reproduces the intensity distribution incident upon it. When it is

illuminated by I{(«, B) the antenna measures a total power level

Pree (@ B8) - I@,p)dw . (3-26)

A more general antenna, with power gain pattern g(a, 8) and aperturc A, aimed in direction

(01, Bi) and illuminated by I(e, B), receives a total power level
P reg (Eqsfy) = gg Al(@,p) glay —a, B, — B) dadf . (3-27)

The double-impulse intensity distribution
Ha, B) = u (@ —e ) u (B—R) (3-28)

is taken to be a single unit-intensity uniform plane wave whose angle of arrival is (ao, BO).
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The second type of plane wave distribution we utilize will be ealled the power distribution

function P(e, 8,%,y). Its dimensions are also watts-meter >-radian”Z,

We define this function
by the statement that P(e, 8, X, y) do dB dx dy is the total power borne by those rays of light with
angles of arrival in a solid angle da dB at the angular position («, 8), whieh fall on an area dxdy
at the point (x,y) on a plane parallel to the ground. This situation is illustrated in Fig. 3-2. The

indieated angle

O—*J(yz+/32 (3-29)

is the polar angle in conventional spherical coordinates whieh eorresponds to the position («, B).

SOLID ANGLE
dadf

Fig. 3-2. Geometry for definition of P ().

The interpretation of P( ) in terms of plane waves is complieated by the faet that the phase
fronts of an arriving plane wave are not parallel to the x-y plane. Referring to Fig. 3-2, we ob-
serve that the area dxdy projeets into an area dxdy €os© on a plane parallel to the phase fronts

of a plane wave having angle of arrival («, 8). Thus the power distribution funetion

Pla, B, x,¥) = uo(a—ao) uo(B—Bo) (3-30)
must correspond to a uniform plane wave with angle of arrival (ao, [30) whose intensity is

I =secO
P o

= sec (/0102+302) . (3-31)

Suppose that a plane wave arriving from (ao, ﬁo) had some nonuniform intensity given as a fune-
tion of the x- and y-coordinates by the expression Ip(x,y). Clearly the corresponding power dis-

tribution funection would be

Pla, 8, x,y) = Ip(x,y) cos O uo(a - ao) uo(ﬂ - po) . (3-32)

The quadruple-impulse power distribution funection

Pla, 8, x,y) = uo(a - ao) uo(ﬁ - [30) uo(x - xo) uo(y - yo) (3-33)
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corresponds to a "plane wave" arriving from (ao, 30) whose intensity is

Ip(x, y) = sec eouo(x -~ xo) uo(y = yo) ) (3-34)

This can be envisioned as, for example, the limiting case of a plane wave whose intensity is
Gaussian in both x and y and is multiplied by sec OO. In another sense we may think of it as

an individual ray, carrying unit power. An idealization, like the familiar impulse in linear sys-
tem theory, Eq.(3-33) will be used only as a mathematical artifice in studying the behavior of
waves which could exist physically.

A hypothetical antenna which reproduces a power distribution function P( ) incident upon it
must have an aperture dxdy which remains fixed in the x-y-plane, rather than the plane perpen-
dicular to the antenna boresight axis. The power gain of the reproducing antenna must be unity
over an incremental solid angle dw and zero elsewhere. I.et the location of the antenna be de-
noted by (xi, yi), while its pointing angle is (ai, 51). Then the power recceived by the antenna

when it is illuminated by P(a, 8, X, y) is given by
prec(ai’ﬁi’xi’yi) = P(ai,ﬁi,xi,yi)dwdxdy : (3-35)

In order to write an cxpression for the power received by an arbitrary antenna, we require

that its apcrture be described by an aperture function A(«, g3, X, y) defined over the x-y-plane,

. 5-45-11798]

= TELESCOPE

OBJECTIVE AREA
Tett
e
! //
/Q ¥
g

/
/ // Fig. 3-3. Aperture function geometry.

/
- 1 | Qoff sech
1 |

|
X

which includes any variation of the aperture with the antenna pointing angle (@, g). As an example
of what we mean by this statement, consider a conventional telescope pointed at some angle («, 3)
whose effective aperture area {(on a plane perpendicular to the axis of the telescope) has a con-
stant value a__.. For this antenna, the function A( ) that we require is a function of x and y

eff > >
whose area is a,pp Sec (Na® + 87); that is, it is the region on the x-y-plane which projects into

a on the aperture plane. The situation is illustrated in Fig. 3-3. In addition to the aperture

eff
function, we require knowledge of the power gain pattern g(a, 8) of the arbitrary antenna. When

illuminated by a power distribution function P(e, 38, x, y), this antenna receives a power lcvel
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o0

2
(“1’ /31,x1,y1) 5‘8‘8? dadpdxdy Plo, 3, x,y)

1
rec

-glay —a, B —-B) Alay —a, B, =B, Xy =X, ¥y, -y) . (3-36)

1

One final comment about the function P( ) is in order. It is obvious that the function depends
upon the vertical coordinate z in addition to the four arguments listed. In our development we
are able to suppress explicit indication of this dependence, however, because the vertical loca-

tion is clearly specified in the context at each step of the analysis.

3.3 THIN-LAYER MODEL

We consider a subdivision of the cloud into parallel layers of thickness !Zo. each of which is
treated independently. Since the particles are assumed to scatter only in the forward direction,
we can consider each layer successively from the top of the cloud downward. The desired re-
sults are obtained in the limit as Eo goes to zero. While our analysis appears to be new, the
thin layer idea itself is not. llar‘tel,29 for example, calculated the angular distribution of diftuse
scattercd light intensity in a thick cloud by computing the effects of successive layers of scat-
terers. He used an exceedingly complicated approach, involving the expansion of hoth the single-
particle scattering pattern and the scattcred light intensity distribution in associated l.egendre
polynomials. Another approach was used by Iritz in the work mentioned in Chapter 2, in which
he divided the cloud into layers of fixed optical thickness 0.25. By adding the contributions of
diffuse scattered light "generated" independently in each of the layers, he derived a diffusion
equation for the angular distributions of transmitted and reflected light.

— We assume that the thickness EO of the
layers in our model is small enough at the out-
S set that the probability of multiple scattering

within a layer is vanishingly small. Thus most

of the light rays traversing a layer emerge with-

- — J_ out having been scattered, and a few undergo a
FE T single scattering, but virtually none of them is
T

scattered more than once. An alternate state-

‘_;

ment of this assumption is the condition that

0 =2E D (3-37)
O e

whence the extinction attenuation exp[—fo/l)C]

is very nearly unity. llere we implicitly inter-

A pret the extinctionattenuation as the probability

- / Z 7707, 2 that a light ray traverses a distance EO without

GROUND PLANE

being scattered. This and related ideas will he
Fig. 3-4. Layermodel of the cloud. discussed in detail in Chapter 4. Now, since £
is so small and will be driven to zero ina later
step anyway, we will not be changing the gross behavior of the model if we assume that all the
particles in each layer are physically located on a plane at the center of the layer. Thus we ar-
rive at the simple model illustrated in Fig. 3-4, in which each particle in the cloud is located on
one of the N parallel planes in the region occupied by the cloud. For a cloud thickness of 7 me-

ters, we have
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N=4 . (3-38)
o
Since we assumed the particles were Poisson-distributed over the volume of the eloud with aver-
age density dv meter_3, it is appropriate to let them be Poisson-distributed over each of the par-

allel planes with average density
- & & master 2 (3-39)
P =A% -

and to let the distribution on each plane be statistically independent of all the others.

IFor the present we shall assume that eaeh particle has zero velocity. The inclusion of
questions of Doppler dispersion at this point in the layer-model analysis leads to excessive com-
plexity without changing the results. This issue will be addressed by means of an alternate tech-
nique in Chapter 4.

The determination of the average impulse responses of the cloud involves averaging over all
possible sets of particle locations in the cloud. This problem resolves itself into averaging sep-
arately over the Poisson distributions of particles on thc plane at the center of each layer, since
they are assumecd to be statistically independent of each other. Eaeh layer is considered succes-
sively in the analyses to follow, from the top of the cloud downward, and an implicit averaging
proeess is carried out for each layer in turn.

For the sake of convenience, we shall use the term "layer" somewhat loosely hereafter, to

refer to the plane and its Poisson-distributed particles at the center of the actual eloud layer.

3.4 ANGULAR IMPULSE RESPONSE hI(a, B; @0 ﬁo)

When a cloud is illuminated from above by a uniform plane wave, the light emerging below
it will be spread out over a range of angles of arrival. In terms of the angular intensity distribu-
tion funetion I{ @, 8) defined in Sec. 3.2, the incident plane wave is equivalent to a two-dimensional
impulse. The avcrage angular dispersion of the light emerging below the eloud in response to
this illumination is shown to be equivalent to the double-impulse response of a two-dimensional
linear filter. We show that the response of the cloud to an arbitrary plane wave illumination
is given by a lincar superposition integral with the impulse response as its kernel.

The angular impulse response hl(a, B; o BO) is defined as the angular intensity distribution
at eoordinates («, 8) below a cloud in response to a unit double impulse at eoordinates (ozo, {30) in-
cident on the top of the cloud. We derive hl( ) by finding the impulse response hl(ai’ Bi; o BO)
of a single layer of thickness 10, and writing an (N — 1)-fold two-dimensional superposition inte-
gral to obtain the response of an array of N layers. We then solve the integral in the limit as
N goes to infinity and the layer separation lo goes to zero, while the cloud thiekness

T = N{ (3-40)
o

remains constant.

We begin by transforming the normalized average single-particle forward scattering pattern
f(©) of Eq.(3-6) into a function fi(oz, B) defined over the o — 8 domain. As we explain in Appen-
dix B, the result is

sin ('J 012 + [32) ,\/ﬁ
fi(a,B)=—————— f( @ kB ) . (3-41)

a2+[32
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Fig. 3-5. Averagessingle-particle scattering
pattern f](o,ﬁ).

A typical fi(a, B) is illustrated in Fig. 3-5, where we have indicated that the function peaks up

sharply near @ = g = 0 and is zero for © > 7/2. We shall find that fi( ) affects the angular im-

pulse response hl( ) only through the width parameters War and Wﬁ' They are defined for con-
venience as
W = [S‘ daS dge”f, (a, [3)] (3-42a)
o e e 1
and
o0 0 2 1/2
W_ =W = \S‘ do g‘ d fi-(an )] D (3-—42b)
8 o [ . J . B Ll B

by analogy with the marginal standard deviations of a joint probability density function. Wc re-
mark that the "covariance" @ is zero, because of the circular symmetry of fi(a, ).
In accordance with our discussions in Sec. 3.2 and Appendix B, we shall replace the metric

cocfficient
sin («/az + BZ) 2
_ sin®
— 3 =)
arz + [32

by unity. Thus we use the approximate single-particle scattering pattern

(@, p) = f(Jaz , ;32) (3-43)

in most of the work to follow. As we point outin Appendix B, it is necessary toinclude the metric

coefficicnt in the variance calculations [Eq. (3-42)] because the integrand is weighted heavily at

larger values of © by the factor a? or [32. We shall improve the accuracy of our results by in-
cluding the factor {sin©)/© when wc transform our ultimate answers back into polar coordinates.
In all the intermediate calculations in the analysis below, however, we shall assume that the met-

ric coefficient is unity.
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The geometry for the derivation of the single-layer impulse response hi(ai’ Bi; w o /io) is
shown in Fig. 3-6. The antenna in the figure is the hypothetical reproducing antenna defined in
connection with Eq.(3-26) in Sec. 3.2. At its indicated location lo meters below the layer, it
measures the average angular intensity distribution function which will illuminate the second
cloud layer when we add it to the model. The antenna is aimed in the direction ((Yi, ﬁi)’ where

o, and B, are measured in the directions indicated at the top of the figure, and

B 2 2
01-- oz1 +[31 . (3-44)
The distance from the antenna to the layer, measured along the axis of its receiving "beam,"
is lo secOi. At that distance, the cross-sectional area of the beam is IOZ se(‘,z()1 dw. Since

this cross section is inclined at angle 81 to the layer, the region on the layer which lies in the

beam of the antenna has area
A = loz sec381dw 3 (3-45)

The incident plane wave illumination, represented as an angular intensity distribution, is the

unit double impulse uo(af - afo) uO(B - [30); the polar angle indicated in the figure is

= 2 2
o, @s By : (3-46)

The antenna in Fig. 3-6 receives scattered radiation from the layer if and only if a particle
is present in the region 6A. Given that a particle is there, we use Egs.(3-7) and (3-43) to write

the conditional average scattered power
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S

B (@ By @ B ) E ———— M (&, — @, B, —p) (3-47)
rec, sca' 1’1 o' "o lzsecze 5 G | o’ "1 (¢}
o 1
received by the antenna. (Rccall that both Qand f,(@, ) are averaged over the distribution of
particle sizes in the cloud.) Now, by the Poisson assumption, a particle is present in the incre-
mental area 6A with probability

p(SA-p£02 sec361dw : (3-48)

where p is the average particle density [Eq. (3-33)]. Thus the average scattered power received

by the antenna in Fig. 3-6 is given by

C_fplc;2 sec391dw
prec, sca(ai' '31" aO' [30) - 2 2 fi(ai = a’o’ '81 - Bo)
f  sec O
o 4
:pCfsece1 fi(ozi—(yo, ,31—30) dw . (3-49)

The unscattered light emerging below the layer is assumed to be a plane wave propagating

in the same direction as the incident wave. Its average intensity is reduced because of the ex-

traction of cht watts of power from the wavc by each particle in the layer, where cht is the

average extinction cross section over all particles in the cloud. Now, an area sec Oo in the

layer projects into unit area on a phase front of the incident wave. Thus each unit area of phase

front has its path obscured by p sec eo particles, on the average. The average intensity of the

unscattered plane wave emerging below the layer is therefore [1 —pCext

tenna can receive this plane wave only when o, = a and ,81 = ﬁo' the average unscattercd power

sec eo]. Since the an-

rcceived by the antcnna is given by

@ ,p3)=01-pC

Prec, unsc(ai' By ®giby ext Secei) uo(ai - 0‘0) uo(ﬁi - B )dw (3-50)

o]

in which we were able to write secO, in place of sec 60 because the impulses constrain the two

1
angles to be equal. We observe, however, that the unbounded growth of secO, as 0, approaches

+7/2 will cause the coefficient in Eq. (3-50) to become negative whenever

1 1

pcext

|01| > sec” (3-51)

We cannot permit this to occur, since it would violate the law of conservation of energy. A nega-
tive coefficient in Eq. (3-50) would correspond to the absorption by the particles of more power
than is incident on them. The difficulty arises because, although 20 is small enough to preclude

double scattering, 10 secO1 is not. We avoid the problem by replacing sec6, in Eq. (3-50) by

1
secO, |ei|<sec_1 1
pC
P A cxt
sece1 =
L i elsewhere . (3-52)
pC
ext

This artificc becomes unnecessary in the limit as 10 (and hence p) goes to zero. Upon a mo-

ment's reflection, we see that the same substitution should be made in the expression (3-49) for
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the average scattered power. When the inequality (3-51) holds, IEq.(3-52) actually expresses the
fact that the path of the plane wave is completely obscured by particles, on the averagc. Thus

e

all its power is removed by the particles, and a fraction q/( is re-radiated as forward-

scattered light. This behavior is expressed precisely by the :;(;lacement of seeO1 by s/e\ce1 in
Eq. (3-49).

These substitutions having been made, the sum of Egs. (3-49) and (3-50) is the total power
received by the reprodueing antenna in Fig. 3-6. In view of Eq.(3-22), the average angular in-

tensity distribution incident on the observation plane is

=
[dw) [prec,unsc )i I:)rec,sca( ) ’ (3-53)

This distribution is, by definition, the average single-layer unit double-impulse recsponse.
Writing it out in full, we have

N
hi(ai’ﬁi; @, /30) = (1 —pCext seeei) uo(oz1 = n/o) uo(B1 —[30)

—
+pCfseceif1(oz1~ozo, [Ji-ﬁo) . (3-54)

The response bclow many layers follows from an argument which is familiar from lincar
system theory. Let us think of an arbitrary incident distribution I(ozo, /30) as a sum of very
narrow reetangular pulses. Becausc of the linearity of Maxwell's equations, the scattering proc-

css is linear. In a straightforward fashion, then, we construct a linear superposition integral

R(ai,ﬁi) =Sdn0§dﬁo l(no’ﬁo)hi(ai’ﬁi; a ,B) (3-55)

0O "0

to ealculate the average response R(ozi, Bi) below a single layer to the arbitrary illumination
I(ozo, BO). It follows that the double-impulse response hN(ozN, BN; @, BO) of an array of N par-

allel cloud layers lo meters apart is given by the (N — 1)-fold two-dimensional superposition

hN(n/N,ﬁN; (yo,ﬁo) - SS...SdaN_i...dai Sg"'SdBN-i"'(iﬁi

thylog By @ g Bnq)- - byl@y By @, 8)) . (3-56)

integral

The impulse response of the actual cloud is

hl(oz, B; 010, /30) = lim hN(Oz, B; 010, /30) ; (3-57)
N— 0
e 0
The question of the limits of integration in Eq. (3-56) requires a certain amount of discussion.
Within the context of our thin-layer model, a problem arises whenever « and g lie outside the

region

o = 012+/32<% : (3-58)

This would eorrespond to seattering through accumulated total angles large enough that some
light was propagating upward toward the top of the cloud. Our model will account for the loss

of this light by simply setting hN( ) equal to zero outside the region [Eq. (3-58)], whenever it
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extends that far. One way to do this analytically is to let the integration limits in Eq. (3-56) be
such that (ozi2 + Bf)g (n/2 )2 for all i. The other alternative is to let all the limits be £=, and
then truncate the final result outside Eq. (3-58). Both schemes were studied in some detail during
the course of this research. Attention was focused upon the analogs of Egs. (3-56) and (3-57) for
a two-dimensional cloud, which were similar except that all the g-variables were absent. Appen-
dix C describes the results of a numerical solution obtained by Zabor‘owski,30 who programmed
an (N — 1)-fold one-dimensional integral equation similar to Eq. (3-56) which had the limits #7/2
on all integrals. He simulated the solutions for a range of optical thicknesses, using values of

N such that 10 was equal to O.SI)e. Another approximate solution was obtained by letting
N
seco, =1 (3-59)

everywhere in the integral, using the integration limits +% on all integrals, and applying the
Central Limit Theorem. The two solutions were essentially identical over the central region
(specifically, the region lal S 20&, which includes 95 percent of the area under the curve). A
more detailed discussion of the two solutions is presented in Appendix C.

We carry out a Central Limit Theorem approach to the solution of Egs. (3-56) and (3-57) here,
with integration limits #«, The factors hi( ) in the integrand must fulfill three requirements in

order that this technique be applicable:

(a) hi( y>0

(b) 5‘5‘da dg hi(a,p; 0,0) = Kh< o

-0

(¢) h (e, Bis ap 4By _y) =hyla, —a, 4, B =B _4) - (3-60)

Requirements (a) and (b) are clearly satisfied. We meet condition (c) by setting

Seco, -1 [Eq. (3-59)]

everywhere. We note that this approximation is accurate within 10 percent for

le.ll £ 0.42 radian (3-61a)

and within 20 percent for

lo.| < 0.58 radian (3-61b)

and that these numbers are roughly comparable to the other angular restrictions on our analysis.
Thus we expect that, like the effects of our earlier approximations, errors due to Eq. (3-59) will
become important only out in the tails of the final result. Making use of Eq. (3-59), then, we

approximate h1( ) of Eq. (3-54) as

hylag. B @ g By_g) = (1 —pCoppd ulay — @ ) ug(By — By o)
+pCff1(ozk—ak_1,3k_3k_1) ) (3-62)
It will be convenient for the kernels in the integrand of the multiple integral equation to be nor-
malized to unit volume. Integrating the right side of (3-62) to find the total volume under the

function, we have
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Kha = ‘Y‘g\da dg [(1 — PCext) uo(a/) uo(B) + PCT.ffi(a/,B)]

L= p(Cext

-Tp
-1 _pCT; . (3-63)

The quantity (_! is the average loss cross section per particlc defined by Eq. (3-5) in Scec. 3.1.

Defining the normalized function

B~ e B By ) = Kh-:: [ =0C o) Bl =~ Ty DU B =49
+oCfy (e —ay B =B ], (3-64)
we write
holag By @ g0 Byg) = Kpahyal @y = @ g0 By — B4} - (@58

The integral cquation (3-56) then becomecs

PPN |
hN(ozN,ﬁN; ao,BO) o Kha 55‘ S‘da/N_i...dai . S‘S‘ S‘ dﬁN-i"'dﬁi

chppleg—an o By = Byogd--hyplay e By —By) o (3-66)

The approximate solution of this equation for large N follows immecdiately from the Central

Limit Thcorem for two dimensions.31 Wc have

-N 2 2
h(awv,Bx; @ ,B. )= __I\ha— * exp |— (aN 010) — (ﬁN_BO) (3-67)
N'"'N’"N’* "o’ "o’ ZﬂNohachB ZNO'Z ZNO’Z )
ha hp
in which
Nol =N wS‘wdad a®n, (a, p)
ha ~ B fa %8
-0 - 0O
A
4 a2 N2 A CW
=NEp g pE W= ——— (3-68)

a
1 —Io del

and NUSB is given by a similar exprcssion involving W 2. The quantities Wa/ and W are the
single-particlc scattering beamwidth parameters defined by Eq. (3-42). Since they arc equal,

Ne 2 We recall that the cloud thickness

ha is equal to No

2
hg’
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and that

Cp "C%xt
in tcrms of the average forward-seattcering cfficiency s defined by Eq. (3-5b). The extinction
distance in the cloud is

l)e [(lv( i

EE

and the optical thickness of the cloud is

T

Nc D

e

Using these rclations we reduce Eg. (3-68) to

2
y.N W

N"hza N"}f -tea (3-69)
B 4_g4aC
ov {

In the limit as N goes to infinity (while o E 7/N goes to zero) lq. (3-69) becomes

>

L2 2
nyeW % e

- 032 . (3-70)

This limiting process was alrcady implicit in the application of thc Central Liimit Theorem.

The coefficient in Eq. (3-67) bceomes

N+1 —, N+1
- Kha o (4= zodv(’l)
LTl . S
N—+ Uozgﬁ Ni=== a” B
EO—'O EO-’O
exp [-N (1 —vJ)]
= =" f i (3-71)
BT 08

Finally, then, we ean writc down the angular impulse response of the cntire eloud. We have

hi(a, g o, B = 1\1;1_110 hole, 8 @, 8))
20-’0
exp[-N_(1— 7)) (@—a)? (8-p)°
= > & exp|- 5 — 2 (3-72)
mjozUB 20, ZO'B

Since the singlc-layer responsc (3-62) contains an impulsive term, it is clear that Eq. (3-72)
should actually contain an impulse as well. This term eorresponds to the unscattered residue
of the incident wave. It is easily shown that the coeffieient of the impulse is exp [—Ne], however,
and we assume Ne to bc large enough that this term is negligible compared to Eq. (3-71).

We observe two interesting and intuitively satisfying featurcs of Eq. (3-72). First, the vari-

ances (3-70) are proportional to the quantity nye’ which is preciscly the optieal thickncss the
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cloud would have if its particles were lossless, in the sense that (_3; were zero and Cext were re-

duced to C_f Second, the integral of Kq.(3-72) on « and g is exp{— Ne(i - yf)], roughly the grand

total of all scattered light which penctrates to the bottom of the cloud. This is precisely equal to

the extinction attenuation which would be suffered by a plane wave traversing the cloud if the par-

ticles were completely lossy, in the scnse that Cf were zero and Cext

Having derived the angular impulse response (3-72) of the cloud, we can immediately write

were reduced to C—I

down its response R{w, g) to an arbitrary incident distribution Ha, g). Repeating the superposition

arguments used in connection with Eq. (3-55), we have

R(a, 8) =SS‘ Ua_,B) hyla, g a,B)de dB . (3-73)

We can now obtain explicit numerical criteria for the rather vague condition stated earlier
that our results should be concentrated about & = 0, in order that use of the coordinates « and
B be permissible. After all intermediate calculations have been carried out, and we have ar-
rived at a final answer {such as Eq. (3-73), for example], it will generally be appropriate to
transform the result back to the conventional polar coordinates © and ¢. As we explain in Ap-

pendix B, this is accomplished by using the transformations
a =6 cos¢ |,
B=6sin¢g ,

multiplying the function by the metric coefficient ©/sin®, and setting the result to zero for
© > n/2. The metric coefficient can be important in physical situations, as we shall scc in Appen-
dix G, because the parameters of actual clouds can often be such that the angular intensity distri-
butions below them are nearly flat over most of the range of 8 from 0 to n/2.

A numerical criterion for the maximum permissible values of o, and oB in Eq. (3-72) follows
when we impose the condition that the value of the (6, ¢) transformation of Eq. (3-72) at 6 = /2
shall not exceed its value at © - 0. In particular, let us suppose that @ = B = 0 in Eq. (3-72),

2
, we have

B

and let us transform hl(a, g; 0, 0) into a function g(©, ¢). Recalling that 02 o
2
[s] o
g(e, ¢) = C1 sine &P [~ —2] 5 (3-74a)
20
o

where

exp[— Ne(i - yf)]
4 27r02
o

(&)

(3-74b)

The requirement that

803, 9)< g0, 9)

leads to the condition

—n&ex _._”_2__ <1
sinw/2 p 8 2| ’
Tu

which is satisfied by
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2

05 - YfNeW(zs m
273, (3-75a)
or
o,S 1.68 . (3-75hb)

Now, we indicate in Appendix G that Woz and Yg are very nearly 0.3 and 0.96, respectively, for

most cloud particles at visible wavelengths. For thesc values Eq. (3-75a) yields the result

N <316 . (3-75c¢)

We thereforc have confidence in our analytical results for optical thicknesses less than about 32.
In Appendix G we use published meteorological data to show that Eq. (3-75c) is satisfied by
a broad range of naturally occurring clouds. [For clouds of greater optical thicknesses, we are
inclined to stipulatc that angular intcnsity distributions are practically flat for all © < n/2.

Equation (3-75a-c) is subject to a reasonable physical interpretation. We recognize that
about 0.9 of the volume under a symmetric two-dimensional Gaussian function is contained within
a radius 20 about the origin. In particular, 0.9 of the volume under the cloud impulse response
hI( ) of Eq.(3-72) is contained within the region

2

O - az+/3 sZoa

When o satisfies Eq. (3-75b) with equality, this becomes very nearly

3.5 JOINT IMPULSE RESPONSE h (,6,%,V; @,B,,%qY,)

A narrow beam of light traversing a cloud becomes spread out in both angle of arrival and
cross-sectional area. We shall modcl this behavior of the cloud as a four-dimensional linear
system, which is a natural extension of the results of the preceding section.

The joint impulse response hp(a, B, Vs e B

o’ "o
function at coordinates (¢, 8, x, y) on the underside of a cloud when a quadruple-impulse beam of

> X yo) is defined as the power distribution

the form of Eq. (3-33) is incident on the top of the cloud at coordinates (ao, Bo’ X yo). As we
showed in Sec. 3.2, the impulsive distribution [IEq. (3-33)] is a unit-power beam with infinitesimal

angular dispersion which has intensity

sec eouo(x - xo) uo(y - yo)

= sec( / aoz + /302 )uo(x - xo) uo(y - yo) watts-m~% . (3-76)

We use the same technique in deriving hP( ) that we used in finding hI( ) in the preceding section;
that is, we obtain the single-layer impulse response, construct an (N-1)-fold linear superposition
integral, and take a limit as N goes to infinity.

The geometry of the single-layer configuration is shown in Fig. 3-7. It is convenient to begin

,B.,% ,y ) to the hybrid incident distribution

by writing down the response Si(ai’ﬁi’xi’yi; @By XY,

Pi(a, Bl i) = uo(a — ao) uO(B - BO) u_i(x - xo) u_i(y -yo) . (3-77)
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Fig. 3-7. Geometry forsingle-layer
power function response.

e |
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s
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in which 11_1( ) is the unit step function. Equation (3-77) corresponds to a plane wave with angle

of arrival ((v(), /30) whose intensity at the surface of the layer is

B 25 e
scc( @+ Ay ) : itf o Z X, and vy 2y,
[pi(x,y) =

0 , elsewhere 5 (3-78)

The quadruple-impulse response hi( ) of a single layer is obtained by differentiating Si( ) with

respect to x, and Yy This step is permissible specifically because: (a) the scattering mecha-

nism is linear, and (b), Si( ) turns out to be a function of the differences (x1 — xO) and (y1 = yo).
The antenna in I'ig. (3-7), which is the reproducing antenna defined in connection with

Eqg. (3-35) in Sec. 3.2, is pointed in the direction ((vi’ By). lts effective aperture area in the plane

perpendicular to its boresight axis is dxdy Cosei. The coordinates (XA, yA) of the center of the

region 6A on the layer are given by

XA = 10 tan ©

g COS @, X

1

e /zoe cos ¢ & Xy

1

S 1001{l + Xy (3-79a)
and
Yp < 10 tan@1 sinq)1 + A

MR BYy o (3-79b)
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where ?y is the azimuth angle in sphcrical coordinates of the direction in which the antenna is
pointed. It is clecar that the antenna receives a signal only when 6A lies in the region over which

the incident illumination [Iiq. (3-77)] is nonzero; that is, we must have

Loy " 2y = (3-80a)

and

LB F 2T (3-80b)

simultaneously.
Given that the conditions of Eq. (3-80) obtain, and given that a particle is present in 6A, we

can write down the conditional avcrage scattered power

secOO'C_;
> > fi((y1—(yo, Bi_ﬁo) cose1 dxdy (3-81)
10 sec 61

rcceived by the antenna. Our reasoning is analogous to that associated with liq. (3-47) in Sec. 3.4.
The extra factor scc 0O in (3-81) is the intensity of the incident plane wave, and the antenna aper-
turc area cos 61 dxdy also appears as a factor. We express the conditions (3-80) by multiplying
(3-81) by the function

u (xi—x0+loai)u_1(y1—y +IO/31) . (3-82)

-1 o)

The condition that a particle be present in 6A is removed as beforc by multiplying (3-81) by the

probability

poA ploz sec3€)1 dw [Eq. (3-48)]

that a particle is there. Thc result is

(@, By %Y y5 @g BoaXay,) =pCpsced flay —a, g —6)

p 0

rec, sca

‘u L (x

LE T S loai)u_i(yi—y

. + 1031) dwdxdy , (3-83)

(o]

the average scattered power rcceived by the reproducing antenna. By reasoning similar to that

preceding Eq. (3-50), we write down the average unscattcred power

P () =(1-pC

T— ext S€C eo) sec eo cos 61 . uo(oz1 — aro) uo([j1 - B)

o]

. u_i(x1 - X, +loa1) u—i(yi i +1031) dw dxdy (3-84)

received by the antenna. Again, the factor scc 0O cose1 accounts for the incident intensity and
the effective antenna aperture. But the impulses in « and g in Eq.(3-84) constrain 0o and 01

to be equal; hence

secH® cosB, =sccO cosO 1 . (3-85)
0 o) 0

1

In view of Eq. (3-35), we see that thc average power distribution function below the layer in re-

sponse to the hybrid input [Eq. (3-77)] is
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-1
51( ) = [dw dxdy] [prec,unse( )t pr'eC, sca( 1

— e ]
=[(1 - pCext sec6) u la, — ozo)uo([i’1 —ﬁo) +pCy secO 1(oz1 —a, By - ﬁo)
-u_1(x1—x0+foa1)u_1(yi—yo+£0ﬁ1) ; (3-86)

The rcplaeement of see 90 by s/eéoo follows from the same reasoning that we used in eonneetion
with Eq. (3-52). As we stated earlier, the hybrid response Si( ) is a funetion of the differenees
(x1 —xo) and (y1 - yo). Now, the quadruple-impulse incident distrihution (3-33) is the second
partial derivative with respect to x and y of the incident wave [Eq. (3-77)] which gave rise to

the output s,( ). The impulse response h,{ ) is therefore the derivative of s,(); that is

a2
h,() = o0 [s1( ) . (3-87)

1 9%, 9y,
The result is a duplieate of the rightmost member of I3q. (3-86), exeept that the two unit-step
funetions u_1( ) are replaeed by unit impulses uo( )
As in Sec. 3.4, we exploit the linearity of the model to eonstruct an (N —~ 1)-fold superposition

integral for the response h,\,( ) below N layers fo meters apart. We have

hN(afN, BN’ YN %o ﬁo, X yo) = ‘S“S . ‘S‘ duzN_1. : .dar1

'\S‘\S‘"'\S‘dBN-1"'dﬁ1 ‘Sis‘...‘s‘ de_1...dx1 ‘S“S‘S d,yN_1...dy1

-h1(oz «

N AN XN YN N1 ANt FNoar YNoe)

-h1(a1,ﬁ1.xi.y1; @ By xo,yo) : (3-88)

The limits of integration on all the o and g variables are +7/2, and the x and y integrals have
limits + o,

Equation (3-88) cannot be solved by application of the Central L.imit Thecorem, beeause h1( )
is not a function of the differences of its arguments. Iiven though we ean replace se(‘Gi by unity
as before, the two impulses uo(xi =X 4t loai) and uo(yi = g * !Oﬁi) cannot be written as func-

tions of ((vi - (vi_1) and (ﬁi - B ). The equation has been solved, however, by a mecthod whieh

i-1
is approximate in the same sense as the technique used in See. 3.4. Beeause the procedure is
long and involved, only the final answer is presented here; the solution is carried out in detail
in Appendix D. In the limit as N goes to infinity, the result is the four-dimensional jointly

Gaussian function

-1
) N 2 2 2
hp(a, B:Xy; @, B, X, yo) = exp [—Ne(i - ‘Yf)] [47r 7 40950y J(i —pax)H —pBy)]

ool 1 (oz—ozo)2 , (a—ao)(x—xo+nvo) . (x—x0+7(vo)2
p 2 2 ~ “Pax g o 2
i 2(1—pax) G QX %
’ 1 (8- p,)° B=B )Ny -y, +78) (y—y, +718)°
-exp|— 2 _ _ 2 g o g & = , (3-89)
2(1—p2) UZ By UBUy 02
L By B y
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in which

2
2 _ 2 2 g2
oa—nyeWa s oy— 3 Uﬁ 5
2 2
o) =v.N W ; g —_ﬁ
B e g P =gy =7 (3-90)
z_ﬁ 2
%% 3 %a ’

The quantities Y le and W2 are the single-particle scattering pattern parameters defined
previously. The quantity 7 is the physical thickness of the cloud in meters, and Ne is its opti-
cal thickness.

Now, since hN( ) was defined as the impulse response over a plane IO meters below the Nth
cloud layer, Eq.(3-89) is a power distribution function over the lower boundary plane of the cloud.
In many situations we will want to know the impulse response over the ground plane h meters be-
low the undersidc of the cloud. One could calculate the nccessary transformation gcomectrically,
but it is easily obtaincd from the single-layer impulse response hi( ) that we have already de-
rived. Let us visualize adding a fictitious planar layer lo meters below the cloud, on which the
average particlc density p is equal to zero. The quadruple-impulse response h'i( ) of this layer

is obtained from hi( ) by replacing p by zero and 10 by h; that is,
1 . - >y et —— — -
hi(a, B.x,y; @, B X yo) : uo(a nzo) uo(ﬁ ﬁo) uo(x x,t ha) uo(y oo hg) . (3-91)

The impulse response hG( ) of the cloud, measured over the ground, is given by the superposition
integral

hala, B, %,y a ,B,%,5,) = SSSS de'dg' dx' dy'

< h! . 1 1 1 ., 1 1 1 s 8
hile, 8, x,y; o', g8, x",y'") hp(a,ﬁ,x,y, @LBXLY) - (3-92)
The solution of Eq. (3-92) is another four-dimensional Gaussian function,

hila, 8,%,y; @, B, X, 5,) = exp[—Ne(i =]

i’ J(i— P L )—1
P aC% a7 56 %G P axG P yG
2
L i <(a—-ozo) e (a—ao)(x—-xo+('r+h) ao)
2(1 —pixG) O'CZYG el T aGxG
(x—x_ +(7 +h) o )2
+ O O
7
%G
2
- 1 <(B Didt o RSy, by
’ - W 2 T eyG T 5GovG
2(1 pﬁyG) TG BG Ty

+

2
(y—y_ +(t+h)g)
9 - > , (3-93)

2
oyG
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in which

22
TG " 9%

02 ,02

BG B

2 2 2 2

TG " Ox 2p axhax > +h Gr .

2 2 2.2

C...v =0 2 heo. o, +h'o N

y¢ y Py %y B

paxax—hc(y

P S ’

axG TG

. — ho

P ay - Py% %8 (3-94)

vy %G

We notice that the coefficient in front of the Gaussian cxponentials in h(‘( ) is identical to the
coefficient in hp( ), as it must be. In both cascs, it is
-2
3 cxp[—Ne(i - vf)] [WvaNeWaWB] (3-95)
We notice also that the integral of either hC( ) or hp( ) over all «, B8, x and y is equal to
exp[— Ne“ — 'yf)], which is approximately equal to the total power penetrating to the bottom of
the cloud when the unit-power quadruple-impulse beam is incident on the top of it.
We can immediately write a superposition integral specifying the response P(‘((v, B,%,y)
X
over the ground beneath a cloud illuminated by an arbitrary incident power distribution function

Pi((yo, ;30, X y‘)). Specifically,

Pola, 8, x,y) = ‘g"g"%‘ da _dg dx dy

: Pi(ozo, By Xy yo) hG(oz, B, %, ¥ @y By X ) (3-96)

The intensity variation across a laser beam is frequently approximated by a Gaussian function.

Suppose such a beam were incident on the top of the cloud at an angle of arrival (ozi, Bi), and that

it had negligible angular dispersion. Further, assume that the center of the beam intersects

the upper surface of the cloud at the coordinates (Xi’ yi). An appropriate power distribution rep-

resentation for this beam is

—_ —_O — —

Pi(cvo, Bo’ Xor yo) T 27o_ .o, . u0(010 ai) uo(Bo Bi)

Xi yi

2
(x —x.)2 (y —y.)
[] i o i

-exp |~ > = 5 : (3-97)

Z(J'Xi Zayi

where PO is the total power borne by the beam, provided that @; and B; are small. (In general,
the beam intensity variation would be modeled as a Gaussian function over a plane perpendicular
to the direction of propagation. One would transform it into a function of X, and Yo Over the

horizontal plane, which would not necessarily be Gaussian, and use the result in Eq. (3-97).
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The assumption of small @, and B; simplifies the mathematies for this example.) Inserting this
expression into Eq.(3-96) and carrying out the integrations, we find that the resulting power dis-
tribution function P(‘(oz, B, X,y) over the ground has precisely the form (3-93), with the following

modifieations:

(a) multiply (3-93) by PO;
(b) replace o, BO, X and Ho by @, Bi’ X, and Yis and

2 2 2s 2 2
by (Ux(‘u +a’), and e by (o . +

X1 yG in)'

2
(e) replace TG

The incident beam [Fq. (3-97) is particularly well suited for demonstrating the consistent
relationship between the angular impulse response hl(tv, B @, /30) of Kq.(3-72) and the joint
impulse response hG(ar, B, i Qe Bo’ xo, yo). In the limit as O and in go to infinity, the

o)
ineident beam [Eq. (3-97)] looks like a uniform plane wave with angle of arrival ((vi, /3.1), whose

intensity is

PO
I = (3-98)

P Znoxioyi

Meanwhile, the eorresponding response P(‘( } of the preeeding paragraph assumes the form

¥ (@—a)2 (8- p,)2
[p exp[—Ne(i - yf)] [Znoaaﬁ] - expl|- 202 — 202 5 (3-99)
@ B

whieh is preeisely the angular intensity distrihution that Eq. (3-72) gives in response to the same

ineident plane wave.
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CHAPTER 4
GENERALIZED SCATTERING FUNCTION

In Appendix A we consider the statistics of the scattered field on the ground bencath a cloud

illuminated by a signal of the form
ei(t,‘p’) = Re {s(t) E(p) exp(—jZﬂfot)} . (4-1)

The function s(t) is a narrow-band unit-energy complex envelope. The function E(p) describes
the variation of the ficld amplitude with position p over the top of the cloud. It is equal to a
constant for all ¥ when the incident illumination is uniform over the top of the cloud (e.g., a
plane wave), but has the appropriate functional form when the illumination is nonuniform (e.g.,
a beam). It is shown in Appendix A that the resulting field at a point on the ground can be rep-
resented in terms of a complex Gaussian random process. Because of the spatial variation
E(p) in Eq.(4-1), the parameters of the reccived process depend upon the point of observation 1
on the ground plane.

Since it is a Gaussian process, the reccived field is completely characterized statistically
by its mean (which is zero) and its correlation function. We shall write this function in terms
of a generalized scattering function o(7, f, V'), which also depends upon the point of observation .
These ideas are developed in Sec. 4.1. In the remaining four sections of the chapter, we examine

and interpret both the correlation and scattering functions from several points of view.

4.1 SCATTERING FUNCTION o(r,f, V')

Some of the ideas exploited in this section are similar to those developed in detail in Appen-
dix A. The reader may find it helpful to read the appendix before proceeding further with this
analysis.

When the cloud is illuminated by the signal [Eq.(4-1)], the scattered field y(t,_r:,_r:') in the
vicinity of the point T on the ground plane is adequately approximated, as we show in Appendix A,

by the expression

M
—— o N
yit, &, t"= Re nns(t ‘rn)
=1

n

) —je, —i < (v ol (4-2)
o

- exp [—JZm(fO — fn

in which both T' and _\;r'l are vectors drawn from the origin of a coordinate system S' centered

at r. The vector r'lies in the ground plane, and is small in magnitude compared to the distance
of the cloud particles from T. The unit vector _‘;;1 points toward the last particle encountered

by the nth signal component before it reached the ground. The number M is enormous, being
the total of all possible single- and multiple-scattering paths from the top of the cloud to the
ground. The amplitude factor n, is very small; it is a random variable, and is statistically in-
dependent of all the other amplitudes. The quantities T and fn are the total path delay (often
called the "range delay") and Doppler shift, respectively, associated with the nth path. In gen-

cral, B T and fn are implicitly dependent upon T. The phase en is random, uniformly
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distributed over (—7, 7), and is statistically independent of the phases on all the other paths,

The last term in the exponent of kq.(4-1) expresses the phase variation of the nth signal com-

ponent with r'.

Because of the uniformly distributed random phases, the mean y(t,_xr, T of Iiq. (4-2) is zero,
Thus a complete statistical description of the process is provided by its correlation function
I\'(t1, 12,7'1,?'2). Like all the other functions considered in this chapter, K() is functionally
dependent upon r. Rather than carrying r along as an argument everywhere, we simply adopt
the convention that the r-variation is implicitly present in every case. The details of this de-
pendence will be discussed explicitly where appropriate. In particular, we will find that the
7-<ieper1(ien('n‘ is important when the incident illumination is a beam, but absent under plane-wave
illumination.

In deriving K( ) we adhere closely to an analysis carried out by Kennedy.32 We have

- gt e S e
l\(t1,tz, vy 12) v(ti, ) y(tz, xé)
T INTe)
R =1 i et
'T_/[Ai(tyH)O +Ai(11,11)(. ]
1
-j6,, +j0O
) e k T k »
v [Ak(tz, ry)e AL, ) e ] , (4-3)
k

in which
e ) . . e
Ai(t, r') = nis(t Ti) exp [—sz(fo —fi) -] _}‘0 (r Vi)] :

l.et us first average Eq. (4-3) over the phases Gi, conditioned on the random amplitudes .

Because of our assumptions about the phases, Fq.{(4-3) becomes

|

- _.l _.l R { A t ..l A*(t _I:’) nl
Klty,ty, vy, ry) = e |2 Aty Ty Aty Ty
i

N~

) ) _7 2t
Re {exp [—Jano(t1 —tz)] . L [lnil s(t, —Ti) S"‘(tz __Ti)
i

3 ’ N ey L T
exp (‘]ani(t1 —tz) -] K (r'1 12) Vi)]l : (4-4)

Let us collect all the terms in the summand of 1q. (4-4) which have path delays 7, in the range
(t, 7 + At), Doppler shifts fi in the range (f, f + Af), and _\;1' in the range (_\;', Ea A_v.'). It is
convenient to defer the precise interpretation of the quantity Av' to the following section; for
the present, we simply assume that it is a well-defined quantity. We now add all these terms,

writing their sum in the form
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1 4 3
7 Re jexp [—j2nf (t, —t,)] Z, [ £

m
-exp(jan (t, —t )—iﬂ(?'—?')-_v")
m* 1 2 LA ¢ 1 2 m

~ i I R - ot S
=5 Re Iexp[ JZ7rf0(t1 tZ)] W(t,f, v') AT AfA v

. S B _— 1 oy S 2_11 _" _—-.' . Al -
s(t1 T) s (t2 ) exp(Jwa(t1 tZ) J }\O (r1 rZ) v )l . (4-5)
in which the index m ranges over only those field components having Tm’ fm and —v.r'n in the pre-

cribed ranges. The weighting function W( ) is defined by the relation

W(r,f, V') AT AT AV = Z‘/ In |2 (4-6)

m

m

with m ranging over the values it assumed in Eq.(4-5). The approximate equality in Eq. (4-5)
approaches equality as A7, Af and AV approach zero.

We visualize grouping all the terms in lq. (4-4) into partial sums of the form given in
I2q. (4-5) and adding them. In the limit, as AT, Af and AV approach the increments dr, df and

dv', this sum approaches the multiple integral

- =, A .
& 51 =t N s e _
K(t1,t2, rys IZ) 5 Re jexp| _]27rf0(1.1 tZ)]

: \ dr df dv' W(r, f, v") sy, —7 &5 =)

- exp [j27rf(t1 Sl =gt — - ‘v’” , (4-7)

where the range of integration includes all 7, f and V' for which W( ) is nonzero. From an engi-
neering point of view, the function W( ) and the integral in lq. (4-7) make sense when the weight-
ing coefficients |77i |2 in Eq. (4-4) are small, the number of field components is very large, and
the parameters of the field components are distributed over the applicable ranges of 7, f and v!'
in a reasonably smooth manner. We claim that these conditions are satisfied by our cloud model,
under the assumptions we have made, and hence mathematical convergence questions need not

be considered.

We now introduce the generalized channel scattering function

-1
o B ) ST T 5 [g dr df dv' W(r, £, V') . (4-8)

-

in which the integration range includes all 7, f, and v'. We recognize that o( ) depends in gen-
eral upon T as well. let us assume that the complex envelope s(t) of the transmitted signal is

so normalized that
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%S‘!s(t)lzdt 1 (4-9)

Without concerning ourselves at this time with the value of the signal energy incident on the
cloud, we simply observe that the energy Er per unit area borne by the received signal y(t,—r:,—r:')

is given by the relation

E_- S‘K(L,t,—r:',—r:') at . (4-10)

r

It follows that Eq.{(4-7) can be written in the form

E
- T e r = —
}\(t1, tZ’ Ty, 2) = Re Iexp[ -]ZNfo(ti tz)]

—7)

. g dr dfdv' a(r,f, v") s(ty —7) s*(t,

exp [jzm‘(t1 i)~ f—" (?'1 —?'Z) : ”v’]] . (4-11)
O

Equation (4-11) is the result that we seek. If we knew the scattering function at every T,
and the transmitted signal envelope s{t), the relation (4-11) would give us a complete statistical
description of the field everywhere on the ground plane. Of course, the determination of the
scattering function in any specific case can be a major undertaking. We have obtained only a
partial description of the function for the cloud communication problem, as we explain in suc-
ceeding sections of this chapter.

Nevertheless, assuming we have complete knowledge of a(7, f, —\_/.') and s(t), the formulation
of Fq.(4-11}) leads to a description of the optimum receiver for the case in which the total

received process
r(t, Ty = Y(t, T) + N(t, T, (4-12)

where the noise N( ) is a Gaussian random process, statistically independent of the signal Y{ ).
I\’ennedy32 has outlined the processing such a receiver must perform, over an aperture which

is small compared with the distance to the scattering medium, as a logical extension of known
te(:hniques33 for the detection of Gaussian signals in Gaussian noise. He obtains a set of observ-
ables by expanding the received process on a complete set of orthonormal time~space functions
wi(t,—;), and proceeds to a likelihood function. While the analysis is quite straightforward on

an abstract level, the actual receiver processing in specific cases involves the solution of com-
plicated integral equations in time and space.

We choose not to dwell upon the design of such an optimum receiver. Instead, we shall pro-
posc a scheme in Chapter 5 which is subject to a straightforward performance analysis. It is not
clear how closely this scheme approaches the optimum performance, but it will give us a feeling
for a lower bound on the performance one might expect to achieve. In designing this receiver,
we shall use certain special cases and rough approximations of the correlation function and
scattering function developed in this section. The remainder of this chapter is devoted to dis-

cussions of these specialized functions.
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4.2 SPATIAL CORRELATION FUNCTION K(F‘l, F'z)

A special case of Eq.(4-11) is the time-dependent spatial correlation function

15
TR = r ) =5
e rz) = Re ,S‘ drdfdv' o(r, f, v')

r

B, o,

© st —7) s*(t —7) exp —j>\— '1——5’)' v
o

(4-13)

in the vicinity of a point T on the ground. Now, suppose that the complex transmitted-signal
envelope s(t) is extremely narrow band; that is, let it equal VZ/T over a time interval —T/2 ¢
t +'[‘/2 which is very long compared with the interval along the 7-axis over which o(7, f, —v.’) is

nonzero, We can then talk about a function

E
z S5l on 3 R = W e o
K(0,0, v}, r;) = TI Re ‘S dv'o(v') exp|-j }\—Z (ry—r3)- V’] : (4-14)
in which
a(v") ng df o(7,£, V") . (4-15)
We can extend liq. (4-14) to the case of CW illumination simply by setting
E =P T (4-16)
3 r

and letting T go to infinity. 1)1‘ is the average received power, understood to be defined (like Er')
on a per-unit-area basis. Equation (4-14) is now a time-independent spatial correlation function,
which we redesignate [\(—r.'1—r.’2)

The quantity o( v') in Eq. (4-14) has a natural interpretation in terms of the cloud impulse

responses derived in Chapter 3. Suppose we regard V' as the radial unit vector

— —_ —

L sSIne cos g L + 8in® sing 1y + cos© L, (4-17)

in a spherical coordinate system centered at the point of observation T on the ground plane.
The situation is illustrated in Fig. 4-1, for the case in which T = 0. The indicated region dv'
about v' is merely symbolic, since dv' has not yet been defined. I'rom the defining Iigs. (4-6)
and (4-8), we conclude for the CW case that (V') dv' is proportional to the average total power
scattered toward the origin of coordinates by all thc cloud particles in the region dv' about v'.
We recognize that it is entirely consistent with this definition to let dVv' be the incremental solid

angle

dw = sin0O do de (4-18)
about v'. Thus we can replace o(v') dv' by

o(0, ¢) dw = 0(0, ¢) sino do d¢ . (4-19)

We remark in passing that a similar interpretation applies to the complete scattering function
o(r,f, v') for general s(t); that is, we can replace o(T, £, V') dr df dv' by o(7,f,0, ¢) d7 df dw.

In terms of the orthogonal angular coordinates
o =0 cos g A

B -0 sing " (4-20)
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defined in Appendix B, we have
06, ¢) dw = ole, B) daedp . (4-21)

llere @ and g are measured, like 8 and ¢, in a coordinate frame with its origin at the point
of observation r. Viewed in this manner, o(a, 8) embodies precisely the information provided

by the impulse responses of Chapter 3. Thus it is appropriate to call o(«, 8) the angle-of-arrival

scattering function. When the incident illumination is a superposition Iinc((yo’ /30) of uniform

plane waves over the top of the cloud we have, by Iiq.(3-73) of Sec. 3.4,

ola, B) = Kp S\S\ Iinc(ao’ [30) hI(a, B; o Bo) dafod/j‘o 5 (4-22)

in which h]( ) is the angular impulse response [Eq.(3-72)]. The proportionality constant Kp is
included to satisfy the requirement that

S\S\ o(le, ) dadp = 1 . (4-23)

Because the incident radiation [inc( ) is uniform over the horizontal plane, nothing on the right
side of Eq.(4-22) depends upon position r (i.e., the Cartesian coordinates x and y) over the
ground plane. Thus o(«, ) is independent of T in this instance.

When the spatial variation of the incident radiation is more complicated (e.g., a narrow
beam), it must be represented as a power distribution function Pinc(ao’ Bo’ X o yo) over the top
of the cloud, as explained in Sec. 3.2. In this event, o(«, ) does depend upon the horizontal
coordinates (x,y). In view of Iq.(3-96) of Sec. 3.5, we have
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o(a, B) = Kp 531315 dozodﬁodxodyo

Pinc(wo, Bor X yo) hG(a,B,x,y; & By X yo) . (4-24)

in which hG( ) is the joint impulse response [Eq. (3-93)]. As we showed in See. 3.5, Eq.(4-22) is
simply a special case of Lq.(4-24) in the limit as the cross-sectional area of the incident beam
goes to infinity.

It is worthwhile to calculate some typical examples of I((?;,Té). Suppose first that the in-
cident radiation is a single CW uniform plane wave with angle of arrival (ozo, /)’0). We shall find
that K( ) is independent of the coordinates x and y over the ground (as it is in every case when

the incident illumination is uniform over the horizontal plane)., Iiquation (4-22) now reduces to

olw, B) = hl((v,ﬂ; @ BO)

(@ = ozo)2 (B - 60)2

——— exp|— - . (4-25)
CLps Zo(zy 205
in which
2 7 o o &
T 0/} . ‘yfl\(‘w(v

The normalization of IIq. (4-25) is not quite right, of course, because we agreed that h[( ) should

be set to zero outside the ranges

|(v| £ /2 .
Bl < n/2 . (4-26)

This detail may be ignored when we deal with situations in which o, and o , are small enough
that most of the volume under kEq. (4-25) is inside the region of Eq.(4-26).

We recall that the arguments of [\’(_xt'i,_rr'z) are vectors of small magnitude, measured in a
coordinate system S' with its origin at the point r about which K( ) is defined. The calculation

-

of K( ) is facilitated by shifting r (and hence S') slightly so that

—; e 25 =t + Y T ey (4-27)

T et W= T E ¢

— -

where x' and y' are also measured in S'. In view of kq.(4-17), we have

(_1-"1 —_17'2) - V' - x' sin® cos¢@ + y'sin® sing
=x'e +y's . (4-28)

Ilquation (4-14) now becomes

, (4-29)
o

AT ’ 2
K(ry. r'z) = Pr RO{S‘S do dB - o(w, B) exp —JA—W— (x'a + y'B)]

with o(«, ) given by Eq.(4-25). This is simply the two-dimensional IFourier transform of a joint

Gaussian function. We have immediately
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A (RS en ' ' i -
K(ry, ry) = P cos |+ (x'a  +y ﬁo)] exp |- — z (4-30)
o 20
R
in which
2
2 - i 2 12 _
Ryp = Iy =T =™ +3 (4-31a)
and
A 2
% o _
R (Zmr(y) : (4-31b)

As we show in Appendix G, typical values for 05 might be in the neighborhood of 0.5. Suppose
we stipulate that the correlation distance associated with a Gaussian-shaped correlation function
is about two standard deviations. For @ and ﬁo near zero, then, the correlation distance asso-
ciated with K( "Ii’ r"z) is typically a few tenths of a wavelength.

Equation (4-29) does not change drastically when the incident illumination is a beam of finite
cross section, except that K( ) becomes a function of the ground-plane coordinates (x, y) of the
point T about which it is defined. As a specific example, let the incident beam have the Gaussian
form [ kEq. (3-97)],

R PO X 2 =
P (ao, ﬁo’xo’ yo) 3 aniz uo(ao) uo(/io) exp —7 ,

which might correspond to a CW laser beam of negligible angular dispersion at vertical incidence,
centered at coordinates S 0 on the top of the cloud. In accordance with liq.(4-24), we

see that the angle-of-arrival scattering function o(«, ) in this situation is proportional to the
four-dimensional joint Gaussian function PG(a, B, X,y) described immediately below liq. (3-97).
lLet us suppose again that the coordinate system has been shifted slightly, so that the vectors

7‘1 and —;'2 are given by Eq.(4-27). Let us further suppose that the variation of o(«, ) with r

is slow enough, and the magnitude of r'1 - r'z is small enough, that o(w, 3) is identical at r; and
r"z with its value at x' = y' = 0. (This is nearly always true, even when the incidenl beam is
extremely tight, because of the x and y dispersion effected by the cloud.) Without going through

the algebra in detail, we write the answer obtained from Eq.(4-29). We have

2

SRS R5
K(r}, ry) = P (x,y) exp |- , (4-32)

r 2

20R1

2

in which R12 1s the same as Eq.(4-31a) and

"Ry -

2
2 A ZoiZJroZ (T—+Th+h2)
- (Zmr )
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7 is the thickness of the cloud in meters, and h is the height of the bottom of the cloud above

ground. The average power Pr(x,y) in Eq.(4-32) is proportional to the joint Gaussian function

with x and y measured in the fixed coordinate system on the ground plane, where

2 2 2fr?
xG i a\ 3

o =0, +0 —+Th+h2)
If the beam Pino( ) had been incident at some angle (ai, Bi) slightly off the vertical, a cosine
term similar to that in Eq.(4-30) would appear in Eq.(4-32), except that the argument of the
eosine would involve algebraic functions of @, Bi, 7 and h.
Notice that 012“ approaches the parameter oé of Eq. (4-31b) in the limit as the width o, of
the incident beam goes to infinity. Even for modest o, the correlation distanee for Eq. (4-32) is
comparable to the wavelength )\O (except in the extreme case when h becomes very large, so
that the cloud begins to look like a point source, and T4 becomes proportional to h). These
small correlation distances, for both Egs.(4-30) and (4-32), substantiate the assumption made
in Appendix A and in this chapter that the vector T' in the expression (4-2) for the scattered

field is small compared with the distance from the ground to the cloud particles.

4.3 SPATIAL CORRELATION FUNCTIONS FOR ANTENNAS

An interesting extension of the angle-of-arrival scattering function o(«, ) allows us to cal-
culatc a spatial correlation function for signals observed with directive rcceiving antennas. We
begin by establishing certain conventions for an adequate mathematical description of an antenna.
As in Sec. 3.2, we shall characterize its power gain pattern by a function g(«', ') whose argu-
ments are orthogonal angular coordinates measured from the antenna boresight axis. When it

is aimed at angle (afa, Ba) and illuminated by an intensity distribution I(«, 8), the antenna receives

Agla — @y B — Ba) o, B) da dB (4-33)

watts of power from the solid angle do dpB at (@, B). The quantity A is the area of the antenna
aperture. Under an illumination P(w, g, x,y) which varies over the horizontal plane, the aper-
ture area A must be replaced by an appropriate aperture function A(e, B, x,y), as we explain
in connection with Eq. (3-36) of Sec. 3.2. When the antenna is located at coordinates (xa, ya) and

aimed in direction (afa, Ba), then, it receives
Ala —a , B—B,, x —x,, y—y,) gla —a,, B-5,)
- Ple, 8,x,y) dedpdx dy (4-34)

watts of power over the area dx dy at (x,y), from the solid angle do dp at («, f). We shall obtain
explicit results in this section under the assumption that the illumination on the top of the cloud
is uniform over the horizontal plane, so that (4-33) applies. The extension of the results to
nonuniform illumination, where (4-34) applies, is a straightforward exercise. It is outlined but
not carried out.

Whenever it is necessary to assume a specific functional form for g(«, 8) in this section, it

will be convenient to use the symmetric Gaussian power gain pattern
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20

2
gla', 8" = —12 eXP[-%l S (4-35)
t ant

This is neither essential to our model, nor (generally) realistic, although it is not unreasonable

when o 0 is small compared with 7/2. We use Eq.(4-35) here simply because it permits us to

ant

work out meaningful examples with minimum labor.
The results we shall obtain are subject to an intuitively satisfying interpretation in terms of
diffraction-limited antennas. 1"or this purpose we stipulate that Eq. (4-35) represents the power

gain pattern of a diffraction-limited antenna with a circular aperture of diameter 1) when

B

Yant ~ 7 (4-36)
where
Ao
13 ”F (4-37)

is the familiar rule-of-thumb approximation for the antenna beamwidth. The proportionality
factor 1/7 in 12q. (4-36) is chosen for convenience, as we shall see. We do not claim that it gives
the "best" fit in any sense, but only that it is roughly correct. The accuracy of this analysis is
such that factors of two are unimportant.

Consider two identical antennas, both having a power gain pattern g(e«', g')., Let them be
centered about the points ?'1 and ?'2, respectively, measured from some point T on the ground
plane. Their apertures are assumed to be small and nonoverlapping (the meaning of the term
"small" in this context will be clarified below), l.et the antenna at ?’1 be aimed in the direction
((v1, [;’1), while that at r"2 is aimed toward (ozz, BZ). The correlation function of the signals re-
ceived by the two antennas is readily obtained by appropriately modifying the analysis in Sec. 4.1.

Our starting point is Eq. (4-3),

—

- S = '
R(trtz’ ry, rz) yity, ri) y(tz, rz) 3

2,?'2) as the signals measured by the first
and second antennas, respectively., Now, we have seen that all the field components arriving

in which we interpret the functions y(ti’?li) and y(t

at a point on the ground beneath a cloud add incoherently; that is, because of their independent
random phases, their intensities add. Therefore, if the component intensities entering an an-
tenna aperture from the direction («, ) are weighted by the function g( ), it is reasonable to

treat the component amplitudes as though they had the angular weighting g( )1/2. Thus the sig-

—

nal y(ti’—;‘i) measured by the first antenna includes the factor g(o — @y, B - 31)1/2, while y(tz, r"z)
contains the factor gla — oy, Bi= 52)1/2. Carrying these factors along through the analysis in
Sec. 4.1, one finds that they can simply be lumped with the scattering function o(r, £, V') of

I2q. (4-8), to form the directive-antenna scattering function

o (1,8, 0, 8 @y, By, oy, BZ)

- lglo —ay, f—6,) glo —a, -5, 2o, 0,9 (4-38)

This equation incorporates the interpretation of V' in terms of the angular coordinates « and

B, as we explained in Sec. 4.2. In this seetion we are concerned only with CW illumination;
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hence, by analogy with the ideas expressed in KEgs. (4-13) through (4~-15), Eq.(4-38) reduces to

the directive-antenna angle-of-arrival scattering function

ol B oy, By, a5, 6,)

”1/2

legle —ay, B—By) gla —a,, -5, ala,B) . (4-39)

The function g(«, 8) on the right side is the angle-of-arrival scattering function of the field at the
point T in the absence of the antennas. Let us denote the correlation function of the signals
measured by the two antcnnas as 1(3(7’1,_;'2, @y, Bi’ @y BZ), with the extra arguments indicating
the explicit dependence of the function upon the antenna pointing angles. Assuming that the co-
ordinate system has been shifted slightly, so that Kq.(4-27) holds, we obtain Ka( ) simply by
inserting lq.(4-39) in place of (¢, 8) in Eq.(4-29). Thus we have

Ka( r"i, r‘é, (1/1,[31, (1/2,{32) = Pr‘ Re IS‘S\ da dp

(4-40)

- AT
. oa(a/, B <y1,B1, (12,32) exp [—J }\—o (x'a + y'[})]

We recall that this equation is valid under the assumption that the magnitudes of _17'1 and _1:’2 are
small compared with the distance from the point r to the cloud. Also, wc recall that the scat-
tering function and the correlation function both depend, in general, upon T. As we stated ear-
licr, we shall restrict our attention for the present to situations in which the light illuminating
the top of the cloud is uniform over the horizontal plane, so that the _r?—dependence vanishes. In
particular, let thc illumination be a single uniform plane wave, vertically incident on the top of
the cloud. In the abscnce of the antennas, the resulting angle-of-arrival scattering function

would be given by 1iq. (4-25) with @ =B, = 0,

ola, B) =

2 2
2 > exp[—a—JrZB—] . (4-41)
2wo 20

o o

Assuming the Gaussian antenna beam pattern [Eq. (4-35)], wc see that Eq.(4-39) becomes

) B 25 2
o (a,B; ay, By, @,,B,) = 47170 o

V]
5N
=

x| 012 (01—011) (a/—az) ]
2 2
20 4Gant 40ant
2 B=-8)® (5-py)’
o (4-42)
2T 40 ant 4% ant

Notice that Eq.(4-42) is not normalized to unit volume, as a scattering function ought to be. We
are not concerned about this dctail at present, since we are interested only in the functional form

of the results. Substituting Eq.(4-42) into Eq. (4-40) and carrying out the integrations, we obtain
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LR ,(‘1,/31,0’2,/i2)

o
e ' 1
_(‘1 cos v > . > )[x((v1+az)+y(/J1+[32)]}
oa(y 0ant
e ¢2 az+ﬁz+az+l32
12 12 1 1 2 2
exp|— > expl- —| - exp | — > > : (4-43)
20 4(0' + o )
Ra Y @ ant
in which
2 S & 2
R12 = l = 1é| x'"" +y' . (4-44a)
2, 2 2
Ao + o )
02 .o« ant ) (4-44Db)
i (270 © )2
« ant
w2 L 0 2 - 2 =
¢12 = (011 UZ) 5 ([31 /3'2) 5 (4-44c)
and
2 2 2
40 ( $20i5 )
0;: ant'” « ant . (4-44d)
i 2
o
o

The calculation of (‘1 is straightforward but uninteresting. The cosine term in Eq. (4-43), which
fluctuates very rapidly with x' and y', is also of secondary importance; it is tantamount to a
high-frequency "carrier" in the correlation function. The first exponential in Eq. (4-43) expresses

the dependence of Ka( ) upon the horizontal separation R of the centers of the two apertures,

and the second exponential expresses the behavior of Ka(iz) as a function of the angular separation
z/)12 of the axes of the two beams. The third exponential in Eq. (4-43) simply expresses the de-
crease in received power when the antenna axes point in some direction other than the angle of
arrival (in this case, @, = [30 = 0) of the plane wave illuminating the top of the cloud.

Now, we agreed in Sec. 4.2 that a reasonable estimate of the correlation distance for a
Gaussian-shaped correlation function was two standard deviations. kKquivalently, we regard the
signals as being uncorrelated when their correlation function is down by at least exp[—2] from
its maximum value. We see that this is always the case in Eq. (4-43) under either of the

conditions

Ry, >20p, (4-45)

zp12 >201/) . (4-46)
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regardless of the behavior of the cosine tcrm or the third exponential in Eq.(4-43). Thus the
two antennas receive uncorrelated signals when the centers of their apertures are separated hor-
izontally by a distance 1{12 obeying (4-45), regardless of the antenna pointing angles. On the
other hand, if we form two beams with the same aperture (by making field measurements over
two different Airy disks on the focal plane of an objective lens), the two signals are uncorrelated
with each other whenever thc angular separation of the two beams obeys Eq.(4-46). This result
may be extended immediately to an array of many multibeam apertures distributed over the
ground. We see that the signal received on each beam in the array is uncorrelated with the sig-
nal received on every other beam when (4-45) and/or (4-46) is satisfied for every pair of beams.
Moreover, since all the signals are Gaussian, each of them is statistically independent of all the
others.

and 20 In the limit as

Ra /N
nt becomes large compared with 0, we see that Eq. (4-44b)

[.et us consider the magnitudes of the correlation distances 2o

the antenna beamwidth parametcr o,

becomes

B aB
& g( 0) ) (4-47)

% Ra 2o
0%

which is precisely cqual to the parameter oé

scattered field over the ground in the absence of antennas, given by Iiq.(4-30). This is just as

of the spatial correlation function K(?a,?é) of the

it should be, since Eq.(4-30) is equivalent to a spatial correlation function for signals measured

by omnidirectional antennas. When T ant is small compared with O however, we have
A 2
2 ( ) )
o > | — ; (4-48)
Ra 270, 0y

Notice that the horizontal correlation distance

[¢)
20 = (4-49)
Ra TO o nt

is then precisely equal to the aperture diameter D of a diffraction-limited antenna having an ap-
proximately Gaussian beam representation with parameter %nt’ in accordance with the conven-
tions (4-36) and (4-37). Thus two identical narrow-beam diffraction-limited antennas on the

ground beneath the cloud receive uncorrelated signals if their apertures do not overlap, regard-
less of their beam pointing angles.

The nature of the parameter ¢, also depends upon the relative magnitudes of T, and o

ant’

¥
Equation (4-44d) becomes

4
40
i (4-50)
P 2
o
[¢4
when Bere =2 G > which simply implies that the concept of angular correlation distance becomes
meaningless for very broad-beam antennas. When @it is small compared with G o Eq. (4-44d)
reduces to
28 2
04’ =4(rant . (4-51)
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FFor narrow-heam antennas, then, the angular correlation distance is approximately equal to
4Uam. In view of liq.(4-36), we see thal two narrow diffraction-limited beams formed with the
same aperture on the ground beneath the cloud receive uncorrelated signals when the angular
separation between the beams is greater than about 1.27 B, where B is the conventional estimate
(4-37) of the width of a single beam.

These results are readily extended to situations in which the illumination on the top of the
cloud is more complicated (a group of plane waves, or a narrow beam). We know how to calcu-
late the resulting intensity distribution «, 8) or _r'.—dcpendcnt power distribution P(e, 3, x, y) be-
neath the cloud, either of which can then be inserted into Eq.(4-39) in place of o(«@, 8). When the
_x:—dependence is present, lEq.(4-40) is valid under the assumption that O’a( ) varies slowly enough
with r, and |_r'.’1| and |_r'.‘2| are small enough, that o () is the same at both antennas. This is
nearly always the case, even when the beam illuminating the top of the cloud is extremely tight,
because of the spatial dispersion effected by the cloud. Carrying out the integrations in Eq. (4-40)
when o(«, B) is the joint impulse response hG((v, B X5t @ /30, X yo) of kq.(3-39), for example,
one finds that Ka( ) depends upon the last six arguments of hG( ) but the correlation distances
(4-45) and (4-46) are practically unchanged. The algebra is straightforward but very tedious.
When we apply the results of this section to the spatial diversity issue in Chapter 5, we shall be
dealing with narrow-beam incident illumination. Thus the correlation function I(a( ) will, in fact,
depend upon the coordinates of the point of observation r on the ground. We shall simplify the
problem considerably by assuming that the scattered intensity over the ground is constant (inde-

pendent of T) over a suitably delineated region, and zero outside that region.

4.4 ANGLE-DEPENDENT RANGE SCATTERING FUNCTION o(r, _\7'F)

We shall show how to obtain the range scattering function
—.’ _ _.l -
BT, Vgl = Sc(f,f, V) df (4-52)

over a small range AV' about some fixed vector v. Interpreting V' in terms of « and B, as

]
P
in Sec. 4.2, we see that Kq. (4-52) corresponds to the classical range scattering function

o(T) :SO’(T,f) df (4-53)

for the signal measured by an antenna of beam solid angle
Aw = Ao AB (4-54)

pointed in some fixed direction (& In Sec. 4.5 we shall extend the results of this section

j O BF)-

to yield the function o(7, f, _Ji,) over a range AV' about v For the case in which the incident

'
P
illumination is uniform over the horizontal plane, so that nothing depends upon r, knowledge of

o(t, f,_\;]‘:,) for each of a suitable set of vectors _v." would give us an estimate of o(rt, f, _\;') for all

T and ¥v'. For beam illumination, with o( ) depcrr‘iding upon _;, one could obtain adequate knowl-
edge of the generalized scattering function over the entire ground plane by calculating o(7, f, _\;t,)
for a set of vectors V'F, for each of a suitable set of positions r on the ground.

As a first step in determining o(7, vi,), consider the angular impulse response hl(a,ﬁ; oo ﬁo)

given by kq.(3-72) in Secc. 3.4. This function is defined in such a way that the quantity

lA(n/, B @ ﬁo) = hl(a, B; @ ﬁo) Aw (4~55)
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is the average total intensity arriving at the ground through the small solid angle Aw = Aa A
about the direction {«, 8), when the top of the cloud is illuminated by a constant unit-intensity
uniform plane wave with angle of arrival ((yo, Bo). Now, suppose we regard the field components
making up }A( ) as a bundle of rays, with one ray corresponding to each scattering path through
the cloud which contributes to }A( ). The nt'h ray in this bundle has a path length fn and an inten-
sity weight e associated with it. The path length is measured from the point at which the nlh
ray, while still a part of the incident wave, enters the top of the cloud.

In a more general situation, the plane wavc illuminating the top of the cloud has a complex
amplitude envelope s(t). The time origin is referred to a specific point (sayv x = y = 0) on the top

of the cloud. The intensity weight of the nth ray in the bundle Aw now becomes the time function

f
s(t—T __n)
no C

where 'I‘no is a constant which depends upon the location of the point at which the ray enters the

1w
2 N

, (4-56)

top of the ¢loud, and upon the angle of arrival of the plane wave. The total intensity of the bundle

of rays in Aw is then given by the time function

i 2
A | n
[AL @, B @, L) = Z/?Wn s(t—Tno—T) (4-57)
Now, the correlation function K(t‘l’ tz,?}l,_r:é) of Eq. (4-11), evaluated at t1 = tz =t and ?}l =
T'Z E _r.', is the average intensity at time t of the radiation incident at the point s on the ground.

The vector r' is measured from some point ? We recall that both K( ) and the scattering func-

tion a(7,f, v') depend upon T, in general. By virtue of 1iq. (4-11) we have

E
(ke T 7‘" Re g dr dfdv' « o(r,f, V') |s(t -T)|2l 5 (4-58)

I

[.et us select a transmitted signal envelope s(i) such that

EEE (4-59)

I's(t)

where 6(t) is a unit-area pulse which is very short compared with the length of an interval in 7

over which o(7, f, _v.') varies appreciably. FKquation (4-58) then becomes
K(t,t,_r:',?') = EY‘S‘ dv' U(t,-\;') . (4-60)

We shall interpret V' and dv' in terms of « and g as before. Suppose now that we observe the
field at r with an antenna of unit aperture area, pointed in the direction («, 8). I.et the power
gain of the antenna be unity over a very small solid angle Aw, and zero elsewhere. By Eq.(4-60),

we see that the average power mcasured by the antenna at time { is

p,(t, @, B) = E Awelt, o, ) . (4-61)

Again, this quantity is a function of the point of observation r. But let us choose the incident
illumination on top of the cloud to be a uniform plane wave, arriving from (onBo). Both sides

of Eq. (4-61) are then independent of T, and both are functions of @y and /30. L.et us rewrite
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Eq. (4-61) to indicate this dependence; that is, the average power received by the antenna at

time t is
Pt @, By @, B) = E Awalt, @, B; o, B)) . (4-62)
We now observe that Eq.(4-62) may be interpreted as being precisely the function ]A( ) of
Eq. (4-57), when the signal envelope s(t) in Eq. (4-57) obeys Eq.(4-59). Thus
1 2l fn
olt, a, B; &O, ﬁo) = A Zl Wn 6<t _TI‘IO —T) 5 (4-63)

r

in which n ranges over all the rays in the solid angle Aw. Because 6( ) is very short compared

with the rate at which o( ) changes with time, it is clear that

: a4 3
olt, @, f; a_, B,) Ot = E &o Lwi o (4-64)

where i ranges over all rays in Aw such that

£,

i
g Tio+T<t+At . (4-65)
Except for certain special cases, the evaluation of the sum on the right side of Eq. (4-64)
will require numerical computation. In Appendix E we consider one of these special cases, with
o, B, @ and BO all equal to zero. By making a series of approximations we find that the range

scattering function for this situation, denoted for brevity by ao(t), is given by
- it |
4y N (1 — D\ -3/4 it < YN (t = D)\ 1/2
o (t)=C e ¢l axp |- —= 4 2 e Y (4-66)
" 43 De/c D, /c De/(‘,

when t > (17 + h)/c, and zero elsewhere. Here 7 is the cloud thickness in meters, h is the height

of the bottom of the cloud above the ground, and c¢ is the velocity of light. The factor (‘3 in
Eq.(4-66) is a normalizing constant. A typical tro(t) is illustrated in Fig, E-1 in Appendix E.

The multipath spread 1. of ao(t), its approximate width, is given by

D
La'T_e[1+2 8 (4-67)

In Appendix E we also outline procedures for obtaining a(t, «, 3; @ ﬁo) numerically, in more
general situations. For illumination other than a vertically incident plane wave, some form of

Monte Carlo simulation must be used.

4.5 RANGE-DOPPLER SCATTERING FUNCTION o (7,{, -‘;'F)

We assume that each cloud particle has a random velocity component, superimposed upon a
slowly varying mean. The mean velocity, which has no effect upon the scattering function
o(r,f, V"), is presumed to be equal for all particles to the average wind velocity. The random
velocity component Vr is caused by local phenomena such as turbulence and thermal mixing. It
is assumed to be identically distributed for all particles, with a probability density function which
is uniform over any solid angle. By this we mean that its magnitude Vr is random, nonnegative,
and independent of the spherical coordinates er' and B of its direction, while er and ¢, are so

distributed that the direction of Vr lies in any solid angle @ with probability /47. Thus the
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joint probability that o, is in the range (6, 8 + d6) and ® . is in the range (¢, ¢ + d¢) is given by

1 .
e sin® do do . (4-68)

We may regard O and @, as having the joint probability density

_ sin® O S ’
Py Lo O@) s = = .
1A o2 . (4-69)
The Doppler shift assoeiated with a single seattering event is given by

f
N - =y
— [N - 5 N
11 - [\r‘ dg =Yz di] . (4-70)
where fO is the carrier frequency and e is the veloeity of light. The veetors _(Is and Hi are unit

- 3-45- 11804

Fig. 4-2. Doppler shift geometry.

veetors in the directions of the scattered ray and the ineident ray, respectively. The geometry
of the situation is illustrated in I'ig.4-2. The eoordinate system is so oriented that

di = 1 3 (4-71)

and the seattering partiele is at the origin. The coordinates eS and ?q of the direetion of the
seattered ray are assumed to be randomly distributed in accordance with the average single-
partiele forward-seattering pattern f(6), as explained in Appendix B. Thus es and Bhes obey the

probability density funetion

ogo L 1/2
Po (0, ¢) = sino f(©) ,
s'?s o2t , (4-72)
with f(©) so normalized that
/2
ZnS sin® f(6)de = 1 . (4-73)

(o]
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It is clear that

e {smer cos¢ 1 +sin0 sine i +cos@, 12} (4-74)

and

- - —

dS = SmOS cos¢ i + smes sine l_v + (‘()SOS v R (4-75)
so that Eq. (4-70) becomes
fo
faq - ¥ [smes cos ¢ sin® coso
+sinOg sine_ sin®  sing  + cosO  cosO —cosel‘] 5 (4-76)

Although we shall not do so, it is possible in principle to calculate the probability density func-
tion of f(“ from Eqg.(4-76). Although the algebra is rather tedious, it is a straightforward task

to obtain the more limited results

f(“ -0 (4-77)
and
P - )
Bgy = var Ugq) = o
212 — or/2
> Vr g 27 sin® f(0) [1 — cosO] dO . (4-78)
3¢ o

Provided that its magnitude is much less than the carrier frequency fo, the Doppler shift
fdk of a kth-m-der scattered wave is approximately the sum of k first-order Doppler shifts. We
assume that all the first-order Doppler shifts f(“ are statistically independent and identically

distributed. Invoking the Central l.imit Theorem, we write

al

2
pp (f) = —————exp [— ! 5 ] (4-79)
dk %64 N2knw Zkoﬁ

for large k. Now, we know that this approximation can be very good over the central region
even for fairly small k, if the first-order density function is smooth, symmetric and unimodal.
It is reasonable to assume that f(“ has such a density, as long as the velocity magnitude Vr is
reasonably well behaved. Equation (4-79) will be seriously in error out in its tails for small
values of k; for purposes of estimating the shape and width of the scattering function, however,
we can ignore the tails. In any case, as we indicate in Appendix E, when Ne > 5, the rays of

low scattering order contribute only weakly to the total received energy. On these grounds, then,
we shall assume that Eq.(4-79) is valid for all k > 1.

In Appendix F we derive an approximate form for the angle-dependent range-Doppler scat-
tering function o(7, f, Vi?) for the special case in which the incident illumination is a uniform
plane wave, and «, 3, @, and Bo are all zero. The result is left in the form of an infinite sum,
[Eg.(F-2)], which could be approximated numerically if desired. The Doppler spread B of the
function is approximated by
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2W , f2mN, 1/2 — 1/2
B85 3 ] (vr) ’ (=80
o
in whiech W W | is the aver age single-partiecle scattering pattern width parameter, )\ is the

B

carrier wavelength and (V 1/2 is the RMS value of the random component of the veloc1ty of the

eloud particles.
Using the multipath spread

D
o -
| = p [1+2 'Ne] (4-81)

derived for this same special case in Appendix E, we find that the BL product is

TW
o

1/2
2
BL =2 [= 2 + (4-82)
3 }‘o [ {—]

is the cloud thickness. Notice that Bl. becomes independent of the eloud optical thick-

where T
ness Ne (and hence independent of the particle density dv) as Ne beecomes large,
Appendix F also indicates numerical teehniques for ealculating o(t, f, vi?) in more general

cases. For the most part, Monte Carlo simulation appears to be the most attractive alternative,
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CHAPTER 5
COMMUNICATION SYSTEMS FOR THE CLOUD CHANNEL

We have seenin Sec. 4.1that the generalized scattering function (7, f, V') embodies a complete
statistical description of the received field over the ground plane beneath a cloud. An extension
of known techniques can be utilized to obtain a mathematical description of the optimum receiver
for the cloud channel. The processing such a receiver must perform involves the solution of
difficult integral equations in both time and space. In general, these operations cannot be readily
interpreted in terms of components we know how to build. We consider a communication scheme
in this chapter which we know how to interpret and to analyze. Although we do not know the de-
gree to which the proposed system approaches the optimum, our analysis will provide a lower
bound to the performance that the optimum system could achieve.

An important feature of the proposed receiver is spatial diversity, which we obtain by taking
independent samples of the received field over the ground plane. In Sec. 5.1 we estimate the de-
gree of spatial diversity which can be achieved. Section 5.2 deals with the sources and character
of noise corrupting the received field. The proposed receiver is described in Sec. 5.3, and its

performance is analyzed in Sec. 5.4.

5.1 SPATIAL DIVERSITY

It is clear from our results in Chapter 4 that one can obtain many statistically independent
samples of the received field over the ground plane. The degree of spatial diversity KS of the
cloud channel is the largest possible number of such samples which contain significant signal
energy. In this section we estimate the magnitude of KS for an array of identical field-sensing
devices, and we argue that it would not be appreciably greater for a composite array of nonjden-
tical devices.

It is clear that our field-sensing devices should be located only where significant signal en-~
ergy is incident on the ground. Moreover, they must be directive; that is, the solid angle over
which a sensor has nonzero gain must not exceed the solid angle over which the signal energy is
significant. A larger sensor field of view would only admit more noise, causing the signal-to-
noise ratio to deteriorate. Ilaving concluded that the sensors should have restricted angular
beam patterns, we realize that each of them must have an aperture area associated with it. We
are free to think of them as antennas. An antenna of a given beamwidth B must have an aperture

area at least as great as

2

2 A
.9, (5-1)

4B

where )\0 is the carrier frequency and 1) is the diameter of the aperture of a diffraction-limited
telescope with beamwidth B. We shall think of our sensors as completely general antennas,
each having some beamwidth B and some aperture area A which is lower bounded by the rela-
tion (5-1). The maximum obtainable spatial diversity is achieved by packing as many sensors
into the "active region" on the ground plane as possible. (By the term "active region” we mean
the area on the ground plane over which significant signal energy is received.) Clearly, the
maximum spatial diversity is infinite when the illumination incident on the cloud is uniform over

the entire horizontal plane, because the resulting active region on the ground has infinite area.
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This is not surprising, because the transmitted signal energy in such a case must also be infi-
nite. Thus the spatial diversity is finite only when the incident illumination is a beam of finite
cross-sectional area,

When this is the case, the analysis of Sec. 3.5 leads us to an expression for the power dis-
tribution function P(«, 8, x, y) incident on the ground. To facilitate the mathematics of estimat-
ing the spatial diversity, let us assume that the incident illumination has the form of 1iq.(3-97),
a unit-power beam with negligible angular dispersion which has Gaussian intensity variation over

its cross section. Let it be symmetric in x and y, with

02. '-02. = 0.2 . (5-2)
X1 yi i

The resulting average power distribution over the ground is

p(;((lf, Bx X, .Y) = (‘Xp[—NC(1 _‘Yf)]

-1
2 2 2
[4” % as®ps"xs%ys «/(1 ~Paxs) U _pﬁys)
[ 2 2
- 1 (ar—ma) e (ar—ma)(x—mx) : (x—mx)
e 201 2 2 P axs o0 2
(1 =0 4xs) %as SEte Oxs
2 2
4 (B—mﬁ) (B—mﬁ) (y—my) (y~my)
exp —-2p + . (5-3)
2(1 —p2 ) 02 Bys OBSUyS 02
§ Bys Bs ys
The parameters in this equation are
2, - am2 2
Tas © U/Bs YfNew(y
2 2 2 2 TZ 2
0 5= O'ys =0, + nyeWa (—3— +Th +h )
2 .
) o YfNeW(y (E + h)
Paxs = Ppys (5-4)

2
[0'2 (T—- chaT il ey hz) + 0.2]1/2
as 3 i

We recall that Ye is the average single-particle forward-scattering efficiency, Ne is the optical
thickness of the cloud, T is its physical thickness, and h is the height of the bottom of the cloud
above the ground. The quantity W{Y is the width parameter of the average single-particle scat-

tering pattern, which is symmetric in «¢ and B. The mean values m

s

mB, m and my, which
are functions of the coordinates @, /}i, X and Y; of the incident beam, will not enter into our
results.

I.et us assume that the aperture area AS of a single antenna at coordinates (x1, y1) on the
ground plane is small enough that the x- and y-dependent portion of Iq.(5-3) is virtually con-
stant over it, The angular intensity distribution incident upon the antenna is therefore propor-

tional to

e )
(¢ —mp) +(B—mB)
2 .

axs

2
XS

(2ro 2 (1 pZ O exp |- (5-5)

2
20, (1—p
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with m'(y and m}g dependent upon Xy and Yy Suppose that the antenna has multiple receiving

beams, each adequately represented by the symmetric Gaussian power gain pattern [Iq. (4-35)],

2 2
1 t
27want 2Uant
and each having the same (fixed) beamwidth parameter %ant’ We wish to estimate how many such
beams to use in order to obtain the maximum number Nb of statistically independent "looks" ai

the distribution {(5-5) incident on the aperture As. By Eq.(4-51), we know that multiple beams
from the same aperture receive statistically independent signals when their boresight axes are

separated from each other by at least 4aa radians. This is equivalent to stating that each

nt
beam occupies an effective solid angle
wy = 47raam (5-6)
Thus we have
* inc
B> Ty, 2 L=ty

where Qinc is the effective solid angle over which the intensity distribution (5-5) has significant
magnitude. We estimate Q — by again invoking the approximation that most of the volume under
a symmetric two-dimensional Gaussian function is contained within a circle of radius 2o about

the mean. Thus we shall approximate (5-5) by a distribution whieh is uniform over a solid angle

, 2 2
R ™ 0, S Bl (3=8i
and zero elsewhere. [Note the consistent relationship between Egs.(5-8) and (5-6).] kquation
(5-7) now becomes
2 z
g~ (M= )
~_@s XS ”
N g———— . (5-9)
a
ant

By referring to Eq.(5-3), we realize that (5-5) depends upon the coordinates (Xi’yi) of the

center of the aperture As only through the mean (m'(y, m'). Thus Eq.(5-9) is valid for any aper-

ture similar to As located anywhere in the active r‘egionﬁon the ground plane. IL.et us now esti-
mate the maximum number of such apertures which one could pack into the active region, subject
to the requirement thai statistical independence holds among all beams in the entire array. We
showed in Sec. 4.3 that each beam from one aperture receives a signal which is independent of
every beam from an adjacent aperture when the centers of the two apertures are separated by

at least the distance [ Eq. (4-48)],

A
a% =

o
ant

Roughly speaking, then, we can place one aperture on the ground plane for every

A 2
SO

2
4Twant

2
s = (5-10)
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square meters of area in the aetive region. But let us note that a diffraction-limited antenna
whose beam pattern is approximated by a symmetric Gaussian function with parameter L j has

aperture area

2
A -7 ﬁ )\—0 (5-11)
df 4 2 g
4mo
ant
in accordance with our convention [Eq. (4-36)]. Observe that
AS >A(lf ’ i)
as we pointed out in connection with Eq.(5-1), and that Adl is equal to kEq. (5-10). If our antennas

are not diffraetion limited, we cannot pack the maximum number Na of apertures into the active
region unless we are willing to allow them to overlap each other to some extent. If we do not
permitl overlapping apertures, then we must use diffraction-limited antennas to achieve the max-

imum spatial diversity. We see that

Aa(‘tive
Nl =———— (5-13)
s Adf
where A is the area of the aective region. We estimate A by again using the ap-

active active
proximation that led to Eq.(5-8). Thus we integrate the received power distribution function

[Eq.(5-3)] on @ and g to obtain

2 2
gg P (o, 8 x,y) de dg = [2162.] exp B s (5-14)
@i 55 xS 2 '

20
XS

and approximate this result by a uniform distribution over a circle of radius Zoxq in the (x, y)

plane, centered about (mx, my). The area of the circle is

A (5-15)
X

A .
active s

Ilquation (5-13) now becomes

167TZU>(2SU:nt
- So——=——— . (5-16)
a 7
A
o

Using the assumed receiving apparatus (i.e., an array of identical multibeam antennas with

beamwidth parameter Uant)’ we see that the maximum achievable spatial diversitly is

a 2. K 2
1677 0~ (1 —p )
B B XS~ «S wxs Y
KS- NaNb = }\2 . (5-17)
o

But we observe that Eq. (5-17) is independent of ¢ Thus any set of identical diffraction-

limited multibeam antennas (or nondiffraetion—lirr?i?gd antennas with suitably overlapping aper-
tures) eould be used to achieve the maximum diversity [Eq. (5-17)], regardless of the value of
Oant’ This statement is subjeet, of eourse, to the eondition that the effeetive solid angle @y of an
individual beam must not exceed the effeetive solid angle Qine of the angular intensity distribution

(5-5) incident on the aperture assoeiated with the beam. If w, were, in fact, equal to Qine’ we
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see that eaeh aperture would observe all the signal energy ineident on it with a single beam

(Nb = 1), and we would have

2
axs

)

%ant ~ %as (1-»

Inserting this value in Eq.(5-16), we find that

b:Na

KS = NaN
would still be given by the right side of Iiq.(5-17).

We imagine that it might be possible to achieve slightly greater spatial diversity by using
some composite of various aperture sizes and beamwidths, 1t is reasonable to assume, however,
that the inerease would only be eomparable to the errors inherent in the approximations made in
deriving Eq.(5-17). Thus it is fair to say that the value of KS obtained here is a reasonable ap-
proximation to the maximum spatial diversity aehievable by any seheme.

Suppose that we were only willing to proeess over some limited area Alim on the ground
plane, which is within but smaller than the aetive region. The maximum spatial diversity Ksl
obtainable under these eireumstances is found by multiplying kq. (5-17) by (Aﬁm/47roxzs), which

gives the result

2 2
47A ,. 1 —
. & llmoas( pn/xs)
K., = . (5-18)
si 7
A
o

We see that the maximum spatial diversity in either ease is equal to the product of the solid
angle subtended by the incident radiation, times the ground-plane area over which we process,
times the faetor AO_Z.

It is interesting to caleulate the value of KS for a typieal set of eloud parameters. From

Appendix G, we see that a reasonable set of numbers is

T = h = 1000 meters

A =5x10"7 meter

o)
W = 0.3 radian

«o

N.. =40

e

Y = 0.96 . (5-19)

I.et us assume that the ineident beam on top of the cloud is small enough that Giz is negligible

compared with O'XZS. By using (5-19) in Eq. (5-4), we find that

2 _
O o 0.9
0'2 =t 246 X 106
XS
2
(1 —paxs) = 0.035 . (5-20)
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Equation (5-21) then becomes
K, - 4.25x10"7 (5-21)
If we process over a total aperture area of only onc square meter, Eq.(5-18) yields

e 12 ;
Ky, = 1.6 X 10 : (5-22)

5.2 NOISE MODELS

There are five types of noise to consider in communicating over the cloud channel: quantum
noisc, diffuse sky noise, sunlight, light from the stars and the moon, and backscattered light
from terrestrial sources. The quantum noise, which is always present, assumes major impor-
tance when the number of signal photons received per second is small. This issue will be dis-
cussed quantitatively in the following section. The communication system we shall propose will
be operated in such a way that the quantum noise can be lumped with the additive Gaussian noise,
in order that the system design and performance analysis may be carried out using conventional
techniques. This issue is discussed in detail in Sec. 5.4.

The diffuse sky noise, which is present only in the daytime, is the result of atmospheric
scattering of sunlight. Its spectral density has been reported34 as about 1.33 X 10"14 watts per
(met(-rz—steradian—}}ertz). It is not clear whether this noise model is meaningful when clouds
are occupying much of the atmosphere where it is "genecrated." For present purposes, we shall
assume that the diffuse sky noise is absent.

1¢ sun's radiation 1S approximate white over the band of visible-light frequencies, wi
Tt ! diati 1 PP i ly whi he b 1 of visible-light freq i ith

spectral density35

12

N = 1,67 x 10~ watts/(meterZ—HZ) (5-23)

sun

just outside the ecarth's atmosphere. We can regard it as an incoherent superposition of uniform
plane waves. The angular dispersion of the arriving plane waves is small compared to the
spreading in angle that the light experiences in traversing a cloud. In the presence of the ide-
alized cloud of Sec. 3.1, the angular impulse response hI((y, B @ ﬁo) of Eq. (3-72) immediately

B ) of scattered sun-

gives us an estimate of the angular intensity distribution }NS((Y, B « —

sun
light incident on the ground. We have

Ny ©XP =N (1 = 7]

S
Ioola,B; a B }=
Ns sun’ “sun Znaacrﬁ,
2 2
(@ —ag,,) (8 = Bsun!
- exp |— - . (5-24)
2 2
20 20
o B
which has the dimensions of watts per (meterz—steradian—}lz). The quantities - and Bsun are

the angular coordinates of the center of the sun. Knowing Eq.(5-24), we can immediately calcu-
late the noise spectral density due to sunlight which is received by an antenna of given beam pat-
tern and aperture area.

At night the chief sources of noise (aside from quantum noise) are moonlight, starlight, and
backscattered light from terrestrial sources. Given a model for the angular and spectral dis-

tribution of light from the moon and stars arriving at the earth, the angular impulse response
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analysis of Sec. 3.4 would easily lead to an expression similar to Eq.(5-24). The effects of back-
scattered light from nearby sources on the earth would have to be estimated by some other means.
One could probably obtain sufficiently good results with a crude analytical approach based on
single or double scattering. Another alternative is Monte Carlo simulation. We choose not to
dwell upon nighttime optical noise here. The communication system we analyze in this chapter
will be assumed to be operating during the day, in the presence of scattered sunlight described

by Eq.(5-24).

5.3 PROPOSED COMMUNICATION SYSTEM

As we indicated in Sec. 4.1, it is possible in principle to proceed from the generalized scat-
tering function o(7, f,_\;') and the transmitted signal envelope s(t) to a mathematical description
of the optimum receiver for the cloud channel, in the presence of an additive Gaussian noise
N(t,—r:). We shall not attempt to do so here. Instead we propose an ad hoc scheme that is easy
to analyze, allowing us to obtain a lower bound for the performance achievable with the optimum
system. Wc make no claims about thc practicality or optimality of the system considered here;
indeed, it is possible that the performance bound we obtain is quite pessimistic. To facilitate
the analysis, we make several simplifying assumptions, which will be enumerated below. The
system can then be regarded as a classical fading dispersive channel with a high degree of ex-
plicit (spatial) diversity. The analysis of its error probability is a straightforward application
of known results.

The receiver that we shall consider is shown diagrammatically in Fig.5-1. Iach of the

KA channels receives a statistically independent sample of the received field, obtained in the

K, CHANNELS
P — PROCESSOR t>
——e PROCESSOR [
DECISION
DEVICE
. . . pA~—~ A
. 5 .
2 2 > WISV
>—— procEssorR [—————>

Fig. 5-1. Proposed receiver structure.

manner described in the preceding section. Thus each channel could correspond to a single
wide-~-angle antenna, or several channels could be obtained with each of a number of multibeam
antennas. We imagine that the latter might be the more practical alternative. Such an antenna
could be realized by making observations at a number of points on the focal plane of a telescope.
We shall assume that the receiver measures the incident field, rather than the intensity. Phys-~

ically, this implies the use of heterodyning, with the local oscillator signal appropriately
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introduced in the focal plane. We assume that KA is less than the maximum achievable spatial
diversity KS of Eq.(5-17), so that it will be meaningful to analyze the behavior of the system
error probability as a function of KA.
The absence of nonuniform weighting at the processor outputs in IMig. 5-1 embodies the as-
sumption that all spatial diversity paths have equal gain. Moreover, we shall assume that the
range-Doppler scattering function o(7, f) and the statistics of the received process are identical
on all spatial paths (and on all channels we might later add, to increase KA). We justify this
assumption on the grounds that the available spatial diversity per square meter is so enormous
[cf. Lq.(5-22)]) that we can obtain all the independent channels we are willing to deal with by
using only a modest area on the ground plane, and a modest total solid angle. A final simplify-
ing assumption we shall make is that the correlation function of the noise-free received process

on each diversity path has K, equal-eigenvalue orthonormal eigenfunctions (pi(t) (which, of course,

depend in general upon the tr}‘ansmitted signal). Note that the assumptions described in this par-
agraph are not essential; we use them because they will simplify our performance analysis con-
siderably. For a thorough discussion of these issues, and of more general fading dispersive
channels, the reader is referred to Kennedy.?'(J
Each box labeled PROCESSOR in Fig. 5-1 contains all the components of a conventional re-
ceiver for a fading dispersive channel, except the decision device. We assume that the noise is
additive, white and Gaussian. One of the possible realizations of the processor is illustrated
in Fig. 5-2, for the simple transmission strategy of binary on-off signaling. The envelopes of
the impulse responses of the bandpass matched filters (whieh depend upon our choice of a trahs-

mitted signal) are the time-reversed and delayed eigenfunctions wi(T —it), L= 4,2, 0 00 K}. llach

BANDPASS [3-45- 11808
MATCHED L

FILTERS

¢‘“] SLED P—.%—I—
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ADDER pe——v

A
VWM

l—— ‘f’xl(" SLED »—.)|/o—-

Fig. 5-2. Processor.

box labeled SLED contains an envelope detector followed by a square-law device. In the receiver
of Fig. 5-1, the outputs of all the processors are added and (in the binary case) compared with a
threshold.

The extension of the receiver structure to M-ary signaling alphabets is straightforward.
Each processor would then contain a set of M banks of apparatus similar to Iig. 5-2. The

matched filters would differ from one bank to the next, of course, since the eigenfunctions depend
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upon the transmitted signal. A vector of M numbers would be computed by each of the l\'A proc-
essors. The decision device would add corresponding components of all the vectors and would
pick the largest of the results. Again, we refer to Kenncdy36 for a complete discussion of the
details. Particular attention is directed to the remarks in his Chapters 4 and 6 concerning ex-

plicit diversity.

5.4 SYSTEM PERFORMANCE

We begin the analysis by calculating the signal power and noise spectral density measured
by an antenna on the ground beneath a cloud. The signal-to-noise ratio is obtained, taking proper
account of quantum noise. We summarize known methods for calculating bounds to the error
probability of fading dispersive channels, and apply them to the proposed cloud-channel commu-
nication system of Sec. 5.3. The channel capacity is calculated, and it is shown that the error

prohability decreases exponentially with the spatial diversity K These results are illustrated

with typical numerical examples. "
The calculation of the signal power received by an antenna is a straightforward application
of the results of Chapter 3. As in Sec. 5.1, let us suppose that the top of the cloud is illuminated
by a narrow CW beam with symmetric Gaussian intensity variation over its cross section. The
resulting power distribution function 1’G(oz, B,X,y) over the ground is given by Iigs. (5-3) and (5-4)
when the illumination carries unit power. Assuming the total power in the incident beam to be
PO watts, we simply multiply Eq.(5-3) by PO. As we showed in Sec. 3.5, the average power I’S
received by an antenna with this illumination is determined by integrating kEq. (5-3) over the
beam pattern and the aperture of the antenna. When the beam solid angle wg and the aperture
arca As of the antenna are small compared with the total solid angle and total ground-plane area

of Eq.(5-3), respectively, we can approximate the integral by the product

P = A w P Paola,gx,y) (5-25)

where the quantities in the argument of PG( ) are the antenna coordinates. Now, we recall that
the averaging process utilized in Chapter 3 was, in fact, an ensemble averaging. Thus Eq.(5-25)
represents the statistical average of the power received by the antenna at an instant of time. By
assuming ergodicity, we can interpret Eq.(5-25) as a time average, when the illumination on the
top of the cloud is CW. This interpretation is approximately valid for a time-limited transmitted
signal, also, if the duration Ttr of the signal is long compared with the multipath spread L of

the channel, The total signal energy received by the antenna is then

AR (5-26)

We observe that the material in Chapter 3 [and hence Eq. (5-25)] does not apply for transmitted
pulses which are short compared with L.. The analysis in this section assumes that Ttr >> L,
and we do not attempt to determine the receiver performance for short signals. This issue will
be discussed further in Chapter 6.

The calculation of the spectral density of background noise measured by the antenna follows
easily from the results of Sec. 5.3. Equations (5-23) and (5-24) give us the angular intensity dis-
tribution INs( ) of scattered sunlight, which we assume to be the dominant background noise. As
we stated immediately above Eq.(5-23), its spectrum is essentially flat at optical frequencies,
and the arguments in Appendix A cause us to conclude that it is Gaussian. By the same reason-

ing that led to Eq.(5-25), we see that the sun noise spectral density received by an antenna of
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small solid angle wg and aperture area AS is given by

No - AswsINs( )

1.67 x 1012

A w . (5-27)
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where zps is the angular separation between the antenna borcsight axis and thc geometric line of
sight to the sun. The units of Eq.(5~27) are watts per Hertz; the conventional two-sided noise
spectral density NO/Z is equal to Eq. (5-27) divided by 2.

The received signal is corrupted by photon noise, in addition to the background noisc. As-
suming heterodyne detection, with a strong local oscillator signal (as we do here), it has becn

S38 that the effcct of photon noise is equivalent to that of an additive white Gaussian proc-

shown
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