
Technical Report 454 

Optical Communication 
Through 

Multiple-Scattering Media 

H. M. Heggestad 

22 November 1968 

rud under Electronic Systems Division Contract AK 19(628)-5167 by 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Lexington, Massachusetts 

[ygl 





MASSACHUSETTS  INSTITUTE   OF   TECHNOLOGY 

LINCOLN   LABORATORY 

OPTICAL COMMUNICATION 

THROUGH MULTIPLE-SCATTERING MEDIA 

H. M. HEGGESTAD 

Group 45 

LINCOLN LABORATORY 

TECHNICAL REPORT 454 

RESEARCH LABORATORY OF ELECTRONICS 

TECHNICAL REPORT 472 

22 NOVEMBER 1968 

This document has been approved for public release and sale; 
its distribution is unlimited. 

LEXINGTON MASSACHUSETTS 



OPTICAL COMMUNICATION THROUGH MULTIPLE-SCATTERING MEDIA 

ABSTRACT 

A model is developed for the effects of multiple scattering upon optical-frequency 

radiation. Attention is focused upon situations in which the scattering particles are 

large compared to the carrier wavelength, so that forward-scattering predominates. 

This is the case for atmospheric clouds at visible-light wavelengths, the physical 

framework within which the analysis is carried out. The objectives served by the 

model are those of a communications engineer desiring to design a system for optical 

communication through clouds. 

Light traversing optically dense clouds suffers dispersion in space, time and fre- 

quency. These effects are considered both separately and in a compact unified for- 

mulation. The spatial variation of the intensity of light beneath a cloud subjected to 

continuous-wave illumination is modeled as the output of a multidimensional linear 

system. The approximate impulse response of the system is determined, in two 

complementary forms, and the approximate response below the cloud under arbitrary 

illumination is shown to be given by a linear superposition integral. In general, the 

spatial behavior is representable as a joint function of angle of arrival and horizontal 

coordinates over the ground. 

The field on the ground is shown to be representable in terms of a complex Gaussian 

random process. A complete statistical description of the process is therefore pro- 

vided by its mean (which is zero) and its correlation function. The time-space cor- 

relation function K(t. ,t„, r'. , r'„) is written in terms of a generalized scattering 

function a{j,i, v'), combining all the time, frequency and spatial information. The 

spatial impulse responses are shown to be special cases of the scattering function. 

Expressions are derived for the spatial correlation function of the received field over 

the ground, for both omnidirectional and directive antennas. The conventional range- 

Doppler scattering function <r(r,f) is derived for an upward-pointing narrow-beam 

antenna.   Polarization effects are not included in any of the analyses. 

Some of the implications of these results are considered with respect to communica- 

tions system design and performance. A system is proposed and analyzed to provide 

an indication of the rates and error performance that can be achieved with optical 

signaling through a cloud. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 

* This report is based on a thesis of the same title submitted to the Department of 
Electrical Engineering at the Massachusetts Institute of Technology on 24 October 
1968 in partial fulfillment of the requirements for the degree of Doctor of Science. 
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OPTICAL COMMUNICATION 

THROUGH MULTIPLE-SCATTERING MEDIA 

CHAPTER 1 
INTRODUCTION 

Clouds and fog are common enough in most regions of the earth to present a serious problem 
to the designer of an optical communication system whose transmission path includes the atmos- 

phere.   One alternative is simply to agree that the link will not be usable when these obstructions 
are present.    In many applications one might be unable to accept such a constraint,  but willing 
to trade receiver complexity and diminished communication rates for more nearly constant chan- 
nel availability.    This possibility motivated the research reported in this paper.    The chief ob- 

jective was the development of a realistic model for a cloud layer as an optical-frequency com- 
munication channel. 

A small particle suspended in the atmosphere absorbs a portion of the light incident on it, 

in general,   and scatters the remainder in all directions.     The particles in clouds are droplets 
1 

composed mainly of liquid water, and their diameters    range from about 10 to 40 microns.   Since 
they are large compared with the wavelengths of visible light,  they tend to scatter most of the 
incident energy at these wavelengths in the forward direction.    Also,   their absorption at visible- 
light frequencies is small.    Thus a large fraction of the light entering a cloud emerges at the 
other side.    A beam of light traversing a cloud will suffer dispersion in angle of arrival and deg- 
radation of spatial coherence,   while any modulating signal which may have been carried by the 
beam will experience dispersion in time and frequency.    These deleterious effects become pro- 
gressively more severe as the particle concentration increases.    For typical clouds,  one finds 

that most of the emerging light has been scattered more than once.    All the results reported here 
account for the presence of this multiple scattering. 

We take the point of view that an observer standing beneath a cloud illuminated from above 
is interested only in the light emerging from the bottom of the cloud.    We do not attempt to cal- 
culate intensity distributions or other characteristics of the backscattered light.    All the energy 
which is lost from the forward-directed signal in this manner is treated as though it were lost 
by absorption in the cloud. 

The analysis in this report depends heavily upon the condition that most of the light incident 
on each individual particle is scattered in a generally forward direction.    This is demonstrably 

true for clouds at visible wavelengths,   as we have already indicated;  in general,   it is true for 
any situation in which the particle diameter is large compared with the wavelength of the incident 
radiation.    Although all our analyses are couched in terms of a somewhat idealized model for a 

cloud,   most of our results can be applied for communication through fog as well by simply letting 

both the transmitter and the receiver be located right at the cloud boundaries.    Although natural 
2 

fog particles tend tobe somewhat smaller than those of clouds (their diameter distributions   tend 
to peak up in the neighborhood of 4 to 6 microns),  they are still quite large compared with vis- 
ible wavelengths.   Thus the light scattered by fog particles is also quite strongly forward-directed. 



The applicability of our results to optical communication through atmospheric hazes is 

somewhat questionable,  and has not yet been investigated in any detail.    Hazes generally contain 
3 

many particles roughly comparable in size to visible-light wavelengths,   which scatter substan- 
tial amounts of light through large angles.    This tends to violate our assumption that any light 

which is scattered through an accumulated total angle of about 2n radians is so attenuated as to 

be negligible compared with the forward-scattered light. 

Section 1.1 describes the effects of a cloud upon the angular and spatial properties of the 
transmitted light.     Section 1.2 provides  a brief description of the  generalized  space-time- 

frequency scattering function presented in Chapter 4,  which is the most general form of our 
cloud-channel communication model.    Section 1.3 outlines the body of this report. 

1.1 SPATIAL DISPERSION OF LIGHT TRAVERSING A CLOUD 

Chapter 3 of this report is an analysis of the angular and spatial distributions of light be- 

neath optically thick clouds.    The topic is treated separately,  and an entire section of this intro- 

ductory chapter is devoted to it,   because it is potentially of interest in areas outside of commu- 

nications theory.    The incident light is assumed to have constant intensity,  and the results are 
derived without reference to communications-oriented concepts such as bandwidth and modulation. 

We define a simplified representation for both the incident and the scattered light as a su- 

perposition of elementary waves,  specifying the distribution of light intensity in angle and in po- 
sition on the horizontal plane.    By using the ideas and techniques of linear system theory,  we 

show how this mathematical function is modified as the light traverses the cloud.    We find that 
the intensity distribution below a cloud with arbitrary illumination incident on its upper surface 

is given by a multidimensional linear superposition integral. 
The results are obtained in two complementary forms.    One of them is appropriate for in- 

cident illumination which is uniform over the entire horizontal plane,  while the other must be 
used for beams of finite cross-sectional area.    We show that the first result is simply a special 
case of the second. 

As an example of the utility of these results,   suppose that one illuminates the top of a cloud 
with a group of constant-intensity uniform plane waves,  having angles of arrival distributed over 
some range.    By application of the first kind of superposition integral,  we immediately obtain 
the distribution of intensity as a function of angle of arrival over the ground below the cloud.    As 
another example,   suppose the top of the cloud is illuminated with a pencil beam incident at hor- 
izontal coordinates (x ,y  ).    The second form of the superposition integral yields the distribution 

of intensity over the ground as a joint function of angle of arrival and the horizontal coordinates 
x and  y. 

1.2 CHARACTER OF CHANNEL 

As one might well expect, the field incident on the ground beneath a cloud can be represented 
as a complex Gaussian random process.    The arguments leading to this conclusion are presented 

in detail in Appendix A.    Since a signal traversing the cloud suffers time and frequency disper- 
sion as well,  we anticipate that a signal detected on the ground will be qualitatively similar to 

one which was transmitted over a classical fading dispersive channel.    The problem is compli- 
cated,  however,  by the fact that the spatial and angular variation of the arriving field are both 
important and useful.    In Chapter 4 we present a generalized scattering function <J(T, f, v'),  first 

4 
suggested by Kennedy,   which combines all this information about the channel in a useful,   compact 



form.    The vector argument v' may be thought of as a unit vector pointing in some direction, 
drawn through some point (x, y) on the ground plane.    The function <j( ) is defined in such a way 

that the quantity O(T, f, v') dr df dv' is the fraction of total received signal energy at the point 

(x, y) on the ground borne by rays which experienced time delay and Doppler shift in the ranges 
(T, T + dt) and (f, f + df),  and had angles of arrival in the range dv' about v'.    We derive the func- 
tion from basic assumptions,   and present a brief discussion of the manner in which one would 

proceed to a mathematical description of the optimum communication receiver from knowledge 
of a( ) and the transmitted signal. 

Declining to carry the general treatment any further,  we proceed to derivations and discus- 
sions of various special cases of the scattering function and signal correlation functions.    We 
show that the spatial superposition integrals of Chapter 3 are in fact special cases of CT(T, f, v'). 

The other specialized functions based on a( ) that we discuss include a time-independent spatial 

correlation function of the field over the ground,  angular and spatial correlation functions for 
signals received by directive antennas,  the range scattering function <J(T) for an antenna aimed 
in a given direction,   and the range-Doppler scattering function a(r, f) for the same antenna. 

1.3   OUTLINE OF REPORT 

A large body of literature exists on the subject of electromagnetic scattering by particles. 
Chapter 2 is devoted to a brief survey of some of this material,  with particular emphasis on 
those results which will be exploited in the remainder of the report.    Chapters 3 and 4 have just 
been discussed.    Because their contents are thought to be of particular interest,   they have each 
been accorded an entire section of this chapter for introductory comments. 

In Chapter 5 we propose a sub-optimum communication system which could be realized with 

techniques and components which are available or readily visualized as being available in the 

future.    Since it falls within the purview of classical fading dispersive channel analyses,  we can 
readily analyze its performance.    The results give us some feeling for the performance one 
might expect with the optimum system. 

Chapter 6 summarizes the conclusions we have reached in this report,  and outlines areas 
of potentially fruitful future research on optical cloud communication.    The appendices deal with 
matters which are peripheral to the main issues in the body of the report,  and with long and 
complicated derivations. 



CHAPTER 2 

AVAILABLE RESULTS OF SCATTERING THEORY 

The scattering of electromagnetic radiation by particles  has been studied extensively for 

many years.    The scattering behavior of collections of particles has been thoroughly analyzed 
for situations in which single scattering predominates.    For a particle suspension so dense that 

a substantial fraction of the light traversing it has been scattered more than once,   however,   the 
problem becomes far more complex.    A number of books and  papers have been written about 

specialized aspects of multiple scattering (of which this thesis report is an example),   but the 
status of research on the general problem is still very fluid. 

The first section of this chapter is a brief survey of the literature on both single and multi- 
ple scattering of light.    In Sec. 2.2 we review those results of single-scattering theory which will 

be utilized in the development of our linear-system model for multiple scattering. 

2.1   HISTORICAL  DEVELOPMENT 

A concise review of the early history of the subject of electromagnetic scattering by parti- 
5 

cles is given by van de Hulst    in his Sec. 1.3.    The problem of the scattering of electromagnetic 
waves by a single  homogeneous sphere was  first solved in complete generality by  Mie.     His 
approach was to represent the fields in space as a superposition of spherical waves which were 
concentric with the scatterer.    The solution of the boundary-value problem in  this coordinate 
system was straightforward.    He obtained  completely accurate and  general formulas for  the 
scattered field in the presence of a sphere of arbitrary radius and arbitrary complex refractive 
index,   for incident radiation of arbitrary wavelength. 

Virtually all electromagnetic scattering research since that time has been based upon the 
fundamental work of Mie.    The first logical extension of his results was the analysis of light 
scattering by low-density suspensions of particles.    By assumption,   the volume density of parti- 
cles in such suspensions is small enough that light scattered more than once can be neglected 
compared to unscattered and single scattered light.    Many authors have attacked this problem; 

1 7 excellent treatments of the subject are provided by,   for example,  van de Hulst    and Newton. 
The usual approach has  been to show  that the angular  distribution of light  traversing such a 

medium is simply a superposition of unscattered light and the scattering pattern of a single par- 
ticle,  averaged over the distribution of particle sizes in the medium. 

For denser suspensions of particles,   however,   a significant fraction of the emerging light 
has been scattered more than once.    The mathematical complexity of the multiple scattering 
problem is enormous,   compared  to the simpler results  described above.    The first successful 

Q 

treatment of the problem was that of Chandrasekhar,   who attacked light propagation through 
multiple-scattering media as a transport phenomenon.    He  derived an elegant  diffusion equation 

(his "Equation of Radiative Transfer" ) for the angular distribution of scattered intensity.     His 
work has been widely applied in such areas as the study of planetary atmospheres in radio astron- 

omy.    In practice,   his equation is extremely difficult to solve,   except when the particles scatter 
isotropically,  or nearly so.    His ideas have been extended,   and additional results of the same 

9 
general nature have been obtained by Sobolev.     Like those of Chandrasekhar,   his equations for 
angular intensity distributions of diffuse scattered radiation are very difficult to solve except in 

a few special cases. 
1 0-12 Certain other multiple-scattering results have been obtained by Fritz. He modeled 

the scattering pattern of an individual cloud droplet as a superposition of forward-scattered 



and isotropically scattered intensities;   the latter were smaller by a factor of several hundred. 

His main results were angular distributions of luminance and illuminance below an overcast sky, 

which he obtained by the approximate solution of a diffusion equation.    Like the work described 

in the preceding paragraph,   Fritz's techniques do not have enough versatility to provide the ad- 

ditional information (such as spatial correlation functions and time and frequency spreading of 

signals) required for a useful optical communications model. 

A substantial number of papers have appeared in recent literature,   reporting experimental 
1 3 work on single and multiple scattering of light.    For example, Carrier and Nugent     and Reisman, 

14 
et al.,     have carried out measurements of light scattered by fogs in air as a function of angle. 

15 16 17 Smart,   et al.,      Woodward     '      and a number of other workers have made angular intensity dis- 

tribution measurements of light scattered by water suspensions of polystyrene latex spheres, 

where the particle concentration was high enough that multiple scattering was important. 

Certain other results have recently been obtained which are more directly applicable to the 
1 8 

questions of interest in optical communication.    Dell-Imagine      used numerical integration of 

Chandrasekhar1 s equation of radiative transfer to obtain the transient response of a cloud illumi- 

nated from above by a plane wave which was turned on at some instant of time.    In a series of 
19-22 four articles,   Plass and Kattawar have reported on a Monte Carlo technique which accu- 

rately follows the multiple scattered paths of photons through thick clouds.    They have obtained 

numerical simulations of the cloud albedo and of the angle dependence of reflected and transmit- 

ted light,   as functions of various parameters of the clouds and the particles,   the wavelength and 

incident angle of the incoming light,   and the albedo of the planetary surface.    They have also ob- 

tained information about the optical path lengths traversed by photons penetrating clouds. 

In Appendix G we carry out explicit comparisons of our results with some of those of Dell- 

Imagine and of Plass and Kattawar. 

2.2   BASIC DESCRIPTION OF SINGLE SCATTERING 

The study of multiple scattering must begin with an understanding of the mechanism of plane- 

wave scattering by a single particle. Thorough expositions of the theory of electromagnetic scat- 

tering by homogeneous spheres are contained in the original paper of Mie,    in the classical book 
23 17 

by Stratton,      and in the cited works of van de Hulst    and Newton.     In general,   the amplitude, 

phase,   state of polarization and direction of propagation of the scattered wave can be precisely 

determined as functions of the parameters of the sphere and the incident wave.    Although the for- 

mulas of Mie are elegant in their generality,   their application to specific cases involves a great 

deal of computational labor.    Our task is somewhat simpler,  because we choose to ignore polar- 

ization effects.    Furthermore,   as we show in Appendix A,   we need not retain phase information, 

since phase coherence is lost in the multiple-scattering process.    Thus the only result we need 

from the Mie theory is the sum of the intensity scattering patterns for the two orthogonal polar- 

ization components,   for a spherical particle of radius  a  at a given wavelength.    We shall call it 

F  (e).    Its argument is the angle between the incident-wave propagation vector and the direction 

of propagation of scattered radiation.    The function is conventionally defined in such a way that 

the intensity of light scattered into the solid angle 

do; = sin Q dO d<p 

is given by F  (e) dui,   when the particle is illuminated by a unit-intensity plane wave.   Assump- 

tions and approximations to be used in the present study will be developed in Chapter 3. 



It is convenient to describe the behavior of a scattering particle in a cloud in terms of its 

cross sections.    Suppose a particle intercepts P. watts of power from an incident plane wave of 

intensity I..    Let P        watts of this power be scattered,   while P ,     watts are absorbed.    By def- 
1 S C3. 3 DS 

inition,   we have 

Csca=Psca/Ii      • <2"la> 

Cabs = Pabs/Ii      • <2-lb> 

and 

C     , = P./I.       . (2-lc) ext i'   1 v ' 

These quantities are the cross sections (in square meters) of the particle for scattering,   absorp- 
tion and extinction,   respectively.    By virtue of energy conservation,   we have 

C     , = C + C  . . (2-2) ext sea abs 

The extinction cross section of a particle is not necessarily equal to its geometrical cross sec- 
tion.    For a spherical particle of radius  a  which is large compared to a wavelength.   C        is 

T ext 
roughly equal to 27ra    (see the discussion of the "extinction paradox" on pp. 107-108 of van de 
Hulst1). 

Within a medium containing scattering particles,   a wave of initial intensity I    traversing a 
distance  z  suffers the well-known "extinction" attenuation 

I(z) = IQ exp[-yz]      , (2-3) 

where I(z) is just the unscattered and unabsorbed residue of the original wave.    For a so-called 

" mon 
have 

" monodisperse"  suspension containing d    identical particles of radius  a  per unit volume,   we 

y = d  C     .(a)      . (2-4) '        v   ext 

In a " polydisperse" suspension the particle radii obey some probability density function p(a)     If 

the average volume density of particles is d  ,   we have 

y = dv f    C     t(a) p(a) da      . (2-5) 

The coefficient y  is frequently expressed as D     ,   where D    is defined as the "extinction dis- 
tance" of the medium.    When distance within the cloud is normalized to D  ,   it is called "optical 

distance."   In particular,  the "optical thickness" of a cloud is 

N    =ff- (2-6) e     D e 

where   T   is its physical thickness. 
As a general rule of thumb,   one assumes that a single-scattering analysis is adequate for 

a particular cloud when its optical thickness is about 0.1 or less.    Thus the extinction attenua- 
tion exp( —0.1) for propagation all the way through the cloud is very nearly unity.    The single- 
scattered intensity emerging from the cloud is very small,  being roughly [1 — exp(— 0.1)] times 
the unscattered intensity, and higher-order scattered radiation is of a higher order of smallness. 



Now,  we shall direct our attention in the present study to clouds whose optical thicknesses range 
from perhaps 5 to 100.    Thus the importance of multiple scattering in analyzing the behavior of 

these clouds is manifest. 
These few concepts comprise all the background that is necessary for the idealized cloud 

model described in Chapter 3. 



CHAPTER 3 
SPATIAL IMPULSE  RESPONSES 

We begin this chapter with a description of an idealized physical model for a cloud and the 
particles comprising it.    We then define two complementary forms of a simplified elementary- 

wave representation,   which gives us an adequate mathematical description of the angular and 
spatial variation of the intensity of the incident and scattered light.    It is demonstrated that the 
average effect of the cloud upon the function representing the incident illumination is analogous 

to the effect of a linear system upon its input.    We define impulses in each of the two forms of 

the elementary-wave representation,   and obtain the response of the cloud to each of the impulses. 

We show that the effects of the cloud upon an arbitrary incident distribution can be determined 

by means of a superposition integral involving the appropriate impulse response. 

In this chapter we consider only the intensity of the scattered light beneath a cloud.    More- 
over,   we restrict our attention to the average behavior of the intensity.    We argue in Sec. 3.1 
that the intensity of the scattered light measured by an antenna is a random variable with ex- 

tremely small variance,   so that it is always very nearly equal to its statistical average. 

3. 1  IDEALIZED CLOUD 

The physical configuration of the idealized cloud to be analyzed is illustrated in  Fig. 5-1. 
Its boundaries are infinite parallel planes separated by  T   meters;   it is parallel to the earth, 
which is represented as an infinite plane  h meters below the lower boundary of the cloud.    The 
statistical properties of the cloud (e. g., particle 
density and size distribution) are uniform every- 
where within its boundaries. The receiving an- 
tenna on the ground has some aperture size and 
beamwidth associated with it. 

We shall assume that the particles in the 
cloud are spherical and that all have the same 
complex refractive index m. Their radii are 
assumed to obey a probability density function 

p(a), 0 < a < °°, and the average volume density 

of particles is taken to be d per cubic meter. 
As we pointed out in Chapter 2, the extinction 

cross section C (a) and the intensity scattering 

pattern F (S)are precisely specified by the Mie 

theory for each individual particle, at a given 
wavelength. The average extinction cross sec- 

tion over all the particles in the cloud is 

ll-4S-IH9<| 

INCIDENT 
RADIATION 

:ext - )      Cext(a> P(a» da 

o 

y///////////////////////////////////////////, 
GROUND PLANE 

Fig. 3-1.    Physical configuration of  idealized cloud. 

(3-1) 

We shall find it expedient to depart from conventional practices to a degree,   with respect to the 
particle scattering pattern.     For calculations involving polydisperse suspensions,   one would 

normally use the average scattering pattern defined by the relation 



^W) - \      FaO) P(a) da      . 
" o 

This is a spatial average,   in the following sense:   a small volume of the scattering particle sus- 

pension,   illuminated by a plane wave,   will look like a point source of scattered radiation if ob- 

served from a sufficient distance.    As we shall show later in this section,   it is reasonable to 

imagine a volume large enough to contain an enormous number of scatterers,   but small enough 

(and having its scatterers far enough from each other) that each particle scatters the incident 

light independently.    The above definition of F(6) then follows. 

In the present case,  however,  the particle diameters (roughly 10 to 40 microns in typical 
24 clouds     ) are much larger than visible-light wavelengths.    The scattering pattern at a given 

wavelength is therefore strongly peaked in the forward direction.    The intensity of radiation 

scattered through  IT  radians is roughly 50 to 60 times smaller than the forward-scattered inten- 

sity,   for large spherical particles.       We shall assume that backscattered light is lost,   for our 

purposes,  exactly as though it had been absorbed.    (If it were to contribute to the effects of light 

scattered forward by a given particle,   the backscattered light must undergo a second reversal 

of direction.    Such rays will then be attenuated relative to the forward-scattered rays by a factor 

of perhaps 2500.)   Thus we restrict our attention to the forward-scattering pattern  F_     (()),   which 
i, a 

we define for a given wavelength as 

f,a(e> = 

i'a(e)     ,      |e| < | 

0      , elsewhere      . (3-2) 

The average forward-scattering pattern for the particles in the cloud is 

Ff(B)4 \      Ff     (9) p(a) da      . (3-3) 

The average total power scattered through angles less than TT/Z by a particle illuminated by a 

unit-intensity plane wave will be called the average forward-scattering cross section 

C^ =  ^   Ff(0) dw 

nZir PTt/2   
=   \       dtp \ d9 sin 9 Ff(9) (3-4) 

•'o o 

rx/2   
=  2TT \ d9 sin 9 Ff(9) 

' o 

We lump the average total backscattered light together with the absorption loss,   describing the 

result in terms of the average loss cross section C   .    By virtue of energy conservation,   we 

have 

C     ,= C. + C,      . (3-5a) ext If 

We define the average forward-scattering efficiency 

C7 
Yf=  —     . (3-5b) 

C     . ext 

10 



the average fraction of the incident power which is scattered forward.    F^or convenience in the 

thin-layer model analysis to follow,   we define a normalized average single-particle forward 

scattering pattern 

f(9)= (Cf)       Kf(0)       . (3-6) 

Neglecting near-field effects,  we see that the average scattered intensity at a point at spherical 

coordinates (r, 6, cp) relative to a particle is 

CT 
I. -yfO)     ,      |e| < i 

r I  (r, 0) = • s 

0      , elsewhere      , (3-7) 

independent of the azimuth angle   ip.    The incident illumination is a plane wave of intensity I., 
and  9   is measured from its propagation vector. 

We remark in passing that the Mie theory does not hold for incident illumination other than 
a uniform plane wave.    Thus Eq. (3-7) is not strictly correct in a multiple-scattering environ- 
ment,   where some components of the light incident on a particle are approximately spherical 
waves that result from scattering by other particles.    As a practical matter,  however,  this prob- 
lem may be ignored.     For a very dense cloud,      d    is on the order of 10      per cubic meter. 
The corresponding average particle separation is roughly 

d"1/3 a 5 x 10"4 meter      . (3-8) v 

At this distance,  a spherical phase front is flat over a region the size of a particle (say,   5 mi- 

crons) to within about 6.2 x 10      meter,   which is roughly 0.012A at a wavelength of 0.5 micron. 
We assume that the locations of the scattering particles within the cloud obey a Poisson dis- 

tribution.    This follows from the assumption that individual particle locations are statistically 

independent of each other,   and that the location of each of them is a uniformly distributed random 

variable over the volume of the cloud.    Specifically,   let there be 

n = Vd v 

particles in a large but finite volume   V  in the cloud,   and let a given particle be present in a 

given region <5v of V  with probability Sv/V.    Let all n  particles obey the same probability law, 
independently of each other.    Then the population   k  of 6v obeys a binomial distribution,   with 

Pr [k  particles in 6v) =(^) (^)k (1 - ^)n_k       . (3-9) 

Now,   if n  becomes large and 6v/V becomes small,   while their product 

n 4^  = d  6v (3-10) V v 
27 remains moderate,   the Poisson approximation      holds.    Thus 

(d  5v)k     -d  Sv 
V V lim    Pr [k  particles in <5v] =   —rj  e . (3-11) 
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The exponential extinction of waves traversing the cloud follows from the Poisson assumption. 

Suppose a plane wave of intensity I(x) within the cloud progapates through a layer of thickness dx 

whose boundaries are parallel to the phase fronts of the wave.    On the average,   each particle in 

the layer removes C     ,I(x) watts of power from the plane wave (we visualize the averaging proc- 
ess as a spatial average over a large area of phase front).    We assume that the resulting local 
perturbations in the wave become smoothed out rapidly enough that its plane wave character is 

preserved everywhere.    Now,  a section of this layer with unit-area faces contains d  dx particles, 
on the average.    The average intensity of the unscattered remnant of the plane wave at x + dx is 

therefore given by 

(x + dx) = I(x) - C xtdvI(x) dx      , (3-12) 

which we integrate to obtain 

-C      d  x 
I(x) = I    e v        . (3-13) '       o 

By similar reasoning,   we find that the extinction losses of a spherical wave traversing a shell 

of thickness dr are represented by the equation 

2      ,   _,   > r,     .   ,   >        2, (r   + 2rdr) I(r + dr) = r I(r) - r C    ,d  I(r) dr      , (3-14) ext   v 

which we integrate to yield 

I        -C     .d r 
I(r)=-°.e     ext v        . (3-15) 

r 

Throughout this chapter we consider the average intensity of the scattered light traversing 
a cloud.    In Appendix A and Chapter 4,  we study the statistics of the light in greater generality. 
It is meaningful and useful to study only the average behavior of the intensity,   as we do here, 
because the variance of the intensity is extremely small.    Thus it is always very nearly equal 

to its average value.    An heuristic argument in support of this assertion is now given,   with par- 
ticular reference to the total intensity I measured by an antenna on the ground aimed at the under- 
side of the cloud.     Because of their independent random phases,  the contributions arriving at the 
antenna from each particle in its beam add incoherently.     Let the intensity contributed by the 
i      particle be the random variable e..    Now,   the contributions from two particles will be statis- 
tically decoupled if the light rays illuminating one of them have no effect on the other.    This will 
be true when the distance   r between the two particles obeys the condition 

r « D , (3-16) e v ' 

so that the probability of double scattering within a distance   r  is very small.    Thus the cloud 
particles in a volume  V  of dimensions small compared to the extinction distance D    will provide 

a set of signal contributions at the antenna which are essentially statistically independent of each 

other.    The total intensity received from the volume  V  is a random variable 

lV = Ze
k <3-17> 

k 

where k  ranges over the particles in V.    Let the number of such particles be  K;  assume that 
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the variance of c,   is a,  ,   and that its mean is 

V 

for every k. Let us make the intuitively satisfying assumption that each e, varies over a rea- 

sonably small range, so that its standard deviation is no larger than a number roughly compa- 

rable to its mean.    Thus 

CTk^Ckm = Cklf     ' (3"19) 

where C, is a factor of fairly modest magnitude (possibly even less than unity). Let us upper- 

bound the quantities C,   by the relation 

C,  <  max {C. } = C . (3-20) k . kJ max k 

Then 

K 
2 var <y: X frk 

k = l 

(I    )2 (I-)2 

-<C^ -$r-        . (3-2i; 2     Ck 
k=l 

„2     ^     max      K 

Under these assumptions,  then,   the ratio of the standard deviation of I     to its mean goes as 
-1/2 V 

K .    Now,  the dimensions of V  are on the order of,   say,   0,11)   .    Thus a very conservative 

estimate for the volume of V   would be a few cubic meters,   so that   K  is of the order of the par- 

ticle density,   a huge number.    We conclude that I . is always very nearly equal to its average 

value.    The same statement holds for the total intensity I measured by the antenna,   which is a 

superposition of a number of nearly-constant components similar to I    . 

3.2  PLANE WAVE  SUPERPOSITIONS 

An essential feature of the analyses in this chapter is the representation of the intensities 

of arbitrary propagating fields as superpositions of elementary waves.    We require the user of 

our results first to represent the incident illumination in accordance with the techniques we 

shall define below.    The scattered illumination that we predict beneath the cloud is to be inter- 

preted in the same way. 

Now,   it is possible in principle to obtain a complete and precise representation for a gen- 

eral propagating field in the form of a superposition of uniform plane waves (see,   for example, 
28 

Stratton     ).    Such a technique is more general than is necessary for the representation of the 

scattered light within and below clouds.    Because of uncertainty in our knowledge of the locations 

of cloud particles,   we take all the scattered wavelets to have statistically independent random 

phases,   uniformly distributed over (— w, 7r),   as we explain in Appendix A.    Thus all the wavelets 
at a point in space,   including any unscattered residue of the incident radiation,   add in an incoher- 

ent fashion (i.e.,   their intensities add).    For our purposes,   then,   an adequate description of the 

field at each point in space (even for the incident radiation, before it enters the cloud) need specify 
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only the intensities and directions of propagation of all rays passing through the point.    We shall 

define two different kinds of simplified plane wave distributions which provide this information in 

a convenient form.    The first of these is appropriate for wave configurations which are uniform 

over any plane parallel to the ground,  while the second must be used to represent finite beams 

whose intensity varies with the lateral coordinates  x  and y. 

The first  plane wave distribution  function we shall  employ  depends only upon angles of ar- 

rival.    It will be called the angular intensity distribution function I(cv, /3), with dimensions of watts- 
-2 -2 

meter     -radian     .    Its arguments are the orthogonal angular coordinates defined in Appendix H 

by the relations 

a  - Q cos ip      , 

P = B sin 0       , (3-22) 

where O and tp are the polar and azimuthal angles in spherical coordinates. As we explain in de- 

tail in Appendix B, the transformation is approximate in roughly the same sense as the statement 

that 

2%2  a  i       . (3-23) 

Thus Eq. (3-22) is precisely correct at G =  0    and is good within 20 percent for 

G -Ss 1.03 radians       . (3-24) 

The resulting restricted angular range of l(a,p) causes no real problems.    For the situations we 

shall consider,   the condition (3-24) is satisfied by that portion of the scattered light beneath a 

cloud which is intense enough to be of value for optical communication.    Thus the approximation 

is valid for our objective,   which is the development of a useful approximate analysis of the cloud 

as a communication channel,  not a precise description of the physical phenomena involved.    We 

define I(a, P) by means of the statement that I(cv, p) da d/3 is the total intensity borne by those plane 

waves whose angles of arrival lie in the intervals (a, a  + da) and (/?, j3 + d/3).     Thus a hypothetical 

antenna with unit aperture area whose power gain is unity over a solid angle 

da.'  = da d/3 (3-25) 

and zero elsewhere simply reproduces the intensity distribution incident upon it.    When it is 

illuminated by I(a, P) the antenna measures a total power level 

prec (o,/3) = I(o''/3) dco       • (3"26) 

A more general antenna,   with power gain pattern g(a,/3) and aperture  A,   aimed in direction 

(a., p.) and illuminated by I(a,/3),   receives a total power level 

Prec (ai,Pi) = jj AI(a,/S) glaj-a, P±-P) da dp      . (3-27) 

The double-impulse intensity distribution 

I(a, /?) = u   (a - a   ) u   (0-/3   ) (3-28) 
o o     o o 

is taken to be a single unit-intensity uniform plane wave whose angle of arrival is (a   , p  ). 
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The second type of plane wave distribution we utilize will be called the power distribution 
-2 -2 function P{a, p,x,y).    Its dimensions are also watts-meter     -radian     .    We define this function 

by the statement that P(a, p, x, y) da dp dx dy is the total power borne by those rays of light with 

angles of arrival in a solid angle da d/3 at the angular position (a, P),   which fall on an area dxdy 

at the point (x, y) on a plane parallel to the ground.    This situation is illustrated in Fig. 3-2.    The 

indicated angle 

9 = N/CY
2
 + /32 (3-29) 

is the polar angle in conventional spherical coordinates which corresponds to the position (a, p). 

|l-4i-HTIT| 

Fig. 3-2.    Geometry for definition of  P ( ). 

The interpretation of P( ) in terms of plane waves is complicated by the fact that the phase 

fronts of an arriving plane wave are not parallel to the x-y plane.    Referring to Fig. 3-2,  we ob- 

serve that the area dxdy projects into an area dxdy cos 9 on a plane parallel to the phase fronts 

of a plane wave having angle of arrival {a, p).    Thus the power distribution function 

P(a, p, x, y) = UQ(a - aQ) uQ(p - PQ) (3-30) 

must correspond to a uniform plane wave with angle of arrival (a  , p  ) whose intensity is 

I    = sec 9 
P o 

(Jtt) 13-31) 

Suppose that a plane wave arriving from (a  , p  ) had some nonuniform intensity given as a func- 

tion of the x- and y-coordinates by the expression I  (x, y).    Clearly the corresponding power dis- 

tribution function would be 

PI a, p, x, y) = I (x, y) cos 9    u ( a — a  ) u  (fi 'r'   'J p      J oo ooK 

The quadruple-impulse power distribution function 

) 

P( a, p, x, y) = UQ(a - aQ) UQ(p - PQ) UQ(X - xQ) uQ(y - yj 

(3-32) 

(3-33) 
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corresponds to a "plane wave" arriving from (a  ,(3 ) whose intensity is 

I  (x, y) = sec 9   u  (x — x  ) u   (y — y   ) p oo oo-7      J o (3-34) 

This can be envisioned as,   for example,  the limiting case of a plane wave whose intensity is 

Gaussian in both x and y and is multiplied by sec 9   .    In another sense we may think of it as 

an individual ray,   carrying unit power.    An idealization,   like the familiar impulse in linear sys- 

tem theory,   Eq. (3-33) will be used only as a mathematical artifice in studying the behavior of 

waves which could exist physically. 

A hypothetical antenna which reproduces a power distribution function P(  ) incident upon it 

must have an aperture dxdy which remains fixed in the x-y-plane,   rather than the plane perpen- 

dicular to the antenna boresight axis.    The power gain of the reproducing antenna must be unity 

over an incremental solid angle du> and zero elsewhere.     Let the location of the antenna be de- 

noted by (x.,y.),   while its pointing angle is [a,, p.).    Then the power received by the antenna 

when it is illuminated by P(o, fi, x, y) is given by 

p       ^.,fi.,-x..,y.) = P{a.,fi.,x.,y.) do; dxdy *rec     1   rl     1  J 1 1 ,Hi'    1  '1 J (3-35) 

In order to write an expression for the power received by an arbitrary antenna,   we require 

that its aperture be described by an aperture function A( a, (j, x, y) defined over the x-y-plane. 

Fig. 3-3.    Aperture function geometry. 

which includes any variation of the aperture with the antenna pointing angle (a, fi).    As an example 

of what we mean by this statement,   consider a conventional telescope pointed at some angle (a, fi) 

whose effective aperture area (on a plane perpendicular to the axis of the telescope) has a con- 

stant value a  rc.     For this antenna,   the function A( ) that we require is a function of x  and  y 
ett ,—;——^ 

whose area is a  ff sec Wff    + fi  );   that is,   it is the region on the x-y-plane which projects into 

a ff on the aperture plane.    The situation is illustrated in Fig. 3-3.    In addition to the aperture 

function,   we require knowledge of the power gain pattern g( a, fi) of the arbitrary antenna.    When 

illuminated by a power distribution function P(cv, /3, x, y),   this antenna receives a power level 

In 



,(a1,j31>x1Jy1) =  MM dad/3dxdy P(a,/3, x,y) 

g(a> Pi - ji) A(o1 - <v, /^ - /i, xi - x, y1 - y) (3-36) 

One final comment about the function P(  ) is in order.     It is obvious that the function depends 

upon the vertical coordinate  z    in addition to the four arguments listed.     In our development we 

are able to suppress explicit indication of this dependence,   however,   because the vertical loca- 

tion is clearly specified in the context at each step of the analysis. 

3.3   THIN-LAYER MODEL 

We consider a subdivision of the cloud into parallel layers of thickness I       each of which is 

treated independently.    Since the particles are assumed to scatter only in the forward direction, 

we can consider each layer successively from the top of the cloud downward.    The desired re- 

sults are obtained in the limit as i     goes to zero.     While our analysis appears to be new,   the 

thin layer idea itself is not.    Hartel,       for example,   calculated the angular distribution of diffuse 

scattered light intensity in a thick cloud by computing the effects of successive layers of scat- 

terers.     He used an exceedingly complicated approach,   involving the expansion of both the single- 

particle scattering pattern and the scattered light intensity distribution in associated Legendre 

polynomials.    Another approach was used by Fritz in the work mentioned in Chapter 2,   in which 

he divided the cloud into layers of fixed optical thickness 0.25.    By adding the contributions of 

diffuse scattered light "generated"  independently in each of the layers,   he derived a diffusion 

equation for the angular distributions of transmitted and reflected light. 

We assume that the thickness i    of the o 
layers in our model is small enough at the out- 

set that the probability of multiple scattering 

within a layer is vanishingly small.    Thus most 

of the light rays traversing a layer emerge with- 

out having been scattered,  and a few undergo a 

single scattering, but virtually none of them is 

scattered more than once.   An alternate state- 

ment of this assumption is the condition that 

~Tj 45    J7799] 

INCIDENT WAVE 

i    « D o e 
(3-37) 

RECEIVING ANTENNA 

'///////////////////////////////////A 
GROUND PLANE 

Fig. 3-4.    Layer model of the cloud. 

whence the extinction attenuation exp[— I   /D   ] 

is very nearly unity.   Here we implicitly inter- 

pret the extinction attenuation as the probability 

that a light ray traverses a distance I    without 

being scattered.   This and related ideas will be 

discussed in detail in Chapter 4.   Now, since I 

is so small and will be driven to zero in a later 

step anyway, we will not be changing the gross behavior of the model if we assume that all the 

particles in each layer are physically located on a plane at the center of the layer.    Thus we ar- 

rive at the simple model illustrated in Fig. 3-4,   in which each particle in the cloud is located on 

one of the N parallel planes in the region occupied by the cloud.     For a cloud thickness of  r   me- 

ters,  we have 
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N = j-     . (3-38) 
o 

Since we assumed the particles were Poisson-distributed over the volume of the cloud with aver- 
_3 

age density d    meter     ,   it is appropriate to let them be Poisson-distributed over each of the par- 
allel planes with average density 

p  = I  d    meter" (3-39) r        o  v 

and to let the distribution on each plane be statistically independent of all the others. 

For the present we shall assume that each particle has zero velocity.    The inclusion of 

questions of Doppler dispersion at this point in the layer-model analysis leads to excessive com- 
plexity without changing the results.    This issue will be addressed by means of an alternate tech- 

nique in Chapter 4. 
The determination of the average impulse responses of the cloud involves averaging over all 

possible sets of particle locations in the cloud. This problem resolves itself into averaging sep- 
arately over the Poisson distributions of particles on the plane at the center of each layer, since 
they are assumed to be statistically independent of each other. Each layer is considered succes- 
sively in the analyses to follow, from the top of the cloud downward, and an implicit averaging 
process is carried out for each layer in turn. 

For the sake of convenience,  we shall use the term "layer" somewhat loosely hereafter,  to 
refer to the plane and its Poisson-distributed particles at the center of the actual cloud layer. 

3.4   ANGULAR IMPULSE RESPONSE h^a, B;  aQ, B ) 

When a cloud is illuminated from above by a uniform plane wave,   the light emerging below 
it will be spread out over a range of angles of arrival.    In terms of the angular intensity distribu- 
tion function [(a,/3) defined in Sec. 3.2,   the incident plane wave is equivalent to a two-dimensional 

impulse.    The average angular dispersion of the light emerging below the cloud in response to 
this illumination is shown to be equivalent to the double-impulse response of a two-dimensional 

linear filter.    We show that the response of the cloud to an arbitrary plane  wave illumination 
is given by a linear superposition integral with the impulse response as its kernel. 

The angular impulse response hJa,ji;   a   ,3   ) is defined as the angular intensity distribution 
at coordinates (a, B) below a cloud in response to a unit double impulse at coordinates (a   , B   ) in- 
cident on the top of the cloud.    We derive h.(  ) by finding the impulse response hJa., 0.;   a   ,B) 

of a single layer of thickness I ,   and writing an (N — l)-fold two-dimensional superposition inte- 
gral to obtain the response of an array of  N  layers.    We then solve the integral in the limit as 
N  goes to infinity and the layer separation I    goes to zero,   while the cloud thickness 

T = Nl (3-40) 

remains constant. 
We begin by transforming the normalized average single-particle forward scattering pattern 

f(6) of Eq. (3-6) into a function i.(a, 8) defined over the a — /3 domain.    As we explain in Appen- 
dix B,   the result is 

-I 
la + B 

t,(a,B) =  '   f K/q     + B   )       . (3-41) 
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Fig. 3-5.    Average single-particle scattering 

pattern f (a,p). 

A typical f.(a, fi) is illustrated in Fig. 3-5,  where we have indicated that the function peaks up 
sharply near a = fi = 0 and is zero for 9 > 7r/2.    We shall find that f. ( ) affects the angular im- 
pulse response h.( )   only through the width parameters W     and W   .    They are defined for con- 

venience as 

U «-[S-.daS.-dpaZt*ia'p)\ 
1/2 

and 

W \Y J     dttJ d/3/3  i^a.p) 
1/2 

(3-42a) 

(3-42b) 

by analogy with the marginal standard deviations of a joint probability density function.    We re- 
mark that the "covariance"  a/3 is zero,   because of the circular symmetry of f.(a,/3). 

In accordance with our discussions in Sec. 3.2 and Appendix B,  we shall replace the metric 
coefficient 

sin Uu2 + pZ) 

4a2 + |32 

sin 9 
9 

by unity.    Thus we use the approximate single-particle scattering pattern 

f^a, fi) 3 fUaZ + pZ) 3-43) 

in most of the work to follow.   As we point out in Appendix B, it is necessary to include the metric 

coefficient in the variance calculations [Eq. (3-42)] because the integrand is weighted heavily at 
2 2 larger values of 9   by the factor a    or /3  .    We shall improve the accuracy of our results by in- 

cluding the factor (sin9)/9 when we transform our ultimate answers back into polar coordinates. 
In all the intermediate calculations in the analysis below,  however,  we shall assume that the met- 
ric coefficient is unity. 

19 



\    /      INCIDENT-WAVE 
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Fig. 3-6.     Geometry for single-layer 

impulse response. 

OBSERVATION 
PLANE 

The geometry for the derivation of the single-layer impulse response h.(tv     8,;   a  , (S  ) is 

shown in Fig. 3-6.    The antenna in the figure is the hypothetical reproducing antenna defined in 

connection with Kq. (3-26) in Sec. 3.2.    At its indicated location f    meters below the layer,   it 
measures the average angular intensity distribution function which will illuminate the second 
cloud layer when we add it to the model.    The antenna is aimed in the direction ( <T     8.),  where 
a    and [}, are measured in the directions indicated at the top of the figure,   and 

2 2 13-44) 

The distance from the antenna to the layer,   measured along the axis of its receiving "beam," 
2 2 is I    sec9 ..    At that distance,   the cross-sectional area of the beam is I     sec   0. do>.    Since o 1 o 1 

this cross section is inclined at angle 9 . to the layer,   the region on the layer which lies in the 
beam of the antenna has area 

<5A = I     sec   9 , do o 1 13-45) 

The incident plane wave illumination,   represented as an angular intensity distribution,   is the 
unit double impulse u  (a — a  )u  (/3 — /3  );   the polar angle indicated in the figure is 

() 
o      V 

2        ,2 
a     + 8 

o      'o 
(3-46) 

The antenna in Kig. 3-6 receives scattered radiation from the layer if and only if a particle 
is present in the region 6A.    Given that a particle is there,   we use Eqs. (3-7) and (3-43) to write 
the conditional average scattered power 
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Prec, sca(ar h>   V V =  ~2 TT fl(al " V h ~ 'V (3"47> H     sec   0, o 1 

received by the antenna.    (Recall that both Cf and f .{a, (3) are averaged over the distribution of 
particle sizes in the cloud.)   Now,   by the Poisson assumption,   a particle is present in the incre- 
mental area 6A with probability 

p6A = pi^ sec391dco       , (3-48) 

where p   is the average particle density [Eq. (3-33)].    Thus the average scattered power received 
by the antenna in Fig. 3-6 is given by 

—     2        3   C.pt     sec   Q.do) 

Prec,sca(W   %'V =     ~2 TZ  fl( ai ~ %• h ~ ^ l     sec   9. o 1 

= pCTsece, f.(a. - Of  , fl. - j3  ) dw       . (3-49) f 111 o   rl        o 

The unscattered light emerging below the layer is assumed to be a plane wave propagating 
in the same direction as the incident wave.    Its average intensity is reduced because of the ex- 
traction of C        watts of power from the wave by each particle in the layer,   where C        is the 
average extinction cross section over all particles in the cloud.    Now,   an area secG    in the 
layer projects into unit area on a phase front of the incident wave.    Thus each unit area of phase 
front has its path obscured by p sec 9    particles,   on the average.    The average intensity of the 
unscattered plane wave emerging below the layer is therefore [1 — pC        sec 9   ].    Since the an- 
tenna can receive this plane wave only when a,  = a    and /3.  = /3  ,   the average unscattered power 
received by the antenna is given by 

p («.,/3,;cv,/3) = (l-pC      .sece.)u(a.-a)u   (0.-/3   )dw       , (3-50) Krec,unsc     1   Hi       o  Ho ext 1      o     1 o      o ^1      "o 

in which we were able to write sec 9, in place of sec 9    because the impulses constrain the two 
angles to be equal.    We observe,   however,   that the unbounded growth of sec0    as 9. approaches 
±7r/2 will cause the coefficient in Eq. (3-50) to become negative whenever 

|9 . I > sec"1        1 . (3-51) 
pC     . ext 

We cannot permit this to occur,   since it would violate the law of conservation of energy.    A nega- 
tive coefficient in Eq. (3-50) would correspond to the absorption by the particles of more power 
than is incident on them.    The difficulty arises because,   although 1    is small enough to preclude 

double scattering,   I    sec 9    is not.    We avoid the problem by replacing sec 9 .  in Eq. (3-50) by 

•1        1 

/\        A sec 9 , = 1 

sec 9 ,        |9 . I < sec 
pC     . ^    ext 

PC     . ext 
elsewhere      . (3-52) 

This artifice becomes unnecessary in the limit as I    (and hence p) goes to zero.    Upon a mo- 
ment's reflection,  we see that the same substitution should be made in the expression (3-49) for 
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the average scattered power.    When the inequality (3-51) holds,   Eq. (3-52) actually expresses the 

fact that the path of the plane wave is completely obscured by particles,   on the average.    Thus 

all its power is removed by the particles,   and a fraction C./C     . is re-radiated as forward- 

scattered light.    This behavior is expressed precisely by the replacement of sec 9.  by sec 9     in 

Eq. (3-49). 

These substitutions having been made, the sum of Eqs. (3-49) and (3-50) is the total power 

received by the reproducing antenna in Fig. 3-6. In view of Eq. (3-22), the average angular in- 

tensity distribution incident on the observation plane is 

[^"'[Precunsc' ' + ^W^ < ,]      " (3"53> 

This distribution is,   by definition,   the average single-layer unit double-impulse response. 

Writing it out in full,   we have 

h.(a.,ft.;   a  , ft  ) = (1 -pC     , sec 9.) u   (a. - a   ) u  (0.-/3   ) 1     1*1       o  'o ext 1      o     1 o     o Hi      'o 

+ pCT sec9 .  i,(a, - a  , ft, - ft  )       . (3-54) 1 111 o      1        o 

The response below many layers follows from an argument which is familiar from linear 

system theory.    Let us think of an arbitrary incident distribution Ha  , ft  ) as a sum of very 

narrow rectangular pulses.    Because of the linearity of Maxwell's equations,   the scattering proc- 

ess is linear.    In a straightforward fashion,   then,  we construct a linear superposition integral 

R(»,, ft.) =  \  da     \dftUa,ft)h,(a,,ft-,a,ft) (3-55) 1^1       J        o J    'o        o  'o      1     1   "l       o     o 

to calculate the average response li(a.,ft, ) below a single layer to the arbitrary illumination 

I(a   , ft   ).    It follows that the double-impulse response hN(aN, (3N;   a   ,ft   ) of an array of N par- 

allel cloud layers i    meters apart is given by the (N — l)-fold two-dimensional superposition 

integral 

hN(cV 'V %- V ; JT • • J do,N-r • • dai jl • • • J d^N-r • • d^i 

•hl(ffN^N;   aN-l'/W-"hl(ai''Jl;   W       •        (3-56) 

The impulse response of the actual cloud is 

h(a,ft;   a     ft   )=     lim     h   (a, ft;   aft)       . (3-57) 

I   ^0 o 

The question of the limits of integration in Eq. (3-56) requires a certain amount of discussion. 

Within the context of our thin-layer model,   a problem arises whenever   a  and  ft  lie outside the 

region 

(   2 ,2     „   T! O   =Vff    + ft    ^j      . (3-58) 

This would correspond to scattering through accumulated total angles large enough that some 

light was propagating upward toward the top of the cloud.    Our model will account for the loss 

of this light by simply setting h.,( ) equal to zero outside the region [ Eq. (3-58)],   whenever it 

22 



extends that far.    One way to do this analytically is to let the integration limits in Eq. (3-56) be 
2 2 ? 

such that (a.    + B.  )< <7r/2)    for all  i.    The other alternative is to let all the limits be ±°°,   and 

then truncate the final result outside Eq. (3-58).    Both schemes were studied in some detail during 

the course of this research.    Attention was focused upon the analogs of Eqs. (3-56) and (3-57) for 

a two-dimensional cloud,   which were similar except that all the /3-variables were absent.    Appen- 
30 dix C describes the results of a numerical solution obtained by Zaborowski,      who programmed 

an (N — l)-fold one-dimensional integral equation similar to Eq. (3-56) which had the limits ±n/Z 

on all integrals.    He simulated the solutions for a range of optical thicknesses,  using values of 

N such that I    was equal to 0.5 D  .    Another approximate solution was obtained by letting 

sece. s 1 (3-59) 

everywhere in the integral,   using the integration limits ±°° on all integrals,   and applying the 

Central Limit Theorem.    The two solutions were essentially identical over the central region 

(specifically,   the region  | a \ <   2CT   ,   which includes 95 percent of the area under the curve).    A 

more detailed discussion of the two solutions is presented in Appendix C. 

We carry out a Central Limit Theorem approach to the solution of Eqs. (3-56) and (3-57) here, 

with integration limits ±°°.    The factors h ( ) in the integrand must fulfill three requirements in 

order that this technique be applicable: 

(a)    h4( ) ^.0 

(b) \ \  dadjj h.(a, B;   0, 0) = K_h < 

(c) hi(W °W0k-i) = hi(ofk-afk-i' \-*W    • (3-60) 

Requirements (a) and (b) are clearly satisfied.    We meet condition (c) by setting 

sec9.  = 1 [Eq. (3-59)] 
I 

everywhere.    We note that this approximation is accurate within 10 percent for 

\e.\ 4 0.42 radian      , (3-6la) 

and within 20 percent for 

|e. I < 0.58 radian      , (3-6lb) 

and that these numbers are roughly comparable to the other angular restrictions on our analysis. 

Thus we expect that,   like the effects of our earlier approximations,   errors due to Eq. (3-59) will 

become important only out in the tails of the final result.    Making use of Eq. (3-59),   then,   we 

approximate h.( ) of Eq. (3-54) as 

h.(a. , B, ;   a,    ., B,    .) = (1 — pC     .) u  {a,   - a.      ) u   (fl,   - B,     .) 1     k Hk      k-1  pk-l r   ext     o    k        k-1     o ^k     ^k-1 

+ "cffi(0fk-aw3
k-<W   • <3-62> 

It will be convenient for the kernels in the integrand of the multiple integral equation to be nor- 

malized to unit volume.    Integrating the right side of (3-62) to find the total volume under the 

function,   we have 
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K, tf< ha = I \ da dMd - PCext) uQ(a) uo(/3) + pC^Ca. „>] 

= 1 - PC.       . (3-63) 

The quantity C     is the average loss cross section per particle defined by Eq. '3-5) in Sec. 3.1. 

Defining the normalized function 

hla(Q,k - Vl' \- "k-1* = Kha 1(1 " PC
eXt' Uo(% - Vl1 Uo(\ - <W 

+ p5?1(«k-«k.i'Pk-"k-i)1   ' (3-64) 

we write 

hl(V ?k;   ttk-l' W " Khahla,ak " ak-l' (\ - <W 

The integral equation (3-56) then becomes 

hN(aN^N;   %^o,aKha II-•• Jd«N-i---d-i- JI-•• J^N-r-^i 

(3-65) 

la     N N-l   rN     ^N-l la     1 o' rl      'o 
(3-66) 

The approximate solution of this equation for large  N  follows immediately from the Central 
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Limit Theorem for two dimensions.       We have 

-N 
K 

ha 
hN(0,N^N;   W3  2,rNff.    a._ hcv   h/3 

exp 
(aN-%)2        fc^c/ 

2Na 
luv 

2Na 
h/3 

(3-67) 

in which 

No,2    = N \       \       dad/3 rv2h,,   (a, B) 

Ni    d   C,W 
,.    -1    =— .,, 2 o    v   f a 
NKha PCf W

Q 
=  — ha        '      a       1 -i    d  C, 

O      V     i 

(3-68) 

2 2 
and No,     is given by a similar expression involving W   .    The quantities W     and W    are the 

single-particle scattering beamwidth parameters defined by Eq. (3-42).    Since they are equal, 
2 2 

NCT,      is equal to Na, „.    We recall that the cloud thickness 
ha M h/3 

2-1 



Nf 

and that 

f       f   ext 

in terms of the average forward-scattering efficiency yf defined by Eq. (3-5b).    The extinction 

distance in the cloud is 

I) [d  C     . 
v   ext 

and the optical thickness of the cloud is 

e       I) e 

Using these relations we reduce Eq.(3-68) to 

2 

NCT,
2
    = Na 2 

ha h/3 

y „N  W ' 
'i   e    a 

1 -I   d  C~ 
o v   1 

(3-69) 

In the limit as   N  goes to infinity (while t     = T/N goes to zero) Eq. (3-69) becomes 

y N  W 2 = a Z 

tea a 

/->' 
(3-70) 

This limiting process was already implicit in the application of the Central Limit Theorem. 

The coefficient in Eq. (3-67) becomes 

lim 
Kh

N+1 

ha "-'oW•" 
2TIO   U„ a  p N — °°                 a  [3 

I   ^0 o 

exp[-Ne(l -yf)j 

Z*°a*p 

(3-71) 

Einally,   then,   we can write down the angular impulse response of the entire cloud.    We have 

hjdx.ft   «0.P0)=   lim    hN(a,/3;   «o, /3Q) 

i   -0 
o 

exp[-Ne(l -yf)] 

2 7TCT    a,. a  p 
exp 

(a (/3-B 
>2i 

2a 2a; 
(3-72) 

a /3 

Since the single-layer response (3-62) contains an impulsive term,   it is clear that Eq. (3-72) 

should actually contain an impulse as well.    This term corresponds to the unscattered residue 

of the incident wave.    It is easily shown that the coefficient of the impulse is exp [—N  ],   however, 

and we assume N    to be large enough that this term is negligible compared to Eq. (3-71). 

We observe two interesting and intuitively satisfying features of Eq. (3-72).    First,   the vari- 

ances (3-70) are proportional to the quantity yfN  ,   which is precisely the optical thickness the 
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cloud would have if its particles were lossless,   in the sense that C,   were zero and C     " were re- r I ext 
duced to C..    Second,   the integral of Eq. (3-72) on   a  and  /3   is exp[—N  (1 — •>>,)),   roughly the grand 

total of all scattered light which penetrates to the bottom of the cloud.    This is precisely equal to 

the extinction attenuation which would be suffered by a plane wave traversing the cloud if the par- 

ticles were completely lossy,   in the sense that C, were zero and C       were reduced to C   . 

Having derived the angular impulse response (3-72) of the cloud,   we can immediately write 

down its response R(a, /3) to an arbitrary incident distribution Ha, 8).    Repeating the superposition 

arguments used in connection with Eq. (3-55),  we have 

R(o,j3) =  \ \   \(a  ,B  )h.(a,fl;   a  ,8   ) da   d/3 
JJ 0*0      I       H       o  ^o o   *o 

(3-73) 

We can now obtain explicit numerical criteria for the rather vague condition stated earlier 

that our results should be concentrated about 8=0,   in order that use of the coordinates  a  and 

f) be permissible.    After all intermediate calculations have been carried out,  and we have ar- 

rived at a final answer [such as Eq. (3-73),  for example],   it will generally be appropriate to 

transform the result back to the conventional polar coordinates  0   and   <p.    As we explain in Ap- 

pendix B,  this is accomplished by using the transformations 

a = 6 cos <p      , 

8 = 8 sin <p 

multiplying the function by the metric coefficient 8/sin8,  and setting the result to zero for 

8 > it/2.    The metric coefficient can be important in physical situations,   as we shall see in Appen- 

dix G,   because the parameters of actual clouds can often be such that the angular intensity distri- 

butions below them are nearly flat over most of the range of 8  from 0 to it/Z. 

A numerical criterion for the maximum permissible values of a    and a. in Eq. (3-72) follows 
a 8 

when we impose the condition that the value of the (8, <p) transformation of Eq. (3-72) at 8 = ;r/2 

shall not exceed its value at 8 =0.    In particular,  let us suppose that a    = /3    = 0 in Eq. (3-72), 
°   2 °    2 and let us transform hf(a, 8;   0, 0) into a function g(8, <p).    Recalling that cr     = a   ,   we have 

I 

g(e, v) =c1 
o 

sin8 exp 
2a2j a 

(3-74a) 

where 

Cl  = 

exp[- Ne(l -yf)] 
(3-74b) 

Zttu' 

The requirement that 

g(f, <P)< g(0, <p) 

leads to the condition 

Tt/Z 
sin it/Z 

which is satisfied by 

exp ^ 1 
8(7 ' 
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2 „  „, 2 7T 
a        fe    (v^8 1n7r/2 

s 2.73      , (3-75a) 

a    ^ 1.68       . (3-75b) 

Now,   we indicate in Appendix G that W     and y, are very nearly 0.3 and 0.96,   respectively,   for 
most cloud particles at visible wavelengths.    For these values Eq. (3-75a) yields the result 

N   4 31.6      . (3-75c) e ^ 

We therefore have confidence in our analytical results for optical thicknesses less than about 32. 

In Appendix G  we use published   meteorological data to show  that  Eq. (3-75c)   is satisfied  by 

a broad range of naturally occurring clouds.    For clouds of greater optical thicknesses,  we are 

inclined to stipulate that angular intensity distributions are practically flat for all 9 < ir/2. 
Equation (3-75a-c) is subject to a reasonable physical interpretation.    We recognize that 

about 0.9 of the volume under a symmetric two-dimensional Gaussian function is contained within 
a radius 2CT about the origin.    In particular,   0.9 of the volume under the cloud impulse response 
h.( ) of Eq. (3-72) is contained within the region 

O  =  4ctZ + B2 < 2a- 

When (7     satisfies Eq. (3-75b) with equality,   this becomes very nearly 

«7tt      +   B       <   7T 

3.5   JOINT IMPULSE  RESPONSE h (a,B,x,y;  aQ,BQ, \,yQ) 

A narrow beam of light traversing a cloud becomes spread out in both angle of arrival and 
cross-sectional area.    We shall model this behavior of the cloud as a four-dimensional linear 
system,  which is a natural extension of the results of the preceding section. 

The joint impulse response h  (a, B, x, y;   a  , B  , x  , y   ) is defined as the power distribution 
function at coordinates (a, B, x, y) on the underside of a cloud when a quadruple-impulse beam of 
the form of Eq.(3-33) is incident on the top of the cloud at coordinates (a  ,B ,x  ,y   ).    As we 
showed in Sec. 3.2,   the impulsive distribution [Eq. (3-33)] is a unit-power beam with infinitesimal 

angular dispersion which has intensity 

secG   u (x — x )u (y — y  ) o   o o     o J     Jo 

Ala     + B     )u(x-x)u(y-y) watts-m" . (3-76) W    o      ^o )   o o     o J     J o 

We use the same technique in deriving hp( ) that we used in finding h.( ) in the preceding section; 
that is,   we obtain the single-layer impulse response,   construct an (N-l)-fold linear superposition 
integral,  and take a limit as  N goes to infinity. 

The geometry of the single-layer configuration is shown in Fig. 3-7.     It is convenient to begin 
by writing down the response s,(a,, B,, x., y .;   a  , B , x  , y  ) to the hybrid incident distribution J b ^1     1'rl'    1,J1'      o  'o     o  •'o 

P^a.jS, x,y) = uQ(a- ffQ) uo(^-^o)u_1(x-xo) u_1(y-yQ)      , (3-77) 
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PLANE 

|3-«-1W)7] 
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REPRODUCING 
ANTENNA 

Fig. 3-7.    Geometry for single-layer 
power function response. 

in which u   ,( ) is the unit step function.     Equation (3-77) corresponds to a plane wave with angle 

of arrival ( cv   , B  ) whose intensity at the surface of the layer is o  "o 

I   .(x. y) pi 

c(y%2+Po) • ifx^xo and 

elsewhere (3-78) 

The quadruple-impulse response h  ( ) of a single layer is obtained by differentiating s.( ) with 

respect to x. and y  .    This step is permissible specifically because:   (a) the scattering mecha- 

nism is linear,   and (b),   s,( ) turns out to be a function of the differences (x, — x   ) and (y, — y   ). 1 1        o J 1        o 
The antenna in Fig. (3-7),  which is the reproducing antenna defined in connection with 

Eq. (3-35) in Sec. 3.2,   is pointed in the direction (a     fi  ).    Its effective aperture area in the plane 

perpendicular to its boresight axis is dxdy cos 9   .    The coordinates (x.,y . ) of the center of the 

region <5A on the layer are given by 

\\ t    tan G .  cos <J>,   + x . o 1 11 

I  6 ,  cos 0,  + x. o     1 1 1 

= I   a.  + x. o   1 1 I3-79a) 

and 

yA = tQ tan9d sin<pi + y± 

cr 1      J 1 
(3-79b) 
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where (p.  is the azimuth angle in spherical coordinates of the direction in which the antenna is 

pointed.     It is clear that the antenna receives a signal only when 6A lies in the region over which 

the incident illumination [Eq. (3-77)] is nonzero;   that is,   we must have 

I   a.  + x, > x (3-80a) o   1 1        o 

and 

t P\ + yt > y (3-sob) o' 1      J 1      J o 

simultaneously. 

Given that the conditions of Eq. (3-80) obtain,   and given that a particle is present in 6A,   wc 

can write down the conditional average scattered power 

sece  C7 

~i—2    V°i" v 0i _/V coseidxdy (3_81) 
l     sec   8. o 1 

received by the antenna.    Our reasoning is analogous to that associated with Eq. (3-47) in Sec. 3.4. 

The extra factor sec 9    in (3-81) is the intensity of the incident plane wave,  and the antenna aper- 

ture area cos 8 . dxdy also appears as a factor.    We express the conditions (3-80) by multiplying 

(3-81) by the function 

u   .(x, - x   + I  a.) u   .(y. - y   + I  B.)      . (3-82) -1     1        o        o   1      -I'M      •'o        orl 

The condition that a particle be present in 6A is removed as before by multiplying (3-81) by the 

probability 

p6A = pi 2 sec38, doi [Eq. (3-48)] o 1 

that a particle is there.    The result is 

P (o,,,#,,,x,,y.;   a  ,8 ,x ,y   ) - pC,sec 8   f (<v . — tv  , 8. — B  ) ' rec, sea     1   Hl'    1   J1       o  Ho     o J o f oil o  rl      'o 

•u   .(x. -x    +1   a.)u   Ay.-y    +1   S.)do)dxdy       , (3-83) -11        o        o   1      -1 J1        o        oFl J 

the average scattered power received by the reproducing antenna.    By reasoning similar to that 

preceding Eq. (3-50),   we write down the average unscattered power 

p (  )   - (1 — pC     , sec9   ) sec9    cos9.  • u  (a. - a   ) u  (fi. - fl  ) 'rec, unsc ext o o 1        o     1 o     o ' 1      ' o 

•   u   , (x, - x    + I   a.) u   ,(y, -y    + I   8   ) da) dx dy (3-84) -11 o        ol       -I'M      Jo       ol 

received by the antenna.    Again,   the factor sec 8    cos 9 . accounts for the incident intensity and 

the effective antenna aperture.    But the impulses in   a  and   8  in Eq. (3-84) constrain 8    and 8 . 

to be equal;  hence 

sec8    cos8,   = secO    cos 8     = 1       . (3-85) o 1 o o 

In view of Eq. (3-35),   we see that the average power distribution function below the layer in re- 

sponse to the hybrid input [Eq. (3-77)] is 
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Sj(  ) = [dcu dxdy] IP rec,unsc + P rec, sea 

/\ 
[(1 - pCext sec9,uo(Ql - %' uo^i - Po] + pCf secGof1(a1 - %, ^ - BQ)] 

• u   .(x. -x    + 1   a.) u   .(y. -y    + I   B.)      • (3-86) -1     1        o        o   1      -l-7!      ^ o        cr 1 

The replacement of sec 9    by sec 9    follows from the same reasoning that we used in connection F o o 
with Eq. (3-52).    As we stated earlier,   the hybrid response s.( ) is a function of the differences 

(x, —x  ) and (y. — y   ).    Now,   the quadruple-impulse incident distribution (3-33) is the second 

partial derivative with respect to  x  and  y  of the incident wave [Eq. (3-77)] which gave rise to 

the output s.( ).    The impulse response h   (  ) is therefore the derivative of s.( );   that is 

V ) [sA )| (3-87) 

The result is a duplicate of the rightmost member of Eq. (3-86),   except that the two unit-step 

functions u   ,(  ) are replaced by unit impulses u   (  ). 

As in Sec. 3.4,   we exploit the linearity of the model to construct an (N — 1 )-fold superposition 

integral for the response h-,(  ) below  N  layers I    meters apart.    We have 

WN'V^   Vo'VV = I)"-,)  d0,N-l-'-d"l 

•jJ...j,d/JN_1...d^ jj...JdxN_1...dx1 Jj...jdyN_r..dyi 

hl(aN^N'XN'yN
; N-1'PN-1'   N-l' JN-l'" 

h1(a1- /S1.x1,y1; a , B , x , y  ) o  'o     o Jo (3-88) 

The limits of integration on all the   a  and   B variables are ± TT/2,   and the x and  y   integrals have 

limits ± °°. 

Equation (3-88) cannot be solved by application of the Central Limit Theorem,   because h  ( ) 

is not a function of the differences of its arguments.    Even though we can replace sec 9. by unity 

as before,   the two impulses u   (x. — x.   .  + I   a.) and u   (y. — y.    .  + i   B.) cannot be written as func- 
^ o     1 l-l o    i o J1      Jl-i 0*1 

tions of (a. — a.   ,) and (8. /3_.).    The equation has been solved,   however,   by a method which 

is approximate in the same sense as the technique used in Sec. 3.4.    Because the procedure is 

long and involved,   only the final answer is presented here;   the solution is carried out in detail 

in Appendix D.    In the limit as   N  goes to infinity,   the result is the four-dimensional jointly 

Gaussian function 

h (a, B, x, y;   a , B ,x ,y ) = exp[-N (1 -y,)]   4?r2a   u ,p <x     /(1-p2  )(1 -pf ) p       r.      J        Q> fQ>   Q> J Q' fi       e> 'f'J [ a  B x y N Kax By \ 

exp 
2(1 

2 > 
%x> 

2p, 

a   )(x — x    + TO-   ) 
o o o (x X      +   TO    ) 

O O 

• exp 2(1-v 
*-P0r 

Zp 
(p-Bo)(y-yo + TBo) (y y   + TB ) 

(3-89) 
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in which 

f   e    a 

2 9 T        2 
T UB 

2 

?fNeW0 

2      „ 

Pax     Pp*y 
^1 

2 
(3-90) 

2 2 The quantities yf,   W    and W    are the single-particle scattering pattern parameters defined 

previously.    The quantity  T   is the physical thickness of the cloud in meters,   and N    is its opti- 

cal thickness. 

Now,   since h,.( ) was defined as the impulse response over a plane I    meters below the N 

cloud layer,   Eq. (3-89) is a power distribution function over the lower boundary plane of the cloud. 

In many situations we will want to know the impulse response over the ground plane  h  meters be- 

low the underside of the cloud.    One could calculate the necessary transformation geometrically, 

but it is easily obtained from the single-layer impulse response h,(  ) that we have already de- 

rived.     Let us visualize adding a fictitious planar layer I    meters below the cloud,   on which the 

average particle density p   is equal to zero.    The quadruple-impulse response h' ( ) of this layer 

is obtained from h.( ) by replacing p   by zero and i    by  h;   that is, 

h'.ia, B, X, y;   a  ,8  , x  ,y   ) = u  (a - a   ) u  (8 - B) u  (x - x    + ha) u  (y -y    + h/3)    .     (3-91) 1       ^     'J       o     o     o     o o o     or        o     o o o^o 

The impulse response h„( ) of the cloud,   measured over the ground,   is given by the superposition 

integral 

hG(«,0,x,y;   oro,po.xo,yo) = Jjjj da'd/3'dx'dy' 

•h^a.p.x.y;   a', /}', x\ y') • h(a\ B', x\ y';   %-0Q, xo'V 

The solution of Eq. (3-92) is another four-dimensional Gaussian function, 

hG( a, B, x, y;   aQ, BQ, XQ, yQ) = exp [- Ng( 1 - Yf) ] 

'  l4,r2ffoGffpGffxGffyG  J{i     P axG)(1 " "lyC*] 

(3-92) 

• exp 
2(1 -p      „) 

(a 

aG 
2p 

{a — a   )(x — x    + (T + h) a 

axG 

(x - x    + (T + h) a  ) o o 

'xG 

• exp 
2(1 -'ftrG> 

</3"/3r 

TBG 

Zp 
</3-/30)(y-yQ + (T + h) /8p) 

(y-y0 + <T + h> 0O) 

Jyc 

(3-93) 
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in which 

2 2 
aO        a 

2 2 
ff/»G = CT/3        ' 

2 2      ,        .              ,  ,2   2 
xG x           ox    x   a             a 

2 2 2   2 (T  ,,  = cr    — 2p     ha  a,, + h  <j 
y^     y       Py   y P P 

axG 

p      a    — h(T ax x a 

p „  a   — hex,. 
„        =   Py y       P (3_94) 

We notice that the coefficient in front of the Gaussian exponentials in h,„( ) is identical to the 

coefficient in h  ( ),   as it must be.     in both cases,   it is 

3 exp[-Ne(l -yf)] [TTTY^W^W^]"
2

       . (3-95) 

We notice also that the integral of either h„( ) or h  ( ) over all a, ji, x and y is equal to 

exp[—N  (1 — yM,   which is approximately equal to the total power penetrating to the bottom of 

the cloud when the unit-power quadruple-impulse beam is incident on the top of it. 

We can immediately write a superposition integral specifying the response Pf,( a, ji, x, y) 

over the ground beneath a cloud illuminated by an arbitrary incident power distribution function 

P.(a  , ti  ,x  ,y   ).    Specifically, l     o  ' o     o J o r J 

P(.(^,x,y). Jjjj  d%d£odxodyo 

•pi(ao-0O'Vyo)hG(a!'0'x'y; %^o'xo'y0
)   • (3-96) 

The intensity variation across a laser beam is frequently approximated by a Gaussian function. 

Suppose such a beam were incident on the top of the cloud at an angle of arrival (a., p.),  and that 

it had negligible angular dispersion.    Further,  assume that the center of the beam intersects 

the upper surface of the cloud at the coordinates (x.,y).   An appropriate power distribution rep- 

resentation for this beam is 

P.(a   ,p  , x  ,y   ) 1     o     o    o     o 

(3-97) 

where P    is the total power borne by the beam,   provided that a. and p. are small.    (In general, 

the beam intensity variation would be modeled as a Gaussian function over a plane perpendicular 

to the direction of propagation.    One would transform it into a function of x    and y    over the 

horizontal plane,   which would not necessarily be Gaussian,   and use the result in Eq. (3-97). 

p 
o 

uo(flfo-tti,uo(^o-^i Zira   .a  • xi yi 

(xo-Xi)2       (yo-yi)2 

2                         2 
2<T    •                           2(7    • xi                  yi 
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The assumption of small a. and 8. simplifies the mathematics for this example.)   Inserting this 

expression into Eq. (3-96) and carrying out the integrations,   we find that the resulting power dis- 

tribution function P„((f, B, x, y) over the ground has precisely the form (3-93),   with the following 

modifications: 

(a)    multiply (3-93) by P  ; 

(b)    replace a  , 8  , x    and y    by a., 8., x.,   and v.; f o   ro     o o    J      1   'l     1 1 
and 

2 2 2 2 2 2 (c)    replace a ,., by (<j ,, + <r   .),   and cr  ,„ by (cr  .-, + cr   •)• ' xG    J      xCi        xi y(.    J      yd        yi 

The incident beam [Eq. (3-97) is particularly well suited for demonstrating the consistent 

relationship between the angular impulse response h.(cv, B; a  , ti o    o of PJq. (3-72) and the joint 

impulse response h_(a, B, x, y,   a  , 8  , x , y   )•     In the limit as a   . and a   . go to infinity,   the ' f O •    • J •      o     o     o ,; o xi yi - 
incident beam [Eq. (3-97)] looks like a uniform plane wave with angle of arrival (o\, /j.),   whose 

intensity is 

XL  yi 
13-98) 

Meanwhile,   the corresponding response P„(  ) of the preceding paragraph assumes the form 

I    exp[-N  (1 -y,)] [2-na   a A p      r e f ' a   B • exp 
(a a.)2 

I ip-Pj)* 

2a' 2a' 
13-99) 

which is precisely the angular intensity distribution that Eq. (3-72) gives in response to the same 

incident plane wave. 
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CHAPTER 4 
GENERALIZED SCATTERING FUNCTION 

In Appendix A we consider the statistics of the scattered field on the ground beneath a cloud 

illuminated by a signal of the form 

e.(t,"p) = He (s(t) Efp) exp (-j27ry)}       . (4-1) 

The function s(t) is a narrow-band unit-energy complex envelope.    The function E(~p) describes 

the variation of the field amplitude with position ~~p  over the top of the cloud.    It is equal to a 

constant for all ~~p  when the incident illumination is uniform over the top of the cloud (e.g.,   a 

plane wave),  but has the appropriate functional form when the illumination is nonuniform (e.g., 

a beam).    It is shown in Appendix A that the resulting field at a point on the ground can be rep- 

resented in terms of a complex Gaussian random process.    Because of the spatial variation 

E(p) in Eq. (4-1),   the parameters of the received process depend upon the point of observation   r 

on the ground plane. 

Since it is a Gaussian process,   the received field is completely characterized statistically 

by its mean (which is zero) and its correlation function.    We shall write this function in terms 

of a generalized scattering function CT(T, f, v'),   which also depends upon the point of observation  r. 

These ideas are developed in Sec. 4.1.    In the remaining four sections of the chapter,   we examine 

and interpret both the correlation and scattering functions from several points of view. 

4.1   SCATTERING FUNCTION a(T,f,~v') 

Some of the ideas exploited in this section are similar to those developed in detail in Appen- 

dix A.    The reader may find it helpful to read the appendix before proceeding further with this 

analysis. 

When the cloud is illuminated by the signal [Eq. (4-1)],   the scattered field y(t, r, r') in the 

vicinity of the point   r  on the ground plane is adequately approximated,   as we show in Appendix A, 

by the expression 

y(t, r, r') = Re 

M 

Y      T)   S(t -T    ) 
Li     'n 

v n 
n=l 

exp -j27rt(f    -f  ) -j9    -j^(r''   v' ) •' o       n       J   n     J  X n 
o J 

(4-2) 

in which both   r'  and   v'   are vectors drawn from the origin of a coordinate system S' centered 

at   r.    The vector  r' lies in the ground plane,   and is small in magnitude compared to the distance 

of the cloud particles from   r.    The unit vector  v'   points toward the last particle encountered 

by the n     signal component before it reached the ground.    The number   M  is enormous,  being 

the total of all possible single- and multiple-scattering paths from the top of the cloud to the 

ground.    The amplitude factor 7)    is very small;   it is a random variable,   and is statistically in- 

dependent of all the other amplitudes.    The quantities T    and f    are the total path delay (often 

called the "range delay") and Doppler shift,   respectively,  associated with the n     path.    In gen- 

eral,   7)  ,  T    and f    are implicitly dependent upon   r.    The phase 0    is random,   uniformly 
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distributed over (—ir, ir),  and is statistically independent of the phases on all the other paths. 

The last term in the exponent of Lq. (4-1) expresses the phase variation of the n      signal com- 

ponent with   r'. 

Because of the uniformly distributed random phases,   the mean y(t,  r, r') of Kq. (4-2) is zero. 

Thus a complete  statistical description of the process is provided  by its correlation  function 

Ml,,, t   ,  r'    r').     Like all  the other functions   considered in this chapter,   K(  ) is   functionally 

dependent upon    r.     Rather than carrying   r  along as an argument   everywhere,   we  simply adopt 

the convention that   the    r-variation is implicitly present  in every case.    The details of this de- 

pendence will be discussed explicitly where appropriate.     In particular,   we will find that the 

r-dependence is important when the incident illumination is a beam,   but absent under plane-wave 

illuminat ion. 
32 In deriving K(  ) we adhere closely to an analysis carried out by Kennedy.       We have 

K<VV ri< r2> y(t4. ri)y(t2,  r<) 

1 y 
4   L A.(t1; r^) e + A.'(t. 

EW r2)e +Ak(t2'r2)e (4-3) 

in which 

A.(t, r') = rj s(t -T.) exp|-j27rt(f    -f.)-j-^(7' •   v.1) 
1 11 O 1 A 1 

O 

Let us first average Eq. (4-3) over the phases 9.,   conditioned on the random amplitudes ?;.. 
Because of our assumptions about the phases,   Eq. (4-3) becomes 

K(trt2, r;, r2)=   *-Re [^ A.^.T^) A*(t2> r') '*] 

Re exp |-j2rfQ(t1 t2) V s(td -T.) s*n2 -rt) 

cpM27rfi(t1 -J — (ri 
o 4 (4-4) 

Let us collect all the terms in the summand of Eq. (4-4) which have path delays T. in the range 

(T, T + AT),   Doppler shifts f. in the range (f, f + Af),   and "v! in the range (~v\ "v" + A~v').    It is 

convenient to defer the precise interpretation of the quantity Av' to the following section;   for 

the present,   we simply assume that it is a well-defined quantity.    We now add all these terms, 

writing their sum in the form 
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Re exp f—i27rf  (t. — t_.)l   ),      I rj     I     s(t. — T    ) s*(t., - T 

•   exp (j2rf    (t. i2i-,i^i.-i-^-. *4 
a y He    exp[-.j27rf {tJ[ -t_)] W(T, f, v') AT Af A7' 

s(t. — T) s*(t? — T) exp (j27Tf(ti V-J   A 
2TT (rj-r-). 

in which the index  m   ranges over only tliose field components having T    ,   f     and  v' 

cribed ranges.    The weighting function W( ) is defined by the relation 

(4-5) 

in the pre- 

W(T,f, v') AT Af AV I   \% (4-6) 

with  m   ranging over the values it assumed in Eq. (4-5).    The approximate equality in Eq. (4-5) 

approaches equality as AT,   Af and Av' approach zero. 

We visualize grouping all the terms in Eq. (4-4) into partial sums of the form given in 

Eq. (4-5) and adding them.    In the limit,   as AT,   Af and Av' approach the increments dT,   df and 

dv',   this sum approaches the multiple integral 

K(trt2, —,v 1 
I' Re exp[-j2rf0(t1 -t2)] 

dT df dv' W(T, f, v') s(t1 -T) S* (t. •T) 

exp   j27rf(t1 -t2) - j 2 IT 
('•; i • (4-7) 

where the range of integration includes all T,   f and  v' for which W( ) is nonzero.    From an engi- 

neering point of view,   the function W( ) and the integral in Eq. (4-7) make sense when the weight- 

ing coefficients  |r/. |     in Eq. (4-4) are small,   the number of field components is very large,   and 

the parameters of the field components are distributed over the applicable ranges of r,   f and   v' 

in a reasonably smooth manner.    We claim that these conditions are satisfied by our cloud model, 

under the assumptions we have made,   and hence mathematical convergence questions need not 

be considered. 

We now introduce the generalized channel scattering function 

-1 
O-(T, f,"v') =W(T, f, v [I dT df dv' W(T, f, v') (4-8) 

in which the integration range includes all T, f, and v'. We recognize that CT( ) depends in gen- 

eral upon r as well. Let us assume that the complex envelope s(t) of the transmitted signal is 

so normalized that 

37 



iS s(t)|2 dt = 1      . (4-9) 

Without concerning ourselves at this time with the value of the signal energy incident on the 

cloud,   we simply observe that the energy E    per unit area borne by the received signal y(t, r, r') 
is given by the relation 

Er =  \   K(t, t,~r',~r') dt       . (4-10) 

It follows that Eq. (4-7) can be written in the form 

K(t1,t2,T^"r^) =  -^- Re  exp[-j2rfo(t1 ~t2)] 

y dr df d v' CT(T, f, v') s(t. — T) S*(t_ 

•   expfj2rf(t1 -t2) -j |* (r'   - r'z) •   7'] . (4-11) 

Equation (4-11) is the result that we seek.    If we knew the scattering function at every  r, 

and the transmitted signal envelope s(t),   the relation (4-11) would give us a complete statistical 
description of the field everywhere on the ground plane.    Of course,   the determination of the 

scattering function in any specific case can be a major undertaking.    We have obtained only a 
partial description of the function for the cloud communication problem,   as we explain in suc- 
ceeding sections of this chapter. 

Nevertheless,   assuming we have complete knowledge of CT(T, f, v') and s(t),   the formulation 

of Eq. (4-11) leads to a description of the optimum receiver for the case in which the total 
received process 

r(t, ~r) = Y(t,T) + N(t,"r)       , (4-12) 

where the noise N( ) is a Gaussian random process,   statistically independent of the signal Y( ). 
32 Kennedy      has outlined the processing such a receiver must perform,  over an aperture which 

is small compared with the distance to the scattering medium,   as a logical extension of known 
33 techniques      for the detection of Gaussian signals in Gaussian noise.    He obtains a set of observ- 

ables by expanding the received process on a complete set of orthonormal time-space functions 
<p.(t, r),   and proceeds to a likelihood function.    While the analysis is quite straightforward on 
an abstract level,   the actual receiver processing in specific cases involves the solution of com- 
plicated integral equations in time and space. 

We choose not to dwell upon the design of such an optimum receiver.    Instead,  we shall pro- 
pose a scheme in Chapter 5 which is subject to a straightforward performance analysis.    It is not 

clear how closely this scheme approaches the optimum performance,  but it will give us a feeling 
for a lower bound on the performance one might expect to achieve.    In designing this receiver, 

we shall use certain special cases and rough approximations of the correlation function and 

scattering function developed in this section.    The remainder of this chapter is devoted to dis- 
cussions of these specialized functions. 
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4.2   SPATIAL CORRELATION FUNCTION K(i^, r£) 

A special case of Eq.(4-ll) is the time-dependent spatial correlation function 

K(t, t,"r^,"r£) = -j- Re     \   dr df d"v' a(r, f, v"') 

•   s(t -T) s*(1 -T) exp Uj  *I (Tj -?£) •  7' (4-13) 

in the vicinity of a point    r  on the ground.    Now,   suppose that the complex transmitted-signal 

envelope s(t) is extremely narrow band;  that  is,   let it equal V2/T over a time interval — T/2 ^ 

t< +T/2 which is very long compared with the interval along the r-axis over which (r(T,f, v') is 

nonzero.    We can then talk about a function 

K(0,0,"rJ,1rp = -TJT Re     f d~v' a(v') exp   -j |^ ("rj -7'2) • 7' , (4-14) 

in which 

a(7.)«J dT df CT(T, f, v')       . (4-1S) 

We can extend Eq. (4-14) to the case of CW illumination simply by setting 

E    = P   T (4-16) r r 

and letting T go to infinity. P is the average received power, understood to be defined (like E ) 

on a per-unit-area basis. Equation (4-14) is now a time-independent spatial correlation function, 

which we redesignate K( r' ,  r' ). 

The quantity a{ v') in Eq. (4-14) has a natural interpretation in terms of the cloud impulse 

responses derived in Chapter 3.    Suppose we regard   v'   as the radial unit vector 

i    = sinQ  coso)   i     + sine  sin</>   i    + cose   i (4-17) r x v    y z 

in a spherical coordinate system centered at the point of observation  r  on the ground plane. 

The situation is illustrated in Fig. 4-1,   for the case in which   r = 0.    The indicated region dv' 

about   v'   is merely symbolic,   since dv' has not yet been defined.    From the defining Eqs.(4-6) 

and (4-8),   we conclude for the CW case that CT(V') dv' is proportional to the average total power 

scattered toward the origin of coordinates by all the cloud particles in the region dv' about    v1. 

We recognize that it is entirely consistent with this definition to let dv' be the incremental solid 

angle 

da) = sine de d<p (4-18) 

about   v'.    Thus we can replace a(v') dv' by 

a(6, <p) du - a(e, <p) sine de dip       . (4-19) 

We remark in passing that a similar interpretation applies to the complete scattering function 

<T(T, f, v ') for general s(t);   that is,  we can replace CT(T, f, v') dT df dv' by CT(T, f,6, ip) dr df du>. 

In terms of the orthogonal angular coordinates 

a - 6  cos <p       , 

ji = e sincp       , (4-20) 
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Fig. 4-1.    Spherical coordinates for o (v '). 

defined in Appendix B,   we have 

CT(9, <p) do; = a(a, B) da dB (4-21) 

Here   a  and  (1 are measured,  like e and  <p,   in a coordinate frame with its origin at the point 

of observation   r.    Viewed in this manner,  o(a, B) embodies precisely the information provided 

by the impulse responses of Chapter 3.    Thus it is appropriate to call o(a, fi) the angle-of-arrival 

scattering function.    When the incident illumination is a superposition I.     (a   , (S  ) of uniform  -  inc     o  ' o 
plane waves over the top of the cloud we have,  by Eq. (3-73) of Sec. 3.4, 

a(a, fi) - K    \ \   I.     {a   , fi  ) h.(a, fi;   a  , B  ) da   d/i 
PjJ    mc     o  'o     I     ''        o  Ho        o   'o 

(4-22) 

in which h.( ) is the angular impulse response [Eq. (3-72)].    The proportionality constant K    is 

included to satisfy the requirement that 

a{a, (1) da d/3 = 1       . (4-23) II 
Because the incident radiation I      ( ) is uniform over the horizontal plane,   nothing on the right 

side of Eq. (4-22) depends upon position   r  (i.e.,  the Cartesian coordinates  x  and y) over the 

ground plane.    Thus u(a, fl) is independent of   r   in this instance. 

When the spatial variation of the incident radiation is more complicated (e.g.,   a narrow 

beam),   it must be represented as a power distribution function P.     (a   ,B  ,x   ,y   ) over the top r r inc     o  Ho     o Jo ^ 
of the cloud,   as explained in Sec. 3.2.    In this event,  a(a,B) does depend upon the horizontal 

coordinates (x, y).    In view of Eq. (3-96) of Sec. 3. 5,   we have 
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ff(ff^, = Kpffij  d%d^odxodyo 

•P.     (a   ,B  , x   , y   ) h„(o,
/fi, x, y;   (v   ,/>   , x   , y   ) inc     o  'o     o ^ o     G       r       J        o  'o     o Jo (4-24) 

in which h,,( ) is the joint impulse response [Kq. (3-93)].    As we showed in Sec. 3.5,   Eq. (4-22) is 

simply a special case of Kq. (4-24) in the limit as the cross-sectional area of the incident beam 

goes to infinity. 

It is worthwhile to calculate some typical examples of K( r', r' ). Suppose first that the in- 

cident radiation is a single CW uniform plane wave with angle of arrival (rv , ft ). We shall find 

that K( ) is independent of the coordinates x and y over the ground (as it is in every case when 

the incident illumination is uniform over the horizontal plane).     Kquation (4-22) now reduces to 

a(a,p) = hj(a, /3;   aQ, BQ) 

27T<7      <J . a fi 
exp 

(<v 

2CT ' 20-2 
(4-25) 

in which 

a2 -- a2, = y.N  W2 

a        (I        lea 

The normalization of i;q.(4-25) is not quite right,   of course,  because we agreed that h.( ) should 

be set to zero outside the  ranges 

|  (Y |   <    7r/2 

|/i|<7r/2       . (4-26) 

This detail may be ignored when we deal with situations in which a     and a,, are small enough 

that most of the volume under Eq. (4-25) is inside the region of Kq. (4-26). 

We recall that the arguments of K( r'    r') are vectors of small magnitude,   measured in a 

coordinate system  S'   with its origin at the point   r  about which K( ) is defined.    The calculation 

of K( ) is facilitated by shifting   r  (and hence  S1) slightly so that 

r'.  - ~    x    + v    i    = — r' 
1       2       x       2      y 2 

where  x'   and y'   are also measured in  S'.    In view of Kq.(4-17),   we have 

(4-27) 

(r <v - x' sine  cos 0 + y' sin0  sirup 

sx'a+y'jJ 

Kquation (4-14) now becomes 

K(r', r'z) P    Re r        1 da dB • a(a, B) exp I—j -r— (x' o- + y' B) 
2r, 

\\ 

(4-28) 

(4-29) 

witli (T(CV,/)') given by Kq.(4-25).    This is simply the two-dimensional Fourier transform of a joint 

Gaussian function.    We have immediately 
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K( rj, r' ) = P    cos 
12 r 

~ (x'a    + y'/J ) 
A     v       o     J    o 

o J 
exp 

l1Z 

2cr,' 
(4-30) 

in which 

Hf2 =   | r-   -   r' |     = x'2 +y'2 (4-31a) 

and 

2       /   Ao \2 

(4-311)) 

As we show in Appendix G,   typical values for a     might be in the neighborhood of 0.5.    Suppose 

we stipulate that the correlation distance associated with a Gaussian-shaped correlation fund ion 

is about two standard deviations.    For a    and B   near zero,  then,  the correlation distance asso- —    — ° ° 
ciated with K( rj, r') is typically a few tenths of a wavelength. 

Equation (4-29) does not change drastically when the incident illumination is a beam of finite 

cross section,   except that K( ) becomes a function of the ground-plane coordinates (x,y) of the 

point   r  about which it is defined.    As a specific example,   let the incident beam have the Gaussian 

form [Eq. (3-97)], 

P.     (a  , 8 , x , y ) 
inc     o  ' o     o J o 

27TC7.' 

,   u  (a   ) u  (B  )   •   exp 
2     o     o     o    o ^ 

2^2 x     + y 
o      J o 

2a. 

which might correspond to a CW laser beam of negligible angular dispersion at vertical incidence, 

centered at coordinates x    = y    = 0 on the top of the cloud.     In accordance with Eq. (4-24),   we 

see that the angle-of-arrival scattering function a(u, B) in this situation is proportional to the 

four-dimensional joint Gaussian function P„(a, B, x, y) described immediately below  Kq.(3-97). 

Let us suppose again that the coordinate system has been shifted slightly,   so that the vectors 

r'  and   r'  are given by Eq. (4-27).     Let us further suppose that the variation of a(a,B) with    r 

is slow enough,   and the magnitude of   r'  — ri is small enough,  that <r(a,B) is identical at   r'  and 

r'   with its value at x' = y' = 0.    (This   is nearly always true,   even when the incident beam is 

extremely tight,  because of the  x  and  y  dispersion effected by the cloud.)   Without going through 

the algebra in detail,   we write the answer obtained from Lq. (4-29).    We have 

K(r', r<2) = Pr(x,y) exp '12 

2a IM 

(4-32) 

in which R.? is the same as Eq. (4-31a) and 

2       2   .      2   IT2
    ,     ,    ,  , 2\ 

, /   A     \      a.    + a     I—=-  + rh + h   I 
a2    =   f 2_)     _i "  V 3 / 
^Rl       \2iron) , _    2 2   ,      2 T 

a.    + a    -jrzr 
I a 12 
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T   is the thickness of the cloud in meters,  and h   is the height of the bottom of the cloud above 

ground.    The average power P  (x, y) in Eq.(4-32) is proportional to the joint Gaussian function 

exp 
2   .     2 x    + y 
,    2 
2CT   ,„ xG 

with  x  and y  measured in the fixed coordinate system on the ground plane,   where 

2 2 2   ,     2/T      ,    ,    ,  , 2\ a   „ = a.    +CT     -T- + rh + h xG        i a\ 3 / 

If the beam P.    J ) had been incident at some angle (a., p.) slightly off the vertical,   a cosine 

term similar to that in Eq. (4-30) would appear in Eq. (4-32),   except that the argument of the 

cosine would involve algebraic functions of a.,  p.,   T and h. 
2 X      X2 Notice that  CTR.   approaches the parameter  CTR of Eq. (4-31b) in the limit as the width a. of 

the incident beam goes to infinity.    Even for modest a. the correlation distance for Eq. (4-32) is 

comparable to the wavelength \    (except in the extreme case when h becomes very large,  so 

that the cloud begins to look like a point source,  and crR. becomes proportional to h).    These 

small correlation distances,   for both Eqs. (4-30) and (4-32),   substantiate the assumption made 

in Appendix A and in this chapter that the vector   r'   in the expression (4-2) for the scattered 

field is small compared with the distance from the ground to the cloud particles. 

4.3   SPATIAL CORRELATION FUNCTIONS FOR ANTENNAS 

An interesting extension of the angle-of-arrival scattering function <j(a, p) allows us to cal- 

culate a spatial correlation function for signals observed with directive receiving antennas.    We 

begin by establishing certain conventions for an adequate mathematical description of an antenna. 

As in Sec. 3.2,   we shall characterize its power gain pattern by a function g(a', p') whose argu- 

ments are orthogonal angular coordinates measured from the antenna boresight axis.    When it 

is aimed at angle (a   , p  ) and illuminated by an intensity distribution l(ct,p),  the antenna receives 

Ag(cv - a   , p - p  ) l(a, p) dadp (4-33) a a 

watts of power from the solid angle da d/3 at (a, p).    The quantity A  is the area of the antenna 

aperture.     Under an illumination P(a,/3, x,y) which varies over the horizontal plane,   the aper- 

ture area  A  must be replaced by an appropriate aperture function A(a, p, x,y),  as we explain 

in connection with Eq. (3-36) of Sec. 3.2.    When the antenna is located at coordinates (x   , y   ) and 

aimed in direction (a  , B  ),  then,  it receives a  *a 

A{a - a&, p - /3a, x -x&, y - y&) g(a - a&, p - p&) 

•   P(o, p, x,y) da d/3dxdy (4-34) 

watts of power over the area dx dy at (x, y),   from the solid angle da d/3 at (a, p).    We shall obtain 

explicit results in this section under the assumption that the illumination on the top of the cloud 

is uniform over the horizontal plane,  so that (4-33) applies.    The extension of the results to 

nonuniform illumination,   where (4-34) applies,   is a straightforward exercise.    It is outlined but 

not carried out. 

Whenever it is necessary to assume a specific functional form for g(a, p) in this section,   it 

will be convenient to use the symmetric Gaussian power gain pattern 
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g(a', p') =  Y~ exP 
2-na     . ant 

a'2  f p'Z 

9     2 
2<r ant 

(4-35) 

This is neither essential to our model, nor (generally) realistic, although it is not unreasonable 

when a is small compared with n/Z. We use Eq. (4-35) here simply because it permits us to 

work out meaningful examples witli minimum labor. 
The results we shall obtain are subject to an intuitively satisfying interpretation in terms of 

diffraction-limited antennas. For this purpose we stipulate that Eq.(4-35) represents the power 

gain pattern of a diffraction-limited antenna with a circular aperture of diameter   I)  when 

ff     .   = —      , (4-36) 
ant       7T 

where 

A 
B =fy (4-37) 

is the familiar rule-of-thumb approximation for the antenna beamwidth.    The proportionality 
factor i/ir in Eq. (4-36) is chosen for convenience,   as we shall see.    We do not claim that it gives 
the  "best" fit in any sense,   but only that it is roughly correct.    The accuracy of this analysis is 

such that factors of two are unimportant. 
Consider two identical antennas,  both having a power gain pattern g(a', /3').    Let them be 

centered about the points   r'   and   r'     respectively,   measured from some point   r  on the ground 
plane.    Their apertures are assumed to be small and nonoverlapping (the meaning of the term 
"small" in this context will be clarified below).    Let the antenna at  r'  be aimed in the direction 
(an>Pi ).   while that at   r'   is aimed toward (a   , (1  ).    The correlation function of the signals re- 
ceived by the two antennas is readily obtained by appropriately modifying the analysis in Sec. 4.1. 
Our starting point is Eq. (4-3), 

in which we interpret the functions y(t., ri) and y(t,, r') as the signals measured by the first 
and second antennas,   respectively.    Now,   we have seen that all the field components arriving 
at a point on the ground beneath a cloud add incoherently;  that is,   because of their independent 
random phases,   their intensities add.    Therefore,   if the component intensities entering an an- 
tenna aperture from the direction {a, p) are weighted by the function g( ),   it is reasonable to 

\/2 treat the component amplitudes as though they had the angular weighting g( )  '    .    Thus the sig- 
— 1/2 — nal y(t., ri) measured by the first antenna includes the factor g( a — a,, p — p.)  '   ,   while y(t,, r') 

1/2 11 i.      L 
contains the factor g(a — a?, ft — /8,)       .    Carrying these factors along through the analysis in 

Sec. 4.1,   one finds that they can simply be lumped with the scattering function a(r,i, v') of 
Eq. (4-8),  to form the directive-antenna scattering function 

aa(T.f,o,ft  ai,fivaz,pz) 

= [g(o -av p -/31) g(a ~a2, (i -^(J1/2 <r(T,f,7')       . (4-38) 

This equation incorporates the interpretation of   v'   in terms of the angular coordinates   a  and 
P,   as we explained in Sec. 4.2.    In this section we are concerned only with CW illumination; 
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hence,  by analogy with the ideas expressed in Eqs.(4-13) through (4-15),   Eq.(4-38) reduces to 
the directive-antenna angle-of-arrival scattering function 

«ra(a./J;  avpva2,pz) 

1/2 
[g(« -«,, P -|31) g(« -a2, 0 -/?2)]  '    tr(a.iS) (4-39) 

The function o(u, p) on the right side is the angle-of-arrival scattering function of the field at the 

point    r  in the absence of the antennas.    Let us denote the correlation function of the signals 

measured by the two antennas as K  ( r'    r'    a,, p., a   , [i  ),   with the extra arguments indicating 
the explicit dependence of the function upon the antenna pointing angles.    Assuming that the co- 

ordinate system has been shifted slightly,  so that Eq.(4-27) holds,  we obtain K  ( ) simply by 

inserting Eq. (4-39) in place of a(a, p) in Eq. (4-29).    Thus we have 

Ka(rif r2,«1,p1,«2,/32) = PrRe    |^   da dp 

•  aja, p;   a±, p±, a>z, P2) exp l-j |£ (x'a + y'/?)l (4-40) 

We recall that this equation is valid under the assumption that the magnitudes of   r'  and   r'  are 
small compared with the distance from the point   r to the cloud.    Also,   we recall that the scat- 
tering function and the correlation function both depend,   in general,   upon   r.    As we stated ear- 
lier,  we shall restrict our attention for the present to situations in which the light illuminating 
the top of the cloud is uniform over the horizontal plane,   so that the   r-dependence vanishes.     In 
particular,  let the illumination be a single uniform plane wave,  vertically incident on the top of 
the cloud.    In the absence of the antennas,  the resulting angle-of-arrival scattering function 

would be given by Eq.(4-25) with a    - ji    =0, 

a(a,p) = 
Zito ' 

exp 
2   x  n2 

a    + (3 

2ff 
(4-41] 

Assuming the Gaussian antenna beam pattern [Eq. (4-35)],   we see that Eq. (4-39) becomes 

-1 

exp 
2(7' 

[a 

4<J ant 

(n «2>* 

4(7 ant 

exp 
2<J 

(P-P^f       (P-P2)' 

4(T ant 4(7 ant 

(4-42) 

Notice that Eq. (4-42) is not normalized to unit volume,   as a scattering function ought to be.    We 
are not concerned about this detail at present,   since we are interested only in the functional form 
of the results.    Substituting Eq. (4-42) into Eq.(4-40) and carrying out the integrations,  we obtain 
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Ka(ri'r2'°Y/VW 

C.  cos 1 \\   (aZ  + a2 .) 1    o    a        ant 

Ix'(a1  + a2) +y'(/i1 + /32)] 

exp 
i; 12 

2a 
Ra 

exp 
12 

2a 
exp 

a} + /3,2 + a,2 + 02" 

4((j2 + a2 .) 
a        ant 

(4-43) 

in which 

Rl22 =   I ri 
.,2 ,.2 (4-44a) 

'Ra 

! 2,   2   .     2    , A    (a     + a     .) ov   (v        ant 

(27ra   a     . ) o'   ant 

(4-44b) 

*1Z= (ffl °2'    + (/il (4-44c) 

and 

.2.2,     2    , 4a     .(a     + CT     .) ant(   a        ant 
'* 

(4-44d) 

The calculation of C. is straightforward but uninteresting.    The cosine term in Kq. (4-43),   which 

fluctuates very rapidly with  x'   and y',   is also of secondary importance;   it is tantamount to a 

high-frequency "carrier" in the correlation function.    The first exponential in Eq. (4-43) expresses 

the dependence of K   ( ) upon the horizontal separation R.? of the centers of the two apertures, 

and the second exponential expresses the behavior of K  ( ) as a function of the angular separation 

ip.? of the axes of the two beams.    The third exponential in Eq. (4-43) simply expresses the de- 

crease in received power when the antenna axes point in some direction other than the angle of 

arrival (in this case,   a    = ft    = 0) of the plane wave illuminating the top of the cloud. 

Now,  we agreed in Sec. 4.2 that a reasonable estimate of the correlation distance for a 

Gaussian-shaped correlation function was two standard deviations.    Equivalently,   we regard the 

signals as being uncorrelated when their correlation function is down by at least exp [ — 2] from 

its maximum value.    We see that this is always the case in Eq. (4-43) under either of the 

conditions 

H \1 la Ra (4-45) 

*1Z >% 
(4-46) 
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regardless of the behavior of the cosine term or the third exponential in Eq. (4-43).    Thus the 

two antennas receive uncorrelated signals when the centers of their apertures are separated hor- 

izontally by a distance R,? obeying (4-45),   regardless of the antenna pointing angles.    On the 

other hand,   if we form two beams with the same aperture (by making field measurements over 

two different Airy disks on the focal plane of an objective lens),   the two signals are uncorrelated 

with each other whenever the angular separation of the two beams obeys Eq. (4-46).    This result 

may be extended immediately to an array of many multibeam apertures distributed over the 

ground.    We see that the signal received on each beam in the array is uncorrelated with the sig- 

nal received on every other beam when (4-45) and/or (4-46) is satisfied for every pair of beams. 

Moreover,   since all the signals are Gaussian,   each of them is statistically independent of all the 

others. 

Let us consider the magnitudes of the correlation distances 2cr,,    and 2cr, .    In the limit as & Ra ip 
the antenna beamwidth parameter a     , becomes large compared with a   ,   we see that Eq. (4-44b) 

becomes 

*R   
s (r-H       • <4-47) Ra       \27ra    / 

which is precisely equal to the parameter tr of the spatial correlation function K( r'., ri) of the 

scattered field over the ground in the absence of antennas, given by Eq. (4-30). This is just as 

it should be,   since Eq.(4-30) is equivalent to a spatial correlation function for signals measured 

by omnidirectional antennas.    When a     ,  is small compared with a   ,   however,   we have J ant r a 

al     ~ U    °     ) • (4-48) Ra       \27rc7     ./ 

A        \2 
JD  

r ant 

Notice that the horizontal correlation distance 

A 
2(Tn     = — (4-49) Ra       TO     , 

ant 

is then precisely equal to the aperture diameter  D of a diffraction-limited antenna having an ap- 

proximately Gaussian beam representation with parameter a     ,,   in accordance with the conven- r J r F ant 
tions (4-36) and (4-37).    Thus two identical narrow-beam diffraction-limited antennas on the 

ground beneath the cloud receive uncorrelated signals if their apertures do not overlap,   regard- 

less of their beam pointing angles. 

The nature of the parameter CT,  also depends upon the relative magnitudes of CT     and a r ip v * & a ant 
liquation (4-44d) becomes 

4CT 

<j     B  ^- (4-50) 
T a a 

when a     . » a   ,   which simply implies that the concept of angular correlation distance becomes ant a r j       r r & 
meaningless for very broad-beam antennas.    When a        is small compared with <r   ,   Eq. (4-44d) 

reduces to 

CT
2
 S4CT

2
 t (4-51) >l> ant v 
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For narrow-beam antennas,  then,   the angular correlation distance is approximately equal to 

4a     ..     In view of Eq.(4-36),   we see that two narrow diffraction-limited beams formed with the ant M 

same aperture on the ground beneath the cloud receive uncorrelated signals when the angular 

separation between the beams is greater than about 1.27 B,  where  B is the conventional estimate 

(4-37) of the width of a single beam. 

These results are readily extended to situations in which the illumination on the top of the 

cloud is more complicated (a group of plane waves,   or a narrow beam).    We know how to calcu- 

late the resulting intensity distribution l{a,B) or   r-dependent power distribution P(a,f3, x,y) be- 

neath the cloud,   either of which can then be inserted into Eq. (4-39) in place of a(a, (3).    When the 

r-dependence is present,   Eq. (4-40) is valid under the assumption that CJ   ( ) varies slowly enough 

with   r,  and  | r' | and | r' | are small enough, that u  ( ) is the same at both antennas.    This is 

nearly always the case,   even when the beam illuminating the top of the cloud is extremely tight, 

because of the spatial dispersion effected by the cloud.    Carrying out the integrations in Eq. (4-40) 

when u(a, B) is the joint impulse response h„((v, B,x,y;   a   , [3 , x   , y   ) of Eq. (3-39),   for example, 

one finds that K  ( ) depends upon the last six arguments of h,,( ) but the correlation distances 
a Cj 

(4-45) and (4-46) are practically unchanged.    The algebra is straightforward but very tedious. 

When we apply the results of this section to the spatial diversity issue in Chapter 5,   we shall be 

dealing with narrow-beam incident illumination.    Thus the correlation function K  ( ) will,   in fact, 

depend upon the coordinates of the point of observation   r  on the ground.    We shall simplify the 

problem considerably by assuming that the scattered intensity over the ground is constant (inde- 

pendent of   r) over a suitably delineated region,   and zero outside that region. 

4.4 ANGLE-DE PENDENT RANGE SCATTERING FUNCTION <T(T, v^,) 

We shall show how to obtain the range scattering function 

CT(T,7^) =  U(T,f, 7^,) df (4-52) 

over a small range Av1 about some fixed vector v-L.    Interpreting   v'   in terms of  a  and  B,  as 

in Sec. 4.2,   we see that Eq.(4-52) corresponds to the classical range scattering function 

s- CT(T) -  \  ff(T,f) df (4-53) 

for the signal measured by an antenna of beam solid angle 

Aw = An A/3 (4-54) 

pointed in some fixed direction (a_, B„).    In Sec. 4.5 we shall extend the results of this section r       r 
to yield the function (T(T, f, v' ) over a range Av' about   v^.    For the case in which the incident 

illumination is uniform over the horizontal plane,   so that nothing depends upon   r,   knowledge of 

CT(T, f, v' ) for each of a suitable set of vectors   v'   would give us an estimate of CX(T, f, v') for all 
r r 

r  and   v'.    For beam illumination,   with a( ) depending upon   r,   one could obtain adequate knowl- 

edge of the generalized scattering function over the entire ground plane by calculating cr(T,f, v' ) 
  r 

for a set of vectors   v' ,   for each of a suitable set of positions   r  on the ground. 

As a first step in determining a{r, v' ),  consider the angular impulse response h.(o, [3;   a  , (3  ) 

given by Eq. (3-72) in Sec. 3.4.    This function is defined in such a way that the quantity 

I Act, B;   a  , B ) - h.{a, (3;   a   , B  ) Au> (4-55) Av      '        o  'o 1       r       o  ' o 
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is the average total intensity arriving at the ground through the small solid angle Aco = Acv A[l 

about the direction (rv,/i),   when the top of the cloud is illuminated by a constant unit-intensity 

uniform plane wave with angle of arrival (rv   , [1  ).    Now,   suppose we regard the field components 

making up I   ( ) as a bundle of rays,   with one ray corresponding to each scattering path through 

the cloud which contributes to I.( ).    The n      ray in this bundle has a path length t    and an inten- 

sity weight w    associated with it.    The path length is measured from the point at which the n 

ray,   while still a part of the incident wave,   enters the top of the cloud. 

In a more general situation,   the plane wave illuminating the top of the cloud has a complex 

amplitude envelope s(t).    The time origin is referred to a specific point (say x = y = 0) on the top 

of the cloud.    The intensity weight of the n      ray in the bundle Aw now becomes the time function 

2      n j(t-T       -^) \ no       c ) (4-56) 

where T       is a constant which depends upon the location of the point at which the ray enters the 

top of the cloud,   and upon the angle of arrival of the plane wave.    The total intensity of the bundle 

of rays in AOJ is then given by the time function 

I .(t, a, B;   a   , B   ) =   V v w       sit - T -) A ' o  ' o        u 2      n       \ no       c / (4-57) 

Now,  the correlation function K(t.,t,,, r'    r') of Eq.(4-ll),   evaluated at t, = t.= t and   r'   - ___ 1212 1—.2 1 
r' = r', is the average intensity at time t of the radiation incident at the point r' on the ground. 

The vector r' is measured from some point r. We recall that both K( ) and the scattering func- 

tion <T(T, f, v') depend upon   r,   in general.    By virtue of Eq. (4-11) we have 

K(t, t, r', r')       —  Re II dr dfd; 
CT(T, f, V')  I s(t - T) '1 (4-58) 

Let us select a transmitted signal envelope s(t) such that 

s(t) r = 26(t) (4-59) 

where 6(t) is a unit-area pulse which is very short compared with the length of an interval in T 

over which CT(T, f, v') varies appreciably.    Equation (4-58) then becomes 

K(t,t, r', r') Er \   dv'd (t, v') (4-60) 

We shall interpret   v'  and dv' in terms of  a  and  /3  as before.    Suppose now that we observe the 

field at    r  with an antenna of unit aperture area,   pointed in the direction (a,/?).    Let the power 

gain of the antenna be unity over a very small solid angle ALO,  and zero elsewhere.    By Eq. (4-60) 

we see that the average power measured by the antenna at time  t   is 

p  {t,a,p)= E  Aa)cr(t, a, p)      . (4-61) 

Again, this quantity is a function of the point of observation r. But let us choose the incident 

illumination on top of the cloud to be a uniform plane wave, arriving from (a B ). Both sides 

of Eq. (4-61) are then independent of   r,   and both are functions of a    and B  .    Let us rewrite 

49 



Eq. (4-61) to indicate this dependence;   that is,  the average power received by the antenna at 

time t   is 

p  (t, a, p;   a  , p  ) = E  Aw<x(t, a, P;   a   ,p)       . (4-62) 

We now observe that Eq. (4-62) may be interpreted as being precisely the function I.( ) of 

Eq. (4-57),   when the signal envelope s(t) in Eq. (4-57) obeys Eq. (4-59).    Thus 

<r(t, a, p;  a  , p ) =   „ \      V w    6(t - T      - —)      , (4-63) ' H'      o  ' o        E  Aw   Li     n    \ no      c / l ' 

in which  n  ranges over all the rays in the solid angle Aa;.    Because 6{ ) is very short compared 

with the rate at which a( ) changes with time,   it is clear that 

a(t, a,p;   a  ,p  ) At s      \      Y w.       , (4-64) o     o E  Aw   Li     i       ' 
r 

where   i   ranges over all rays in Au> such that 

I. 
t< T.    + —^ t + At       . (4-65) ^     10       c ^ 

Except for certain special cases,   the evaluation of the sum on the right side of Eq. (4-64) 

will require numerical computation.    In Appendix E we consider one of these special cases,   with 

a,   P,  a    and P    all equal to zero.    By making a series of approximations we find that the range 

scattering function for this situation,   denoted for brevity by a  (t),   is given by 

/4TfNe(t - M 

\    Vc   / 
-3/4 

<ro(t)sC3l W77~ -) exP 
(t_h /yj,(t-Hj\*. v cj      , / f f   e'        c 
D„/c   +2l        Dp/c (4-66) 
e' \ e' 

when t > (T + h)/c,   and zero elsewhere.    Here  T   is the cloud thickness in meters,   h   is the height 

of the bottom of the cloud above the ground,  and  c   is the velocity of light.    The factor C, in 

Eq. (4-66) is a normalizing constant.    A typical a  (t) is illustrated in Fig. E-l in Appendix E. 

The multipath spread L of a  (t),   its approximate width,   is given by 

D 
L^f [i+2^]       . (4-67) 

In Appendix E we also outline procedures for obtaining a(t, a, P;   a   , p  ) numerically,   in more 

general situations.    For illumination other than a vertically incident plane wave,   some form of 

Monte Carlo simulation must be used. 

4.5   RANGE-DOPPLER SCATTERING FUNCTION cr(T,f, v» ) 

We assume that each cloud particle has a random velocity component,   superimposed upon a 

slowly varying mean.    The mean velocity,   which has no effect upon the scattering function 

<r(T,f, v'),   is presumed to be equal for all particles to the average wind velocity.    The random 

velocity component V    is caused by local phenomena such as turbulence and thermal mixing.    It 

is assumed to be identically distributed for all particles,   with a probability density function which 

is uniform over any solid angle.    By this we mean that its magnitude V , is random,   nonnegative, 

and independent of the spherical coordinates 0    and q>    of its direction,   while 0    and q>    are so 

distributed that the direction of V    lies in any solid angle SI   with probability il/4ir.    Thus the 
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joint probability that 6    is in the range (8, 0  + d0) and cp , is in the range (ip, <p + dip) is given by 

1 
4TT 

sine de d<p (4-68) 

We may regard 9    and ip    as having the joint probability density 

I 0 < 0 < n 

| 0 < ip 4. 2i\ 

,_      ,      sine 
P^ (0,<P)    =      —~A  
6   ,<p 4lT 

The Doppler shift associated with a single scattering event is given by 

f      —       —       —       _ 
f,. = — [V    • "d   - V   • "d.l dl       c        r s r I 

(4-69) 

(4-70) 

wh ere f    is the carrier frequency and  c   is the velocity of light.    The vectors   d    and   d. are unit 

Fig. 4-2.    Doppler shift geometry. 

vectors in the directions of the scattered ray and the incident ray,   respectively.    The geometry 

of the situation is illustrated in Fig. 4-2.    The coordinate system is so oriented that 

d. =    i 
1 z (4-71) 

and the scattering particle is at the origin. The coordinates e and <p of the direction of the 

scattered ray are assumed to be randomly distributed in accordance with the average single- 

particle forward-scattering 

probability density function 

particle forward-scattering pattern f(6),   as explained in Appendix B.    Thus 6    and <p    obey the 

P„       (e,<p) = sine f(e) 
s ^ s 

with f(6) so normalized that 

r7r/2 
!TT \ sine f(e)de = i 

[0 4 e < IT/2 

|0 ^ <p 4 2TT (4-72) 

(4-73) 
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It  is clear that 

V    = V    {sine    cos i/>     i    + sinB    sine/)     i    + cos6    i   } 
r r r r   x r r   v r   zJ 

and 

d    = sine    cost/)    i    + sine    sin^    i    + cose    i s s v s   x s sy sz 

(4-74) 

(4-75) 

so that Eq. (4-70) becomes 

f 
f,.  = — V    [sine    cos ip    sine    cos 0 
dl       c      r ' s s r r 

+ sine    sin</>    sine    sintp    + cose    cos6     —cose   I ss r r s r r 
(4-76) 

Although we shall not do so, it is possible in principle to calculate the probability density func- 

tion of f ,, from Eq.(4-76). Although the algebra is rather tedious, it is a straightforward task 

to obtain the more limited results 

f u  = ° dl 
(4-77) 

and 

var (f 
dl' 

..2 

c u> 

l'1 

TT/Z 

Zir sine f(e) [1 - cose] de (4-78) 

Provided that, its magnitude is much less than the carrier frequency f  ,   the Doppler shift 

f .,   of a k    -order scattered wave is approximately the sum of  k  first-order Doppler shifts.    We 

assume that all the first-order Doppler shifts f .. are statistically independent and identically 

distributed.    Invoking the Central Limit Theorem,   we write 

(f) a 
I 

dk CTf.    \[ZkTT 

exp 
f 

2ka nJ 
(4-79) 

for large  k.    Now,   we know that this approximation can be very good over the central region 

even for fairly small  k,   if the first-order density function is smooth,   symmetric and unimodal. 

It is  reasonable to assume that f ,. has such a density,   as long as the velocity magnitude V , is 

reasonably well behaved.     Equation (4-79) will be seriously in error out in its tails for small 

values of  k;   for purposes of estimating the shape and width of the scattering function,   however, 

we can ignore the tails.    In any case,   as we indicate in Appendix E,   when N    ^.5,  the rays of 

low scattering order contribute only weakly to the total received energy.    ()n these grounds,   then, 

we shall assume that Eq. (4-79) is valid for all k ^. 1. 

In Appendix F we derive an approximate form for the angle-dependent range-Uoppler scat- 

tering function a(r, f, v-L) for the special case in which the incident illumination is a uniform 

plane wave,   and rv, 13,   a    and [3    are all zero.    The result is left in the form of an infinite sum, 1- ' ' o ' o 
[Eq.(F-2)l,   which could be approximated numerically if desired.    The Doppler spread   B  of the 

function is approximated by 
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2W 
I! 

2TTN  1 1/2 
e R) 1/2 

(4-80) 

in which W     = W    is the average single-particle scattering pattern width parameter,  A    is the 
a P 2 1/2 ° carrier wavelength,   and (V    )  '     is the RMS value of the random component of the velocity of the 

cloud particles. 

Using the multipath spread 

1) 
LSfl1+2^ (4-81) 

derived for this same special case in Appendix E,  we find that the BL product is 

1/2 

BL 
TW 

ZTT        a E) 2 + (4-82) 

where T   is the cloud thickness.    Notice that BL becomes independent of the cloud optical thick- 
ness N    (and hence independent of the particle density d   ) as N    becomes large. 

Appendix P also indicates numerical techniques for calculating <7(t, f, v-L) in more general 
cases.    For the most part,   Monte Carlo simulation appears to be the most attractive alternative. 
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CHAPTER 5 
COMMUNICATION SYSTEMS FOR THE  CLOUD CHANNEL 

We have seen in Sec. 4.1 that the generalized scattering function CT(T, f, v') embodies a complete 
statistical description of the received field over the ground plane beneath a cloud.    An extension 
of known techniques can be utilized to obtain a mathematical description of the optimum receiver 

for the cloud channel.    The processing such a receiver must perform involves the solution of 

difficult integral equations in both time and space.    In general,   these operations cannot be readily 
interpreted in terms of components we know how to build.    We consider a communication scheme 
in this chapter which we know how to interpret and to analyze.    Although we do not know the de- 
gree to which the proposed system approaches the optimum,   our analysis will provide a lower 
bound to the performance that the optimum system could achieve. 

An important feature of the proposed receiver is spatial diversity,   which we obtain by taking 
independent samples of the received field over the ground plane.    In Sec. 5.1 we estimate the de- 
gree of spatial diversity which can be achieved.    Section 5.2 deals with the sources and character 
of noise corrupting the received field.    The proposed receiver is described in Sec. 5.3,   and its 
performance is analyzed in Sec. 5.4. 

5.1   SPATIAL DIVERSITY 

It  is clear from our results in Chapter- 4 that one can obtain many statistically independent 
samples of the received field over the ground plane.    The degree of spatial diversity K    of the 
cloud channel is the largest possible number of such samples which contain significant signal 

energy.    In this section we estimate the magnitude of K    for an array of identical field-sensing 
devices,   and we argue that it would not be appreciably greater for a composite array of noniden- 
tical devices. 

It is clear that our field-sensing devices should be located only where significant signal en- 
ergy is  incident on the ground.    Moreover,   they must be directive;  that is,  the solid angle over 
which a sensor has nonzero gain must not exceed the solid angle over which the signal energy is 
significant.    A larger sensor field of view would only admit more noise,   causing the signal-to- 
noise ratio to deteriorate.    Having concluded that the sensors should have restricted angular 
beam patterns,   we realize that each of them must have an aperture area associated with it.    We 
are free to think of them as antennas.    An antenna of a given beamwidth   B  must have an aperture 

area at least as great as 

T.2       7rA 

4B 

where A    is the carrier frequency and  D  is the diameter of the aperture of a diffraction-limited 
telescope with beamwidth   B.    We shall think of our sensors as completely general antennas, 
each having some beamwidth  B and some aperture area  A which is lower bounded by the rela- 
tion (5-1).    The maximum obtainable spatial diversity is achieved by packing as many sensors 
into the "active region" on the ground plane as possible.    (By the term "active region" we mean 
the area on the ground plane over which significant signal energy is received.)   Clearly,   the 
maximum spatial diversity is infinite when the illumination incident on the cloud is uniform over 
the entire horizontal plane,  because the resulting active region on the ground has infinite area. 
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This is not surprising, because the transmitted signal energy in such a case must also be infi- 

nite. Thus the spatial diversity is finite only when the incident illumination is a beam of finite 

cross-sectional area. 

When this is the case,  the analysis of Sec. 3.5 leads us to an expression for the power dis- 

tribution function P(a,(], x,y) incident on the ground.    To facilitate the mathematics of estimat- 

ing the spatial diversity,   let us assume that the incident illumination has the form of Kq. (3-97), 

a unit-power beam with negligible angular dispersion which has Gaussian intensity variation over- 

its cross section.    Let it be symmetric in x  and  y,   with 

a . = a . = a. xi        yi 1 

The resulting average power distribution over the ground is 

(5-2) 

PG(o,/3,x,y) = exp[-Ne(l -yf)] 

[47T a     a,, <j    rj        / (1 — p        )(1—p„     ) I t*s   [Is  xs  ys v v        H axs   v Pys J 

exp 
2(1 

(« — m   ) a 
2P, 

(a — m    ) (x — m   ) \ a  x_ 
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(5-3) 

The parameters in this equation are 

is     'fee P 

a2   = a2 + y,N W2 

ys        I f   e    a 
(l_+Th+h2) 

yfNeW I   (i  + h) 
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f    2     (jZ    ,     v,  x r,2\   x     211 
a        I -^- + rh + h    I   + a.   I 

I   «s \  3 / i | 
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(5-4) 

We recall that y. is the average single-particle forward-scattering efficiency,   N    is the optical 

thickness of the cloud,   j   is its physical thickness,   and  h   is the height of the bottom of the cloud 

above the ground.    The quantity W     is the width parameter of the average single-particle scat- 

tering pattern,   which is symmetric in   a  and  /J.    The mean values m m„,   m    and m   , which 
P       x y' 

are functions of the coordinates a.,   li.,   x. and y. of the incident beam,   will not enter into our 
ii       I J I 

results. 

Let us assume that the aperture area A    of a single antenna at coordinates (x.,y.) on the 

ground plane is small enough that the x- and y-dependent portion of Eq. (5-3) is virtually con- 

stant over it.    The angular intensity distribution incident upon the antenna is therefore propor- 

tional to 

[2ro      M 
OS 

,-i exp 
(« -m'af + (p ,.i2 

2a2   (1 
OS 

2     , 
P I 

(5-5) 
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with m'   and m'   dependent upon x. and y..    Suppose that the antenna has multiple receiving 

beams,   each adequately represented by the symmetric Gaussian power gain pattern [Eq. (4-35)], 

g( a', p') -  j— exp 
27TCT       , ant 

2 2 
a'    + /j' 

2<r     , ant 

and each having the same (fixed) beamwidth parameter a       .    We wish to estimate how many such 

beams to use in order to obtain the maximum number N,   of statistically independent "looks" at 

the distribution (5-5) incident on the aperture A   .    By Eq.(4-51),   we know that multiple beams 

from the same aperture receive statistically independent signals when their boresight axes are 

separated from each other by at least 4CT_       radians.    This is equivalent to stating that each 

beam occupies an effective solid angle 

Wb = 4•a2nt       • <5"6» 

Thus we have 

Q . 
Nh=-^      , (5-7) b u>, a 

where °. .       is the effective solid angle over which the intensity distribution (5-5) has significant 

magnitude.    We estimate fi .       by again invoking the approximation that most of the volume under 

a symmetric two-dimensional Gaussian function is contained within a circle of radius 2a about 

the mean.    Thus we shall approximate (5-5) by a distribution which is uniform over a solid angle 

Q.       = 47ra2   (1 - p2     )       , (5-8) inc os r«xs 

and zero elsewhere.    [Note the consistent relationship between Eqs.(5-8) and (5-6).]    Equation 

(5-7) now becomes 

ff      (1 — p        ) 
Nb^    aS      2    "

XS        . (5-9) 

ant 

By referring to Eq. (5-3),   we realize that (5-5) depends upon the coordinates (x.,y.) of the 

center of the aperture A    only through the mean (m' , m' ).    Thus Eq. (5-9) is valid for any aper- 

ture similar to A    located anywhere in the active region on the ground plane.    Let us now esti- 

mate the maximum number of such apertures which one could pack into the active region,   subject 

to the requirement that statistical independence holds among all beams in the entire array.    We 

showed in Sec. 4.3 that each beam from one aperture receives a signal which is independent of 

every beam from an adjacent aperture when the centers of the two apertures are separated by 

at least the distance [Eq. (4-48)], 

A. 
Ax   =    

Roughly speaking,  then,   we can place one aperture on the ground plane for every 

*(^>2 =   -\- (5-10) 
4iro     , ant 
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square meters of area in the active region.    But let us note that a diffraction-limited antenna 

whose beam ps 

aperture area 

whose beam pattern is approximated by a symmetric Gaussian function with parameter- a,    , has 

2 A2 

Adi = *-ir- —V    ' <5-11' 
47rffant 

in accordance with our convention (Eq.(4-36)].    Observe that 

As>\u       • (5-12) 

as we pointed out in connection with Eq.(5-1),   and that A,,  is equal to Eq.(5-10).     If our antennas 

are not diffraction limited,   we cannot pack the maximum number N    of apertures into the active 

region unless we are willing to allow them to overlap each other to some extent.     If we do not 

permit overlapping apertures,  then we must use diffraction-limited antennas to achieve the max- 

imum spatial diversity.    We see that 

N    =  Aa.ctive      , (5-13) 
a Adi 

where A is  the area of the  active region.    We  estimate A by  again using  the ap- active fa active    J     6 6 ^ 
proximation that led to Eq. (5-8).    Thus we integrate the received power distribution function 

[Eq.(5-3)]on   a  and  /?  to obtain 

ff 
2    -1 P„(a, p, x, y) dff d/3 = [ZTTO     ]       exp 

(x — m   )    + (y — m   ) 
x •' y 

2<T 
xs 

(5-14) 

and approximate this result by a uniform distribution over a circle of radius 2cr       in the (x,y) 

plane,   centered about (m   , m   ).    The area of the circle is 
f        . v    x'     y' 

A     .. 4TT(J
2

        . (5-15) active xs 

Equation (5-13) now becomes 

,,222 
N    =   x_s_arn       _ (5_16) 

a \l 
o 

Using the assumed receiving apparatus (i.e.,  an array of identical multibeam antennas with 

beamwidth parameter a     .),   we see that the maximum achievable spatial diversity is 

167r a    a      (1 — p        ) 
K    = N N.   =     , '-^-      . (5-17) s a   b 2 

A <) 

But we observe that Eq. (5-17) is independent of a     ..     Thus any set of identical diffraction- f ant J 

limited multibeam antennas (or nondiffraction-limited antennas with suitably overlapping aper- 

tures) could be used to achieve the maximum diversity [Eq. (5-17)],   regardless of the value of 

fj     ..   This statement is subject, of course, to the condition that the effective solid angle w,   of an ant J       . . & b 
individual beam must not exceed the effective solid angle SI.       of the angular intensity distribution ° inc ° J 

(5-5) incident on the aperture associated with the beam.    If OJ,   were,   in fact,   equal to U.     ,   we r b '     M inc 
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see that each aperture would observe all the signal energy incident on it with a single beam 

(N,   =1),   and we would have 

CT     . = a /(l -p2)      . ant        os v oxs 

Inserting this value in Eq.(5-16),   we find that 

K    = N  N,   = N s a   b a 

would still be given by the right side of Eq. (5-17). 

We imagine that it might be possible to achieve slightly greater spatial diversity by using 

some composite of various aperture sizes and beamwidths.    It is reasonable to assume,   however, 

that the increase would only be comparable to the errors inherent in the approximations made in 

deriving Eq.(5-17).    Thus it is fair to say that the value of K    obtained here is a reasonable ap- 

proximation to the maximum spatial diversity achievable by any scheme. 

Suppose that we were only willing to process over some limited area A.. on the ground 

plane, which is within but smaller than the active region. The maximum spatial diversity K 

obtainable under these circumstances is found by multiplying Eq. (5-17) by (A..    /A-KG     ),  which 
*   I   I I 1 A . * 

gives the result 

4TTA..    CT
2

   (1 -p2     ) „                  iim   os            rvxs ,_   ,„, Ksi=   -^       . (5-18) 
A 

O 

We see that the maximum spatial diversity in either case is equal to the product of the solid 

angle subtended by the incident radiation,  times the ground-plane area over which we process, 
-2 

times the factor A o 
It is interesting to calculate the value of K    for a typical set of cloud parameters.    From 

Appendix G,   we see that a reasonable set of numbers is 

T = h = 1000 meters 

A    = 
o 5 X 10"    meter 

N     = 
a 0.3 radian 

N    = e 
10 

Tf = 0.96 (5-19) 

2 
Let us assume that the incident beam on top of the cloud is small enough that CT.    is negligible 

2 l 

compared with a     .    By using (5-19) in Eq. (5-4),  we find that 

CT2    = 0.9 as 

a2   = 2.1 x 106 

xs 

(1 -p2     ) = 0.035      . (5-20) 

59 



Equation (5-21) then becomes 

K    = 4.25 x 10 s 
1<) 

If we process over' a total aperture area of only one square meter,   Eq. (5-18) yields 

K   „ = 1.6 x lO12 

si 

(5-21) 

(5-22) 

5.2   NOISE MODELS 

There are five types of noise to consider in communicating over the cloud channel:   quantum 

noise,  diffuse sky noise,  sunlight,  light from the stars and the moon,  and backscattered light 

from terrestrial sources.    The quantum noise,   which is always present,   assumes major impor- 

tance when the number of signal photons received per second is small.    This issue will be dis- 

cussed quantitatively in the following section.    The communication system we shall propose will 

be operated in such a way that the quantum noise c?n be lumped with the additive Gaussian noise, 

in order that the system design and performance analysis may be carried out using conventional 

techniques.    This issue is discussed in detail in Sec. 5.4. 

The diffuse sky noise,   which is present only in the daytime,   is the result of atmospheric 
34 -14 scattering of sunlight.     Its spectral density has been reported      as about 1.33 X 10 watts per 

(meter   -steradian-Hertz).     It is not clear whether this noise model is meaningful when clouds 

are occupying much of the atmosphere where it is  "generated."   For present purposes,   we shall 

assume that the diffuse sky noise is absent. 

The sun's radiation is approximately white over the band of visible-light frequencies,  with 
35 spectral density 

N =  1.67 x 10   iZ watts/(meter2-Hz) sun ' v (5-23) 

just outside the earth's atmosphere.    We can regard it as an incoherent superposition of uniform 

plane waves.    The angular dispersion of the arriving plane waves is small compared to the 

spreading in angle that the light experiences in traversing a cloud.    In the presence of the ide- 

alized cloud of Sec. 3.1,   the angular impulse response h (a, 8;   a   , 8   ) of Eq. (3-72) immediately 

light incident on the ground.    We have 

N 

gives us an estimate of the angular intensity distribution I,T  (a, 8:   a       , 8       ) of scattered sun MHV    •i        sun  'sun 

I.,  (a, 8;   a        , 8        ) Ns       H       sun  ' sun 

exp[-Ne(l -yf)J 

2•a
ff/3 

•  exp 
{a 

sun 

2a' 

(0 -0. 

2a; 
(5-24) 

which has the dimensions of watts per (meter   -steradian-Uz).    The quantities a and 8        are 
^ sun 'sun 

the angular coordinates of the center of the sun. Knowing Eq. (5-24), we can immediately calcu- 

late the noise spectral density due to sunlight which is received by an antenna of given beam pat- 

tern and aperture area. 

At night the chief sources of noise (aside from quantum noise) are moonlight,   starlight,   and 

backscattered light from terrestrial sources.    Given a model for the angular and spectral dis- 

tribution of light from the moon and stars arriving at the earth,  the angular impulse response 
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analysis of Sec. 3.4 would easily lead to an expression similar to Eq. (5-24).    The effects of back- 

scattered light from nearby sources on the earth would have to be estimated by some other means. 
One could probably obtain sufficiently good results with a crude analytical approach based on 

single or double scattering.    Another alternative is Monte Carlo simulation.    We choose not to 

dwell upon nighttime optical noise here.    The communication system we analyze in this chapter- 
will be assumed to be operating during the day,   in the presence of scattered sunlight described 

by Eq. (5-24). 

5.3   PROPOSED COMMUNICATION SYSTEM 

As we indicated in Sec. 4.1,   it is possible in principle to proceed from the generalized scat- 
tering function CT(T, f, v') and the transmitted signal envelope s(t) to a mathematical description 
of the optimum receiver for the cloud channel,   in the presence of an additive Gaussian noise 
N(t, r).    We shall not attempt to do so here.    Instead we propose an ad hoc scheme that is easy 
to analyze,   allowing us to obtain a lower bound for the performance achievable with the optimum 
system.    We make no claims about the practicality or optimality of the system considered here; 
indeed,   it is possible that the performance bound we obtain is quite pessimistic.    To facilitate 
the analysis,  we make several simplifying assumptions,  which will be enumerated below.    The 
system can then be regarded as a classical fading dispersive channel with a high degree of ex- 
plicit (spatial) diversity.    The analysis of its error probability is a straightforward application 
of known results. 

The receiver  that we shall  consider is shown  diagrammatically in Fig. 5-1.    Each  of the 

K .   channels receives a statistically  independent sample  of the received field,   obtained in the 

K, CHANNELS 

PROCESSOR 

PROCESSOR 

|5-45-11IM| 

4> 
DECISION 
DEVICE 

-1> 

Fig. 5-1.    Proposed receiver structure. 

manner described in the preceding section.    Thus each channel could correspond to a single 
wide-angle antenna,   or several channels could be obtained with each of a number of multibeam 
antennas.    We imagine that the latter might be the more practical alternative.    Such an antenna 
could be realized by making observations at a number of points on the focal plane of a telescope. 
We shall assume that the receiver measures the incident field,   rather than the intensity.    Phys- 
ically,   this implies the use of heterodyning,   with the local  oscillator signal appropriately 
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introduced in the focal plane.    We assume that K .   is less than the maximum achievable spatial 
diversity K    of Kq. (5-17),   so that it will be meaningful to analyze the behavior of the system 

error probability as a function of K .. 
The absence of nonuniform weighting at the processor outputs in Fig. 5-1 embodies the as- 

sumption that all spatial diversity paths have equal gain.    Moreover,  we shall assume that the 

range-Doppler scattering function cr(T,f) and the statistics of the received process are identical 
on all  spatial paths (and on all channels we   might  later add,   to increase  K. ).     We justify this 

assumption on the grounds that the available spatial diversity per square meter- is so enormous 

[cf.   Kq. (5-22)] that we can obtain all the independent channels we are willing to deal with by 
using only a modest area on the ground plane,   and a modest total solid angle.    A final simplify- 

ing assumption we shall make is that the correlation function of the noise-free received process 

on each diversity path has K   equal-eigenvalue orthonormal eigenfunctions <p .(t) (which,   of course, 
depend in general upon the transmitted signal).    Note that the assumptions described in this par- 
agraph are not essential;   we use them because they will simplify our performance analysis con- 

siderably.    For a thorough discussion of these issues,   and of more general fading dispersive 
channels,   the reader is referred to Kennedy. 

Each box labeled PROCESSOR in Fig. 5-1 contains all the components of a conventional re- 
ceiver for a fading dispersive channel,   except the decision device.    We assume that the noise is 

additive,   white and Gaussian.    One of the possible realizations of the processor is illustrated 
in Fig. 5-2,   for the simple transmission strategy of binary on-off signaling.    The envelopes of 
the impulse responses of the bandpass matched filters (which depend upon our choice of a trans- 
mitted signal) are the time-reversed and delayed eigenfunctions <p .(T — t),   i=  1,2, Kj.    Each 

4> (ti 

SAMPLE 
AT   1= T 

Fig. 5-2.    Processor. 

box labeled SLED contains an envelope detector followed by a square-law device.    In the receiver 
of Fig. 5-1, the outputs of all the processors are added and (in the binary case) compared with a 
threshold. 

The extension of the receiver structure to M-ary signaling alphabets is straightforward. 
Each processor would then contain a set of IVI banks of apparatus similar to Fig. 5-2. The 
matched filters would differ from one bank to the next, of course, since the eigenfunctions depend 
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upon the transmitted signal.    A vector of  M  numbers would be computed by each of the K,  proc- 
essors.    The decision device would add corresponding components of all the vectors and would 

pick the largest of the results.    Again,   we refer to Kennedy      for a complete discussion of the 

details.    Particular attention is directed to the remarks in his Chapters 4 and 6 concerning ex- 
plicit diversity. 

5.4   SYSTEM  PERFORMANCE 

We begin the analysis by calculating the signal power and noise spectral density measured 
by an antenna on the ground beneath a cloud.    The signal-to-noise ratio is obtained,  taking proper 
account of quantum noise.    We summarize known methods for calculating bounds to the error 
probability of fading dispersive channels,   and apply them to the proposed cloud-channel commu- 
nication system of Sec. 5.3.    The channel capacity is calculated,   and it is shown that the error 
probability decreases exponentially with the spatial diversity K..    These results are illustrated 
with typical numerical examples. 

The calculation of the signal power received by an antenna is a straightforward application 
of the results of Chapter 3.    As in Sec. 5.1,   let us suppose that the top of the cloud is illuminated 
by a narrow CW beam with symmetric Gaussian intensity variation over its cross section.    The 

resulting power distribution function P„(a, ji, x, y) over the ground is given by Eqs. (5-3) and (5-4) 
when the illumination carries unit power.    Assuming the total power in the incident beam to be 

P    watts,  we simply multiply Eq.(5-3) by P   .    As we showed in Sec. 3.5,   the average power P 
received by an antenna with this illumination is determined by integrating Eq. (5-3) over the 
beam pattern and the aperture of the antenna.    When the beam solid angle OJ    and the aperture 
area A    of the antenna are small compared with the total solid angle and total ground-plane area 
of Eq.(5-3),   respectively,   we can approximate the integral by the product 

Ps = AswsPoPG(at^»X-y'      ' (5'25) 

where the quantities in the argument of P„( ) are the antenna coordinates.    Now,  we recall that 
the averaging process utilized in Chapter 3 was,   in fact,   an ensemble averaging.    Thus Eq. (5-25) 
represents the statistical average of the power received by the antenna at an instant of time.    By 
assuming ergodicity,   we can interpret Eq.(5-25) as a time average,   when the illumination on the 
top of the cloud is CW.    This interpretation is approximately valid for a time-limited transmitted 
signal,  also,   if the duration T     of the signal is long compared with the multipath spread  L of 
the channel.    The total signal energy received by the antenna is then 

ES = PSTU.      . (5-26) 

We observe that the material in Chapter 3 [and hence Eq. (5-25)] does not apply for transmitted 
pulses which are short compared with   L.    The analysis in this section assumes that T,    » L, 
and we do not attempt to determine the receiver performance for short signals.    This issue will 
be discussed further in Chapter 6. 

The calculation of the spectral density of background noise measured by the antenna follows 

easily from the results of Sec. 5.3.    Equations (5-23) and (5-24) give us the angular intensity dis- 

tribution I..  ( ) of scattered sunlight,  which we assume to be the dominant background noise.    As 
we stated immediately above Eq. (5-23),   its spectrum is essentially flat at optical frequencies, 

and the arguments in Appendix A cause us to conclude that it is Gaussian.    By the same reason- 
ing that led to Eq. (5-25),   we see that the sun noise spectral density received by an antenna of 
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small solid angle U)    and aperture area A    is given by 

N    = A u  L- ( ) o        s   s Ns 

1.67 x 10~12 exp[-Ne(l -yf)] 

2 
exp 

Zira (.Zo- os 

s 
2 
(Vri 

A  OJ , (5-27) 
s   s 

where ip    is the angular separation between the antenna boresight axis and the geometric line of 

sight to the sun.    The units of Eq. (5-27) are watts per Hertz;  the conventional two-sided noise 

spectral density N  /Z is equal to Eq. (5-27) divided by 2. 

The received signal is corrupted by photon noise,   in addition to the background noise.    As- 

suming heterodyne detection,  with a strong local oscillator signal (as we do here),   it has been 
37 38 shown     '      that the effect of photon noise is equivalent to that of an additive white Gaussian proc- 

ess with (two-sided) spectral density hf /4rj,   statistically independent of the signal and the back- 

ground noise.    The constant  h  is Planck's constant,   f    is the optical carrier frequency,   and 

7) 4. 1 is the quantum efficiency of the detector.    Thus one accounts for the quantum noise (really 

local oscillator shot noise,   in this case) by replacing the classical white noise spectral density 

NQ/2 by 

N hf 

-? + *?   • <5-28> 
We now see that the ratio of signal energy to noise spectral density for the antenna consid- 

ered in this section is equal to 

P T 

(NQ/2) + (hfQ/4J?)      ' (5"29) 

with P    given by Eq. (5-25) and N    given by Eq. (5-27).    Let us examine this ratio quantitatively. 

Assume that the antenna is so oriented that P    is maximized;  that is,   let its pointing angle (a,ji) 
s 

and its ground plane coordinates (x, y) be equal to the mean values (m   , m  , m  , m   ) of the power 

distribution function [Eq. (5-3)] incident on the ground.    Equation (5-25) becomes 

P    = A  OJ   P    exp[-N  (1 -y,)] •   [4TT
Z

<T
Z
 CT 

2 (1 -p2     )]_1       , (5-30) s        s   s   o      ^l      e f '     l as  xs ^oxs ' 

with a      ,  a      and p given by Eq.(5-4).    Let the background noise N    have its worst-case OS      xs K«xs 6 J     M  v fe o 
value,  with the sun located directly behind the source.    With ip    equal to zero, then,   Eq. (5-27) 

gives us 

N 8.4 X 10"13 exp[-N  (1 -yt)] 
-f-Asus  —r-s L_    . (5.31) 

27TCT      „ as 

Assuming a detector quantum efficiency  y  equal to unity,  the quantum noise term in (5-29) is 

hf 
—  ^ 10     V joules (5-32) 

at visible-light frequencies.    Observe that both P    and N /Z are proportional to the quantity 

A  u>    while hf /4 is a constant.    Thus the signal-to-noise ratio (5-29) increases monotonically 

with A  w   .    As a numerical example,   let us compute (5-29) for the set of cloud and signal 
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parameters (Eqs.(5-19) and (5-20)].    The result is 

P  T\                     Au   PT,    X2.57X 10~7 

 s   tr ^     s   s   o   tr  
(No/2)+(hf0/4)   =       Aw    xl0-l3 + 10-l9 • (5-33) 

s   s 

We recognize that the antenna must be diffraction-limited in this case, so that the received field 

is coherent across the entire aperture, in order that heterodyne detection can be performed. In 

accordance with our conventions [Eqs.(4-36) and (5-6)],   we would then have 

~^)SH „U,BZ A2--2.5X10-13 

at 0.5-micron wavelength.    The background noise term in the denominator of Eq.(5-33) would 

become 

N 
y  ^.SX 10   Zb       , (5-35) 

which is far smaller than the photon noise term.    In order to get some idea of the magnitude of 

the corresponding signal-to-noise ratio,   let us assume that the average transmitted power P    is 

500 watts,   and that T   _ is 1000 times the multipath spread   L  of the scattering function CT(T, f). 

The particular scattering function obtained in Appendix E had 

I) 
L = —- (1 + 2    IW) (5-36) eve 

[Eq.(E-36)J.     For the assumed numerical values in this example,   we have 

L ~ 2.44 X 10~6 second, (5-37) 

whence 

T.     ~ 2.44 x 10~3 second. (5-38) tr 

Equation (5-33) then becomes 

SNR  ^ 0.784       . (5-39) 

It is clear- that one could realize a fir better signal-to-noise ratio (SNR) by using a 

nondiffraction-limited antenna,   having a larger value of A  u   .    We could no longer use hetero- 

dyne detection,  however,   because the aperture would now be larger than the coherence area of 

the field received from the solid angle to   .    But one might be willing to consider- a scheme such 

as optical filtering followed by square-law detection,   followed by electrical filtering and process- 

ing.    Although the nature of the necessary filtering and processing is not yet known,   it is inter- 

esting to calculate the achievable SNR improvement.    We notice that Eq.(5-33) would approach 
-4 its largest possible value for any A  u>    greater than about 10     ,   which could correspond to,   say, 

to    - 0.01 steradian and A    = 0.01 square meter.    Using the above values for P    and T.   ,   we see s s M & o tr 
that Eq. (5-33) would then become 

SNR = 3.13 x 106       . (5-40) 

Obviously one could achieve an adequate SNR with this scheme by using far lower transmitted 

power and shorter signals.    The tradeoff is reflected in the fact that the square-law detection 
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scheme combines a large number' of spatial diversity paths to obtain one received signal.    It 

appears that some form of direct detection would be much more attractive than the field meas- 

urement scheme proposed and analyzed here.    As we have already noted,   the receiver structure 

described in this chapter was chosen simply because it can be analyzed easily by means of known 

results. 

We turn now to a brief summary of the error probability bounds for fading dispersive chan- 
36 nels presented in detail by Kennedy      in his Chapters 4 and 5.    Let us first discuss the quantities 

which appear- in the bounds.    One ordinarily assumes that the average total signal energy received 

by the entire system is a known quantity E   .    The noise is assumed to be additive,   white and 

Gaussian,  with spectral density N  /Z.    An important parameter in the performance bounds is the 

ratio 

®=^-      • (5-41) 
o 

The received signal energy is assumed to be divided among some number Kp of explicit diver- 

sity paths,   obtained in space,  time or frequency.    On each of these paths one can obtain a num- 

ber of statistically independent samples by correlating the received process with each member 

of the set of orthonormal eigenfunctions {(p.(t)}  of the correlation function H(t,T) of the signal 

part of the process.    Thus we can think of an explicit diversity path as having an implicit diver- 

sity K. associated with it,   where K, is the number of eigenfunctions having nonzero eigenvalues. 

The so-called fractional path strengths of the implicit diversity paths are the eigenvalues 

A.,   i = 1, 2, . . . , K. of the {<p .(t)}.    The eigenfunctions depend upon the transmitted signal,   along 

with K. and the {A.}.     It is known that a system with K. equal eigenvalues has better performance 

than any other system with the same number of eigenvalues.    It is convenient to analyze the per- 

formance of an unequal-eigenvalue system in terms of the performance of an equivalent equal- 

strength system.    We shall simplify the analysis of the cloud-channel receiver by assuming at 

the outset that each explicit diversity path has equal eigenvalues.    Moreover,   we shall assume 

that each explicit diversity path has the same number K. of eigenvalues.    Thus we may regard 

the entire system as having a total diversity 

D = KEKj      . (5-42) 

One associates a time constraint length T   with each signal transmission.    It is necessary 

for the analysis that the received signals resulting from two successive transmissions do not 

overlap.    We choose to insure this by setting 

T. = T.     + L ~ T, . (5-43) t tr tr 

If the size of the signaling alphabet is   M,   the information rate   H  of the system is 

log    M 
R =  —  bits/sec       . (5-44) 

t 

The capacity  C  of the channel is identical to that of a nondispersive Gaussian channel with the 

same value of the ratio P  /N  ,   where 
r      o 

E 

Pr = T
L (5"45) 

t 
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is the average received signal power.    Thus the capacity is 

C =        a 

Tt In 2 

The bounds to the system error probability P(e) have the form 

-T.CE -TCE 
KL2 <P(£)<KU2 

(5-46) 

(5-47) 

Since the coefficients K.   and K.. are slowly varying compared to the exponential,   it is sufficient 

for our purposes to concentrate on the exponential part of Eq.(5-47), 

P(e) ~2 
-rtCE 

(5-48) 

Fig. 5-3.    System reliability function  E. 

The quantity  E  in the exponent,  called the system reliability function,  has the familiar shape 

shown in Fig. 5-3.     It is defined by the parametric expression 

E^M 
-2y(-i)-R/C      ,       0<f^%i* 

sy'(s) -y(s) -f^lUr'(o) 

(5-49a) 

(5-4%) 

in which 

y(s) ^   E   [l»(l—«^)+.ln(l + «^)] 
i=l 

-j4s^0 (5-50) 

and 

C 
(s + 1) -y'(s) -y(s) (5-51) 
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in Eq.(5-49b).    The critical rate R       .  is given by M crlt       b J 

crit 
C 2-y'(-2)-r(-5-) (5-52) 

The value of   E  can be maximized for given values of  a  and of R/C by optimizing the eigen- 

values X. and the total diversity  D.    The eigenvalues \. are all equal in the optimum system. 

The total diversity  D  is adjusted so that a/\),  the signal-to-noise ratio per diversity path,   has 

an optimum value a    determined for given R/C as the solution of a set of nonlinear equations. 

The quantity a     increases monotonically from about three for very small R/C to extremely large 

values as R/C approaches unity.    The optimum diversity is 

a > a 

a < a 
P 

(5-53) 

The corresponding optimized reliability E   ,   which also depends only upon   a  and R/C,   is qual- 

itatively similar to Fig. 5-3,   except that it intercepts the R/C axis at the point 

R/C = 1      . (5-54) 

The application of these results to the cloud channel is straightforward.    The total average 

received signal energy E    on the cloud channel is not fixed;  as we have shown,   it is proportional 

to the spatial diversity K..    By Eq. (5-26),  the received signal energy per antenna beam is 

P  Tt s   tr (5-55) 

and the total received signal energy is 

K.E A   s (5-56) 

where we assume that all K.  spatial paths are identical.    Because of Eq. (5-43),  the average 

total received signal power is 

E E r r K.P A   s t tr 

In view of (5-28),   the quantity   a  of Eq.(5-41) becomes 

E 

N    + (hf /2T?) o o' 

KAEs 
NQ + (hfo/2r?) 

(5-57) 

(5-58) 

for our ad hoc receiver.    The capacity of the cloud channel is 

'cl rtln2 

= KAC A   s (5-59) 

where 

Cs "  T,ln2 (5-60) 

68 



is the capacity per spatial diversity path.    The quantity 

E 

°s =  K^ =  No + (hfo/2r,) <5"M) 

is the energy-to-noise ratio per spatial diversity path. 

There are two cases of interest in applying the performance bounds to the cloud channel. 

In case I we assume that the ratio R/C  , is held constant; that is,  we let the rate  R  be propor- 

tional to the number K.  of telescope beams.    In case II we investigate the error probability for 

communication at a fixed rate Rf. 

Case I is equivalent to adopting the policy of increasing our communication rate by a fixed 

amount each time another spatial diversity path is added to the system.    Let us identify the spa- 

tial diversity K.  with the explicit diversity Kp of Eq. (5-42).    We see that Eq. (5-50) then becomes 

KI 

?<s> = -^-   E   [ln(l-sa A )+s ln(l + or A.)]     , (5-62) 
s  i=l 

which is independent of K..    By inspection of Eqs.(5-49),   we find that the reliability   E  is also 

independent of K.,  and the error probability [Eq.(5-48)J becomes 

-T C  ,E 
P(«) s 2 Ci 

-T K.C   E 
= 2 S , (5-63) 

which decreases exponentially with increasing K. 

In view of Eq. (5-62),   we conclude that the opt 

is that of a single spatial path with energy-to-nois 

of R/C  , and determine the optimum implicit diversity per spatial path by the relation 

In view of Eq.(5-62),   we conclude that the optimized reliability E    of the channel in case 1 

is that of a single spatial path with energy-to-noise ratio a   .    We compute a     for the given value s p 

KI° 

a s o 

a 
P 

a    > a 
o s p 

,        ffs<«p° (5-64) 

independent of K..    The optimum total diversity is simply 

D° = KAK°      , (5-65) 

regardless of the value of K. .    The resulting optimized error probability is 

-T.K.C   E° 
P(e) = 2     l   A   s , (5-66) 

still exponentially decreasing with K.. 

Under case II,  where we communicate at the fixed rate Rf,  the system reliability   E of 

Eqs.(5-49) depends upon K .  through the quantity 

R        Rf Rf 
C  "  C , "  K.C cl As 

(5-67) 
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We note that  the function y( ) is still given by Eq.(5-62),   and is independent  of K , ,   as is thi 

5-67 

Rf/C 

quantity  R       VC of  Eq.(5-52).     In view of Bq.(5-67),   Eqs. (5-49) may be rewritten as i '      crit 

R 
-2y(-y) K ,C A   s 

sy'(s) -y(s) 

H    .7c crit' 

R./C 

r « KA < - 

K      <-       f       s 

A^    y'(0) 

VCs 
y-(0)  - K

A^ H7~77C 

(5-6 Ha) 

(5-08b) 

(5-68c) 

where 

K.C A   s 
(s + 1) y'(s) -y(s) 

in Eq. (5-68b).    For K.   iti the interval in Eq. (5-68a),  the error exponent 

T.C   ,E     T,K ,('   E 
t     el t     A    S 

(5-69) 

•2TtKAV-2>-TtRl (5-70) 

again increases linearly with K . .     For K .   in the interval in Eq. (5-68b),   the situation is more 

complicated.    The corresponding range of \{/C lies belween R ,   -,/C and y'(0).    Now,   the deriv- 

ative of   E  with respect to R/C increases from —1 to 0 as  H/V increases from  R     .VC toy'(0). t- i i crit' 
In view of Eq.(5-67),   we see that the derivative of   E with respect to K.   increases from zero to 

R,/(K.C   ) as K.   increases over the interval in Eq.(5-68b).    Therefore,   the error exponent 
'{' A \-\ 

T.K.C   E increases faster than linearly with K.   over this interval.     Finally,   for- K.   in the inter- t   A   s 'A A 
val in Eq.(5-68c),   the reliability   E  is zero because the system is attempting to operate at a rate 

above capacity. 

The optimization of the diversity in case 11 is quite simple.    For each value of 

Rr R           "f 
C       KAC's 

we can calculate rv   ,   and 
P 

D° = KAK, - fV 

o 

K . a A   s 
o (5-71) 

P P 

as before.     For given R/C and   (v  we calculate E  .    The error exponent TtKACaE    is zero for 

R. 

t'xA^s' 

r 
^A^   C (5-72) 

increases faster than linearly with K .   when 

(Rf/Cs) R, 

C    * KA v   (R     ../C) s crit' 
(5-73) 
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and goes up linearly with K.   for 

(Rf/C ) 
< °°       . (5-74) (Hcrit/C)^"A 

In the results of both cases I and II,   we see the answer to the question of optimum spatial 

diversity K*.    Since the error probability decreases monotonically with increasing K . ,   it  is 

clear- that the optimum value of K     is simply the largest possible value,   up to the maximum 

achievable spatial diversity K    of Eq. (5-17) in Sec. 5.1.     In a more realistic situation one would 

presumably assign a cost function to K. ,  thereby allowing the optimum K.  to be determined by 

considerations external to the actual channel analysis. 

As a numerical example,   let us calculate some approximate figures for communication to 

the earth with a laser in a satellite in synchronous orbit,   at a distance of about 20,000 miles. 

Let the laser have 500 watts of output power- capability at 0.5-micron wavelength,   and let it have 

5-cm diffraction-limited optics.     Using the conventions of Sec. 5.1,   we model its intensity var- 

iation over- the upper surface of a cloud layer on the earth as a symmetric Gaussian function of 

x   and  y,   with 

CT
2

  s  5 x 103       . (5-75) 

2 
Let the cloud have the set of parameters of Eq.(5-19).    We find that a.    is indeed negligible com- 

2 ' 
pared with the variance a     ,   given by Eq.(5-20),   of the resulting power distribution function 

P„((v, /;, x, y) [Eq.(5-3)] over the ground.    Thus the three parameter values of Eq.(5-20) used in 

our earlier numerical examples are also correct in the present situation.    Let us now make the 

same set of assumptions about the telescope and the signal that led to the signal-to-noise ratio 

[Eq. (5-39)1 which we have already calculated.    The telescope is located and aimed in such a way 

that the received signal power- P    is maximized;  the sun is directly behind the satellite.    The 

time duration of the transmitted signal is given by Eq. (5-38), 

T,    ~ 2.44 x 10      second s T. t r t 

The resulting ratio of average received signal energy to (two-sided) noise spectral density for 

this single telescope beam is given by Eq. (5-39), 

(No/2) + (hfo/4„)   ~ °-784       • (5"76) 

Now,   the signal-to-noise ratio a    of Eq. (5-61) is the ratio of the received signal energy to the 

single-sided noise spectral density,   for a single beam.    Thus a    is equal to one-half of Eq. (5-76) 

or 

a     ~ 0.392       . (5-77) s 

The received signal power- per beam is 

P    =  3.21 X 10"17 watt       , (5-78) 
s 

and the signal energy per beam is 

E    = P  T.     = 7.84 X 10"2° joule       . (5-79) s s   tr J 
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Finally,   let us assume that we form 10    beams,   so that 

KA = 103      , (5-80) 

and that we wish to communicate at a rate 

R = 0.03 Cj      , (5-81) 

which is just equal to H _   .    for the given value [Eq.(5-77)J of a   .    We have 

a 
C    =  T   in?   - 2-32 x 10    bits/sec (5-82) 

and 

C  , = K.C    = 2.32 X 105 bits/sec      , (5-83) cl        A   s ' 

so that the desired rate is 

H - 6.96 x 103 bits/sec       . (5-84) 

36 
From Fig. 4a in Chapter 5 of Kennedy,      we find that R/C = 0.03 corresponds to the optimum 

signal-to-noise ratio 

o° a 3.0 (5-85) 

per diversity path.    The corresponding optimum implicit diversity is 

K°=-^-l       , (5-86) 
a 

P 
3 

and the optimized total diversity (given that K.   =10   ) is 

1)° - KAK(° = 103       . (5-87) 

Exploiting the low-rate,   small-o    analysis in Kennedy's Chapter 5,   we find that the error prob- 

ability of the system is 

P(() =  10~6"63       . (5-88) 

An unattractive feature of this example is the required size of the signaling alphabet,   which 

is a consequence of the rather long constraint length T. we had to use.    We require 

RTt 17 
M = 2 a 2 (5-89) 

orthogonal waveforms.    Equivalently,   one could form the transmitted signals by coding 17 bits 

together.    This high degree of complexity can be substantially ameliorated by exploiting known 
39 40 

techniques     '       for efficient approximation of orthogonal signals.     It is possible to generate a 

set of 2     "almost orthogonal" waveforms with only about K   '    bits.    In many applications,  the 

resulting signal set will perform nearly as well as an orthogonal set. 
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS  FOR FUTURE  RESEARCH 

The most significant results of this study are indications that communication through 

clouds at visible-light wavelengths is both feasible and capable of fairly impressive data rates. 

Even if one makes generous allowances for suboptimum signal and receiver design,   the numer- 

ical examples of Sec:. 5.4 indicate that a laser of modest power in a satellite,   with a reasonably 

simple receiver on the ground beneath a cloud layer,   could achieve kilobit rates with low error 

probability. 

The primary objective of this research was the development of an adequate model for the 

cloud as an optical communication channel.     The first step toward this end was a study of the 

spatial variation of the average intensity of light over the ground beneath a cloud,   when the top 

of the cloud is subjected to CW illumination.     This portion of the analysis (the material of Chap- 

ter 3) can be understood and applied without any background in communications theory.    Using 

the ideas and techniques of linear systems analysis,   we derived a linear superposition integral 

which describes the light on the ground as a function of the spatial character of the illumination 

on the top of the cloud (e.g.,   a uniform plane wave,   a narrow beam,   or any desired spatial var- 

iation).     In general,   the integral gives the average intensity of the light as a joint function of 

angle of arrival and horizontal coordinates (x, y) over the ground plane.     It is shown that the re- 

ceived light has extremely small variance;   that is,  the instantaneous intensity is always very 

nearly equal to its average value.     For the special case in which the illumination on the top of 

the cloud is uniform over the entire horizontal plane,   the superposition integral simplifies con- 

siderably.    The intensity of the light incident on the ground then depends only upon angle of 

arrival. 

Light traversing a cloud suffers dispersion in time and frequency,   as well as  in space. 

Moreover,   the received field at a point on the ground can be represented in terms of a complex 

Gaussian random process (the arguments leading to this conclusion are worked out in detail in 

Appendix A).    Thus the received process at a point is equivalent to the signal received over a 

classical fading dispersive channel,   Such as a tropospheric-scatter microwave system.    At 

visible-light frequencies,  however,   the spatial variation of the received field occurs on a scale 

which makes it both important and useful in receiver design.    These ideas led to the character- 

ization of the channel in terms of the generalized scattering function CT(T, f, v ') of Sec. 4.1,   which 

includes the dependence of the received field upon both angle of arrival and horizontal coordi- 

nates (x, y).    If this function were known in detail for a particular physical situation,   one would 

have a complete statistical description of the received process.    On an abstract level this for- 

mulation is concise and efficient.    It constitutes the most general form of our optical commu- 

nication channel model for the cloud.    We recognize,  however,   that the elegant function 

<J(T, f,~v') is cumbersome and difficult to obtain in practical situations.    In Sees. 4.2 through 4.5, 

we consider various specialized and easily calculable aspects of it.    These include the spatial 

correlation function of the received field over the ground,   the joint spatial and angular corre- 

lation function for directive receiving antennas,   and the classical range-Doppler scattering 

function CT(T , f) for a narrow-beam antenna of small aperture area.    It is shown that the inten- 

sity distributions of Chapter 3 are simply special cases of the generalized scattering function. 

The correlation functions are utilized in Chapter 5 to estimate the degree of spatial diver- 

sity achievable in a cloud communication system.    An ad hoc receiver is proposed which exploits 
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the spatial diversity to obtain a number of statistically independent samples of the received 

field and processes the signal on each spatial diversity path in the manner of a classical fading 

dispersive channel receiver.    The relationship between this receiver and the optimum commu- 

nication system for the cloud channel is not known.    The proposed receiver is easy to analyze, 

however,   and the results provide a lower bound for communication rates and error performance 

that the optimum system could achieve. 

Kuture theoretical investigations in the area of cloud communication could logically proceed 

along three fronts. These are refinement and extension of the present results, development and 

analysis of optimum and suboptimum receivers, and numerical computation of a variety of func- 

tions and parameter's related to the problem. The first of these efforts should include a detailed 

study of the scattering function <r(T,f, v'), which was discussed only briefly in this report. Our 

results also need clarification and interpretation for both small and large optical thicknesses 

N   .    The unscattered residue of the incident illumination,   attenuated by the factor exp[-N   I, e ' r'       e 
can be regarded as a specular component in the received signal.    For optically thin clouds,   one 

could perhaps realize a significant simplification in receiver structure by exploiting this specu- 

lar signal appropriately.    On another level,   our Gaussian results for angular distributions of 

the scattered radiation can lie in error even at substantial optical thicknesses when the single- 

particle scattering pattern is very strongly forward-directed.    Evidence of this effect, appears 
41 in certain of the Monte Carlo results of Kattawar and Plass      for nimbostratus clouds,   in which 

the maximum of the particle radius distribution occurs at about 12 microns.    At ()      0,   the av- 

erage single-particle scattering pattern for such a cloud is greater by 10    than at O      till.     For 

N^      10,   Kattawar and Plass found that the scattered light had an angular- intensity distribution 

with about the same shape as our Gaussian predictions,   except for a narrow peak at ()      0 hav- 

ing a value about twice that at O = 1.5 degrees.    The reason for the erroneous behavior- of our 

results in this case (which would predict a pure Gaussian) appears to be associated with the 

limiting processes carried out in Chapter 3.     In a typical law of large numbers problem,   one 

convolves some fixed unit-area probability density function p(x) with itself (N — 1) times.    It is 

easy to write down conditions on p(x) such that the result converges to a Gaussian function in 

the limit as N   goes to infinity.    In Chapter 3,   however,   we carry out an (N — l)-fold convolution 

of a function of the form 

g(x) = (1 - §•) uo(x) + \ p(x)      , (6-1) 

which is also a well-defined probability density function.    The problem is that g(x) varies with 

N,   approaching a unit impulse as  N   approaches infinity.    Our difficulty appears to be the fact 

that the result of the (N — 1) convolutions does not converge to a pure Gaussian curve as  N   be- 

comes large,   when p(x) is too high and narrow.    It would be interesting and worthwhile to de- 

rive the conditions on p(x) such that the convergence does take place,   and to study the behavior 

of the result when it does not converge properly. 

At optical thicknesses greater than about 32,   our Gaussian results become suspect.    As wo 

point out near the end of Sec. 3.4,   in such cases we predict that the angular intensity distribu- 

tions are practically flat for all B ^ 7r/2.    We do not yet know how nearly correct this is,   nor 

precisely how other attributes of the received signal (such as time and frequency spreading) 

behave under these circumstances.    These questions constitute another area of interest for 

further research. 
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The determination of the actual optimum receiver for the cloud channel is closely coupled 

with the study of the generalized scattering function a(r, f, v').    As we commented in Sec. 4.1, 

Kennedy      has outlined an extension of known techniques one might utilize to address this prob- 

lem,   if a( ) were known.    Among the useful results of a research program in this area would be 

an assessment of the "degree of optimality" of the proposed communication system of Chapter 5, 

and the ability to design other practical suboptimum systems.    An unsolved problem of particu- 

lar interest in this regard is the design and performance of both optimum and suboptimum re- 

ceivers for very short transmitted pulses.    The receiver of Chapter 5 assumed long pulses,   in 

order that the CW results of Chapters 3 and 4 could be exploited.    The author has done some 

preliminary work which indicates that the linear system approach of Chapter 3 could be success- 

fully applied for an incident illumination which is impulsive in time as well as in a,   {$,   x and y. 

Proceeding along these lines,   one could presumably obtain an impulse response (and a super- 

position integral) which would describe the received process as a joint function of angle of arrival, 

x,  y and time,   for very short pulses. 

Another  interesting research area  is the question of practical realization of receiving sys- 

tems,   both optimum and suboptimum.     It is attractive to think of performing some of the signal 

processing optically,   such as spatial or time-domain filtering.    The extent to which such opera- 

tions can be realized,   using components which we know how to build,   is an open question.     One 

might also study the possibility of square-law detecting the received field (e.g.,   with a photo- 

multiplier tube) and filtering the resulting intensity signal appropriately.    Hecause all the phase 

information would be lost,   it seems clear that one could not realize optimum performance with 

such a scheme,   but it is possible that the performance would be good enough to be acceptable 

under some circumstances. 

We remark that it is not always possible to regard the field incident on the ground as a time- 

continuous process. It is in fact a time-discrete sequence of light quanta, or photons, which can 

be treated as a continuous time function only when the number of photons arriving per second is 

very large.    This was true in our receiver analysis of Chapter 5,   and we have assumed it to be 
43 

true throughout this report.     A recent investigation       of pure quantum-mechanical communica- 

tion systems has yielded results which appear to be applicable to communication over the cloud 

channel.     In particular,   the detection of the quantum-mechanical equivalent of Gaussian signals 

in Gaussian noise was considered.    It would be worthwhile to undertake a study of the implica- 

tions of these results in our problem,   for both small and large signal levels. 

It is clear that numerical simulation will be a valuable complement to analytical results in 

cloud channel communication system design.   The work of Zaborowski,   described in Appendix C, 

has considerably increased our confidence in the approximate methods used to solve the spa- 

tial impulse response equations.    In addition to substantiating certain of our results,   the Monte 
4l 

Carlo methods of Plass and Kattawar      can secure many results which we have not obtained an- 

alytically (e.g.,  backscattered intensity,   polarization behavior,   and the effects of reflection from 

the earth's surface).    In Appendices   E  and   F,   we propose straightforward numerical methods 

for obtaining the range and range-Ooppler scattering functions in simple cases,   and we discuss 

the application of Monte Carlo methods to finding these functions in more general situations. 

A fourth area of interest for future research is experimental investigation of some of our 

results.    We suggest an equipment configuration similar to that used by Zaborowski,   as de- 

scribed in Appendix G,   which simulates the idealized cloud with a water suspension of scattering 

particles in a shallow transparent tank.    The spatial intensity distributions could be measured 
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accurately with a carefully  constructed narrow-beam detector,   using a C'W laser- beam to illu- 

minate the scatterers.    It is conceivable that one could also obtain time-spreading information 

with this experimental model by square-wave modulating the incident beam and measuring the 
rise time of the output,   if a modulator and a detector of sufficient bandwidth were obtainable. 

As we explain in Appendix G,   one would expect rise times to be on the order of T/C,   where  T 

is the physical depth of the particle suspension.    If the depth were a few centimeters,   the rise 

time would be tenths of a nanosecond. 
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APPENDIX A 

SCATTERED FIELD ON GROUND PLANE 

The received  field at a point  r  on the ground  beneath a cloud is a superposition of an 

enormous number of scattered components.    In general,   a contribution arrives over every pos- 
sible multiple-scattering path through the cloud.    In this appendix we show,   subject to certain 

reasonable assumptions,  that the field on the ground plane can be represented in terms of a 

complex Gaussian random process. 

TRANSMITTED 
SIGNAL 

Fig. A-l.   Cloud configuration. 

y/////////////////////////////////////////// 
GROUND PLANE 

The configuration that we shall examine is illustrated in Fig. A-l.    We visualize a trans- 

mitted signal of the form 

e.(t,p*) = Re [s(t) E(jT) exp(-j2irfot)] (A-l) 

incident upon the top of the cloud,   in which s(t) is a narrow-band complex envelope.    The term 
E(p ) allows us to treat infinite plane waves,   narrow beams,   or any other spatial variation in 
the same general formulation.    It is clear that the received field varies with position  r on the 
ground plane,   depending in a complicated way upon E(p ).    The spatial dependence is discussed 

in Chapter 4.    For purposes of the analysis in this appendix,   we take the point of view that the 

spatial dependence is implicitly included in all the field parameters that we use. 
In studying the field in the vicinity of a point   r   on the ground plane,   it is convenient to set 

up a new coordinate system  S'   with its origin at the point   r   in the fixed coordinate system  S. 
We visualize a set of vectors {p .'} from the origin of  S'   to all the particles in the cloud,   and 
we specify positions on the ground in the vicinity of the point  r  by means of a vector  r""1 from 

the origin of S'. 
The signal scattered by the i     particle toward the point   r   on the ground consists of M. 

components,   where M. is the number of wavelets incident upon the particle.    These include the 

unscattered remnant of the incident signal (A-l) that penetrates to the particle,   in addition to 
wavelets of all scattering orders arriving at the i     particle from all the other particles in the 
cloud.    Many of these components,   of course,   will have been severely attenuated by multiple 
scattering or by scattering through large angles.    If there are N    particles in the cloud,   the i 
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2 
particle is illuminated by (N    — 1) single-scattered components,   (N    — 1)    double-scattered 

P m-1 P components,   and so on.    There are (N    — 1) scattering paths of order  m   which encounter 
th P — the i     particle and proceed directly to the point  r   on the ground.    Although the total number 

M. of all such scattering paths is infinite,   in practice we shall regard it as a large but finite 

quantity,   since we can ignore those components which have been scattered so many times that 

their amplitudes are negligible. 

Let us assign an index  k to each of the scattering paths which proceed to the point   r   via 

the i      particle,   with   k  ranging from 1 to M..    As it proceeds along the k      scattering path,   a 

field component experiences a sequence of attenuations.    Each time it is scattered through some 
1 /2 angle 9   by a particle in the path,   its amplitude suffers a loss proportional to |F(9)]        ,   where 

F( ) is the intensity scattering pattern of the particle,   as discussed in Chapter 2.    This loss can 

vary by order of magnitude,   depending upon the size of 9.    Over the distance  d  between one 

particle and the next,   the amplitude of the field component suffers both l/d loss and an average 

extinction loss of exp[—d/2D  ]  (the square root of the average extinction attenuation of its in- 

tensity).    Finally,   the component suffers scattering pattern loss and l/d loss in proceeding 

from the i      particle to the point   r   on the ground.     Let us lump all these losses on the k     path 

into a single amplitude factor r) ...   which is obviously very small in most cases.    We shall use 

three additional parameters to characterize the k     path through the i      particle to the point   r . 

These are the total path length T. . (seconds),   the total Doppler shift f. .,   and the phase 9, ..    All 
Kl Kl ,,    Kl 

three of these quantities include the effects of the final segment of the path,   from the i      particle 

to the point   r*. 

Ignoring the effects of polarization (as we do throughout the report),   we regard the total field 
th iponent arriving at the ground from the i     particle as a sum of scalar quantities.    We sh; 

write down an expression for this component at a point   r~' in the vicinity of  r~,   where   r '  is 

measurei 

We have 

th component arriving at the ground from the i     particle as a sum of scalar quantities.    We shall 

write down an expression for this component at a point   r~' in the vicinity of  r~,   where   r '  is 

measured in the coordinate system  S'   centered at   r .     Let us denote this component as y.(t, r, r '). 

,M. 
l 

y^t, r , r*') = Re 

k=l 

•   ex ph27rt<fo-fki>- •'    ki 

7    r*
1 • p .' . ZTT              '  I 

_Jr   |p--'l O         '      1  ' 

(A-2) 

where p .' is also measured in  S'.    This expression incorporates several assumptions which are 
1 36 4 frequently invoked in the study of scattering channels.     '       First,   although we attribute the 

Doppler shift f. • to the variation with time of the path delay T, .,   only the nominal value of the 

path delay appears in the argument of the signal envelope s( ).    This is consistent with the as- 

sumption that s( ) is a narrow-band waveform.    Second,   we have assumed that the magnitude of 

r ' is small compared with that of p*',   so that the attenuation r\ , . and the delay T. . (though im- 

plicitly dependent upon r ) are independent of  r '.    The same assumption permits us to approxi- 

mate the carrier phase variation with  r ' as indicated in Kq. (A-2).    Specifically,  the phase as- 

sociated with propagation from p .' to   r ' is given by 

7l~r'\  =  2L(\?{\'-Z?<  •  n +  I ?'!')' 
A 

o o 
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The first term is lumped with the overall path phase 8, . and the second term appears in the ex- 

ponent of Eq. (A-2) by itself. 

We justify the assumption that  | r ' |  »  | p •' |   in terms of one of the results of Sec. 4.2,   which 

states that the spatial correlation distance of the field over the ground is on the order of X   . 

When the field is being observed with a directive antenna of beamwidth  B,  the spatial correla- 
-1 

tion distance is roughly A   B     .In either case,   it is not meaningful to describe the field at one 

point in terms of the field at another point,   unless the fields at the two points are correlated. 

That is,   | r*' |   should be less than the correlation distance,   which,   in turn,   is much less than 

| p.' |   in any reasonable situation.    Even when the plane of observation is within or at the lower 

boundary of the cloud,   most of the particles contributing to the field at a point are far away 

from it,   compared with the spatial correlation distance. 

Another familiar assumption we shall make is that there is an uncertainty of many times 
_1 

the carrier period f      in our knowledge of the path delay T, ..    We shall therefore take the path 

phase 9, . to be a random variable which is uniformly distributed between — IT  and  ir.    Moreover, 

it is reasonable to assume that similar uncertainties exist in our knowledge of the differences 

in delay between scattering paths;   hence,   we shall take each path phase 9, . to be statistically 

independent of all the others. 

As we indicated earlier,   the path attenuation TJ , . can vary considerably with small changes 

in such details of the path as individual scattering angles.    An additional element of uncertainty 

in T)       results from the fact that the scattering pattern of any particle in the path depends upon 

the particle radius  a,   which we can regard as a random variable obeying a particle size distri- 

bution p(a).    It is therefore reasonable to regard 77 , • as a random variable.    We have no reason 

to assume that 77    . is statistically dependent upon any other path attenuations,   except possibly 

those of paths which are nearly identical to the k    .    But suppose the m     path were everywhere 

identical with the k     except for one segment,   where each of them contained one particle that 

was not in the other path.    Even in this extreme case,  that one different scattering angle could 

cause 7) , . to differ from 77     . by orders of magnitude.    But suppose one suspected that there 

was actually enough statistical coupling between the amplitudes (and perhaps the phases) on the 

k     path and those "nearly identical" to it to cause problems.    In that case one could visualize 

dividing the M. signals into M.'  groups,   each containing a set of signals nearly identical to each 

other,   and lumping the members of each group together into a single term,   with a common 

delay,   Doppler shift and phase.    The only effect on Eq. (A-2) would be to reduce M. to M! ,   which 

is still an enormous number. 

Thus we shall assume that the amplitude factors 77    . are statistically independent random 

variables,   each described by a probability density function p. .( ).    Because of the spatial varia- 

tion E(p~) of the incident signal,   the density functions p. .( ) will depend upon the locations of the 
th 

paths and of the i     particle,   in general,   but knowledge of the density functions will not be nec- 

essary in our argument that the received process is Gaussian.    In fact,  the 77 , . can even be 

nonrandom,   so long as they are very numerous and very small. 
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The total received field y(t, r, r ') at points  r '   relative to  r   is simply the sum of contribu- 

tions similar to Eq. (A-2) from every particle in the cloud.    Thus 

N 

y(t, r, 

i=l 

yt(t, r, r ') 

Re 

N M. 
P        i 

2 I * 
i=l k=l 

ki 
s(t rki) exp -j27rt(f   - f, .) - je,. - i ^    i—, i1 J o       ki      J   ki     J \       \ p .' o 1 

(A-3) 

The total received field y(t, r", F"') should include a specular component, the unscattered residue 

of the transmitted signal which penetrates the cloud to the ground. We shall simplify our prob- 

lem somewhat by assuming that this component is so attenuated by the cloud that it is negligible 

compared with the scattered radiation. 

By arguments similar to those used above,   we immediately establish statistical independence 

i. between 9, . and 9        for every value of m  and  n  except m = k and n ki mn J K Similarly,   T) , . is 

statistically independent of r\ Let us re-index all the terms in Eq.(A-3),   replacing all the 

double subscripts  ki  by a single subscript  n,   which ranges from unity to 

NP 
M = y M. 

L-i 1 

i=l 

(A-4) 

The last term in the exponent in Eq. (A-3),   which depends upon  i,   can be made to fit into this 

new formulation by defining new vectors 

R'&i 

n = 1,2, M. 

n = M, + 1, M, + 2, . . . M, + M, 
11 1 I 

(A-5) 

Equation (A-3) can then be rewritten as 

M 

y(t, r, Re YJ     1n 
s<t - Tn> '   exP |-J27rt(f, f ) - je n'      J   n 

n=l 

.   27T 

36 

(A-6) 

We have now put y(t, r, r ') into precisely the form obtained by Kennedy      for a signal transmitted 

through a single-scattering medium.    The crucial assumptions are the same;   that is,   the num- 

ber of components is very large,  the amplitude factors T)    are small,   and the phases 9    are 

statistically independent and uniformly distributed over (— it, 7r).    Under these conditions,   we 

argue exactly as Kennedy did that the complex envelope of y(t, r", F*') is a complex Gaussian ran- 

dom process.    The real and imaginary parts of the envelope are uncorrelated Gaussian random 

variables,   having equal correlation functions and zero means.    Knowledge of the correlation 

function is equivalent to knowledge of a complete statistical description of y(t, r~, r ').    These 

issues are discussed in Chapter 4. 
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APPENDIX B 

ORTHOGONAL ANGULAR COORDINATES  a AND /3 

Much of the analysis in this report uses orthogonal angular coordinates  a  and  (3 to represent 

the positions of points in space.    In this appendix we define the transformation to   a  and  (3  from 

the spherical coordinates  O   and   tp,   and discuss the transformation of functions of ()   and   tp   into 

functions of  rv  and  B. 

The most important advantage of the new coordinate system is that the orthogonality of « 

and 13 permits major simplifications in the calculation of convolutions of functions defined on the 

unit sphere. Another convenient feature is the anility 

to express the angular separation between two points 

in space in the (approximate) Cartesian form given by 

Eq. (B-3) below. The equivalent of Eq.(B-3) in spher- 

ical coordinates is a cumbersome expression ob- 

tained by solving a spherical triangle. Finally, the 

transformation maps the upper hemisphere into a fi- 

nite region in a plane. As in the original problem, it 

is possible for a light ray to be scattered out to n/Z ra- 

dians by means of a finite number of finite steps. This 

would not be the case under any transformation which 

mapped the upper hemisphere into the infinite plane. 

The   relationship  of  rv   and  13  with  the  zenith an- 

gle   B   and the azimuthal angle   <p  is closely analogous 

to the relationship of the Cartesian coordinates  x  and 

y with  the  polar coordinates   r  and   <p   in  two  dimen- 

sions.     As illustrated in Fig. B-l,   the transformation 

is  accomplished   by  mapping   the  unit-radius   sphere 

onto a plane tangent to the sphere at 9 = 0.    (The plane in the figure is drawn above the sphere 

for the sake of clarity.)    The mapping is performed in such a way that azimuthal angles   <p  and 

polar arc lengths 0  are preserved.    Thus the length of the radial line OP in the plane is equal 

to that of the arc OP on the unit sphere,   which is  6   units long.     The coordinates of the point  P 

in the plane,   measured along the orthogonal  a  and  13  axes,   are 

Fig. B-l.    Mapping of unit sphere onto 
(a,(3) plane. 

a - 0 cos tp radians 

(3 = G sin tp radians (B-l! 

These equations define the transformation of coordinates.    Although we can visualize mapping 

every point of the sphere onto the plane in this manner,   we shall restrict our attention to the 

region 0 < ir/z.     The corresponding region in the a — (3 plane is bounded by the circle 

rv2 + 0Z =  (TT/2)
2 (B-2) 

Although the transformation preserves distance along lines of constant <p,  we observe that 

distance along circles of constant  0   is not preserved.     The circle 0 = 0    on the sphere has cir- 

cumference Zn sin 0   ,   while the corresponding circle in the a — 13 plane has circumference ZirQ   . O' r a r o 
In general,   the distance between two arbitrary points in the plane differs from the great-circle 
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distance between the two corresponding points on the sphere.    Let two points P. and P? be lo- 

cated at (a., 0,) and (a     (i   ) on the a — 3 plane,   while the corresponding points on the sphere are 

located at (0., (p.) and (Q?, <p?).    The distance between the two points on the plane has the con- 

venient Cartesian form 

IJ12=7(ff2-al)2 +  (/J2-^l)2       • <B"3> 

It is clear that D. _, differs from the great-circle distance between the two points on the sphere 

by a factor which is upper-bounded by roughly 0    /sin0    ,  where 

0m = maxt01>02]       • (B-4) 

We recall that 0      and sin0      are equal within 10 percent for mm 

0     < 0.75 radian s 43°       , (B-5) 

while the error does not exceed 20 percent for 

0     ^ 1.03 radians = 59°       . (B-6) 

Now,   the great-circle arc length between P    and P? on the unit sphere is equal to their angular 

separation y,2 relative to the center of the sphere.     Thus 

D12S^12 <B"7> 

within 10 percent subject to condition (B-5),   or within 20 percent under the condition (B-6). 

The transformation of a function of 0   and   tp  defined over the surface of the unit sphere into 

a function of  a  and  li  is a straightforward matter.    As a specific example,   consider the nor- 

malized single-particle scattering pattern f(0) discussed in Chapter 3.     This function is defined 

in such a way that f(0) du is proportional to the intensity of the radiation scattered by the par- 

ticle into the incremental solid angle (or area element) 

do) = sin0 d0 dq> (B-8) 

at coordinates (0, <p).     The polar angle   0   is measured relative to the propagation vector of the 

plane wave incident on the particle.     We wish to transform f(0) into a function f. (a, li) subject 

to the condition that 

\ \   f(0) sin0d0d<? =  \ \   f1(a, li) dad/3      , (B-9) 

where the domain of integration is the region 0 ^* ir/2.    The transformation is a simple case of 
44 a general treatment summarized by Wozencraft and Jacobs,      in the context of reversible trans- 

formation of random vectors.     The result is 

ii(a,p) = J(a,0) f[0(a, 0)\      , (B-10) 

in which 

j(a,n)- sinifay
] (B-H] 
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is the Jacobian of the transformation,   often called the metric coefficient.     The function 0(a,/3) 

is the first member of the transformation which is the inverse of Eq. (B-l), 

e = («2 +/?V/2     , 

-l  a <p = tan       -      . (B-12) a 

For the most part we shall ignore the metric coefficient [Eq. (B-ll)],   since we deal with functions 

which are concentrated in the region of small  9,   where Eq. (B-ll) is nearly  unity.    Even when 

we perform  a multiple  convolution of a function like Eq. (B-10) with itself,   we shall  ignore 

Eq. (B-ll) if the result of the convolution tails off to small values by the time sine/0 differs 

appreciably from unity.    Somewhat more care is required,   however,   when we compute higher 

moments of a function such as Eq. (B-ll).    Suppose,   for example,   we want the variance ft-2 of 

the function f. (a, (i),  and that f. ( ) is quite large near 0 = 0 but has tails which extend all the way 

out to 0 = ir/Z.    Regarding  u  and  v  as polar coordinates in the (a, B) plane,   we have 

a2 \\        dad/3 aZi  (a,P) 

0<TT/2 

^2TT p7r/2 r     r7r/'j     2 
=  \       dv \ udu u    co 

Jo Jo 

prr/2 
= IT \ du u 

2      sinu   „,   . s   v   f(u) 

2 sinu f(u) (B-13) 

2 
Because of the factor u    sinu,   the integrand in Eq. (B-13) might be small near the origin 

and fairly large as  u  approaches ir/Z.    If we had not retained the metric coefficient (sinu)/u, 
2 3 2 

the factor u    sinu would have been replaced by u   ,   and a substantial error in a    might have 

resulted. 

All the analysis in this report is carried out in the (a, 0) domain.    When we arrive at a final 

answer,   however,   it will often be desirable to transform it back into spherical coordinates.     The 

transformation of a function I(a, /3) into a function I, (0, ip) is simply the inverse of Eq. (B-10), 

V9' <P) =   slfe   I!a(e' 'P)- /3(G' ^       ' (B-14) 

The arguments of I [ ] are given by the transformation (B-l). 



APPENDIX C 

TWO-DIMENSIONAL NUMERICAL SIMULATION 

In the earlier stages of the research reported in this document,   spatial impulse responses 
45 were derived for a two-dimensional model      of the idealized cloud presented in Chapter 3.    The 

analog of the N-layer angular impulse response [Eq. (3-56)] in two dimensions was found to be 

?r/2 

hN(°N' ao) =    If • ' • j d0'N-C • -d°'l  '   VQ'N' °N-r M«,, aJ (C-l) 

-it/2 

The single-layer impulse response was 

h, (a, a   ) 1 o (1 pa sec a) u  {a a   ) + pa sec af(a — a   ) (C-2) 

in which 

rv   A 
sec o' 

ipa 

if    a    < sec 

otherwise 

•1    1 
pa 

(C-3) 

Equation (C-2) was derived under the assumptions that all radiation incident on a particle was 

scattered forward, and that the two-dimensional particle cross section was equal to its diameter a. 

The function f( ) is the single-particle forward-scattering pattern.    Observe that Eq. (C-2) would 

be practically identical to the three-dimensional single-layer impulse response [Eq. (3-54)] if the 

dependence upon   /5 were deleted. 

The application of the Central Limit Theorem to Eq. (C-l) was prevented,  as was the case 

in Sec. 3.4,   by the presence of the finite limits ±7r/2 and the terms sec a.    Changing the limits 

to ±°° and replacing sec a by unity in Eq. (C-l) led to the result 

hN(aN< ao> exp 
2r 

(a 
>2, 

N 

2a. 
(C-4) 

in the limit as N goes to infinity,  with 

N  WE 

e    a (C-5) 

N    is the optical thickness of the cloud and W    is the variance of f( ).    Notice that this is nearly e a J 

identical to the a-dependent factors in the solution (3-72) of Eq. (3-56). 
30 

Zaborowski      carried out numerical solutions of Eq. (C-l) and another equation to be de- 

scribed below,   in order to test the validity of the approximations leading to Eq. (C-4).    He pro- 

grammed Eq. (C-l) just as it stands, retaining the integration limits ±TT/Z and retaining the terms 

sec a  in the kernels.    Although the number (N - 1) of integrations should ideally have been made 

very large,   he found after extensive testing that the choice 

N = 2 N (C-6) 

led to results virtually indistinguishable from the results obtained by using much larger values 
2 

of N.    It is unfortunate that it was not yet clear that W     should be the variance of the rigorously 

correct Mie scattering pattern of the particles.    Instead,  the fact that the half-power beamwidth 
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of the scattering pattern goes roughly as X/a,  where  a is the particle diameter,  was used as 

justification for modeling the scattering pattern as 

f(a) A 
~     ,      l«Ueo     ; 

o 

0      , elsewhere      . (C-7) 

The parameter 9    was so chosen that the standard deviation 

o = [J   «2f(cv)d«j =-| (C-8) 

was equal to A/a.    Selecting A = 0.5 micron and a = 10 microns as representative values led to 

the choice for 9    of 5 degrees.    This figure was used in all of Zaborowski's work.    The corre- 

sponding value of W    was about 2.9 degrees,   smaller by a factor of six than the correct value, 

which we show in Appendix G to be about 16.9 degrees,  independent of particle size. 

Nevertheless,   his numerical solutions of Eq. (C-l) for large optical thicknesses give a rough 

indication of the behavior of the results that would be obtained at smaller optical thicknesses if 

the correct value of W    were used.    The largest value of N    that he considered was 50.    The a b e 
result of this computation (for which the incident angle a    was set equal to zero) is visually in- 

distinguishable from a Gaussian curve,  but its width is slightly greater than the predicted value. 

For 9    =5 degrees and N    = 50,   Eq. (C-5) predicts a standard deviation 

a    = 20.5 degrees      . (C-9) 
a a 

The author has calculated the values of a Gaussian function with parameter (C-9) and compared 

it with Zaborowski's curve for N    = 50 at various values of the argument.    At a - a    the simu- 
e a 

lated curve is larger by 3 percent than the true Gaussian.    At a = 4.35,   a     s 89 degrees,   well 
° - 3 out in the tail,  the simulated curve is high by only a factor of ten;  and it is down to 10      of its 

value at the origin. 

The other equation which was solved numerically is the two-dimensional analog of the joint 

impulse response [Eq. (3-88)],  having the form 

7r/2 

h   (ff,., x   •   a  , x   ) =    \ \   . . . \  do..   ... .da.  -   \ \ . . . \  dx.,   .... dx, p     N     N'      o'    o'       JJ J        N-l 1      JJ        J       N-l 1 
-TT/2 -°° 

•  hl(aN'XN;   aN-l*XN-l)-"hl(Ql'Xl;   W      '   (C"10) 

The single-layer joint impulse response is 

h.(a, x;   a  ,x   ) = [(1 — pa sec a) u   (a — a   ) 1 o *   o o o 

+ pa sec ai(a — a   )] u   (x — x    +1    tan a)       . (C-ll) ' o      o o      o 

Notice that Eq. (C-10) would be practically identical to the three-dimensional equation (3-88) if 

all functions of  [i and y were deleted.    An approximate analytical solution for Eq. (C-10),   ob- 

tained by a method analogous to that of Appendix D,  looked like the a- and x-dependent factors 

of the solution (3-89) for Eq. (3-88).    Zaborowski programmed a numerical solution for Eq. (C-10), 

again retaining the limits ±7r/2 on the a-variables and retaining the terms sec a in the kernels. 
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30 He solved the equation in an efficient manner,     using a hybrid combination of Fourier transfor- 

mation and convolution.    Because the result is a function of two variables,   comparing it with the 

theoretical curve is not quite so simple as in the preceding case.    As he explains in detail, 
Zaborowski devised a way to calculate the standard deviations a    and a   and the correlation co- J ox 
efficient p       of each of his outputs.    For N    = 50,  these quantities agreed with the theoretically 
predicted values within 1.4,   1.15,   and 0.4 percent,   respectively. 

These results constitute a fairly strong argument that the approximations made in solving 
the multiple integral equations of Chapter 3 are valid.    Since the value of W    used in the numer- 

ical work was too small by a factor of six,  the results that were obtained apply only for small 

optical thicknesses.    Because the agreement between computed and theoretical results was so 
close,   however,   one imagines that the approximations are adequate for considerably greater 
optical thicknesses. 
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APPENDIX D 

SOLUTION OF EQUATION  (3-88) 

An approximate solution has been obtained for Eq. (3-88),   the N-layer four-dimensional 

impulse response hN((vN> PN, *N, yN;   CLQ, BQ, XQ, yQ).    The keys to the solution are a series ex- 

pansion and a limiting process which are carried out in the Fourier transform domain. 

We begin by making the same two initial approximations that were used in Sec. 3.4 in solving 

the angular impulse response equation (3-56).    Specifically,   we increase the limits to ±°° on the 

(v   and   8   integrals,   and we assume that 

sec 0, s 1       ,       all i 

over the angular ranges of interest.    We then recast the single-layer impulse response in the 

form 

h.(tt.,fl.,x.,y.;   rv.   . , B.    ., x.    ., y,   ,)~   s(a. — a .    . , B. — B.    .) 1     I  'i     i'Ji'      l-1   ' l-1     i-I   ,7i-l 6     I l-l    'I     'i-I 

•   u   (x. - x.   ,  + i   a.) u   (y. - y.   ,  + t   P.)       , (D-1 ) 
O      1 1-1 O     1        O  •'l        •'l-l O    1 

in which 

A g(a. - a.   ,, B. - 6.     )^ (l - pc     .) u  (a. -a.   ,) u  (p. - B.     ) b     I l-l      i        I-I ext      o     I l-l      o    I        l-l 

+ pCf f,(ot. -a.   ,, 13. -/?.,)       . (H-2) f   1     I i-I      I        i-I 

Let us replace the two impulse functions in Eq. (D-l) by the inverses of their Fourier transforms. 

We then have 

M  ) = g(o. - a.   ,, B. - B.   , ) 1 &     l l-l   'l     'i-I 

dX. exp [i27rX.(x. - x.    .  +i   a.)) 
1 ^ lJ 11 1-1 O    1 

r dY. exp [j27rY.(y. - y.    .   + i   j3.)]       . (D-3) 

Our next step is to make the substitution (D-3) everywhere in the superposition integral (3-88), 

and to carry out a sequence of operations exactly as one conventionally does in the solution of 

convolution integrals by Fourier transforms.    Thus we rearrange orders of integration and 

carry out the integrals on all x. and y. to obtain a product of impulses in the "frequency" variables 

X and  Y.    A typical example of these integrals is 

r dx. exp [j27rx.(X. - X.+1)] = UQ(X. - X. + 1)       . (D-4) 

The superposition integral (3-88) now has the form 
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hN() = II---IdaN-l---daliT---J^N-l---^1 
_ oo _ OO 

•   g(aN-an-l'^N-^N-l)---  g(al-ao^l-^o) 

OO oo 

• JJ...JdxN...dxJJ...J dY„T. . . dY, N 1 

oxp [j2*(XNxN - XIXQ + YNyN- Y4y0)] 

exp [j27rio(XNaN+ . . . + X^ + Y^ftN + . . . + Y^ )] 

%(XN-1 " V • • •   Uo(Xl ' X2> Uo(YN-l - YN» • • ' Uo(Yl " V 

_ OO _  OO 

•  g(aN-%-r ^N-^N-I)--- ^i^o'^-'V 

JOO /-»GO 

dXN dYN eXp tj27rXN(xN" Xo» + J27rYN(yN-y0
)] 

_  OO ^_ OO 

•   exp[j2irtoX^aN+...+ ai) +j2TrloYn(PN+... + ti1)]      . (D-5) 

Let us now replace each g(  ) in Eq. (D-5) by the inverse Fourier transform 

dA.  \       dB. 
1 4. OO 1 

exp[j27rA.(a.-«i_1) + jZrrB^^.-j3._1)] G(A., B.)      , (D-6) 

f(0; 

in which 

JOO /-»CO 

da   \      d£ exp [j2?r(«A + 0B)] g(a,/3)      . (D-7] 
_ OO y_ OO 

Rearranging orders of integration and carrying out all the   a   and  ft   integrations,   we obtain 

another product of impulses.    A typical integral is 

^OO 

\       da. exp [j27r(v.(X.,i    + A. - A. , „ )] = u   (X.. i    +A.-A.X.) J ^       I      ^ lJ        iNo I l + l o     N  o I l + l (l)-8) 

Next,   carrying out all the  A  and   B  integrations except those on A-, and B-,.,   we arrive at the 

equation 
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JCO pOO 

<IXN \      <!VN exp l.|2,XN(xN- xQ i la      t (N- 1)1   a   )] 

•   exp[j2,rYN(yN-yo+io/3N .  (N-IX^I] 

•   \      dA
N 

dB
N exP U2^AN(«N - a   ) 1  j2ffB   0    - 0   )] 

N-l 

n «(A N-kXN£o"  HN <YNV (l)-9) 

The product on G(  ) can be rewritten as 

exp 

N-l 
V ]nG(AN'kXNfo'  HN-kVNV 

. k   0 

Recalling the definition in Eq. (D-2) of g(a,j3),   we see that 

ln(',(A, B) - In [1 - PC        + pCjF^A, B)] 

(D-10) 

(I)-It 

in which  K.(A, B) is the Fourier transform of the single-particle forward-scattering pattern 

i.{cv,(i).    Since F. (  ) may be interpreted as the conjugate of the characteristic function of a 

probability density f, (  ),   we know that the magnitude of F,(  ) is upper-bounded by unity.    Thus 

Eq. (I)- 11 ) becomes 

lnG(A, B) "Cext+pCfFl(A'B) 

•Id    C     . + i   d   C,F.(A, B) 
o  v     ext        o  v    f    1 

(D-12) 

in the limit as I     becomes very small.    Let us now replace F,(A, B) by the leading terms of its 

Taylor's series expansion, 

F   (A, B) ~ 1 
(ZTTW   r     2 

 =-^—  A^ 
(2irW   T 

(D-13) 

where W     and W , are the single-particle scattering beamwidth parameters defined by Eq. (3-42) 

in Sec. 3.4.    Equation (D-13) is actually valid to third order,   since the coefficients of the third- 

order terms of the series turn out to be zero.    For the time being,   we shall assume that the 

series representation (D-13) is sufficiently accurate;   later we shall justify the assumption.     In- 

corporating Eqs. (D- 12) and (D-13) into (D-10),   we have 

N-l 

G(   )      exp l-N!   d   (C     , - Cf)l II 11 o  v     ext f" 
k=0 

exp 

N-l 

1 d c, y. 
o  v   1     —' 

k = 0 

(2TTW    ) 
a 

kxNy + 
ITTW   ) 

kY.J   ) N  o 
( D- 1 4 ) 
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The first exponent in Eq. (D-14) is 

C Ni   d   (C     . • o v    ext V Ne(i - rf) (D-15) 

where N    is the optical thickness of the cloud and y. is the single-particle forward-scattering 

efficienc 

Letting 

efficiency.    In the limit as I    goes to zero,  the second exponent in Eq. (13- 14) becomes an integral. 

k! 

1    - du o 

the exponent becomes 

-d  C, \     du 
v   fJo 

'(2TTW    )2 

a 
2 

y.N W2 

fere 
2 (2^AN) 

y N  W2 

2 (27rBN) 

(27rWor 
(A 

N xNur + <BN-YNu)< 

T(2TTAN) (2TTXN) 

T(2TTBN) (2TTYN) + 

T2(27rXN)2"' 

r2(2,rYN)2 

:D-I6) 

Substituting Eqs. (D-16) and (D-15) into Eq. (D-14),   and inserting (D-14) into Eq. (D-9),   we 

find that hN( ) is precisely the inverse of the Fourier transform of a four-dimensional jointly 

Gaussian function,   multiplied by the factor exp [—N (1 — y,)].    This joint Gaussian is consider- 

ably simpler than the general four-dimensional case,   in that four of the six possible covariances 

are zero.     Declining to write out all the algebra,   we proceed directly to the answer.    We have 

VaN'PN'XN'yN; a   , 8   , x   , y   ) o    o    o J o 

= exp[-Ne(l -yf)] 2 / 2 
4T a   G-a a (\ - p      ) (1 a   B  x  y v ax 

2  . 

V 

exp -1 

2(1 "ax> 

{aN-°lo) (a 
2P. 

N %)(XN 

- 1 

x    + ra   ) o o 
a   cr a   x 

(x 
N 

x    + ra   ) o o 

exp 
2( 

; 27   I 2 2pBy     
/*0) (y. y   + T/3 ) Jo o 

P y 

(y* y   + T/3 ) Jo        ^o 
(D-17) 
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in which 

a2 = yfN  W2 

a        tea 

4 ~~ 7fNeW| 

a 2       r2 2 
x        3    'f   e    cv 

2      r2 2 
y        3     7f   e    (3 

P        = P0    =-V"      • (D-18) "«x     ^/3y 2 

Observe that Kq. (I)-17) incorporates the fact that the terms lQa     and i J3     (U-9) go to zero 

with i   ,   while the terms (N - 1) i   a    and (N - 1) I   /3    become TB    and T/3    respectively. 

As we stated in Sec. 3.5,   the joint impulse response hp(  ) of the cloud is equal to the N-layer 

response h..(  ) in the limit as i     goes to zero.    But we have already incorporated this limit in 

the derivation of Kq. ([)- 17 );   hence hp(cv, /3, x, y;   a   , j3   , x   , y   ) is obtained from Eq. (I)-17 ) by simply 

deleting the subscript   N  wherever it appears. 

The relative simplicity of the result [Eq. (D-17)] was made possible by the assumption 

[Eq. (D-13)] that a third-order Taylor's series was an adequate approximation for the transform 

K.(A, B) of the single-particle scattering pattern.    There are two indications that this assump- 

tion is consistent with the other approximations we have utilized.    The first is a numerical solu- 

tion of the two-dimensional analog of Eq. (3-88) for a joint distribution in  a   and  x.   which is 

discussed in detail in Appendix ('.    Over the region of interest,   the numerical results agreed 

very well with an approximate analytic solution for the same equation,   which was obtained by the 

same technique that we used here.    The second indication is related to the joint distribution over 

the ground when the top of the cloud is illuminated by a beam of finite cross-sectional area, 

which is calculated by means of a convolution operation on Eq. (13-17).    When the cross section 

of the incident beam becomes very large,   the joint distribution over the ground reduces to pre- 

cisely the angular intensity distribution [Eq. (3-72)] that is present below the cloud when the in- 

cident illumination is a uniform plane wave.    The details of this issue are discussed in Sec. 3-5. 
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APPENDIX E 

RANGE SCATTERING  FUNCTION aQ(t) 

We shall calculate the range scattering function o(t, a, ji;   0/   , ji   ) defined in Chapter 4,   for 

the special case in which the illumination on the top of the cloud is a uniform plane wave,   and 

a,   iS,   a    and ji    are all equal to zero.     In addition,   we outline procedures for obtaining <;( ) in 

more general cases (e.g.,   when the illumination is an obliquely incident plane wave or a narrow 

beam). 

Equation (4-64) implies that 

<r(t, a. li;   a   ,8   ) dt = (E  A^')"1  p   (t, a, li;   a   , ji   ) dt 11     00 r 'a 00 

= (E Aw)"1   Yw.      , (10-1) 
r "    1 

where p ( ) is the average value of the instantaneous power measured by a unit-area antenna of 

beam solid angle AOJ aimed in the direction (a,8). The quantities w. are ray intensity weights, 

and   i   ranges over all rays such that 

\  i° + c ) 
t + dt       . (10-2) 

The quantity t. is the length in meters of the path of the i      ray,   and T.    is a geometry-dependent 

adjustment to the time origin for the signal borne by the ray.    When a    = ii    =0,   the plane wave 

illumination is vertically incident on the top of the cloud,   and the quantities T.    in (10-2) reduce 1 -1 10 
to zero for all rays. 

We shall calculate the sum 2 w. in Eq. (10-1) by subdividing the rays in AOJ by scattering 

order,   computing the total intensity weight of all rays of each order which satisfy (10-2),   and 

summing them over all scattering orders.    Our first step is to calculate the terms in the time- 

independent sum 

00 

\A(a,li-   0,0) =    £    IRA (a, 8) (10-3) 

k=l 

for a   vertically-incident  unit-intensity CW plane wave,   with   1, . ( )  defined as the   total  inten- 

sity borne by all  rays in AOJ   which were scattered  exactly  k  times.     To this  end,   let us   re- 

examine   the (N — l)-fold integral  equation (3-56) for the  N-layer angular impulse   response 

"N'^N'^N'   
a  ' P  )'    ^acn of the N  factors in the integrand is a single-layer impulse response, 

for which we use the approximate form (3-62), 

h.la. - a.   ., B. - B-   ,)~(l-pC     ,) u  (or. - a.   ,)u  (ji. - ji.   ,) 1     1        I-I   *!     ^i-l r   ext     o     1        l-l     o ri     ri-l 

+ pCTt.ia. - a.   ., 8. -8.   .) K      f     1        1 L-l      ^1 ^1-1 

The double-impulse term in h. ( ) corresponds to passing through the i     layer without scattering. 

The second term,   involving the single-particle forward-scattering pattern f. ( ),   corresponds to 

the occurrence of scattering at the i     layer.     Let us multiply out all the  N   binomial terms h, ( ) 

in the integrand of Eq. (3-56).     The result is a sum of 2     (N — l)-fold double integrals,   each 

having an integrand composed of the product of  N   monomial factors.    Each of the monomials is 
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one of the two terms in h. ( ).     There are precisely 

/N\ N! 
\k)       kl(N-k)'. (     4) 

of these integrals in which the first term of h . ( ) appears (N — k) times and the second term of 

h . ( ) appears  k  times.     We observe that each of these corresponds to one of the ways a light ray 

can undergo exactly  k  scatterings in traversing  N   layers,   and that the I,   ) integrals include all 
possible ways for this to occur.    Now,   these I     1  integrals are,   in fact,   identical to each other, 

because all the double impulses integrate out immediately.     Thus each of the integrals reduces 

to the form 

,N-k -  F~vk gk(«N, V = (1 "PCextr      (pCf)» •   fk(«N.flN)      . (E-5) 

in which we have defined f, ( ) as the (k — l)-fold convolution of f, ( ) with itself, 

Note that both Eqs. (E-5) and (E-6) incorporate our present assumption that a    and U    are equal 

to zero.     For k = 0,   we have 

So((W=(1-PCext>     WUo<V       ' (E"7) 

corresponding to the rays which traverse the entire cloud without being scattered.     Thus it is 

consistent to set f  (ot„, #N) equal to u   («„) '   u   (#N)-     We can now write the expression 

'kA<--^=(k)gk
(fV'/J)AW 

(k)(1"'3CeXt)N"k(PC/fk^'3)Aw (E-8) 

for the average total intensity borne by all the k    -order scattered rays in the solid angle Aw 
at {a, /3).     The coefficient on the right side of Eq. (E-8) may be rewritten as 

vf(k)(1-pCext) (pCext>        " (E'9) 

which has the form of a binomial probability multiplied by y. .    Now,   we obtained our results in 

Chapter 3 in the limit of infinite  N.    If N   is very large and pC        is very small,   while their 

product 

NpCext=No (E-10) 

46 is finite,   the Poisson approximation      is valid;   that is,   (E-9) can be approximated as 

u N* yf ^f exp[-Ne]      . (E-ll) 
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Equation (E-8) is now 

Ij^a.fl) = y,   -^- exp[-Ne] fk(n.H) Au)       . (E-12) 

Observe that the integral of Eq. (E-12) over all   a   and   (3   is given by 

(TfN   )k 

—~i  exp|-Ne]       , (E-13) 

which we claim to be the total of all k    -order scattered radiation emerging below the cloud. 
29 

This is identical to a result obtained in Germany in 1941 by Hartel.        Observe also that the sum 

of the terms (E-13) over all  k   is exp[ —N   (1 —yf)],   which is near unity.     The integral of the un- 

scattered intensity [Eq. (K-7)] over   a  and  j3  is exp[—N   ].    We shall avoid the problems engen- 

dered by the presence of the impulses in Eq. (E-7) by assuming N    to be large enough that the 

unscattered radiation is negligible compared with the scattered light.     Thus we restrict our at- 

tention to k > 1  in the analysis below. 

Let us interpret I, . (cv, 0) in accordance with the comments following Eq. (4-55).    We see 

that 

Wa'0)=   -Wm       • <K'14) 

a sum of intensity weights of rays in the solid angle ALO at {a, (3),   where   m   ranges over the k    - 

order scattered rays only.     Knowing the single-particle scattering pattern f   (cv,/i),   one could 

obtain each I, . ( ) by calculating the functions f, (a, 13) numerically.    A more attractive approach 

is to use the approximation 

fv(«. #) -    T  exP 
2?rkW a 

a2 + t32 

2kW2 

a 

(E-15) 

2 2 where W     =  W„   is the width parameter of f. (a, ti).     This approximation can be very good for 

reasonably small  a   and  (3, even for fairly small  k,   if f. ( ) is smooth,   unimodal and symmetric. 

Furthermore,   for large N    the coefficients (E-ll) are very small when  k  is small.     Thus we 

shall use Eq. (E-15) in Eq. (E-12) for all k > 1,   when N    is large.     In order to obtain results in 

a convenient analytic form,   we shall specialize the present problem even further by setting 

a = 13 = 0       . (E-16) 

Using Eq. (E-15),   Eq. (E-12) then becomes 

(yfN )k 

IkA(0'0) =    T^    Aa; exp[-N   I       . (E-17) 
2FW     k •  k! a 

Despite the extra factor  k  in the denominator,   Eq. (E-17) behaves much like the Poisson prob- 

abilities.     Thus the value of I, . (0, 0) increases monotonically with k up to a maximum,   beyond 

which it decreases monotonically with increasing  k.     To within a possible error of ±1,   the value 

of k which maximizes I, .( ) is roughly N   .    This result may be restated as follows:   the dom- 

inant scattering order k , of the scattered light entering an upward-pointing narrow-beam antenna 

below a cloud is approximately equal to the cloud optical thickness N   ,   rounded off to the nearest 

integer.     For all N    less than or equal to unity,   k , is equal to unity. 
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Our- next step is to subdivide the rays in the bundle I, . (a, 0) by path length.     We begin by 

calculating the probability density pf   (r) for the random path length t    of an arbitrary k  1-order 

scattered ray in the cloud.    As we stated in Sec. 3.3,   the extinction attenuation exp[—r/U   ] of a 

light wave in a cloud can be interpreted as the probability that a light ray traverses a distance   r 

without being scattered.     The path length I. traversed by a light ray up to the first scattering 

event it experiences is therefore exponentially distributed,   with probability density 

exp 
r 

D 
r > 0 (E-18) 

The same probability density applies to the length of the path segment between successive scat- 

tering events (which are assumed to be statistically independent of each other).     Thus the length 

I,   of the path from the starting point of the ray to the (k + 1)      scattering event is a gamma- 

distributed random variable,   with 

P,  (r) 
k 

Lr-M 
D       T(k + 1) 

exp 
r 

I) (E-19) 

This applies,   in particular,   to a ray whose starting point happens to be at the top of the cloud. 

Now,   suppose the ray emerges from the bottom of the cloud after the k     scattering event,   having 

traversed a total distance V   within the cloud.    We show that V   obeys the probability density 

[Eq. (E-19)] by the following simple argument.    Observe that our assumptions imply that the oc- 

currence of scattering events along the path of a ray,   as a function of path length   r,   is a simple 

Poisson process with constant average frequency D Now,   we know that the interval to the 

occurrence of an event in such a process,   measured from an arbitrary point on the coordinate 

axis,   obeys the same probability density whether one looks forward or backward from the point. 

Similarly, the length of path back to the k      scattering event from the point where the ray emerged 

from the cloud obeys the same probability density as the distance between any two successive 

scattering events on the path.     Thus the length V   of this k    -order scattered path from the point 

of entrance into the top of the cloud to the point where it emerges from the bottom obeys the prob- 

ability density [Eq. (E-19)],   with one reservation:    obviously V   exceeds the cloud thickness T 

in length.    Applying Bayes'  rule,   we find that 

P^MfJ^T) 

V 
Dk+1r(k + D 

e 

exp 
r 

D 

elsewhere 

r > T 

(E-20) 

with 

k + 1 
D      r<k + i: 

exp 
r 

I) dr 

*-    X    (Tr)m^cxp[-ir] 
m=k+l 

(E-21] 

If we include the distance from the bottom of the cloud to the ground in 11 ,   the effect is to a k 
translate the probability density [Eq. (E-20)] along the r-axis by a deterministic amount.    For 
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the particular case at hand in which the ray emerges traveling essentially vertically downward, 

the density is translated a distance  h,   the height of the bottom of the cloud above the ground. 

Thus Eq. (E-20) becomes 

p    (r|i   >T +h) = 
\        k Dk+1kl 

Ak(r~h) |     (r-h) - exp • - r > (T + h) (E-22) 

A valid interpretation of Eq. (E-22) is the following:    of a bundle of many k    -order rays ar- 

riving at the ground in the solid angle ACJ about the vertical,   a fraction 

Ak(i - h) 

Dk+1k! e 

exp (*-h) 
D df (E-23) 

traversed paths of lengths between I  and I + dt (where i >> T + h).    Alternately,   we may say that 

a fraction 

Akck+1(t-|)k 

Dk+1k! e 

exp 
(t-|) 
I)   /c dt (E-24) 

experienced a time delay between  t  and  t + dt,   where t > (T + h)/c and  c   is the velocity of light. 

Now,   the total intensity weight of those k    -order rays with time delays between  t  and t + dt is 

the product of IkA(0, 0) and the expression (E-24).    Adding these products for all k > 1,   we find 

that 

exp[—N   ] cAu 

2TTW2D a    e 

exp 
o 
D  /c 

A, k /w*- 
lk=l 

k(k!) 

hAk 

D  /c 
e 

dt (E-25) 

is the total intensity weight of all scattered rays in Au>,   of all orders,   having time delays be- 

tween  t  and t + dt [where,   again,   t > (T + h)/c]. 

Let us now assume that the envelope s(t) of the plane wave illuminating the cloud was such 

that 

s(t)      = 26(t) (E-26) 

where  <5(t)   is  a  very  short unit-area  pulse,    as  in  Sec. 4.4.     Recalling  the  definition  of 

a(t, a, S;   a   , li   ) dt of Eq. (E-l),   we now see that (E-25) is proportional to cr(t, 0, 0;   0, 0) dt,   which 

we shall abbreviate as a  (t) dt.     We have 

ffQ(t) = C1 exp D  /c y. 
k=l 

Ak /vvi-l>Nk 

k(k') I)e/c (E-27) 

for t > (T + h)/c,   where C,  includes everything in (E-25) which is not dependent upon  k or  t. 

We require C .  to be such that 

r-. (t) dt = 1 (E-28) 
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The term A, ,   given by Eq. (K-21),   complicates Eq. (E-27) to the extent that we do not know 

how to carry out the indicated summation.     But we notice that A,   varies much more slowlv with 
2 k  than the other factors in the summand,   such as (k!)   .     Without A. ,   the terms in the sum peak 

up sharply for 

N,   .,       h,-il/2 
VfNe(t--)l 

D /c N JY (E-29) 

and a few terms with   k  near this value are much larger than the terms associated with higher 

or lower values of k.     In the interest of obtaining a very rough closed-form approximation for 

Eq. (10-27),   we replace A.   by a constant equal to its value when k  is given by Eq. (E-29).     This 

simply modifies the constant C..    Now,   since the important values of k  are quite large,   replac- 

ing the factor  k  by (k + 1) in the denominator of the summand in Eq. (E-27) is also a reasonable 

approximation.     Thus Eq. (E-27) becomes 

ao(t) C- exp 
(1 - -!> 
I) ,/c 

V u 
k=l 

1 
k!(k + I)! 

yfNe(t. h \k 

D  /c 
e 

(E-30) 

which is precisely equal to 

exp (E-31) 

/here I. ( ) is the hyperbolic Bessel function of first order and first kind,   and 

4yfNe(t 

O  /c e' 

1/2 

(E-32) 

Since t > (r + h)/c,   we have v > 2N  Jyf .     Letting our attention be restricted to values of N 

greater than about 5,   we see that v^ 10.     Under this condition the large-argument approximation 4 7 

I4(v) 
4ZlTV 

is valid to better than one percent.    Inserting Eq. (E-33) in (E-31),   we have 

ao(t) (*ypelt 

De/c 

•3/4 

247 \ 

This function has a maximum at its left edge, 

T + h 

exp 
(1 

D  /c e 
+ 2 

y,N   (t f   ev 
h \l/2-, 
c 

D  /c e 

(E-33) 

(E-34) 

(E-35) 

and decreases monotonically with increasing  t.    A plot of a typical o   (t) is shown in Fig. E-l. 

The most interesting feature of o  (t) is its width,   the multipath spread   L.     Like the band- 
O o / 

width of a spectrum,   the spread of o  (t) can be defined in a number of ways.    As Kennedy      points 

out,  any reasonable definition of the spread parameters (in both time and frequency) is adequate, 

since they will be used only in an imprecise way in the channel analysis.    In this particular case, 

it is convenient to use a measure which is akin to the l/e width.    Noticing that the exponential 
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Fig. E- Typical scattering function a (t). 

part of Eq. (E-34) dominates the function,   we calculate the value of t  for which the exponential 

is down by l/e from its value at Eq. (10-35).     The resulting estimate of the multipath spread is 

1  +2Ne(vf-7^) + 2r/Ne
Z(N/r7- 1)" +Ne(2yf-^yf) 

which simplifies to 

1) 

H  + 2JN   1 

(K-36a) 

(K-36b) 

when yf is very nearly unity,   which is generally the case for nearly-lossless particles with the 

diameter-to-wavelength ratios typical for clouds at visible frequencies. 

The determination of a(t, a, 0;   a   , 0   ) by means of the approach developed here,   for more 

general illumination on the top of the cloud,   will require numerical computation.     The next level 

of generality above Eq. (E-34) is the case in which a    and 0    are zero but   a  and   0  are arbitrary. 

Eor this situation we again want to know the quantity 2 w    of Eq. (E-l),   hence we require knowl- 

edge of the terms IkA(°\ 0) in Eq. (E-3) for all scattering orders  k.     These functions,   given by 

Eq. (E-12), can be computed for given a  and  0.   If N    is large enough (say,   greater than about 5) 

and f   (a, 0) is sufficiently smooth,   the Gaussian approximation of Eq. (E-15) for fi^(«. 0) could 

be used in Eq. (E-12) when computing the functions LAa.fj).    The path lengths (,   for the various 

values of  k will still obey the density functions [Eq. (E-22)],   except that we must make the 

substitution 

h sec 2        2 a    + 0 (E-37) 

We make the same substitution in (E-24),   multiply the result by IkA(a. 0),   and add these prod- 

ucts numerically for all k > 1,   for the desired set of values of t,   to obtain a function proportional 

to tx(t, a, 0;   0, 0).     Einally,   the proportionality constant must be adjusted so that 

s cr(t, a, 0;   0, 0) dt = 1 

This quasi-analytical approach becomes far too cumbersome for more general situations. 

When the cloud illumination is an obliquely incident plane wave,   for example,   or a narrow beam, 

one may resort to Monte Carlo simulation of light propagation through the cloud.    By this means, 
48 it is possible      to keep track of the path lengths and intensities of all rays penetrating the cloud 

as a function of angle,   thereby simulating the angle-dependent range scattering function. 
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APPENDIX  F 

RANGE-DOPPLER SCATTERING  FUNCTION a  (t,f) 

In this appendix,   the range-Doppler scattering function u  (t, f) is obtained by extension of the 

analysis leading to a  (t) in Appendix E.    The Doppler spread  B   is calculated,   and the BE prod- 

uct is discussed.    In addition,  we outline numerical procedures for obtaining the complete scat- 

tering function a(t, f, a, ft) in more general situations. 

Our point of departure is Eq.(E-27) in Appendix E,   which gives an analytical expression for 

the range scattering function <j  (t).    By assumption,  the incident illumination was a vertically 

incident plane wave with some finite-energy complex envelope s(t).    Equation (E-27) was based 

upon the assertion that,   of all the energy arriving in the solid angle Am about the direction (0, 0), 

a fraction 

f    (t-h/c)1      Ak     ^fNe(t-h/c)^k 
(F-1) 

was borne by k    -order scattered rays having time delays between  t  and t + dt.    Now,   each of 

these rays has a random Doppler shift obeying the (approximate) probability density [Eq.(4-74)j 

P,    (f) 
:dk 

exp 
(7„,    V2k7T H 

r 
2ka ft 

Ih 
The product of (F-l) and pf    (f) df is the fraction of received energy which is borne by k    -order 

:dk 
rays having time delays in the range (t, t + dt) and Doppler shifts in the range (f, f + df).    The 

sum of these quantities for all k > 1 is equal to a   (t, f) dt df.    Thus 

aQ(t,f) I 
k=l 

1   k 

afl \/2k7k(k.')2 

/VfNe(t -h/chk 

I     DTTt     j •   exp 
(t -h/c) 

D   /c 
e ' 2ka 

flJ 

(F-2) 

where,   again 

t 3> 
T + h 

(F-3) 

We know the shape of this function along the t-axis;   it is simply a  (t),   Eq. (E-34).    Each section 

of a  (t, f) at fixed  t   is a weighted sum of Gaussian curves in  f. 

An estimate of the Doppler spread  B  of a  (t, f) is reasonably easy to obtain.    As we pointed 

out in Appendix E,   any reasonable definition of  B   is adequate,   since it will be used only in an 

approximate way in the channel analysis.    In this case,   it is mathematically convenient to cal- 

culate it from the definition 

used by Kennedy/" in which 

a  (f) = \       a  (t,f) dt 
*J -OO 

36 . 

(F-4) 

(F-5) 

99 



Integrating Eq. (F-2) over  t,   we have 

m        v    Cl(De/c)^fNe>k 

u  if) =    I     —=- exp 
,     .     k •   k.' a„,  V2k7r k= i fl 

We determine the value of C. by noting that 

a   (f) df 5 1 o 

2kcr l'1 

(F-6) 

z 
',    C,(l)e/c) (yfNe) 

k: 
k=l 

2 
k=l 

:   cl(De/c) (rfNe)1 

yfNe(k + 1) J 

CAD  /c) 
^TN   exp[yfN£ 

'f   e 
(F-7) 

Notice that two small terms were dropped in making the final step in Eq. (F-7).    This approxima- 

tion depends upon the assumption that y,N    is large (at least S,  and often much greater),   so that 

exp[—y N   ] « 1.     Equation (F-7) implies that 

cyfN 
Ci =   ~j~ exp[-yfNe]       . 

e 

Inserting Eq. (F-8) into Eq. (F-6),   we find that 

OO OO 

aQ
2(f)df = exp[-2yfN  ]   •    £      £ 

(F-8) 

(rfNe) 
m+n+2 

.   m •   m.' •   n •   n.' a.. ^Zuirn + n) m=l   n=l fl 

(F-9) 

Again invoking the fact that the important terms in Eq. (F-9) are those for which   m  and  n  are 

near y,N   ,   we make the approximation 

^m + n   s j2yfNe 

Equation (F-9) then becomes 

r°°      ?                 exp[-2yfN  ] 
\       fflfldf s   1—s- 
J"°° CTfl 747ryfNe 

whereupon Eq. (F-4) yields the result 

(F-10) 

oo oo 

m=l  n=l 

,    .,   .m + 1   ,    .,   ,n + l (yfNe) (yfNe) 

(m + 1):       (n + I).' 

(F-ll) 

B s 2afl ^y^T (F-12) 

Let us make a rough estimate of af,,   so that we can examine the BE product of o  (t, f). 

Equation (4-78) of Chapter 4 states that 
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ZiC —T p7r/2 
afl = —~ V 2ir sine f(9) [1 -cose] de 

3c        r ^o 
(F-13) 

where f    is the carrier frequency and V     is the mean-square value of the random particle veloc- 

ity.    If we assume that sine f(e) becomes very small as  6   approaches TT/Z,   it is reasonable to 

make the approximation 

1 — cos e (F-14) 

in Eq.(F-13).    The integral then becomes 

nir/2 
IT \       e   sine f(e)de (F-15) 

which is precisely the integral of Eq.(B-19) in Appendix B for the average single-particle scat- 

tering pattern width parameter 

\Y (F-16) 

By making this substitution in Eq.(F-13),   we find that 

as W K2 
(F-17) 

whereupon Eq.(F-12)becomes 

B 
f 

a   c 
2W     -2. 'f   e   i 

1/2 

(F-18) 

Assuming that y. is very nearly unity,  we multiply Eq. (F-18) by the multipath spread 

[Eq. (E-36b)] derived in Appendix E to obtain the channel time-bandwidth product 

BL er 2 
TW     (V2)1/2 

ZTT a  v   r 
(F-19) 

As we shall indicate in Appendix G,  the channel is often overspread (BL » 1) for typical sets of 

cloud parameters. 

In more general situations,  the determination of a(t, f, a, fi) for a small solid angle Aw does 

not lend itself to analytical calculation.    Numerical computation will generally be necessary. 

This is relatively easy when the incident illumination is a modulated uniform plane wave with 

a    - p    =0,  but   a  and  /3  are arbitrary.    We carry out the steps detailed in the paragraph fol- 

lowing Eq. (E-36) in Appendix E,   up to the substitution (E-37).    The product of (E-24) and 

I,  .(a, (3) is then multiplied by pf    (f),   Eq. (4-79),   and the result is summed over all k > 1 for 
dk 

the desired set of values of f and t.    When the configuration is more complicated,   one must 

again resort to a Monte Carlo simulation. 
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APPENDIX G 

COMPARISON OF RESULTS WITH PUBLISHED WORK 

As we commented earlier,   the recent literature contains a number of reports of both 

theoretical and experimental work on various specialized aspects of multiple scattering.    In many 

instances it is not feasible to make explicit comparisons between the published work and the re- 

sults of the present study,   because the corresponding physical configurations differ drastically. 
2 

For example,   Reisman,   et al.    have carried out measurements of light scattered by dense artifi- 

cial fogs,   but they observed the scattered light through a window in the side of the fog chamber. 

An experimental study which is potentially well suited for comparison with our results was 
15 

carried out by Smart,   et a_L       Their scattering chamber was a thin rectangular glass-walled 

cell containing a water suspension of polystyrene latex spheres that had an average diameter of 

1.305 microns.    They carried out measurements of scattered intensity vs angle of arrival for 

optical thicknesses ranging from 0.03 to 78.5.    There are two obstacles to the convenient com- 

parison of their data with our results.     First,   we need to know the average single-particle 

scattering-pattern width parameter W     of the particles they used.    Although the author of this 

report has not done so,   one could presumably obtain an approximate value for this parameter 

by numerical integration of their measured intensity patterns for very small optical thicknesses. 

The other obstacle,   which is considerably more troublesome,   is an anomaly which appears in 

their measured curves for optical thicknesses greater than about 10.    Although all these curves 

have a generally Gaussian shape,   as we would predict,   their widths are virtually independent of 

optical thickness.    They are all down by a factor of 0.25 at the same angle,   roughly 65 degrees. 

As the authors of the report point out,   this may be due to the finite width of their receiving beam. 

At the larger angles of observation,   it was presumably viewing unilluminated regions of the 

scattering cell,   causing the measured power levels to be low.     Indeed,   the techniques evolved 

in the present study allow us to take account of this behavior,   but the necessary computational 

labor would be odious. 
30 Zaborowski      has carried out some experimental work of a preliminary nature,   using equip- 

ment which closely resembled our assumed cloud model of Fig. 3-1 in Sec. 3.1.    His scattering 

particles were suspended in water in a broad,   shallow Plexiglas tank illuminated from above by 

a laser beam,   with a narrow-beam measuring apparatus below it.    He measured the scattered 

light intensity below the tank as a joint function of lateral displacement and angle of arrival. 

Using a scattering medium of dilute homogenized milk in one case,   and polystyrene latex spheres 

in another,   he obtained results which showed substantial qualitative similarity to the Gaussian 

joint impulse response h  («,/?, x, y) we derived in Sec. 3.5. 

The author has calculated a series of curves from the results of this study which show rather 
1 9-22 

striking agreement with certain Monte Carlo results reported by Plass and Kattawar. The 

specific curves that we consider are given in Figs. 12 and 1 3 of Ref. 19 and Fig. 4 of Ref. 21,   all 

of which correspond to our angular impulse response h ( ) of Ghapter 3.    Dr.  Plass has kindly 

provided full-page copies of the figures to permit reading off the values with greater precision. 

The results are presented in Figs. G-l through G-4.    In each case,   values were calculated only 

for those angles for which Monte Carlo data were given.    The calculated results were all smaller 

by modest scale factors,   as we explain below,   but have been re-scaled as necessary for conven- 

ience in visual comparison of the curve shapes.    Figure G-l represents the intensity as a func- 

tion of zenith angle below an idealized laminar cloud of optical thickness N    =10,   illuminated 
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by a vertically incident uniform plane wave with unit intensity at 0.7-micron wavelength.    The 
3 

assumed particle size distribution was Deirmendjian' s cumulus cloud distribution function, 

which peaks at a particle radius of 4 microns.    The single-particle albedo (called u    by Plass 

and Kattawar) was assumed to be unity for this curve,   meaning that the particles were nonabsorp- 
tive.    The curve marked "Monte Carlo"  is that of Plass and Kattawar,   while the curve marked 
"Theoretical" was calculated from our results in a manner to be described below. 

The assumed conditions for Fig. G-2 were identical to those of Fig. G-l,   except that a;    was 
given the value 0.9 (upper curves) and 0.5 (lower curves).    Thus the particles were assumed to 

be lossy,   with each of them absorbing a fraction (1 — w   ) oi the power incident upon it.    The con- 

ditions related to Fig. G-3 were identical to those of Fig. G-l,   except that the optical thickness 
N    was set equal to 30.    The assumed conditions for the curves of Fig. G-4 were the same as in 

Fig. G-l,   but the plane-wave illumination was incident at an angle of 60 degrees relative to the 
zenith. 

We observe an obvious characteristic of all four figures,    each pair of curves shows remark- 
ably good agreement near the zenith,   but at larger angles the Monte Carlo curves begin to fluctu- 
ate and (except for the case with w    = 0.5 in Fig. G-2) to fall below the theoretical curves.    There 
are two reasonable explanations for this behavior.    First we note (as Plass and Kattawar did in 
Ref. 19) that fluctuations must necessarily occur in any Monte Carlo simulation,   simply because 
the number of calculations is finite.    One expects the fluctuations to be more severe at large 
angles in the multiple-scattering simulations,   because the number of photons which are scattered 
through large angles is relatively smaller.    The second phenomenon which could contribute to the 

upward deviation of the theoretical curves at large angles relates to the technique we used to 
solve the (N-l)-fold superposition integral [Fq. (3-56)] for the angular impulse response of the 
cloud.    As we explain in the paragraph immediately below Fq. (3-56),   it would be reasonable to 

set the result of each successive convolution in the equation to zero outside the range. 

2 
(aZ + ,32U (§) . (G-l) 

in accordance with our assumption that all upward-scattered radiation is lost.    But the impulse 
response [Fq. (3-72)],   which we used to calculate the theoretical curves in Figs. G-l through G-4, 
was obtained by letting all integration limits be if in Eq. (3-56).    Had we been willing to include 

the series of truncations at T/
2
 in our solution of Eq. (5-36),  the result might have been similar 

to the slight tailing off at large angles exhibited by the Monte Carlo curves. 
As we stated above,   the specific result of the present study which corresponds to these 

curves is the angular impulse response [Eq. (3-72)] of Sec. 3.4, 

exp[-Ne(l -yf)l 
hr (a, ft;   rv   , (3   ) =    '—^     exp 

' °       ° 27TCT    c 

a 

(a - aQ)Z + (/? -H0)2^ 

2a  2 

a 

(G-2) 

which is the angular intensity distribution function below a cloud illuminated by a single unit- 
intensity plane wave with angle of arrival (a   ,0   ).    The quantity N    is the optical thickness of 
the cloud,   and the average single-particle forward-scattering efficiency yf is the fraction of the 

power incident on a particle which is scattered through angles less than ir/2.    Tne variance is 

a2 =  y,N  W2      , (G-3) 
a        tea 
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in which W     is  the average single-particle scattering  pattern width  parameter  defined  by 

Eq. (3-42).    The author has computed the value of W     for these calculations by numerical inte- 
3 ° gration of the average scattering pattern    for the particle size distribution used by Plass and 

Kattawar;   the result is 

W     a  0.295 radian 
a 

- 16.9 degrees      . (G-4) 

The value of y. obtained from the same data,   assuming the particles to be lossless,   was 

yf=0.96      . (G-5) 

The theoretical curves in the first three figures in this appendix represent the function 

e      exp[-Ne(l -yf)l 

27Ty.N   W2 

f   e    a 

g(O) =   —:—-pr    r       exp & sinO .,       .,   „,2 
e2 

2yJM   W2 
're    a 

(G-6) 

which is the transformation to polar coordinates of Eq. (G-2) with a    - (S    = 0.     For Fig. G-l, 

with N    =10 and W     and y. given by Eqs. (G-4) and (G-5),   the value of Eq. (G-6) at O = 0 was 

smaller by a factor of 0.685 than the value obtained by Plass and Kattawar.    We are unable to 

give a reasonable explanation for this problem.    The theoretical curve was rescaled to the same 

height as the Monte Carlo curve,   to facilitate comparison of the shapes of the functions. 

For the upper curves in Fig. G-2,   Plass and Kattawar assumed that each particle scattered 

a fraction 

OJ    =0.9 (G-7) 
o 

of the power incident on it,   absorbing the remainder.    The appropriate value of y. is therefore 

'f o 

~   0.864       . (G-8) 

The value of Eq. (G-6) at 9 = 0 in this case was smaller by a factor of 0.582 than the Monte Carlo 

results. 

For the lower curves in Fig. G-2,   with a>    =0.5,   the correct value of yr was 0.48.    At O = 0 b o 'f 
the value of Eq. (G-6) was 0.0235 of the Monte Carlo figure.    It would be presumptuous to attribute 

this severe discrepancy to a possible scale error in the Monte Carlo result.    Put we remark that 

the number of photons penetrating to the ground,   which is proportional to the transmitted inten- 

sity,   was much smaller in this case than in the other Monte Carlo simulations. 

The theoretical curve in Fig. G-3 corresponds to N    =30 and yf = 0.96.    The value of Eq. (G-6) 

at the origin was smaller by a factor of 0.215 than the Monte Carlo curve. 

In order to compute the theoretical curve of Fig. G-4 the cloud impulse response [Eq. (G-2)] 

was modified in a rather obvious manner.    Since the incident light arrived at an angle 60 degrees 

below the vertical,   the direct rays had to traverse an optical distance 

sec60° = 2.0 (G-9) 

times greater than the assumed optical thickness of 10 measured vertically through the cloud. 

We therefore used an effective optical thickness 

N    = 10 sec60° = 20 
e 
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in Kq. (G-2).    As in the previous case with co    - 1,   we set y   = 0.96.    Assuming that the scattered 

intensity was measured in the plane formed by the vertical line and the incident direction,   we set 

«    = 9    = -60° 

/? = 0 (G-10) 

in Eq. (G-2) and transformed it into polar coordinates,   to obtain 

g(e) <e-eo> 
sin (9 - O   ) o 

exp[-Ne(l - Yf)1 

27ry.N   W 2 

i   e    a 

exp 
(e V 2 T 

2y,N   W ' 'f   e    r 

(G-ll) 

The value of Kq. (G-ll) at Q = G    was smaller by a factor of 0.592 than the corresponding Monte 

Carlo value in Fig. G-4. 
1 8 

A recent paper by Dell-Imagine      addressed the problem of optical communication through 

clouds.    His approach involved approximate numerical solution of Chandrasekhar's equation of 

radiative transfer.    He assumed that a finite beam of light was vertically incident upon the top 

of an idealized laminar cloud similar to that of the present study,   and calculated the measured 

power as a function of receiver beamwidth at a point on the ground directly below the center of 

the incident beam.    He obtained these results for a variety of incident-beam radii,   cloud optical 

thicknesses,   and cloud heights  h  above the receiver.    A set of three curves computed from our 

results of Sec. 3.5 is compared in Fig. G-5 with corresponding curves from Dell-Imagine's Fig. 17. 

The optical thickness N    of the cloud was 5.0,   and the assumed particle size distribution was the 
e 3 "haze M"  distribution of Deirmendjian.     Since the author had not computed W     for this particle 

distribution,   its value was so adjusted that the uppermost calculated curve in Fig. G-5 coincided 

with the corresponding one in Dell-Imagine's data. 
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These curves can be described in terms of Eq. (5-3) in Sec. 5.1 of this report, 

•1 

in which 

P„(«,/i, 0, 0)  = expf-N Ji - y 

exp 

[47r   no       (1 — p )| as  xs 'oxs 

• 

1 
2   .   ft2' a    + p 

2 a 
CVS 

.      2(1 
2      , - P         ) rvxs 

(G-12) 

O'S 
y-N   W 'f   e    r 

M 

a2 + a2    (I-+ Th + h' l »s v 3 

a 2    (T2
/12) + a2 

2     ,       as '    '      '       I 
p«xs) = 2  (G-13) 

0.    The inci- 
2 

The parameters   T  and  h,   the thickness and the height above ground of the cloud,   were both nor- 

malized by Dell-Imagine to the extinction distance D    of the cloud.    We therefore do the same in 
" e 

these calculations.    Equation (G-12) is the scattered intensity at («,/5) below a cloud,   at coordi- 

nates x = y = 0,   in response to a unit-power vertically-incident beam at x    = y    =0.    The 

dent beam intensity is symmetric and Gaussian in x and y,   with "variance" parameter a! 

Dcll-lmagine let the incident beam be uniform over a circle of radius 0.5 extinction distances in 

computing these curves;   hence,   we set 2a. equal to 0.5.    A receiving antenna with uniform gain 

over a beam of width ZJJI,   illuminated by Eq. (G-12),   receives 

r exp[-N(l-y)] 
\     ?      , P,,(o•, \i, 0, 0) dry dfi  -  ^ :— 

exp 
2a2    (1 

O'S   * 

2     > 
"axs) 

(G-14) 

watts of power per unit aperture area.    This is the equation used to compute the theoretical 
2 2 curves in Fig. G-5.    Its dependence upon h  enters in via the quantities a      and (1 - p        ). 

X o (( Xfa 
he 

vertical axis in Dell-Imagine's graph was labeled "percent transmission," but he did not explain 

how it was defined;   therefore,   we simply renormalized (G-14) so that our curve coincided with 

his for h = 0.    The curve labeled "h ~ 0" in Fig. G-5 represents experimental data measured by 
49 

Walsh      in an endeavor to substantiate Dell-Imagine's results. 

While the curves of Fig. G-5 show substantial agreement,   certain other results of Dell- 

Imagine depart drastically from ours.     In his Figs. 18 through 26,   he plots time step responses 

of the cloud,   corresponding to the power measured by a receiver below the cloud when the inci- 

dent illumination is turned on at some instant of time.    He computes the rise time of the power 

transported to the receiver by single-scattered light,   and then uses a rather tenuous argument 

to conclude that the rise time of the multiple-scattered power is of the same order.    As an exam- 

ple of these results,   he indicates in his Fig. 20 that the rise time is about 0.002 of the time re- 

quired to propagate through the cloud,   for an optical thickness of 5.0 and a receiver beamwidth 

of 5 degrees.    Now,   we showed in Sec. 4.4 and Appendix E that the range scattering function cr(t) 
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under similar circumstances (for an upward-pointing narrow-beam antenna) had a multipath spread 

1) 
L3fl1 + 2^ (G-15) 

The function ix(t) can be interpreted as an impulse response;   the step response is the integral 

of a(t),   and its rise time is roughly equal to  L.    As a fraction of the time 

n N 
e    e (G-16) 

required to propagate through the cloud,   the rise time is roughly 

1 + 2   /N~ *J    e 
N 

1.1 (G-17) 

19 This is in sharp contrast to Dell-Imagine's result.    Note also that Plass and Kattawar      found 

that the average total path length traversed by transmitted photons was comparable to or greater 

than twice the vertical distance through the cloud. 

It is worthwhile to list some numerical values for typical cloud parameters.   As we shall see 

below,   they indicate that the results of this study are valid for a broad range of naturally occur- 

ring clouds.    Table G-l  is a rough composite of cloud data obtained from four references, 

each of which includes material from a variety of sources.    The clouds of type 1 are fair-weather 

cumulus,   the woolly individual masses usually associated with "partly cloudy"  weather.    Type 2 

clouds are the medium-height widespread overcasts (including cirrus,   cirrostratus,   altostratus 

and altocumulus) which often foreshadow prolonged precipitation.    The clouds of type 3 include 

stratus and stratocumulus, the low watery overcast which becomes fog when it touches the ground. 

In view of Eq. (2-2) et seq.   in Sec. 2.2,   we calculate approximate values for the extinction dis- 

tances D    in these clouds by means of the formula 
e J 

D    = (2ira2d   )_1 

e      v       m  v 
(G-18) 

in which a     is one of the particle radii in Table G-l.    We find that typical values for 1)    lie in 
m r e 

the range of about 20 to 100 meters.    The larger particle sizes are generally associated with the 

smaller volume concentrations,   tending to decrease the range of U  .    Thus the clouds of types 

2 and 3,   presumably the ones of greatest interest in optical communication applications,   have 

optical thicknesses N    ranging from perhaps 5 to 50,   with the larger values being rather less 

common. 

TABLE G-l 

CLOUD DATA 

Cloud 
Type 

Particle Concentration d 
(em-3) 

Mode Radius a 
(microns) 

Thickness 
(meters) 

Height above Ground 
(meters) 

1 100 to 300 4 to 10 700 to 2000 100 to 2000 

2 100 to 400 5 to 10 -1000 >1000 

3 100 to 300 4 to 6 <1000 100 to 2000 
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It must be emphasized that the above numerical values are quite crude,  being intended only 

as guidelines.    The design of a receiver for optical communication through clouds in a particular 

locality will naturally depend upon extensive knowledge of local meteorological data. 

The single-particle scattering pattern width parameter W    appears to be almost invariant 
01 54 to particle size,   for particles typically found in clouds.    Using precise numerical computations 

of the Mie scattering pattern of water droplets,   the author has calculated W    in accordance with 

Eq. (3-42) for ten different radii,   ranging from about 3 to 12 microns.    Following no discernible 

pattern,   W    varied within 6 to 7 percent of the 16.9-degree value used in the earlier calculations 

in this appendix.    Similarly,  values calculated for yf fell within about 0.008 of the value 0.96,   for 

the same range of particle sizes.    To be sure,  the half-power beamwidths of the scattering pat- 

terns decreased with increasing radius,  but this had little effect on y   or the " standard deviation" 

parameter W   . 
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