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ABSTRACT 

John von Neumann's kinematic and cellular automaton systems are des- 

cribed. A complete informal description of the cellular system is pre- 

sented including an explanation of the realization of logical components, 

the design of computer organs, the construction, destruction and move- 

ment of organs by sequences of internally originated pulses, universal 

computation and construction, and self-reproduction. Connections between 

von Neumann's automaton research and his work on computer design are 

brought out, and the significance of cellular arrays for biological research 

discussed. 
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[This paper uses some of my figures and text from von Neumann's 

Theory of Self-Beproduoing Automata» which I edited and completed.    Some 

use is also made of figures from my "Cellular Automata," which appeared 

in Russian at pp.   100-111 of Theory of Finite and Probabtliatio Automata, 

edited by M.  A.  Gavrilov, Moscow, Nauka,   1965.] 

1.     KINEMATIC SELF-REPRODUCTION 

The late John von Neumann once pointed out that, in the past, 

science has dealt mainly with problems of energy, power, force and motion. 

He predicted that in the future science would be much more concerned with 

problems of control, programming, information processing, communication, 

organization, and systems.    General purpose digital computers provide an 

excellent opportunity for studies of this kind, and von Neumann started a 

theory of automata based on them.    He wished this theory to deal with the 

control,  informational, and logical aspects of both man-made automata 

(such as digital and analog computers) and natural systems  (such as cells, 

nervous systems, and brains).    Von Neumann's conception of automata theory 

was very close to Wiener's conception of cybernetics, and each influenced 

the other.     But von Neumann's automata theory placed more emphasis on logic 

and digital computers, while Wiener's cybernetics was oriented more around 

physiology and control engineering. 

[Von Neumann,  "The General and Logical Theory of Automata," "Probabilistic 

Logics and the Synthesis of Reliable Organisms from Unreliable Components," 

and review of Wiener's Cybemetias -    See also my Introduction to Theory of 

Self-Reproducing Automata, and the Preface to Wiener's Cybemetioe •] 

- 
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One problem von Neumann posed and essentially solved was: What kind 

of logical organization is sufficient for an automaton to control itself in 

such a manner that it reproduces itself? He first formulated this question 

in terms of a kinematic automaton system, and later reformulated and solved 

it in terms of a cellular automaton system. We will explain the kinematic 

system briefly and then develop the cellular system sufficiently to see how 

self-reproduction is accomplished in it. 

[For a rigorous and more complete discussion the reader is referred 

to von Neumann's Theory of Self-Heproduaing Automata. ] 

Consider a digital computer or automaton which operates synchronously 

and which is composed entirely of switches ("and," "or," and "not") and 

delays (which delay pulses for one time unit). We will refer to these 

idealized elements as computing elements. 

[Actually, von Neumann used idealized neurons as computing elements. 

These neurons combined the functions of switching and delay and were passive 

in that they produced no output unless they were stimulated. This type of 

neuron was used by von Neumann in working out the logical design of the 

first stored program electronic computer, the EDVAC.  See Theory of Self- 

Reproducing Automata,  pp. 9, 44, 99.] 

To represent an input capability and a dynamic output capability we will 

add five other kinds of primitive elements: a kinematic (muscle-like) 

element (e.g., an artificial hand), which can move elements around when 

signaled to do so by a computing element; a cutting element, which will 

disconnect two elements when signaled to do so by a computing element; 

a fusing (welding or soldering) element, which will connect two elements 

together when signaled to do so by a computing element; a rigid element 

(e^g-» girder or bar), which will provide rigid or structural support to 



assemblies of elements; and a sensing element, capable of recognizing 

each kind of element and communicating this information to a computing 

element.    We shall call an automaton composed of these elements a kinematic 

automaton. 

To model self-reproduction at even the most abstract logical level 

we need to place a kinematic automaton in an environment with which it 

can interact.    This environment will be composed of the same stuff as 

the automaton is made of,  namely,  the various primitive elements just 

listed.     Imagine an infinite body of liquid with infinitely many copies 

of each kind of part distributed in random fashion over its surface. 

There are switches, delays,  kinematic elements, cutting elements, fusing 

elements, rigid elements,  and sensing elements floating on the surface; 

imagine that they are moving back and forth i.» random motion, after the 

manner of molecules of a gas.    On this arrangement,  an indefinite 

supply of parts is available to any kinematic automaton which floats on 

the surface of the "lake."    We will call this environment, together with 

any kinematic automata it contains,  a kinematic automaton system. 

It is well known how to construct a finite automaton out of switches 

and delays.    A Turing machine consists of a finite automaton operating on 

an indefinitely expandable tape.    We will indicate in a general way how 

to construct tape in the kinematic system, and how to augment a finite 

automaton so that it can read an arbitrary position on the tape, modify an 

arbitrary position on a tape,  and extend  (or contract)  the tape. 

The matrix or basis of the tape is a zig-zag arrangement of the rigid 

elements   (girders).    Each intersection holds a binary digit or bit of 

information:  a "one" is represented by a protruding girder attached to the 

intersection,  a "zero" by the absence of such a girder.    For example. 
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^l^lJ^     stores 0110110 while       j^L^J^sJ 

stores 1101001.    The finite automaton can move itself relative to the 

tape by means of kinematic elements.    It can change a "one" to a "zero" 

by separating a protruding girder from the tape intersection to which 

it is attached.    It can change a "zero" to a "one", or extend the tape, 

by sensing a girder on the surface of the lake with a sensing element, 

picking up the girder and placing it in position with a kinematic element, 

and connecting the girder to the tape   by means of a fusing element. 

The primitive elements of von Neumann's kinematic system are at a 

higher level than atoms and molecules, so that this system is not suitable 

for modeling the chemical, physical, or biological aspects of self- 

reproduction.    It was intended for modeling the control, organizational, 

progranuning, and logical aspects of self-reproduction.    Let us view this 

process at the block diagram level. 

One can see in a general way how construction takes place in the 

kinematic system.    A finite kinematic automaton can be completely described 

by listing its parts and their connections, and this description PW can 

be stored on the tape.    A (finite) constructing automaton can then be 

designed which will interpret this description and carry out the construction. 

The parts  (elements) needed are moving randomly on the surface of the lake, 

and hence will come in contact with the constructing automaton, which can 

sense the particular kinds of parts needed, pick them up,  and assemble them 

according to the specification V(M). 

Self-reproduction in this scheme takes the following abstract form. 

Let W   be a constructing machine.    To begin with, machine M   stores its own 

description PW )on its tape,  and floats in an environment of an unlimited 

number of parts of each kind.    The constructing machine M   then interprets 

the description VfM ) and makes a copy of the machine described, namely M . 
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I The constructing machine M   next makes a tape for the new machine, copies 

its own tape contents {namely, V(M )} on this new tape, and attaches the 

tape to the newly constructed machine M  . The process just described began 

with a machine M   storing V(M )  on its tape, and ended with a second machine 

M   storing V(M )  on its tape. Compare Figure 29. This is a kind of self- 

reproduction. 

This is the general picture von Neumann had in mind. How can it be 

worked out in detail in a logically rigorous way? To do this we must 

completely specify the powers of each element and the rules of operation 

of the elements when they interact with one another in a machine and on 

the interface between a machine and the environment. Consider, as an 

example, a constructing automaton. This employs kinematic, cutting, and 

fusing elements to move and operate on other elements. How does the 

constructing automaton find the elements and loci for the kinematic, 

cutting, and fusing elements to operate on? It might do this via the 

kinematic, cutting,and fusing elements themselves, if these elements had 

sensing powers of their own. Alternatively, it might do this by means of 

sensing elements, provided it could coordinate the operation of a sensing 

element with a kinematic (or cutting or fusing) element. 

It is a difficult problem to develop a complete, precise set of rules 

for the kinematic system which is at the same time simple and enlightening. 

Moreover, it is doubtful that anything of much value is contributed by the 

kinematic or motional capabilities of the system. On the one hand, these 

kinematic features of the model are too remote from chemistry, physics, and 

mechanics to be of much interest in their own right; while on the other hand, 

they are too remote from problems of organization, control, and logic to 

contribute to our understanding of these problems. Thus the motional 



capability of the kinematic system is the source of complexities which, 

in the present context, are not worth their cost, and might better be 

eliminated. 



2,     CELLULAR AUTOMATA 

The concept of a cellular automaton eliminates just these complexities. 

[This concept was suggested to von Neumann by S. M.  Ulam.    See Theory 

of Self-Reproduaing Automatat p.  94, where von Neumann gives his own reasons 

for shifting from the kinematic to the cellular model of self-reproduction. 

Though he does not mention it,  he was probably also influenced by his interest 

in obtaining high speeds of computation by parallelism.] 

A cellular system constitutes  a basic framework or "space" in which automaton 

events  can take place.    Moreover, one can formulate precise and simple rules 

governing the operation of the system.    In this section we will explain the 

general concept of a cellular system.    In Sections    3-10 we will define the 

specific 29-state cellular system that von Neumann worked with, and show in 

a general,  intuitive way how finite automata, Turing machines, and self- 

reproducing automata can be constructed in this  system.     In Section 11 we 

will compare von Neumann's kinematic and cellular models of self-reproduction, 

and in Section 12 we will make some general remarks about the investigation 

of cellular systems. 

Cellular automata are the main theme of the essays collected in Essays 

in Cellular Automata.    They are also called tessellation automata and 

iterative circuit computers. 

Tie notion of a cellular automaton is built up in the following way. 

We begin with a cellular space, which consists of an infinite n-dimensional 

space together with a neighborhood relation defined on this space.    The 

neighborhood relation gives,  for each cell,  a finite  list of cells which 

are its neighbors.     The time basis of the system is  synchronous, with t  = 0, 

1,   2,   3,   ... 

A aellular automaton system  (or "cellular system," for short)   is 
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specified by giving a finite list of states  for each cell, a distinguished 

state (called the "blank state"), and a rule which gives the state of a 

cell at time t + 1 as a function of its own state and the states of its 

immediate neighbors at time t.    We will call the list of states for a 

cell together with the rule governing the state transition of the cell a 

transition function.    The distinguished state corresponds to the blank 

state of a square of a computing machine tape,  and it is required of a 

transition function that if a cell and its neighbors are in the blank 

state at time t, the cell is in the blank state at time t + 1. 

Thus a cellular automaton system consists of a cellular space and a 

transition function defined over that spac^.    A cellular automaton state 

is specified by a finite list of cells together with the cell state 

assigned to each,  it being understood that all other cells are in the 

blank state.    It follows inductively from the finitistic character of 

a transition function that each cellular automaton state is succeeded by 

a cellular automaton state.    A oellular automaton consists of a cellular 

automaton system together with an assigned initial state  (state at t  =0). 

In most of the cellular systems we will discuss, the neighborhood 

relation and transition function are the same over the whole space.    But 

the intent is to allow variations from cell to cell, provided that the 

neighborhood relation and transition function of any cell is calculable 

from its coordinates. 

[One could also allow neighborhood relations and transition functions 

which change over time,  as Holland does in his concept of path-building 

in iterative circuit computers.] 

It follows that the state of a cellular automaton at time t + 1 is 

calculable from its state at time t. 



The preceding definitions are actually for the deterministic case. 

A deterministic transition function yields a unique next state for each 

cell, and a detemdnistio oellular automaton   has a single initial state, 

so that a deterministic cellular automaton has a unique history through 

time.    An indeterndnistio oellular automaton may have more than one 

initial automaton state,  and its transition function yields a set of 

possible next states for a cell.    A probabilistia cellular automaton is 

an indeterministic cellular automaton with a probability distribution over 

the initial automaton states and with a probability distribution over the 

possible next states of each cell. 

A transition function is equivalent to a finite automaton which is 

located in the cell and receives inputs from the neighboring cells via 

unit delays.    The finite automaton located in a cell is deterministic, 

indeterministic,  or probabilistic according to the nature of the 

transition function. 
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[See Burks and Wright, "Sequence Generators and Digital Computers," 

pp.   153,   193-197.] 

3.     VON NEUMANN'S  CELLULAR SYSTEM 

We will discuss the general case again in Secion 12. Until then we 

will restrict our attention to von Neumann's specific cellular automaton 

system. It is based on a two-dimensional cellular space of square cells 

in which each cell has as neighbors the four cells with which it shares 

boundaries; see Figure 1. Each cell is capable of 29 different states; 

see Figure 2. The transition function is deterministic, and is the same 

for every cell of the space. 

We proceed now to describe the transition function of von Neumann's 

29-state cellular system.    He called the blank state the "unexcitable 

state" (UJ, because in his system a single pulse is not sufficient to 

excite it.     It is represented in our diagrams either by a blank or by 

cross-hatching  (as in Fig.  7).    For expository purposes we will divide 

the remaining 28-states into subsets,  so we can treat the automaton occu- 

pying each cell  as a set of nine basic elements or circuits  (as  in Fig.  3), 

together with control processes  for creating any of these elements from 

U and for reducing any of these elements to U.    There is one confluent 

element  (C),  four ordinary transmission elements  (->,   +, -•-,  •(•),  and four 

special transmission elements  (-», A,   <=» v).    Each transmission element 

has a quiescent  (passive, no-pulse,  zero) state and an excited  (active, 

"pulse," one)  state; the confluent element has a quiescent state and 

three active states.    Thus the nine basic elements require only 20 

different states. 
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The control processes are of two kinds.    The constructive process 

converts an unexcitable state into a passive confluent or transmission 

element, employing as intermediaries some transient (sensitized)  states. 

The destructive process converts a confluent or transmission element into 

an unexcitable state.    The complete set of 29-states and a summary of the 

transition rule is given in Figure 15. 
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4.  CONFLUENT AND TRANSMISSION STATES 

The confluent element C has four states.  It performs the functions 

of conjunction, double-delay, and wire-branching. The four states are 

the four on-off combinations of the two delay units; no states are allo- 

cated to specify input or output directions, since these are determined 

by the contents of the four bordering cells in the following way. A 

confluent element receives inputs from all ordinary transmission elements 

whose outputs are directed toward it. It transmits an output (after two 

units of delay) to all ordinary and all special transmission elements in 

contiguous cells provided that the outputs of these elements are not 

directed toward it. Cells Al and 52 of Figure 3 contain confluent elements, 

They arc shown in Figure 3a as constructions of switches, and delays 

(whose initial outputs are zero) and in Figure 3b in abbreviated notation. 

The notation "C" does not indicate the specific state of the confluent 

element at any time. This is shown by subscripts when needed; for example, 

"CQI" indicates that the present output state is zero (0) and the next 

output state is one (1). The four confluent states are thus £oo» £oi» 

ClO' and ^ii- 

There are four ordinary transmission elements, ■+, + ,■*•,+,  one for 

each output direction. An ordinary transmission element performs the 

functions of disjunction and unit delay, and has two states. A right- 

directed ordinary transmission element is shown in celli42of Figure 3, 

a left-directed ordinary transmission element is shown in cell Bl . The 

number and direction of inputs to an ordinary transmission element are 

specified by the contents of the four neighboring cells. An ordinary 

transmission element receives disjunctively from all contiguous cells not 

in its output direction which contain either ordinary transmission elements 
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whose outputs are directed toward it or confluent elements.  An ordinary 

transmission element in cell a transmits to the neighboring cell $ in its 

output direction if either cell ß contains a confluent element or if ß 

contains an ordinary transmission element not directed toward a. 

Each of these ordinary transmission elements has two states, a 

quiescent (passive, no-pulse, zero) state, and excited (active, pulse, 

one) state. When the state is to be indicated, the former is shown by 

a plain arrow, the latter by an arrow with a dot beside it. 

There are four special transmission elements,♦, |. '•s j|> one for 

each output direction. Internally, special transmission elements operate 

in the same way as ordinary transmission elements, but their relations to 

other elements are different, especially with respect to the destruction 

process (Sec. 5). A special transmission element receives disjunctively 

from all contiguous cells (not in its output direction) which contain 

either confluent elements or special transmission elements whose outputs 

are directed toward it. A special transmission element transmits to the 

neighboring cell in its output direction only if this cell contains a 

special transmission element not directed toward it.  In Figure 4, an 

ordinary transmission pulse into input a at time t   will produce two 

special transmission pulses from output b,  one at time t+ 5 and the other 

at time t + 9. 

Each special transmission element has two states, the quiescent and 

the excited. When these are to be indicated, the quiescent state is 

represented by a plain double-arrow, while the excited state is represented 

by a double arrow with a dot beside it. See Figure 15. 

We have now explained how the confluent and transmission elements of 

the system operate, except for the construction and destruction processes. 

We will next show how these elements may be used to construct some organs. 



14 

5.  SOME COMPUTER ORGANS 

A useful method of operation in a cellular automaton is to convert a 

pulse into a binary sequence of pulses and spaces, transmit the sequence, 

and then decode it. This may be accomplished by means of the following 

two organs. 

A pulser  is an organ which converts a single pulse into a specific 

pulse-space sequence. The method of operation is clear from Figure 5. 

When supplied with a single input pulse at time t  this pulser will produce 

the sequence 10101 from its output at times t + 10 through t  + 14. The 

input pulse is sent along three paths of varying temporal lengths; these 

paths are merged disjunctively to produce the sequence 10101. 

A decoder produces a single output pulse if the sequence it receives 

has pulses in certain specified positions. The method of operation is 

clear from Figure 6. This decoder produces an output pulse if and only 

if the input sequence is 10101 or a sequence which "covers" 10101 (i.e., 

which has a "1" in its first, third, and fifth positions). The technique 

is again that of diverging and merging paths, but here the paths are 

merged conjunctively (at confluent elements) rather than disjunctively, 

so that unless pulses appear at certain places in the input sequence, 

there will be no output pulse. 

It is clear that there is an algorithm which, when given any finite 

binary sequence, will design both a pulser and a decoder for that sequence. 

The decoder does not recognize only its defining sequence, but that 

sequence or any sequence which "covers" it. Thus the decoder of Figure 6 

produces an output for any of the sequences 10101, 11101, 10111, and 11111. 

One can construct a recognizer which recognizes only its defining sequence; 

MHi 
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see Section 5 and Figure 14 below. Alternatively, one can use sets of 

sequences such that no sequence of the set covers any other one, so that 

decoders are sufficient for recognizing sequences. This technique is used 

in the coded channel, which is described next. 

There is no wire-crossing primitive in von Neumann's system. Two 

kinds of wire-crossing units may be synthesized. The first is a coded 

ahannel  which has any number of associated inputs and outputs. A single 

pulse (one) fed into an input will later appear at the corresponding 

output or outputs, provided that no other input is stimulated during the 

operation of the coded channel. Thus the coded channel can cross any 

(finite) number of wires or channels, provided that only one input is 

used at a time. The coded channel cannot cross two continuous streams 

of signals (ones and zeros) without interference. This can be done by 

a "real time" crossing organ, which will be described in a moment. 

The principle of a coded channel may be explained in connection with 

Figure 7. There are inputs a.,  a2, a,, and outputs fc, , i , J»,; each input 

a.  is associated with the corresponding output (or outputs) b..    Thus a 

pulse into input a   will eventually appear at both h    outputs (not simul- 

taneously) and nowhere else. The coded channel is made up of seven pulsers 

and seven decoding organs (all shown in reduced size), together with a 

"main channel" running from the output of pulser ^(10011) to the input of 

decoder D(11001). A long arrow represents a sequence of ordinary trans- 

mission states. 

The coding for this particular coded channel is done with six sequences 

of length five such that none of these sequences bitwise implies (is covered 

by) any other. The sequences 11100, 11010, 11001, 10110, 10101, 1001.1 are 

associated with a , a , a . b.3 b , b ,  in that order. The way the sequences 
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operate is best explained by means of an example.  Suppose input a2 

is  stimulated. This will cause pulser ^(11010) to inject its defining 

sequence 11010 into the main channel. This sequence will travel to the 

end of the main channel, but because it is distinct from every other 

sequence used it will affect only decoder 0(11010).  D(11010) will then 

send a pulse to pulser P(10101), which will inject 10101 into the main 

channel. The sequence 10101 will travel to the end of the main channel, 

but because it differs from every other sequence used it will affect only 

the two decoders £(10101), both of which will emit pulses from their 

outputs b2- 

The inputs and outputs of the coded channel may be positioned in any 

order. It is because of this that two sequences are associated with each 

input-output pair, the conversion from one sequence to its mate taking 

place at the top of Figure 7. 

The inputs to the coded channel must be spaced sufficiently far apart 

in time to avoid corruption or cross talk. For suppose ai and <7 were 

stimulated so their outputs 11100 and 11010 followed each other immediately 

in the main channel. The combined sequence 1110011010 contains the 

sequence 11001 which is assigned to input a^,  and hence which would 

operate 0(11001) and eventually cause an output at £3. 

The second kind of wire-crossing is the real-time crossing organ of 

Figure 8. 

[This organ was designed by J. E. Gorman.] 

Recall that a dot beside an arrow signifies that the transmission element 

is in the active state at some temporal reference point. Thus this organ 

contains five clocks, each producing an alternating sequence of zeros and 

ones; these sequences are used to gate the signals being crossed. 
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The crossing organ operates as follows. Consider first the behavior 

of the crossing organ when the inputs aj and a2 are 000 ... The clocks 

send alternate zeros and ones into both inputs of each of the six confluent 

states Cd, C6, F3, F6, El,    and #5.  The phasing of the ones (i.e., pulses) 

as they enter these confluent cells is indicated in Figure 8a by dashed and 

dotted lines. A dashed line signifies a one (pulse) at every even time 

(t _> 4) and a dotted line signifies a one (pulse) at every odd time (t .> 3). 

It is clear from Figure 8a that the two sequences arriving at a confluent state 

are out of phase. The function of these clock sequences is to gate the 

sequences coming into a^ and 0.2  so that they can cross each other. 

The sequence %$, i^, iz, i$,  H, ^5, ... entering a^  is split into two 

sequences by the confluent cell A4.    The clocks insert ones into every 

even position of the upper sequence and into every odd position of the lower 

sequence.  The odd bits -, iy,  -,  £3, -, t5, ... are allowed by the gating 

pulses to pass along row 3 and out at h^,  while the even bits i^,  -, ^2,  -,  ^i+i 

are allowed by the gating pulses to pass along row 6 and out at fcj. Similarly, 

the sequence JQ, ji, J2>  J3» j\> Js>   ••• entering 02 is split, with the even 

bits jo, -, J2» -» jit» -> ••• traveling up column C  and the odd bits 

-> 01,  -> J3>  -> J5>   ••• traveling up column F.    The phasing of the whole 

system is such that the sequence j0, -, j2, -, J.,  -, ... is interleaved with 

^0 » -1 ^23  ->  i-h*  -» ••• at cel1 c6  and with -, i.,  -, i3, -, i5,   ... at 

cell C3.    Likewise, the sequence -, jj, -, J3, -, J5, ... is interleaved 

with io,  -, ^2. -. H> ->   ••• at cel1 ^ ancl with -, i1,  -,  t3, -, i5, ... 

at cell F3.    For example, the sequences entering and leaving cell C6  are: 

From the left: 0 0 1 0 1 i0 1 t2 1 ik  ... 

From below:    0 0 0 1 JQ  I j2 I j\ 1 ... 

Output:       0 0 0 0 0 0 j0 i0 j2 i2 jH ik   ... 

The sequences from cells C3  and F3  are combined in cell El  to give the output 
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Jg. J > J  ,   •••  delayed 15 units of time. Similarly, the sequences from 

cells F3  and F6  are combined in cell H5  to give the output ig» M» ^2» ••• 

delayed 15 units of time. In this way information passes from aj to i^ and 

from a    to b    without any cross interference. 
2    2 ' 

This concludes our examples of organs synthesized from ordinary trans- 

mission elements and confluent elements alone.  It should be noted that the 

operation of these elements depends in an essential way upon their context, 

i.e., upon the contents of neighboring cells. Whether a confluent or trans- 

mission element receives information from or transmits information to a 

neighboring cell depends upon what is in that cell. See, for example. 

Figure 5. The ordinary transmission element of cell A2  receives only from 

the ordinary transmission element of cell AS,  and hence functions only as 

a unit delay. In contrast, the ordinary transmission element of cell El 

receives from both cell Dl  and cell E2,  and hence is a disjunction ("or") 

element as well as a unit delay. In Figure 6, the confluent element C6 

operates as a wire-branching element, feeding C5  and D6,  while the confluent 

element El  operates as a conjunction ("and" element), producing an output 

(with two units of delay) only when it is stimulated by both Dl  and E2. 
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6.  CONSTRUCTION AND DESTRUCTION 

Twenty-one states so far described (one unexcitable, four confluent, 

eight ordinary transmission, and eight special transmission) are not suf- 

ficient to generate all switching functions. The switching functions 

realized by these primitives are all "positive" in the sense that they carry 

zeros into zeros (quiescence into quiescence). Now, a negation element 

converts a passive input (quiescence, zero) into an active output (excited, 

one). Consequently, a negation element cannot be synthesized from the twenty- 

one states described so far. 

We could add a negation element to the list of primitives, but there 

are two reasons not to do so if it can be avoided. First, it would increase 

the number of states beyond twenty-nine. Second, when construction and 

self-reproduction take place in a cellular automaton it is desirable that 

the constructed automaton be completely passive, otherwise the automaton 

being constructed may start its own construction-destruction processes and 

thereby interfere with its construction. Moreover, we can obtain the effect 

of negation as a by-product of the destruction and construction processes 

which are needed anyhow. 

There are two of these processes. The aonatruotion process (von Neumann 

called it the "direct process") transforms the unexcitable state into any 

of the nine passive forms Cgg, ■*,   t, <-, +, =*•, f|, «=, using the eight 

"sensitive" or transient states SQ,  §0 , Sl> .§00, S01 , S10, S^, S000 as 

intermediaries. The destruction process  (von Neumann called it the "reverse 

process") transforms both passive and active forms of the confluent, ordinary 

transmission, and special transmission states back into the unexcitable 

state in a single time step. 

Ordinary and special transmission states operate the same way in the 

■MM! 
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construction process. Consider a cell a which is in the unexcitable state 

and which has one or more immediate neighbors which contain transmission 

elements directed toward it. The construction process is defined by the 

tree of Figure 9, where a "1" means that at least one of the transmission 

elements directed toward the cell a is active. A pulse is required to 

start the process; after it is started the process continues until cell 

a is in one of the passive states £, -►, +, ■«-, 4-, ^>, A, *=, ||. Consider, 

for example, Figure 10, where the sequences 1101 and 1010 are supplied 

to cells A2  and B3.  The disjointed sequence is 1111; it carries cell 52 

through this sequence: U, S0, Si, ^n, £00. 

The reason for having both special and ordinary transmission states 

is that they play opposite roles in the destruction process. A pulse 

from an ordinary transmission state into a cell containing a special 

transmission state changes the latter to an unexcitable state in one 

time step. Similarly, a pulse from a special transmission state into a 

cell containing either an ordinary transmission state or a confluent 

state transforms that cell into an unexcitable state. These destruction 

pulses override any pulses used for communication and computation. In 

Figure 11, a pulse into input a  at time t  will enter cell Dl  at time 

t + 4 and cell A2  at time t + 5 so these cells will contain unexcitable 

elements at times t + 5 and t + 6  respectively. 

Note that the destruction process is effective on both the active 

and passive forms of the nine elements (£,-> , +, ■*-,  +, =*», A, •S=,J|). 

The initial configuration of a cellular automaton may contain the active 

as well as the passive forms of these elements; indeed, it may contain 

any of the 29 states. On the other hand, the construction process leads 

only to the passive forms of the nine elements (C, -> , + , -«- , + , =*, A, «*», |) 

that is, only to 9 different states. 
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Next we will illustrate how the destruction and construction processes 

may be used to synthesize negation. Figure 12 shows a periodic pulser 

which, when started, emits the sequence 10101 until it is turned off. 

It consists of a pulser which produces the desired sequence (10101) when 

it is stimulated by a start pulse, a repeater (cells A4, 84, AS, B5)  which 

repeats the sequence until it is turned off, a pulser which produces a 

sequence 11111 when stimulated by a stop pulse, and a transducer (cells 

A2,  Bl, B2, 33)  by means of which the repeater is turned off. The sequence 

10101 enters repeater cell A4  and cycles around the cells 34, BS, AS, A4, 

and also out of cell 34  to the right, indefinitely. These four cells have 

a total delay of five units. The stop pulse produces a sequence 11111 which 

passes down channel 31-32-33  and enters cell 34.    The first pulse kills 

C to U and the next four restore l^ to £00 v^a t'ie sequence of sensitized 

states Sg S.j S.., and S..., the last being CQQ- This erases the sequence 

10101 in the repeater and leaves the repeater in its original state. 

It is clear that there is an algorithm which, when given any finite 

sequence, will design a periodic pulser for that sequence. Larger output 

sequences will require longer killing sequences, and the length of the 

erasing sequence must be a multiple of five, so that the confluent cell 

(B4) feeding the output is left in its original state at the end of the 

stop operation. 

A periodic pulser whose output is a repeated 1 is a binary storage 

element or "flip-flop". Since the minimal cell cycle consists of four 

cells and a delay of five, it must be designed to produce a sequence of 

length five or longer. Figure 13 shows a periodic pulser which produces 

the sequence 11111 until it is turned off, together with a gate (confluent 

element). When PP(lllll) is on, it sends a constant stream of pulses 
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to the gate, and the signals recieved at the gate input are transmitted 

to the gate output. When the PP(lllll) is off, the gate is closed. 

The method used for erasing sequences in periodic pulsers can also 

be employed in recognizers. It will be recalled that a decoder responds 

not only to its defining sequence, but also to any sequence which "covers" 

its defining sequence. Thus the decoder D(10101) responds to any of the 

sequences 10101, 11101, 10111, and 11111. In contrast, a recognizer 

responds only to its defining sequence. 

The underlying operating principle of a recognizer may be explained 

in connection with an example. Figure 14 shows a recognizer R^(101001). 

Every input sequence is fed to a decoder 0(101001), which produces an 

output pulse for any one of the eight sequences l,a^,l,a^,a^,l, 

(where x t x t x =■(), 1}.    Since we want a final output only for 

x - x   = x   = 0, we need to detect when any of x , x , x   are one. 
12   3 12    3 

This is done by a pulser P(1101), provided that the timing is correct. 

Hence if there is an output from 0(101001) and none from J^(1101), we want 

a final output from b;  while if there is an output from WlOlOOl) and also 

from P(1101), we do not want a final output from b.    The arrangement of 

Figure 14 provides this. If there is an output from D(101001) and none 

from P(1101), a pulse leaves cell Gland  zig-zags down rows 1 and 2 to 

exit at b.    But if there is an output from £(1101) in the right phase with 

respect to   the output of J3(101001), the confluent element in cell J5 

will stimulate the pulser JP(11111), whose purpose is to block the output 

at cell fl.    The pulser P(1101) will respond to any input pulse, of course, 

but the delay-length of the path from input a through 0,(101001) to the 

confluent cell IS1, relative to the delay-length of the path from input a 

through P(1101) to the same confluent cell J5, is such that P(lllll) is 
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stimulated only when x^ x2j or a^ is one. The output sequence 11111 from 

the pulser P (Hill) cycles Tl  from C through U, Sfi, S,, S,,, S,, and back 

to CQQ. Consider the two paths from the output of D(1Ö1001) to the final 

output b of the recognizer, one along rows 1  and 2,  the other through P(lllll). 

The timing along these paths is such that an output from D(101001) is blocked 

at cell Tl  if and only if xi  or xz  or X3 is 1. Hence the recognizer ^(10101) 

produces a final output for the sequence 10101 but not for any sequence 1, 

Xj, 1, x2,  x3, 1, where x^  or #2 or x3 ^s  1' 

We have now finished our description of the deterministic transition 

function governing von Neumann's 29-state cellular automaton system. We 

will next formulate and answer some specific questions concerning the 

logical powers of this system. 

7.  FINITE AUTOMATA 

Finite automata are important in their own right, and constitute the 

bases of Turing machines, so we will first show how they can be embedded 

in von Neumann's cellular automaton system. 

A finite automaton is a device or system <I, V, 0, T",  X, dn>  which 

operates deterministically as follows. At each discrete moment of time 

(0, 1, 2, ...) it is in one of a finite set V of internal (delay) states, 

receives any one of a finite set I of input states, and transmits any one 

of a finite set 0  of output states. At time zero the automaton is in some 

distinguished internal state d*.    Its transition from state to state is 

governed by a function T from inout state and internal state to internal 

state; T is called its transition function. The automaton's output state 

is governed by a function X from internal state and output state to output state; 

X is called the "output function". An example is given in Figure 16a. 
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[This conception is used in Burks and Wright, "Theory of Logical Nets", 

p.  1364, but without the various states being named.  It is given in Moore, 

"Gedanken-Experiments in Sequential Machines", p.  133 and Burks and Wang, 

"The Logic of Automata", p.  203.] 

To represent a finite automaton in von Neumann's cellular system, 

one marks off a finite area of the cellular space, specifies the states 

of the cells of this area so as to make a device which simulates the 

automaton, and sends inputs into and takes outputs from the device across 

the boundary of this area. 

[More generally, our original definition of a cellular automaton system 

(Sec.  2) can be extended to include finite cellular spaces with inputs 

and outputs along the border.] 

Finite automata embedded in this cellular system cannot in general operate 

as fast as finite automata in the pure or idealized sense. This is so 

because the finite automaton of each cell is of limited capability (having 

only 29-states), and there is at least a unit delay across the boundary of each 

cell.   But finite cellular automata can simulate idealized finite automata. 

In the terminology introduced later,  for each idealized finite automaton 

there is a finite cellular automaton which is computationally equivalent 

to it, but not in general behaviorally equivalent to it  (See Holland, 

"Hierarchical Language").  In the following discussion we will assume 

that the time-scale is slowed as much as is needed for the simulation. 

For a fuller discussion of simuldtion speeds see especially Section 12 

below. 

In embedding a finite automaton in a cellular system there is a choice 

as to how inputs and outputs are represented. We will assume given a finite 

automaton,  <  I> P, (? > YJ  ^   dn
>   w^th its input states coded as sequences. 
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each successive sequence starting at  time kt + m,  where k and m are  integers 

to be chosen on the basis of the time-delays of the simulating cellular automaton 

The given finite automaton can be simulated in von Neumann's cellular 

system in the manner of Figure 16.    Each input state i t I is represented 

by a recognizer R(^) which produces a single pulse when the sequence 

representing  input  state'   I is received as   input.   Each internal state 

d e P is represented by a periodic pulser PP(11111), which is turned 

on to represent the given finite automaton being in state di  initially 

the periodic pulser representing d    is turned on.    Each output state o 

represented by a pulser P(0) which produces, when stimulated,  a sequence 

to represent 0.    The transition function and output function are rep- 

resented by confluent elements functioning as  gates  ("and" elements), 

to detect coincidences between periodic pulsers representing internal states 

and pulses representing input states.  The outputs of the coincidences 

go to produce the desired output state,  and,  if a new internal state is 

called for,  to turn off the PP(lllll)  representing the new input state. 

All these organs  are interconnected by means  of a coded channel. 

(The cellular automaton design described here is that of the decoded 

normal form net,   Burks  and Wang,  "The  Logic of Automata", p.   281.   A 

variant of the simulation method of Figure  16 is described in von Neumann's 

Theory of Self-Reproducing Automata,  Sec.   5.1.3.) 

We will  explain the operation of this device for two cycles.   Suppose 

the system represents  external state   d   when a sequence representing  I 

is received,   followed   (after a suitable delay), by an input representing 

-^•1  .    The sequence representing    iy will be recognized by R(^o)> which 

will  send a pulse into the coded channel  at CZQ.     This will exit  at both the 

upper and lower b0  exits, having an effect  only   in the first case.   At 
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the upper exit it will pass through the conjunction ("and" switch) gated 

by the upper PP(lllll), and will enter the coded channel at a ,  exiting a 

i and stimulating P(0o) t0 produce the output sequence representing output 

state ^o- Thus internal state "0and input state ^l produce output state 

Ooand next internal state ^Q. 

After the simulation of this transition is finished, the sequence 

representing ^l will be received and will be recognized by R^ ), which 

will send a pulse into the coded channel at a . This will exit at both 

the upper and lower b    exits, again having an effect only in the first case. 

Here it will pass through the "and" gate and enter the coded channel at 

a    (to exit at b    and start the internal state^ 1  at a (to exit at h 

and stop the internal state ^ ), and a (to exit at b    to simulateJP(Ö) 

to produce the output sequence representing 0 ). Thus the internal state 

^ and input state :    produce output state 0    and the next internal state 

In this cellular simulation of a finite automaton each successive input 

sequence starts at the time kt  + m;    the integer m  of the formula kt + m 

can be zero, but k  must be chosen so that in the worst case the system 

can change its representation of the present internal state before the 

representation of the next internal state enters the system. The sequences 

representing output states will start at times kt  + n,  where n  is an integer 

depending on the transit time of the simulating system. 

The foregoing should suffice to show that any finite automaton can be 

simulated in von Neumann's cellular system, given a suitable representation 

and timing of input and output states. Actually, a considerably stronger 

result is inherent in the foregoing construction. For with the exception 

of the periodic pulser PP(lllll) which represents internal state "Q 
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all of the cells of the automaton of Figure 16 are initially quiescent. 

Moreover,  this automaton can be modified so that this PP(lllll)  is  initially 

quiescent and is started by a pulse injected into the automaton from the 

outside.    This leads to the following definition. 

An initially quiescent automaton is a finite area of the cellular 

structure,   every cell of which is  in one of the ten quiescent states J,], 

->,   tj  •<-,   •l-,=s>i A. **=, |1,  and £    .     It is easy to arrange for an initially 

quiescent automaton to be started by a stimulus at its periphery, and we 

will assume that this is done. 

The method of construction illustrated in Figure 16 shows that the 

following is the case.    For every finite automaton,  there is an initially 

quiescent aellulav automaton whiah aan simulate it. 

It should be noted that the crossing organ of Figure 8 is not initially 

quiescent,   since it contains five "clocks"  (Fig.  8b) which must be operating 

before it can operate.    Moreover,  one of these clocks is in the center,  so 

that the crossing organ cannot be started by a stimulus on its periphery. 

In this respect the coded channel  is  superior to the real time crossing 

organ. 

(One can use a real time crossing organ in an in an initially quiescent 

automaton in the following way.    Construct the quiescent part of the crossing 

organ,  except for a path to the center clock.    Then add pulsers to 

complete the construction and start the organ.    The starting stimulus 

to the whole automaton must stimulate these pulsers, which then complete 

and start  the crossing organ.    See von Neumann,  Theory of Self-Reproduaing 

Automata,   pp.   264-5.) 

There  is another method of simulating an arbitrary finite automaton, 

which involves constructing only one  finite automaton.    This method is to 
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construct or embed a universal Turing machine in the cellular system. 

Since a universal Turing machine can simulate any automaton,  a fortiori, 

it can simulate a finite automaton,     toreover,  when it  simulates  a finite 

automaton it need use only a finite amount of its  tape,  and hence is 

also a finite automaton. 

We will sketch the construction of a universal Turing machine 

in Section 8.     It turns out that the most efficient method of operating 

the tape involves a constructing arm which can be used  for general 

construction purposes as  well as part of a tape unit.     We therefore 

explain this constructing arm next. 

8.     CONSTRUCTING ARM 

The constructing arm is used both for the process of construction 

(see Fig.   17)  and for operating an indefinite tape   (see Fig.   18).    We 

will  first explain how it   is used to construct  a  finite,   initially 

quiescent automaton. 

The general arrangement   is  shown in Figure   17.     Appropriate sequences 

of ordinary pulses are generated in the constructing device and fed into 

the input s   (through a confluent state C)  and the  input o of the con- 

structing arm.    These signals  cause the head of the constructing arm 

to sweep backwards and downwards over the area a  -   ß,   leaving each cell 

of this  area in the desired state. 

The construction is  carried out by the head of the construction 

arm,  shown in Figure 18a  in normal  form.    Signals  for construction 

and destruction are sent  alternately through the ordinary transmission 

elements and the special  transmission elements.    The constructing arm 

can be advanced either horizontally or vertically.     It can also be 
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retracted either horizontally or vertically, leaving cells y and 6 

in any of the ten quiescent states U, Cloo » ->, +, *-, +, =*■, |, «*=, 1- 

The actual binary (pulse-no pulse) sequences needed for construction 

and destruction are derivable from Figures 9 and 15.  For purposes of 

comprehension, however, it is best to replace these sequences by a 

representation of their effects. We will explain this notation in 

connection with the passage from Figure 19a to Figure 19b. The starting 

configuration is given in Figure 19a.  The following sequences are fed 

into input s  or input s    via special transmission or confluent states: 

1110 changes cell Cl  from U to | 

1101   "     " C2      " U " **= 

1      "     " B2      " + " U 

" U " ->■ 
10000 II   DO 

The result is Figure 19b. Rather than writing this sequence as 

"1110 1101 1 10000", however, we write it as " (| U ". 

Figures 19 and 20 specify the sequences needed for advancing the 

constructing arm by one cell. Figures 21 and 22 specify the sequences 

needed for withdrawing the constructing arm and leaving two cells, 

Y, 5 in one of the ten quiescent states U, Gn , "* , ^ , "•" , + ,=^, jf. "*=, ||. 

The actual binary sequence needed for y  and 6 is obtained from Figures 

9 and 15, as before. 

Because construction proceeds from top to bottom and from right 

to left, the lower left hand corner is completed last.  It is therefore 

convenient to stipulate that an initially quiescent automaton be started 

by injecting a symbol into its left-most, lowest cell, from beneath. Figure 

23 shows how this is accomplished. 

This completes our discussion of the five operations of the con- 

structing arm: horizontal advance, vertical advance, horizontal retreat 
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with y-6,    vertical  retreat with y-&, and injection of the starting 

stimulus.    These operations suffice for the construction of any 

initially quiescent automaton in the first quadrant, assuming that the 

required sequences  are supplied to the input of the constructing arm. 

A crude way in which these sequences  can be obtained is by making 

the constructing device consist of a row of special transmission states 

feeding input s   (Fig.   17)  and a row of ordinary transmission states 

feeding input   o.   By choosing the proper sequence of quiescent and active 

states in each case,  one can obtain any  desired finite, binary  (pulse) 

sequence.    Since the automaton to be constructed is finite, the pulse 

sequences needed for its construction are also finite.    Consequently, 

for each finite initially quiescent automaton A there is a finite non- 

quiescent automaton B which will construct A. 

Of more interest is a constructing automaton which is itself initially 

quiescent.    Such an automaton will be discussed in Section 10.    But 

since it contains the essentials of a universal Turing machine, we will 

explain next how to embed a Turing machine  in von Neumann's cellular 

system. 

9.     UNIVERSAL COMPUTER 

A Turing machine consists of a finite automaton operating on an 

indefinitely extendable tape. 

[Turing,  "On Computable Numbers, with an Application to the 

Entscheidungsproblem." ] 

In the usual arrangement, the tape and the finite automaton move 

relatively to each other; usually the tape is viewed as moving back 

and forth past the finite automaton, but occasionally the finite automaton 

is viewed as moving back and forth along the tape.    In both cases the 
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information on the tape moves relative to the finite automaton.     In the 

cellular system both the tape and the finite automaton are  "by nature" 

at  rest,   so  it is best  to connect  them by a loop which can be extended 

or contracted. 

[One could embody the usual  arrangement by designing the  finite 

automaton so that it constructs  an indefinitely long shift  register 

(adding new stages as needed)   and shifts the information in the register 

back and forth.    This  is done in  Burks,   "The Logic of Fixed and Growing 

Automata"  and "Computation,   Behavior,  and Structure in Fixed and Growing 

Automata".] 

The arrangement is shown in  Figure 24.    The "tape"  itself consists 

of an infinite  linear array of cells  leading off to the right;  this is 

row 3  in the  figure.     "Zero"  is  represented by the unexcitable state  (U) 

and "one" by an ordinary transmission state directed downward   (I). 

In an initial  cell assignment  for the cellular system only a finite number 

of cells  are  in a state other than the unexcitable  (U),  so that initially 

(and hence also at any subsequent  time)  only a finite number of cells 

(squares)   of the tape will  register "one". 

The  following five tape operations are clearly sufficient  for all 

computational purposes:     reading,  writing "one" and  lengthening the 

reading  loop by one cell, writing  "zero" and lengthening,  writing "one" 

and shortening,  and writing "zero" and shortening. 

Reading is accomplished by means of the reading  loop,  which consists 

of rows  1}   column ^(including the cell under scan)  and row 4 of Figure 

24.     To read the contents of cell x  , we inject the sequence 10101 

into entry y.     This sequence passes  alon.   row 1  and down into cell x . 

There are now two cases  to consider.     If cell x    is  in U   (representing 

a "zero") ,   the sequence 1010 converts  it  into an ordinary transmission 
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State directed downward  (I),  and the  final  1 of the sequence  10101 

returns down row 4 and out exit w  .     If cell x    is in +  ,  the complete 

sequence 10101  returns down row 4 and out exit w .    Thus an output from 

w    of 2  indicates that x =U, while an output of 10101  indicates that 

x =1.    This readout procedure is destructive, since cell x    is  left  in n r n 

state ■*•  in either case  (Fig.   24b).    The old value of x    is restored, 

or a ne« value  is  inserted,  during the process of lengthening or shortening 

the reading loop. 

Changing the length of the reading  loop, and recording the new bit 

in cell x ,   is  accomplished by means of the constructing arm, which 

consists of rows I and 2 of Figure 24.     Note that row i  is part of the 

reading loop as well as part of the constructing arm.    The constructing 

arm used to modify the tape is the same as that used for construction 

(see the previous section),  except that the ordinary transmission 

elements are  located above  (rather than below) the special  transmission 

elements.    The routine for writing "one" in cell x    and lengthening the 

reading  loop  is  given in Figure 25,  where the notation of representing 

a binary sequence is represented by its  effects,  as before.     Note that 

modifications  in the bottom row of the unit are made through the cell 

x   before this  cell is left in its  final state; no other cell  of the 

tape is disturbed.    Note also that since "one" is represented by +   , the 

process ^f writing "one" and lengthening  (or shortening)  is the same as 

lengthening   (or shortening).  The other three cases  (writing "zero" 

and lengthening, writing "one" and shortening, and writing "zero" and 

shortening)  are handled similarly. 

In the process described by Figure 25, binary sequences are fed 

first into u  ,  then into v ,  into u again, and finally into v again. 
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The two successive sequences  into u can be combined into one long 

sequence by inserting zeros during the moments when input y is being 

used,  and similarly for the alternate sequences   into v.    Consequently, 

the operation of writing "one" and lengthening can be accomplished 

by feeding two long sequences  into u and y in parallel.    These sequences 

can be generated by two pulsers, one feeding input y and the other 

feeding input u. 

Let us now summarize the organs needed for our five tape operations. 

Four pulsers feeding u and four pulsers  feeding y are needed for the 

four operations of writing "zero"  (or"one")  and lengthening  (or shortening) 

One pulser 10101 feeding v is needed for reading cell x.. One recog- 

nizer is needed to recognize the sequence 00100   (i.e.,a;     =0 )    and 

another to recognize the sequence 10101   (i.e.,   x     =1  )> both of these 
n 

recieve the output  from w.    Thus nine pulsers and two recognizers are 

needed to operate the tape,  its reading loop,  and its construction arm. 

This completes our brief explanation of how to embed an indefinitely 

expandable tape in a cellular system, how to establish contact with 

an arbitrary square  (cell)  of the tape,  and how to read from and write 

in this cell. 

We now have the essential ingredients  for embedding a Turing machine 

in von Neumann's  cellular system.    In Section 7 we saw how to con- 

struct an arbitrary finite automaton in this system,  and we see now 

how to construct and use an arbitrarily  long tape.     It remains to 

combine these two entities. 

The general arrangement  is shown in Figure 26.     The operation of 

the tape, constructing arm  (for lengthening-shortening and writing), 

and reading loop have been explained.    This operation is directed 

by nine pulsers and two recognizers, which constitute part of the tape 
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control.    To obtain the rest of the tape control, we must add organs 

to control these pulsers on the basis of information received from 

the recognizers according to the particular finite automaton operation 

that  is desired.    Let " be the set of the internal states of the finite 

automaton controlling the tape.     Each internal state d z V  is represented 

by a periodic pulser PP(lllll),  as  in Figure 16.    At each stage one of 

these periodic pulsers is on;  the system starts operation when the 

periodic pulser representing the initial state J    is turned on and the 

pulser P(10101)  is stimulated to  inaugurate the reading cycle.    The 

outputs of the two recognizers representing x   = 0 and x   = 1 are gated 

via confluent cells against the outputs of the internal state periodic 

pulsers to determine the next operation.    According to the specific 

transition function x of the finite automaton being simulated,  a next 

state d z V  is selected, one of the four operations  lengthen-shorten 

and write "zero"-write "one" is selected, and after a suitable delay 

the pulser P(10101)  for reading the next tape square is stimulated. 

This whole sequence is iterated indefinitely. 

The foregoing sketch indicates  in a general way how,  given any 

Turing machine M , we can embed in the 29-state cellular structure 

an initially quiescent automaton which performs the same computations 

as    M.   Since this is so for any Turing machine,  it is a fortiori so for 

a universal Turing machine  (universal computer).    The full design for 

a universal Turing machine is given in Thatcher's "Universality in 

the von Neumann Cellular Model". 

(An earlier design is given in von Neumann's Theory of Self- 

Reproduoing Automata,  Part II, Chapters 3-5.) 
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Hence we conclude: For any given Turing maahine M (and hence for a 

universal Turing maahine M )3  there is an initially quiescent automaton 

in von Neumann's 29-state cellular automaton system which will perform 

the same computation as M (or M ).    As von Neumann expressed this 

result, his cellular space is "logically universal". 

The next step is to extend this result to obtain a corresponding 

result for universal construction. 

10.  UNIVERSAL CONSTRUCTOR AND SELF-REPRODUCTION 

Let us return for a moment to von Neumann's kinematic self-re- 

producing automaton.  In the kinematic system we start with an environ- 

ment containing an unlimited supply of computirg, kinematic, cutting, 

fusing, rigid, and sensing elements. We introduce into this environ- 

ment a constructing automaton which is itself composed of these parts 

and which contains an explicit plan of some desired automaton. The 

constructing automaton proceeds to collect parts and construct the 

desired automaton from these parts according to its explicit plan. 

It is instructive to view this whole process in terms of the 

states of the system. The original environment is more or less uniform, 

homogeneous, and unorganized. We introduce a constructing automaton 

containing the plan of a secondary automaton; this amounts to putting a 

finite area of the space (i.e., the space occupied by the constructing 

automaton and its plan) into a certain "state".  The constructing 

automaton then organizes another area or region of the space according 

to the plan of the secondary automaton; in other words, it puts a certain 

secondary area into the state specified by the plan. If the constructing 

automaton contains its own plan, the area of the secondary automaton 
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is, at the end of the process, in the same state as the area of the 

constructing automaton was at the beginning of the process. This is 

self-reproduction in the kinematic model. 

The corrseponding situation on the cellular model is this. We 

begin with an infinite, uniform cellular system of 29-state automata, 

each automaton being in the unexcitable state U.  We then organize by 

fiat a finite area of this space so that the area constitutes a con- 

structing automaton which contains the plan of a secondary automaton; that 

is, we put a certain area into a certain state. The constructing automaton 

then sends out a constructing arm which organizes another area according 

to the plan of the secondary automaton; that is, it puts a certain 

secondary area into the state specified by its plan. If the constructing 

automaton contains its own plan, the state of the secondary area at the 

end of the process is the same as the initial state of the area occupied 

by the constructing automaton. This is self-reproduction in the cellular 

system. 

A universal constructor which is initially quiescent is shown in 

Figure 27. It is composed of two units, each consisting of a finite 

automaton and an indefinitely expandable part. The first unit is a 

tape unit, which can store information on, and read it from, an 

indefinitely extendable linear array of cells, or tape. The tape unit 

itself consists of two parts: a finite tape control; and an indefinitely 

long tape, together with its reading loop and constructing an», The tape 

unit is a kind of Turing machine; see Fig. 25. The second unit of 

the universal constructor is a constructing unit, which can carry out 

the construction of any quiescent automaton whose description is on 

the tape. The constructing unit also consists of two parts: a finite 

construction control, and an indefinitaly long constructing arm. 
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A description of the automaton to be constructed is stored in explicit 

form on the tape of the universal constructor. Under direction of the 

construction control, the tape control reads the description from the tape 

and transmits it to the construction control. Using this description, 

the construction control sends signals into the constructing arm to bring 

about the construction. 

The automaton to be constructed is to be initially quiescent, which 

means that it can be explicitly described by giving the desired quiescent 

state of each cell (y, +,  f, ^, +,=>■, A, .*=. |. 0T $00) •    T*16 limitation 

to in i :il y quiescent automata should be noted. There are finite con- 

figuration (areas of cells, each of which is in one of the 29-states) 

which are not initially quiescent and are nevertheless constructible. For 

example, one could easily construct a loop of active ordinary transmission 

elements, each of which feeds its successor. But there are also finite 

configurations (not initially quiescent) which are not constructible. A 

simple example is a sensitized state SQ surrounded by a band of cells 

in state C  . Since confluent states do not construct, this configuration •-«00 > e 

can exist only at time zero and hence is not constructible.    Another example 

is S surrounded by  (eight) cells  in state C^Q-    This can exist only at 

times 0,  1,   2, or 3,  and is not constructible. 

Moore and Myhill establish an interesting result related to construct- 

ibility in those cellular structures  in which information requires at least 

one time unit to pass from    a cell to any of its eight bordering cells. 

Von Neumann's 29-state cellular structure is clearly one of these structures. 

Moore speaks of a finite area of cells in some state  (i.e., with an ass- 

ignment of a state to each cell)  as a configuration, and calls a configuration 

which can exist only initially  (i.e.,  at time zero), a "Garden-of-Eden" 

configuration.    Since construction takes one or more time steps, every 
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Garden-of-Eden configuration is non-constructible. The converse is not the 

case, as our example of S„„„ surrounded by cells in state €„„ shows. Moore 

and Myhill establish a necessary and sufficient condition for existence of 

Garden-of-Eden configurations in cellular structures of the type they consider. 

The condition is essentially that the cellular structure be non-baakwards 

deterministic,  that is, that a given state of an area can be derived from 

two or more preceeding states. 

[The concept of backwards determinism is defined in Burks and Wang, 

The Logic of Automata,  Sec. 3.3.] 

Actually, one must modify this concept to take account of the influence 

of the environment on the edges of an area; Moore uses the term "erasable". 

Von Neumann's 29-state cellular structure is clearly not backwards determin- 

istic, for the configuration consisting of 4-^ surrounded by a wide band 

of U's leads to all U's (except at the edges), as does also a configuration 

consisting of all U's. 

Before leaving this topic we note that the restriction to initially 

quiescent automata is no restriction as far as computation (for either 

finite automata or Turing machines) is concerned. The fact that not all 

configurations can be constructed in von Neumann's cellular structure is 

analogous to the fact that not all finite automaton behaviors are realizable 

in the cellular structure, because of the limited capability of each cell 

together with the delay between cells. 

We return now to the task of designing a universal constructor. The 

following conventions may be adopted without any essential loss of generality. 

The constructed automaton is to occupy a rectangular area of width a and 

height S, where g is an even integer. The desired cell states are designated 

Ann '^m » *"• A      > anc* are t0 ^ arranged on the tape in reverse order 

from which they are to be used. The lower left-hand corner of the cor^tructed 
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automaton is to be located at point xQi  z/0. Moreover, the constructed 

automaton may be started by injecting a stimulus into cell x j y    from 

below (see Figure 23). The tape contents are then as follows: a period, 

the origin  point xQ, ij ;  the dimensions a, 3; an enumeration of the states 

of the cells X n , X , X , A.,,..., X       ; and a terminal asterisk. 
00  10  ül  n      a-i , B-i 

The construction control must execute the following program or 

algorithm to construct the secondary automaton specified by the tape contents. 

(1) The construction control orders the value of x^  read and sends pulse 

sequences into the constructing arm for x * 2  horizontal advances. 

It then orders the values of y     and gread and sends pulse sequences 

into the constructing arm for z/ + 3 vertical advances. The head of 

the constructing arm is now in the upper right-hand corner of the 

construction area so that construction may begin. 

(2) The construction control then iterates the following operation ß/2 

times: 

(a) A horizontal advance of the constructing arm a-2 times 

(b) A horizontal retreat with construction of y and 6, for a-2 times, 

with the specification of y and 6 coming from the values of the ^'s 

stored on the tape. 

(c) A vertical retreat with construction of y and 6, for two times, 

with the specification of y and 6 coming from the appropriate 

A's stored on the tape. 

This completes the construction of the area ot-ß. 

(3) The construction control next orders a single horizontal retreat and 

then injects the starting signal into the left-most, lowest cell of 

the constructed automaton (see Fig. 23). Following this the constructing 

control executes y^   vertical retreats and then x + 2 horizontal 
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retreats tc return the constructing arm to its  initial position; 

in each of these retreats both   Y and 6  are to be blank  (U). 

This completes our sketch of the algorithm or program for the 

construction of an arbitrary finite initially quiescent automaton.    We 

have not gone into details on such matters as how the numbers x   ,^   , a , 

and   ßare represented on the tape and how the construction control keeps 

track of what it is doing.    While there are many such small problems,  there 

are standard ■»■ thods in the computer art for solving them. 

The construction control can be designed by translating this algorithm 

into a finite automaton,  and then designing a cellular automaton to 

simulate the resultant finite automaton, using the method given in Section 

6  (c.f.  Fig.   16). 

Since a standard Turing machnie consists of a finite automaton attached 

to a tape,  it is desirable to allow any automaton which is to be constructed 

to have these two parts,  and so we will provide for the following three 

cases. 

\,1)    Tae case already discussed,  to wit:    The quiescent automaton to 

be constructed is a finite rectangular machine M,     Its description Q (/u)   is 

placed on the tape of the universal constructor preceded by a period and 

followed by an asterisk,  as  in Figure 27.    The universal constructor reads 

V (M) and makes M, and then starts M by injecting a starting stimulus  into it 

at a standard position, 

(2)    Let the description VW  of the desired quiescent automaton M be 

placed on the tape of tne universal constructor,  followed by a diamond, 

followed by the contents T(A0 of the tape to be attached to M, followed by 

a concluding square.    The universal constructor will execute the description 

V (A0 and thereby construct machine M, as before.      Seeing the diamonrl, 

it will proceed to construct a tape with contents  TiM) and attach it to 
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M at some standard place; see Figure 28. More specifically, the tape will 

contain a period, followed by T (Af), followed by a concluding square. After 

the tape has been constructed, the constructing arm will return to the 

constructed automaton M and give it a starting signal. Note that the tape and 

its contents coistitute a quiescent automaton of rectangular shape, just as 

M   does, so that essentially the same technique can be used to construct a 

tape with contents T [M)  as was used to construct M  . The tape is a special 

case in that it is only one cell wide, and contains only the two states j^ 

and I. 

(3) As a special case of the preceding we will allow the description 

P 0/) to be copied into the tape of M.     For this operation, the following 

is placed on the tape of the universal constructor: a period, the description 

PCVJ . and a concluding square. The universal constructor executes V (M)  and 

lukos .'/, then makes a tape with the contents "period- V (Af) - square" by 

copying P (/•/), and finally starts machine M. 

Let the universal constructor be designated "A/ ". We then have the 
a 

following result concerning the construction universality of our cellular 

system. There aan be embedded in von Neumann's 29-state aellular automaton 

system a universal aonstruator li   with this ability:    for each initially 

quiescent automaton M with tape contents T (M)  there is a coded description 

V(M) of M such that,  when V(M) and    T(M) are placed on the tape attached to 

M ,  M   will construct M} will attach to M a. tape with contents T fM)3  and 

will activate M . 

Self-reproduction now follows as a special case. See Figure 29. 

Put the following on the tape of the universal constructor M  :    a period, 

P (A/ ), a square. The unviersal constructor executes P (Af ) and thereby 

constructs M ,   it next copies P (Af ) onto the tape of the newly constructed 

M  , and finally it activates the new M .    We began with M    and tape P (Af ). 
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After the constructor is finished the cellular structure contains a second 

copy of M   and tape p (;./ ). This is automaton self-reproduction. Hence an 

automaton which reproduces itself can be embedded in von Neumann's 29-state 

cellular automaton system. Iterated construction and iterated self-reproduction 

can be achieved by obvious modificatiors of the universal constructor. 

This result is obviously substantial, but to express its real force 

we must formulate it in such a way that it cannot be trivialized. Consider, 

for example, a two state cellular system whose transition function takes 

a cell into state "one" when any of its neighbors is in state "one". Define 

an automaton to be any area, even a single cell. A cell in state "one" 

then "reproduces itself" trivially in its neighboring cells. Clearly, what 

is needed is a requirement that the self-reproducing automaton have some 

minimal complexity. This requirement can be formulated in a number of ways. 

We will do it by requiring that the self-reproducing automaton also be a 

Turing machine. 

Since a universal Turing machine or computer can be embedded in 

von Neumann's cellular system (Fig. 26), such a machine can easily be 

combined with the universal constructor. When the description of this 

combined machine is placed on its own tape, followed by a square, it 

will produce a copy of itself. Hence, there can he embedded in von Neumann's 

29-state aetlular automaton system a universal aonstmator-aomputev which 

is self-reproducing. 

We conclude that von Neumann's cellular automaton system is 

computation-universal, construction-universal, and self-reproductive. 

In this system, self-reproduction is a special case of construction, and 

construction and computation are similar activities. 
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11.  KINEMATIC AND CELLULAR SELF-REPRODUCTION 

A brief comparison of von Neumann's two kinds of self-reproducing 

automata may increase our understanding of them.  Both are automata, 

being composed of computer or computer-like primitives.  Both exist in 

environments made of the same elements as themselves, differing from 

their environment only in tha they are "organized", while the environment 

is not. 

The most basic and important difference between the kinematic and 

the cellular automata systems is in the treatment of motion. The primitive 

elements of the kinematic system are capable of motion, while each finite 

automaton of the cellular system is fixed to its cell and cannot move. 

[Myhill, in "The Abstract Theory of Self-Reproduation"J  discusses a 

system which combines features of both. ] 

The processes which are achieved in the kinematic system by means of motion 

are achieved in the cellular system by transmitting information from cell 

to cell so as to realize the desired change of state. For example, in the 

kinematic system a finite automaton is constructed by collecting the needed 

parts, moving them into position, and soldering them together, while in 

the cellular system a finite automaton is constructed by sending out a 

communication channel (the constructing arm) and changing the state of a 

cellular area by means of signals sent through this channel. The difference 

is brought out by observing that in the kinematic system, self-reproduction 

results from (is a special case of) organized motion, whereas in the cellular 

system, motion is a special case of self-reproduction.  To move an object in 

cellular space we "merely" make a copy of that object in the new location 

and then destroy the original. 
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As far as studies of logic and automata theory are concerned, the 

cellular system is superior to the kinematic system just because it does 

not include motion as a basic operation. Motion is not a proper object 

of study for logic, and as we noted in discussing von Neumann's passage 

from the kinematic to the cellular system, the motional aspects of the 

kinematic system complicate it from the point of view of logical analysis. 

Viewed abstractly, the processes of computation, self-reproduction, and action 

are changes in the state of a system. In both the kinematic and the 

cellular system we are only simulating these processes. Hence, the 

ability to represent states and changes in them is the important thing, 

not the type of entity (kinematic element versus cell) which possesses 

the state. Since the detailed analysis of self-reproduction is facilitated 

by the absence of motion from the cellular system, it is superior to the 

kinematic system for von Neumann's purposes. 

One minor difference between the two systems should be noted. The 

kinematic system has a random or probabilistic feature, while the c&llular 

system does not.  But randomness does not play an essential role in the 

kinematic system.  It is used only as a device for making all the parts 

accessible to a constructing automaton, and alternate schemes are possible. 

For example, the parts could be arranged systematically and the constructing 

automaton could move to the parts it needs. 

[Von Neumann did recognize the importance of probabilistic automata 

and felt that an adequate theory of automata should cover them as well 

as deterministic automata. He discussed the question "How can reliable 

systems be constructed from unreliable components?" at length (see Burks, 

"Toward a Theory of Atuomata Based on More Realistio Primitive Elements"), 

and he hoped ultimately to study self-reproduction and evolution in a prob- 

abilistic cellular system (Theory of Self-Reproducing Automata, p. 99).] 
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The remaining difference between the two automaton systems concerns 

the number of primitive elements in each. The cellular system has a single 

primitive, the finite automaton located in each cell, whereas the kinematic 

system has nine kinds of primitive elements, three elements which switch 

("and", "or", and "not"), and elements which delay, move (kinematic element), 

cut, join (fusing element), sense, and provide structure (rigid el&ment). 

This difference is not fundamental, however, because conceptually one could 

combine all of these into a single element capable of all functions. 

The various types of primitives of the kinematic system dö correspond 

to functions to be performed in the system, and it is instructive to see 

how these functions are performed in the cellular system. From this point 

of view the nine primitives fall into four distinct classes. 

First, the variable structures made possible by the rigid elements 

(girders) of the kinematic system are replaced by the underlying fixed 

structure of the whole cellular system. 

Second, the switch and delay functions performed by the computing 

elements of the kinematic system are performed by the 29-state automata 

located in the cells of the cellular system; each of these automata could 

itself be synthesized from these elements. The context of a cell (that is, 

the states of its immediate neighbors) is essential in determining what 

switching and delay functions a 29-state automaton is performing. Within 

appropriate contexts, the following comparisons are valid. The confluent 

states £ , C.    ,  C , C  perform the functions of conjunction, double-delay, 

and branching. The ordinary transmission states-*-,;*■ , "^ , •',', "^ , t, + ,"^ 

perform the functions of transmission, disjunction, and unit delay; these 

states can recieve from and transmit to the comfluent states. The special 

transmission states =s>, =*■, A, .A, ««=, <*=, ||, '§   also perform the functions 

of tr. nsmission, disjunction and delay, but while they can recieve from 
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confluent states they cannot transmit to them. 

Von Neumann's kinematic and cellular computer elements have this in 

common: they are passive in the sense that they produce no output until 

stimulated. Consequently, negation can only be realized in the kinematic 

system if there is a source of pulses (a "clock") available, and negation 

is realized in the cellular system by means of the destructive ("killing") 

process. In other words, negation is not a primitive in either system 

and can only be synthesized by rather indirect means. Von Neumann wanted 

his computing primitives to have this characteristic so that the constructed 

automaton would remain quiescent during the construction process. He rec- 

ognized that a partly constructed automaton which was active could inter- 

fere with, and even prevent the completion of, the construction process. 

He thought there were interesting analogies here with the semantic paradoxes 

of mathmatical logic. 

[See Theory of Self-Reproduaing Automata,  pp. 121-126.] 

Third, let us consider how sensing is achieved in the cellular system. 

The content of a tape cell is sensed during the process of reading the 

tape (Sec. xy). What is actually sensed is whether the cell is in state 

U or in state ■*■; this difference is, of course, sufficient for purposes 

of storing information in the cell. The method is to send a sequence 10101 

around the reading loop and through the cell to be read (Fig. 24), and to 

note whether the output of the reading loop is 1 (in which case x    = U) or 

10101 (in which case x    = +). Not every state of a cell can be detected 

or sensed in the cellular system, but this makes no real difference to the 

computational or constructive powers of the system. 

Fourth and last, let us consider how the functions performed by the 

kinematic, fusing, and cutting elements of the kinematic automaton system 
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are achieved in the cellular automaton system.  In the kinematic system 

these elements are used to construct automata from primitive elements, 

modify automata (as when the contents of a tape are changed), and destroy 

(dis-assemble) automata. These functions are simulated in the cellular 

system by changing the states of the cells in a given area. This is 

accomplished by sending out a constructing arm, sweeping the area with it, 

and "writing" the desired state in each cell.  Both the constructive process 

(changing U into a passive confluent or passive transmission state) and the 

destructive process (changing a confluent or transmission state back to U) 

play essential roles in this process. 

12.  HEURISTICS OF CELLULAR SPACES 

So far we have considered only one particular cellular automaton 

system, which von Neumann defined for the purpose of investigating some 

organizational and programming aspects of self-reproduction (Sees. 3-10). 

But the concept of a cellular automaton is very broad, allowing many basic 

variations from von Neumann's system. We can change the geometry of the 

space and the neighborhood relation; we can consider indeterministic and 

probabilisitc transition functions as well as deterministic ones; and we can 

even consider non-homogeneous neighborhood relations and transition functions. 

The concept of a cellular automaton system is thus a very rich one. 

Its essential features are a quantized time and space, a finite number of 

possible states for each point of space-time, and a computable local trans- 

ition function or law (not necessarily deterministic or uniform over space) 

governing the operation of the systen through time. Many natural systems 

can be fruitfully approximated and simulated in a cellular framework.  The 

chief theoretical restrictions are two in number.  First, the natural system 

to be studied m«. 5t be governed by a local law so that it can be represented 
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by a finite transition function.    This precludes the use of cellular 

automata for the simulation of Newtonian gravitational systems,  for example, 

because the law of gravitation includes action-at-a-distance where there is 

no upper limit on the effective distance over which gravity acts.    Second, 

the behavior of the system to be simulated cannot depend on essential dis- 

continuities, that is, discontinuities which cannot be approximated in a 

discrete framework.    However, there may be no such natural systems. 

The most binding restriction on the use of cellular automata for the 

study of natural processes  is a practical one.     In any interesting case 

some or all of the following numerical parameters are large:    the number of 

possible states of a neighborhood,  the number of different transition func- 

tions to be investigated,  and the number and size of the cellular automata 

(i.e., histories) to be considered.    The practical import of these numbers 

depends on the extent to which sets of cases can be handled as a group,  and 

where simulation is involved,  on one's abilities and techniques for sel- 

ecting or generating the significant cases. 

Cellular automata systems have been successfully used for the study 

of natural systems.     It has   long been the practice to solve partial dif- 

ferential  equations for a vibrating membrane, or heat flow, or diffusion 

processes, by handling them in a discrete grid,  and since the laws in these 

cases are local  in character this amounts to using a cellular space,  the 

transition function being expresssd by the difference equation version 

of the differential equations.    Non-homogeneous cellular automata have been 

used in the simulation of neural nets and of information processing by heart 

tissue,  and I think cellular automata systems will be very useful for 

simulating evolutionary systems. 
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[Rochester,  et.  al., "Tests on a Cell Assembly TTieory of the Action 

of the Brain."] 

[Swain and Flanigan,  "Computer Simulation of A-V Nodal Conduction."] 

[Rosenberg,  Simulation of Genetic Populations with Bioahemioat Properties, 

Sec.  3.3.] 

Many questions about cellular automata systems can be answered by 

analytical methods.    Von Neumann's results  about the computation universality 

and construction univer ality of his  29-state cellular system were established 

in this way,  as were the results of Moore and Myhill concerning the existence 

of configurations which can exist only initially (Moore, Machine Models of 

Self-Reproduction"; Myhill,  "The Converse of Moore's Garden-of-Eden Theorem")   . 

But many interesting questions about cellular systems cannot be answered 

analytically.    This  is especially so for cellular systems which are adequate 

for modeling natural systems.    Here the sheer complexity of the situation 

a-id/or the  indefinite nature of the problem demands simulation. 

Simulation can be carried out   in different ways and for different 

purposes.    One type of problem is this.    Given a cellular automaton system, 

and hence a transition function,  to find particular cases   (i.e., cellular 

automata) which have certain properties.    Examples are found in the work 

of Ulam and his collaborators    (eg.   Ulam,   "Some Mathematical  Problems Con- 

cerned with Patterns of Growth of Figures" ).     It is generally necessary to 

run many cases before finding an interesting one,  and sometimes  even before 

acquiring sufficient experience to select  initial states wisely.    Such 

computer investigations are best carried oiK with the investigator in 

intimate contact with the machine,   so that he can observe the effects of 

his decisions,  and can terminate unpromising runs before they waste valuable 

machine time. 
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An even more difficult problem is that of searching for a transition 

function which defines a cellular automaton system having certain properties. 

One may seek a cellular system which simulates some given natural system; 

for example, an evolutionary system, the fibrillation of the heart,  individual 

behavior, or group behavior.    Von Neumann sought  a cellular automaton system 

with "not too many states" which was computationally and constructionally 

universal.    The problem of finding a transition function which generates 

automata with certain properties is a very important and basic problem,  so 

we will discuss its general nature and then consider a promising method 

for solving it by means of a man-machine complex. 

With respect to the number of automata under consideration, the 

problem of finding a transition function which satisfies certain conditions 

is one level higher than the problem of finding a cellular automaton of a given 

system which satisfies a certain condition.    The  latter problem concerns 

the class of cellular automata defined by a single cellular automaton system, 

while the former problem concerns a class of cellular automata systems. 

Suppose we choose a cellular space, that is a geometry and neighborhood 

relation.    Each transition function defines a cellular automaton system 

based on this space,  and consisting of a set of cellular automata.    Hence 

when one considers all possible transition functions definable on a given 

cellular space, he is considering not merely a set of cellular automata, 

but a set of sets of cellular automata. 

The problem of finding a transition function which generates certain 

behaviors is analogous to the  inductive problem of finding a law which 

accounts for observed phenomena, just as a cellular automaton system is 

analogous to  (and therefore can be used to simulate) a natural system. 

A look at this analogy will help us understand how cellular automata can 

be used to simulate natural systems.    Consider first some natural system 

■a^M 
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in sapce-time,  e.g.,  the solar system.    The laws of a natural system define 

a set of possible universes, namely, all those universes which result from 

applying these laws to some state of the system at some arbitrary time. 

[These universes are causally possible universes,  as distinguished, 

for example,  from logically possible universes.    The logic of statements 

about causally possible and causally necessary universes  is treated in 

my "The  Logic  of Causal Propositions."] 

Consider second a cellular automaton system.     Its underlying cellular space 

corresponds to the space-time basis of a natural system.     Its transition 

function corresponds to the law   (or set of laws) of a natural system.    Similarly, 

its transition function defines  a set of possible universes, namely, all 

the cellular automata which result from applying the transition function 

to an initial state of the system. 

[If the transition function  is deterministic,  each  initial state defines 

a single cellular automaton.     If the transition function is indeterministic, 

each initial state defines a set   (possibly infinite) of cellular automata. 

If the transition function is probabilistic,  there is a succession of 

poobability distributions over the succession of finite histories of 

cellular automata resulting from an initial state.] 

A cellular automaton is thus a possible world,  and a cellular automaton 

system is a set of possible worlds. 

We can now see more clearly the analogy between the automata theorists' 

problem of starting with a given type of cellular automaton behavior  (e.g., 

self-reproduction,  evolution)  and ending with a cellular automaton system 

in which this behavior occurs,   and the natural scientists'  problem of 

beginning with certain observed phenomenon and ending with a  law which 

accounts for that phenomenon.     Both begin with some phenomenon or behavior 

and end with a law or transition function such that a system governed by 
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that law or transition function displays that phenomenon or behavior. The 

scientist may proceed by considering different possible laws, inferring 

consequences from each, and checking the consequences against the given 

observed phenomenon. Analogously, the automaton theorist may proceed by 

considering different transition functions and ascertaining what automaton 

behaviors each generates. This may be done analytically (as von Neumann 

did in his design of a self-reproducing automaton) or computationally (by 

simulating cellular automata which have these transition functions). The 

analogy between the natural scientists' procedure for discovering and 

confirming laws to explain observed phenomena and the automata theorists' 

procedure for discovering transition functions and showing that they produce 

certain behavior becomes an identity when cellular automata are used to 

model or simulate natural systems. 

[In my forthcoming book, Cause,   Chanae, and Reason,  I will give an 

analysis of inductive inference in terms of a probabilistic choice, from 

among alternative possible laws, of a law to account for observed phenomena.] 

This concludes our general remarks about the problem of finding a 

transition function satisfying certain behavioral conditions. We will 

explain next an interactive man-machine method for solving certain problems 

of this sort which has already been used successfully and which is a 

promising tool for this type of basic investigation. The general principle 

is this. The investigator partly defines a transition function for his 

cellular space. He then specifies an initial automaton state and has the 

computer generate a finite fragment of the resultant cellular automaton 

in an attempt to produce one of the desired phenomena. He repeats this 

step until it succeeds or until he decides it is not promising.  In the 

latter case he tries an alternate partial definition. If the step succeeds, 

he augments the partial definition further in an attempt to produce other 
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desired phenomena, and repeats the step. 

The best way to explain this heuristic method in detail is to describe 

a case in which it was successful. 

The problem was that of improving on von Neumann's cellular automaton 

results with respect to the number of states needed for computation and 

construction universality, so let us first formulate von Neumann's problem 

in a general way. After considering various kinds of cellular frameworks, 

von Neumann decided on a cellular space consisting of a two-dimensional 

infinite array of square cells (a "checkerboard") and a "neighborhood" 

composed of a cell and the four cells with which it shares boundaries. 

[Theory of Self-Reproducing Automata,  Part II, Ch. 1 and Sec. 2.1] 

His problem was then to define a transition function (and thus a cellular 

automaton system) satisfying the following four conditions. 

(1) The system is homogeneous in the sense that the neighborhood 

relation and the transition function are the same for every cell. This 

restriction prevents one from building a specific automaton design into 

the cellular space by varying the transition function from cell to cell. 

(2) A universal computing (Turing) machine can be embedded in the 

cellular system. This machine will occupy a finite number of cells 

initially, but will have the capability of extending itself indefinitely 

so as to have unlimited storage capacity, 

(3) The system is construction-universal in the following sense. 

Any finite number of designated cells in arbitrarily assigned states 

constitutes an (initially) finite machine. The construction-universality 

requirement is that thare exist a class M of finite automata which 

contains a universal Turing machine M     and also a machine M     with this 6 u c 

ability:  for any machine M belonging to M, when M     is supplied with a 
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description of M and placed in an environment of blank states, M     will 

construct M somewhere in this environment. The machine W is a universal 
c 

constructing machine. In Section 10 we took M to be the class of initially 

quiescent automata. 

(4) The number of states in each cell is "relatively small". 

The problem just stated is clearly not a formal one, but depends on 

the interpretation of such concepts as "embedding" and "relatively small". 

This is so even though a solution to the problem can be stated formally, 

as we stated von Neumann's own solution to the problem (Sees. 9, 10). 

The reason r3r the fourth requirement, that the number of states be relatively 

small, is that without this requirement the problem is easily solved. 

For we could place a general-purpose computer (or the finite part of a 

universal Turing machine) in each cell, and arrange that each such computer 

could communicate with its four neighbors.  It is easy to see that any 

infinite row (or equivalent) of cells constitutes a universal computing 

machine, with one cell serving as the finite automaton part and the cells 

to its left and right serving as an infinite tape. Moreover, universal 

construction and self-reproduction would not be hard to achieve in such a 

cellular automaton system. 

Von Neumann approached and solved this problem analytically. The 

primitive elements he deviled were based on those he used in the logical 

design of the EDVAC, the first stored program electronic computer. 

[See Theory of Self-Reproduaing Automata^  pp. 9, 44, 99, 157. Essentially 

the same primitives were used in his kinematic automata; See Sec. 1 above.] 

We will briefly describe these primitives, and then show how von Neumann 

very cleverly adapted them to his cellular space so as to achieve a 

construction-universal and computation-universal cellular automaton system 

with a relatively small number (29) of states. 
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The fundamental units of the design of the EDVAC were switch- 

delay elements with one to three excitatory inputs, possibly one or two 

inhibitory inputs, and a threshold number 1, 2, or 3. An element emits 

a stimulus (pulse) at time t + 1 if and only if two conditions are satisfied 

at time t:    no inhibitory input is stimulated, and the number of excitatory 

inputs stimulated is at least as great as the threshold number. No stimulus 

is emitted at time zero, but there is in addition a "clock" element which 

emits a pulse at every moment of time. 

To adapt this set of primitives to the two-dimensional cellular 

framework, it was necessary to provide for wire-branching and wire-crossing, 

either directly or indirectly. In his cellular systen von Neumann acc- 

omplished wire-branching directly, by making this one of the time functions 

of the confluent element (C). In contrast, he accomplished wire-crossing 

indirectly, by synthesizing a coded channel from the primitives he did adopt 

(Fig. 7). Note that all of the EDVAC primitives are initially quiescent, 

except for the clock. To synthesize a clock in the cellular system one 

establishes a cellular path (like the repeater in Fig. 12a), and stipulates 

that the elements of the path be active initially. 

The adaptation of the EDVAC logical design primitives to a cellular 

framework, described so far, is fairly straightforward. But to make a 

cell capable of becoming each of these primitives would require a very 

large number of states, since each primitive itself has many possible 

input and output directions. This large number of states would then require 

a large number of intermediate states for construction (von Neumann's 

sensitized states S-, So, §.  ...).  Further states would be required for 

destruction. What is really ingenious is the way von Neumann was able 

to realize all the EDVAC functions with a transition function having only 
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29 states. His main method for accomplishing this reduction was to exploit 

the context of a cell. The data needed to specify the input and output 

directions of an element are minimized by specifying only the output direction 

within the cell (and this only for transmission states). The input directions 

for an element in a cell are determined by the states of the neighboring 

cells. In the end only twelve states are required for conjunction, disjunction, 

and wire-branching. In addition, von Neumann made good use of the duality 

of ordinary and special transmission states to realize a destructive cap- 

ability, as well as negation, with only eight additional states. 

The transition function for a cell is a finite table, giving for each 

state of the cell snd its neighbors the state of the next cell. If the 

different local behaviors to be realized have some degree of logical 

independence, the function may be defined piecemeal, by partially defining 

it (i.e., defining it for certain cases) to get one behavior, further defining 

it to get another behavior, etc., etc.  In this way a sequence of stronger 

partial transition functions is defined, allowing more and more types of 

behavior. Now suppose at a certain stage a number of desired behaviors 

are possible but a further desired behavior is excluded. One then goes back 

in the sequence and attempts to modify the partial definitions so as to 

preserve the achieved desired behaviors and also obtain the further desired 

behavior. 

Note that a partially defined transition function is actually an 

indeterministic transition function,  allowing many possible succeeding 

states for the unspecified cases.    Hence the procedure just described is 

one of defining stronger and stronger indeterministic transition functions, 

until one finally obtains a transition function, either deterministic or 

indeterministic, which achieves   the desired behavior. 
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This is the procedure von Neumann actually followed in defining his 

transition function (see Fig.  15). 

[Theory of Self-Reproduaing Automata,  Part II, Ch. 2.] 

He first defined the ordinary transmission states, out of which one can 

build disjunctive switches and signal transmission paths which can go 

straight or turn corners.    He next defined the confluent states;  from these 

and the ordinary transmission states one can construct conjunctive switches 

and wire-branching devices.    At this stage in his synthesis the confluent 

states had a single unit of delay.    He then added the special transmission 

states to achieve the destructive process:  active special transmission 

states kill both ordinary transmission and confluent states back to U, and 

active ordinary transmission states kill special transmission states back 

to Q,    He decided to realize the constructive process by means of a sequence 

of stimuli sent into a cell in state U from a transmission state; this 

required "sensitized" states to store the initial segments of the sequence 

(see Fig. 9).    Now the natural way to generate a sequence of stimuli is 

to take a single stimulus, send it along alternative paths with different 

delays,  and then merge these paths  (as in the pulser of Fig.  5).    But this 

could not be done with the transition function as it was defined.     For 

consider the delays along two different paths from one cell to another, 

where the paths are composed of transmission and confluent states.     The 

difference in cell  length of these paths must be a multiple of two,  and 

since both transmission and confluent states had  (at this point of the def- 

inition) a unit delay,  the time delays along these two paths must differ 

by a multiple of two.    Hence one could not produce, by this natural 

technique and in the system as defined, an arbitrary finite pulse sequence 

ij ig  ... t„    (each i    = 0, 1.) To remedy this defect,  von Neumann went 

back and modified his transition function by giving confluent states  a 
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double delay. 

[Theory of Self-Eevvoduaing Automata,  pp.  146-148 and Fig. 8] 

In this way von Neumann defined a transition function with a relatively 

small  set of states  (29)  which was nevertheless sufficient to achieve a 

rather powerful set of elementary operations or behaviors:    the logical 

operations of "or" and of "and",  transmission, wire-branching,  arbitrary 

relative delays down alternate paths,  construction,  and destruction.    Using 

these operations, he proceeded to synthesize various organs  (pulser, 

decoder,  coded channel, periodic pulser,  constructing arm head) and higher- 

level  functions  (sensing,  negation).    With these he synthesized still higher 

level organs  (control unit,  constructing arm, tape, constructing unit), and 

finally a universal computer and a universal constructor. 

In the last few pages we have formulated von Neumann's problem as 

he might have viewed it at the start, and indicated his  general method 

of solving it.    Using this method,  von Neumann found a solution with 29 

states per cell.    The problem arises:    can this number be reduced 

appreciably? 

This problem was taken by Edpar Codd as his doctoral problem,  and he 

solved it very successfully. 

[Edgar F. Codd, Propagation,  Computation, and Construation in Two- 

Dimensional Cellular Spaces.    Ph.D.  Thesis  in Communication Sciences, 

University of Michigan,  1965.    This has been published as a book by 

Academic Press  (1968) under the title Cellular Automata.] 

He was able to devise an eight-state cellular system which is both 

computational-universal and construction-universal.    Moreover, this system 

is stronger than von Neumann's  in two additional respects.    The transition- 

function has a stronger kind of rotat ion-symmetry than does von Neumann's. 

Also,  there are two states such that any finite configuration  (area)  of 
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these two states can be read and erased as well as written (constructed). 

This is possible because that state of a cell which is in one of these two 

states can be sensed by means of an "echo signal", which reflects (bounds 

back) from the cell, the nature of the reflected signal depending on the 

state of the cell. In contrast, to sense whether a cell in von Neumann's 

system is in state U or state +, we send a signal through  the cell (see 

Fig. 24). While it would be very hard to prove, it seems doubtful that 

there are two states of von Neumann's system such that any finite area of 

these two states could be read or sensed from within the system. 

Codd's cellular automaton system is primarily of interest to us here 

because it was generated by what we have called "the interactive man-machine 

method." 

[He also used this method to search, unsuccessfully, for universal 

systems with eight neighbors per cell but only two or three states.] 

As von Neumann did, Codd chose as sub-goals certain elementary behavioral 

functions, which he thought he could later synthesize into organs, larger 

units, and finally universal computers and constructors. He then proceeded 

to define his transmission function piecemeal so as to obtain these 

behaviors, retreating when a partial definition turned out to have undes- 

irable consequences, and either modifying the definition as it had been 

specified at an earlier stage or seeking alternative behavior (sub-goals) 

to realize the final goal. But whereas von Neumann proceeded analytically, 

using only his own reasoning and testing a few cases by hand, Codd used 

a computing machine to assist him. 

The procedure was as follows. The user first gives the computer the 

neighborhood relation, the number of states per cell, and the symmetry 

condition to be imposed on the final transition function. The user then 

gives the computer a partial transition function by means of which he hopes 
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to generate a certain kind of behavior; the computer extends the partial 

transition function in accordance with the symmetry condition, or lets the 

user know that this extension is impossible so he can modify his definition. 

Next, the user gives the computer an initial state he hopes will lead to a 

certain phenomenon. The computer calculates the behavior of the resultant 

cellular automaton time-step by time-step, printing out the result at each 

time-step, stopping at each time-step to allow the user to make a choice, 

and stopping when it comes on a condition not covered by the partial 

transition function. When the latter happens, the user may further specify 

the transition function. At any time-step the user can go back to earlier 

time-steps and change a partial definition, or go back to the beginning 

and start with a different initial state and/or partial definition. The 

user makes these choices on the basis of the simulated behavior he observes. 

There are obvious advantages to such simulations. The computer can 

make routine calculations rapidly as well as accurately, it can check 

constraints automatically, and it can assume responsibility for storing and 

arranging large amounts of data in a way that makes vital information 

immediately available to the user when he needs it. These advantages lead 

in turn to deeper advantages. For example, a human generally finds it 

difficult to trace out the successive states of an automaton when the 

transition function is basically different from those functions he is 

familiar with. A machine has no such difficulties, since it calculates 

by brute force and not in terms of certain intuitions derived from ex- 

perience. Hence by using a machine one can quickly explore the consequences 

of an unfamiliar rule. 

In the process of defining his 29-state transition function, von Neumann 

started with the usual computer primitives (switches and delays), and adapted 
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them to the cellular context so he could realize not only the functions 

essential to computing per se, but also the functions needed to carry out 

computation  (and construction as well) in a cellular space.    The most basic 

of these latter functions are:     sensing the state of a cell,  as in reading 

a tape   (Fig.   24);  changing the state of a cell -- this  includes construction 

and destruction processes,  as well as logical and transmission processes; 

and operating a signal transmission path from a source  -- this includes 

extending,  retracting,  and carrying out operations at  the terminus of the 

path  (see the constructing arm.  Figs,  18-23).    With a machine to test each 

possible transition function by simulation,  Codd could and did aim directly 

at achieving the basic functions needed for computation and construction 

in a cellular space.    Thus whereas von Neumann took disjunction and 

conjunction as primitives and synthesized negation,  Codd was able to 

synthesize all switching functions from operations which, in a cellular 

framework,  are more fundamental.  After conducting his  investiagtion with the 

assistance of a computer, he achieved an eight-state universal cellular 

system which has a number of novel and interesting features,  and his success 

was due in part to the assistance he recieved from the computer.    The most 

striking case of this assistance was the discovery of the echo phenomenon. 

The technique of reading (sensing) the state of a cell by reflecting an 

echo signal  from that cell was not designed or planned.     Rather, the phenomenon 

of an echo signal was accidentally generated in the course of a simulation 

which had a different objective,  and then recognized by the experimenter 

on the basis of a possible sensing technique. 

A brief summary of the eight states and their chief functions will 

bring out some of the novel features of Codd's cellular automaton system. 

[The system he defined is  indeterministic,  since he only specified 

the transition function up to the point where universal  computation and 
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universal construction are possible.] 

Four of the states (0, 1, 2, 3) mainly perform structural functions, while 

four (4, 5, 6, 7) are used for signalling. State zero (0) is the blank 

state. State one (1) is used to mark out a bi-directional transmission 

path through the cellular space. Such a path is ready to conduct signals 

when it is insulated or "sheathed" by neighbors which are in the sheathing 

state (2J. State three (3) is used to perform gating functions. Two of the 

signal states (4, 5) are used for information transmission and processing. 

The direction of a signal down a transmission line is determined by means of 

a blank state (0); for example, "04" moves to the right, "40" moves to the 

left. The signal state six (6) is used to cause a sheath to be formed 

on th« two sides of a transmission line of ones; compare the myelin sheath 

surrounding a neuron. The signal state seven (7) is used to activate an 

automaton by setting up certain gates and starting the automaton. Thus the 

construction of an automaton takes place in three stages. First, the basic 

structure is laid down in an area by changing certain cells from state 

zero to state one. Second, the transmission paths are sheathed by the 

sheathing signal. Finally, the constructed automaton is activated by the 

activating signal. 

We said earlier that cellular automaton systems are not only of 

interest in their own right, but provide a framework for investigating 

many natural systems, including the heart, nerve nets, and evolutionary 

systems. It therefore seemed worthwhile to develop an interactive man- 

machine system especially suited to this purpose, and some of us are now 

doing this. 

[This is a project of the Logic of Computers Group, Department of 

Computer and Communication Sciences, University of Michigan. It is under 
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the direction of John Holland,  Ronald Brender,  and myself.    The work is 

supported by the National Institutes of Health and the Advanced Research 

Projects Agency of the Department of Defense.] 

We have two small computing machines,  one connected to a disc file, another 

to an oscilloscope unit with a light pen, and both interconnected via an 

interface.    The first machine stores the information concerning the cellular auto- 

maton under investigation:    the cellular geometry, the neighborhood relation, 

the transition function as so far defined, the initial state under con- 

struction,  and the history of the automaton as so far computed.    This history 

will be stored on the disc file.    The second machine displays either the 

transition function or a selected portion of the history,  as requested by 

the investigator.    This machine also receives the investigator's input 

to the process via light pen or typewriter.    The investigator may insert 

a new initial state or modify the transition function.    He may ask to see 

a different part of the history or to see the present state in more detail, 

or he may request the machine to return to an earlier point in history 

and compute the subsequent history with a modified transition function. 

An essential part of this interactive man-machine combine is a 

a software system that permits the investigator to easily control and direct 

the computation,  so he can devote most of his intellectual energies to 

guiding the investigation:    making decisions,  looking for interesting 

phenomena,  and thinking up suggestions and hypotheses.    This software 

system will consist of data structures, programs, and languages especially 

designed for convenient man-machine communication during the investigative 

process.     When completed, the software system will allow easy and sepatate 

specification of the cell geometry,  the neighborhood relation, the trans- 

ition function,  and initial states,  and will provide ample options for 

control. 
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Our aim is to optimize the division of labor between man and machine 

for this particular type of research, by arranging for each to do those 

tasks he is best suited for.    If we have a reasonable measure of success, 

the resultant interactive man-machine complex should be a very powerful 

instrument for the investigation of cellular automata systems. 

I 
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