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CHAPTER I

INTRODUCTION

Nature of the Study

This study consists of the development and illustration of a

systematic design procedure which can be used to solve a set of

engineering design problems. The design procedure is based on a

nondimensional approach. When applied to a given design field, the

procedure aids in determining the diversity of possible design form

families, the variations of design form within a family, the relation-

ship between design form and the design objective, the scaling of

design forms, and the general nature of research studies or new

ideas which might lead to new design forms.

The design procedure is primarily oriented toward solving a

set of design problems rather than solving a specific design problem.

Consequently, it is most useful for determining solutions to a

variety of design problems In a given field, or for determining the

diversity and use of possible design forms in a given field.

The proposed design procedure should not be considered the

only or the best approach to design, but merely as one approach

which will hopefully be of use in the further development of design

theory. The procedure may be viewed as a tool in solving a set of

design problems in much the same way that a mathematical method is

used as a tool In solving an equation. Considerable knowledge and
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ingenuity are still required in order to use the method most

effectively.

Goal of Engineering Design

The objective of engineering design is to satisfy a given

need with the best possible design solution. The meaning of "best"

depends upon the need, and is essentially a criterion which is to

be optimized such as one or a combination of the following: lowest

cost, highest reliability, maximum efficiency, minimum size, longest

life, minimum maintenance, etc. The given need is assumed to

contain all of the information required to specify the design problem.

Therefore, a design problem should specify the general nature of the

problem, the performance desired (such as speed, range, flow rate,

etc.), the various required operating situattons (such as the

operating fluid, operating time periods or cycles, characteristics

of the operating environment, unsteady forces, etc.), all special

criteria which the design must satisfy (such as restrictions on

material or fabrication technique, requirement to match other parts,

specification for minimum allowable reliability, etc.), and an

optimization criterion. Summarizing, the goal of engineering design

is to satisfy a given design problem which consists of a brief

statement of the purpose of the design, and the specification of

the performance objectives, the required operating situations, all

special design criteria, and an optimization criterion.



Background

Considering the many methods of engineering design presented

in the various design handbooks, reference books, and reports in

specialized fields, surprisingly little information relates to

engineering design procedures which are based on a nondimensional

analytical1 approach and which apply to a wide vari-ety of design

fields.

Zwicky's morphological method (2) is a noteworthy semi-

analytical approach wherein a general design solution is first

established which consists of basic design components such as the

power source, structural material, sensing systems, propulsor, etc.

All possible types of each component are then listed, and finally,

each resulting combination of types of components is analyzed as a

possible design solution to the design problem.

An analytical approach, as used here, is meant to exclude

design approaches based principally upon random search
techniques, some examples of which are the Monte Carlo
method, game theory, or any of the related methods used in
systems analysis. However, random search techniques can be
useful in certain portions of an analytical approach and
have been found useful as the basis for design problems
which are well understood. One very useful type of random
search technique was developed by Handel (1) which, although
applied to ship design, could be readily generalized for use
in other design fields. This approach consists of solving
a specific design problem by utilizing a digital computer to
consider a large number of designs consisting of variations
of a predetermined set of design variables. The performance
of each design is determined by a special computer program,
and the design which provides optimum performance is
selected.



4

Some fundamental aspects of the design process are presented

by McLean (3), who believes that simple and reliable design is an

art which requires a designer with creative talents who understands

his field, and has the freedom, time, and encouragement to express

his talents. It is because of the many reasons presented in (3) that

any systematic procedure of design will still require considerable

knowledge and ingenuity by the designer in order to be most effective.

Some of the design concepts presented by McLean (3) are: (a) a broad

statement of the problem will leave the designer much more freedom in

creating novel solutions and reduce the chance of being channeled into

a specific type of solution; (b) the designer should gain a thorough

understanding of the factors which set the limits on the design

problem; such factors may be natural physical limits or limits

imposed by the state of the art; (c) the designer must develop an

understanding of the trade-offs which may exist under an overall

limit where an improvement in one desirable characteristic leads to

a decreased ability to fulfill another desirable characteristic; and

(d) a simple design is anything but simple in its creation, and often

appears to be so simple and logical that it is difficult to imagine

why so much time and effort were required for its development.

A possible approach to a generalized design method is presented

in a paper by Gabrielli and Von Karma'dn, called "What Price Speed?" (4).

This paper contains a graph of empirical data showing-specific power

Inventor of the well-known Sidewinder air-to-air missile.



(horsepower per ton) as a function of maxi:mum speed for a wide

variety of land, sea, and air vehicles. A i.imi:ting relationship

between minimum specific power and maximum speed was found which

indicates the minimum price in power that must be paid for increased

speed, independent of the vehicle type. The graph also shows the

type of known vehicle which requires the minimum specific power to

achieve a given maximum speed. This result suggests that non-empirical

methods might be developed which would provide similar and other kinds

of general limiting relationships.

Davidson (5) performed a general:i-zed theoretical analysis of

ships, which also included a brief study of airpranes, in which he

showed that neither ships nor airplanes were necessarily restricted

by the empi-rical limiting line of specific power versus speed

presented in (4). In agreement with Gabrielli and Von Karma"i,

Davidson showed that the limiting line is determined by maximum size,

which in turn is primarily structurally li-mi:ted. Significantly,

his analysis showed that the limiting line could be exceeded by large

ships and airplanes which lie within the scope of current technology

and would not require major improvements in materials. His general-

ized analysis is of interest because he utilizes the nondimensional

method to considerable advantage and establishes the beginning of an

approach for analyzing a variety of design forms.

A more systematic nondimensional approach to design is

described in a recent report by Wislicenus (6). The specified

operating conditions (i.e., design requirements) of 6 design problem

are placed in nondimensional form and, through the use of physical
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relationships, are equated to functions of nondimensional design

variables. A solution of the resulting set of equations helps to

provide the desired design form. The approach clearly demonstrates

the significance of a nondimensional method. The nondimensional

operating conditions are essentially similarity relationships which

permit broad scaling of the resulting design forms. Some of the

design concepts presented by Wislicenus (6) are: (a) form design

should not be pursued primarily on an intuitive basis but rather on

a rational approach as far as possible; (b) designers should recog-

nize the existence of related design forms in technology and nature1

(c) geometrically similar design forms may be classed together

regardless of size; (d) a large number of systematically related

design forms exist which may be called families and which are

characterized by variations of a dimensionless form or performance

parameter; (e) the specified dimensionless operating conditions must

be related in some rational fashion to dimensionless elements of the

design form; (f) the quantity of design variables cannot be expected

to completely describe a design form, but need not be large for

preliminary design purposes; (g) in the field of design, any

conceivable class of objects can be defined not only by its physical

characteristics but also by a set of operating or design require-

ments; and (h) there is, and must be, a relation between the design

Such forms in nature are acknowledged in (6) to have been

suggested by John Erwin of the General Electric Company,
Cincinnati, Ohio. A very complete nondimensional analysis
of related forms in nature has been conducted by
W. R. Stahl (7).



requirements and the physical characteristics of the object to be

designed; otherwise, a design problem would have no solution.

Further use of the similarity relationships derived by

Wislicenus was made by Werner (8) in a report on the analysis of

airplane design. Aircraft form characteristics and families of

aircraft types were related to specific values of vartous similarity

parameters. This analysis permitted many conclusions to be drawn

regarding trends in aircraft design form as a function of weight,

speed, engine type, and other variables. 1

Other significant approaches to design were suggested by

D. P. Hoult2 during informal discussions. He proposed that a

multidimensional space be set up (consisting of nondimensional

variables which affect design form) and that regions in this space

be found which correspond to certain families or groups of design

form. Also, he suggested a way in which group theory might be

utilized in design.

Statement of the Problem

The objectives of this study were to:

1. Establish the basic concepts of a general and complete

1 The results of the analysis showed that none of the modern

very large airplanes yet exceed the limit line established
by Gabrielli and Von Karma'n.

2 Associate Professor in the Department of Aerospace Engineering,

The Pennsylvania State University, University Park, Pennsyl-
vania. Currently Associate Professor in the Department of
Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts.
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engineering design theory based on an analytical

nondimensional approach.
1

2. Illustrate the theory by a number of different but

general design examples.

3. Develop methods permitting the establishment of areas

in which inventions or research studies are still needed.

4. Establish the basic concepts of the design theory in a

rigorous manner thereby permitting mathematical treatment

of design problems as far as possible.

Outline of the Text

The design procedure is developed in Chapter II, and is

outlined in Chapter III which also contains a list of its advantages

andbrief illustrations showing how the procedure is used in solving

simple design problems. Chapter IV contains a more complete dis-

cussion of the design procedure, its use, related topics, and

comments on the future development of design theory. Three relatively

complex design examples are presented in Chapter V, Appendix A, and

Appendix B which treat the design of submerged bodies, airplane

wings and hydrofoils, and hydrofoil cross sections, respectively.

The latter design problem is included because it may be considered

partially a research problem and therefore demonstrates one of the

The previously mentioned nondimensional design theories

based on an analytical approach lack completeness because
a specific design procedure is missing and the optimization
criterion is not included.
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ways in which the design procedure is applicable to research. The

results of the study are summarized in Chapter VI which also contains

the conclusions.
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CHAPTER II

DEVELOPMENT OF THE DESIGN PROCEDURE

This chapter presents the principal concepts on which the

design procedure is based. The nondimensional approach to design

is discussed, and the notion of a generalized design mission is

presented. Any questions regarding the design theory or procedure

which are not clearly answered in this chapter may be found answered

in Chapter III or Chapter IV.

Design Problem

As mentioned in Chapter I, a design problem typically

consists of: (a) a brief statement which describes the general

purpose of the design (i.e., a general design objective), (b) a set

of independentI requirements which must be satisfied by any design

solution (i.e., design problem specifications), and (c) a criterion

which is to be optimized by any design solution (i.e., an optimiza-

tion criterion). The independent requirements consist of certain

desired performance characteristics, prescribed operating situations,

and prescribed design characeristics.

A quantity which belongs to a set of quantities is said

to be independent if its value cannot be calculated from
the values of the other quantities belonging to the set.
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Designers may be presented with a great variety of design

problems. Some problems may be so specific that little is left to

design, while other problems may be so broad that the designer must

consider a wide variety of design forms before selecting the form

which best satisfies the design goal. The design procedure developed

herein can be applied to either specific or to broad design problems.

Design Mission

A design mission is defined as a nondimensional design problem

which consists of a general design objective, a set of independent

mission specifications (i.e., a set of nondimensional design problem

specifications), and an optimization criterion (which is assumed to

be nondimensional from here on).

Mission specifications. By nondimensionalizing the design

problem specifications, a considerable number of design problems

can be collapsed into relatively few design missions. Instead of

specifying the dimensional values for each of the design problem

specifications, corresponding values for nondimensional groupings

of them are specified. Examples of such nondimensional groupings,

or mission specifications, are pump specific speed, airfoil lift

coefficient, vehicle Reynolds number, ship Froude number, hydrofoil

cavitation number, airplane Mach number, etc. Consider Mach number,

for example, and note the large number of combinations of airplane

speed and local speed of sound which are required to replace a

single value of the Mach number (which represents the influence of

compressibility). Similarly, consider all of the values of velocity,
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length, and kinematic viscosity which must be used to replace a

given Reynolds number (which represents the influence of fluid

viscosity in a dynamic problem). Consequently, it is seen that the

use of a nondimensional parameter not only permits information to

be condensed, but may also be used to represent the influence of a

certain physical phenomenon. Furthermore, the value of a nondimen-

sional parameter gives true meaning to such terms as "high speed",

"low viscosity", "large size", etc. An example of the use of the

nondimensional approach in solving design problems related to

various types of turbomachinery is presented by Wislicenus (9).

Design forms. Some of the mission specifications may

consist of specified design characteristics. Since the mission

specifications are nondimensional, all specified design character-

istics must be nondimensional. Therefore, the specified design

characteristics must describe some aspect of the design form,

where "design form" is defined as the geometric shape of a design

and all of its components. When speaking of design form, size is

no longer significant. Examples of design form characteristics are

wing aspect ratio or sweep angle, ship length to beam ratio, hydro-

foil thickness-to-chord ratio, number of teeth in a gear, etc.

Two designs are said to be geometrically similar if their forms are

equal.

Optimization criterion. The optimization criterion is a

single nondimensional criterion which is a function of one or more

nondimensional independent optimization parameters, such as maximun

efficiency, minimum operating cost ratio, etc. The optimization
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criterion is evaluated for each of the many possible design form

solutions. A design form solution is defined as a design form

which provides the optimum value of the optimization criterion. In

the few cases where two or more design forms are found to provide

the same optimum value for the optimization criterion, they are to

be considered equally valid solutions.

The optimization criterion must reflect the relative impor-

tance of the various independent optimization parameters. For

example, assume that the nondimensional construction cost and non-

dimensional operating cost of a design are to be minimized, and the

efficiency is to be maximized. Since the parameters are independent,

it is impossible, in the general case, to find a single design form

which optimizes each of all three parameters. Consequently, the

designer must determine the relative importance of each parameter.

For example, suppose he decides that linear relationships can be

utilized and that plus 5% in efficiency is equivalent to minus 0.18

in the construction cost parameter, or to minus 1.38 in the operating

cost parameter. In this case the value of the optimization criterion

Q would be:

Value of Q = % efficiency _ construction cost operating cost
5.0 0.18 1.38

The best design form would be the form having the highest value of

Q. This approach to evaluating Q can easily be modified to include

variable weighting factors. For example, if plus 5% in efficiency

when the efficiency is 80% is considered equivalent to plus 10% in
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efficiency when the efficiency is 50%, the weighting factor for

efficiency is a function f of the efficiency; consequently, then

efficiency term in Q would be written as: (efficiency) ÷ (fn of the

efficiency). The same approach is applicable to the other terms

in Q.

The optimization criterion is not always best expressed as

a simple sum. In evaluating the effectiveness of a missile, Smith

and King (10) developed an expression called mission success,

abbreviated as M. S., which is defined as:

M. S. = R x A x P

-t/O 0
where R = e A,0 A P = kill probability against specific

threat environments, t = mission time, 0 = mean time between fail-

ures, and ý = mean time to repair. Consequently, if several missile

designs are being considered, and no other optimization parameters

are to be considered, the best design is defined as the one with

the highest value of M. S.

The optimization criterion may be a function of nondimensional

performance characteristics, operating situation variables, or

design characteristics. Efficiency and kill probability are examples

of performance characteristics, mission time is an operating situa-

tion variable, and construction cost or mean time to repair are

examples of design characteristics. Note that all quantities are

functions of the design.

Subdesign missions. A specific design mission can (and

often should) be separated into subdesign missions. For example,
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an airplane design mission can be separated into subdesign missions

such as the design of the wing, landing gear, motor, etc. When

separating a design mission into subdesign missions, the designer

must be careful to account for all significant interactions between

the various subdesign missions. For example, the design of an air-

plane wing cannot be completely isolated from the rest of the air-

plane since it may be required to house the motor, fuel, and landing

gear; however, its design can still be isolated in certain respects

and treated as a separate design mission with certain restrictions

(mission specifications) imposed upon it. by correctly separating a

complex design mission into subdesign missions, the complexity is

often reduced considerably. Therefore, the designer should always

consider the possibility of establishing subdesign missions.

Generalized Design Mission

A given design mission can be generalized into a set of

design missions by permitting some or all of the mission specifica-

tions to vary. Such a set of design missions is called a generalized

design mission if at least one mission of the set can be satisfied

by a finite number of design form solutions. A generalized design

mission may have only one mission criterion which varies, or it may

have more, depending upon how general the designer wants to make it.

The mission specifications which vary are called mission parameters,

and the specifications which remain fixed are called mission criteria.

If all of the mission specifications remain fixed, the design mission

is not generalized. Alternatively, if all of the mission specifications



16

are changed into mission parameters, the given design mission is

completely generalized. Note that when setting up a generalized

design mission, the designer does not need to begin by considering

a given design mission. The given design mission was introduced

to help explain the mechanism of setting up a generalized design

mission; however, beginning with a typical design mission is often

a useful approach in setting up a generalized design mission.

A generalized design mission is therefore seen to consist of

a general design objective, a set of independent (variable) mission

parameters M, a set of independent (fixed) mission criteria C, and

an optimization criterion Q. All parameters and criteria are

nondimensional. The generalized design mission is solved by

associating a design form (or forms) which best satisfies the

optimization criterion, with each of the many design missions

comprising the generalized design mission.

Mission Space

A specific design mission results when a specific value is

assigned to each of the independent mission parameters belonging

to a generalized design mission. If not all mission parameters are

fixed, a set of design missions results which is a subset of the

set of design missions comprising the generalized design missions.

The set of mission parameters in a generalized design mission

may be considered to be the coordinates of a multidimensional

Cartesian space called mission space. A fixed value of each mission

parameter is a point in mission space, and represents (together with
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the mission criteria, an optimization criterion, and a general

design objective) a specific design mission, as discussed above.

Similarly, a subspace of mission space represents a set of design

missions; such a set is a subset of the set of design missions

represented by the entire mission space. The concept of mission

space is introduced because it aids in visualizing a multidimensional

set of design missions, and is shown later to permit each of the

many design solutions to be clearly associated with the design missions

by means of graphs which represent sections or subspaces of mission

space.

Design Space

As stated earlier, a design form can be described by a set

of design form specifications. These specifications should not be

so detailed that every bolt and rivet in the design is described,

but should carry the basic information necessary to permit a typical,

experienced designer to complete the design in detail. In other

words, the design form specifications should be sufficiently complete

to describe a preliminary design.

Family of design forms. If some of the set of design form

specifications which describe a given design form are permitted to

vary, a family of design forms results. The design form specifica-

tions which vary are defined as design form parameters, and the

design form specifications which remain fixed are defined as design

form criteria. Therefore, a family of design forms may be defined

as a set of related design forms which are described by a set of
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(fixed) design form criteria and a set of (variable) design form

parameters. A specific design form results when a specific value

is assigned to each design parameter.

Definition of design space. The set of all design form

solutions to a given generalized design mission can be described

by a set of (fixed) design form criteria and a set of (variable)

design form parameters. The design form parameters are considered

to be the coordinates of a multidimensional Cartesian space called

design space. A fixed value of each design parameter is a point

in design space, and represents a single design form. A family of

design forms is represented by a subspace of design space.

Mapping

Mapping is defined as the process of associating with a

point in mission space an optimum design form which satisfies the

mapping criteria. The mapping criteria consist of the mission

criteria and the optimization criterion. By "optimum' is meant

a design form which provides the optimum value of the optimization

criterion. Therefore, mapping is merely the process of associating

a design form with a given point in mission space, where the

associated design form is defined as an optimum design form solution.

The mapping process is schematically illustrated in Figure 1. The

mission space is represented by the mission parameters mI through

m and the design space is represented by the design parameters dlP

through d . The number of coordinates in the two spaces is not
q

necessarily equal.
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Figure 1 - Schematic illustration of the mapping process
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Regions of Mission Space

Assume that each point in a given subspace of mission space

maps into a single corresponding design form. Then, a specific

design form will be associated with a selected point in the mission

subspace. Now consider a nearby point in mission space. This

nearby point will map into either the same design form, a slightly

modified design form, or an entirely different design form. Similar

mappings result from other nearby points. The portion of the given

subspace which maps into a single family of related design forms

is called a region of mission space. All points lying outside of

a given region in the assumed subspace will lie in a different region

and therefore map into a different family of design forms.

Now consider a mission space which corresponds to an

arbitrary generalized design mission. Such a mission space will

be found to contain one or more regions, where a region is defined

as the subspace of mission space which maps into a single family of

design forms.
1

Void regions. It is entirely possible that regions of

mission space will be found whose points cannot be mapped into any

known design form or any form which the designer might invent. Such

regions are called void regions, and indicate that either further

invention or research is needed, or that no possible solution exists.

According to this definition, any subspace where two or

more distinct design forms correspond to each point Is
considered to consist of two or more regions which share
that subspace. Such regions may or may not be equal in
size, shape, and location since they may extend beyond that
subspace.
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Overlapping regions. Regions of mission space may be found

which overlap. The subspace where such an overlap occurs is the

locus of all points to which more than one design form corresponds.

The number of different design forms which correspond to each point

in mission space where regions overlap is equal to the number of

overlapping regions because one distinct design form corresponds to

each region.

Typical Design Forms

The selection of typical design forms which correspond to

various regions of mission space is an important step because

knowledge of such typical design forms is required before a given

region can be mapped. The typical form corresponding to a given

region of mission space is dependent upon the state of the art in

most cases; consequently, the selection of a typical design form

depends upon the designer's knowledge of the design field, and in

some cases, upon his inventive ability to improve upon known typical

forms or to develop new typical forms when none are known.

A comprehensive literature search and contact with specialists

in the specific design field may serve to provide the necessary

knowledge. Systematic methods for inventing typical design forms

are lacking. One approach, however, that may be of help is to first

study a variety of arbitrary forms using physical relationships,

logic, and intuition to determine if any are acceptable. The forms

of the more acceptable candidates are then varied, and the process

is continued until a reasonably good set of typical design forms
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emerge. The use of Zwicky's morphological method (2) mentioned

earlier may be of some help in the more complex problems. Keeping

in mind the objectives of simplicity and reliability discussed by

McLean (3) should help in selecting or modifying possible design

forms. In some cases, the use of a computer for the random selection

and evaluation of possible design forms may be worth considering;

the use of knowledge and intuition in the programming may save

considerable time.

Region Boundaries

In some cases, the boundary between two adjacent regions will

map into the same subfamily of design forms. When this occurs, the

design forms corresponding to mission space will vary smoothly and

continuously as a function of position in mission space, and the

boundary line between two regions in mission space will be sharply

defined. On the other hand, the boundary in mission space may

correspond to the crossover from one design form in one family to

a distinctly different design form in another family. Such a

boundary will be sharp if it represents the limiting design form

of a family which is significantly more acceptable than the other

family. The boundary under consideration will generally be hazy,

however, if the two design families corresponding to adjacent

regions become equally acceptable at the boundary. The reason is

that their relative acceptability may change very slowly in the

region near the boundary, thereby making the boundary difficult to

locate precisely. Also, as indicated earlier, two design families
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may be exactly equally acceptable and therefore correspond to the

same subspace of mission space, in which case the boundaries would

overlap.

Critical values of mission parameters. An aid in locating

regions in mission space is to first determine which of the mission

parameters have critical values. By "critical value" is meant a

value above which the corresponding design form is designed by one

set of rules, and below which it is designed by an entirely different

set of rules. These critical values could either represent a

natural physical limit which will not change with time, or they may

result from a man-made limit which may vary with time. In either

case, the critical values are treated the same way.

Examples of parameters which generally have at least one

critical value are cavitation number, Reynolds number, and production

rate. The cavitation number in a hydrofoil design problem has a

critical value since one set of design rules is used at zero cavita-

tion number, and an entirely different set of design rules is used

at high cavitation numbers. Similarly, Reynolds number contains a

critical value, since below a certain Reynolds number the boundary

layer over the front of a streamlined body moving through a fluid

is laminar, while above a certain Reynolds number the boundary layer

is largely turbulent. The optimum form of the body is significantly

different in the two cases since different design rules are followed.

In a typical economic problem, the production rate normally has at

least two critical values. The lower value would correspond to the

point below which no design form is economically feasible to produce.
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The upper critical value might correspond to a higher production

rate where a different structural material could be utilized,

permitting a change in design form which may result in better

performance. Alternatively, the upper critical value could represent

the crossover from hand production to machine production which might

permit major design changes to occur.

Location of boundaries in mission space. The location of

boundaries in mission space can often be accomplished without

developing a complete mapping relationship between mission space

and design space. After determining the typical design form and

the basic phenomena which cause a boundary to appear in mission

space, it is often possible to utilize physical relationships to

determine the exact location of the boundary and the design forms

corresponding to the boundary.

One possible aid in determining design form families and

the corresponding region boundary in mission space is to use the

fact that two design families which might correspond to opposite

regions adjacent to a boundary often merge into the same design

subfamily along the boundary. Another aid in locating a boundary

is to determine if the boundary corresponds to the limiting form of

one specific design family; if so, the boundary can be located by

investigating only that one family. The designer should also be

aware of void regions since the boundaries to such regions are

sometimes easy to locate, and should be located early in the design

process.

Figure 2 illustrates how a boundary in a three-dimensional
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Figure 2 - Illustration of a boundary in three-dimensional

mission space
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subspace of mission space can be considered either as lines in a

series of two-dimensional sections or as a surface in three-

dimensional space. Chapter III contains design examples which may

help clarify the procedure of locating boundaries.

Mapping from Mission Space to Design Space

Once a certain design form family has been established in

a general manner, and a corresponding region in mission space has

been determined, the designer can proceed to map the region into

specific design forms. To do this, physical relationships must be

established between the mission parameters and the design parameters.

Mapping relations. If a set of relations can be developed

for mapping a certain region of mission space, the relations

(called mapping relations) can be used to map any of the infinite

number of points in that region. Unfortunately, the mapping relations

become more difficult to develop as the number of dimensions in the

region considered is increased. Consequently, if a set of mapping

relations cannot be developed for an entire region, the designer

can begin by developing mapping relations for subspaces within a

region and then try to develop a more complete set of mapping

relations by considering other subspaces within the region.

Mapping sequence. It has been found helpful to begin mapping

mission space by proceeding from the simple and most familiar design

missions to the complex and least familiar design missions. If

consecutive mappings are adjacent, the results of a previous mapping

can be used as a boundary mapping for the new mapping; this procedureý
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is often of great help in determining the mapping relations for

unfamiliar subspaces of mission space. An excellent place to

begin mapping is the simplest point in the entire mission space.

This point is generally the one whose coordinates are such that

the corresponding mission parameters do not affect the design form;

its coordinates are usually zero or infinity. The next simplest

subspaces of mission space to map are other simple points and some

of the coordinate axes. Following that, the three coordinate planes

of a three-dimensional subspace might be mapped. Then, by selecting

planes parallel to one of the coordinate planes, most of an entire

three-dimensional subspace can be mapped. By similarly studying

other three-dimensional subspaces in a given region, valuable infor-

mation on the entire design picture of a multidimensional region

can be obtained.

The coordinates which are generally most important to include

in the various mappings of mission space are those parameters which

represent the phenomena that most strongly affect the design form.

Examples are parameters which include the design stress, speed,

applied forces, etc. Also, considerable time can be saved in mapping

by first finding those parameters which have ranges of values that

do not appreciably affect the design form. Only one typical value

of the parameter in each of the uncritical ranges must be investigated.

Illustration of a mapping. The best way to illustrate a

mapping appears to be a graphical presentation. For example, if a

particular line in mission space has been mapped, a two-dimensional

graph can be drawn where the abscissa represents the particular line
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and the ordinate provides the value for various curves on the graph

where each curve represents a particular design parameter or the

optimization criterion of the corresponding design form solutions.

Similarly, the mapping of a plane in mission space can be illustrated

by a graph (or graphs) showing one mission parameter plotted against

the other with a series of lines superimposed on the graphs showing

the values of the associated design form characteristics and the

optimization criterion. Three-dimensional mappings can sometimes

be illustrated by a single two-dimensional graph, always by a series

of two-dimensional graphs, and sometimes by a three-dimensional graph

or a drawing of a three-dimensional graph. Figure 3 illustrates

a typical two-dimensional mapping where ficticious values are plotted

for the optimization criterion Q and one design parameter d

Dimensionalizing the Design

So far, the design mission has been treated in nondimensional

form. The final objective, in general, is a dimensional, full scale

solution. In a typical design problem, the values of all specifica-

tions are dimensional. Consequently, all the designer must do to

solve a specific design problem, assuming that the generalized

design mission has been solved, is to: (a) calculate the mission

parameters which correspond to the given design problem, (b) find

the resulting values for the design form parameters from the solutior

to the generalized design mission, and (c) calculate the desired

dimensional design characteristics by substituting the specified

dimensional quantities into the design form parameters.
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Classification

One of the advantages of this design method is that the

different mission parameters, design form parameters, and regions

of mission space which result from solving a generalized design

mission can be used to classify operating situations, designs, and

design families into natural classes which have physical meaning.

Three simple design examples are presented in Chapter III which

illustrate the classification concept.

Mathematical Representation

The design procedure is now placed on a more formal basis.

Let the set of all significant (nondimensional) mission parameters

mi, m2 . . . .. , ip be represented by M = {m.} where i = 1, 2. ..... , p.

Similarly, let the set of all significant (nondimensional) design

form parameters d, d2, .... , dq be represented by D = {dj} where

j = 1, 2. ..... , q. Also, let the set of all significant (non-

dimensional) mission criteria c, c2 , . . . . ., cr be represented by

C = {c k} where k = 1, 2. ..... , r. Finally, let the set of all

significant (nondimensional) optimization parameters q1, q2. . . . . . qs

be represented by {q,} where k = 1, 2,....., s. The optimization

criterion Q is expressed as a function of the q£. Each of the sets

fm.i }, {dj , {ck}, and (q.} is assumed to be composed of independent

parameters. Significant d. are all design parameters which have aJ

definite relationship with the mi, ck, and q Z.

As stated earlier, M is considered to be a multidimensional

Cartesian space in which the coordinates are the mission parameters mi.
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A point in such a space represents a specific design mission (when

combined with a general design objective, the set C, and Q), and is

determined by an ordered sequence of values of the m.

Similarly, D is considered to be another multidimensional

Cartesian space in which the coordinates are an independent set of

the d.. A point in this space represents a specific design form.J

The design process is looked upon as a mapping from the M

space (mission space) into the D space (design space). The optimi-

zation criterion Q and the mission criteria C are the mapping

criteria. Since the design form is a function of the mission

parameters, mission criteria, and the optimization criterion, the

relationship can be written as

D = D (M, C, Q) (1)

Physical relationships. Assume that a typical design form

has been found and the corresponding region in mission space has

been established. The method introduced here for relating design

forms to mission parameters is a modification of the method proposed

by Wislicenus (6). Considerable knowledge of the relevant physical

phenomena is required in order to map points from mission space into

design space. Such knowledge results in the following relationships:

m f (dip d2  , d)m 1 2 . ..... q

2 <f2 (dip d2' d q) 2

m2 2 ..... q

mt •ft (d 1 ' d2 '. . . . .. , dq)
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>q
Cl >g (dip d2'.. d)

c2 2 (dip d2'.. dq (3)

= r (dd, d 2 . d )Cr < r 2' .... ' q

Q =Q (qi' q 2' .. .,qs) (4)

qi q, (dip d 2' .... I d q

q 2 =q 2 (dip d2' .. , dq) (5)

qs= qs (di, d2 ..... , dq)

where min, m2.. ....' m are the mission parameters; di, d .... , d

are the design form parameters; cP, c2 , . . . . , cr are the mission

criteria; q,, q2 0. . . .. . q are the optimization parameters; p and q

are the number of dimensions of the mission space and design space,

respectively (which are not necessarily equal); r and s are the

number of fixed criteria and optimization parameters, respectively;

is a symbol meaning equal to, greater than, less than, or a

combination thereof; f and g with subscripts represent functions;

and Q, or q with a subscript, placed to the left of a sequence of

symbols also represents a function.
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The relationships of Equations 2 through 5 are purely symbolic,

since to mathematically express each parameter as such a clear-cut

function may not be possible in all cases. In other words, two

parameters may be so completely interelated in two different expressions

that neither could be solved as the kind of single function shown

above, even though the parameters are theoretically separate and

independent functions.

Relationships between the mission and design form parameters.

The set of equations labeled Equation 2 associates each mission

parameter with the set of design parameters. Such an association

is possible since it has been assumed that the general design form

is known; therefore, if sufficient knowledge exists, each mission

parameter can be expressed as a function of the design form which,

in turn, is described by di, d2 p . . . .  d .q

An inequality sign will appear in Equation 2 whenever a

critical value exists in a given mission parameter. The reason will

become evident in the examples which are presented later in this

chapter. If a mission parameter has no critical value, the symbol

will always become an equal sign.

Relationships between the mission criteria and the design

parameters. Since the nature of the (fixed) mission criteria ck is

the same as that of the (variable) mission parameters mi, the relation-

ships between the ck and the d. are developed in the same way as the
J

relationships between the m. and the d~.
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Trivial relationships. Some of the relationships for the ck

and the fixed m. (i.e., m. which are fixed in a given region ofI I

mission space) may be trivial. For example, if one of the ck or

fixed mi is a parameter consisting of the nondimensional design

stress, and if the selected value of that parameter is infinity,

then the structural material would be considered to be infinitely

strong; consequently, any relationship between the design form

and the design stress would be trivial since, from the viewpoint of

stress, the design could have any form. Similarly, if the operating

cavitation number is selected as infinity for a given region of

mission space, cavitation could never occur; consequently, the

relationship between design form and cavitation number would be

trivial since, from the viewpoint of cavitation, the design could

assume any form.

Void relationships. Note also that some of the fixed m.

relationships may be void since the selected value of the particular

mi may be impossible to satisfy by any known design form or any

design form which the designer might invent. In this case, the

selected region of mission space has no known design solution.

Therefore, that particular region of mission space is said to be

a void region since it is void of a solution as far as the designer

is concerned. In case any of the (fixed) mission criteria ck lead

to a void relationship, the entire set of design missions is void.

Relationship between the optimization criterion and the

design parameters. Now consider Equations 4 and 5. These equatiom:

show that the optimization criterion Q can be expressed as a function
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of the design parameters d.. Since the various optimization para-J

meters q. are assumed to be independent, the number of optimization

parameters must be less than or equal to the number of design

parameters. If this relationship is not satisfied, the optimization

criterion has not been properly defined in terms of independent qE.

Design equations. Since the known relationships (i.e., all

relationships resulting from the ck and the fixed mi) of Equations 2

through 5 result in reducing the quantity of unknown d. and inJ

trivial relationships (assuming that none are void), the following

unknown parameters and relationships remain:

m fl (d], d2 . . . .. . du)

m f 2 (dl, d2 . . . .. . du) (6)

Sf (m t t (di' d2' dU)

Q = Q (di, d2. . . . .. . d) (7)

where u is the number of unknown d. remaining after evaluation ofJ

the ck and the fixed mi, and t is the number of dimensions of the

region of mission space being considered. (The m. and d. have been

reordered to permit sequencing of the subscripts.) Calling the

nontrivial relationships in Equation 6 the design equations, the

quantity of the design equations is equal to, or less than, the

number of dimensions of the selected region of mission space. This

quantity will seldom be greater than two or three, and must always
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be less than or equal to the number of unknown d. for the reason
J

presented below.

The number of unknown d. cannot be determined because anJ

undetermined number of known relationships will have been trivial.

However, in any given analysis, the designer can readily determine

how many unknown d. remain after the relationships have been reducedJ

to the design equations and Q. If the number of unknown d. isJ

exactly equal to the number of design equations, Q is no longer

needed, and the unknown d. can be readily evaluated. If the numberJ

of unknown d. is less than the number of design equations, theJ

generalized design mission was not specified correctly since some

of the mission parameters or mission criteria were not independent,

as assumed. Finally, if the number of nontrivial design equations

is fewer than the number of unknown d., the expression for Q mustJ

be used in order to obtain additional relations and solve the problem.

Treatment of the optimization parameter Q. The expression

for Q is clearly seen to require a much different treatment than

the design equations in the process of finding a design solution

because it is the parameter which must be optimized. The expression

for Q is generally not an equation which can be solved for one of

the d. like the design equations. However, Q can be utilized toJ

provide all of the additional relations needed to solve the problem.

For example, if there are three unknown d. and only two designJ

equations, Q can be utilized to provide the missing relation.

Similarly, if five unknown d. exist and only two design equations

J
are available, Q can be utilized to provide the three additional
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relations needed to solve the problem. Because the design equations

are defined to be not trivial, they can be solved for some of the

unknown d. and substituted into Equation 7 to obtain
J

Q = Q (di, d2 , . . . . , dut, mp, mi2 , ... , omt) (8)

where the d. have been reordered again to permit sequencing of theJ

subscripts. Since Q is to be either maximized or minimized, the

following additional equations are useful:

K = 0 = Ql (dip d2 . . . .  du, m mad 1 ' 2) .. .P,-2 .... , t)

aQ = 0 = Q2 (di, d2 , dtt m,, ) (9)
2d--• . ..... t

tQ 0 =u (d, d2  d.i, mi . . . .  itad :- Qu-t 2' ''' du-t' m m2' ' )

However, some of the expressions in Equation 9 may be trivial since

they may not correspond to an optimum point. A trivial result means

that the particular d. being considered is to be either maximized orJ

minimized, depending upon its relationship in Equation 8. In case

none of Equations 9 is trivial, the equations can be solved and the

design solution obtained as a function of mi, m2 ' . . . .. , mt.

Methods of advanced calculus can be used to determine if

each of Equations 9 corresponds to an optimum value.
Alternately, an inspection of the physical situation may
show whether the resulting values are optimum points.
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In case one or more of Equations 9 are trivial, the affected d. must
J

be maximized or minimized without violating any physical restraints

or mission criteria. The remaining equations are solved in the usual

manner.
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CHAPTER III

DESCRIPTION OF THE DESIGN PROCEDURE

This chapter contains an outline of the design procedure,

a list of its advantages, and three simple examples illustrating

the use of the procedure.

Outline of the Design Procedure

The seven steps of the design procedure are outlined as

follows:

I. Generalize a typical design problem. Select a typical

design problem and generalize it into a set of design problems by

permitting most or all of the specifications to vary. The result-

ing variables should consist of the desired performance, all impor-

tant aspects of the operating situation, and perhaps one or more

design characteristics. Nondimensionalize the variables to obtain

a preliminary set of mission parameters. Specify the general design

objective, the nondimensional optimization criterion, and all (fixed

and dimensionless) mission criteria which are to be imposed upon the

set of design missions.

2. Determine possible design forms. Sketch a wide variety

of design forms, each of which may satisfy one of the many possible

design missions. Conduct a brief analysis to find the most typically

representative forms.
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3. Introduce physical relationships. Determine all distinct

physical phenomena which relate to the design problem. Develop

dimensional relationships which associate the design problem specifi-

cations with the dimensional design variables and the optimization

criterion; the physical phenomena can be used as a guide. Determine

whether two or more values for any design variable result for a

given design problem; if so, regions will overlap in mission space.

Nondimensionalize each relationship to obtain dimensionless groupings

of the design problem specifications. Reduce the nondimensional

relationships, if possible, to the design equations and the optimi-

zation criterion.

4. Select the mission and design parameters. Select the

sets of independent (nondimensional) mission and design parameters

which appear most useful from the dimensionless groupings, the pre-

liminary set of mission parameters, and sketches of design forms.

Specify a preliminary coordinate system for mission space consisting

of mission parameters and a preliminary coordinate system for design

space consisting of design parameters. The two spaces are considered

to be multidimensional Cartesian spaces. A single point in mission

space determines a specific design mission and can be expressed as

a series of numbers representing the values of the ordered coordinates.

Similarly, a single point in design space determines a specific

design form.

5. Specify the mapping criteria and the design equations.

As a result of selecting the mission and design parameters, the

mission criteria and the optimization criterion Q should be
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rewritten, if necessary, so they are functions of the new parameters.

Also, the expressions should be simplified, if possible.

At this stage of the design process, it is possible to

specify the design equations. Sometimes Q can be utilized to

simplify the design equations by permitting an inequality sign to

be removed.

6. Select a sequence of subspaces to map from mission space.

The subspaces are to be mapped into design space, where mapping is

defined as the process of associating a design form with a point

in a region of mission space. The associated design form must

optimally satisfy the mapping criteria which consist of the optimi-

zation criterion and the mission criteria. In general, the best

mapping sequence consists of proceeding from subspaces which

represent the most simple and familiar design missions to those

which represent the more complex and least familiar design missions.

A possible mapping sequence consists of mapping one or two

simple points from mission space, each of three selected coordinate

axes, the three coordinate planes formed by these coordinate axes,

the three-dimensional subspace formed by the three coordinate planes,

and finally, other three-dimensional subspaces. Selecting each new

subspace to border on previously-mapped subspaces may aid signifi-

cantly in simplifying the mapping process. Perhaps the simplest

point to map is the point whose coordinates are either zero or

infinity, depending upon which value effectively eliminates that

particular parameter from being significant. The associated design

form is generally the ideal design form since its design is less
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limited by the mission parameters than any other form corresponding

to the selected subspace of mission space.

7. Map from mission space to design space. Consider each

subspace of mission space separately and in the order of the selected

sequence. Before conducting each mapping, determine whether or not

the selected subspace corresponds to more than one family of design

forms. If it does, the subspace will consist of more than one region,

each of which maps into a distinct family of design forms by means

of a distinct set of mapping relations. The mapping relations for

each region consist of the appropriate design equations plus a

certain number of relations which are derived from the optimization

criterion. This certain number is equal to the number of design form

parameters which are to be determined minus the number of design

equations.

During the process of establishing the mapping relations,

some of the mission parameters may be found to combine into new

mission parameters; if the use of a new set of mission parameters

appears to simplify the mapping relations, then adopt the new set

of parameters as the new mission space coordinates. Similarly, the

designer may find that the design form description is simplified by

changing the design parameters.

The mapping result can be illustrated by a series of graphs

which represent various one-, two-, and three-dimensional subspaces of

mission space on which are superimposed the region boundaries, if

any, the value of the associated optimization criterion, and the

value of some or all of the associated design form parameters.
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The final set of mission space and design space coordinates

will, in general, be the dimensionless parameters and graph coordin-

ates which best serve to classify the various design missions and

design forms, respectively. The design families corresponding to

the various regions, if any, can be classified by the phenomena

responsible for establishing the region.

Advantages of the Design Procedure

Some of the advantages resulting from the use of the design

procedure are:

Design form variation. The mapping of points from various

regions of mission space into design space provides the designer

with an excellent understanding of the diversity in possible design

forms and the reasons for such diversity.

Simplification. The design procedure helps simplify the

treatment of design missions which include many variables or many

optimization parameters. Also, the procedure aids in organizing a

complex design mission and in determining where to begin the design

process.

Organization of information and research studies. The use

of this procedure aids in organizing information pertaining to the

design field. Regions in mission space may be found where informa-

tion is lacking and where a research study or invention is needed.

The various mission parameters and design parameters resulting from

use of the procedure can be utilized as experimental variables in

research studies. Also, the design procedure can be modified and
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used to solve a research problem.

Clarification. The mapping process clearly shows that the

best design in one design mission may not be the best in another.

Consequently, questions of whether one design form is better than

another can often be clarified by use of this procedure to show that

each may be best for different design missions, or for similar

missions with a different optimization criterion or different fixed

mission criteria.

Design time and design quality. Once a generalized study

of this type has been conducted, the time required to solve a

specific design problem is significantly reduced. Furthermore, the

resulting design form solution may be more acceptable than the usual

solution since it may have been based on a more rational approach

in which more variables were considered.

Scaling. The use of a nondimensional approach permits

numerous design forms and design missions to be collapsed into

relatively few parameters. These parameters permit broad scaling

of the design forms and associated design missions.

Classification. The mission parameters, design parameters,

and mission space regions which result from the use of the design

procedure serve to classify design forms and their families.

The Design of Circular Tubes Subjected to External Pressure

This design example is the first of three simple examples

presented in this chapter to illustrate the design procedure.

Although no new technical information results from these examples,
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they serve to illustrate the methods of generalizing a design missior,

solving a set of design missions, and graphically presenting the

solutions. Any questions not answered by these examples may be

found answered in Chapter IV. The following steps for solving the

tube design problem are the same as those listed in the outline of

the design procedure:

1. Generalize a typical design problem. The typical design

problem selected for this example consists of determining the thick-

ness of an infinitely long circular tube which is two feet in

diameter and is submerged in sea water at a depth of 100 feet. The

tube is constructed from 7075 heat treated aluminum, and is filled

with air under atmospheric pressure. The weight of the tube is to

be minimized. Any permanent yielding or buckling of the tube is to

be prevented. The factor of safety is 1.5, assuming that the depth

pressure is steady.

This design problem is generalized by permitting the follow-

ing items to vary: (a) tube radius R, (b) pressure difference

across the tube wall times the safety factor p, (c) proportional

stress limit of the tube material in compression f (d) weight

density of the tube material Yt, (e) elliptical out-of-roundness

of the tube e measured as the maximum deflection from the desired

circle, and (f) modulus of elasticity of the tube material E.

Notice that the variable p includes the effect of variable depth,

fluid density, internal pressure, and safety factor.

The above variables are the set of mission variables which

consist of R, p, f , Yt, e, and E. By inspection, four independent
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I I
nondimensional mission parameters can be formed. One possible set

of mission parameters is p/f p, f /E, e/R, and ytR/p.p p

The (fixed) mission criteria are: (a) the tube cross section

is constant, (b) the tube is uniformly thick, (c) the tube thickness-

to-radius ratio t/R is much less than one, (d) there is no pressure

variation around the tube, and (e) the length-to-radius ratio of

the tube is infinity. These mission criteria were selected to

simplify the problem. All of the mission criteria could have been

considered as variables, in which case they would have been mission

parameters, and the set of mission criteria would have been empty.

The nondimensional optimization criterion Q is the non-

dimensional tube weight, one form of which is the (approximate) tube

weight per unit length 2fy tRt (where t is the tube thickness)

divided by pR, which results in

Q = 2wyt t/p (10)

where Q is to be minimized. The general design objective is to

determine the cross-sectional form of the pipe so that no permanent

yield occurs.

2. Determine possible design forms. Possible design forms

are the following:

See the section "Nondimensional Parameters" in Chapter IV

for information on the pi theorem which can be used to
uniquely determine the quantity of nondimensional parameters.
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The only design variable is clearly seen to be the tube thickness t

since the radius and out-of-roundness are mission variables and

therefore specified in a given design mission.

3. Introduce physical relationships. The physical phenomena

pertaining to this problem are compressive stress and buckling.

There are no effects of gravity other than to provide tube weight

which has already been included as the optimization criterion Q;

consequently, no additional physical relationships regarding gravity

and yt exist-

The relationship for the compressive stress of a circular

tube can be found from the tube geometry, and is

(compression) f > (11)

where pR/t is the compressive stress which must be less than or

equal to f to prevent permanent yielding.P

The relationship for the prevention of buckling of an

infinitely long tube is obtained from Timoshenko (11), as

(buckling) p = 2 R -- () (12)
4( 1 11 23 .64 (R;'-

where p is Poisson's ratio and has been set equal to 0.3 which is

valid for most types of structural material.,

Finally, the relationship for the out-of-round (elliptical)

tube is seen from (11) to be neither pure compression nor pure
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buckling, but a combination of compression and bending stress where

(out-of-round) f > PR + 6pRe/t 2  pR + 6pRe/t 2  (13)
p = t 4p(l-iJ2)R3  t 3.64pR3

Et 3  Et 3

Nondimensionalizing Equations 11 to 13,

(compression) !-> P- (14)
R = f

P

(buckling) I_> 1.54 (;) / (15)
R RE(

(out-of-round) P > R- + t R (16)p = t R-36 g3

The design equations for the different mappings are Equations

14 to 16, and Equation 10 is the optimization criterion. Since

three different relationships exist for t/R, mission space will

split into three different regions.

4. Select mission and design parameters. After inspecting

Lquations 14 to 16 and the design forms sketched in Step (2), the

best design parameter appears to be t/R1. A reasonable set of

mission parameters, after inspecting the preliminary set of Step

(1) and Equations 14 to 16 appear to be p/f p, p/E, and e/R.

An alternate parameter is t/e, but this would require t/R

in Equations 14 and 15 to be treated as t/e times e/R, which
is an unnecessary complication.
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Since no physical relationship, other than the one which

became the optimization criterion, was found for the parameter

yt R/p, i,t should not be included as a mission parameter; notice

that a change in its value has no effect on the design form para-

meter t/R.

Summarizing, mission space may be looked upon as being

three-dimensional and consisting of the coordinates

m1 = p/fp m2 = p/E m3 = e/R

Design space consists only of the coordinate

d I = t/R

5. Specify the mapping criteria and the design equations.

In view of the new design parameter t/R, Equation 10 can be rewritten

as

Q = 21T(.- - (17)
p R

Since Q is to be minimized and y tR/p is specified for a given design

mission, Equation 17 shows that t/R should be minimized.

In order to minimize t/R, the inequality signs should be

removed from the design equations, Equations 14 to 16, which become

(compression) t-= (18)
R f

p

(buckling) L -= 1.54 (ý-)l/ (19)
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(out-of-round) p - R + (20)

6. Select a sequence of subspaces from mission space. A

possible sequence of subspaces to be mapped is: (a) mI = m2 = m3 - 0,

(b) m 2 = m3 - 0, (c) m1 = m3 = 0, (d) m3 = 0, and (e) m3 = 0.005.

Note that m3  0 0 in all subspaces except the last, so the mission

parameter e/R, which specifies the out-of-roundness, is considered

only in Subspace (e). The value of e/R = 0.005 selected for m3 in

Subspace (e) is typical of a possible out-of-roundness resulting

from certain types of manufacturing methods.

7. Map from mission space to design space. The first sub-

space to be considered is Subspace (a) which consists of mI = m2 =

m3  0. This subspace is a point. Equations 18 and 19 show that

t/R = 0. In other words, the optimized tube corresponding to the

design mission described by the point m I = m2 = m3 = 0 has zero

thickness. This design form is unquestionably ideal from the view-

point of minimizing tube weight; however the design mission is not

a practical one.

Subspace (b) consists of variable m, = p/f where m2 = m 3 = 0OP

Equation 18 shows that the mapping relationship is simply t/R = p/fP,

In other words, the ratio t/R is directly proportional to p and

inversely proportional to f . There are no critical values orp

boundaries in this subspace of mission space.

I Equation 20 is not utilized since e/R = 0.
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Similarly, Equation 19 shows that the mapping relationship

1/3
for Subspace (c) is t/R = 1.54 ( p/E)l In this case, buckling is

critical and only the values of p and E are important. The compress-

ive stress limit f is not significant. No boundaries exist inP

this subspace.

Subspace (d) represents the first set of design missions of

practical value, since only the parameter m 3 = e/R is zero and mI

and m2 are variable. In this mapping, both Equations 18 and 19 are

required. A boundary will exist in this section of mission space

since Equations 18 and 19 provide two different values for t/R,

indicating that two regions exist. One region corresponds to designs

where the compressive stress is critical, and the other corresponds

to designs where buckling is critical. At any one point in Subspace

(d), the largest of the two values of t/R calculated from Equations

18 and 19 represents the most critical condition since failure would

occur if t/R were equated to the smaller value. The Ine in Subspace

(d), which corresponds to the case when Equations 18 and 19 provide

the same value of t/R, is the desired boundary since it represents

the cross-over from a compression-limited design form to a buckling-

limited design form. Equating t/R of Equations 18 and 19 results in

[boundary, Subspace (d)] P l 1.54 (P)1/3 (21)
f E

In view of the above discussion, Equation 18 pertains to the region
p/f >Io54(p/E1/3

fp> 54 (pIE) and Equation 19 pertains to the region

1/3
l/ <154 (pIE) .The result of this mapping is illustrated in
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Figure 4 which is a graph of the (p/f p) vs. (p/E) space upon which

the boundary and the associated values of t/R are superimposed.

To find the tube form having least weight for a specific

mission, one must first calculate both p/f and p/E and then findp

the value of t/R which corresponds to that point in Figure 4. The

solution to the specific design mission presented earlier can now

be readily found. The values of f and E for 7075 heat-treatedP

aluminum are 73,000 psi and 10.4 x 106 psi, respectively. The

pressure differential across the tube multiplied by the safety

factor is p = (64) (100) (1.5)/144 66.7 psi. Consequently,
x -106O-4.FoFiue4iisen

p/E = 6.5 x 10 and p/fp = 9.3 x 10 From Figure 4 it is seen

that buckling is critical and t/R 0.03. A more accurate value

for t/R of 0.0287 is obtained by using Equation 19. The thickness

of the tube which has a one-foot radius is therefore 0.0287 feet

or 0.344 inches.

In case the designer would rather present the mapping result

in a graph which provides a more accurate design solution than Figure

4, he could change the form of mission parameter m2 from m2 = p/E

1/3
to m2 = 1.54 (p/E)I . The result is Figure 5 which needs no scale

since m1 and m 2 are each t/R. The use of Figure 5 is equivalent to

selecting the largest value of t/R resulting from Equations 18 and

19.

The designer may desire to find a different graphical presen-

tation which is easier to use than Figure 5 and yet provides a more

accurate result than Figure 4. One way of doing this is to construct

a series of graphs, each of which pertains to a single type of
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Figure 4 - Design of circular tubes subjected to external

pressure, (p/fp, p/E) space
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Figure 5 - Design of circular tubes, [p/f , 1.54 (p/E)"/3] space
p
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structural material, in which t/R is plotted as a function of p/f

with f /E = constant. In other words, the two-dimensional SubspaceP

(d) is represented by a series of one-dimensional sections in which

only p/f is variable. However, rather than construct a series of

graphs, they could all be superimposed on a single graph, as shown

in Figure 6. In order to construct Figure 6, Equation 19 was trans-

formed into

t 1/31/S= 1.54 (f)/() (22)

Each value of f /E is represented by two straight lines in Figure 6P

which consist of the line labeled with the given value of f /E and
P

that portion of line labeled "compression" which lies above their

intersection. The intersection represents the value of p/f for
P

which the tube is equally critical in buckling and compression.

The scale of tIR can be enlarged from that of Figure 6 to cover a

smaller range of values of f /E in order to improve the accuracy of
p

its use. The range in values of f /E for common structural materialsP

is relatively small. An interesting aspect of Figure 6 is that it

clearly shows how either a change in pressure or a change in struc-

tural material changes both the design form and the cross-over

point from a buckling to a compression limitation.

Still another form of graphical presentation is shown by

Figure 7 in which p/f is graphed against f /E with the correspondingP P

values of t/R superimposed. A horizontal line represents a given

structural material. This graph has all of the advantages of Figure 6
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in addition to the fact that it can be used as a starting point for

graphing the entire three-dimensional section of mission space which

is discussed next.

The three-dimensional section, Subspace (e), is mapped into

design space by means of Equation 20. Rewriting Equation 20,

f 2

(out-of-roundness) -2- = (t R p_ R (23)

p

Equation 23 is plotted in Figure 8 where e/R has been equated to

0.005. The boundary for the case when e/R = 0 is shown by the

dotted line. Notice that no boundary exists in Figure 8 since only

one mapping relation is relevant. If Figure 8 is placed directly

above and parallel to Figure 7, the two graphs would represent a

portion of the three-dimensional space of Subspace (e) where e/R

is the coordinate pointing upward and normal to the planes of the

graphs. The lines of t/R in Figure 8 merge into the lines of t/R

in Figure 7 as e/R approaches zero. The boundary shown in Figure 7

appears only when e/R is exactly zero. The boundaries do not always

disappear so abruptly in a new dimension of mission space, as shown

by some of the design problems presented later.

The design form family of infinitely long circular tubes

subjected to external pressure can be classified by thickness-to-

radius ratio. The associated design missions can be classified by

p/f p, if the structual material is fixed; otherwise, f p/E must be

added. The out-of-roundness criterion e/R may serve either as an
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additional parameter for classifying the design form or for classi-

fying the design mission, depending upon the nature of the design

mission under consideration.

Although this first design example is a relatively common

one and the graphs which illustrate the design result appear quite

ordinary, it is unlikely that the reader has seen some of these types

of graphs before. This result demonstrates another feature of the

design procedure, namely that new and useful means of illustrating

design solutions may result.

The Design of Cylindrical Columns Loaded in Compression

This second design example is closely related to the first,

since it is also a structural problem in which the design may fail

under either pure compression or buckling. This example is shortened

by leaving out those steps of the design procedure which can often

be conducted mentally in order to illustrate that the procedure is

basically simple.

A typical column problem is generalized by permitting the

following design specifications to vary: (a) design load W which

includes the factor of safety, (b) column length k., (c) proportional

stress limit in compression f p, (d) modulus of elasticity E,

(e) cross-sectional shape, and (f) end conditions of the column.

The fixed mission criteria are: (a) the design load is steady,

(b) the load is applied exactly at the structural center of the

column, (c) the column weight is small relative to the applied load.

The cross-sectional area of the column is to be minimized.
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The design objective is to determine the column form.

The design problem variables are W, k, fp, E, cross-sectional

shape, and the end conditions. A possible set of nondimensional

2mission parameters are W/f 2. , f p/E, and two (as yet unestablished)

parameters which represent the cross-sectional shape and the end

conditions.

The physical relationships (11) are

(compression) W < f A (24)= p

(buckling) W < I2EI T i 2 Er 2 A (25)= n29.2 n 2x2

where A = cross-sectional area, I = r 2A = minimum area moment of

inertia, r = radius of gyration, and n represents the end conditions

where n = 0.5 for cantilevered ends, n = 0.7 for one cantilevered

and one hinged end, n = 1.0 for two hinged ends, and n = 2 for one

cantilevered end and one free end.

In view of the optimization criterion (that the cross-sectional

area is to be minimized) the inequality signs are removed from Equa-

tions 24 and 25. Nondimensionalizing Equations 24 and 25 (keeping

in mind the two preliminary mission parameters, the fact that A is

not specified, and the need for both a cross-sectional form parameter

and a design form parameter) leads to the following:

(compression) A (A ) (26)
f z22 r 2  k2
p

SW Tr2Er 2A Tr2

(buckling) f EA (27)
f 2.2 n2 f k4 n2 p 2. r 2

P P
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where A/r2 is the desired mission parameter which describes the

cross-sectional shape, and r 2/2 is the desired design form parameter

which describes the column slenderness and which permits the column

form to be determined. Equations 26 and 27 show that only two,

rather than four, mission parameters are required. These are

SW r2
ml =. (1-.) (28)1 f 9,2 A

p

f n 2

m E (29)

Substituting Equations 28 and 29 into Equations 26 and 27, the two

design equations become

2
(compression) m i = (-) (30)

2 4
(buckling) m lm2 T 2 (-) (31)

Equations 30 and 31 show that the mI vs. m2 space must consist of

two regions separated by a boundary since two values of r/k result,

the largest of which determines the equation which dominates in a

given region. The boundary line between the regions is obtained by

setting r/n equal in Equations 30 and 31, which gives

(boundary) m2 = Tr2 m1  (32)

Figure 9 is a graph of the mI vs. m2 space with the boundary

and the associated values of r 2/A2 superimposed. Equations 30 to 32

were utilized to construct the graph. Since k is known for a given
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2 2mission, r can be calculated from the resulting value of r /A.

Similarly, r 2/A is known, so A can be evaluated. Consequently, the

column size is known. For convenience, values of r 2/A are listed in

Figure 9 for a circle and an ellipse.

The results of this example show that column form can be

classified by r/A and r 2/A. The design mission can be classified by

(W/f p2 )(r 2/A) and f n 2/E, and the column support by n.p p

Economic Example

In order to illustrate the application of the design procedure

to a field outside of engineering, an economic example is selected.

For this example, the following words in the design procedure must

be changed to the word in parenthesis: design mission (mission),

physical relationships (mission relationships), design form (solution),

design space (solution space), design parameters (solution parameters),

and design equations (solution equations).

The selected typical economic problem concerns an item that

is sold retail for $10. The item can be manufactured by one of three

methods. The first method entails no tooling, and the cost of

material is $1 per item and the fabrication cost is $4 per item.

The second method is semi-automated, but due to some wastage of

material, the cost of material is $1.20 per item and the fabrication

cost is $2 per item. The third method is highly automated, and the

cost of material and fabrication cost are each $1 per item. The

tooling for the second method costs $5,000, and the tooling for the

third method costs $20,000. Approximately 10,000 items are to be
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produced. The gross profit (i.e., the difference between the total

selling price and the total manufacturing cost) is to be maximized.

The problem is to determine which manufacturing method is best.

Generalized mission. This economic problem can be generalized

in several ways, depending upon which factors are made variable. One

type of generalized mission is to consider the following specifica-

tions to be variable: tooling cost A,; cost of material per item

A2 ; fabrication cost per item A3 ; retail price per item A4 ; and

number of items sold N. The general mission objective is to deter-

mine the gross profit. One possible set of nondimensional mission

parameters is a, 0, y, and N, where a = A1 /A 4 , a = A2 /A 4 , and

y = A3 /A 4.

The gross profit is easily seen to be

gross profit = A4 N - AI - N(A2 + A 3) (33)

where the total manufacturing cost of the items sold is A1 +

N(A2 + A3). Let the nondimensional gross profit p be the gross

profit divided by the total cost of items sold. From Equation 33,

A4Nl

-1 -l (34)
A I + N(A2+A) - +a

Because of the way in which the generalized mission was set

up, there is nothing to optimize; consequently, there is no optimi-

zation criterion. The mission solution is p and, in view of

Equation 34, can be expressed directly as a function of the mission

parameters m1 and m2 as
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p1 1 (35)
m1 + m2

where m= a/N = A1 /A 4 N, m2 = a + y = (A2 + A3 )/A 4 , and p is the

gross profit divided by the manufacturing cost of goods sold.

The solution is graphed in Figure 10 which shows p as a

function of miI and mi2 . Either Figure 10 or Equation 35 can be used

to solve any of a variety of related economic problems.

The respective values of mI and m2 in the original economic

problem for the first, second, and third manufacturing methods are

miI = 0, m2 = 0.500; mI = 0.050, m2 = 0.320; and m, = 0.200, m2 = 0.200.

The respective values of p are 1.00, 1.70, and 1.50. Consequently,

the second method is best, since p is to be maximized.

The best classification parameters for this type of economic

problem are mI and mi2 , where mI = the tooling cost divided by the

number of items sold and retail price per unit, and m2 = the sum

of the material cost and fabrication cost per item divided by the

retail price per item.

Alternate generalized mission. Another way of generalizing

the original economic problem is to consider the number of items

sold N as the only mission parameter. The fixed mission criteria

are the values of the parameters a and 6 for each manufacturing

method, where 6 = 8 + y. The values of a and 6 for each of three

manufacturing methods are a I = 0, 61 = 0.500; a2 = 500, 62 = 0.320;

and a 3 = 2,000, 63 = 0.200. The subscripts refer to the manufactur-

ing method. The parameter p in Equation 34 becomes the optimization
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criterion Q where

N = N -1 (36)P=Q=+ 6N

and Q is to be maximized. The mission objective is to determine

the best manufacturing method as a function of N.

Notice that no meaningful economic relationships can be

written, other than the expression for Q. Consequently, the number

of solution equations is zero, so the information needed to solve

the problem must come from Q. The following are the values of Q as

a function of N for each of the three manufacturing methods, as

obtained from Equation 36 and the missio'1 criteria:

P] = QI = 1.00

P2 Q N(37)

2= = 500 + 0.320 N

N

P3 Q3= 2,000 + 0.200 N -1

Figure 11 is a graph of p versus N on which p,, P2V and P 3 of

Equations 37 are plotted. The solid line shows the optimum values

of p for any N, and also the best manufacturing method for any N.

The two intersection points of the three curves in Figure 11 are

the cross-over points from one manufacturing method to another and

are the region boundaries in the one-dimensional mission space

consisting of N. The regions in this mission space are the three

ranges of N corresponding to each of the manufacturing methods.
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CHAPTER IV

DISCUSSION OF THE DESIGN PROCEDURE

The objectives of this chapter are to present additional

information on the design procedure, discuss the scaling of design

forms, discuss methods for applying the design procedure to fields

outside of engineering, describe how the procedure can be applied

to research studies, and comment on future developments in design

theory.

Methods for Nondimensionalizing Variables

The question of how to nondimensionalize a set of variables

is answered'in the book by Kline called "Similitude Approximation

Theory" (12). Additional information is presented by Sedov (13).

Kline presents three basic methods for obtaining nondimen-

sional parameters: (1) dimensional analysis, (2) the method of

similitude, and (3) the systematic use of the governing equations.

The approach suggested for this design procedure is a combination

of the first and third methods. 1

The method of similitude is not emphasized because, as

mentioned in (12), any result which it may provide is con-
tained in the results of the third method listed above.
The method of similitude consists fundamentally of deriving
nondimensional parameters from force ratios. It is often
a simple method to use, but it cannot provide some of the
combinations of parameters which result from the third
method and it cannot show the relative importance of the
parameters.
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Dimensional analysis. This method of nondimensionalizing

a set of quantities is relatively simple, although it requires know-

ledge of the physical situation to be most effective. It consists

of the enumeration of the relevant physical quantities followed by

the application of the pi theorem. The pi theorem was developed by

Buckingham (14) and refined later by others. It consists of a

relation which determines the number of all possible independent

nondimensional groupings which can be formed from a set of dimen-

sional quantities. According to (12),the number of independent

groupings is simply the number of dimensional quantities minus k,

where k is the smaller of the following: (a) the number of the

relevant dimensions or (b) the maximum number of the given dimen-

sional quantities that will not combine into any nondimensional form.

Notice that k cannot exceed the number of relevant dimensions, and

may be less than this number. For example, if the set of dimensional

quantities consists of a speed, a length, and an acceleration, the

pi theorem would predict 3 - 2 = 1 nondimensional grouping since,

of the three given quantities, only two dimensions are relevant,

namely length and time. If ihstead, the set of dimensional quantities

consists of a length, a volume, a pressure, and a force, the pi

theorem would predict 4 - 2 = 2 nondimensional groupings. The

reason is, that although three dimensions are relevant, the maximum

number of dimensional quantities that will not combine into a non-

dimensional form is two; therefore, two is the smaller of the items

(a) and (b) given above, so k = 2.
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Although the method of dimensional analysis is highly useful,

it is unable to show the following: (a) whether all of the impor-

tant variables were listed, (b) which of the many possible sets of

resulting parameters is best, (c) the relative importance of each

parameter, (d) which parameters can be neglected in a given situa-

tion, and (e) how the parameters might be combined into a smaller

number of more useful parameters. Nevertheless, the prediction of

the total number of independent parameters is highly important and

useful.

Perhaps the best way of nondimensionalizing a set of dimen-

sional quantities is by inspection, as recommended by Kline (12),

because the designer can select the forms of the parameters which

are most meaningful in view of his experience. As long as the total

number of parameters agrees with the pi theorem, any set of parameters

is equally as good as any other set. Whichever set is selected,

however, it must contain each of the dimensional quantities at least

once.

Governing relationships. The governing relationships of a

design mission are all relationships which associate the dimensional

design solution with the dimensional design problem variables,

design problem criteria, and the optimization criterion. These

relationships can be nondimensionalized to extract dimensionless

groupings in the form of possible mission parameters, mission

criteria, dimensionless optimization parameters, and design form

parameters. The resulting set of dimensionless groupings are the

necessary and sufficient parameters needed to describe the generalized
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mission and the resulting design forms.

The set of nondimensional parameters resulting from dimensional

analysis is used as a guide in the design procedure for nondimension'-

alizing the governing relationships. The set of parameters resulting

from dimensional analysis can also be used to help determine whether

the set of governing relationships is complete and appropriate,

even though the set may have been based on intuition.

The nondimensional form of the governing relationships shows

which parameters can be combined, which parameters may be most use-

ful, the relative importance of each parameter, and which parameter

can be neglected in a given situation.

Selection of Mission Parameters

As shown by the design examples in Chapter III, the mission

parameters are not necessarily unique; however, a certain set may be

preferred. The preferred set depends upon the physical nature of

the generalized design mission and upon the use of the generalized

design mission solutions.

The use of the governing relationships. The mission parameters

selected from the nondimensional groupings of the governing equations

may differ depending upon how the governing equations are divided

to nondimensionalize them, and whether the equations are combined.

In many cases, combining or simplifying the nondimensional governing

equations will provide a set of parameters which is the minimum

possible number of independent mission parameters that can be used

to define a given generalized design mission. Parameters of such a
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set are often combinations of parameters which might otherwise have

been selected as individual mission parameters for mission space.

An example of such a combination is shown in the design problem of

Chapter V.

The use of des~ign form solutions. Sometimes the design form

solutions to a given generalized design mission suggest a new and

simplified representation for mission space. An example is shown

in the design problem of Appendix B where the solutions to the

original generalized design mission suggest how three dimensions of

mission space can be collapsed into a single dimension. This possi-

bility was not apparent until the original generalized design mission

was solved. The new mission parameter not only simplified the

description of the generalized design mission and its solutions,

but provided a new and more general parameter for classifying the

design forms.

The use of physical knowledge. Knowledge of t he general

physical situation, theory, and experimental results of related

research studies may show which nondimensional parameters are known

to be most important. Such parameters can then be used as a guide

in selecting mission parameters. Also, the use of the method of

similitude described~ in (12) where force ratios are considered will

provide mission parameters. Furthermore, as mentioned earlier in

this chapter, physical knowledge of the relevant dimensional quanti-

ties followed by dimensional analysis will provide a set of mission

parameters. Although the combined use of dimensional analysis and

the governing equations is the preferred technique presented here
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for selecting mission parameters, the other techniques may be

necessary in design problems where the governing equations are not

known.

Relationship of the mission parameters to the other parameters.

The mission parameters have certain properties which differentiate

them from the other parameters. These properties are discussed

below.

As mentioned in Chapter II, the mission parameters and the

mission criteria are the set of nondimensional criteria which comprise

the specifications for a given design mission. The only difference

between them is that the mission parameters are variables in a

generalized design mission and the mission criteria are fixed.

Therefore, all mission parameters and mission criteria are indepen-

dent of each other and, together with a general design objective

and an optimization criterion, they completely specify any design

mission.

All design form characteristics which are included in a

generalized design mission as design parameters, mission parameters,

and mission criteria must be independent. Otherwise, a conflict

occurs and the mission cannot be satisfied. The reason is that all

design form characteristics which are included in the mission criteria

are fixed for a set of design missions, those which are included as

mission parameters are variable for a set of design missions (but

specified in a given design mission), and those which are included

as design parameters are the unspecified design characteristics in

a given set of design missions which are to be found as functions of
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the mission parameters, mission criteria, and optimization criterion.

The optimization parameters are shown by Equation 5 (Chapter

II) to be functions of the design parameters. Equation 1 shows that

the design parameters are in turn functions of the mission parameters,

mission criteria, and the optimization criterion. Therefore, a

complex relationship exists between the optimization parameters and

the design parameters, mission parameters, and mission criteria.

This relationship is understood by studying Equations 4, 5, and 7

which show that the optimization parameters may consist of (or be

functions of) certain mission parameters, mission criteria, and

design parameters. Recall that the optimization criterion is used

as a mapping relation in solving a generalized design mission only

when one or more design parameters remain in Equation 8. Therefore,

if the optimization criterion is to be used in providing mapping

relations, at least one of the optimization parameters must not be

expressable as a function of the mission parameters and criteria.

This result provides some understanding of the relationship between

the mission parameters and the optimization parameters.

It should also be noted, as pointed out by Wislicenus (6),

that an operating condition in one design problem can be a design

variable in another design problem. For example, the lift coefficient

may be a design parameter in a design mission dealing with the entire

airplane, while it could be a mission parameter in a design mission

dealing with an airfoil cross-section. Generalizing,a design

parameter in a particular design mission could become a mission

parameter in a subdesign mission of that design mission.
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Ship design example. A brief example related to ship design

is presented to illustrate how mission parameters might be selected

when the governing equations are difficult to establish.

Assume that the design variables in a given set of ship design

problems are the total weight W, speed U, fluid density p, kinematic

viscosity of the fluid v, and the acceleration of gravity g. The pi

theorem shows that the set W, U, p, v, and g can be combined into two

independent parameters. Two alternate combinations of the two

parameters (as predicted from the pi theorem) are found by inspec-

tion to be

Wg2 UW1/3

m PUGm 2  Vg 1/3p 1/3

and
SW2 U3  (40)

ml PUG m2 Vg (0

In order to determine which set is preferable, more must be known

about the physical problem. Suppose that the ship drag D is to be

minimized. The optimization criterion may be expressed as

D (41)

The drag and weight can be related by the following expressions

W = pgV (42)

D = Cd V2/3½pU2 (43)
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where V is the volume of fluid displaced by the ship hull. Substitu-

ting Equations 42 and 43 into Equation 41 gives

D Cd U__2 Cd (pU 6  1/3 Cd

Q Cd U =- (pU) d(44)W gv 1 / 3  2 \Wg2) 2m1 1/3

where Q is seen to be a function of a type of Froude number where
V1/3 1/3

the length term is V = (W/pg)3

The ship design problem is solved according to Equation 44 by

finding a ship hull from whose drag coefficient Cd is a minimum.

It is known from theory and research experiments that Cd is a function

of the hull form, standard Froude number F, and Reynolds number Re

where

Cd = Cd (F, Re, hull form) (45)

F =U (46)

R U9_ (47)
e V

Considerable experimental data has been obtained on ship hulls and

tabulated as a function of F, R , and hull form. Consequently, the

designer would want to select a pair of mission parameters such that

each can be individually calculated in terms of F or R . Accordinge

to Equations 39, 40, 42, and 46,

F= (V/3) 1/6 (V/k3) 1/6F= m 1/16 (m,') 1/6 (48)
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and

m (m') 1/3

R = 2  (i' 2 (49)Re (V/k3)1/3 -(V/k3)1/3 (9

The preferred pair of mission parameters is therefore mI and m2

rather than mr and m2' since Equations 48 and 49 show that this
2

selection provides a direct relationship with each of F and R ee

Isolating F and Re is advantageous because each represents the

influence of a different set of physical phenomena. This problem

will not be carried further since the objective was to show how a

preferred pair of mission parameters might be selected when the

governing equations are difficult to establish.

Mission Parameter Ranges

In many cases, the objective of a design mission is a design

form which will satisfy a variety of different operating conditions.

For example, aircraft must operate under a variety of speed and

maneuvering conditions which require large changes in wing lift

coefficient. To provide this change, the wing geometry is generally

made variable so that it can approximate the ideal wing required for

each of the many different quasi-steady operating conditions.

Similarly, an automobile must operate at a variety of speeds which

requires a change in gearing in order to approximate the ideal gear-

ing required for each speed. Alternatively, some design missions may

be best satisfied by a design form which remains fixed even though

it must operate under a variety of operating conditions. In such
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cases, the design form is compromised so that it operates adequately

over the entire operating range, even though it is not the best

design for any single operating situation.

To account for variable operating conditions, some or all of

the mission parameters may consist of ranges of values of some

parameter. For example, the mission parameter Ac could be used to

represent changes in angle of attack of a wing from some average

angle. Alternatively, the combination of the two parameters could

be used to specify any desired range of any parameter. For example,

if the take-off speed of an airplane is 100 mph and its top speed is

300 mph, the speed range could be generated by selecting one mission

parameter to represent the average speed of 200 mph, and another

mission parameter to represent the range of plus or minus 100 mph.

An alternate method is to utilize one parameter to represent the

minimum speed and another to represent the maximum speed.

The Number and Type of Design Form Solutions

By modifying the generalized design mission, both the number

and type of design form solutions can be varied.

Means for reducing the number of design form solutions. If

several distinct design form solutions result from each of a set

of given design missions (i.e., if regions overlap), the number of

distinct solutions can often be reduced by modifying the generalized

design mission. The designer can do this by introducing one or more

new mission parameters and mission criteria, or he can make the

optimization criterion more restrictive. By using one of the three
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methods, the designer has a good chance of completely eliminating

region overlap. However, he must have a valid reason which tech-

nically justifies introducing any change. If he cannot justify

making a change, the designer should accept the region overlap, and

the resulting design forms should be considered equally valid.

There is no reason to believe that the overlap of regions can be

prevented in all cases by any rational means.

Modification of the type of design form solutions. A

generalized design mission can be changed in a variety of ways so

that the type of solution is changed. One such way is to modify

or eliminate a mission parameter. For example, consider the column

design problem of Chapter III. If the values of E and f for thep

structural material had not been included as mission parameters, the

design solutions would have been dependent upon the state of the art

of structural materials since the material which had the highest

values of E and f would have been selected. Notice that by includ-p

ing E and f as mission parameters, a unique design form results forp

each mission which will not change with time because it is dependent

upon fixed natural phenomena. By using E and f as mission parameters,P

the designer can select various structural materials and determine

how each affect the associated design forms. Consequently, care is

required in setting up a generalized design mission so that the most

useful type of solutions result.
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Regions, Boundaries, and Design Form Families

These topics are related because each region of mission space

corresponds to a distinct design form family, and the boundaries of

each region determine its location.

Characteristics of regions. Each region is distinguished

from other regions by the existence of either different physical

phenomena or by a difference in the relative importance of the physi-

cal phenomena. The designer can make use of these distinguishing

characteristics to determine the existence of the various regions

and their location. One suggested method is to first consider all

relevant physical phenomena and then consider what types of design

form families might result when various combinations of these

phenomena are dominant. Possible types of relevant physical phenomena

might be compressive stress, buckling, bending stress, cavitation,

deflection, resonance, boundary layer effects, aeroelasticity, fluid

turbulence, vibration, magnetism, etc.

Natural boundaries. The reader may have noticed that some

boundaries in a given mission space are caused by natural physical

limits and can never change, while other boundaries may change with

time because better design forms may be found. This distinction

is important since it informs the designer that research or inven-

tion may help to improve the design form when the boundaries are not

permanently fixed. Boundaries which are hazy and some of those which

overlap may indicate that research or invention is needed.
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Scaling

Scaling is defined as the process of changing the size of a

design without changing its form or the associated design mission.

Scaling is one of the most important aspects of engineering design.

Knowledge of scaling laws permits a given design to be scaled upward

or downward in size and still operate at its peak performance. The

warning must be given, however, that a design form cannot merely be

scaled upward or downward in size and be expected to perform well.

The nondimensional design mission must also be duplicated, including

the optimization criterion.

One reason why scaling is being discussed here is that,

according to the definition of scaling, the scaling parameters

(i.e., the parameters which must remain fixed so that a geometrically-

scaled design has the same nondimensional performance characteristics)

are fundamentally the same as the mission parameters and mission

criteria. However, since scaling implies geometric scaling, none

of the mission parameters or mission criteria which relate to the

design form should be included in the set of scaling parameters

because their inclusion is redundant.

Scaling parameter ranges. Scaling should not always be

restricted to a single value of the scaling parameters. Often, a

range in values of one of the scaling parameters can be tolerated

and still provide accurate scaling. For example, if cavitation

number is one of the scaling parameters, and a fully wetted hydro-

foil is to be scaled, any value of the cavitation number is permissible
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as long as it lies above the incipient cavitation number of that

hydrofoil. Consequently, the scaling laws for a given design form

consist of a set of values, or a range of values, for each relevant

scaling parameter. The scaling parameters are sometimes called

similarity parameters or similarity relationships.

Multiple scaling parameters. Whenever more than one scaling

parameter is relevant, caution is required because scaling may not

be possible. An example is the scaling of ship hulls. One set of

possible scaling parameters are the Froude number and the Reynolds

number, Equations 46 and 47. If the fluid and g are kept constant

when scaling, the Froude number requires that the ship speed change

in proportion with the square root of a length dimension, while the

Reynolds number requires that the speed change inversely in propor-

tion with the length dimension. Consequently, scaling is not possible.

Fortunately, exact similarity of the operating situation is not

always required. In ship design, for example, it is well known that

the Reynolds number has only a small effect on the performance

characteristics of ships; therefore, a rather large range in Reynolds

number can be tolerated.

Airplane scaling example. Scaling parameters can be developed

directly from an analysis of the relevant physical phenomena using

an approach similar to that described by Wislicenus (6). For example,

consider the scaling of airplanes. The steady-state wing lift L is

L = constant - CL z2pU2 (50)
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and equals the airplane weight W which is equal to

W = CsPsgX3 + W (51)

where k is a characteristic length, CL is the lift coefficient and

is a function of wing geometry, C PsgX3 = W is the structural
s s sa

weight, C is the structural weight coefficient, p5 is the average

mass density of the structural material, and W is the weight of all

items except the airplane structure. The relevant scaling parameters

for geometric scaling, when the lift and weight remain equal, are

obtained by equating Equations 50 and 51 and nondimensionalizing

them. The following groupings result

m Ps g2.. (52)
1 p u2

and W
m 2 0 (53)m2 =p2.2U2

Notice that CL has been eliminated since it remains invariant for

geometric scaling.

Another phenomenon which must be scaled is the structural

stress caused by aerodynamic forces. The aerodynamic force is

proportional to ½pU2 Z2 and the structural force reaction is propor-

tional to fX2 where f is the structural stress. Equating the two,

and nondimensionalizing the equation, leads to the following grouping:

m = pU2 (54)
m3 f
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Other phenomena must be scaled, such as compressibility, maneuver-

ability, and elasticity, but these will not be considered here.

Notice that if the ratio of W to structural weight W iso sa

to remain constant (i.e., the ratio of structural weight to total

weight is invariant), Equation 53 becomes

m2 = P constant = m constant
Pk 2U2

which shows that in this case m2 can be eliminated since it is

essentially the same as mI.

If an airplane is to be geometrically scaled upward, and

if Wo/Wsa, p, g, PS, and f are invariant, the scaling parameters,

Equations 52 and 54, show that scaling cannot occur since the

requirements for U to change as a function of length k conflict

if X is changed.

If the structural material is permitted to vary, then

Equations 52 and 54 show that U2 must vary as p s and as f. In

other words, f/Ps and U2 /Ps must both vary as k. Consequently, the

airplane can be scaled upward if f/ps and U 2/ps are increased in

proportion to k. Unfortunately, any increase in f/Ps is generally

costly and difficult to achieve.

Another approach to scaling is to permit limited geometric

distortion. Suppose that the characteristic thickness b of all

structural members is permitted to increase faster than k when k

is increased, that the external geometric form is invariant, and that

the relative widths of all structural members vary with k.
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If W 0 /W sa remains constant, m I and m 3 in Equations 52 and 54 become

M11 = Ps . 9b (55)
P u2

and

mi = x (56)f U

assuming that the weight varies as W, the aerodynamic force varies

as k2, and the structural force varies as bt. If the structural

material remains the same, Equations 55 and 56 show that U 2 must

vary as b and as b/Z. Therefore, even this modified type of scaling

cannot occur, and does not help. Now, consider an alternate type of

geometric distortion (assuming again that the structural material,

W o 1W sa , and the external form are invariant) where b scales normally

with X, but where the structural material is redistributed within

the wing and elsewhere so that every bit of structural material is

stressed up to the allowable limit. Assuming that the airplane

being scaled was not optimized in this respect, then f could be

increased without changing the structural material or violating the

load factors and safety requirements. Equations 52 and 54 then show

that both U2 and k can be increased in proportion to f. The report

by Werner (8) (which utilizes the approach to similarity developed

by Wislicenus) implies that either this kind of geometric distortion,

or improvements in structural material, or both, is responsible for

the increase in size (and speed) of commercial propeller-driven

aircraft as a function of time period.
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An alternative form of geometric distortion could have been

used, but it would probably have resulted in a reduction of perfor-

mance. This alternative form is to reduce the lift coefficient as

k increases, keeping the speed constant. In this case, the external

form changes without an appreciable change in the internal geometric

structure. However, since CL is reduced, the lift-to-drag ratio is

reduced (assuming that the original airplane was optimized with

respect to CL), which produces a drag increase that results in a

greater power requirement and fuel consumption.

As a final comment on airplane scaling, notice that the

scaling parameter of Equation 52 can be placed in the following

form by substituting k = (W/p Sg) 3  (constant):

1g/2g 2/3

ml = 3/2U3 constant (57)

The parameter in the parenthesis of Equation 57 is one of the

similarity parameters derived for aircraft by Wislicenus, and

reported in (8). The similarity parameter of Equation 57 is there-

fore seen to be equivalent to that of Equation 52. Either parameter

can be used for scaling the associated phenomena, the most convenient

being the one which is most easily calculted from the available data.

Generalized scaling. The airplane scaling example showed

that airplanes cannot be scaled geometrically when the fluid, g,

and the structural material are invariant. Similar scaling

difficulties will be encountered in many other kinds of scaling

problems. If the desired scaling cannot be accomplished using a
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geometrically-scaled form, the designer should consider different

kinds of geometric distortion as an alternative to the more time

consuming complete redesign. Scaling where a specified geometric

distortion and a specified change in the design mission is permitted

is defined here as generalized scaling.

Optimized Scaling

One special type of generalized scaling is where the form of

a given optimum design changes in such a manner that the resulting

design is still an optimum design. This type of generalized scaling

is defined here as optimized scaling.

Relationship between a set of optimized scalings and a

generalized design mission. Notice that the set of design forms

which results from a set of optimized scalings is the same as the

family of design forms which results from a specific generalized

design mission. This specific generalized design mission is the

relevant one in which the only mission parameters are those which

include variables that depend upon size. In other words, optimized

scaling can be looked upon as the transformation from one optimized

design to another where their forms belong to a special family of

design forms. This special family is the one corresponding to that

set of relevant design missions in which the only mission parameters

are those which include variables that depend upon design size.

Consequently, optimized scaling can be performed after solving the

corresponding generalized design mission by merely calculating the

new values of the (size-dependent) mission parameters and

dimensionalizing the associated design form.
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Airplane design examples. Examples of the results of opti-

mized scaling are presented in (8) where the characteristics of

several different families of existing (and presumably optimized)

airplanes are plotted as a function of airplane weight. The forms

of any single family of (equally modern) airplanes are those forms

which would have resulted from the corresponding generalized design

mission. Some of the airplane form parameters are found to vary

while others are invariant over a relatively large weight range.

Both kinds of parameters provide valuable information which is of

future use in airplane design and research.

Optimized scaling in nature. A striking example of general-

ized scaling exhibited in nature which might be considered to be

optimized scaling is the scaling of mammals presented by Stahl (7).

He lists some of the form parameters of mammals which remain essen-

tially invariant (i.e., do not vary more than about a factor of one-

half to two times an average value) over the extensive weight range

ratio of fifty million to one. These results, combined with the

information on how the variable form parameters change with size,

would appear to be a significant step in the understanding of animal

physiology.

1 Some of these form parameters of mammals and their average

values are: (a) heart to body weight ratio, 0.005, (b)
lung to body weight ratio, 0.011, (c) lung capacity to
blood volume ratio, 0.87, (d) heart rate to breathing rate
ratio, 4.6, (e) blood volume to total body volume ratio,
0.066, (f) blood volume to body water volume ratio, 0.10, (g)
lung/heart weight, 2.2, (h) blood weight to heart weight

ratio, ll.5. Similar relationships exist for shape and
form factors, kinematic and dynamic criteria, power and
eT ficiency parameters and cherilcal-metaboiic parameters.
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Application of the Design Procedure to Research

The design procedure can be applied to research either

directly or by modifying it. The two kinds of procedure are

described below.

Direct procedure. Since the roles of research and design

are intimately related, it is sometimes difficult to determine

whether a project is a design problem or a research problem. An

example is the design of hydrofoil cross sections, which is pre-

sented in Appendix B, where the generalized design mission is to

associate the lowest-drag hydrofoil with each of the many operating

situations described by the mission parameters. For many of these

operating situations, the corresponding design forms cannot be

obtained directly from the results of known research. Consequently,

since the design procedure permits these design forms to be speci-

fied, and since these forms are new, the generalized design problem

may be considered to be a research problem as well as a design

problem.

Notice that the design of hydrofoil cross sections is far

removed from a complete design problem such as the design of a

submarine, torpedo, or hydrofoil boat. Since the hydrofoil cross

section is a subdesign problem of a propeller or strut, etc., which

in turn is a subdesign problem of a complete vehicle, the design of

hydrofoil cross sections is twice removed from a complete design

problem. Therefore, the generalization is probably valid that the

further removed a subdesign problem is from a complete design problem,

the greater will be the chance that it will provide useful research
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results, Consequently, it is likely that many valid and important

research problems can be originated and solved by studying possible

subdesign or sub-subdesign problems, selecting one, and solving the

resulting generalized design mission.

Another way in which the direct use of the design procedure

aids in research is that it shows which regions of mission space

have no known solution and may require research. Also, the procedure

clearly shows the areas in which research knowledge is incomplete or

inadequate.

Research procedure. The design procedure can be modified to

directly solve many kinds of research problems. This modified form

is called a research procedure, and appears to be a useful research

technique. Occasionally, techniques similar to the kind which will

be described are utilized in research, but are seldom as complete

as they might be. Basically, the steps of the research procedure

consist of: (a) set up a research space (i.e., a modified mission

space) which is a multidimensional Cartesian space whose coordinates

are nondimenstonal parameters called research parameters which

describe a set of operating situations, (b) select a set of design

forms, (c) conduct a series of tests on each form, where each test

corresponds to a point in the research space, and (d) associate the

resulting nondimensional performance characteristics with each point

in the research space.

Examples of possible research parameters are Froude number,

Reynolds number, Mach number, Webber number, pump specific speed,

cavitation number, ½pU2/f, ½-U2 /E, and any mission parameter used
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in an associated generalized design mission except those related

solely to design form or to performance. The research tests consist

of placing each of a set of related design forms in each operating

situation described by each of various selected points in the research

space. The research results are expressed in terms of values of

various nondimensional performance parameters for each model. The

association of the research results with points in research space is

best accomplished by plotting (for each design form) the values of

the various performance parameters on graphs which represent differ-

ent sections of the research space. Graphs representing two-

dimensional sections of research space are generally the most useful.

The research, of course,could be conducted conceptually as

theoretical applied research instead of in the form of laboratory

tests, if sufficient theory exists. The use of the research

procedure is the same in either case.

Notice that, for a given design form, regions will appear

in the research space which result from the research. These regions

result from the action of different sets of physical phenomena or a

difference in dominance of different physical phenomena. Examples

of phenomena that might correspond to different regions are cavita-

tion, flutter, pulsing, vibration, separation, transition, shock

waves, etc.

All relevant performance parameters can be plotted on graphs

of different sections of the research space. The various plotted

parameters do not have to be independent; they must merely represent

some kind of performance characteristic. There is no apparent reason
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why this procedure could not be applied to many fields of research.

Hydrofoil example. An example of the use of the research

procedure is the experimental investigation of a specific stream-

lined hydrofoil model which is to be tested in a water tunnel. The

research variables are the speed U, pressure P, and angle of attack

a. The fixed research criteria are the water density p, kinematic

viscosity v, vapor pressure P acceleration of gravity g, and the

model characteristics. A possible set of research parameters

consists of the Reynolds number R = Uc/v (where c is the modele

chord-length),cavitation number a = (P-Pv )/½pU2 , angle of attack a,

and Froude number F = U//gpc. The measured performance parameters

could include the lift coefficient CL = lift/½pAU2 (where A = plan-

2
form area of the model), drag coefficient Cd = drag/½pAU , static

pressure coefficient C at various points where C = (P x-P)/½pU2

PP x

(and Px is the static pressure at the desired point), moment coeffi-

cient CM = moment/½pAcU 2, and lift-to-drag ratio L/D = CL/Cd. All

relevant physical phenomena should be observed and recorded during

the experiment. The resulting performance is plotted on graphs which

consist of various subspaces of research space such as a versus a,

R versus a, a versus R , a versus F, etc. Figure 12 illustratesee

one kind of graphic presentation which presents the measured lift

coefficient of an imaginery,but typical, hydrofoil form as a function

of a which represents a one-dimensional section of the research space.

The values of R and F are fixed, and a is set at whatever value ise

required to provide a given C L* Also shown are the various regions

with illustrations of the flow. This kind of graph provides an
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excellent understanding of the effect of cavitation number on lift

coefficient, and illustrates the corresponding physical phenomena.

Permissible operating range. In many engineering applications,

the designer would like to know the permissible operating range of

various design forms, and the factors which affect that range. Infor-

mation of this kind can be obtained from research studies of the type

just discussed. The results, however, are sometimes more usable

if they are graphed in a different, but special, way. For example,

consider the hydrofoil study which was just presented. Assume that

it is desired to determine the range of a, R , and F which provide

a value of L/D of 15 or higher. The results of the experiment

described above could be graphed in the form of Figure 13. Notice

that the research parameters are inverted in order to better illus-

trate the permissible range. Figure 14 illustrates a required

performance range for which the designer would like to find an

acceptable hydrofoil. If the required performance range shown in

Figure 14 lies within the operating range of a given hydrofoil form

shown in Figure 13, the given hydrofoil form is acceptable.

Selection of design form families for research studies.

The set of design forms which is selected for an experimental

research study usually results from either a purely geometric varia-

tion or a functional variation. Either type may be useful, but the

set of forms which result from a functional variation are often,

but not always, the most useful type.

A set of forms represents a functional variation if a portion

of the forms of the set are designed to exhibit certain desired
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performance characteristics, and the rest are designed to vary a

small amount from them. The experimental objective is to determine

whether the desired result is obtained, and if not, whether any of

the models designed for a small variation from the desired objective

are more suitable.

An example of an experimental research study based upon a

functional variation is one in which a series of hydrofoil forms

are tested to determine which of several low-drag forms has the best

cavitation resistance. All forms could have the same strength or

thickness-to-chord ratio, but different calculated pressure distri-

butions in ideal fluid flow, all of which are fairly uniform, except

near the trailing edge. The angle of attack could be fixed at the

ideal angle. An alternate series of tests might be conducted which

correspond to a specific angle of attack range, such as + 2.0

degrees from the ideal angle of attack.

Future Engineering Design Theories

When a field is in the state of rapid evolution, as many are

at this time, including engineering design theory, it is difficult

to predict future developments. Although engineering design theory

may follow a variety of different paths, it is likely that at least

one path will utilize a rigorous mathematical approach.

Applied group theory. One possible approach to a rigorous

mathematical foundation for a design theory is the utilization of

group theory, which was suggested by Dr. D. P. Hoult in a graduate
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course which he taught. A group is a mathematical term defined as

a set of elements together with an associative binary operation

defined on the set such that: (a) an identity element exists in the

set, and (b) the inverse of each element exists in the set. By

looking upon the set of transformations from one design form to

another as elements of a group, Hoult suggests in the course notes

that a group can be defined. He briefly suggested possible ways in

which the properties of mathematical groups might be helpful

in solving a design problem. Considerable work must be done, however,

to develop these ideas, or others, to the point where they are clearly

shown to contribute meaningfully to the solution of a design problem.

Appendix A shows how the transformations from one design form to

another can be looked upon as elements of a group.

Another approach to a more rigorous mathematical foundation

was recently presented by Dr. J. W. Bond after reviewing this
2

generalized design procedure. He suggests a mathematical framework

in which the different aspects of this design theory may be treated.

In particular, he treats the problem of how to select the various

nondimensional parameters and relates them to generalized scaling.

A brief outline of a possible approach to a theory of design

using group theory was included in a set of course notes for
a course taught by D. P. Hoult at The Pennsylvania State
University in June, 1967, called "Applied Group Theory" and
listed as AROE 520.

2 An informal technical memorandum on design theory by Dr.

J. W. Bond will be filed with the Department of Aerospace
Engineering so that all interested readers may receive a
copy upon request.
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Design theory relationships. Perhaps some of the design

relationships developed herein could aid in developing an improved

engineering design theory. The following is a list of some of these

relationships: (a) a generalized design mission is uniquely deter-

mined by a design objective, a set of mission criteria, a set of

mission parameters, and an optimization criterion; (b) a variety of

generalized design missions can be derived from a given design

mission; (c) the number and nature of relevant (dimensional)

variables which describe a generalized mission is unique; (d) the

set of mission parameters is not unique, but one set may be prefer-

able; (e) a different family of design forms corresponds to each

region of mission space; (f) a single design form is associated with

each point in a region of mission space; (g) a different set of

mapping relations corresponds to each region of mission space;

(h) a different set of physical phenomena or a different relative

dominance within a set of physical phenomena corresponds to each

region of mission space, to each family of design forms, and to

each set of mapping relations; (i) the number of regions in mission

space is equal to the number of different sets of mapping relations;

(j) the number of mapping relations corresponding to each region is

equal to the number of design form parameters; (k) the number of

mapping relations which must be obtained from the optimization

criterion is equal to the number of design form parameters minus

the number of design equations; (1) if two regions overlap in

mission space, two different design forms will correspond to each
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point in the overlapping space; and (m) if the design forms corres-

ponding to mission space vary continuously across a boundary, the

two design form families corresponding to the adjacent regions have

one subfamily of design forms in common.
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CHAPTER V

DESIGN OF SUBMERGED VEHICLES

Submerged vehicles are defined as the class of self-propelled

devices which travel through a fluid and whose weight is principally

supported by buoyancy force. The treatment of submerged vehicles in

this chapter is as general as possible, and will apply to submarines,

torpedoes, and airships. The effect of technological advancements

on the design form will also be presented.

Generalized Mission

The objective of the generalized mission is to determine the

form of a submerged vehicle and the relative size of its major

components. The mission criteria are: (a) steady state operation,

(b) horizontal travel, (c) fully-wetted vehicle, (d) turbulent

boundary layer, and (e) no free-surface effects exist. The optimiza-

tion criterion requires that the size of the vehicle is to be mini-

mized. The mission variables are listed below.

Mission variables. The selected set of mission variables

consists of the speed U; range R; the volume of vehicle components

V which are independent of speed, range, or density requirements;o

the average mass density p0 of these components; acceleration of

gravity g; density of the fluid p; kinematic viscosity of the fluid

v; maximum operating depth z; static pressure P at the minimum
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operating depth; vapor pressure P of the fluid at the minimumv

operating depth; average volume per unit of net power output a p

and average mass density pp, of all components which vary with the

power output; average volume per unit of net energy output ae, and

average mass density p e of all components which vary with the

energy output; average mass density of the buoyancy source Pb; and

average mass density of the vehicle pv" Summarizing, the sixteen

mission variables are U, R, Vo, POP g, p, vP z, P, av' pj, Ppp, ae

Pe' Pb' and pv "

The mission variables listed above were selected because it

is assumed that these items would be specified in a typical sub-

merged vehicle design problem. Other sets of mission variables

could have been selected. To answer questions which the reader

may have at this point, the reasons for the selection of these

variables are presented next.

Reasons for selecting the mission variables. Generally

speaking, the speed, range, and maximum depth (of underwater vehicles)

are specified. The minimum operating depth, or the corresponding

static pressure P, is often important for underwater vehicles because

this is the depth where cavitation is most likely to occur. Cavita-

tion is to be avoided because the mission criteria contain the

specification that the vehicle is to be fully wetted. The fluid

through which the vehicle travels is usually specified. The relevant

1 In the case of airship design, Pv and the operating depth

z are not relevant. Without conflict of nomenclature, P
can be defined as the static pressure of the air for the
special case of airship design.
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fluid characteristics for vehicle design are p, v, and PV

The influence of gravity appears to be relevant since the

vehicle weight is important when the net vehicle density p v is

specified, so g is included. To control the net density of a

vehicle, a buoyancy section or purposefully loose packing of certain

vehicle components is often required. The effective net density of

the buoyancy source is pb"

In vehicle design problems, the payload density and volume

are generally given, or can be calculated. Also, the density and

volumes of the electronic components, flooded sections and spaces,

controls,and stabilizing surfaces can be approximately determined

before the design of the complete vehicle is started. Since the

maximum operating depth is known, the volume and density of all

structural parts associated with the payload and the other items

just mentioned can be estimated as a subdesign problem which is

conducted before beginning to solve the generalized design mission.

Notice that the payload and other items do not always have to be

placed in a pressure resistant hull. Whatever structure is to be

utilized, the net density p0 and volume V of these components and

their associated structure can be closely estimated before beginning

the generalized design mission.

Reasons have been given for the selection of all variables

except ap, pp ) ae and p e. Inclusion of these variables as mission

variables means that the power plant, propulsor, and fuel source

are known at the beginning of the generalized design mission. This

assumption is justified by the following considerations:
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(a) practical vehicle designs are based upon a variety of factors,

such as reliability, simplicity, safety, ease of maintenance and

repair, efficiency, etc., and these factors have not been included

as specifications for the selected set of design problems; and (b)

the generalized design procedure represents an infinite number of

design missions; therefore, the designer can select several specific

design missions (which correspond to different values of a , Pp

a e Pe ) in order to determine the effect on design form of utilizing

the different combinations of power plant, propulsor, and fuel source

which he thinks should be considered.

A final comment on the selection of mission variables is

that for any given design mission, it is assumed that several sub-

design problems have already been solved so that the required values

of the different mission variables can be determined. In other words,

it is assumed that the payload, electronics, controls, power plant,

propulsor, fuel source, buoyancy source, etc.,have been optimally

designed by taking into account all relevant practical factors.

Since the vehicle speed, maximum depth, and fluid characteristics

are known, each of the variables V, PO, a p Pp a e Pe, and pb are

assumed to include all effects of depth, speed, and the fluid. Also,

all vehicle components are assumed to include their respective portion

of the vehicle structure. For instance, Vo, ap, and ae should

include the volume of any associated structure, including a portion

of the vehicle pressure hull, if a pressure hull exists. The above

assumptions are necessary because no rational method exists for

determining their values in a generalized design mission. In other
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words, the selection of specific values for each of the mission

variables depends so much on the nature of each specific design

mission that no way exists for assigning them a generalized value.I

Possible mission parameters. Since sixteen mission variables

were selected, and all are dimensional, the pi theorem predicts

thirteen independent nondimensional parameters. One possible set

1/3 2 1/3 1/31/22
is R/V 0  , U2/gV , UV 0/v, Z/V 0/3' P/U 2 ' P vA P

p v/p, pp /p, p/p pb/p, ap pgU, and a epgR.

The set of nondimensional parameters is now briefly examined

to determine if all parameters are relevant. First, consider the

parameter z/V 0/3 which represents the maximum depth. This param-0

eter can be eliminated as a mission parameter because z is utilized

in a subdesign problem before the design mission is set up in order

to determine the depth effect on the hull design, etc., of V, POP

ap Pp ae' Pe , and Pb; consequently, z is not relevant as a separ-

ate variable since it has no further influence on the design missior.

Another change in the list of variables is that P/½pU2 and

2 1/,P2
P V/½PU can be combined into a new parameter (P-Pv)/½PU which is

Exact values for all selected variables cannot always be

calculated at the beginning of a design problem, so
approximate values must be estimated and later refined after
obtaining a preliminary solution to the design problem.
The problem should then be reworked if the estimated values
are found to be significantly in error.
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known as the cavitation number a. The individual parameters P/½PU2

and P /½pU2 are not relevant to the generalized design mission.1

The new set of eleven candidates for mission parameters is:

R/V 1/3 U2 1/3 / (P-P UPV° J, pgU, a pgR, p /p, p /p,
0 0 g 0 v p e v 0

pb/p' pp/p, and pe/p.

Possible Design Forms

Figure 15 illustrates the variety of vehicle forms which might

be associated with the different design missions represented by points

in mission space.

A problem arises now, because how can a point in the mission

space defined by the eleven parameters listed above determine which

of the vehicle forms should be selected? Apparently, a new mission

parameter is needed which describes the type of vehicle desired.

Let the symbol for the new mission parameter be T, where T represents

the type of vehicle.

Physical Relationships

The optimization goal is considered first. Since this goal

is to minimize the vehicle volume, the first physical relationship

should be an expression for the vehicle volume V, which may be

Although the variables P and ½pU2 are used in the case of

airship design to determine the structure of the buoyancy
chamber, their effect has already been included in the
variable ; consequently, P/½pU2 is not relevant, even
in the case of airship design.
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expressed as

V=V + V + V + Vb (58)
o p e b (58)

where V is the volume of components which vary with the power out-P

put, V is the volume of components which vary with the energy out-
e

put, and Vb is the (effective) volume of the buoyancy source, if any.

As mentioned earlier, the associated structure is included in each

volume component. The optimization criterion Q is the nondimensional

vehicle volume, or

QV V Vb

VV V V (9
0 0 0 0

where Q is to be minimized. Utilizing the definitions of a andP

el

V = a DU (60)P P

V = a DR (61)e e

where D is the vehicle drag, DU is the net power output, and DR is

the net energy output of a vehicle. Notice that the power plant

efficiency and propulsor efficiency are included in the values of

both a and a
p e

Let the drag coefficient Cd be defined by the following

expression:

D = CdV2/3 PU2 (62)
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where Cd is known to be a function of the Reynolds number R and

the vehicle form where

R = -- (63)
e v

k is the length of the vehicle, and

Cd = Cd (Re, vehicle form) (64)

Substituting Equations 60 to 62 into Equation 59 yields

V2/3 
V

Q V dI + C V pU 2 (apU + aeR) +-bV(65)
od 0 0

Consequently, Q can be minimized only by minimizing both Cd and Vb,

since all of the other variables are mission variables and are

therefore fixed for any specific design mission.

The physical relationship for vehicle weight W is

W = W + W + We + Wb (66)

By substituting g times the relevant density and volume for the

weight of each component and dividing by g, Equation 66 becomes

p = PV + PV + PeVe + PbVb (67)
g pv = eo~ e bpb

No other physical relationships appear to be relevant at

this point, so the equations are placed in nondimensional form and

rewritten to obtain nondimensional groupings of variables. Multiply-

ing Equation 65 by (Vo/V)2/3 , and keeping in mind the set of
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possible mission parameters, yields

1/13 V 2/3 C P 3 \ Cd V IV 2/3() + d (113) + +- ( U2) (b V (68)
0 0

where the unknowns are Vo/V, Cd, and Vb/Vo. The latter term can be

obtained by first rewriting Equation 67 as

V b Pv V PO pp V Pe Ve
V = .p_ e (69)

V Pb Vo Pb Pb Vo Pb Vo

By substituting Equations 60 to 62, Equation 69 becomes

Vb _ P Cd 2/3a 3  ~eCd 2/3b 0vV 0o d v °ePI d(ap
V = P Vo P 2  1/3) p- (23Ue) eP )/

0 0

(70)

where the unknowns are V b/V , V /V, and C Substituting Equation

70 into Equation 68 and rewriting, yields

1'V 2/3 P C iPU 3  p -P b)+C d U)( ' (& (Po-Pb/ = Cd (°P U/ • / d _ Pe-P ____

\V 0•- -= 2 "\V 1/3)(Pv-Pb) + (aePU2) V-1 3)(

0 0

(71)

An alternate form of Equation 71 which pertains to the case when

vehicle density is unimportant, is Equation 68 less the last term,

or

2 V 1/3) 2 ePU2)C 1/3) (72)

0 0
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if Cd is known, Equation 71 and the three following equations

can be solved for the case when density is important to provide the

four form parameters V /V, V p/V, V e/V, and V b/V:

V C d V /

V P- 2" 1/3) (3
0

_)e = V T3 (74)

0

V V V V
-a + P + 2 +b (75)V V V Vb

where Equations 73 and 74 were obtained from Equations 60 to 62,

and Equation 75 resulted from Equation 58. The design equations

for the case when density is not critical are Equations 72 to 74.

Notice that for either case, the number of design equations is

equal to the number of design form parameters, so the expression

for Q is not needed to provide further equations. (Recall that Q

was used earlier to show that Cd must be minimized.)

Evaluation of Cd. The value of Cd cannot be obtained

directly in view of the following facts: (a) Cd is a function of

R and the design form, (b) the design form is known only aftere

the design equations are solved, (c) either the value of Cd or an

equation for Cd as a function of the design form is needed in order

to solve the design equations, and (d) the relationship of Cd to

design form is far too complicated to be expressed in equation form.
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Consequently, the best method for solving the design equations

appears to be an iterative process consisting of the following

steps: (a) select a preliminary value of Cd, (b) solve the design

equations for the design form, (c) utilize the solution to calcu-

late an improved value of Cd, and (d) repeat Steps (b) and (c). The

value of Cd should converge quickly; in fact, a repeat solution of

the design equations may not be needed if the subdesign problem

outlined in the next section is carried out.

Determination of vehicle form. The designer can determine the

approximate form of the vehicle by solving a subdesign mission in

which the mission criteria are the cavitation number a, the parameter

UV 1/3/v, and the vehicle type T. Knowledge of the value of the0

mission parameter UV 1 v provides a rough value of the Reynolds

number since the parameter can be written as

UV01/3 UZ(V 01/3
UVo1 = 1/3 (76)

V V(

The value of V 0/3/A can be approximated from a preliminary form
0

study in which the designer guesses at the relative sizes of all

components, sketches a possible design form, and then estimates

the length of the vehicle from the known value of V

The cavitation number c may or may not have an effect on the

design form solutions of the generalized design mission. If the

value of a is low (i.e., below 1.0 to 2.0), a may affect the design

forms by requiring them to be more highly streamlined; also, a

special type of propulsor may be required to avoid cavitation.
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Consequently, during the preliminary study on design form, the

designer should include the effect of a, if it is found necessary

to do so. At very low values of a, of around 0.1 to 0.3, the vehicle

shape must be long and slim in order to avoid cavitation; also, one

of the less common types of propulsors is generally required to

avoid cavitation.

The vehicle body form which has the best cavitation resis-

tance consists of a small tailcone attached to the rear of a

uniform-pressure body shape developed by Munzner and Reichardt (15),

which is described by the equation

2 2.4

S+ (d-2) =2 1 (77)

where k is the body length, d is the maximum diameter, x is the

longitudinal distance from the nose, and y is the radius. The

relationship of k and d to cavitation number G, for small values

of a, is

d 0.793 a5/8 (78)

In the cases where the cavitation number is not highly critical, and

a uniform-pressure body is not needed, a variety of forms can be

utilized such as a circular cylinder with a rounded nose and a

streamlined tail. If the cavitation number is in the moderate-to-low

range, the design of the nose form of a cylindrically-shaped vehicle

will probably be affected by u. Rouse and McNown (16) present

valuable data on the shape of nose sections as a function of a.
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In an analysis of the drag of a wide variety of streamlined

torpedo-like vehicles, Brooks and Lang (17) show that the value of

Cd, as defined by Equation 62, varies somewhat with Re, but only

slightly with design form over a wide range of length-to-diameter

ratios, as long as the boundary layer is turbulent, the nose is

reasonably rounded, and the tailcone has a length-to-diameter ratio

of about 2.5 or more. A typical value of Cd is 0.022. For high-

drag vehicles like most of the small research submarines which have

many kinds of appendages and poorly streamlined shapes, the value

of Cd could be several-fold larger, but can be quickly calculated

using information from Hoerner (18); the value of Cd in this case

will vary only slightly with either R or with small to moderatee

changes in form, if the degree of streamlining remains the same.

Assuming that the designer takes care in streamlining the vehicle

form as much as possible, he will arrive at a value for Cd which

should be close to a minimum value.

Selection of the Mission Parameters

Before selecting the mission parameters, consider the nature

of the parameter Cd' Notice that it is evaluated before analysis

of the generalized design mission is begun, just like any of the

possible mission parameters. In fact, Cd has all of the properties

of a mission parameter, and should therefore be added to the list

of possible mission parameters.
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After studying the design equations, Equations 71 to 75,

and the list of possible candidates, the best set of mission

parameters appears to be the following:

C d. ppU 3

mi = (79)2 V 1/3

0

CdaePU2 R
2 = 1/3(80)

0

Cd PU3 P -Pb'

2 V
m 3 1/3. (P.. . D (81)

2 V v/ p-b]

0

C dae PU2R (Pe-Pb 
(2

m4= / o • (83)

m4 2 V 1/ \p v-Pb)
0

Po-Pbm5 =pv-Pb (3

assuming that Cd has been approximately evaluated from the following

function:

uv /3

C Cl\ 0/ a, T (84)

Therefore, the parameters UV 1/3/
v, , a, and T have already been used

for this problem and do not appear in the above set of mission

parameters. Notice that the familiar Froude number is hidden in

both m1 and m2 since
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Cd U2
m1 = a /3 •pgU

I =2 gV o/3 P

Cd U2
m 2 = 2 gV01/3 aepgR

Also, notice that m3 could have been set equal to (pp-Pb)/(pv-Pb)

but it was selected as presented because it appears in this form

in Equation 71 and will be seen to be used in this form later in

graphing mission space. A similar remark holds for m4.

Status of the Problem

By using a subdesign problem to calculate Cd9 the generalized

design mission has become considerably simplified. The mission

parameters are mi1 to M 5 . The design form parameters are V /V,

V /V, Ve/V, and Vb/V. The design equations are Equations 71 to 75.

The optimization criterion is not needed at this stage of the problem.

All five mission parameters are required when vehicle density is

important; otherwise, only m1 and m2 are relevant. No boundaries

will appear in mission space since no critical values are apparent

and the same set of mission relations are relevant everywhere in

the space. The shape of the vehicle may be significantly affected

by a if a is below about 1.0 or 2.0.
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Power- and Energy-Limited Vehicles

The simplest set of design missions is the generalized mission

described by mission parameters m1 and m2 when vehicle density is not

important. The design forms, for a given value of V0 are then

dependent only on power and energy requirements. The mapping

relations, Equation 72 to 74, when placed in terms of mI and m2P

become

(VV 
V2/3

Vo) M I + m2 (85)

VP-=v SV ml (86)

V (V 1/3
_-2 v m2 (87)

The point mI = m2 = 0 in the (mi, mi2 ) space maps into V /V =0

1.0, meaning that the entire vehicle consists of V . This type of

design form corresponds to the limiting case of a low-speed, short-

range form from the viewpoint of minimum size.

The mapping of either the line mI = 0 or mi2 = 0 is illustrated

in Figure 16 where V /V is graphed as a function of mI1 or mi2 . The

ratio V /V or V /V is simply 1 - V /V, as seen by Equation 75 whenp e o

Vb/V = 0.

The mapping result of the entire (mi, mi2 ) space is illustrated

by Figure 17 where V /V, V /V, and V /V are each graphed as a func-
0 p e

tion of mI and mi2 .
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The mapping for the special case when vehicle volume is

limited, is shown in Figure 18 to illustrate how easily the

generalized design mission can be turned into a size-limited design

mission where a critical boundary line now exists. The example of

Figure 18 corresponds to the set of missions where V < 20V
- O0

Power-, Energy-, and Density-Limited Vehicles

When vehicle density is important, the required mission

parameters are m1 to mi5 . The mapping relations are Equations 71,

73, 74, and 75 which, after substituting mI to m 5 , become

2/3

0) =m +m (88)

0

P = ml (89)

V V) m/lo

V e (V0) 13 m(90)

V Vo V Vbp_ - e.~ (91)
v = v v "v

The mapping result is illustrated in Figure 19 where V /V is graphed0

as a function of m3 and m4 for three different values of m 5 . The

values of V p/V, V e/V, and Vb/V can be obtained from Equations 89 to

91.
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Once the preliminary work of evaluating the mission parameters

has been completed, the design form can be obtained from the results

of the generalized design mission in a matter of minutes.

Power-, Energy-, Density-, and Weight- or Volume-Limited Vehicles

If a vehicle is weight or volume limited in addition to being

power, energy, and density limited, the illustration of the general-

ized design mission changes only by the addition of a boundary line

which appears in the (m3P m4 , m5) space, and which corresponds to

the maximum allowable weight Wmax or volume V max. The weight and

volume limitations are expressed by the values of the following new

mission parameters:
W

(weight limited) m6 = - (92)

max
V

(volume limited) mi = max R(- (93)
7 Vo V 0

max

Except for the limiting boundary line in the (m3 , m4 , m5) space,

the theory and solution is the same as in the generalized mission

solved in the preceding section. Therefore, Figure 19 is still

valid for values of mi3 and m 4 up to the limiting boundary line

defined by Equation 93 for a volume restriction, and by the follow-

ing modification of Equation 92 for a weight restriction:

(weight limited) m6= f(- ) - o (94)

max max
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and rewriting,

\ •o__Po WmxPo

(weight limited) max = ((5)m (V (Vg
max

Classification of Submerged Vehicles

Three of the four design parameters V /V, V p/V, V e/V, and

Vb/V are required to classify the form of a submerged vehicle when

its density is critical; otherwise, two of the three parameters

V /V, V p/V, and V e/V are required to classify it. These parameters

are utilized for technical classification because, for any given

category of submerged vehicles with a turbulent boundary layer,

the external form does not significantly affect the vehicle perform-

ance as long as it is reasonably streamlined as discussed earlier.

For a given vehicle, the relative speed, range, and buoyancy

requirements are indicated by the relative sizes of the power-,

energy-, and buoyancy-dependent components of the vehicle.

The design mission of a submerged vehicle is classified by

the parameters mI to m5 if density is important; otherwise, only

m and m2 are required for classification. Although no simple

linear relationship exists between the various m's and the design

parameters, Figures 17 and 19 and the design equations indicate that

in most cases m1 affects Vp, m2 affects V, m3 affects Wp, m4

affects W and m5 affects Vb and Wb.

A completely different kind of classification parameter,

which has no bearing on the design form of submerged vehicles, but

permits their performance to be compared with surface craft and
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airplanes, is the weight-to-drag ratio, W/D. This ratio is

relatively invariant for certain kinds of surface craft and air-

craft, and determines the amount of thrust required to propel a

given vehicle. The value of W/D is around 4 to 6 for well-designed

planing boats, 6 to 10 for hydrofoil boats, 10 to 20 for airplanes,

20 to 40 for sailplanes, and up to 100 to 200 for large ships. The

value of W/D for submerged vehicles can vary over this entire range,

and beyond, depending upon their size and speed. Wislicenus (19)

introduces D/W as a function of Froude number, presents a discussion

on the use of D/W for classification, and includes a survey of the

state of the art of submerged vehicles.

If the value of W/D for a submerged vehicle is low, and the

design problem is sufficiently flexible, the designer may want to

consider redesigning the vehicle so that it can travel part of the

time on the surface or in the air. On the other hand, the designer

may find that continuous travel on the surface or in the air is

best performancewise, if the design mission is general enough to

permit this, An exampde of a vehicle which travels through both the

air and water during operation is the Navy ASROC missile. This

missile operates like a rocket initially, and then like a torpedo

after shedding one stage and entering the water. The Polaris missile

is an alternate example where the first stage of travel occurs

underwater, and the next stage takes place in the air. More common

examples of vehicles designed for two-phase operation are submarines

which are designed also for surface travel.
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The expression for the W/D ratio of submerged vehicles is

SPgV = 2 . (96)
D CdV 2/3pU2 Cd U2

Notice that W/D is inversely proportional to the square of the Froude

number based on volume. Rewriting Equation 96,

W _2 01/3 1/3
V (97)

Cd u2 g

The parameter gV0 /3/U2 is seen to be of prime importance for

comparing the performance of submerged vehicles with other vehicles.

The value of W/D increases as the size V increases and as U reduces.

Consequently, the large, low-speed vehicles, like some kinds of

research submarines, will have a high value of W/D, while the small

high-speed torpedoes will have a low value of W/D. In fact, the

W/D ratio of some torpedoes is on the order of one, while W/D for

some research submarines is on the order of 100.

Numerical Examples

Example (a). This first design example is the design of a

two-man research submarine. The mission specifications are:

U = 10 ft/sec; R = 50 miles; z = 10,000 ft; the fluid is sea water

where p = 2 slugs/ ft 3 , v = 1.2 x 10- ft 2 /sec, and Pv = 30 lbs/ft 2 ;

P = 2120 lbs/ft2 ; V = 125 ft 3 and po = 1.5 slugs/ft3 for a glass

sphere, personnel, equipment, flooded compartments, controls, stabil-

izing surfaces, etc; pb = 1.0 slugs/ft' Pv 2.0 slugs/ft
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aP = 2.5 x 10.5 ft 3 /(ft lb/sec) and Pp = 10 slugs/ft 3 for an electric

motor, propulsor, and the associated structure; and a = 1.4 x 10"7
e

ft 3 /ft lb and p e = 10 slugs/ft 3 for the batteries.

The cavitation number is a = (P-P v)/½pU2 = 20.9, so there is

no cavitation problem. The Reynolds number Uk/v is around 107 since

k is around 10 feet, so the boundary layer is definitely turbulent.

Assuming that a number of protuberances are required for research

investigations, that various lifting hooks, railings, bumpers, and

structural supports exist, and that the sphere is not completely

faired, the drag coefficient would be around Cd = 0.10.

Using Equations 79 to 83, m, = 0.00050, m2 = 0.073, m3 = 0.0045,

m4 = 0.66, and m5 = 0.50. Using Figure 19, Vo/V A 0.8; the more

accurate value of 0.78 is obtained from Equation 88. Using Equations

89 to 91, V p/V = 0.00046, Ve/V = 0.0673, and Vb/V = 0.1522. The

total vehicle volume is 125/0.78 = 160 ft 3 , and its submerged weight

(with water compartments filled) is W = (160)(2)(32.2) = 10,300 lbs.

The volume and weight of the power-dependent components are V =p

(0.00046)(160) = 0.0736 ft 3 and W = (10)(32.2)(0.0736) = 24 lbs.P

The volume and weight of the energy-dependent components are V ee

(0.0673)(160) = i0.8 ft 3 and W = 3,480 lbs. The volume and weighte

of the buoyancy chamber are Vb = 24.4 ft 3, and Wb = (1)(32.2)(24.4)=

785 lbs. The weight of the glass sphere, personnel, instruments,

flooded compartments, etc. is W = (1.5) (32.2)(125) = 6,040 lbs.0

The vehicle drag is D = Cd V2/3½pU2 = 294 lbs., and the power

delivered to the water is (294)(10/550) = 5.36 horsepower.
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Example (b). The objective is to design a torpedo where the

specifications are: U = 80 ft/sec, R = 30,000 ft, V= 1.0 ft 3 ,0

3 3-Po = 4.4 slugs/ft ,p = 2.4 slugs/ft 3 , v = 1.2 x 10 ft lbs/sec,

3 3 -p = 2.0 slugs/ft P = 0.4 slugs/ft, ap = 1.5 x 10- ft 3/(ft lb/' p

sec) for a thermal power plant at operating depth, pp 6.2 slugs/

ft 3 ' a e = 1.0 x lO-7 ft 3 /ft Ib, and pe = 4.2 slugs/ft 3 . The drag

coefficient of a smooth, streamlined body with a turbulent boundary

layer and stabilizing fins with R = Uk/v * 4 x 107 using (17) ise

Cd = 0.023.

Using Equations 79 to 83, m, = 0.177, m2 = 0.442, m3 = 0.513,

m4 = 0.840, and m5 = 2.0. Using Figure 19, Vo/V 0.14; a more

accurate value is V /V = 0.145, using Equation 88. Consequently,0

V = 6.90 ft 3 and W = 534 lbs. Using Equations 89 to 91, V p/V =

0.0929, V e/V = 0.232, and Vb/V = 0.470. Consequently, V = 0.641e p

ft3 W = 128 Ibs, V = 1.60 ft 3 , W = 217 Ibs, Vb = 3.24 ft3 and' p' e e '

Wb = 42 lbs. Also, W = 142 lbs. The vehicle drag is (0.023)

(6.90)2/3 (80)2 = 533 lbs, and the power delivered to the water is

(533)(80)/550 = 77.7 horsepower.

Example (c). This last example is an airship design where

W = gPoVo= 30,000 Ibs, U = 150 ft/sec, R = 3,000 mi, Po = 0.4

slugs/ft3' Pb = 0.00119 slugs/ft3 (which includes structure which

is designed for the given speed), a = 1.5 x l0-5 ft 3 /(ft lb/sec),P

pp = 6 slugs/ft 3, a e = 4 x 109 ft 3 /ft lb, p e = 2 slugs/ft p = pv=

0.00238 slugs/ft3, and v = 1.4 x 10-4.

The Reynolds number is Re = Uv/k A 2 x 108. Using (17), and

assigning some drag interference between the passenger compartment
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and the buoyancy compartment, Cd A 0.023.

Using Equations 79 to 83, mI = 0.000105, m2 = 0.00295,

mn3 = 0.53, m4 = 4.95, and m5 = 335. Using Equation 88, V0 /V

0.00121. Therefore, V = 1,920,000 ft 3 and W 147,000 lbs. Using

Equations 89 and 90, V /V = 0.0000111, V /V = 0.000312, so V = 21.3p e p

ft 3 , V = 600 ft 3 , W = 4,110 Ibs, and W = 38,600 lbs. Usinge p e

Equation 91, Vb = 1,919,000 ft 3. so Wb = 73,500 lbs. The drag is

D = (0.023)(15,500) (0.00119) (22,500) = 9,530 ibs, and the net power

output is (9,530)(150)/550 = 2,600 HP. The ratio W /D = 3.15,0

which is somewhat lower than the equivalent value for passenger

aircraft. Because of this lower ratio, the lower speed, much greater

hanger difficulties, and safety problems, it can be seen why the

airship is not competitive with modern commercial jet airplanes.

Effect of Technological Improvements on the Performance and Form

of Submerged Vehicles

The solution of the generalized design mission for submerged

vehicles permits many questions to be answered regarding the effects

of technological improvements on vehicle performance or design form.

Such answers aid in deciding whether new drag reduction methods

should be applied to torpedoes or submarines, whether research

dollars should be spent on miniaturizing the electronics or on

improving the energy output of the fuel or batteries, whether the

space saved by reducing the payload size should be utilized for

increasing the power and speed or for increasing the stored energy

and range, how the design form or weight changes if one or more

vehicle components is reduced in size, etc.
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Change in design form. The quickest method for determining

the effect of a technological improvement on design form is to

first calculate the new values of mission parameters mI and m2 in

case density is unimportant, or mI to m5 in case density is impor-

tant. Figure 17, or Figure 19 and Equations 89 to 91 are then used

to provide the new design form for each respective case. If greater

accuracy is desired, Equations 85 and 88 can be substituted for

Figures 17 and 19, respectively. By doing this, the effect on

design form can be quickly obtained for any combination of specifi-

cation changes. The total volume or weight change can be calculated

using both the given data and the design form parameters which result

from the new set of mission parameters.

Speed increase. Another way of utilizing a technological

improvement is to increase the speed of a given vehicle. The

assumptions made for the following analysis are: (a) the vehicle

size, Vo, and Vb remain fixed; and (b) any change in buoyancy is

either small or unimportant. Other assumptions could have been

made, but these are a simple and practical set, and serve to provide

an example of the many kinds of analysis that can be conducted.

Technological changes in a p, a e, R, and Cd will be considered.

Consider first, an improvement in the power output, which

enters this problem as a reduction in a p by the factor a p/px'

where a px is the improved value. Since V0 /V and Vb/V° are invar-

iant, Equation 68 reduces to

CdPU2 -=+(8
2Vd 1/3 (apU+a eR) = m1 + m2 = constant = mx + m2x (98)

S1/32V
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where mI and m2 are given by Equations 79 and 80, and the subscript

x refers to the new value which results from any technological change.

Rewriting Equation 98 for the change in U which results from changing

a p to apx yields

p px WN)+m ( XU(9

p

Rewriting Equation 99,

3 mm r3
a ml X M--, (U2

-) =2 (100)
px U -+1l (U\
1 22[ U-)] m2 + -

From Equations 86 and 87, it is seen that

m1 V
-= -P- (101)m 2 V e

Substituting Equation 101 into Equation 100 provides

a3

ap= e2 (102)

-P- +1 -Ve

e (U)
which shows the improvement factor in a that is required to increaseP

vehicle speed by a factor of Ux/U. Since the result is a function

only of Vp/Ve, then any type, form, or size of submerged vehicle

having the same ratio of V /V will benefit equally (from thep e
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viewpoint of speed increase factor) from a given improvement in

a p. Consequently, V p/Ve (or m /m 2) may be viewed as a special type

of classification parameter.

Utilizing Equation 98, and following the same procedure, the

factors ae/a ex, R/Rx, and Cd/Cdx, required for a given speed increase,

are found to be

2

e (U________ (103)

ex V fU\
1+ V- p[ -

e

2

1 + v -P-[1-]

U ~2 V ]

(Cd 
'(U-)_ V eU

(d~ e

1 + V (105)

V
e

where the parenthesis around Cd/Cdx with the sub-o means that it

is assumed that the drag reduction method requires no additional

equipment.

Equations 102 to 105 are plotted in Figure 20 showing the

improvement factor which is needed for a speed increase of 25%.

Similar curves could be plotted for other speed increases. Notice

that drag reduction appears best, since lower improvement factors

are needed. Also, notice that a considerable improvement in a ore
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range is required unless the ratio V /V is less than about 0.6.p e

Similarly, the gain resulting from an improvement in a is smallp

unless V /V is greater than about 1.5.p e

If internal volume is used for drag reduction equipment

(which is often the case), the value of Cd/Cdx required to provide

a given speed increase would increase in order to make up for the

usable volume which is taken away from Vp and V . The penalty duep e

to drag reduction equipment is analyzed next.

The volume V d of the drag reduction equipment is treated

like an increase in the volume V . Consequently, after the drag0

reduction equipment is installed, the new value of V is labeled

V where V = V0 + Vd. Multiplying Equation 68 by (V0/V)1/3

yields

Vb Vo CdPU2

V - = V (2V /3(apu + a eR) = constant (106)

Equating the value of Equation 106 before and after drag reduction

is utilized, and letting V ox= + V d yields

CdPU2 V + Vd

V° + R)=o+

2 V-1/3(a pU + ae 
V

U CdPU2 (U) x2 Cdx
[apU (-U + a eR] 2V 1/ 3 DU) Cd (107)
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Solving for Cd/Cdx, Equation 107 becomes

C d 2V/ pU2 u x2R

Cd CdPU (V)2  T e (108)

Cdx Cd +U Vd_v / (apU + eR) - V

2V1/ p e V

Using Equations 79 and 86, it is seen that

: C m V -P- (109)

2V

"e Cd pU2R 1 (0)

2V 1/3 =m2 =VV0 V-

Substituting Equations 109 and 110, Equation 108 becomes

v (u 3 Ve U 2
d V \U) V\U/ (111)-= vv(I)
dx Vp + eV d

If Vd = 0, then by definition, Equation I11 becomes equal to

(Cd/Cdx)o, or

( x)-- ) v - + 
(112)

V V
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which is the same as Equation 105. Dividing Equation 111 by

Equation 112 yields

V V

d =( d V V(

V V V

Substituting Equation 91,

Cd = (Cd 1 (114)

Cdx Cdxo Vd
I v-v -V - V0 - Vb

Equation 114 shows that the actual drag reduction factor Cd/Cdx,

when drag reduction equipment is needed, must be greater

than the drag reduction factor (Cd/Cdx)O which is required when

no added equipment is assumed. This penalty is seen from Equation

114 to increase as Vd/V increases, and as V0 /V and Vb/V increase.

At this point, it is interesting to remove the criterion

that V must remain fixed, and determine how much the speed of a

vehicle might be increased if the size of the payload, electronics

components, and the associated structure is reduced. Equating

the value of Equation 106 before and after a change in V0 is made,

yields
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V CdpU2  V V CpU2  U 2  U
V+ 2V 1/3 U + ,,eR o) ) 1/3 (U2e) U2V .V° + 2ae p

(115)

Rewriting,

V

= V 0 (116)
Vox V apCdPU [()x] eCdpU2R u 2

V- 1 v/3 U -12v/3

After substituting Equations 109 and 110, Equation 116 becomes

V

o =V (117)
"Vox

0 -

VV L V (117

This equation is not graphed along with the others in Figure 20

since it is not a sole function of V /V . The required reductionp e

in V for a given speed gain is seen to increase as V /V and V /Vo p e

increase, and as Vo/V reduces.

Range increase. In this section, it is assumed that a

technological improvement is used to increase the range of a vehicle.

The following assumptions are made in the analysis: (a) the

vehicle size, Vo, and Vb are fixed; and (b) any change in buoyancy

of the vehicle is either small or unimportant. Technological

changes in a , Ce, U, and Cd are considered.
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The application of Equation 98 to the case of range increase

resulting from a reduction (improvement) in a yieldsP

CdPU2  + = CdPU 2  a a R (118)

2V 1/3 p e 2V 1/3 p a p e P
0 0

Solving for Rx/R,

R a U
X'= P (1 - 7.2-X) +1 (119)
R aR ae p

Dividing Equation 73 by Equation 74 yields

a U V
-P- = --R (120)

a R Ve e

Substituting Equation 120 into Equation 119 gives the range increase

factor as a function of a /a and V /V where
p px p e

R V
_2= + P- (I -px) (121)
RV ae p

Notice that the maximum possible range increase factor is I + V p/V

Proceeding in a similar manner for the other kinds of technological

improvement, it can be shown that

"R-= 2 + u !v3e
X = - + - (122)
R Ux V el
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R_ e (123)
R

ex

and

R --V (124)
Txo e e

where (Cd/C dx ) is defined as the drag reduction factor when no

drag reduction equipment is needed.

Equations 121 to 124 are graphed in Figure 21 which presents

the range increase factor R x/R as a function of the improvement

factors for a p, a e, U, and Cd for the cases of V p/Ve = ½ and Vp/V =

2. Figure 21 has been graphed differently from Figure 20 to

illustrate an alternate type of presentation. Notice that an

improvement in a by a factor of more than two does not helpP

appreciably. Drag reduction is seen to be even more beneficial than

a•eex because the range factor increases faster than the drag

reduction factor. The greatest range increase results from reducing

speed, but this is seldom feasible unless technological improvements

in the overall system which utilizes the submerge, d vehicle permit the

vehicle speed to be reduced.

In order to calculate the penalty due to the added volume

Vd of drag reduction equipment, the constant in Equation 106 is

equated before and after the application of drag reduction, where

Vox = V + Vd givingox 0 d gvn
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V CdPU2  Vo+Vd CdPU2 RCd Rx]V° + do (apU+aeR) = + d /+ (Cdx aUR(L) (125)

V 2V1/3 p e V 2V PU l eR(R-

Solving for Cd/Cdx,

Cd PU2  R

V 1(126)

Cdx CdpU 2  
Vd

d (cpU+ eR) - d

2V1/3 p e V

Using the same general method as in developing Equation 114 from

Equation Ill, Equation 126 yields

d / d 1 (127
C eix C dx)o V d -17
Cdx d _C______I _(127

I - V -0V - V b

Notice that Equation 127 is the same as Equation 114; thus, the

penalty for drag reduction equipment is the same whether speed or

range is to be increased.

The requirement that V is constant will now be removed in0

order to determine how a reduction in V affects range. Equating0

the constant in Equation 106 before and after a reduction in V
0

to increase range yields
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V 0 C d U2  V V o)+CIU
o° +d pU2 (VV(O) (x) CdPU2 1 pU+a eR (.e)] (128)

V-V p2V/

Solving for R /R, and substituting Equation 110 gives
x

R V Vx = + - '- - ) (129 )

e 0

Notice that the range factor increases as V ox/V and V e/V reduce,

and as Vo /V increases.

This concludes the work on the effect of technological

changes on the form and performance of submerged vehicles. A

different approach to the design of torpedoes was developed by

Brumfield (20) which may be of interest to the reader since it

shows the effect of design parameters on torpedo size and weight,

includes methods for minimizing torpedo weight and volume as a

function of target range, and permits the calculation of an optimum

speed ratio with respect to the target.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

The objective of this study was to develop a generalized

engineering design procedure based on a nondimensional analytical

approach which can be used to solve a set of design problems in a

given field. An optimization criterion is incorporated into the

design procedure. The use of the procedure aids in determining

the diversity of design form families, the variations of design

form within a family, the relationship between design form and the

design objective, the scaling and classification of design forms,

the areas where invention is still needed, and the nature of research

studies which might lead to new information on design forms.

The generalized design procedure consists essentially of

seven steps which are described in Chapter III and consist of:

(I) generalize a typical design problem, (2) determine possible

design forms, (3) introduce physical relationships, (4) select the

mission and design parameters, (5) specify the mapping criteria and

the design equations, (6) select a sequence of subspaces to map from

mission space, and (7) map from mission space to design space.

Many aspects of the design procedure are discussed in detail.

Some of these aspects are: (a) procedure for generalizing a design

problem, (b) methods for nondimensionalizing design problems and
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designs, (c) selection of design mission parameters, (d) establishment

of an optimization criterion, (e) treatment of design problems which

have a large number of variables, (f) selection of subdesign problems,

(g) means for finding typical design forms, (h) relationship between

families of design forms and sets of design missions, (i) means for

establishing physical relationships between the mission parameters

and the design form parameters, (j) uniqueness between the number of

mapping relations and the number of design form parameters, (k)

methods for illustrating the design form solutions, (1) development

of means for classifying design forms and design missions, (m)

methods for developing scaling laws, (n) modification of the design

procedure for use in research, and (o) selection of design variables

for research studies.

Several examples are presented to illustrate the use of the

design procedure. Some examples relate to complete design problems

while others relate to subdesign problems. The design examples

presented are the following: (a) circular tubes under external

pressure, (b) columns under compressive loads, (c) submerged vehicles,

(d) airplane wings and fully-wetted hydrofoils, and (e) cavitating

and noncavitating hydrofoil cross sections. The design procedure

is also applied to solve an economic problem in order to illustrate

its use in fields other than engineering design.

The results of the design study on submerged vehicles are

applicable to the design of such vehicles as naval submarines, small

research submarines, torpedoes, remote-controlled underwater vehicles,

and airships. The effects of range, speed, type of propulsion system
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and fuel, payload size and weight, depth, and buoyancy requirements

on the size and weight of the vehicle and its component parts are

determined. Also, the effect of technological improvements on design

form and performance is determined. Simple means for classifying all

vehicles and design missions are developed. The effect of drag

reduction is compared with the effect of other kinds of improvements.

The design study of airplane wings and hydrofoils results in

the determination of the optimum aspect ratio, thickness ratio,

planform taper, thickness ratio taper, cross-sectional shape, and

lift coefficient. The design problem variables include the weight

of various components, design stress, speed, fluid density and

viscosity, etc. In the case of hydrofoils, the effects of cavitation

number, divergence, and flutter are considered in addition to strength

and viscosity. New scaling and classification parameters are

developed.

The design example of hydrofoil cross sections includes the

effects on design form of such variables as lift, bending moment,

cavitation number, speed, structural strength, fluid density, and

fluid viscosity. Six different families of design forms result,

each of which are associated with a specific set of design missions.

The optimum design form is determined for each of the specific design

missions. Five of the design form families are cavitating hydrofoil

cross sections. A new classification parameter is developed which

permits all cavitating hydrofoils and the simpler fully-wetted

hydrofoils to be classified much like the specific speed parameter
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classifies turbomachinery; however, the hydrofoil classification

parameter is more general because it also includes the effects of

cavitation and structural strength on design form.

Concl us ions

The following conclusions are drawn:

1. The generalized engineering design procedure can be

applied to a wide variety of engineering design fields. It can

also be applied to fields outside of engineering design, and to

research studies.

2. The design procedure permits an entire design field to

be more completely understood, and shows how design forms are related

to design missions.

3. The use of the design procedure may lead to the discovery

of new design forms, new families of design forms, and new classifi-

cation and scaling parameters. Also, it permits the establishment

of areas in which inventions or research studies are still needed.

4. The design procedure is a method which aids in solving

either simple design problems or complex design problems with many

variables. It permits the complex design problems to be more easily

treated.

5. Knowledge of the design field and ingenuity are necessary

in making use of the full potential of the design procedure.

6. This design procedure is not to be considered the only

approach or best approach to design, but merely as a step in the
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evolution of engineering design theory which hopefully will be of

use in its further development. A possible approach to the improve-

ment of design theory may be the development of a more rigorous

mathematical foundation.
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APPENDIX A

DESIGN OF LOW-SPEED AIRPLANE WINGS AND

NONCAVITATING HYDROFOILS

Most complex design problems must be separated into sub-

design problems in order to solve them most efficiently. The

objective of this appendix is to illustrate how one particular type

of design problem is separated into subdesign problems, how one of

these subdesign problems is transformed into a generalized design

mission, and how the design procedure is used to solve the resulting

set of design missions.

The design of dynamically-supported vehicles such as air-

planes and hydrofoil boats is selected as the particular type of

design problem. The design of a lifting surface is the selected

subdesign problem to be solved wherein the lifting surface represents

either an airplane wing or a lifting hydrofoil of a hydrofoil boat.

The design of lifting surfaces is intended to be as general as

possible.

Specification of the Subdesign Problem

In general, the design objective of either an airplane or a

hydrofoil boat is to transport a given payload at a given speed for

a given distance. All of the vehicle components must be packaged

into a dynamically-stable vehicle whose weight is supported by a
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lifting surface. The lifting surface must be structurally sound

and should provide the desired lift with a minimum of drag.

The design problem of an airplane or a hydrofoil boat, like

most design problems, is typically an iterative process where the

values of certain items are assumed which then permits an analysis

to be conducted. The results of the analysis are then used to obtain

better values for these certain items so an improved analysis can be

conducted.

Utilizing this iterative process, it is assumed that a rough

estimate is first made of the weight of all vehicle components. The

components include such items as the payload, crew, structure,

electronics, power source, fuel, control devices, special equipment,

the necessary passenger accommodations, etc. In the case of airplanes,

considerable weight can be carried in or on the wing in order to

reduce both the bending moment exerted on the wing and its structural

weight, and to also reduce the size and drag of the hull. Such items

as the fuel, power plant, landing gear, and certain kinds of payload

can be placed in or on the wing. Let the estimated value of the

weight of all of the components, except the structural weight of the

lifting surface, be designated as W . Also, let the portion of Wa a

which is to be placed in or on the lifting surface be called Wx

The design of the lifting surface can now be considered as a

separate design problem. Letting W be the structural weight of the5

lifting surface, the required lift is W + W . The load contributinga s

to the bending moment on the lifting surface is W - W . The total
a x

vehicle drag D is equal to D + 0 , where D• is the drag of the
a Q
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lifting surface, and D is the drag of all other components. Let thea

optimization criterion for the vehicle design problem be to minimize

D. Since D is essentially fixed and independent of the liftinga

surface design, the equivalent optimization criterion for the lifting

surface subdesign problem is to minimize D .

The general design objective of the lifting surface subdesign

problem is to determine all of the fundamental variables, which

include: planform shape, aspect ratio, chordwise thickness distribu-

tion, camber, thickness-to-chord ratio and its spanwise taper, void

area of the cross-section, structural weight, drag, and lift-to-drag

ratio. Much of the design analysis pertains to both wings and

hydrofoils. Since the entire problem is too lengthy to complete

here, a point in the analysis will be reached where only hydrofoils

are considered.

In case an airplane or a hydrofoil boat has more than one

lifting surface, W is defined as the portion of the total loada

carried by a particular lifting surface minus its structural weight.

Generalized Design Mission of the Lifting Surface Problem

The lifting surface problem is now generalized into a set of

design missions.

Design problem specifications and mission parameters. The

selected set of design problem specifications is: Wa Wx, speed U,

acceleration of gravity g, fluid characteristics which consist of

density p, kinematic viscosity v, speed of sound a, pressure P,
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vapor pressure P VP and characteristics of the structural material

which are density Ps, modulus of elasticity E, and the design bending

stress f (which includes the load factor and factor of safety).

Summarizing, the set of twelve selected design problem specifications

consists of Wa, Wx' U, g, p, v, a, P, P, Ps) E, and f. The pi theorem

predicts nine nondimensional parameters. One possible set of

(nondimensional) mission parameters is W x/W a, W ag2/pU6 , U3 /gv, U/a,

P/½pU2 , P/½pU2 , ps/p, f/E, and ½pU2 /f.

Mission criteria. The general design objective is to

determine the form of the lifting surface which has lowest drag.

The nondimensional optimization criterion Q is

Q Dk (130)
a

where Q is to be minimized.

The following mission criteria are selected for the generalized

lifting surface design mission: (a) steady state operating conditions,

(b) bending stress is the only critical stress problem, (c) all

hydrofoils are noncavitating, (d) the cross-sectional shape of the

lifting surface is constant along the span, and (e) the boundary layer

is turbulent.

Possible Design Forms

Some possible design forms are shown in Figures 22 and 23.

After viewing the possible forms, it is realized that selection of a

lifting surface form is dependent not only on the technical
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Figure 22 - Possible planforms, thickness tapers, and cross-
sectional shapes of lifting surfaces

Fpl

Figure 23 -Examples of lifting surface applications
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consideration of low drag but also upon other factors such as the

ease of manufacture and cost. The latter considerations will have

varying effects on the design form depending upon the manufacturing

facilities, available development and construction time, nature and

use of the vehicle, etc. In view of manufacturing and cost considera-

tions, lifting surfaces generally have straight leading and trailing

edges, and either no thickness taper or a uniform taper from the

center (root) section to the tip. Consequently, to make this design

mission more definite, the planform taper ratio T, and the thickness-

to-chord taper ratio q, are here considered to be specified parameters

(i.e., mission parameters) rather than design form parameters, where

T and ý are defined as

T =tip chordlength

root chordlength

and
tip t/c ratio
root t/c ratio

Physical Relationships

Optimization criterion Q. The physical equations needed to

evaluate Q are related to gravitational and aerodynamic forces.

Recalling that the lift L is equal to W + W , Equation 130 isa s5

rewritten as

D, Dk L 'd W
W = - •. (I + (131)

a a L a
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where the drag coefficient Cd and the lift coefficient CL are

defined as follows:

Dý = C bc½pU2  (132)

L = CL bc ½pU2  (133)

where b is the span of the lifting surface and c is the mean chord-

length defined as the planform area divided by b.

The term W s/Wa in Equation 131 is evaluated by first intro-

ducing the relationship

Ws = PsgC vbct (134)

where ps is the density of the structural material, t = (t/c)c where

(t/c) is defined as the thickness-to-chord ratio at the center of the

semispan, and C is defined as the volume of structural materialV

divided by bct. Substituting bc from Equation 133 into Equation 134

and rearranging,

W C Ps W W /
S= ____ 1L CL p u2 W +W W1

a s a + " s
a

Let the aspect ratio A be defined asr

A = b (135)
r c

Setting b = Arc, and c = t/(t/c), Equation 134 can be solved for t

and substituted into the expression for W /L to gives
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S )2 1/3 1W\/3

C p
W c vs Ws(_ g_

W /a 1 +k-a L PSgCvAr Wa

a

2Cv 'PS2/3 a( )1/3 (t2/3 W \ 1/3

A pU6

Rearranging, and raising the equation to the three-halves power,

W
S3/2 3/2 2 1/2

a (2_)___(Ia

+ r

Assuming that Ws/Wa << 1, then (1 + W s/W a)3/2 1 + (3/2)(Ws/Wa).

Using this approximation, the above equation becomes

3/2 2 2 1/2

1/ 2 ( U ) (136)

Wa 3 r/2( 3/2 2 g2 1/2(16
2 C•FL (A/2 ta

r

Using standard aerodynamic procedure, Cd is separated into

the profile drag coefficient Cdp and the induced drag coefficient

C di where

Cd = Cdp + Cdi (137)
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Using airfoil data from Abbott and Doenhoff (21) and other sources,

Hoerner (18) developed semi-empirical expressions which lead to the

following expression for Cdp of lifting surfaces with a turbulent

boundary layer

4

Cdp= 2 Cf [ + 2 + 30 (+ _L) (138)

where Cf is the turbulent skin friction drag coefficient of a flat

plate, and is a function of the Reynolds number and surface roughness.

The standard form of the induced drag coefficient is

CiCL (139)
di i= A

r

where C. is a coefficient which can be found in most aerodynamic

references and is 1.0 for an elliptic spanwise lift distribution,

and slightly above one for other distributions.

Substituting Equations 137 to 139 into Equation 131 yields

D =2Cf F tc 4 iL W(4
Q =k -=<- fI + 2 ý+30 L + - (lI + 2- (140)

a L c rA r a

1 A check of the expression for Cd with the data of (21) showed

close agreement for the NACA 63-Pto 65-series airfoils with
standard roughness and for the uniform-pressure airfoils like
the 16-series with standard roughness. All utilized the NACA
a = 1.0 uniform pressure meanline. Equation 138 is valid only
for cambered lifting surfaces operating at the ideal angle of
attack, and assumes that the separation drag on the pressure
side is negligible. Also, if the t/c taper ratio is much less
than one (i.e., 0<<l), an error is introduced in Equation 138
due to insufficient weighting of t/c near the root section;
however, this error is small for the values of 0 considered
here.
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Strength. The physical relationship regarding structural

strength is that the design bending stress f at the root section of

a lifting surface must be equal to or greater than the applied bend-

ing stress. Therefore,

f > o t / 2
f ý t12(141)

I
0

where M is the bending moment, I is the area moment of inertia of a

lifting surface cross section, and the subscript o refers to the root

section. Since theory shows that the section modulus I/(t/2) is

proportional to t 2c, let C1 be defined as follows:

0 = C 1 2C = C(-. c (142)

t 0/2 1 o 0 co)

where Cl is the nondimensional section modulus of the lifting surface

cross section, and is constant along the span since the cross-sectional

shape is assumed to be constant along the span. Furthermore, let

C2' C and C4 be defined as follows:

t '
o = (!) = C (143)
c c o 2'c
0

co = C3c (144)

L-W-W b C4  W +W
Mo C24 ( bL ( - L X) (145)
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where the net upward force on the wing semispan is half of L-Ws -Wx

and C4 is the nondimensional distance from the root to the semispan

center of pressure in terms of semispan length; also, it is assumed

that W and W are distributed along the span proportional to the

lift. Substituting Equations 142 to 145 into Equation 141 gives

W +W
> C 4 bL (1 sL x

4C C2 C3 ( ) 2c3 (6

Substituting Equations 133 and 135, Equation 146 becomes

f > C4CLAr 2 pU 2 /2 W+W= (1 s x) (147)

4c C2 C3 (t)2 W +W
23a s

Rewriting,

_ C f /Wa-Wx. A - (148)
c C3  fWaW) c3 r L

12 3

Let K be defined as

C 4 Wa

K1 W (149)4CI c2 c3 +

a

Then Equation 148 becomes

A K Ar C. (150)
c 1 r L
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Cavitation. Since cavitation of hydrofoils is not permitted, the

critical incipient cavitation number of a hydrofoil must lie above

the operating cavitation number a, which is defined as

P-P
v (151)

½pU
2

The hydrofoil cross sections which have greatest cavitation resistance

are any which are similar to the NACA 16-series airfoils which have

a near-uniform pressure distribution. Using the data in (21), the

following approximate (linearized) expression for cavitation-free

operation was developed for the NACA 16-series forms:

a> 2.45 L+ 0.56 C (152)
c CL

Similar expressions can be developed for other hydrofoil forms.

Rearranging Equation 152,

1 - 0.408 a - 0.229 CL (153)
c

Elasticity. The physical relationships dealing with the

elasticity of the structure will be presented later. Both flutter

and divergence will be considered. Each are known to depend upon the

parameter ½pU2 /E. No elastic effects occur if E is sufficiently

greater than ½pU2 .

Viscosity. The nondimensional parameter which was selected to

represent viscosity is U3/gv. The only place where viscosity enters

this problem is in the evaluation of Cf, which is primarily a function
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of Reynolds number R and surface roughness. The form of R can bee e

transformed as follows:

R U U) (c_) (154)e v gv

From Equations 133 and 135,

2L ~ /2 ,_21/2 1/2 W a1/2

L2) C y~-.-} ( 1/2) (155)

Substituting Equation 155 into Equation 154 gives

U3 W g 2 1/2 1/2 1/2 ( 1/2 1/2 1/2

ae /L\U, ý= 2 Wi L Ar

(156)

Consequently, Re is seen to be a function of a new parameter W /Pv 2,

and of (L/Wa)½ and (2/CLAr)½ which result from the solution of the

design mission. Notice that an estimate must be made of the last

two terms of Equation i56 in order to evaluate the Reynolds number,

which in turn is needed together with the surface roughness to

provide a value for Cf. The value of Cf may then be used to solve

the problem. Once the problem is solved, a better estimate can be

made for the last two terms of Equation 156, which in turn provides

a better value of C If the original Cf is found to be inaccurate,

the problem should be reworked.

Let the parameter r' represent the nondimensional surface

roughness of a lifting hydrofoil, and let it be considered as a

mission parameter. It is known that Cf can be represented as

Cf = Cf(Re, r') (157)
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where Re is given by Equation 156. Consequently, Cf can be estimated

at the beginning of a design mission problem by estimating Re , and

then using Re and r' to evaluate Cf using either Reference (18) or

(21). Notice that, in general, the last two terms in the expression

for R of Equation 156 can be approximated by 1.0 until the designe

form is better determined. Since Cf varies only slightly with Re,

considerable error in evaluating R can be tolerated.e

Design equations and the optimization criterion. The design

equations, which are used for mapping from the various regions of

mission space, are Equations 150 and 153. Other design equations

will be added later when elasticity is considered. The optimization

criterion is given by Equation 140, and Q is to be minimized.

Mission Parameters and Design Parameters

In view of the design equations, the optimization criterion,

Equation 136, and the preceding discussion, the best set of mission

parameters appears to be Wx/Wa' (Ps/p) 4Wag 2 /pU 6, Wa/PV 2 , U/a,

(P-P )/½pU2 , p /p, f/E, T, ý, r', and ½p_ 2/f.

The design parameters are CL, Ar, t/c, and the cross-sectional

form.

Design Equations

The optimization criterion given by Equation 140 shows that

t/c must be minimized in order to minimize Q. Consequently, the

inequality sign can be removed from Equation 150, which becomes
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S= K A Yv.- (158)c I

When cavitation is critical~in the sense that the maximum value of

t/c permitted by Equation 153 is less than the optimum value of t/c

which results when cavitation is not considered, then t/c should be

made as large and as close to the optimum value as possible.

Therefore, whenever cavitation is critical, the inequality sign must

be removed from Equation 153 so that it becomes

(cavitation critical) != 0.408 a - 0.229 CL (159)

Viscosity-Limited Optimized Lifting Surfaces

The first subspace of mission spaceoselected for mapping is

called Subspace (a) and consists of the point defined as follows:

u4 Wag02 0 =(P• -=0 -= 0 -=0 ___•=

Pa E ½pU2

(160)

W ½pU2½=U0 = 0 T = 1.0 .= 1.0
W f"

a

r' = NACA standard roughness, defined in (21)

Wa corresponds to R e 6.106

PV2 e

Subspace (a) therefore represents a single design mission in which nc

physical phenomena are significant except viscosity. The strength of'
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the structural material is infinite, its weight is zero, and it has

no elasticity. There are no Mach number or cavitation effects.

There is no planform or t/c taper and no weight is carried in the

lifting surface. The selected values of r' and W /pv 2 are typicala

values for practical wings and hydrofoils.

Since (ps/P)wag2/pU6 is zero, Equation 136 shows that

W s/Wa = 0. Equation 140 then becomes

4

Q = W--=a D-= C L +c + 0 i+ A (161)
a L r T

Since Q is to be minimized, Equation 161 shows that Ar should approach

infinity and t/c should approach zero. Since the structural material

is infinitely strong, these limits can be approached without vio-

lating any criteria. Consequently, Equation 161 reduces to

2Cf

Q = CL + 0.096 CL3 Cf (162)

Since neither of the two design equations is applicable, the value

of CL must be obtained from Q as follows:

2C
C--= 0 --- + 0.288 C 2 C

3C L c2  L f

Solving,

CL = 1.62

This value of CL is an optimum point because a2Q/C L2>0. Also,

notice that the optimum CL is independent of Cf.
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The value of Cd is shown by Equation 161 to be simply CLQ.

Using Equation 162,

Cd = Cf (2 + 0.096CL4) = 0.0100

where Cf = 0.00375, and was obtained from Reference (21).

The lift-to-drag ratio of the lifting surface is

L I CL 1.62
= Q = Cd 0.0100 = 162

The best cross section to use for the lifting surface is

probably the a = 1.0 meanline described in (21) and set at the ideal

angle of attack which is zero. This meanline produces a uniform

pressure distribution which would tend to minimize turbulent boundary

layer separation (and the associated drag increase), even at the

relatively high lift coefficient of 1.62. Since Equation 138 for

Cdp was developed for airfoils utilizing the a = 1.0 meanline, the

resulting value of Cd is probably valid, even though the data from

which Equation 138 was developed did not extend to such thin sections

and high lift coefficients. The camber (i.e., the maximum height

of the meanline above a straight line joining the leading and

trailing edges) is found from Reference (21) to be 0.0 8 95c. Since

the aspect ratio approaches infinity, the lifting surface has a

very small chordlength and a long span.
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Viscosity- and Strength-Limited Lifting Surfaces

The next subspace of mission space to be mapped is called

Subspace (b) and is the four-dimensional subspace defined as follows:

4 Wag 2  P-P

S) 2 -- = 0 0 -= 0

pU 6  a E ½pU2

W ½pU2

variable -- U--= variable T = variable € = variable
W fa

r= NACA standard roughness

W
a corresponds to R e 6 6 106

PV2

The only design equation is Equation 158, which represents stress.

Therefore, all additional equations which are needed to evaluate

the design parameters must come from Q, which is given by Equation

14o.

Evaluation of K1 and Ws/Wa. Notice that all parameters in

Equations 140 and 158 are either mission parameters or design

parameters, except K and W s/W . The nature of K and W s/Wa must

therefore be investigated. Equation 149 shows that K consists of

the mission parameters ½pU2 /f and Wx/Wa, the coefficients C1, C2 , C3 ,

and C4 , and Ws/Wa.

Equation 142 shows that CI is a function of the cross-

sectional form. C2 is seen by Equation 143 to be a function of the

t/c taper ratio p. Equations 144 and 145 show that C3 and C4 are
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functions of the planform taper ratio T. Ws/Wa is seen by Equation

136 to be a function of one mission parameter and four design form

parameters; since the value of that mission parameter is zero, W s/Wa

is seen to be zero.
Because T and p are variable, it is seen that C2, C , and

C4 may be considered as variables as long as they are obtained from

feasible values of T and p.

The evaluation of C1 is a special problem. C1 represents the

cross-sectional strength of the lifting surface. The value of CI

is much lower for airplane wings than for hydrofoils, even though

both may utilize the same airfoil shape. The reason is that wings

are generally far more hollow than hydrofoils which are often solid

metal. One factor causing this large difference in cross-sectional

strength between wings and hydrofoils is that the size of an airplane

wing is a much greater proportion of the vehicle size; consequently,

wing weight W is so highly critical that the increased thickness ofs

a hollow wing (compared to a solid wing) produces a drag increase

which is negligible compared to the drag reduction resulting from

reduced wing weight and wing area. A second contributing factor is

that the value of ½pU2 /f for airplane wings is normally much lower

than for hydrofoils, so that structural stress is relatively less

critical thereby permitting the use of more hollow cross sections.

In the generalized design mission, the two factors that

contribute to a hollow lifting surface are a relatively high value

of (ps/p)4 W g2 /pU6 and a relatively low value of ½pU2/f. In the

present problem, the value of the former parameter is zero, which
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means that the structural weight is zero. Therefore, according to

Equation 140, Q is minimized when t/c is minimized, indicating that

the lifting surface should be solid for Subspace (b).

The best cross-sectional shape for a lifting surface is the

one having the lowest drag for a given strength. The data of (21)

show that the drag coefficients of the 63- to 6 5-series airfoils,

and of airfoils of the 16 -series type (for example, the 0010-35

airfoil) are the lowest of those shown, assuming NACA standard

roughness and R = 6 106. Since the calculated value of Cl fore

the 16-series airfoils is 0.0871, compared to about 0.082 for the

63- to 65-series airfoils, the 16-series airfoils are selected as

being best from the combined viewpoint of high strength and low

drag. Since their pressure distribution is nearly uniform, the

16-series airfoils are also best for cavitation resistance in case

they are used as hydrofoil sections.

Because (ps/p) 4 Wag 2 /pU 6 was selected to be zero, this set

of design missions does not apply to practical airplane wing design.

In order to broaden this problem so that it will apply to practical

wings, C1 and Ws/Wa are now considered to be variables so that

practical values can be selected for them. This means that all of

the parameters comprising K are now considered to be variable, so

K has been broadened. The broadened K1 is considered to be a new

This value was calculated for an uncambered section. Cl

remains essentially unchanged with camber unless the
lower side of the lifting surface is concave. Since the
latter seldom occurs in practice, C is assumed to be
0.087. All calculations refer to solid sections.
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mission parameter which replaces all of the variable mission

parameters that were originally selected to describe this set of

design missions. The broadened K1 is

C 4 P - w W /Wa

(broadened) K1 = C2 f- I + W--W (163)

The original K1 was

-' C4 (½•21("W/W) (14

(original) K1  - W /W (164)fO348 C C

Notice that the original K1 is a special value of the broadened K1

where CI = 0.087 and W s/W = 0.

Solution of the set of design missions. It is seen from

Equations 140 and 158 that the design parameters which must be

evaluated are CL, Ar, and t/c. Substituting Equation 158 into

Equation 140 gives

Q _ fl+2K ArV-L + 30 (K1Ar VC L + - --- r (0 + --- ) (165)

L Ir LIr 57A W

where Q must be differentiated with respect to Ar and to CL in

order to find their optimum values.

Setting DQ/ 6A = 0 and simplifying, yieldsr

4¶K CfAr 32+2 C•)31
frCi /2 [l + 60 C 3/2 (KIA +0 .2=AF) ] 1 (166)

C C 3/2 L IL
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Setting ýQ/KCL = 0 and simplifying, gives

CL2 [3r(KA+0.6v'7)(KA+0.2v'-7) + 23 CfAr]- KAr C. = 1 (167)

Equations 166 and 167 are independent and can be solved by

an iteration process for the optimum values of CL and Ar as a

function of KI. Setting Cf = 0.00375 (for NACA standard roughness

and Re = 6 • 106) and C. = 1.01 Equations 166 and 167 are solvedeI

and the resulting values of CL, Ar, t/c, Cd, and L/Df are plotted

in Figure 24 as a function of K1* The value of t/c was obtained from

Equation 158, and the values for L/Df and Cd were obtained from

Equation 161 where L/Df = I/Q and Cd = QCL.

Results. Figure 24 provides considerable information on

optimized lifting surfaces. Most lifting surfaces will have a

value of K1 lying between 0.01 and 0.10. The only significant

shortcoming of Figure 24 is that it does not include the effects

of variable angle of attack Aa and Mach number or cavitation number

G. If the effects of Aa and Mach number or a were included, the

thickness-to-chord ratio t/c would be reduced, in genei:,lfrom the

values shown in Figure 24, and all of the design form characteristics

would change.

Within the assumptions made, the results of Figure 24 are

applicable to high-performance sailplane wings and to high-performance

I It is assumed that the planform shapes are close to the

optimum ellipse. However, differences in planform shape
from the optimum increase C. only a small amount, unless

the taper ratio is less than about 0.15 according to (21).
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low-speed hydrofoils. For example, a value of KI = 0.01 corresponds

to Ar = 21, CL = 0.62, t/c = 0.173, and L/Df = 36. These values are

characteristic of the best high-performance sailplane wings, except

for the value of L/DfI

If the low-speed 3irplanes were optimized like high-perfor-

mance sailplanes for flight at a given cruising speed, their wing

characteristics would lie closer to the values of Figure 24, and

their outer form would probably resemble sailplanes. However, most

airplanes are designed for a variety of flight conditions, so

factors other than minimum drag are also important.

Optimum value of KI' Since the values of C1 to C4 in the

parameter K1 are to be selected, the question arises as to which

values are optimum. Figure 24 shows that the drag is reduced as

K1 reduces. Therefore, the value of C4 should be minimized and

the values of Cl, C2 , and C3 should be maximized. Since the values
of C3 and C4 depend upon T, C2 depends upon c, and C depends upon

the cross-sectional shape, the problem reduces to finding the

optimum values of T and p, and the optimum cross-sectional shape

which provides minimum drag.

The optimum planform shape from the viewpoint of minimum

induced drag is the one which has a taper ratio that most closely

Since the boundary layers on the better sailplane wings may

be as much as half laminar, and since their surfaces are
generally very smooth, the values of L/Df can be somewhat
higher than 36. However, if the body drag is included, the
total L/D for the better sailplanes is reduced to a maximum
of around 40. Notice that some changes will appear in
Figure 24 in view of the effect of a change in Cf on
Equations 166 and 167.
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approximates an ellipse. However, to minimize C4 and to maximize

C3 , the taper ratio T should be as small as possible. On the other

hand, to maximize C T should be as large as possible because, as

will be seen later, this permits 4 to reduce which causes C2 to

increase. Since the optimum values are not highly critical, and in

order to simplify the problem, it is assumed that the best value of

T is the intermediate one which approximates an ellipse and thereby

permits the induced drag to be minimized.

It can be shown that the value of taper ratio which provides

the same mean chordlength and aspect ratio as an elliptic planform

is T = 0.570. Since the cross section and lift coefficient are

assumed to be constant along the span, the semispan center of

pressure is at the centroid, or 0.454 semispan outward from the

root. Consequently, the corresponding optimum value of C4 is 0.454.

The ratio C3 of the root chordlength to the average chord-

length c of a tapered planform can be shown to be C3 = 2/(l + T).

Consequently, the value of C3 for the assumed optimum planform is

C3 = 1.27.

The optimum value of C2 is the thickness-to-chord taper

which permits the bending stress at all spanwise locations on the

lifting surface to be approximately equally critical so that all of

the structuralmaterial is fully utilized. Setting the maximum

bending stress equal to f at all nondimensional distances ý from

the root (where C = distance ÷ b/2), the value (t/c) of t/c at

for the case of T = 0.570 and uniform lifting pressure can be shown

to be given by
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S(I-C) (I+I .20C+0.20 2) (168)

(1-0.43C ) 3

Equation 168 is graphed in Figure 25 which shows that the optimum

linearized t/c taper ratio is ý = 0.5. This value is typical for

high-performance lifting surfaces. The value of C2 corresponding

to q = 0.5 is defined as the ratio of (t/c) at the root to (t/c)

at the semispan center where • = 0.500; therefore, the optimum

value of C2 is 1.33.

The optimum cross sections for solid lifting surfaces were

shown earlier to be the NACA 16-series airfoils with a = 1.0 mean-

lines. The resulting value of C1 was 0.087. In the case of a

practical airplane wing where wing weight is critical, and the wing

is hollow, the optimum value of C1 can be calculated only if the

mission parameter (ps/p) 4 Wag 2 /pU6 is included in the generalized

design mission. The solution of such a generalized design mission

would show how hollow a wing should be, and how far C1  lies below

the value of 0.087 for a solid wing. Such an analysis can be

readily conducted since most of the necessary equations have been

developed; however, the analysis is too lengthy to include in this

study and would not contribute as much to the illustration of the

design procedure as the problems which are considered instead.

1 A typical value of Cl for a light airplane is 0.0010, or

about 1/100 that of a solid section.
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Hydrofoil example. Consider the design of an optimized

hydrofoil where C I 0.087, C2 = 1= 1.27, and C4 = 0.454.

Using Equation 149, K1 = 0.610 v45•pU2/f assuming that W x/Wa = 0

and WsWa 0 . Assume that two optimized hydrofoils are designed

for respective speeds of 30 and 60 knots. Assume that the design

stress for a dynamic load factor of 4.0 and a factor of safety of

1.5 is f = 12,000 psi. The respective values of K1 are then 0.023

and 0.047. Figure 24 shows that the respective design form

characteristics are CL = 0.49 and 0.39, t/c = 0.185 and 0.199,

Ar = 11.5 and 7.0,and L/Df = 26 and 21. Using Equation 152, the

respective critical cavitation numbers acr are 0.727 and 0.705. The

respective operating cavitation numbers a, calculated from Equation

151, are 0.825 and 0.206. Consequently, the 60 knot design will

cavitate since a<acr' so this hydrofoil will have to be redesigned

by taking a into account. The next problem illustrates the design

process when cavitation is critical.

Viscosity-, Strength-, and Cavitation-Limited Hydrofoil Designs

The class of fully-wetted hydrofoils is now considered

separately from airplane wings in order to determine the effect

of cavitation on the design form and performance, in addition to

the effects of viscosity and strength. The original generalized

If the hydrofoil had a simple rectangular planform with
no t/c taper, then C2 = 1.0 and C3 = 1.0, giving K = 1.18

VT2pU 2 /f. Notice that the simple form has nearly twice the
value of K1 .
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design mission and mission criteria are modified to incorporate

K as a mission parameter. This design problem is represented

by the following subspace of mission space:

P-P
K1 variable 0 -- = 0 - = variable

a E ½pU2

r' = NACA standard roughness

W
a corresponds to R = 6 106
p2 e

Solution of the equations. The design equations are

Equations 158 and 159, and the optimization criterion is given by

Equation 161.

Equating t/c in Equations 158 and 159, and solving for Atr

0.408 a - 0.229 CL
A = (169)r K1V

Substituting Equations 159 and 169 into Equation 161,

Ft 2(0.408 a - 0.229 CL) 30 4
Q = 2 Cf [I + + 8L (0.408 a - 0.029 CL)]

KICiCL'
+ / (170)+ T(0.40 8 a - 0.229 CL)

Setting DQ/@CL = 0, and solving for the value of K1 in terms of

the optimum value of CL gives
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K1 (G-0".561 CL )2-'8C l +0"816cf+0"831(G-O'071CL1)3(0+O'213CL)•5 iC s"-(171)

1 cy-O. I86C L L 156 C C L /2 J

Equation 171 applies only for the case when cavitation affects the

design form (i.e.,when a<acr where acr is the incipient cavitation

number of the design form given by Equation 152 with the inequality

sign removed). If a>acr, then Equations 166 and 167 apply, as in

the previous problem.

Results. Equations 171 and the solution to Equations 166

and 167 are graphed in their appropriate regions of Figure 26

which shows 0 plotted as a function of K with values of CL super-

imposed. As before, Ci has been set equal to 1.0. The use of the

parameter K1 permits Figure 26 to be applicable to hollow hydrofoils,

and permits the effect of hydrofoil weight on reducing the bending

moment to be included1. Notice that a boundary now exists in the

graphed section of mission space which separates the strength- and

viscosity-limited region where Equations 158 and 161 apply, from

the strength- viscosity-, and cavitation-limited region where

Equations 158, 159, and 161 (or Equation 171) apply.

The values of design parameters t/c and Ar are plotted as

a function of K and a in Figure 27, and the value of L/Df

Notice that the use of KI does not permit the hydrofoil

design to be optimized from the viewpoint of its weight,
but merely provides a value of K which applies in case
the designer wanted to use a hollow hydrofoil and to
include the generally small effect of hydrofoil weight on
bending moment.



182

z00

STRENGTH, ANDTE

Q70

0_5

K1~~~: 4GCC, 
+sW

0i3r 260~iCSt~ srfgh n aiaif i~e

fU1zwte hyrfo



183

0.16 !0.18 It/C 0.120

I A1rr =

LIJ

0.16

O 0.05 0.7

0 1  0. 1 u2 i-X/
f ICOI+'jvsi

Figure ~ ~ ~ ~ ~ TRNGH 27D -7-1 Asetrtoadt1kns2ocodrtoo
optmiedfuly-etedCAdofITAsO



184

(i.e.,l/Q) is plotted in Figure 28. The values of t/c, Ar, and

L/Df were obtained by using Figure 26 together with Equations 158,

159, and 161. Exactly the same boundary is seen in Figures 26 to

28.

Notice that a has a strong effect on design form in the

region below the boundary in Figures 26 to 28. For example, if

the value of K for a hydrofoil is K = 0.02, the respective design

parameters for two situations where a is 0.75 and 0.2 are CL = 0.51

and 0.20, t/c = 0.18 and 0.04, Ar = 14 and 4, and L/Df = 27 and 18.

Some readers may wonder why sweepback was not considered in

order to reduce some of the design limitations imposed by cavitation.

Appendix D has been added to show that whenever a hydrofoil (designed

for a fixed angle of attack) is strength and cavitation limited,

that sweepback does not help to change the cavitation limitations

and reduce drag.

As a final comment, notice that the results of this problem

can be used for propeller blade design. Since Figures 26 to 28

apply to cantilevered hydrofoils, they also apply to propeller

blades if the blade twist is low and if both U and a are properly

calculated.

Design of Airplane Wings and Hydrofoils Which are Thickness Limited

in Addition to Being Viscosity and Strength Limited

If the design of a lifting surface is thickness limited in

addition to being viscosity and strength limited, the optimization

criterion is given by Equation 161 (assuming Ws/Wa = 0), and the
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design equation is Equation 158. If Equation 158 is used in the

normal manner, and the resulting t/c is less than the specified

maximum, the solution is the same as for the viscosity- and strength-

limited problem treated earlier. However, if the value of t/c

which results from the use of Equation 158 exceeds the specified

maximum value of t/c, then t/c must be fixed at the specified

maximum value in Equation 158. In this case, a different solution

will result from substituting Equation 158 into Equation 161.

Consequently, two regions will appear in mission space.

Alternate procedure. A short cut in solving this problem

is to utilize the graphs resulting from the last problem. Even

though cavitation has no bearing on this problem, the results of

the last problem can still be used. Notice that the value of Kl

is clearly the same in both problems. The only difference between

the two problems is that a critical value of a is selected in

the last problem while a critical value of t/c is selected for

this one.

Figures 26 to 28 can be used to solve any design mission

falling within the scope of this current problem by using the

following method: (a) locate the point in Figure 27 which corres-

ponds to the specified maximum value of t/c and the calculated value

of K for the given design mission; this point provides the design

aspect ratio and also a pseudo-cavitation number; (b) using the

pseudo-cavitation number and K,, find the corresponding values of

CL and L/Df in Figures 26 and 28.
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Of course , this problem could have been easily solved by

following the design procedure. This alternate procedure was shown

to illustrate that a previous solution can sometimes be applied

to solve a different kind of design problem. The use of such an

alternate procedure will also save time and effort because additional

graphs would otherwise be required.

Example. As an example, consider the case of an airplane

wing where the calculated value of K1 is 0.04 and t/c is limited

to 0.10. Figure 27 shows that A = 4.8 and a = 0.39. Using a andr

K1 Figures 26 and 28 show that CL = 0.27 and L/Df = 20.

Design of Elasticity-, Cavitation-, Viscosity-, and Strength-

Limited Hydrofoils

This final problem of the appendix includes the effects of

flutter and divergence which now become important because elasticity

is considered. The associated section of mission space is defined

as follows:

U f P-Pv
K = variable -- = 0 - = variable -- variable

a E ½pU2

r' = NACA standard roughness

W
a

- corresponds to R = 6 O 106p•2 e

Flutter and divergence. The introduction of the modulus

of elasticity E presents the possibility of hydrofoil failure by
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flutter or divergence, although bending moment, which has already

been treated, is by far the most important design consideration.

Flutter is characterized by an oscillation which beings suddenly

when a certain critical speed is reached. It is caused by an inter-

action of dynamic, elastic, and inertial forces. The oscillation

builds up rapidly, and generally results in failure after only a

few cycles. Fortunately, no authenticated cases of flutter have

been reported on the lifting surfaces of operational hydrofoil

craft; however, flutter has been observed in laboratory experiments

on swept-back (non-lifting) struts which were very thin and accurately

aligned (22). If the thin struts were not accurately aligned, they

would instead fail in bending due to the side force produced by the

small angle of attack. If the thin struts were not swept back,

failure would occur at a somewhat higher critical speed, and would

be caused by divergence.

Divergence is a combined dynamic and elastic phenomenon.

Beyond a certain critical speed, any small angle of attack produces

a critically large hydrodynamic moment about the spanwise elastic

axis. This critical value of hydrodynamic moment produces an

elastic twist which further increases the angle of attack which in

turn produces more hydrodynamic moment and more twist, and so on,

until failure occurs in torsion. The entire process is very rapid.
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Divergence, when critical, can be eliminated by a sweepback of

only a few degrees (23)

Design equation for divergence. Assuming that the hydrofoil

is not swept back, divergence, but not flutter, may occur (22).

The expressions2 for the critical dynamic pressure qd above which

divergence occurs on cantilevered hydrofoils having a constant t/c

ratio, cantilevered span of b/2, and planform taper ratios of 1.0

and 0.5, according to Reference (23) are:

(T = 1.0) qd = T2GJ (172)
ce CL b2

10.96 GJ

(T = 0.5) qd = 0 (173)
co eo C Lb 2

where GJ = torsional stiffness of the cross section, J = COct

Ct = 0.30 for thin rectangular cross sections (24) which is approxi-

mately valid for hydrofoil sections, e = distance from the center

of pressure to the elastic axis, CL = CL/2)a, and G = modulus of

When a foil is swept backward, the normal transverse deflec-

tion due to lift along the span produces a slight reduction
in angle of attack when combined with the sweep angle which
opposes the increase in angle of attack due to torsional
elasticity.

2 These expressions for qd were developed for cantilevered

airfoils or hydrofoils assuming that there is no angle of
attack deflection in steady flight which would move the
center of pressure outward. This assumption is valid for
the present problem because the elastic axis is close to
the center of lift for all designs.
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rigidity = E/2(l + ýi) = E/2.6 where pt = Poisson's ratio = 0.30

for most structural materials. The subscript o refers to the root

section. Substituting the above relationships into Equations 172

and 173, together with c = C3 c, (t/c)° = t/c since t/c is assumed

constant along the span (i.e., C2 = 1.0), e0 = C3 e, Jo = Ct(t/c)3 c4
2 3 0 00 0

=C J, C = 1.0 for T = 1.0 and C = 1.33 for T = 0.5, Ar = b/c,

the equations become

3 4

(T=l.0) q = Tr2 E(0.30) (t/c) C 1.14E(t/c) 3  (174)
2.6c 2 (e/c)CL Ar2C2 (0/c) Ar2CL

Ot O

(T=0.5) q = (10.96)E(0.30)(t/c)'(l.33) 4 c 4 = 2.24E(t/c)3  (175)
2.6(1.33) 2C2 (e/c)CL Ar2c2 (e/c)A r 2 CL

Consequently, for the same average chord and aspect ratio, a

tapered hydrofoil with T = 0.5 has about twice the critical dynamic

pressure of an untapered hydrofoil. This result shows the further

advantage of taper for elastic effects in addition to the previously

shown advantages for structural bending and induced drag.

Letting q = ½pU2 so that Cd is minimized (because t/c is

minimized), and substituting C5 for the numerical constant appearing

in Equations 174 and 175, where C5 is a function of the taper

ratio T, the two equations become a single equation which can be

solved for t/c, giving

A r 2 CL 1/3

r/ e ½pU2 ) (176)
C EC 5
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For aspect ratios around 2.0 and above, standard lifting line

theory shows that

a
CL 0 (177)L 2

1• +--
A

r

where a = value of CL for an infinite aspect ratio. Defining
0.

K2 as a new mission parameter where

1/3

(K e a0 E) (178)2 (C 178E

and substituting Equations 177 and 178 into Equation 176,

t 2 r (179)
c (2+Ar)1/3(

Equation 179 is the desired design equation which relates the

elastic phenomenon of divergence to the design variables.

Solution of the divergence design problem. The three

design equations which must be satisfied when the hydrofoil design

is limited by bending stress, cavitation, and divergence, are

Equations 158, 159, and 179. Equating t/c of Equation 158 and 179,

t A C-. 2 r
c 1 r L (2+Ar) r (180)

Solving for CL,

2

CL = 2  2/3 (181)
K12 (2+Ar)
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Substituting Equations 180 and 181 into Equation 159,

K A 0.229 K 2
2 r o.4o8 a 2

(2+A )113 
K'(2+A ) 2/3

r r

Rewriting,

0.229K /K'+A (2+A )' /3
2 1 r r -- o.40 a (182)

(2+A d 2/3 K 2

The design form can be determined by solving Equation 182 for

A r as a function of the mission parameters a, KP and K 2' t/c 
and

C L can be obtained from Equations 180 and 181.

The boundary between this region where the design is limited

by divergence, strength, viscosity, and cavitation, and 
the region

which is limited by strength, viscosity, and cavitation is obtained

by equating t/c of Equation 180 with t/c which is graphed in Figure

27 as a function of a and K 1* By doing this, Figure 29 was obtained,

which is a graph of K 2 versus K I where the boundary between 
the two

regions is plotted as a function of cavitation number 
a.

Numerical'2ý1e. It is desired to determine whether

divergence is critical. Two hydrofoils are designed for operation

near the water surface. They each have a solid 16-series cross-

section, no taper, and a constant t/c ratio. Consequently, C 0.087,

C2 = 1.0, C 3 ' 1.0, C 4 0.50, and C 5 = 1.14. They operate at

respective speeds of 30 and 90 knots, and are made of a high grade

steel where f = 35,000 psi (which includes the load factor and
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factor of safety) and E = 30 - 106 psi. The value of e/c for 16-

series cross sections is about 0.23 since the center of pressure

is near the quarter chord and the elastic axis is around the 0.48

chordpoint. It will be assumed that a = 2Tr, which is the

theoretical CL for thin sections with no boundary layer separation.

Using the above values, the respective mission parameters of the

two hydrofoils are a = 0.822 and 0.091, K1 = 0.0266 and 0.0798, and

K2 - 0.0091 and .0190. Figure 29 shows that the boundary for a

in each case lies above the point determined by KI and K2 ; therefore,

divergence will not be critical in either case. This result shows

the unlikelihood of divergence failure of optimally-designed lifting

hydrofoils. This result, however, does not eliminate the possibility

of divergence failure for non-optimum lifting hydrofoils or for

(nonlifting) struts.

Design equation for flutter. In case the hydrofoil has

greater than a few degrees of sweep, divergence failure will not

occur, but failure due to flutter might occur. The previous example

showed that divergence failure of unswept, optimized lifting hydro-

foils is unlikely. Flutter failure of swept struts is even less

likely since (22) reports that the critical flutter speed of

typical hydrofoils is always greater than the critical divergence

speed.

In analyzing flutter, the theoretical equations which predict

flutter speed for airplane wings do not provide adequate predictions

for hydrofoils. The apparent reason is that the nondimensional
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flutter frequency of hydrofoils is an order of magnitude greater

than that of wings. This difference apparently invalidates some

of the assumptions made in the theoretical model used for determining

the values of the coefficients appearing in the unsteady theory.

Fortunately, experimental results on flutter (22) show that a certain

generalization can be made which permits a conservative prediction

of flutter speed. The test results indicate that the nondimensional

flutter speed Uf/cW a lies between 0.5 and 1.0. Selecting 0.5 as a

conservative value,

qf = ½pU2 > 0.125 pc 2 W 2  (183)

where w a is the natural frequency in torsion when submerged, which

from (23) is

- TJ (184)

where I is the mass moment of inertia about the elastic axis.

Substituting the same expressions for GJ as used in conjunction

with Equation 172, and using (22) for I. = pbc 4 (m' + 0.375)/c0a2 which

includes the virtual mass of water for a hydrofoil oscillating about

the elastic axis, Equation 184 becomes

C, C. (tic)3  E
w =1.4 t E. (185)

A2 (0. 375+m') pc2
r

where C = torsional mass moment of inertia coefficient = 2Tr for

solid elliptical forms and A 27 for solid 16-series foils,
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Ct = torsional stiffness coefficient - 0.30 for solid hydrofoil-

like forms (24), m' = ratio of hydrofoil mass to the transverse

added mass of the fluid 0.89 (t/c)(p s/P)Ch where p s is the mass

density of the structural material, Ch is the ratio of the weight

of the given hydrofoil to the weight of an equivalent solid hydro-

foil, and the virtual mass of water was calculated as the water mass

enclosed by a circular cylinder of diameter c and length b/2.

Substituting the value for m' and simplifying, Equation 185 becomes

2.28 C VC'_ (t/c) 3,/2A"/pC-2
cx - a t (186)

Ar tii+2.38(t/c)(ps /p) Ch

Substituting Equation 186 into Equation 183, eliminating the

inequality, letting qf =pU2 in order to minimize Cd, and rearranging,

g i yes

0.65(t/c) = 1 = K 2 (187)

A2 1l+2.38(t/c)(Ps/P)Ch] C2 Ct E = 3

Equation 187 is the desired design equation for flutter and must

be satisifed together with the other two design equations, Equations

158 and 159.

Flutter boundary. The boundary in mission space between the

region where the design is flutter limited and the region where

the design is cavitation, viscosity, and strength limited is

determined by finding t/c and Ar as a function of a and Kl using

Figure 27, and then substituting these values into Equation 187
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to find K3 . Figure 30 shows the resulting boundary plotted as a

function of a in a graph of K1 versus K Two sets of boundary

lines have been drawn, one of which pertains to solid steel hydro-

foils and the other to solid aluminum hydrofoils.

Numerical example. Assuming a few degrees of sweepback to

eliminate divergence, the same two hydrofoil design missions are

selected as those used for the divergence example. Letting C =27r

aný' Ct = 0.30, the respective values of the mission parameters are

K3 = 0.00022 and 0.00066, a = 0.822 and 0.091, and K = 0.0266

and 0.0798. Since the points determined by K1 and K3 in Figure 30

are well below the flutter boundary in both cases, flutter will not

occur.
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APPENDIX B

THE DESIGN OF HYDROFOIL CROSS SECTIONS

This appendix completes the sequence of design examples

presented in Chapter V and Appendix A. The design of hydrofoil

cross sections is a subdesign problem of a hydrofoil design problem,

which in turn is a subdesign problem of a submerged vehicle design

problem. Therefore, the design problem treated in this appendix is

twice removed from a complete design problem; because of this

remoteness, it has some of the features of a research problem.

General Characteristics of Hydrofoils

Hydrofoils are found in a wide variety of commonly encountered

situations. They are used as propeller blades on boats, sailboat

keels, ship rudders, submarine and torpedo fins, lifting surfaces

of hydrofoil boats, underwater cable fairings, shroud ring stabilizers

for missiles, rotor blades for water jet propulsion units, impeller

blades in many kinds of pumps, support struts, etc. The many differ-

ent uses of hydrofoils has resulted in the development of a wide

variety of types of hydrofoil forms. The streamlined fully-wetted

hydrofoil:; presented in Appendix A are the most commonly encountered

type, and have excellent performance characteristics at speeds up to

the beginning of cavitation. Cavitation is characterized by the

formation of small cavities filled with water vapor which appear

and collapse in the low-pressure region near the hydrofoil surface.
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As cavitation increases, there is a correponding increase in the

number and degree of such undesirable characteristics as noise,

drag, surface pitting, reduction in lift, and unsteady performance.

Cavitation can be avoided in certain situations by reducing speed,

reducing the hydrofoil thickness or lift coefficient, improving the

cross-sectional shape, increasing the free-stream pressure, or by

operating closer to the design angle of attack of the hydrofoil.

If cavitation cannot be avoided, an entirely different type

of hydrofoil can be utilized which provides steady performance, but

has somewhat more drag than the best fully-wetted hydrofoils, and

produces more noise. One form is called a supercavitating hydro-

foil which is analyzed by Tulin and Burkart (26) and operates with

its upper surface entirely immersed in a cavity and with its lower

surface fully wetted. Another form is a cavitating, non-lifting

strut which is analyzed by Tulin (27) and which is entirely immersed

in a cavity, except for the nose section.

A third type of hydrofoil is called a ventilated hydrofoil,

various forms of which are described by Lang (28). Ventilated

hydrofoils characteristically operate with a steady cavity of

noncondensing gas in contact with the surface. At cavitation numbers

greater than zero, this type has lower drag than a cavitating hydro-

foil, and it operates more quietly. Its use requires a gas source

to maintain the cavity.

For the purpose of this appendix it is assumed that a gas

source is not available and that the hydrofoils are either fully

wetted or else designed for cavitation. Some of the advantages and
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disadvantages of the various hydrofoil cross sections will become

evident later in this appendix.

Specification of the Generalized Design Mission

Many hydrofoil design problems can be reduced to the need for

a hydrofoil cross section which provides a certain lift coefficient,

sustains a given bending moment, and operates well at a given cavita-

tion number, Reynolds number, etc. A variety of generalized design

missions could be considered. The optimization criterion, for

example, could be to minimize drag, maximize lift-to-drag ratio,

minimize manufacturing cost, minimize drag and weight, etc. The

mission criteria could require solid hydrofoil cross sections for

various reasons, such as economic, simplicity of fabrication, damage

resistance, etc. On the other hand, hollow sections could be

required for other equally-valid reasons which pertain for other

operating situations. Also, the mission criteria could require

noncavitating operation or nonventilating operation. Therefore, a

selection must be made of the criteria to be used for the example

presented in this appendix.

Selected mission objective and criteria. The selected

objective for the generalized design mission is to design hydrofoil

cross sections which have minimum drag. The lift coefficient and

nondimensional bending moment are to be among the specifications of

any given design mission.

The mission criteria are: (a) all hydrofoils must be solid,

(b) no ventilation is permitted, (c) the flow is steady, (d) the angle
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of attack is steady, (e) the operating depth is sufficient to

eliminate surface effects, (f) the only critical stress is bending

stress, (g) the Froude number is infinite, and (h) the lift coeffi-

cient lies between zero and 0.6. The reason for the latter criterion

will become apparent later. This permissible range in lift coeffi-

cient is acceptable for the vast majority of design applications.

Mission variables. The mission variables are the design
I

stress f of the structural material , hydrofoil chordlength c,

characteristic surface roughness r, free-stream speed U, free-stream

pressure P, fluid viscosity v, fluid density p, fluid vapor pressure

Pv' design lift coefficient CL, and applied bending moment M. In

summary, the ten mission variables are f, c, r, U, P, v, p, Pv' CL'

and M. The only nondimensional variable is CL.

A possible set of mission parameters. The pi theorem predicts

six nondimensional parameters, plus CL. One set of parameters is

CL, M/fc 3 , P/½pU2 , P v/½pU2 Uc/v, r/c, and f/½pU2.

Optimization criterion. Since the hydrofoils are to be

designed for minimum drag, the nondimensional optimization criterion

is

Q = D/__b = C d(188)

c½pU
2  d

where D/b is the drag per unit spanlength, Cd is the drag

coefficient, and Q is to be minimized.

The design stress includes the load factor and the factor

of safety.
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Possible Design Forms

Typical hydrofoil cross sections are sketched in Figure 31.

Notice the difference in form between the fully-wetted and the

cavitating hydrofoils.

Physical Relationships

The bending stress is considered first, and is obtained by

combining Equations 141 and 142. The design bending stress of an

arbitrary hydrofoil cross section must be greater than or equal to

this bending stress, so

f M (189)

C1 (.t-) c3

where c = chordlength, t = hydrofoil thickness, and Cl is the

section modulus coefficient. Nondimensionalizing Equation 189

gives,

M' --- < Ct (190)

fcc

where M' is defined as M/fc 3. Because Cd increases with t/c

according to References (18) and (21) for either fully wetted or

cavitating hydrofoils, the inequality sign can be removed from

Equation 190 in view of the optimization criterion. Therefore,

M' = M = CI(t ) 2 (191)
fc

3
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Figure 31 -Typical hydrofoil forms
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The viscosity of the operating fluid is considered next.

Viscosity affects hydrofoil design because experiments have shown

that such drag-producing viscous effects as boundary layer transition

and separation can be controlled to a certain extent by hydrofoil

form. Consequently, to minimize the drag, the hydrofoil form

must be optimized. It is known from theory and experiments that,

for a given hydrofoil form, the boundary layer state (and drag

coefficient) is a function of the Reynolds number R e. Consequently,

the nondimensional parameter R is introduced from the physicale

viewpoint where

R = Uc (192)
e V

Cavitation is considered next. Let P1 be the minimum

pressure at some point on a fully-wetted hydrofoil. According to

the Bernoulli equation, P1 is

P1  P + ½pU2 
- ½pUl 2 = P + ½pU2 [1 - ( (193)

where U is the local fluid velocity at the minimum pressure point.

Caviation will occur when P reduces to the vapor pressure of the

fluid P (assuming no tensile stress in the fluid). The criticalv

(incipient) cavitation number is defined as

p-pI U 2

= (1 ) -1 (194)°cr ½pU2

where Equation 193 is used to convert the pressures. It is known

that a can be expressed functionally ascr
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(x' yx (195)

where the parameters in the function are t = local thickness/t,

x' = x/c = dimensionaless distance from the leading edge, and yIm

= ratio of the local meanline height to the chordlength. Cavitation

will occur whenever a < a where a is the cavitation number whichcr

is defined as

P-P
v (196)

½pU2

The roughness of the hydrofoil surface is known to affect

performance. Both drag and lift can be markedly affected by

roughness because roughness can significantly change the boundary

layer state and the flow around the hydrofoil. Experiments have

shown that a nondimensional roughness parameter, for a given

roughness form and distribution, is r' = r/c where r is a charac-

teristic roughness height.

The lift coefficient CL is already nondimensional, but it

is defined here for convenience as

C = L/b (197)
c ½pU2

Mission and Design Parameters

In view of the list of possible mission parameters and the

physical relationships, the five following mission parameters are

selected: CL, M', a, Re, and r'. Notice that the parameter ½pU2/f
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has not been included; the reason is that no relevant physical

relationship was found which utilized it. Also, note that P and

Pv were combined into the single variable (P-Pv ) in the parameter a.

The design space will consist of whichever parameters are

found to best describe the form of a hydrofoil cross section for the

section of mission space being considered. Possible design parameters

are the nondimensional thickness distribution T(x'), the nondimensional

meanline height distribution y'(x'), and the thickness-to-chord

ratio t/c.

Selection of Subspaces of Mission Space for Mapping

The selection of subspaces of mission space for mapping

requires knowledge of the physical phenomena, since the designer

must reduce the large number of possible subspaces to those which

are the most significant. In hydrofoil design, all of the selected

mission parameters are important since any of them could signifi-

cantly influence the design form. However, some mission parameters

are generally more important than others, such as CL, M' and a.

CL is important since it represents the primary performance objec-

tive of the hydrofoil. M' and a are selected because bending stress

and cavitation considerations are known to be paramount in determining

cross-section and thickness in most design problems.

The Reynolds number R is also important since Reynoldse

number determines how the hydrofoil should be formed to best

utilize laminar flow, prevent laminar separation, prevent turbulent

separation, and minimize skin friction drag. However, R is note
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normally critical in the range R > 107 because the boundary layere

is generally fully turbulent, and changes in Reynolds number in this

range have only a small effect on hydrofoil form. r' has an effect

on hydrofoil performance only when it exceeds certain critical values

which depend upon Re; the roughness can often be kept below these

va 1 ues.

In view of the above discussion, the selected series of

mappings will consist of portions of the subspace formed by CL, M',

and a where r' = 0 and R »>> 10. Since the hydrofoil surfaces aree

smooth and Re is very high, the value of the skin friction drag

coefficient will be very low, but still significant. The following

subspaces of the selected subspace will be mapped:

a) CL = 0, M' = 0, a variable.

b) CL 0 0, M' variable, a variable.

c) CL variable, M' = 0, a variable.

d) CL variable, M' variable, a = 0.

e) CL variable, M' = 0.0005, a variable.

f) CL variable, M' variable, a variable.

Mapping From Subspace (a) (CL = 0, M' = 0, a variable)

Subspace (a) is the simplest of all the subspaces of mission

space to map. Since CL = 0, the corresponding hydrofoil cross section

has no camber, and is set at zero angle of attack to minimize drag.
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Since M' = 0, it has no thickness in view of Equation 191. There-

fore, the hydrofoil form is a thin straight line which parallels

the flow.

This hydrofoil form will not cavitate since a cr = 0 (see

Equation 194 where P1 = P) and a < a (because P must always be
cr =

greater than or equal to P in Equation 196). Consequently, thev

selected hydrofoil form is always fully wetted.

According to Equation 138, the drag coefficient is

Cdp = 2 Cf, where Cf is very small because r' = 0 and the Reynolds

number is very large. Notice that Cd = Cdp always holds in this

appendix because the term Cdi in Equation 137 is not applicable

since there are no induced drag effects when hydrofoil cross sections

are considered.

Mapping From Subspace (b) (CL = 0, M' variable, a variable)

This subspace of mission space is more meaningful than the

first one, and relatively important. Since CL = 0, all points in

the two-dimensional mission space of a versus M' will map into

uncambered hydrofoils, called strut sections. All laminar boundary

layer effects can be disregarded since the boundary layer will be

fully turbulent at R e>> 10. The problem reduces to finding thee

minimum drag hydrofoil strut section as a function of a and M',

where the boundary layer is turbulent and Cf is very small.

Region boundaries. Consider first, the mapping from the line

defined by M' = 0 in Subspace (b). This mapping is exactly that of

Subspace (a), so the design form corresponding to all points along
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this line is a zero-thickness fully-wetted straight line.

Next, consider the region where M' # 0. Strength is now

important, so in accordance with Equation 191, the thickness ratio

t/c of the associated hydrofoil will increase with M' since

t/c = V./' Cavitation is also important now, since the incipient

cavitation number acr of a hydrofoil strut is known to increase with

thickness ratio, which in turn increases with '. Consequently, all

struts designed for M' > 0 will cavitate at a = 0, but will not

cavitate when a > acr. Therefore, it is clear that the graph of

ordinate a versus abscissa M', which represents Subspace (b), will

split into two regions where the upper region (i.e., a > a ) maps
= cr

into noncavitating struts and the lower region (i.e., a < ar maps

into cavitating struts.

Experimental studies show that the drag coefficient of a

cavitating hydrofoil is generally larger than the drag coefficient

of an equivalent strength noncavitating hydrofoil; this statement

is especially true for R >> l07 where Cf of a noncavitating hydro-e

foil is very small. Consequently, the noncavitating forms which

are mapped from the upper region (called Region I) will satisfy

the minimum drag criterion better than the cavitating forms which

are mapped from the lower region (called Region II). Therefore,

Region I should be as large as possible, and should extend to the

lowest possible values of a.

The lower boundary of Region I represents the family of

struts which, for given values of strength, have the lowest possible

incipient cavitation number a cr This family of struts is the set
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which has a near-uniform pressure distribution. Such a family is

approximated by the set of ellipses, assuming that the thickness

ratios are in the range of conventional hydrofoils, and-therefore

small. The approximate relationship of acr to t/c, for small thick-

ness ratios, is given by Reference (27) as

(ellipses) acr 2 (198)cr c

Substituting for t/c from Equation 191, and letting a = a along

the boundary,

(Region I to II boundary, CL = 0) a rw- (199)

Equation 199 is the desired equation for the boundary between Regions

I and II in Subspace (b).

The expression for C is shown by Equation 142 to be

1 I --- 1 (200)

Since the value of I for an ellipse is I = 7r ct 3/64, the value of

C1 for all ellipses is 0.098.

Mapping of Region I. Region I maps into the family of fully-

wetted struts, and its lower boundary maps into noncavitating ellip-

tical forms. The strut forms associated with points inside Region I

are now considered, keeping in mind that the optimization criterion

is to minimize Cd. It is known that if the thickness distribution

of a strut is elliptical, the pressure along the strut surfaces is

nearly constant. If the thickness distribution varies from an
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elliptical shape, a region of increasing pressure and a region of

reducing pressure will result. It is known that the local skin

friction drag coefficient Cf for turbulent flow increases in a

region of reducing pressure and decreases in a region of increasing

pressure. Since these effects tend to cancel, it is seen that the

net effect on Cf is small and can probably be neglected for this

problem. Also, since the local drag is proportional to Cf times

the local velocity squared, it can be shown that when the velocity

along the surface is nonuniform (due to variations in pressure) the

net drag coefficient increases a small amount, assuming that Cf is

essentially constant and the turbulent boundary layer does not

separate. Therefore, the struts with the lowest friction drag will

tend to be the constant-pressure elliptical forms. Since elliptical

struts have a relatively blunt trailing edge, a small, sharp-ended

cusp-shaped trailing edge should be added to prevent increased drag

due to boundary layer separation, particularly at the larger values

of t/c. For the purpose of this subspace, however, let us assume

that, at R »>> 10, the separation drag of the struts (particularlye

the thinner ones) is small, so that friction drag is the primary

source of drag. Then the elliptic struts become the best solution

for all of Region I whether cavitation is critical or not.

The t/c ratio of any ellipse associated with any point in

Region I is obtained from Equation 191 by letting C1 = 0.098, giving

(ellipse) L = /10.2 M' (201)
c
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In view of the assumptions, the above result is valid only

for small values of t/c; however, the results should apply without

excessive error (particularly if it is understood that a cusp-shaped

trailing edge is added in practice) up to values of t/c of around

1/3. The range of 0 < t/c < 1/3 is seen by Equation 201 to corres-

pond approximately to the range of 0 < M' < 0.010.

Letting x' = x/c and y' = y/c be the coordinates of an

elliptical strut cross section centered along the positive x-axis

with the leading edge at the origin, the equation of the strut can

be shown to be

(ellipse) y' = + ! x.. il (x'2 (202)-c

Substituting Equation 201 for t/c, the mapping solution for Region

I becomes

(ellipse) y' = + 10.2M' [x' - (x') 2] (203)

Mapping from Region II. The general form of the cavitating

strut family into which Region II maps will be considered first.

Let a be the symbol for a when CL = 0. Then, for small values

of o0 , the cavity drag per unit span of an object which generates

a complete two-dimensional cavity increases with cavity size (29)

in accordance with the equation,

D Cr , aPU2t(24
0 2 (204)
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where kc - cavity length and t = cavity thickness. The cavityC c

drag coefficient is defined as

Db
Cdc bc ½pU2  o 2 ZC (205)

Assuming that a is small, Reference (29) also shows that the cavity

shape is an ellipse where

t C
(elliptical cavity) T--= (206)

c

which also holds for an elliptical strut if t = tc and c = P .c c

Possible candidates for the typical form corresponding to

Region II are:

(a) (b) (c) (d) (e)

(dotted lines indicate cavities)

Notice that Form (a) can be turned into a fully-wetted strut

which would have lower drag by merely filling the cavity to elimin-

ate cavity drag; consequently, it is not a candidate for the cavi-

tating forms of Region II. Form (b) has a larger cavity than

necessary, because its trailing edge could be reduced in thickness

if its upper and lower surfaces were made more convex until they

just began to cavitate everywhere; the resulting form (for equivalent

strength) would have essentially no skin friction drag, a relatively

small cavity, and would resemble Form (e). Form (c) also has a

larger cavity than necessary, for the same reason as Form (b);

consequently, the drag of Form (c) would be reduced by a change in
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form to one which resembles Form (d). However, for a given cavity

drag, the strength of Form (d) can be increased by enlarging its

aft section until it resembles Form (e). Therefore, it is seen

that Form (e), a truncated ellipse, is the best general form

corresponding to Region II, since it provides the least drag for

given values of a and M'.

The optimization criterion for Region II is

Q = Cd = Cdp = Cdc + Cdf (207)

where the profile drag consists only of cavity drag C dc and friction

drag Cdf. Substituting Equation 205 into Equation 207,

Q=C 2 C (208)d = dc df = Wao W"' Cdf

One design equation for Region II is Equation 191, which is

M' = (t) Cc (209)

The other design equation must relate a with the design form,

which is a truncated ellipse that just fits inside an elliptical

cavity defined by Equation 206, or

t
G= 2 kc (210)

C

The form of a truncated elliptical strut can be determined

if t c/c and either c/P.c or t/c are known. The equation for an

ellipse with a semi-axis of length 9.. /2 centered along the positivec
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x-axis with the nose at the origin is

x )2
y=+ tc ( (211)

cc

c c

where y is the local semithickness, and t c/2 is the length of the

transverse semi-axis of the elliptical cavity. If the ellipse of

Equation 211 is truncated at a point x = c, the ratio of the maximum

thickness t of the truncated ellipse to its chordlength is:

t P,
-E'--cf or f -r,<< <=

cccc c

t_ (212)
c 2

c c c (c f c
2 -- . - for 0 < -< ½

c c c c

Substituting Equations 209 and 210 into Equation 212,

Oo •c for ½ < c-< 1
2 c =

--= c (213)

C o c 1 for 0 < ½--< 2
2 -C- I--k

c =c

CC
Solving Equation 213 for Pc /C,

2 Mr' for ½ < .-- < q

c (214)
-- H' c

M + 1 for 0 < c-< '½2c 7= _
ao 0 c
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Dividing Equation 211 by c, the nondimensional strut semithickness

distribution is

C ct X2 2 tc/ Z 2

+ C X X (215)c c c c_ c _
CCC C

Substituting Equation 210 into Equation 215, and letting y' = y/c

and x' = x/c,

y + =20 -. x, _ (X,) 2  (216)

Finally, the strut equation is obtained by substituting Equation 214

into Equation 216,

lX - (x')X Region Ha
cy 2

y= 10.2 < o 4.y= __ 40.
CY0 MI - i ( i2(217)- 4+I1 x'- x' 2 Region Ilb

0~ 0=< =< 1.
= I =

where Region Ha corresponds to ½ < c/ 9 c < 1, Region I~b corresponds

to 0 < c/A. < ½, and the region boundaries were obtained by setting

C1 = 0.098 in Equation 214 (recall that C1 = 0.098 for a full

ellipse where c/c = 1.0 and notice that C1 for a semi-ellipse,

which corresponds to c/,c = ½, has exactly the same value).

Since two different equations are required to define the

strut form in Region II, each equation will be considered to repre-

sent a separate family of cavitating struts. The equation for the

boundary between Regions Ha and IIb is seen from th'e region
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expressions in Equation 217 to be

(Region Ha to O 2 = 10.2 M' (218)
Ilb boundary, )

C L = 0

The value of C for the two families of truncated ellipses

is shown in Figure 32 as a function of the parameter a 2 /M'. This0

relationship was obtained by: (a) integrating over a truncated

ellipse to determine the moment of inertia I as a function of c/Zc,

(b) calculating the value of C1 where Cl = 2I/t 3c, and (c) obtaining

So2/M' as a function of c/9,c from Equation 214.

Evaluation of the optimization criterion for Region II forms.

The expression for mapping the value of the optimization

criterion Q - Cd into Region II of mission space is obtained by

substituting Equation 214 into Equation 208 and letting Cdf = 0l,

giving

10 2 c m' /Region Ha)
o C1 o CL =

Q = Cdc (219)
• a 2( --M' +1) ( Region •Ib

0 oC 2c CL = 0

where C is obtained from Figure 32.

The upper expression of Equation 219 is not quite correct,

since it does not include the effect of the thrust produced by

All forms corresponding to Region II are fully cavitating

except the straight line form. There is no friction drag
on the fully-cavitating forms.
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impingement of the reentry jet (which exists at the rear of all

cavities) on the strut trailing edge. In theory, if the cavity wall

is smooth, and if the trailing edge of the body lying inside the

cavity exactly matches the contour of the cavity at its closure

point, a thrust will be exerted on the trailing edge which exactly

cancels the leading edge drag, leaving zero net cavity drag. In

practice, the cavity walls are not smooth, and considerable energy

is lost due to turbulence near the cavity collapse point, so all of

the theoretical thrust can never be recovered. Also, essentially

no thrust is recovered if the trailing edge of the body is so far

ahead of the cavity collapse point that the reentry jet does not

reach it. In view of the lack of experimental data on the reentry

jet effect, it will be assumed that half the theoretical thrust is

recovered when the strut almost fills the cavity, and that the

effect tapers to zero when the trailing edge of the strut is located

more than one-quarter of a cavity length ahead of the cavity collapse

point.

Evaluation of the optimization criterion for Region I forms.

The value of Cd for fully wetted elliptical struts is a function of

the skin friction drag coefficient Cf and the velocity along the

strut surface, assuming that pressure drag is negligible. Since

both sides of a strut contribute to drag, the drag coefficient of

a strut is

2

(Region I, CL = 0) Cd = Cdf 2C (220)
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where U1 is the velocity adjacent to the strut surface. The

Bernoulli equation is

P + ½pU2 = P1 + ½pU2 (221)

where PI is the pressure along the strut surface. Utilizing Equations

221 and 194, (U1 /U) 2 becomes

½pU2 p+_½pU 2-p 1 -P
Regio P+pUI-PI 1 +1 = a +1 (222)

( LR = 0I) ½pU2  ½pU2  ½pU2  cr

where acr is the critical (incipient) cavitation number of an elliptic

strut. Substituting Equation 222 into Equation 220, the drag coeffi-

cient of forms corresponding to Region I is

(Region I) Cd = Cdf = 2 Cf (acr + 1) (223)
C CL = 0

which, by substituting Equation 199 and letting C1 = 0.098, becomes

(Region I) C d = C dJ= 2Cf 2 2Y"W +1) 2C f(6.39 V'W +0) (224)

L 0-.098 /

Illustration of the mapping result. Figure 33 consists of

two graphs of a versus M' and illustrates the mapping result. Both

graphs show the boundaries between Regions I, Ha and IIb (which are

described by Equations 199 and 218). Sketches of the corresponding

design forms are superimposed on the lower graph at various selected

points. The corresponding value of Q = Cd is plotted on the upper

graph of a versus M'. Notice how the value of C in Region. II
d

increases as the relative trailing edge thickness increases.
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Mapping from Subspace (c) (CL variable, M' 0 , a variable)

This subspace is represented by a graph of a versus CL, where

CL is selected as the abscissa. Since M' = 0, Equation 191 shows

that all hydrofoil forms corresponding to Subspace (c) will have

zero thickness.

Determination of region boundaries. Consider first, the

hydrofoil forms corresponding to the line CL = 0. Since M' = 0 and

CL = 0, the corresponding hydrofoil forms are all thin, straight lines

parallel to the flow, as in Subspace (a).

Consider next, the subspace where CL > 0 and a is so large

that cavitation will not occur. There are two basic ways of pro-

ducing lift in this subspace. One i.s to provide an angle of attack

a., and the other is to provide camber (i.e., an arched meanline).

Experimental data (21) shows that the drag of airfoils (or

equivalently, noncavitating hydrofoils) is minimized when camber is

used rather than a to generate lift. As in the uncambered case, Cd

increases w'th thickness. Therefore, the fully-wetted hydrofoil with

minimum drag is a thin cambered meanline. Furthermore, Cd tends to

be minimized when the pressure is constant along each surface, for

the same reason as that given in the previous mapping. Consequently,

the best hydrofoil forms corresponding to the part of the graph

where a is large are the set of cambered meanlines which have a

uniform pressure distribution.

Now consider possible forms for operation at a = 0 and CL > 0.

In this case, the free-stream pressure P is the vapor pressure Pv'
P-P

since a = . This means that a cavity will form whenever the
½p U2
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static pressure on a hydrofoil is less than P. Consequently, the

upper side of a cambered meanline will cavitate, and all the lift

must be supplied by increased pressure (relative to free-stream

pressure) on the lower surface. Therefore, cavitation, and the

relatively high drag associated with it, cannot be avoided at a = 0.

It is now clear that the graph of Subspace (c) will split into two

regions, where the upper region, called Region I, will map into

fully-wetted hydrofoils, and the lower region, called Region II,

will map into cavitating hydrofoils.

The drag of cavitating hydrofoils is larger than the drag of

fully-wetted hydrofoils because the wetted skin friction is very low

when r' = 0 and R >> 10 while cavity drag is relatively high in

general. Therefore, Region I should be made as large as possible.

The cambered, uniform pressure meanlines selected for the upper part

of Region I are also found best throughout Region I, since they delay

cavitation to the lowest possible value of a; this lowest value of a

is the value a = a cr If a is reduced slightly below acr' the

entire upper surface will suddenly cavitate. Therefore, the boundary

between Regions I and II will be the line along which a = acr.

The next problem is to determine the incipient cavitation

number acr of the meanline corresponding to Region I. Expressions

for the velocities U and U along the upper and lower surfaces,U

respectively, of a fully wetted meanline are

U =U+u
u

(225)

U =U-u

2.'
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where u is called the circulation velocity.

The Bernoulli equation is

P + ½pU2 =P + ½pUu2 = pk + ½pUI 2  (226)

Substituting Equation 225 into Equation 226, and solving for Pk - Pu$

P -Pu = ½pU2 [(1+.2)2- (-U)] 21= U2u) (227)

Substituting Equation 227 into Equation 197, gives

= lift (P ,-Pu)bc= 4 u(228)
L

bc ½pU2  bc ½pU2  U

The nondimensional upper surface pressure differential is obtained

from Equations 225 and 226 as

P-Pu 2
u U )- 2 -1 = 2 UH + u (229)

½pU2  UU2

Notice that the value of Equation 229 just equals the cavitation

number a when Pu = Pv , and the entire upper surface is on the verge

of cavitating. Therefore, by the definition of acr' Equation 229 is

the value of acr. Using Equations 228 and 229, the equation for the

boundary between Regions I and II is

c = .+ U u 2 1 CL2 -"½C (230)
w e cr app boundaryt i vai for L -sm al L

where the approximation is valid for small CL
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Mapping from Region I. The design forms corresponding to

Region I are the set of constant pressure meanlines. This set is

called the set of NACA a = 1.0 meanlines in (21), and is expressed

as

NACA a = 1.0 Ym(x') = Yo'(x') C (231)
mean1 i nes

where y I is the desired local nondimensional meanline height and yo
m 0

is the local nondimensional height for CL = 1.0. Table 1 contains

a partial list of the values of yo(x') which were obtained from (21).

TABLE 1

VALUES OF yo'(x') FOR THE NACA a = 1.0 (UNIFORM PRESSURE)
MEANLINE* AT CL = 1.0

x' 0 0.1 0.2 0.3 0.4 0.5

x' 1oO 0.9 0.8 0.7 0.6 0.5

Y' (x') 0 0.0259 0.0398 0.0486 0.0536 0.0552

*Note that the y'(x') meanline is symmetrical about x' = 0.5,
and its maximum height is 0.0552 CL at x' = 0.5.

Since the drag is assumed to consist solely of turbulent

skin friction drag, the expression for Cd is

u 2  U C , 2

Cd = Cdf = C+ Cf (U-) (232)

where Uu and U k are the velocities along the upper and lower surfaces,

respectively, and Cf is the turbulent skin friction drag coefficient

of a flat plate for specific values of R and r'. Substitutinge
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Equation 225 into Equation 232,

U2 f~ 2+

Cd = Cf( + u 2 2 u = 2 Cf(I + 2 (233)

Substituting Equation 228,

Cd = 2 Cf(l + 26 CL)

Therefore, for values of CL 0.6, Cd will be approximately

Cd 2 Cf (234)

This result shows that, for CL - 0.6, the drag coefficient is

essentially independent of design form in Region I.

Mapping from Region HI. The general form of the cavitating

hydrofoil family will be considered first. Using a dotted line to

indicate a cavity, possible candidates for the general form are:

(a) (b) (c) '-- (d) •--'

It is clear that Forms (a) and (b) are not candidates for Region II,

since their cavities could be filled in, making them fully wetted and

lowering their drag; consequently, at their given values of a, they

would not need to cavitate for proper performance, as would the true

candidates for Region HI. Notice that the cavity size and drag of

Form (c) can be reduced if the pressure on the lower side of the

cavity-covered portion is reduced by reducing its local camber; this

modification can be made only if the lift is increased on the fully-

wetted portion in order to keep CL constant. The lift of the
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fully-wetted portion can be increased until its upper surface just

begins to cavitate uniformly everywhere. The result is a minimum

drag form which has the same general shape as Form (d). Consequently,

Form (d) is the best general form corresponding to Region II. This

form is called a supercavitating hydrofoil.

The mapping of points from the axis a = 0 in Region II into

supercavitating hydrofoils is considered first. Considerable theore-

tical information is available on low drag supercavitating hydrofoils

operating at a = 0. Following the introduction of low drag super-

cavitating forms derived from linearized theory by Tulin and Burkart

(26), Johnson (30) introduced additional low drag forms. The forms

which had lowest drag, however, when strength was not considered,

were found to be inferior to other forms when practical values of

strength were considered. Also, operating depth was found to have

some effect on design form. Consequently, Auslaender (31) and (32)

extended the linearized theory to include both strength and depth

considerations, in order to obtain general expressions for the

characteristics of supercavitating hydrofoils at a = 0. The general

expressions were programmed on an IBM 1620 digital computer to

obtain lift, cavity-drag, -shape, and -section modulus of super-

cavitating hydrofoils composed of the so-called 2-, 3-, and 5-term,

and constant-pressure camber configurations, combined with angle

of attack and parabolic thickness. It was assumed that the cavities

were filled in with metal to provide maximum strength, and that the

metal did not quite contact the cavity wall, so that no frictional

drag would appear on the upper surface. The results of the computer
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study showed that the 5-term camber configuration) provided the

highest lift to drag ratio L/D at a = 0 and infinite depth,

assuming that strength was not important. In all cases, the configura-

tions were made to satisfy the requirements that the lower surface

was fully wetted and that sufficient thickness was added by using

angle-of-attack thickness 6 or parabolic thickness T, or both, so

2
that the upper cavity wall would not intersect the lower surface

Auslaender's results further showed that, when reasonable strength

requirements were considered, the basic 2-term camber configuration

was generally superior, and the constant pressure camber configura-

tion3 was a close second.

Since (31) and (32) showed that the drag of the 5-term camber

was only several percent lower than that of the 2-term camber when

strength is unimportant and that the 2-term camber is superior for

all practical values of strength, the 2-term camber is selected as

the best form corresponding to the axis a = 0.

The next problem is to determine the best forms for points

in Region II where a > 0. Although both nonlinear and linearized

theories exist for determining the lower surface shape, cavity

shape, and lift and drag coefficients for the case when Y > 0

1 Called 5-term in view of the number of terms in a certain

trigonometric series used in defining the pressure distri-
bution.

2 The cavity wall passes through the lower surface of the

basic 2-, 3-, and 5-term camber configurations.

This camber configuration is designed so that the pressure
on the lower surface is uniform.



230

(Wu, References 34 to 36), the results would require a computer study

to determine which form has the lowest drag for a given CL, P , and

strength.

A relatively simple solution is to linearly add the appropriate

NACA a=loO uniform pressure meanline to the appropriate two-term

supercavitating hydrofoil form (and cavity) designed for a = 0

result is a mWnimum drag hydrofoil form for a > 0. Letting ar be

the incipient cavitation number of an NACA a = 1.0 meanline, and

CLo be the lift coefficient of a 2-term hydrofoil form at 0 = 0,

the lift coefficient CL of the linearized combination is approximately

(Region lie) CL = C Lo + 2 0 cr (235)

where CL is assumed small, and Region II is now called Region lie

for reasons which will be presented later. Notice that the pressure

along the upper surface of the l'nearized form and cavity combination,

which shall be called the Region lle form, is exactly cavity pressure

when a = acr. The nondimensional pressure along the lower surface

is approximately the nondimensional pressure at a = 0 for the two-

term hydrofoil designed for CL = CLo plus the pressure Ccr. Setting

a = Ocr, Equation 235 becomes

(Region lie) CL = CLo + 2a (236)

which holds for all hydrofoils in Region lie. Notice that the NACA

a = 1.0 meanline is designed for a lift coefficient of CL - CLo = 2a.
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Also, notice that the same basic 2-term hydrofoil form is super-

imposed on various NACA a = 1.0 meanlines along any given line

paralleling the boundary line CL = 2a.

The Region Hie form is seen to satisfy the necessary boundary

conditions for minimum drag, which are: (1) the upper surface

pressure is uniform and matches the cavity pressure, (2) the lower

surface is fully wetted, and (3) the resulting form has minimum

thickness and minimum cavity drag. Furthermore, the Region Hie form

is seen to merge into the Region I form at the boundary between

Regions I and Hie, since Equation 235 shows that CLo = 0 along the

boundary line where CL = 2a. Therefore, the Region Hie form is seen

to change smoothly from a supercavitating 2-term form corresponding

to a = 0 to the NACA a = 1.0 meanlines corresponding to the line

a = CL/ 2 .

The design form for Region Hie can now be expressed as a

function of CL and a. References 31 and 32 show that the lowest-

drag 2-term form designed for a = 0 is a linear combination of the

2-term camber line denoted by k and the angle of attack thickness

distribution denoted by 6 where

(Region HIe) k = 0.875 CLo, 6 = 0.0787 CLo (237)

and CLo is obtained from Equation 236 where

CLo = C L - 2a (238)

1 Added to prevent the cavity wall from intersecting the

lower surface.
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The nondimensional heights of the upper cavity wall and the lower

hydrofoil surface yI and y respectively, are

Region IIe' Yu' = y(X') k + yi(x')
0 /(239)

Y' = y(x') k + y4(x') 6

where yI through yj can either be obtained from (31), or from the

approximate values obtained from (31) and listed in Table 2. (Also

listed in Table 2 is yý(x') which relates to the parabolic thickness

distribution which will be used later.) Equation 239 is valid only

for low values of CLo because of the assumptions made in the linearized

theory; (32) reports negligible error up to CLo = 0.2, but that consid-

erable error may exist for CLo > 0.6. Therefore, the value of CL in

this analysis is limited to a maximum of 0.6.

TABLE 2

APPROXIMATE VALUES OF yj(x') THROUGH y;(x') FOR THE BASIC

2-TERM CAMBER, 6-THICKNESS, AND PARABOLIC THICKNESS
DISTRIBUTIONS DESIGNED FOR a = 0 AND INFINITE DEPTH

xi 0.0 0.05 0.1 0.2 0.4 0.6 0.8 1.0

yj 0 0.009 0.017 0.030 0.053 0.073 0.091 0.107

0 0.018 0.037 0.071 0.111 0.102 0.038 -0.085

yi 0 0.10 0.16 0.25 0.39 0.50 0.59 0.68

y4 0 -0-05 -0.10 -0.20 -0.40 -0.60 -0.80 -1.O0

yý 0 0.22 0.32 0.45 0.63 0.77 0.89 1.00
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The shape of the upper and lower surfaces when a > 0 is

yu= yj(x') k + yj(x') 6 + yo(x') 20

(Region Ile) (240)

yj = y.(x') k + y4(x') 6 + yO'(x') 2a

where yo,(x') is the NACA a = 1.0 constant pressure meanline for

CL = 1.0, and the value of the meanline designed for CL is

(NACA a = 1.0 meanline) (CL)a=.O = CL - CLo = 2a (241)

Value of the optimization criterion for Region Ile. The

value of the optimization criterion, Q = Cd, for Region Ile is

Cd = Cdc + Cdf . The cavity drag Cdc is a rather complicated

function of: the cavity drag at Y = 0 (called Cdo), hydrofoil t/c,

hydrofoil form, and cavitation number a. Linearized theory was

applied by Fabula (37) and (38) to determine Cdc as a function of a

for cavitating wedges, special vented hydrofoil struts having Cdo = 0,

parabolas, and parabolas with split flaps. The following empirical

expression was developed which matches the graphical results of (37)

and (38) to within several percent for hydrofoil-like forms:

(Region II) Cdc = Cd + - 1 C (242)d c d o t + 1 .5 C
c • do

It can be shown that Equation 242 is approximated by Cdc (wr/4)(at/c)
for the special case when a t/c > 4Cdo; the error is an underestimate

of less than four percent.
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The value of Cdo, obtained from (31) and Equation 237, is

(Region lle) Cdo (0.319k + 1.256)2 = 0.142CL2 (243)

Substituting Equation 243 into Equation 242 gives

~t2

(Region Hie) Cd = 0.142CL2 + +40.213 C 24)

0c Lo

where t/c is the thickness-to-chord ratio of the combined form and

cavity (up to the trailing edge). The value of t/c is obtained from

Table 2 and Equation 237 as

(Region HIe) I= 0.192k + 1.68 6 = 0. 3 0 0 CL (245)
c 0

The friction drag coefficient Cdf is approximately Cf

where U k is the average velocity along the lower surface. The value

of U is U - u- u, where u and u are small relative to U, u° is

the velocity reduction at a =0 due to CLo, and u is the velocity

reduction on the lower surface due to the lift coefficient (CL) a=1.0

of the NACA meanline. The latter is found from Equations 228 and 241

to be

u = (CL)a=l.0 (246)

The value of u is obtained from Equation 226 and the approximate

relationship for CLo where

C Uk 2 U-u 2 2u
L == o (247)-'2o ½ u2u ] = -'
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where the lower surface velocity, for this case where no NACA camber

is used, is U - u0 . Combining Equations2 4 6 and 247, the total lower

surface velocity is

U u CLo
(Region II) u-- = I (248)

Substituting Equation 248 into the expression for Cdr,

2 Co 2

Substituting in Equation 238,
CL 2

(Region II) Cdf = Cf (I - L 2 (250)

The net drag coefficient Cd obtained by adding Equations 244

and 250, and using Equation 245, is

0.236(32 CLo CL 2

(Region Hie) Cd = 0.142CL + +. 7C f + (251)

which, in terms of CL and a obtained from Equation 238, becomes

(Region HIe) C = 0.142(C L2a)2 + O0.236 2(CL-.2c) + Cf(I - L-+ 2

a L- aF+0 71(CL 2a) Cfl -E2~)

(252)

Illustration of the mapping. Some of the hydrofoil forms

corresponding to Subspace (c) of mission space are shown superimposed

on the lower graph of Figure 34 together with the boundary line

between Regions I and Hie. The values of Cd corresponding to

Subspace (c) are plotted in the upper graph. Only the cavity drag
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is plotted in Region Hie since Cf is negligible relative to C when
f dc

Re >> l07. Values of CL are plotted only up to 0.60 due to the

limitations of the linearized theory. The most practical range of

CL for supercavitating hydrofoils is around 0.20, so the coverage
I

is adequate

Mapping from Subspace (d) (CL variable, M' variable, a = 0)

Subspace (d) is represented by a graph of ordinate M' versus

abscissa CL, where a = 0. A new aspect of Subspace (d) is that it

maps into only cavitating hydrofoils; therefore, the entire section

lies in Region II of mission space.

Design equations. Before beginning to map, it should be

noticed that the axes CL = 0 and M' = 0 have already been mapped.

The axis CL = 0 mapped into the set of fully cavitating parabolas

with a varying t/c ratio, and the axis M' = 0 mapped into the set

of minimum-thickness, two-term supercavitating hydrofoils. Any

mapping from the region inside Subspace (d) should merge into these

mappings of the two coordinate axes.

Since a = 0, the discussion in the previous mapping problem

showed that all points in this subspace will map into design forms

consisting of different combinations of the two-term camber

configuration represented by k, parabolic thickness represented

It is interesting to note that CL = 1.0 is the maximum

possible lift coefficient of a supercavitating hydrofoil
with steady flow at a = 0 = (P-Pv)/½pU2 since all of the
lift must be generated by positive pressure on the lower
surface, and the maximum possible pressure is ½pU2 above
vapor pressure.
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by T, and angle-of-attack thickness represented by 6. The parameter

6 provides a wedge-like thickness increase. Recall that the forms

corresponding to a = 0 and M' = 0 were represented solely by k and

6. The curtent problem is to determine the values of k, T, and 6

which provide the hydrofoil form with the lowest Cd as a function of

CL and M'.

The design equation for CLo (i.e., the value of CL at a = 0)

for the 2-term camber is obtained from (31) as

(Region II) = k + 1 23
=y (253)

The second design equation should relate M' to the design

form parameters k, T, and 6. Reference (32) does not express M'

in equation form, but instead presents a series of graphs of M'

(called T in Reference 32) shown as a function of k, T, and 6. By

studying these graphs, the following semi-empirical equation for

M' was obtained:

(Region II) M' = O.0012(k - 6 - 4T) 2 + (0"3506 + 0"500T) 2  (254)

Equations 253 and 254 are the desired equations. These

equations can be reduced to one by substituting Equation 253 into

Equation 254 is accurate to within a few percent; further-

more, it reduces to the correct value of M' = 0.2 6 9T 2 
=

0.067(t/c) 2 for a parabolic strut when k = 6 = 0 (i.e.,
when CL =0), and to the value of M' = 0.12262 = 0.043
(t/c)2LOfor the 6-thickness distribution when k = T = 0

.(the latter value of M' is close to that of a wedge, which
is 0.042 [t/c]2 ).
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Equation 254, which gives

(Region II) M' = O.0012(CLo - 2.576 - 4T)2 + (0.3506 + 0.500T) 2 (255)

Optimization criterion. The expression for Cdo from (31) is

substituted into the equation for the optimization criterion to give

Q = Cd = Cdo + Cdf = [0.319k + 1.25(_[+612 +Cdf (256)

Substituting Equation 253 into Equation 256, gives

(Region II) Q = Cdo + Cdf = [0.3l9CLo + 1.25T + 0.756]2 + Cdf (257)

Solution of the mapping relations. The expression for Q

must be used to solve the problem since two form parameters exist,

T and 6, and only one design equation remains. An approximate

solution of Equation 255 for T is

T Z T(M' C Lo) - 0.76 (258)

which, when substituted into Equation 257, gives

Q i 10.319CLo + l.25T(M', CLo) - 0.1256]2 + Cdf (259)

Consequently, 6 should be maximized, since Q is to be minimized.

(Cf is relatively small and nearly independent of T, 6, and k, so

Niotice that 0.636 + T is the relationship of 6 and T in the

first term on the right side of Equation 255, and that 0.70
6 + T is the relationship in the second term. If the rela-
tionship had been 0.70 6 + T in both terms, Equation 255
could have been solved for 0.70 6 + T as a function of M'
and CL , which gives Equation 258. This solution is very
close, because the second term is much larger than the first.



240

it can be ignored when Q is optimized.) Similarly, an approximate

solution of Equation 255 for 6 is,

6 ' 6(M, CLo) - 1.43-1 (260)

which, when substituted into Equation 257, gives

Q 10-319CLo + 0.75 6(M', CLo) + 0.18-12 + Cdf (261)

Consequently, T should be minimized in order to minimize Q.

Summarizing, 6 should be maximized and T should be minimized.

The boundary conditions on T, 6, and k are

F 6 > 0.090k when T = 0
(Region II) {-- (262)

k, T, 6 > 0

where the first condition is obtained from the previous mapping,

and is the value of 6 required to prevent the cavity from inter-

secting the lower surface of the hydrofoil; the second condition

is the set of values of k, T, and 6 which are required to prevent

the possibility of lower surface cavitation.

The maximum value of 6 is investigated first. From Equation

153 it is seen that the maximum value of 6 is 1 CL and occurs when

2 an
k = 0. Setting k = 0 in Equation 254, substituting 6 = CLo and

solving for T where T > 0,

S= -0.426C + V3.72M' - 0.0053 C 2 > 0 (263)Lo 'Lo
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which reduces to

/ 0 = 0,

M > 0.0502CL2  (264)
6 2 •CLo

The case of minimum T is now investigated by setting T = 0.

From Equation 253 it is seen that 6 = (C - k which, when

substituted into Equation 254 with T = 0, gives

(a = 0, T = 0) k = o. 9 6 2 CL + /18.9M' - 0.0 2 3 CL2 > 0 (265)

where k > 0. The first restriction of Equation 262 that 6 > 0.090k

must be satisfied in solving Equation 265 because T = 0. Since

Equation 253 shows that CLo = k + ('r/2)6, then CLo > 1.14k, which

is the same as k < 0.875CLo. When used with Equation 265, the

inequality becomes

(0 = 0, 0 = 0) 0 = 0.9 6 2CL + /18.9M' - 0.023C2  = k - 0.875C

LoLo Lo

(266)

Since the sign of the radical must be negative (to maximize 6 in

view of Equation 253), the above inequality after simplification

becomes

(o = 0, T = 0) 0.0016c 2 < M' 0.0502C 2 (267)
Lo Lo

A further condition that must be satisfied is that the radical of

Equation 265 must not be imaginary; therefore,

MI' = 0.0012CL2 (268)Lo(28
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which is less restrictive than Equation 267, and therefore not

significant.

The results of Equations 264 and 267, together with Equations

263 and 265 show that at least two sets of equations are required to

specify the design form families resulting from Subspace (d) of

mission space. The corresponding regions of Subspace (d) are called

Region IHc and Region Ild, where

k 0

0.0502C 2 M, (2/r)CL (269)

(RegionIHo
=-1.93 /M' - 0.00o1oC 2 - 0.426C

Lo Lo

T=0

oool6C 0.0502 k = 0.962C - 4.35 VM'-O.001 2CL2  (270)
/Regionoldd{

0=6= 0.024C + 2.76 AMFOoOI7CL2
Lo Lo

22

The missing region is M' ý- 0.0016C L , which is considered

now, and is called Region Hle. Note that when M' = 0.OOl 6 CL2 in

Equation 270, then k = 0.875CLo 6 =0079CLo and T = 0. These

are precisely the values of k, 6, and T chosen for the previous

mapping of Subspace (c) where M' = 0. Consequently, this hydrofoil

form is selected for the entire region of M' = 0.0016, since it is

the form which has the smallest possible drag coefficient and

satisfies the requirements for CLo and H'. Its characteristics are
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(o le)0L)0016 L 875C (271)(Region IHe) °

6 = 0.0 79 CLo

The upper and lower surfaces of the hydrofoil forms, as

functions of k, 6, and T, are

Regions IIc, vYL = yI(x') k + yi(x') 6 + yý(x') T (272)
I~d, and lie)\

yj = y2(x') k + y4(x') 6 - yý(x') T

where the values of yi(x') through y'(x') are listed in Table 2.

Eval4ation of the optimization criterion. The optimization

criterion is presented in Equation 256 where Cdo is shown as a

function of k, T, and 6. The values of k, T, and 6 are obtained

from Equations 269 to 271. The frictional drag contribution to

Cd is the same as that of Equation 250 for the mapping of Subspace

(c) where a = 0. Combining Equations 256 and 250

Region II) Cd = [0.319k + 1.25(T+6)] 2 + Cf(l _ CL9) (273)

Presentation of the mapping result. The lower graph of

Figure 35 illustrates the mapping result of Subspace (d) of mission

space where M' is plotted against CL, and sketches of the correspond-

ing design forms are superimposed. The upper graph of Figure 35 shows

the values of Cdo associated with Subspace (d).
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Means for Increasing the Leading Edge Strength of Supercavitating
Hydrofoils

One of the practical difficulties encountered in the use of

supercavitating hydrofoils is leading edge vibration or failure

caused by the excessively thin and sharp leading edge. This problem

can be solved, in general, by exchanging the T parabolic-type thickness

for the 6 wedge-type thickness which is used for Regions iHd and HIe

of mission space.

Considerable strength is added to the nose region when values

of T = 0.10 are used. The penalty in drag when T is used is generally

only a few percent. Note that when T is substituted for 6, k must

be increased since 6 also contributes to C Lo while T does not.

Keeping the values of M' and CLo fixed, the equations governing the

exchange of T for 6 are seen from Equations 253 and 254 to be

F A r 2 A6
(Region II) 3 (274)

Ak= - A6

The graphs of Reference (32) should be consulted for more accurate

values of Ak and A6 when T is added, since Equation 274 provides only

approximate values. The nondimensional leading edge radius, as a

function of T, is 0.5T2 . Also, the nondimensional thickness produced

by T is 2TvrxrT. For example, the increase in nose thickness at

x' = 0.05 is 0.45 T, which is a considerable thickening when practical

values of T are used.
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Comparison of the Lift-to-Drag Ratios of Supercavitating Hydrofoils
Operating at a = 0

As a matter of side interest, the L/D ratios of various forms

of supercavitating hydrofoils are examined to determine the effect

on L/D of changes in form, CL, Cf, and M'. Sufficient thickness is

added to all camber forms to make the cavity pass above the camber

line; also, it is assumed that the cavity is filled with metal up

to the trailing edge for calculating strength. The data for the

flat plate with a flap was obtained from (26), and the rest of the

data was calculated using the information from (31) and (32), and

from Equations 270, 271, and 273. The results are listed in Table 3.

TABLE 3

L/D RATIOS OF VARIOUS SUPERCAVITATING HYDROFOIL FORMS AT T = 0

Hydrofoil L/D L/D L/D L/D L/D
0Cf = O Cf =0 Cf =0.04 f - 0.0004

f CL= 0.2 C 0.2 CL =0.2 CCL -0.2

Flat plate 1.57/CL 7.9 7.9 7.0 7.0

Flat plate
+ 25% flap 5. 2 1/CL 26.1 _-_a 18.4

Constant
pressure 6 . 2 5 /CL 31.3 --- 20.8

2-term
camber 7.O5/CL 35.3 22.8 22.5 16.6

5-term
camber 7 . 7 5/CL 38.7 --- 24.0

aA blank space indicates lack of data on the cross-sectional
strength.
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Mapping from Subspace (e) (CL variable, M' = 0.0005, a variable)

The selected value of M' is typical for high-speed struts

and hydrofoils.

Region boundaries. As in Subspace (c), the mission space

is represented by a graph of ordinate a versus abscissa C L and splits

into an upper region, called Region I, which maps into fully-wetted

hydrofoils, and a lower region, called Region II, which maps into

cavitating hydrofoils.

The previous discussions show that the minimum-drag hydro-

foils corresponding to Region I will be ellipses whose meanlines

are cambered using the NACA a = 1.0 uniform pressure meanline.

Assuming that the camber is small, the strength of a cambered

ellipse is approximately the same as that of the corresponding

uncambered ellipse.

The boundary between Regions I and II is determined by the

incipient cavitation number of the Region I hydrofoils, as in

previous mappings. According to (21), the pressure on the upper

surface of a hydrofoil can be calculated if the upper surface

velocity Uu is known, where

(Region I) Uu = U + u + ut (275)

where u = circulation velocity = ¼CLU (Equation 228), and ut =
a

added velocity due to the thickness of the ellipse where ut 2= U

= U A'0.21' (Reference 27 and Equation 199). As defined earlier,

a0 designates the value of a at CL = 0 for the elliptical cavity used

in generating the thickness distribution of an elliptical hydrofoil.
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Equations 226 and Z/ý show that

P-P u 2 ut 2

(Region I) u-1 = (= +.+.-) -1 (276)
"½pUJ2  U U

Substituting the expressions for u and ut into Equation 276,

P-P CL 2
1- = (I + -+ 110.-2) -1 (277)
½p U2

If CL/ 4 << 1 and v1O.2M' << 1, then Equation 277 becomes

P-P CL
(Region I) _u • -+ V- -91 (278)

½pU
2  2

Since the incipient cavitation number a is defined as the valuecr

of Equation 278 when P = P , the equation of the boundary line

(where a = ccr) for M' = 0.0005, is

CL

/Region I to II a L1+ A/40.8M (279)
e n l-boundary 2

which for M' = 0.0005, becomes

CL

(Region I to II boundary .CL--+ 0.143 (280)

Mapping from Region I. The ordinates of a basic thickness

distribution and the NACA a = 1.0 meanline can be superimposed (21),

assuming the ordinates are small. Therefore, the Region I forms are

-I + mI

Yu(ei Ye') Ym(
(Region 1) (281)

Yi Ye' Ym,
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where ye' is the equation for the elliptical semi-thickness distribu-
e

tion rewritten from Equation 203 as ye' = Vl.2M'(x'-x'2 ), and y'
e m

is the NACA a = 1.0 meanline given by Table 1 where y = yo'(X') C CL

Substituting these relations, Equation 281 becomes

Y yu =1 0.2M'(x'-x' 2) + yo,(x') - CL

(Region I) (282)
yi• =-•V'0._2W'(x'-x'27 + Yo'(x') - CL

Substituting M'= 0.0005, Equation 282 becomes the mapping relation-

ship for Region I of Subspace (e),

Yu' = 0.0715 VR,'x'2 + yo'(x') CL
( Region I (283)

S= 0.0005/ LYj =-0.0715 v5m-X'2 + Yo((X') CL

The equation for the optimization criterion Q = Cd for Region I is

the same as in Subspace (b), since the effects of camber do not

contribute to Cdf if CL and M' are small. From Equation 224,

(Region i) Cd = 2Cf (2 VM + 1) (284)

Substituting M' = 0.0005,

( Region I C d = 2.29 C f (285)
M4' = 0.0005)C

Boundary conditions for the mapping from Region II. The

mapping from Region II must match the boundary conditions estab-

lished by the previous mappings. Furthermore, it is reasonable to

expect the Region II forms to merge smoothly into the Region I
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forms at the boundary, because they did so in all of the previous

mappings.

Figure 36 was drawn to illustrate the three-dimensional

mapping conditions which resulted from the previous mappings.

Notice how the previous mappings form boundary conditions for the

new mapping along three sides of the new region being considered.

Therefore, Figure 36 illustrates another advantage of this design

procedure; namely, that the more complex mapping problems are made

more tractable by the boundary conditions established by simpler

mappings. The form of a hydrofoil corresponding to any point in

Subspace (e) can now be approximated after a brief study of Figure

36; this preliminary determination of design form would not have

been possible earlier.

The equations for toe forms corresponding to the a and CL

axes in Subspace (e) can be obtained from the mappings of Subspaces

(b) and (d), respectively, by substituting M' = 0.0005. The boundary

point between Regions I and Ila on the a axis is obtained from

Equation 199 as ao = A/4'bT8-M•-= 6o 3 9 AW-F = 0.143 where a designatesO 0

the value of a when CL = 0. The boundary point between Regions Ila

and IIb onthe o axis 'sobtained from Equation 218 as a = 410T.2MW
0

= 3.19AMv'= 0.0715. The point a = 0 is the boundary point on the a

axis separating Regions lib and IIc. The boundary point on the CL

axis in Subspace (e) between Regions lIc and HId is obtained from

Equation 269 as CLo = 4.46MvAT. Finally, the boundary point between

Regions HId and HIe is CLo = 25vM¢•T (Equation 270).
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General form of designs corresponding to Region II and the

region boundaries. The mapping from points within Region II is now

considered. The literature contains no examples of forms that will

help in this mapping. However, a study of Figure 36 and of Figure

34 provides clues. Notice in Figure 34 that families of forms exist

along lines which lie parallel to the boundary line between Regions

I and II; the forms of each such family have the same thickness

distribution, but varying camber. After studying Figure 36, it is

seen that similar families of forms (having the same thickness

distribution, but varying camber) might correspond to lines parallel-

ing the boundary line between Regions I and II in Subspace (e) where

M' = 0.0005. This observation is the key to the desired mapping.

Consider an extension of Regions IIa and IIb into the space

of Subspace (e). The equation of a line which parallels the

Region I - II boundary is seen from Equation 279 to be

a = +° ½CL (286)

where 0 is the intercept of any given line with the a axis. There-0

forethe hypothesized famI!ly of forms corresponding to the line of

Equation 286 would consist of forms which have the thickness distribu-

tion corresponding to the point a = a0 superimposed on the NACA

a = 1.0 meanline which corresponds to CL° Notice that any such form

would have: (a) uniform pressure on the upper surface which is

exactly equal to depth pressure, (b) exactly the specified strength,

(c) minimum-drag thickness distribution, (d) the desired lift
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coefficient, and (e) no drag penalty for the lift. These conditions

insure that the selected form has the lowest drag of any form which

can correspond to a given point in the selected region.

In view of the above discussion, the boundary between the

extension of Region Iia and Region I is

Boundary between
Regions I and Ha) a = 6.39 AMFM+ ½CL (287)

The boundary between the extension of Regions Ha and IIb is

( Boundary between C, = 3o19 AM-T+ ½CL (288)
Regions Ha and HIb

and the boundary between extended Regions HIb and TIc is

( Boundary between a = ½C L (289)
Regions HIb and Ic

The forms corresponding to Regions HIc to HIe are derived in

a similar manner. The equation of a line which intersects the CL

axis at CLo and parallels the Region I to Region II boundary is

C y ½ (CL- CLo) (290)

where CLL > CLo' The form which corresponds to any point along this

line consists of the form designed for CLo superimposed on the NACA

a = 1.0 meanline, where the meanline lift coefficient is obtained

from Equation 290 as

1 The cavity drag resulting from lift produced by pure camber

is zero (38).
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(Reg ions ) (Co a=1. CL -'o= 2,1 (291)

Ic to Hle) (LlO - CLo

The boundary between the extension of Regions IIc and IHd is

derived from the CL axis intercept of C Lo= 4.46 V'iF found previously,

and is

( Boundary between \ a =-2.23 M'7W + ½CL (292)

Regions IIc and lid)

Similarly,

/ Boundary between ) = -12o5 V9+ ½C3)
(Regions Ild and Hie) L (293)

Specific forms corresponding to Region II. The specific

form corresponding to any point in Region II can be obtained from

the general forms which were just derived. Considering families

Ha and IIb first, the values of 0 and M' are sufficient to specify0

the thickness distribution which is given by Equation 217. The

camber is given by Equation 231. The value of a is the intercept

with the a axis of the line described earlier which is the locus of

the family of cambered forms, all of which have the same thickness

distribution. This intercept is obtained from Equation 286 as

o= - ½C L (294)

Substituting Equation 294 into Equation 217 and adding to this the

camber of Equation 231, gives
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- 2"i' x,_(x,)2

Yu" 2 - C + Y' (x') CL

(Region Ha), -L (295)

(-2 L CLYY = 2 - - 'CL') + Yo~x) C

and

Yu'= 2 - L 2 +I x'-(x') 2 + Yo(X') CL

(Region hIb) C~ (296)

Y- 2 C L) 2 +l x'-(x') 2 + Yo(x') L

- 2 'VLl1- C2  joC

where C is obtained from Figure 32.

Similarly, the basic forms for Regions 1Ic to HIe are

obtained from Equations 269 to 272 if CLo and M' are known. The

NACA a = 1.0 meanline defined by Equation 231 is added to each

basic form, where the meanline lift coefficient is given by Equation

291 as 2a. The value of C Lo is obtained from Equation 290 as

CLo = 2a - CL (297)

Substituting Equation 297 into Equations 269 to 272 and

adding the meanline of Equation 231, where the meanline lift

coefficient is 2a, gives the forms for Regions HIc to HIe expressed

in terms of k, T, and 6 as
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Yu= yj(x') 6 + yý(x') T + yo(x') 20

yj = yj(x') 6 - yW(x,) r + yo(x') 2a

(Region IIc) k 0 (298)

6 2 (C L 2)
L = 1.93 V'M'-O.O01 4 (CL - 2c) 2 - 0. 4 26(CL - 2a)

yu= yj(x') k + yj(x') 6 + yo(x') 20

(Region lid) £ = 2 k 4 + (299)

k = o.9 6 2(CL-2a) -4.35 ,/'l-O.OOI2 (CL- 2o) 2

6 = 0.024(CL-2a) +2.76v MI-O.OOI 2 (CL- 2 )'2

-r = 0

y' Yj(x') k + yý(x') 6 + yo(x') 2o

'j = y2(x') k + y4(x') 6 + yo(x') 2a

(Region lie) k = 0. 8 75(CL-2O) (300)

6 = 0.079(CL-2a)

T =0

The specific forms for Subspace (e) are obtained by substituting

M' = 0.0005 into Equations 295, 296, and 298 to 300.

Drag coefficients of the Region II forms. The cavity drag

of the Region Ha forms is derived in Appendix E as

(Region Ha) C = d (301)

dcix Ec

where t/c is given in Figure 42 of Appendix E as a function of
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a0
2 /M' = (C C L/2)2/M,. Since a, CL and M' are known in a typical

hydrofoil cross-section problem, Cdc can be readily calculated. The

total drag coefficient for the Region II forms is seen by Equations

207 and 250 to be

CL
(Region II) Cd=Cdc+Cdf=Cdc+Cf( 1 - -- +-) (302)

The cavity drag coefficient for the forms corresponding to

Regions IIb to Ile is shown by Equation 242 to be

Cdc Cdo + t (303)
do La+ 1.5 C

c do

The values of C do and t/c for the Region Ilb forms can be obtained

as a function of a0 2/M' from Figure 42 in Appendix E. The value of0

Cdo for the Region TIc to Ile forms is given by Equation 256 as

(Regions llc to lie) Cdo = [0.319k + 1.25(T+6I)] 2 (304)

where k, T, and 6 are obtained from Equations 298 to 300. The

values of t/c for the Region Ilc to Ile forms are obtained from

Table 2 where

(Regions TIc to Ile) 1.92k + 1.686 + 2.OOT (305)
c

Presentation of the mapping. The lower graph of Figure 37

shows Regions I to Ile and some corresponding forms plotted as a

function of a and CL where M' = 0.0005. The upper graph of Figure

37 shows the value of Cdc plotted in Region II and the value of
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Cd = Cdf plotted in Region I, where M' = 0.0005. Notice that the

value of Cdc reduces as a increases from zero, until the Region Ilb,

Region HIc boundary is met. The forms corresponding to this

boundary are cambered parabolas.

Mapping from Subspace (f) (CL, M', and a are variable)

The mapping from this three-dimensional subspace was completed

in the course of mapping Subspace (e). Equations 282, 284, 287 to

289, 292, 293, 295, 296, and 298 to 305, and Figures 32 and 42,

describe the various boundaries, design forms, and drag coefficients

needed for the complete mapping.

Illustration of the mapping boundaries and forms. The

three-dimensional boundaries in Subspace (f) of mission space are

shown in Figure 38. Notice the stratification of the boundary

lines in the plane where H' = constant.

The various hydrofoil forms corresponding to different

points in Subspace (f) are shown in Figure 39. According to the

form equations, a different form corresponds to each of the infinite

number of points in Region Ha to Region IId. The forms in Region

I are different for different values of CL and H', and the forms

in Region HIe are different for different values of CL and a.

Consequently, there is no best over-all hydrofoil form, but rather

an infinite variety of best forms in which the best single form

depends upon the specific operating situation.



260

i• ~-(-o-= 1.0

0'

/

CL= 0.6

Figure 38 - Boundaries of Regions I through HIe in

three-dimensional space
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Notice that a straight or curved line anywhere in Figure 39

is the locus of a smoothly-varying set of design forms. One can

easily find the set of cambered parabolas, ellipses, semi-ellipses,

flat-bottomed forms, cambered lines, etc. Figure 40 shows the

various families of hydrofoil forms and how they relate to each

other.

Transformation of the Three-Dimensional Subspace of Mission Space

into a One-Dimensional Subspace

A most remarkable result now becomes evident which was not

apparent earlier. Notice that the region boundaries given by

Equations 287 to 289 and 292 to 293 can be expressed as a function

of only one parameter which is denoted by K where

K = L 0 (306)

The region boundaries are listed as a function of K in Table 4.

The simplification introduced for the description of the

boundaries can be extended to the description of the hydrofoil forms

and the drag coefficients. The following definitions are introduced:

C L CL L ACP

a ar r W

=y' / 'rW= (y/c) / "r/r

P t' / P = (tic) / rw (307)

T= k / AV•

Cdc = Cdc / M'

Cdo = Cdo / M'
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HYDROFOIL FAMILIES

ITo ]Ib Ifc Tld

ELLIPSES 
e

CAMBERED

SEMI -ELLIPSES

CAMBERED
PARABOLAS

ELLIPSES.C. FLAT
SEMI- ELLIPSES PLATES

NACA a = 1.O0PRAOA

MEANLINES PARABOLAS

FLAT PLATE

Figure 40 - The relationship of the different hydrofoil families
corresponding to Subspace (f)
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TABLE 4

REGION BOUNDARIES FOR SUBSPACE (f) AS A FUNCTION OF K

Region Boundary Equation

I to lla K = 6.39

Ila to lIb K = 3.19

IIb to IIc K = 0

IIc to Ild K = -2.23

lId to Ile K = -12.5

The expressions for the hydrofoil forms given by Equation 282,

295, 296, and 298 to 300 are transformed into the new parameters and

listed in Table 5. The values for CI are shown in Figure 32 as a

function of K2. The expressions for Cdo and C df are listed in

Table 6, and were obtained from Equations 301, 302, 304, 305, and

Table 5.

TABLE 6

HYDROFOIL DRAG COEFFICIENTS FOR THE FORMS
CORRESPONDING TO SUBSPACE (f)

Region Cdo (or Cdc ) Cdf

I 0 2Cf(I4+6.39vrM')

Ila 0--CL + a 2
-- dCi-, MI Cf(l -C +-)I(aCdc f 2-

lIb See Figure 42

Ic [2.41V1l-O.OO56K2-O.525K] 2

lid [2.06V1-O.O048Ki2-O.674K]2 ,,

Ile 0.572K2
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TABLE 5

HYDROFOIL FORM CHARACTERISTICS CORRESPONDING TO SUBSPACE (f)

Region Form Equation T.= tic t b

y = 3.19/X-L(XI)2+Y'C-L 3.19 0

4j = -3.l9vrxI-(XI)2+YI'C-L

fiK2x ' 2
Ha = K 1 /U-L-K

£r K/ o

= KA

u~ C~~ +1)x _(x')+y'C5 1.

IIC y = yj6 + yý +2y' a

yj= y 6 - yýT +2y' a -0.436K 1.0

6 = -1.272K +3.86,11-0.0056KF

T= 1.93,/1-0.0056KF + 0.85K

lid y= y; T+ yjT+ 2yo'

yj= ylk + y46 +2y' o -0.451K 1.0

k = -1.924K - 4.35VI-0.0048KF +3.80V1-0.0048KF

T= -o-..o48K +i 2.76V]-0.0048K2

T 0

lHe 71 yjk + y~lT+ 2y4u

4yj l+ y4 -6 +2y'u -0.602K 1.0

kZ = -1.750K

T = -0.158K

T =0



266

The basic form characteristics which consist of TT= (t/c)/vT,

tb/t, T, k/lO, and T are plotted in Figure 41 as a function of K.

Also shown in Figure 41 are typical hydrofoil shapes superimposed

along vertical lines which represent the region boundaries. Notice

how clearly and precisely Figure 41 represents all of the hydrofoil

forms and how the three-dimensional illustration in Figure 39 has

been condensed into a single one-dimensional graph where the only

parameter is K = (a - CL/2)/,MW-. This parameter K classifies all

cavitating hydrofoils and the simpler fully-wetted hydrofoils much

like the specific speed parameter classifies turbomachinery. The

nature of the parameter K is somewhat broader than the specific

speed parameter, however, because it includes the effect of cavita-

tion and structural strength on design form which the latter does

not include.

Figure 41 can be utilized with Tables 5 and 6, Equations 302,

303, and 307, and Figures 32 and 42, to completely specify the

lowest-drag hydrofoil cross sectionscorresponding to Subspace (e) as

a function of CL, M', and oa

General Comments on the Design of Hydrofoil Cross Sections

The results of this hydrofoil design problem are applicable

to a wide variety of operating situations. The restrictions that

R >> 107 and r' = 0 are not necessary if the boundary layer ise

turbulent; an expression for Cdf has been included to correct all
drag coefficients for R and r'. Not even the boundary layer state

e
restriction is needed for the case of the Region II forms.
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Figure 41 - One-dimensional representation of hydrofoil design
form characteristics
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The mission criterion concerning the effect of the water surface on

performance is not significant, in general, since very few hydrofoils

are designed to operate steadily within about two chordlengths of

the surface where depth affects exist. The Froude number can be

disregarded in most cases of hydrofoil cross section design because

it is generally sufficiently high for cavitating hydrofoils that it

has negligible effect on the cavity shape and design form. The

restriction that Ac = 00 can be relaxed to Ac = + 30 or more, in

general, for fully-wetted hydrofoils when the boundary layer is

turbulent, without seriously influencing performance or design form

unless cavitation is very critical. The effect of short periods of

positive values of Ac on supercavitating hydrofoil performance or

design is small; however, if Ac is to be negative, the upper surface

should be undercut so that the cavity clears it at negative angles

of attack. The restriction of solid sections is not serious because

the designer can easily modify the specified M' to account for any

amount of hollowness by using a fictiously high value of M'.

Similarly, the assumption that the separation drag of the fully-

wetted hydrofoils is negligible can be complied with by adding a

cusp-shaped or wedge-shaped trailing edge to reduce separation of
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the turbulent boundary layer. A final comment is that the results

of this analysis can also be made to apply to a relatively new kind

of hydrofoil form introduced by Hydronautics, Incorporated, called

a supercavitating hydrofoil with an annex (33). This form is

essentially a typical Region II hydrofoil form with an unwetted

annex extending rearward into the cavity from the trailing edge to

increase the bending strength without changing any of the performance

characteristics. Such a form can be treated in this analysis by

artifically reducing the required value of M' by perhaps thirty

percent or whatever value the designer finds reasonable in view

of the anticipated form of the hydrofoil and cavity. When the

design of the Region II form has been completed, the designer can

add the annex and check his earlier estimate of approximate annex

size and strength change.

Summarizing, the selected operating conditions for this

analysis are found to be considerably more general than they first

appeared to be.

The better low-drag hydrofoil forms are very close in shape

to an ellipse with either a cusp-shaped or a wedge-shaped
trailing edge. For example, see the NACA 16-series and 65-
series airfoils of Reference (21). Also, a sharp trailing
edge is desirable in order to satisfy the Kutta condition
for the lifting hydrofoils. Notice that the value of M'
reduces when such a trailing edge is added; this reduction
in M' can be easily accounted for by reducing the specified
value of chordlength about 20%, or whatever value appears
reasonable for the thickness-to-chord ratio which results.
Notice that the specified value of CL has to be changed
accordingly. This trailing edge addition only affects the
Region I forms.
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Notice that the hydrofoil forms split into six different

famili-es in which each family is described by a different set of

equations. Although some of the families and their boundaries in

mission space are uniquely determined, the determination of others

is arbitrary and depends upon the variables used in describing the

hydrofoil form. For example, the boundary between Regions I and II

is uniquely determined because it results from a change in physical

flow condition which is not man made. On the other hand, the

boundaries between Regions Ild, Ile, and Ilf are not unique because

instead of using the variables k, T, and 6, to represent the amount

of two-term camber, parabolic thickness distribution, and 6-thickness

distribution, other variables could have been used to represent

other kinds of basic camber and thickness distributions. Approxi-

mately the same hydrofoil form would be found to correspond with

each point in mission space, but the equations describing the forms

would be different. Slight form changes and small improvements in

performance will probably be found for Regions IIc, Ild, and Ile

as a result of future research. No changes are anticipated in the

forms or boundary description corresponding to Regions I, Ila, and

IIb, within the framework of the stated assumptions. Also, the

classification parameter K which resulted from this analysis should

remain unique.
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APPENDIX C

GROUP THEORY AND DESIGN FORM TRANSFORMATIONS

The objective of this appendix is to illustrate that trans-

formations from one design form to another within the same family

can be looked upon as elements of a group. A relatively simple

example is presented first, followed by the generalized treatment.

Transformation of Hydrofoil Cross Sections

Assume, for this example, that the mission parameters of a

generalized hydrofoil design mission consist of only CL and M',

where CL is the lift coefficient and M' is the nondimensional

applied bending moment. Furthermore, assume that the design objec-

tive is to design hydrofoil cross sections where the only design

parameters are the camber line y(x) (ioe., center line location of

a hydrofoil cross section) and the th-ckness distribution t(x)o

Notice that the camber and thickness are both expressed as functions

of x, where x is the distance from the nose of a hydrofoil. The

pair [y(x), t(x)] completely describes a hydrofoil cross section,

and the pair [CL, M1'] completely describes a design mission.

Assume that the physical relationships between the mission

parameters and the design parameters are the following:

y(x) = CL yo(x) (308)
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t(x) = W to(x) (309)

where yix)jshIe (known) camber line corresponding to CL = 1.0, and

t 0 (x) is the (known) thickness distribution corresponding to M' = 1.0.

Let p designate a given, but arbitrary, design mission. Using

Equations 308 and 309 , the corresponding design form is designated

by [y (X), t p(x)], where

yp(X) = CL Yo(X) (310)
P

t (x) = Aw- t Wx) (311)
p p o

If CL and M' are looked upon as coordinates in a two-dimensional

Euclidean space called mission space, any pair of real numbers

corresponding to [CL , M'] represents a point in the mission space.
P

Similarly, any pair of real functions corresponding to [y (x), tp W)

represents a point in a two-dimensional Euclidean space called design

space. Equations 310 and 3H1 therefore represent a mapping from an

arbitrary point in mission space to the corresponding point in

design space.

The mapping from M' to t (x) given by Equation 311 is linear-
p p

ized by transforming the mission space into a new mission space

where the coordinates are CL and A'P rather than CL and M'. Although

Equation 311 remains unchanged, it may now be considered to be a

linear mapping from A to t (x), where a point in the new mission
p p

space is represented by [CL , .
LP
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Let p = 1 designate a given, but arbitrary, point in the new

mission space. Let an arbitrary second point in the new mission

space be designated by p = 2 where the second point is determined by

the change in coordinates A CL and A (Ar) q where
qq

CL CL+ CL (312)

/1-I /M.'+ A (J A4) (313)

2 1 q

To simplify the nomenclature, let

A C = r (314)L q
q

A (-/F) (315)

where r and s are real numbers, and q designates a given, butq q

arbitrary, change in mission space coordinates. Substituting Equations

314 and 315 , Equations 312 and 313 become

C L= C L+r(3161)CL2  CLl+rq(36

1= A + Sq (317)

Equations 310 to 317 show that the relationship between the two

corresponding design forms is

Y2 (x) = Y (x) + r Y (X) (318)

qo

t 2 (x) = t 1 (X) + sq t 0 (x) (319)
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where y1 (x) = CL YW(X) and tW(x) = V toW.

Let the arbitrary transformation gq from design form one to

design form two be defined by

[y 1 (x), tl(x)]-S-*[yl(x) + rq YO (X), tl(X) + sqto(x)] = [y 2 (x), t 2 (x)]

(320)

Let two values of q be a and P, and let the binary operation g o g6

be defined as

g 0g

[YI(X), tl(x)]•y [Y1 (X) +(r + r) Yo(X tiW + (S + s) to()

(321)

Let the set of all r and the set of all s belong to differentq q

groups of real numbers under addition. The binary operation

designated by o is then seen by Equations 320 and 321 to be a

transformation by composition because g6 operates on the design form

which results from the transformation g a to produce a third design

form, all of which belong to the same design form family. In other

words,

g 0 =g (322)

where r --r+ r r and s + sa = sY,

Let e be the identity transformation of the set of all g

whose corresponding values of r and s are zero. Equation 321q q

then shows that

gq o e = e o gq (323)
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Let the inverse of gq be defined as

-1

[y, (x), tl (x)]----9[yl(x) - rq y0 (x), t,(x) -s t 0(X)] (324)

It then follows from Equations 321 and 324 that

-1 -1

gq 0 gq = gq 0 gq = e (325)

Also, from Equation 321 and the definitions of r and s itq q'

follows that the operation is associative since

ga o(g1 o g) = (ga o g )o g (326)

The set of gq is therefore seen to satisfy all of the require-

ments for a group in view of Equations 320 to 326. Consequently, the

set of all transformations from one hydrofoil form to another of a

given hydrofoil family is a group.

General Design Form Transformations

Let mission space be represented by the set {m,} where each

mI is an independent mission parameter, and let design space be

represented by the set {d.} where each do is an independent designJ J

parameter, where i and j are integers, and each set is finite. In

view of Chapters II and IV, it is possible to develop the following

set of functions f. which range over all values of j:
J

d. = f. ({mi}) (327)
J J

For each d., it is seen from Equation 327 that

dj2 d j] = fj2 - fjl (32b)
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where d and d are the values of the design parameter d. for twoji j2 j

different design forms. Rewriting,

d = djl + (fj 2 - f ) (329)

Letting

fj2 f ji = rjk (330)

Equation 329 becomes

dj2 d j] + rjk (331)

Let the design form transformation gjk be defined as

g-
dj d + r = d j2 (332)

Define the identity transformation e as the transformation gjk
where r = 0, and define the inverse transformation of gjk as

-1

d jk.dod -ji : djI jk (333)

Let the binary operation designated by o be defined as

dIj o 092 d + (rj rj2) (334)

Let each set of r jk where j is fixed, belong to a separate

group of real numbers under addition. From the definition of e and

Equations 332 to 334, {gjk} is seen to be a group by composition

because the following hold true for arbitrary elements of {gjk}:
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e o g j i = gj, o e =g gj] 0 g j2 = ggj3

(335)

lo -l -gjl o gjl = e gjl °(gj 2 0 gj 3 ) = (gjl o gj 2 ) gj3

Since Equation 329 holds for each design form parameter belonging

to the set {d.}, the set of all transformations from one design form

to another can be regarded as a group.
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APPENDIX D

THE EFFECT OF SWEEPBACK ON THE INCIPIENT CAVITATION NUMBER OF
HYDROFOILS

Consider two solid hydrofoils, one unswept and one swept-

back. Let each have the same area bc, planform taper ratio T, span

b, lift L, and cross sectional shape. Let the thickness-to-chord

ratio be constant everywhere. Each hydrofoil will then have the

same overall lift coefficient CL, aspect ratio Ar, mean chordlength

c in the free-stream direction, and essentially the same induced

drag.

The maximum bending stress at the root section of an

optimized unswept hydrofoil is given by Equation 146 (without the

inequality sign, and assuming W = W = 0) as
s x

f C4bL (336)

4C C~t 2 c

where c 4 b/2 is the distance from the root to the semispan center of

pressure, C1 is the nondimensional section modulus coefficient, t

is the mean thickness, and C3 = t /t = c0 /c where the subscript o

refers to the root section. The bending stress for the sweptback

foil is set equal to the unswept value to compare thickness, and is

f C4 (b/cosA)L

4C C3 t 2 c cosX
13 A
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where X is the sweepback angle and tX is the mean thickness of the

sweptback foil. Equating the bending stress in Equations 336 and

337, it is seen that the sweptback foil must have a greater mean

thickness since

t = t/cosx (338)

Assuming that the cross section is one of the NACA 16 -series

airfoils, the incipient cavitation number of the unswept foil is

given by Equation 152 as

acr = 2.45 t/c + 0.56 CL (339)

(The specific cross sectional shape can be arbitrary in this proof,

but the NACA 16 -series airfoil is chosen because of its excellent

cavitation resistance.) The incipient cavitation number of the

sweptback hydrofoil is shown by (21) to be

(swept) acr 1W UCOSX) A = a cosZ2 (340)
r ½QU 2  " cr Xcr

where a .cr is the cavitation number based upon the spanwise cross

section and the component of U which is perpendicular to the swept

span. Using Equation 339, a.cr is

aXcr = 2.45 ti/c cosX + 0.56 CLX (341)

where CL is the design lift coefficient of the spanwise cross

section, and is related to CL by equating the lift of the two hydro-

foils as follows:
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L = CL bc ½pU2 = CLX bc ½p(UcosX) 2  (342)

Solving,

CLX = CL/Cos 2 x (343)

Util;zing Equations 338, 341, and 343, Equation 340 becomes

(Swept) acr = 2.45 t + 0.56 CL (344)

Consequently, the cavitation number of the swept hydrofoil given

by Equation 344 is exactly equal to the cavitation number of the

unswept hydrofoil given by Equation 339. Therefore, no cavitation

advantage is obtained from sweepback when a hydrofoil is strength

limited.
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APPENDIX E

CAVITY DRAG COEFFICIENTS FOR HYDROFOIL CROSS SECTIONS
WHICH CONSIST OF TRUNCATED ELLIPSES

The cavity drag coefficient of a hydrofoil with a base

cavity is given by Equation 242 as

S(a t/c) 2

dc =do + + 1.5C
c+ !. do

where an approximate expression forCdc for the special case when

a t/c > 4 C -s
do'

Cdc a t (for o I > 4 Cd (345)

Cdo is the value of Cdc when a = 0, assuming that the hydrofoil

sides are wetted and the base cavity Is at a = Oo Th~s case is

mathematically possible to analyze for truncated ellipses, but it

is not physically realistic because the surface of all ellipses

will cavitate at a = 0. However, if C do ;s calculated using a

mathematical approach which assumes that the sides are wetted,

Equation 242 will provide a value for Cdc which is both mathematically

and physically valfd for all operating situations where a > a= cr•

where acr is the incipient cavitation number of a given truncated

elliptical strut.
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The value of Cd for truncated ellipses can be calculated
0from an expression developed by Tulin (27) using linearized theory

for the case of a = 0. This expression, in modified form, is

(Truncated 2 (.y) d ( 2ellipse Cdo c (346)

where y is the local semi-thWckness and x is the distance from the

leading edge. Equation 346 is based on the assumptions that:

(a) the two strut surfaces are wetted, (b) only the base is covered

by a cavity, (c) a = 0, and (d) the cavity walls do not intersect.

Equation 346 can be placed in the form of an elliptic

integral by nondimensionalizing it by substituting x' = x/c and

yI = y/c, and then letting x' = sin 2co Equation 216 is needed to

express y' in terms of x'. After making these substitutions and

letting k = /Ivc , Equation 346 becomes

t 2 2

C d k2 (lk 2  (347)

where tr/c is obtained from Equation 212.

The symbol k ;s normally used to designate the variable in

complete elliptic functions whlch are usually symbolized by K(k) for

functions of the first kind and by E(k) for functions of the second

kind. From Equation 214, it is seen that k2 is
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=cc
2 M' <- I

k 2  C_ (348)
c 1 /Region Ilb

2 <0

Using elliptic integrals, the solution to Equation 341 is

Tn ea /- [2E(k)-K(k)]z (Region Ila)/Truncated/ - iI. Rgo
ellipse C do (349)

e p1 (a_ 2 + 2E(k)_K(k)] 2 (Region ilb)

where C is obtained from Figure 32, k2 from Equation 348, and

E(k) and K(k) from standard mathematical tables. Notice that the

two expressions in Equation 349 agree along the Region Ila to

Region lib boundary given by Equation 288 where co = 3,19 VW and

CI = 0,098°

The expression for C do/M' , obtained from Equation 349 is

plotted in the lower graph of Figure 42 as a function of a2/M'.
0

Notice that the value of u2 /M' is graphed only up to 24.4. This
0

is the value where C = 0 which corresponds to the physicaldo

situation where the two cavity walls just begin to meet downstream

of the strut base. At values greater than o2 /M' = 24.4, the cavity
0

walls cross and the theory is no longer valid. The upper graph of

Figure 42 contains a plot of the corresponding values of (t/c)/lvi-
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(which is equal to lI/Ct),the truncation chord ratio c/ia, and

the base thickness to maximum thickness ratio tbA, which were

obtained from Equations 212, 214, and 211, and Figure 32.

The values of t/c, a, and C do are needed to calculate Cdc

from Equation 242. Since a, M', and CL are given in a typical

problem dealing with hydrofoil cross sections, t/c and Cdo can be

obtained from Figure 42 using- /M', where o = a - CL/ 2 (Equation
00L

294),

if the value of c/£ ;s between one-half and one, as in thec

case of the Region Ila hydrofoils of Appendix B then Equation 345

can be used to calculate Cdc because a t/c > 4Cdo. The latter

inequality is seen to hold since Figure 42 shows for Region Ila

that 5° t/c W(.1O.2M) (3.4VW-) = 10.8M' and 4Cdo = 9.4 M'; also,

o > % everywhere in the selected sectlon of mission space.S0
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