
HARVA'tD PAPEI'rS TN TI ,1,0; P- L ,''O! ,^ ,

0"C EOCAPHIY AND JI-' P!IOP F o;, " P ' ' " T.I

Paper Number 'I,ent~y.-Sevon

"NO'ES Ol TIuE , ETHiODOim)7 ,oY FOi 0I'NEMATTON

OF THE R7PRE',SENTA9'TVE 0'" A S'""

by C. Ernesto S. Lindgren
Research Associate in neorarhic
Antlvsl..s in the Laboratory ror
Computor Graphics and Snnti.al
Analysis

Center for Environmental. Desimn Studies

Graduate School of Desi.gvn

' Harvard University, Cambridge, 'lass.

14 February 1969

Twenty-Seventh Technical Report - Office

of Naval Renearch - Contract No. 0001-67A-0298

Task Order NR 0004
Principa± Investigator: W. Warntz

Reproduction in whole or in part is permitted for any purpose

of the United States Government

--Distribution of this Document is Unlimited--.Reprouced by the
CLEIAR ING HOU SE

for Federal Scientific & Technical
Infomauion Spingfld Va. 22151



1.

Introduction

When a collection of data-points is related to a two-

ditennsional system of reference and through each point we raise

segments perpendicular to the locus o. the set, the length of

each segment being equal to the corresponding value of some

variate, the result is what is called a continuous distribution

in space of the third variate over the locus of the set of

data-points. Thus, if the data-points represent location,

referred to a latitude-longitude system or some other system,

and the third variate is population, or income, or p6tential

of either, etc., the distribution is assumed continuous and

is represented by a surface of population, or income, or

potential, etc. distribution.

Let (x,y) i represent the coordinate system used for

location and p1 the value of some variate, which is said to

be the measure of a population at the point (x,y) Then, the

locus of points (x,y,p)i is the surface of the continuous

distribution of Pi over (x,y)i.

Assume other populations at the same points. Let them be

q1 , ti, ui' etc. Question: how do wo represent, simultaneously,

the continuous distribution of p,,qit,, etc. over (x,y)i ?

This paper proposes alternative methods, suitable for

computer programming, and suggests them for that type of

continuous spatial distribution.
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PRESENT METHODOLOGY

1. Two-dimensional distribution

Lct (x) represent the coordinate system which locates

a set of points. Therefore, the locus of these points is a

line. We wish to represent the distribution of a population

p1 along this line.

1.1 (W)i is a straight line

Through each point we simply dra: a perpendicular to the

line and mark upon it the corresponding value of Pi. The

locus of the end-points represent the distribution (x,p)1 .

Figure -.

Assuming now that the curve obtained is to be utilized as

another coordinate system for the set of points, along that line,

to w. Ich it corresponds another set of values of the population

Pi3 this new distribution, which we will notate as (x,n) 1, 2, can

be represented along the normals drawn at each point to the curve.

We have then, the case when

1.2. (x)i is a curve (plane)
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See figure 2.

. . . .. . . .., 1

" )

F'igure 2.

This type of representation is the one used by Warntz

in the construction of thQ minimum land acquisition cost

routes [1], a mcthod derived from the constructions of the

llay; en!' diaram for the determination of the path of refracted

liit [2].

The use of this method of representing a succession of

distributions over a line has, as the two examples above

mentioned indicated, useful application. In both cases, the

relationship among the distributions is utilized for the

determination of a minimum path through points in distinct

distributions. See figure 3.

i
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Figure 3.

2. Three-dimensional distribution

Let (x,y)i represent the coordinate systo-I which locates

a set of points. We wish to represent the distribution of

a population Pj over the locus of the points.

2.1 LxY) is a plane

Examples of this type of distribution are many. The

population P. need not be a spatial variate, as discussed in

several papers of this theoretical series.

Through each point we raise a perpendicular to the plane,

mark the corresponding value of pi and find the locus of the

end points. The curved surface obtained represents the

continuous spatial distribution (x,y,p)i.

2.2 (xy)i is a curved surface

The usual procedure is to determine at each point the

normals to the surface, mark on them the corresponding values

of Pj in order to obtain another curved surface which represents

the distribution (x,y,p)i.

i'.
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Each of these methods of rcprescnting plane and spatial

distrlbution. have been successfully used in computer graphics.

SYIAP is one of the techniques used Jn the gcncration of surfaces

representing spatial distributions.

It remains to be seen if there are or not other alternatives,

in the representation of these distilibutions, which may (or

may not) facilitate their understanding and study.

I
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6.

NOTEJS OiN Tm:I, ,,TIODOLOQY F'OH

GENiERATION OF Ti~j!' REPIE..NITAT1Vi

OF A SET

Santos .leis paper [3II, an essay %n the generalization of

the representative of a set of points, covers the alternative

approaches which we are seeking. This section of this paper

deals, therefore, only with one of such alternatives, pointiii[

out some of its advantages over the present methodology. If

the alternative here suggested does not satisfy specific case,;

it is always possible to search for another in Santos Reis'

generalized discussion.

But in addition to the generalization indicated above, and

which we will use to derive the suggested methodoloe-y, we will

make an attempt in spelling out sonic classificatory characteristics,

based on geometric transformations and propertics, which will

serve to distinguish or to identify the locus of the points

identified by the coordinate systems (x)i and (x,y)i.

3. On lines and curves (x)i

We shall distinguish between the straight line and the curve

(plane) in the following manner, even though both are one-

dimensional geometric forms:

3.1 A line does not define the plane on which it liqs.

3.2 A curve (plane) defines the plane on which it lies.

The observation, naive and simple as it seems, provides,

however, the way by which we shall attain an alternative method

in the derivation of the representative.

Consider a straight line. In this case, it makes no



difference in whicjh di Ictioi, in space, we draw the pcrpcinld culars

to such a line, in order to obtain the reipresentatjve (x,p) i *

Sec figure 4.

,---I (, j. *l~4

Fi ure 1.

ConsequeiAy, the configuration of the representativc is

always the same and is independent of the orientation of the

plane defined by (x)i and the represcntative (x,p)i. We can

"also say that the same plane is dcfined by the (x) i and the

direction perpendicular to it.

If we consider this pcrpendicular direction as a coordinate

system for a set of points (Y)il we have the cuotomary (x,y)

Cartesian system of coordinates. The representative (x,p)

is, however, an inva,.iant, being Independent of the orientation

of the two perpendicular coordinate sets of points (x,y)j.

The above underlining is i.portant because this fact has

been overlooked in recent articles discussin., the dependency
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or independency Gl' the regression line fitted to'a sot or points

coordinated in a (x,y) Cartesian system.

Notice that Lthe representative (xp)i can be anything,

including the rep','.ssion line! W' have indicated that this

rupresentative I., an invariant. Therefore, the coefficient

of correlation 1:t :,ilso an invariant. (Nevertheless, in an

article published in the Annals of the Association of American

Oeo~raphers, by Court [4) commenting on the article by Porter

[5, with our coln,,.iilts] Court states that regression lines

depend on the axJ:,.t orientation...The point missed by Court

is that (x) and (y) are, actually, the locus of the two sets

of points; theref,'Ve a rotation of these axes, constitutes a

rotation of each :,,t. What Court suggested was a separation of

the set of the polits in the plane - the representative (xp)i,

according to the ,v:ual nomenclature - from the two sets represented

on the axis (x)i and (y) = (P)i" This, of course, is a mistaken

interpretation or the one-to-one relationship bctwe2n image

[the repres entative (x,p)iI and counter-Image (the sets (x)

and (P)1  (Y).i See reference [3).

The methodology derived from the use of (x)i as a straight

line does not, thevefore, provide any means of unveiling-now

properties of the (x,p)i representative.

The cas who,, (x)i is a curve (rlanc) was previously

discussed, indicating the "state of the art" in this methodology.

However, a differe'iit approach can be tried based on the following:

The representative (x,p)i is obtained on the perpendiculars

to the plane of the curve (x)i . More about this later.



4 On plpi(,. ituifd cu1'vcd sui-fnLce s

1,,e ohlla di.,; s uu.:; cetw-lc.n thU 1e p v and the' C UI\' ed

Sura'a J11 V& f ollov.'i-ir manner:

11 . Th( plunc (loco, not dctcrminc the ho-inunin

spacce to i oh it be longs.

4j.2 A curvcd suiI'vco whose curvature, veybr ,is

constwa'it and rcjln to zuro does not detcr;iine the three-

di mcn:-iom!ani pacc to itich it belongs

T1hib i.s justi fled by the fact that SLIrfaceS enjoyIng this

propurtLy ha,.ve in int.riiisic jeo ,.try identical \ o that of the

p3I a n ( Z t I-0 U %cu "'.1 u ,V e e1,y her) v Thlese surfiaccs naty be made:

to colrctd2 wa th a plaano arnd arec cnlledo couse de~..-ab

surfaces .

4.3 A curved surface whose curvature irs different from

zero (const.ant. or nut) determines the three*-dimicn.oionlal to

which it '. gs

We could reigroup the three staterientsc Lbove, comining the

first tea.,, consiueringr In ore group surfaces of zero curvature

(which do notU dctcr:-iie the 3-D) space) and in another group the

*sui1'racc: s wlwUSO curvaturce differs froinze %ro (whcdtcr~line the

3--D) space)

Paralic3 corisi *.(lcra(-tA or)i can no'.. lbe mar'-e-, abonut ther;eto

grouns of surfacc,,-, to those strilted for tli,- case of theo strai r>it

line and the curve (n~tmo).

Current !icthololiorTr-, as anei r] iscsed oe it

mnake such (ls c toswe criv in- the rcstitIe(xvn)
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ov..r t1.jc surfaces. In other words, the tirvctmeint is sjml]a,

to the one given to the straight line and the curve (plane).

It simply recommends the determiination of the normals Lo the

surface upon which the representative is obtained.

However, a different approach can be attained by raising

perpendiculars to the 3-D space determined by surfaces where

the curvature C 0 0. More about this in the next section.

M 9-7



M/211I'TH i'MLT110D0TJOG Y FOR{ THEL ~~Th~O

OF Thll- Ri;PHESI;LTATIVE OF A SELT 01' POINTS

5. The case when (x)i is a plane curve

Throu~gh p)ointr, Of (X)1 raise perpendiculars to Its plane

and along themi mark the corresponding values of (P). Figure 5

Figure 5

Imeit danae a eobevd etaea/xml
the cas ofte/nni otruedsusdb lrt n[]

[theeplane avantaone can bhe obsretveW take as teample

a erst v of trbthense (xP)j See figure 3. Ltu ersn
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O e tiv.

- .. .;' . I ( ';" "

minmu pahfo 1o',alta*i eurdist oem

/!

//. . / > ,, 1

F1 gure 6.

Obviously, the locus of thc rcpresentutivez (x, ~i~

is a cylindrical surface! If we need to determine the

minimum path from A to B3, a)] that is required is to dctermitn

the geodesic line, through A and B, on that cylindrical surface!

But how can wae determine this geodesic line? Simply. Because

the cylindrical surface has constant curvature equal to zero,

it can be developable upon a planc. Thus, the methodology for

.determining the minimum paths (minimum cost routes in Varntz'

problem-case):

a. 'Reprcsent the distributions as shoin in figuve 6.

b. Develop the cyl:lndi'ical surface upon a plane.

c. Locate the points A and B in this development. Simply

draw a straight line from A to B. (The geodesic line, of couise,

develops into a straight line.)

A
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The sugcestcd ircrcesentative indicated in figure 6 gives

rise to a new topic of research. For example, the determination

of minimu,m paths, whose discussion is proposcd by Lindgren in

[6] should t reexamined. This will be done in a forthcoming

paper.

6. The case when (x,y)i is a nondevolopable curved

surface

A three-dimensional space being determined by the surface,

through each point of this surface we raise perpendiculars to

the 3-D space (and not to the surface). 
I

That the line perpendicular to this 3-D space does not

coincide .:ith the normal to the surfacc will be demonstrated

in the next section. Prior to this deronstration we must

introduce some fundamental concepts of four-dimensional geometry.

Only after these notions are discussed will we return to the

outlining of the methodolofy for the graphical construction of

the perpendicular to the 3-D space of the surface. These

constructions, as it will be seen, are suitable for computer

programming.

In one additional section we wil.l generalize the problem,

discussing the methodolbgy for obtaining the representative

of a multi-dimensional spatial distribution.
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SOIIE' F4U,,DAi..i 'i'AIS IN

POUR-D.Tr,1ri.SION AL, O1*:O,1ETRY

Most o'. the notions discussed ir this section will not

be demonstrated or even presented in detal]. References to the

sources where this is properly done are given.

The first notion to be considered is the geometric existence

of a four-dimensional space. Slaby finds it resourceful to

2
"explain" it in the following manner: a uolnt i, t!n edge vk..

of a straight line; a line is the edige vice. of a plane; a plane

is the edge view of a three-dimensional space; a three-dimensional

space is the edge vicw of a four-dimensional space. H:e also

proposes the concretizatIon of ideas by relating, in edge vicus,

a point and a straight line seguicnt; the segment Pnd a square*

the square and a cube; the cube and the hyper-cube in II-D space.

Manning [7] uses a step procedure, beginning with the line,

plane and three-dimensional space (also referred to as a hyperplane).

Thus his conceptualization: " a space of four dimensions consists

of the points that we get if we take five points not points of

one hyperplane, all points collincar with any two of them, and

all points collinear with any two obtained by this process."

Sommerville [8] and d'Albuquerque [91 simply provide postulates

of existence.

Steve M. Slaby, Princeton Unive-sity

2 .Of course point is never defined. It is impossiblc to construct

a system c-f geometry without undefined terms.

m .= . - ... . -: ... ... -.- - . .. ._ -. . . : . i __ Z - . . . . - = . .]Ii M I
_______
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Lindgrcn and Slaby [10] employ the postulates of projective

geoimnetry to conclude that the only geometric elehent not

postulated it; an intersection of two other geometric forms of

higher dimensionality is the plane. Only point and line are so

postulated:

a. Two lines that belong to the same plane also belong to

the same point.

b. Tvo planes determine a line to which they belong.

With proper utilization of the principle of duality in

space and of the concept of belonging, in the geometric sense,

one concludes that:

c. Two planes that bclong- to the same 3-D space also belong

to the same line.

This postulate Is obtained by replacing point, line, and

plane by line, plane, and space, respectively, in postulate a

above in order to give a new format to postulate b. Continuing

with the application of the duality principle, replace line, plane,

and space by plane, 3-D space and 11-D space, to obtain:

d. Two 3-D spaces that belong to the same I1-D space also

belong to the same plane.

In conclusion, we can state:

e. The intersection of twzo 3-D spaces is a plane.

f. Two planes determine a 3-D space. (Just as two points

determine a line, and two concurrent lines deterrine a plane).

g. Two 3-D spaces determinc a N-D space.

The geo.metric exist.once of the 11-D space having been



properly anaily,$;cudl, tijt ro 1ew 8UCta:t8 (if ll nt od uci nr

nations concerninj!, i lation~ilps rmoi- tho U coll-0wt -c fur:is; in

that space. ThebsC are perpfl',1iCUli:.ty, parallelis!M, irnte rscvtiun!s,

etc. A few Import ant ones are:

a. Two planes not bclongin., to thc, sameic 3-D space

intermcct at. a poIni;.

Hjere we havc thic case, wiin ..:corg n ni anu In a

given 3 -1) siimce ,throurgh a polt n~) on It draw a ncren.--

dicula-r to the plane nrid ,throu-h) this: 3.1ne, in another 3--D

soace .0*pass; a plan(, ".In this cas;e, n]ine a and

intersect at a point (a) and are said to be abhs Olui;&lv ne"--

Pendicular.- See fP'-ure 71 for a conceptual view\ of' thiS rcla-

t ions.hi p.

Firure 7.
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The relzationship gives r-ise to the following consequciice,

very iriportaait for our problem in developing the methodology

of cpenngspatial distributions in 11-D sp~ace!: every line

of plane *el.onging to a point (a) is perpendicular to plan ci

Consequently, at a point of a plane, In 4-D .-pace, there

is more than one pcirpcndicular to the plane through a point on

it. Thurefore,, the rcciprocal of' this statement IS NOT "through

a point, niot of the plane, in JI-D space, we can pass one and only

one perpondicular to the planc." TIhis is the statement for 3-D

geometry. In 4-D gcu,,letry one says, that "throughY a point in

4-1) zpz-,cee cnm----one and onyoeabsolutely perpendicular

b. At a point of a 3-D space we can pass one and only

one perpendicular to the space.

The reciprocal holds.

c. At a point in 4l-D space we can pass one and only one

perpendicular to a 3-D space.

d. lf a line is perpendicular to a 3-D space, at a point,

it is perponclicualr to every plane of the 3-D space going through

that point.

Evidently, the line is orthogonal to every plane of the

I We differenciate between or~hogonality, and perpenidi eularity.

These are crneepts coi.inon)y misinter-preted. Two geometric

forms are perpendicular w-hen they intersect. Two geometric forms

F~ and F' are orthogonal If, when through a point we pass two

other geomectric forms F i a.nd F parallel to them, F1 and Fturn

out to be perpendicul.ar.



3-)SPace

tc. As a consequenc of the abovc , i f aline iz eren.L1

to a 3-D npc cc at aL Po1nt , It, iS rpw.cu:r to) Cv'v'y 1.1-11

of' thl- 3-1i) ;:)ace Igolig throv,: 11 I.~ oint and ovthognn'wal to

all lineB of' the 3-D space.

The pcrpondicuaj r .Int-; arc concurrent Lind the Orthogwona"

1lines are skewe-,d. Thu:; t lie ne ce s A t \' oP 11 thle (A. ffe tIa1.n

between p.,rpendi cuali' and ox'thogoin,%. See footnote.

T1hesc noti-ons on foI-ii"~ oc.co:;c-trTy ";uff"I cc for

the remaininj, of our presentation in this paper. Since vwe n o>

must have means of reprusenting; th ;u rolatjonr~hipL, granially,

in order that they may be m'nLIe2 yiitrc'cdin a

computer prograniiiiini we shall int 'oditie', in the next sect.lon,

some of the fundatmentals of the four-6din-c-n. ona-1 descriptive re2ty

one of the mr-rny gI'aihical methods su5 tahlc. for thl! task.
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SON!,N FUNDAMiNTAIS 1N

I"OUR -IMI'll"N S NAL 1)4SC R IPT V E GF0!OM1-J'q'Y

What is discuz.sed are treneral nc':ions on the procedure

for reproeeritin, geometric forms in II-D space, relating them

to a system of coordinated axes. The justification for using

the syste;a and of the system itself can be found in the author's

Four-Dimensional Descriptive Geometiy. [10]. The methodology

is similar to that proposed by Monge for the three-dimensional

descriptive geometry (11.

For the development of the methodology to be employed in

the reproventative of a multi-dimensional spatial distribution

we shall be concerned only with the representation of the point,

the line, the plane and a line perpendicular to a 3-D space.-

A brief discussion is made of the Mongean method of

represent.ation followed by the parallel representation in I-D

space.

The __ong nlstem

a. System of reference: three perpendicular axes (Cartesian)

determining three Dertendicular planes.

b. A point is projected upon each plane.

c. One plane is rotated about the fitersection with one

of the other planes until superimposition upon it.

d. Two points determine a line.

e. A plane is represented either by three points (or

two concurrent lines, a line and a point) or by its intersections

with two of the three planes of the system of reference.

Figure 8.
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3 f ~1-1 s ac te;Y, tc i of'~I 'ci~ cunws 6 t, o" four

31 , l~c~-tlw c-crpcundtcu).av ec~lI six planes.,F

thre-by .-thr -C: pcrpciidll culzir and four 3)-D spnx&~v, thrcc -by-

F ig u I,9e

A pol nt (a) i n 11-D space is projected upon each of the

3-L) spc. Figure 10 show~s a conceptual view of thoe transformations

whcrc pQnly thr. of tlhe 1x planes of the system Fare indi c:tcc1.

Fi(;ure 1). show..s the i'cprescritati\'c after trpnsformoid into a

planc rclationship.
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F'ipure 11.

The plane is, usually, represented by Its points of

Intersection wilth planes I~, ,and L..(Each plane intersects

a plane Q.of the 11-D space at a point , sincc they do not

belong to the same 3-D space. )

A 3-D) space .C.is represented by its lines of intersection

with the planes , , .(A plane and a 3-D space

Intersect along a line.)

On. this 3-D space we can identify a plane,'\ and on this

plane, points and lines. This is shown in figure 12.
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U-)*I I

A//

i

Figure 12.

Recalling that in the methodology proposed for the

representative of a distribution involving a non-developed

surface it is required to raise a perpendicular to the 3-D

space determined by that surface, we will know how to dra..:

that line if we can show how to raise a perpendicular to the

3-D space X1., shown in figure 12, through a point (a)

belonging to it.

The solution is very simple. The demonstration can be found

in (10]. All that is required is to draw perpendiculars throu,-h

a1 , a., and a 3 to wl, w2 , w3, the lines representing the 3-D

space .-L. Figure 13. The line (am) is perpendicular to the

3-D space .fl.

II
i a__________"___ - - --i--A ~tt ir--~ - ~---- - ----~----
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IAA

Figure 13.
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THE REPRESENTATIVE OF A

DISTRIBUTION IN 4-D SPACE

It has been proposed that the representative of a

distribution over a non-developable surface could be obtained

by considering the three dimensional space detcrmninei by

the surface. The representation of this 3-D spa:ce r'oquired,

in turn, the development of a geometric method. Fhis hi

been shown in the preceeding sections. Next, we shou3d find

out how to raise a perpendicular to this 3-D space, sim:, this

is what was proposed originally, replacing the pekru: r

or normal to the surface. The procedure is also in&A e.:t .

in the preceeding section. It remains, yet, to find ":;y, : of

marking on the perpendicular to the 3-D space of Ih.o :surface,

the value of the population Pi measured at a point. 1'Th eforc,

if (a), shown in figure 13, is a point of th2 surface, and (am)

is the perpendicular to its 3-D space, point (mr) wIll be the

point of the distribution (x,yz,p)i if (am) =,P,.

To mark the distance we can make use of the fact that if

a line, in 4-D space, has two of its projections parallel to the

reference line, any segment of this line is proje:cted in true

length in the third projection. Thus the construction shown in

figure 14, Js applied when the line does not satisfy the cond'tion.
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60 1

(CA

Figure ill.

In figure 15 we show the complete constructions required

for the determination of the point (Wn corresponding to a

point (a) of the surface, so that (am) =p, value of the

population at (a) for a distribution pi.
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Indicated in figure 15 is a system of Cartesian axes (x,y)

to indicate that every line involved in the construction can

be referred -o that system. It is evident that Wl, w2 , 13 EIr

given, since this is the space of the surface. To the set of

points (a)i of this surface it will correspond a family of

projections (aIml),, another of projections (a2 m2 )1 , and a third,

of projections (a3m3 )1 .

This reference would permit the preparation of a comnuter

program involving, simply, the writing of the equatiens of the

geometric elements and their relationships, in the plane.

One final point must be demonstrated and this has to do

with the non-coincidence of the normal to the surface and the

perpendicular to its 3-D space.

This can be verified by checking the relationships amonF

geometric elements in 4-D space and the concept of absolutely

perpendicular planes.

Assume the surface and the tangent plane at one of its

points. The normal to the surface is perpendicular to that olane.

Consider next the 3-D space of this surface, the perpendicular

-to the space and the plane absolutely perpendicular to the

tangent plane. We have seen that the perpendicular to thc 3-D

space is unique; however, all lines of the absolutely perpendicular

plane, going through the point of the surface are normals to that

surface, since they are perpendicular to the tangent plane.

Thus, considered in 11-D space, the surface will have an in-

finite number of normals at a point, one of them being the

V7__ _
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perpendicular, at that point, to the 3-D spacu of' thc burface.

Consequently, in 4-D space, we substitute the concept of

line normal '.o a surface at a point (in thrc,-ili,',n.onal

geometry) by that of a plane absolutely perpendicuhla to the

plane tangent to the surface at the point. T ri. rcpacement

of concept is similar to the one concerning, pl.ic :n* ri space curves.

A plane curve will have one normal at a point, ncrn:z-ndcular, to

the tangent. A space curve has an Infinite nl:'b*r of rior;:n-as,

all belonging to the normal plane. Of all th. t , o.ly one i3

singled out as the principal normal for bein,- .. : 1J.:!clcur to

the plane tangent to the curve. In 4-D spat.:, c ' the r

only one is also perpendicular to the 3-D sa- -: :.2n,-. b,

the surface. This is the one selected in thJ: .

I ______________________



RELATING SEVERAL DISTRIBUT1O; S

Suppose that to a set of points identified by a two-

dimensional :system (xy) i - for all nurposos let (x,y) i be a

plane - and that we wish to find the represcntaLvcI of the

distribution of several populations P,, Qi, Ri, etc. over that

set.

A distribution (x,y,P)i may be made, directly, generating,

in the general case, a non-developab2e surface. A distributi6n

(x,y,z,q) i can then be constructed over the di::tribu~ion (x,yp)i

utilizing the methodology proposed in this raoer. To obtain a

distribution (x,y,z,uR)i over the distribU'tion (x,y,z,A) i we

can have two choices.

1. Consider the distribution related to Q as belonging

to the same 4-D space as that of the distribution Pi" This is

equivalent to the present methodology, which azsumes all

distributions within the same 3-D space.

2. Consider the distribution related to 'i as one that determines

a new 1-D space. Thus, the distribution for V. should be obtained

by following a methodology parallel to that proposed in this

paper. In this case we would make use of theI, mnethodolo,.y for

the five-dimensional geometry. This would not bC an impossible

task since the basic steps toward it and to hlgher dimenslonalities

have already been indicated by Lindgren [12] and Santos Reis [3],

Again, all old graphical constructions are suitable for compu-

ter programming.

Obtaining the distribution (x,y,z,u,R)i we can now search

- - - j4 ~ ~ . ~-
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for the representative of a distribution Sj, selquting similar

alternatives as explained above with proper adjuF,;tmcnt of the

dimensionality.

It is clear that this diniencionral.ty is no lonfrer an obsiacle

to the possibility of obtaining the distribution. The only

drawback, as we see it , is to g-enerate a comiputer profram

capable of performing the task. It might take cons;iderable tine

before it is rendered oprational.

If this is the case, perhaps one should limit his uethodolog,'

for attained spatial distributions to the present approach. One,

however, must be resigned to the fact that it .ill be practically

impossible to oronorl, relate several variates. Ile rake reference,

then, to the distribution nroblen dlscus sed in another forth-

coming paper of this series.

In that paper we were looking for ways of generating a surface

of potential for a function A defined as A = f(a,b,c,...n) where

a,b,c,d,...,n are the populations of several. variates measured

at each point of the set over which the distribution is studied.

We discussed the problem of evaluating the impact of each variate

and we now point out that even this can be accomplished. It still

remains the question of determining which form the function A

takes.

A new path, however, may exist if we use the methodology

proposed in this paper. in this case, what we propose is the

generation of

1. A surface of potentials involvJngr the firs.t variate a,

obtaining a distribution (x,y,a)i.
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2. A surface of pctentials involving the second vartate

b, over the previous distribution (x,ya)i, obtaining a

distr.l.butioI (Z,y,z,b).

And so on.

but why is this possible? It Js possible because, on each

surfzicu of potcntials i.;e continue to measurc dIstances and,

therefore, can pvocede with the calculation of the potentials

U cxpressd a pi , where 1), is the corresponding population
: r

a,b, ,. .. ,n.

It is necessary to further discuss this point, to clarify

mat t e ';.

Supposc that wc! have the set of courdinate points. Then,

it is always po.itlc to calcu2ate the distance bet',e.'n any

two of thcm. Let J t be r

Let k . a var' t,,. The votontial at cch point is estimated

a Un, " . With thcsc values we generate a surface

of pot:tia]

If oil th 't suifacc we now dCtCr.,ifnc the geodesic line bet.cen

any tw.c, points, it:i length - uhich is a minimum - corresponds to

the minrwi l ngth , mc.asur'd on the coordJnatc surface (a plane,

generaI.ly) of the points. If the initial unit of mcasuremcnt

is in miles, the ]en%th of the geodcs.ic line, on the surface of

potentia)s, continues to be measured in mie:. This is due to

the fact that the potential con.titutes a method of transformiln

the coordinat'e stwifacc of the ori.-ra set of points i nto

anothecr coordinate surface containinr the same points no:,

i ill ill-il --l-.... ..



ho~v.-ov( v, dI-,pl a ccd f'roi.i 'L!w1 r or I f n-. 1 poJ 1tor A i p! i

view. of tit 15 t rar. -furyw, tt oil 18. cho :n itF fILl- 1C ,whe' v 1-c

u 3e a p laneC!CU Curv ca:; 1 Xn Zx. .p t Iw se o 0f' T)ort of C, V

C u IVO bui ng raz z sf'o i;neit n to a n c, L I ,-6e t p pvoj c: C, I]. iC uCt!

hov.c-vr, to the f Jrs t st.

Fir~ure 16

if n se o nlris ve oo-jnd~d t) x) an

othino - ti set ay borts e transfoiiictd Int (x). w an t (nL)

by mean,, of a factor U1 , est a jted at *coach point of the ,;c~t (b.) I'

If the di stances bctwenr the points in set (Y) i s made- inio i:

of length, thec distariccr; butwcen the puintuz Art set (t ) j ; rynae

i n the sa~me unIts. Of course!, the unit of tia;ucit of'U

if' it is the potential calci.lated a:; U, where T) is, a

factor rnewsured at each point of (x) 1 , is in (unit,; of p) by

(unit of len!wth).

'Thus, if weC Fr:IVratO- a. potential of populht ion rurfacc, the)(



) (2if"Li. of'0 thc ~12i w ktW~l tv.o point:; of the nurfacc,

thIei poI ilts c orx pn~ to those A. n thI u -set (x, ),

al~u !Q~J~U' 1ill Ufllit Uof' c;t

So, sn,~:cthat %,e 11avc a2 populatioi- P1 zind that we have

c~tate Ut' otflh:t U, [-cnc-z2tcd the su,,rface of potential

of populaL.ion P, deteriiind thc- f-co(Ilsic lincs anid their lengths

U -

* r
l*,j

On the sur'fhcc of potecmLiril of P i-wc cal culate now-. a new

potent i al , this time taki igf- a,, van at the values of U. In

othcr ;o2 thl.; wil b the, zurfzce of potcntial of' the (potertia3

U)

-Pr

Now.', Wrntz calliRs the "indox of attraction" 113,l 1 4].
r

A surface gerleratec] as a function of Xi providecs a means of

the study of the dist"i buti cm of this indcx in a continuous form.

Of COUr.se, If we, had used( a.E di stunce bctw-.een polits the

sam~e vu2of r, we would f;'t

1

'The d1i ffernce In the values of Xand X idi cater, the

diferemcubvtexmthe present rr~rthodnor-Y znric th, one p'u~e



Ii I~~ r~ c~ '?h: c 1t~~.r i (A t 11u I (i1 1 1t -0 ,10 C t

"Index of at traction", ac co-dtnig. to thei Incn rec.da I~

doe-;- not take . ito account. the t.8~ o-<~ 0;of' thtu 01-1 ri rial

set of poinrts by tho si!ltIo of the potuent.Al-, of 'P. ]n cthr r.

vwordi>, aftel I 'un.fa; that n;tri t vwait to e~i~a

new function iinvolvi Pg tho cffcct of'- on thu S-1me set, it

simply ignlorcs the fic an c mtio.'hs, oee

obtained by usir; thic propoccod 1(hdi <; hc d j PffcrrIce

between r and pc ,:-nesscs, pcrhaos, the con)ce-ptth n:p

(if 1) Is Indcd nuh ,r f pcol 1ct)i: to be ac far ani-t, a;

posslble occuipy 1 ni(, at the sa'tii.12 , tlic Ies area. uhw

this least area is greater th. Yre I,~ sv 2 I

for 1, r' The-:;e arelrin 2 fur. thc o'~~,u 1 111 trrut

Let uz cantinur. hth icug .naelaI to ec r, t

Population- . .C .,i:;I to o t :5 nJL a i ' i i r -'L;:. k th;e.

Let , thcn , a ,b ,c. . n be these populWi tV. . ith thc set of

points locazted by (x ,y Il~e C L Cult (.11, ttc c c, r arnd tit-

the p~otential a

U:,j

Next, we take the set of puintS, au thcey arc loca-tedi in

the surface of potentials of zL1 , vmeasure the distances.

(geodon. cIC 2111C:3) at!(, c ;tA j.;.ite! Ow p ) i tntI .

TYhe ,wncration of a sur'facc e ieetrr the distibution

above is mnade accordli rr: to thu rictiiodol oLgy. proposed in thIs

paper.

And so on. After allo) nil hav- en (.-tip<ated an I
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each distributi on prope rly made, accordingm to the dii.cnsionality,

the point in li-upacco, coi~rcspondilng to the Point In the orij.1nal

Set loecated by (x,y)is is characterized in that space by a

cl t&cfrom the origin of the coordinate system (x ,y) i equal

todU

Thi.s is thu couivalcrmt to the multilateral representation

of a point i fl-space a., discussed by Santos Reis [3] and

cxpresscs tlu z rol_,tionslhip, at each point, among the variates

a,bL, c, Y) ., ncasurcd at cach point of the or'rinal set.
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