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Introduction

When a collection of data-points 1s related to a two-
dimensional system of reference and through cach point we raise
sepgmcents perpendicular to the locus ¢ the set, th2 length of
cach segment being equal to the corresponding value of some
variate, the result is what 1s called a continuous distribution -3
in space of the third variate over the locus of the set of
data-points. Thus, if the data-points represent location,
referred to a latitude-longlitude system or some other system,
and the third variate is population, or income, or potential
of either, etec., the distribution is assumed continuous and
is represented by a surface of population, or income, or
potential, etec. distribution.

Let (x,y)1 represent the coordinate system used for
location and Py the value of some variate, which is said to
be the measure of a population at the_point (x,y)i. Then, the
locus of points (x,y,p)i is the surface of the continuous
distribution of p, over (x,y)i.

Assume other populations at the same points. Let them be
Qs ti’ Uy ete, Question: how do we reprecsent, simultaneously,
Ehe continuous distribution of pi’qi’ti’ etc. over (x,y)i ?

This paper proposcs alternative mcthods, sultable for
computer programming, and suggests them for that type of

continuous spatial distribution.
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1. Two-dimensional distribution

Let (x), represent the coordlnate system which locates
a set of polnts. Therefore, the locus of thesc points iy a
line. We wlsh to represent the distribution of a population
pi along this line.

1.1 (x)1 is a straight line

Through each point we simply draw a perpcndicular to the
line and mark upon it the corresponding value of Py The
locus of the end-points represent the distribution (x,p)i.

Figure 1.

/ \4’. ! |'.’.

Figure 1.

Assuming now that the curve obtained 1s to be utilized as
another coordinate system for the sct of polnts, along thal line,
to wrich it corresponds another set of values of the population
Py this new distribution, which we will notate as (x'“)i,Z’ can
be represented along the normals drawn at each rolnt to the curve.

We have then, the case when

1.2. (x); is a curve (plane)

——
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See figure 2.
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Figure 2.

This type of represcntation is the one used by Varntz
in the construction of the minimum land acquisition cost
routes [1], a mcthod derived from the constructions of the
Huyemens' diacram for the determination of the path of refracted
lirht (2].

The use of this method of representing a succession of
distfibutions over a line has, as the two examples above
mentioned indicated, useful application. 1In both cases, the
relationship among the distributions is utilized for the
determination of a minimum path through points in distinct

distributions. See figure 3.




Figure 3.

2. Three-dimensional distribution

Let (x,y); represent the coordinate system which locates
a set of points, We wish to represent the distribution of
a population py over the locus of the points.

2.1 (x,y)j is a plane

Examples of this type of distribution are manry. The
population Py need not be a spatial variate, as discussed in
scveral papers of this theoretical series.

Through each point we ralse a perpcendicular to the plane,
mark the corresponding value of Py and rind the locus of the
end polnts. The curved surfacc¢ obtainecd represents the
continuous spatial distribution (x,y,p)i.

2.2 (x,y)1 is a curved surface

Tne usual procedure 1s to determinc at each point the
normals to the surface, mark on them the corresponding values

of Py in order to obtain another curved surface which represents

the distribution (x,y,p)i.




R IR - - -

Kach of these methods of representing plane and spatial
distributions have been successfully used in computer graphics.
SYMAP is onc of the techniques used In the gencration of surfaces
representing spatial distributlonc.

It remains to be seen if there are or not other alternatives,
in the r;prcscntation of these distributions, which may (or

may not) facilitatc their understanding and study.
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NOWES ON_THE METHODOLOGY FOR

GENERATION OF Tiiii REPRESHITATLVE

OF A _SET

Santos teis' paper [3), an essay un the gencralization of
the represcntative of a sct of points, covers the alternative
approaches which vic are secking. Thils section of this paper
deals, thercfore, only with one of such alternatives, pointiug
out some of its advantages over the prescent methodology., If
the alternative here sugrested does not satisfy specific cascs
it 15 always possible to search for another in Santos Reis!
generalized discussion,

But in addition to the gencrallization indlicated above, and
which we will use to derive the supgpgested methodology, we will
make an attempt in spelling out some classificatory characteristics,
based on geometric transformations and propertics, which will
serve to distinguish or to identify the locus of the points
identified by the coordinate systems (x)i and (x,y)i.

3. On lines and curves (x),

We shall distinguish between the straight line and the curve
(plane) in the following manner, even though both arc onec-
dimensional geometric forms:

3.1 A line does not define the plane on which it ligs,

3.2 A curve (plane) defines Lhe plane on which it lies.

The observation, naive and simple as it seems, provides,
however, the way by which we shall attain an alternative method

in the derivation of the representative5

Conslder a stralght line. In this case, it makes no




difference in which directlion, 1In space, we draw the perpendiculars
to such a linc, in order to obtain the representutive (x,p)i.

See figurc 4.

Fipure 4.

Consequel.uly, the configuration of the representative is

plane defined by (x)i and the rcepresentative (x,p)i. Ve can
f "also say that the same plane i3 defined by the (x)i and the
dircction perpendicular to 1t.

If we consider this pcrpendicular direction as a cocrdinate
System for a set of points (y)i, we have the customary (x,y)

Cartesian syslem of coordinutes. The reprcsentqtivc {(x, D)

is, however, an inv““ivnt boinn inucpcndent of the orientation

of thc two pcrn;ndtcular coordinatc setls of points (x,y)i

The above underlining is important becausce this fact has

been overlooked in reeent artiecles discussing the dependency




or independency o! the repression line fitted to'a set of points
coordinated in a (x,y) Cartesian system.

Notice that tLhe representative (x.,p)1 can be anything,
including the repression line! We have indicated that this

representative is an invariant. Therefore, the cocfficient

of correlation is nlso an invariant. (Nevertheless, in an

article published In the Annals of the Association of American

Geopgraphers, by Cuurt [4] commenting on the article by Porter

(5, with our comm-uts] Court states that regression lines

depend on the axinl orientation...The point missed by Court

is that (x) and (y) are, actually, the locus of the two sets

of points; therefore a rotation of these axes, constitutes a
rotation of each uet. What Court suggested was a separation of
the set of the polnts in the plane - the representative (x,p)i,
according to the uszual nomenclature - from the two sets represented
on the axis (x)i and (y)y = (p)y. This, of course, is a mistaken
interpretation of the one-to-one relationship betwezn image

[the representative (x,p);] and counter-image [the scts (x)y

and (p); = (y);]). See reference [3].

The methodoluyy derived from the use of (x)i as a straight
line does not, thcrefore, provide any means of unveiling new
properties of the (x,p)1 representative.

The cas~ vhon (x)i is a curve (rlane) was previously
discussed, indicat {ng thé "state of the art" in this methodology.
However, a differcnt approach can be tried based on the following:

The representative (x,p)1 is obtained on the perpendiculars

to the plane of the curve (x)i. More about this later.

s oo



9.

H.o o On ploncs end curved surfuces

We shall disiingQinh Letween the plone and the curved
surface In the following manner:

H,1 The plene does not determine the three-dimensional
space to which 1t belongs.

,2 A curvced surface whose curvature, cveryvhere, is
constant and cqual to zcro docs not determine the three-
dimensionel spacce to which 1t belonps.

This is justified by the fact that surfaces cnjgyjng this
property have an Jntrinsic geouetry idcnticgl \c that of the
planc (zero curvetiure everywhere). These surfaces may be made
to coincide with 2 plane and arc ¢alled, ¢f course, develepable
surfaces.

4,3 A curved surface whose curvaturce is different from
zero (constant or not) determines the three-dimenzional to
which 14 bzlongs,

Ve could regroup the threc statenents above, comblning the
first two, considering in ore proup surfaces of zero curvature
(which do not detcermine the 3-D space) and in another group the
surfaces vhose curvature differs I‘z‘om' zcro (which deteraine the
3-D spaca).

Parallcl congidorations can new be made, about these Lwo
mrouns of surfaccs, to those stated for the case of the strainat
line and the curve (nlanc).

Current nicthodolory, as antceriorly diccussed, doos not

make such distincetions when deriving the renrcsontative (x,v,n)
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ov.r tiwuse surfaces. In other words, the treatment is similar
to the one given to the straight line and the curve (planc).
It simply recommends the determination of the normals to the
surface upon which the representative is obtaincd.

However, a differcent approach can be attainced by ratsing
perpendiculars to the 3-D space determined by surfaces where

the curvature C # 0. HMore about this in the next section.
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ALTERIATE METHODOLOGY FOR THL DETERMINATION

OF ThHIZ REPRESENTATIVE O A SET OF POINTS

5. The casc when (x)1 is a plane curve

Through points of (x)i ralse perpendiculars to its plane

and along them mark the corrcesponding values of (P)i' Figure 5.

Figure 5.

Immediate advantapes can be obscerved. We take as example
the case of thce mininum cost route discussed by Warntz in [1].
¥We pointed out that these routes arc 6btained orthogonally to
a set of distributions (x,p)i’J. See figure 3. Let us represent
the same distributiors in such a manner that cach (x,p)i,J
distribution 1s obtained on thc perpeadiculars to a _seme plance
[the plane of any onc of thc representatives taken as the curve

represcntative of the set (x)i]. Sec fipure 6.
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Otviously, the locus of the representatives (::(,p)i,‘j
is a ¢ylindrical surrgce! If we nced to determine the
minimum path from A to B, all that is required is to determine
the geodesic line, throuch A and B, on that cylindrical surfacc!
But how can ve determine this peodesic lince? Simply. DBecause
the cylindrical surface has constant curvature cgual to zcero,
it can be developable upon a planc. Thus, the methodology for
determining the minilmum paths (minimuﬁ cost routes in VWarntz'
problem-case):

a. Represent the distributions as shown in figure 6.

b. Deve.op the cylindrical surfacc upon a planc.

¢. Locate the polnts A and B in this development. Simply

draw a straight line from A to B. (The geodesic line, of course,

develops into a strajght line.)

P SERES TR T = T R A R o e o g gt i S Sl Sty S04
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The sugpested representative indicated in fipure 6 pives
risc to a nev topic of research. For example, the determination
of minimun paths, whose discussion is proposcd by Lindgren in
[6] should t: recxamined. This will be done in a forthcoming
paper.

6. The case when (x,y)i is a nondeveclopable curved

surface

A threc-dimensione) space belng determined by the surface,
through cach point of thils surfacc we raise perpendiculars to
the 3-D space (and not to the surface). )

That the linc perpendicular to this 3-D space does not
coincide with the normal to the surfacc will be demonstrated
in the next sccetion. Prior to this denionstration we must
introduce some fundamental concepts of four-dimensional geometry.
Only after these notions are discussed will we return to the
outlining of the mcthodology for the grephical construction of
the perpcendicular to the 3-D space of the surface. These
constructions, as it will be secn, are suitable for computer
programming.

In one additional secction we will pgeneralize the problem,
discussing the methodolapy for obtaining the representative

of a multi-dimensional spatial distribution.
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SOk FUNDAIRTALS. IN

FOUR=DIMEHSTONAL GHOMETRY

Most ¢’ the notions discussed ir this scction will not
be demonstrated or even prescnted In detail. Refercnces to the
sources vhere this 1s properly done are gilven.

The first notlion to be considered is the geometric existence
of a four-dimcnslonal space. SlabyJ finds it resourceful to
"explain" it in the following manncr: a UoinL? s the cdme view
of a stralight line; a line 1s the edpe vicew of a plane; a plaue
is the edge view of a threc-dimensional space; a three-dimensional
space is the edge vicw of a four-dimensional snace. He also
proposes the concretization of 1ldeas by relating, in edge vicus,
& point and a straight line scgment; the scgment ang a square;
the square and a cube; the cube and the hyper-cube in U-D space.

Manning (7] uscs a step procedure, beginning with the line,

plane and three-dimensional spacce (also referred to as a hyperplane).

Thus his conceptualization: " a space of four dimensions consists
of the points that we get if we take five points not points of
one hyperplanc, all polnts collincar vwith any two of thcm, and

all points collinear with any two obtained by this process.”

Sommerville [8] and d'Albuquerque [9] simply provide postulates

of existence.,

1 Steve M. Slaby, Princeton University
2.0f course point is never defined. It is impossiblc to construct
a system cof geometry'without undefined terms.
e T
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Lindgren and Slaby [10] employ the postulates of projective
geonelry to conclude that the only geometric eleient not
postulated s an intersection of two other geometrle forms of
higher dimenslionality is the plane. Only point and line are so
postulated:

a. Two lines that belong to the same planc also belong to
the same point,

b. Two planes determine a line to which they belong.

With proper utilization of the principle of duality in
space and of the concept of belonging, in the geometrlc sense,
one concludes that:

¢. Two planes thal belonn to the same 3-D space also belong

to the same line.

This postulate is obtained by replacing point, line, and
planc by line, planc, and space, respectively, in postulate a
above in order to give a new format to postulate b. Continulng
with the application of the duality principle, rcplace line, plane,
and space by plane, 3-D space and -D space, to obtain:

d. Two 3-D spaces that belong to the same U-D space also
belong to the same plane.

In conclusion, we can state:

e. The intersection of twvo 3-D spaces 1s a planc.

f. Two planes determine a 3-D spacé. (Just as two points
determine a line, and two concurrent lines determine a plane).

;. 7Two 3-D spaces determinc a W-D speace.

The gecmetrle existence of the H-D space having teen
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properly analyscd, thore resalng the tasl of introducing some
notions concerning relationshivps among the geomet:ic forms in
that spacc. These are perpendleularity, parallelisa, interscetions,
etc., A few lmportant ones arc:

a. Two planes not bclonging to the same 3-D space
interscect af @ polnt.

Herq we have the ease vhen we constder a nlanc <. In a
given 3D space .\ , throuxh a point (a) on it draw a nernen-

dicular to the vlane and , throu~h this line, in another 3-D

space () , pass a planc f . 1n this case, nlanes 7 and [

intersect at a point (a) and arc sald to be absolutelv ner-
pendicular. Sec fleurce 7 for a conceptual vicw of this rcla-

tionship.

AN
.Sx\

Fipure 7.
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T'he relationship gives rise te the following conscquence,

very lwmportaat for our probiem in developing the methodology

of representing spatial distributions in U-D space: every line

of planc‘f ~elonging to a point (a) is perpendicular to planc o
Consequently, at & point of a plane, in 4-D space, there

is morce than one perpendicular to the plane through & point on

it. Thereforce, the reciprocal of this statement IS NOT "through
a point, not of the plane, in 4-D space, wc can pass one and only
one perpondicular te the plane." This is the statement for 3-D

geometry. In U4-D gconetry one says that "throumh a point in

A-Db spucees we con poos one and only one absolutcly perpendicular
plane tc the rlanc.”
! b. At a point of a 3-D space we can pass one and only
one perpendicular to the space.

The reciprocal holds.

¢. At a point in U-D space we cén pass one and only one
perpendicular to a 3-D space.

d. 1f a line¢ 1s perpcndicular to a 3-D space at a point,
i it is perpendicualr to ecvery planc of the 3-D space going through

that point.

Evidently, the linec is orthoaonall to every planc of the

1

Ve differenciate between othogonalityvand perpendicularity.
These are ccncepts commonly misinterpreted. Two geometrice

| forms are perpendicular when they Intersect. Two geonetric forms
% Fl and F2 arc orthogonal 1f, when throurh a point we pass two

K

; 1] 1
| other peomelric forms bl and Fé parallcl to themn, Fl and F2 turn

out to be perpendicular.

‘—-‘ FREE SR . SR S
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3-D space.
¢. As a conscquence of the above, if a lince 1o perpendicelar
to a 3-D spree at a point, 1t is poerpendicular to cvery linc
of thv 3-D .pace going throush that soint and orthoronal to
all lines of the 3-D spucc.
The perpendicualr lLines are coucurrent and the orthoponal

(9]

lines arc.skewed., Thus the necessity of tiarking the differentiation
betwcen prrpendicualr and orthogonnl. Sec footnote.
These notlions on four-dinenslonsl peounctry suffice for
the remaining of our presentation in thils paper. Since we now
must have means of represcenting these relalionships, graphically,
in order that they may be muthomatically Interpreted in a
conmputer programulay, we shall Introduce, in the next section,
some of the fundamentals of the four-dimensional descriptive rmeorotry,

one of the many praphlical methods suitable for this task.

"

Wil
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S0 FUNDAMENTALS . IN
YOUR=-DIMENSIONAL DESCRIPTYVE GROMETRY
What is dlscussed are general nctions on the procedure
for rcepresenting geometrice forms in 4-D space, relating them

to a system of coordinated axes. The justification for using

the gystem and of the system itself can be found in the author's

PN

Four-Dimensional Descriptive Geometry [10]. The methodology

is similar to that proposed by Monge for the three-dimensional
desceriptive gecometry [11].

For the development of the methodology to be employed in
the representative of a multi-dimenslonal spatial distribution
ve shall be concerned only with the represcentation of the point,
the line, the plane and a line perpendicular to a 3-D space.

A brief dlscussion is made of the Mongean method of
representation  followed by the parallel representation in U-D
space.

The Monpgean system

a. System of rcfercnce: three perpendicular axes (Cartesian).
determining threc pernendicular planes.

b. A point is projected upon each planc.

¢. One plane is rotated about the interscction with one
of the other plgnes until superlimposition upon it.

d. Two points determine a line.

e. A planc is represented either by three points (or
two concurrent lines, a line and a point) or by its intersections
with two of the three plancs of the system of reference.

Figure 8.
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Figurce 8.
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21.

In WD space Lthe system of refevence couslsts of four
lincs, three-by-{hree perpendiculor determining six planes,
threc.-by--Lthr «¢ perpendleular and four 3-D spaccs, thrce-by-

three perpendiculey,  PMipure 9.
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A point (a) in #=D space i projected upon cach of the
3-D spaccs.  Flgure 10 shows a conceptual view of the transformations
vhere only three of the six plancs of the system are indicntied,
Figure 1) shows the represcentative after transformed into a

planc relationship.,
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Figure 11.

The planc is, usually, represented by its points of

intersection with plancs ﬂ,, - , and ﬁg, (Each plane intersects
a plane ¢ of the U4-D space at a point, since they do not
belong to the same 3-D space.)

A 3-D spacc .() is represcnted by its lines of intersection
with the planes 7, , W, ,T.. . (A plane and a 3-D space
intersect along a line.)

On. this 3-D space we can identify a plane <\ and on this

plane, peoints and lines. This is shown in figure 12.

e —— e e
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Figure 12.
Recalling that in the methodology proposed for the

representative of a distribution involving a non-developed
surface it 1is required to raise a perpendicular to the 3-D
space determined by that surface, we will know how to draw
that line 1if we can show how to raise a perpendicular to the
3-D space {1, shown in figure 12, through a point (a)
belonging to 1t.

The solution 1s very simple. The demonstration can be found
in {10). All that 1s required is to draw perpendiculars through
al, a2, and a3 to Wis Was w3, the lines representing the 3-D
space Ly . Figure 13. The line (am) is perpendicular to the
3-D space L) .
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THE REPRESENTATIVE OF A

DISTRIBUTION IN 4-D SPACE

It has been proposed that the representative of a

distribution over a non-developable surface could be obiained

-by considering the three dimensional space detcrmined by
the surraée. The representation of this 3-D space reguired,
in turn, the development of a geometric method. This has
been shown in the preceeding sections. Next, we shoulid find
out how to raise a perpendicular to this 3-D spuce, since this %
is what was proposed originally, replacing the pervenileular :
or normal to the surface. The procedure is also inuicetcd é
in the preceeding section. It remains, yet, to find wavs of
marking on the perpendicular to the 3-D space of ihc surface, :
the value of the population Py measured at 2 point. Thereforc,
if (a), shown in figure 13, is a point of the surfaco, and (an)
is the perpendicular to its 3-D space, point () will be the
polnt of the distribution (x,y,z,p)i if (am) =Py

To mark the distance we can make use of the fact that if
a line, in 4-D space, has two of 1ts projections parallel to the

reference line, any segment of this line 1s projected in truc

ST T T P T

length in the third projection. Thus the constructicn shown in

figure 14, is applied when the line ¢nes not satisfy the cond’tion.

i i it s e,
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Figure 14.
In figure 15 we show the complete constructions required
for the determination of the point (m) corresponding to a
point (a) of the surface, so that (am) = p, value of the

population at (a) for a distribution Py~
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Indicated in figure 15 is a system of Cartesian axes (x,y)
to indicate that every line involved in the construction can
be referred -~o that system, It 1s evudent that Wy W, Wy are
given, since this is the space of the surface. To the sect of
points,(a)i of this surface 1t will correspond a family of
projections (alml)i’ another of proqections (a2m2 40 and a third,
of projections (a3m3)i.

This reference would permit the preparation of a comnuter
program involving, simply, the writing of the equatiens of the
geometric elements and thelr relationships, - in the planc.

One final point must be demonstrated and this has to do
with the non-coincidence of the normal to the surface and the
perpendicular to its 3-D space.

This can be verified by checking the relationships among
geometric elements in 4-D space and the concept of absolutely
perpendicular planes.

Assume the surface and the tangent plane at one of its
points. The normal to the surface is perpendicular to that plene.
Conslder next the 3-D space of this syrface, the perpendicular
to the space and the plane absolutely perpendicular to the
tangent plane. Ve have seen that the perpendicular to the 3-D
space 1s unigue; however, all lines of the absoclutely perpendicular
plane, golng through the point of the surféce are normals to that
surface, since they are perpendicular to the tangent plane.

Thus, considered in 4-D space, the surface-will have an in-

finite number of normals at a point, one of them béing the
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perpendicular, at that point, to the 3-D space of the suvrfacce.

Consequently, in 4-D space, we substitute the concept of

line normal ‘o a surface at a point (in threc-dlmensional
geometry) by that of a planc absolutely perpendicular %o the

plane tangent to the surface at the point. This rcolacement

of concept is similar to the one concerning planc &4nd spacc curves,

A plane curve will have one normal at a polint, norvandicular to
the tangent. A space curve has an infinite nusbher of normals,

all belonging to the normal plane. Of all those, only once is
singled out as the principal normal for btein: pcrn&nblcu?&r to

the plane fangent to the curve. In 4-D spa%e, ol ' the nerieals,
only one 1s also perpendicular to the 3-D svaz. &-taraived by

the surface. This 1s the one sclected in this o uwdy.
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RELATING SEVERAL DISTRIBUTIONS

Suppose that to a set of points identificd by a two-
dimensional system (x,_y)i -~ for all nurposcs let (x,y)1 be a
plane - and that we wish to find the represcatailive of the

distribution of several populations Pi’ Qi’ R ct.c. over that

i’
set.

A distribution (x,y,P)1 may belmade, dircctly, renerating,
in the general case, a non-developable surfacc. A distribution
(x,y,z,q)1 can then be constructed over the distribution (x,‘v.,p)1
utilizing the methodology proposed in this paner., To obtain a
distribution (x,y,z,u,R)i over the distrivution (x,y,z,/\)i we
can have two choices.

1. Conslider the distribution relatecd lo Qj as belonging
to the same 4-D space as that of the distribution Pi' This is
equivalent to the present methodology, which assumes all
distributions within the same 3-D space.
| 2. Consider the distribution related to Qi as one that determines
a new U4-D space. Thus, the distribution for vy should be obtained
by following a methodology parallel to that proposed in this
paper. In this case we would make usec of the methodology for
the five-dimensional geometry. This would nol be an impossible
task since the baslic steps toward it and to higher dimensionalities
have already been indicated by Lindgren [12] and Santos Rels [3],
Again, all old graphical constructions arc suitable for compu-
ter programming. '

Obtaining the distribution (x,y,z,u,R)i we can now search
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for the reprcsentative of a distributicon Si’ selgeting simllar
alternatlves as explalned above with proper adjustuent of the
dimensionality,

It is clear that this dimensionality is no lonpger an obsiacle
to the possibllity of obhtaining the distribvution. 'The only
drawback, as we sce it , is to venerate a computer program
capable of perflforming the task. It might take considerable tine
before 1t is rendered opcratlional.

If this is the case, perhaps one should 1limit his methodology
for attained spatial distributions to the present approach. One,
however, must be rcsigned to the fact that 1t will be practically
impossible to vronerly relate several variates. We nake reference,
then, to the distribtution oroblerm dilscussed in another forth-
coming paper of this series. '

In that paper we were looking for ways of generating a surfacc
of potential for a function A defined as A = f(a,b,c,...n) where
a,b,c,d,...,n are the populations of scveral variates measurcd
at each point of the sc¢t over which the distribution is studied.
We discusséd the problem of cvaluating the impact of cach varlate
and we now point out that cven this can be accomplishecd. It s£111
remains the question of determining which form the function A
takes.

A new path, however, may c¢xlst if we usc the mcthodology
proposcd in this paper. 1n this case, what we propose is the
generation of

1. A surface of potentials involv;nn the first variate a,

obtaining a distribution (x,y,a),.
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2. A surfacc of potentials Involving the second varicte
b, over the previous distributlon (x,y,a)i, obtaining a
distribution (x,y,z,b)i.

And so on.

But why is thls possible? IL is possible because, on each
surfacc of potentlals we continuc to measurc distances and,
therefore, car procede wlth the calculation of the potentials
Ui cxpressed as i? 2; , where Py is the corresponding population
a,b,e,.v.,n. T

It is necessary te further discuss this point, to clarify
matters.,

Suppesc that we have the set of courdinate points, Then,
it is always posusitle Lo caleulate the distance between any

tvo of them, Let It bte r

1,3°
Let & be a varlite,  The potential at cach peint is estimated
1.
Y U'1 P i .7;/ o . ¥With thesce valuces we gencrate a surface

of potentlials,

If on that surface woe now delerimine the geodesie 1line between
any tuvo points, its length - whileh 48 & minimum - corresponds to
the mindimun lengtih, measured on the coordinate surface (a plane,
generally) of the points., If the initial unit of mecasurcement
is in miles, the length of the geodesic line, on the surface of
potentials, continues to be measured in milen. This is due to
the fact . that the potentilal constitutes a2 method of transforming
the coordinate surface of the oririnal set of peints into

another coordinale surface containing the same points now,

Y. e
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however, displaccd I'row thelr orleingl positlons. A pruphic
view of this Lrav-foraztlon is choun in figore 16, wheve we
used a plane curve as an cxanbic, the setl of polints of this

curve belny, vransformed into anclhor set, projecti rely rclate .,

however, to the first sct.
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If tne set of points are coordinzted in (x):.l -~ and only
one coordinate is requlrcd, due to the onv-dinensionusl chaoracter
of the line - this set may be transforiied Into anolhier sct (L)i
py means of a factor Ui’ cstimated at-cach point of the scet (x)i.
If the distances between the points in sct (x)i Is made in vnluve
of length, the distonces belween the polnts in sel (t)i is made
in the samc units. Of courss, the unit of measurcnent of U

i
if 1L is the potential calculated as U1 N % , where n is a

n

factor mecasurcd at ecach point of (x)i, is in (units of p) by

(unit of 1lcnrth).

Thus, 1€ we genesrate a potential of population surface, Lhe
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Jenpth of the peodecic line between two points of the surflacce,
the polnts corrcaponding to those in the sct (X,y}i, is
alse mcasured In unit of Jength.

So, supponce thal we have & populdtimn P and that wec have
cstimated Lhe polentivas U, pencreted the surface of potential

of populatlion P, deternined the geodesic lines and thelr lengths

4 X ) ’ ", P
. Ui - < _;'_.
¢ ( r
S i,

On the surfacc of potentinl of P we calculate now a new

potential, this time taking as varlate the values of U, In

other words, this will be the surfuce of potential of the (poiential

! u).
. "
This cquals Xi = Ei
¢ &
;- 1,
<
Substituting U by ; ve get
. P
xi = . — ;-
?:; (Eb)isj
lew, ¥arntz calls =, the "index of attraction” [13,14].
: r
! A surface pgeneraled as a function of Xi provides a mecans of

the study of the distribution of this index in a continuous form.
Of coursce, If we had usoed as distence betwecen polints the

same valuce of r, we would mot

A )

xi= b
H

1,3

The dilferciace in the valucs of X1 and Xi indicates the

difference betuveen the present mothodolorsy and the once provoned
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in Lhis poncr.  The estinstion of the distrvibatton of the :
"index of attraction", acccording to the precent mothodology, '
does not take into account the transforaatton of the erlrinal
sct of points by the estimation of the potentlal of Po In olhor
words., after ' trancforis thet scl ara we wont to cestirate a :
. P . . :
nev function involvip: the cffcet of » on the same set, it :
simply ipgnores the first vronsformation,  Yhis, however, is ]
“Tobtained by using the proposcd wetithodolepzy. Thoe difference :
between r and p cxpresses, perhans, the concept that poeple ;
(1f P 1s indeced nusbor of poop le) tends to be as far aperl as ;
pessible oceupying, at the sanie time, the least arca.  Perhaps :
. 2 ) E
this least arca is preater Lhan swgsested Ly r, sinece rpgh»
for g% r. Thesce are Lhings for the cconreaher to Intereet.
Let us continucs with the diccussicon relnted to scveral
populations. Ve wish Lo obicoin o rola‘fonship petween thoen, ;
i
Let, then, a,b,c,...,n be these populatic. ». With the scet of :
points located by (x,y)i vie celeuliate disteonces ry oy and eastinntloe
3 d
i
the potential o a ]
U = ¢ 1 i
174 - g i
S : . Z
NP i,
LN
Next, vc take the sct of points, as they are located in ;
the surface of potentlals of g measure the distances ry oy
1 X
(peodesic 2ines) and cstisate the potentilal,
. !
1. b :
?l'j .: ) j
rot hj- sd
N !
The szencration of a surfice ruprescntling the distribution
above 1s made according Lo the methodolopy proposced in this
paper.
And so on.  After all notentials have been cstimated and
ST = S T R T R s R A A A B s S W ST T T e it e —s—Spibe S Bl o ov o e B e PR i ] Y
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each distribution properly made, according to the dimensionality,

the point in l-gpace, corrcsponding to the point in the origlinal

sct located by (x,y)i, is characterized in that space by

a

distance, fropm the oripln of the coordinate system (X’y)i equal
to

4 = Y%

This 1s the cquivelent to the multilaterzl representation
of & point in ll-space as discusscd by Santos Reis [3) and
a,b,c,.

expresses the relationship, at cach point, among the variates

, 0 rneasured at cach point of the orircinal set.
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