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SUMMARY 

In   this  report  the  stress distribution  in  loop  and  bolt  joints made  of 
composite  materials is  studied  using  analytical  and  experimental  methods. 
Also,   the  stress concentration   in  nrthotropic  composite   sheets with a 
circular  hole   is studied. 

The  numerical  technique  to evaluate  the   stresses  and  displacements  is 
described.     Simple design  formulas  to compute  the  stresses  at  critical 
regions  are developed.     A procedure  of  structural design  is delineated  and 
applied  to specific cases. 

Experimental  results obtained  by  testing composite  joints  are  reported. 
Stress  distribution tests were  performed using the  photoelastic   technique. 
Failure   location and ultimate   loads  for  several  composite  joints are  shown. 

This report contains the  analysis  of  the  stress concentration  that  appears 
around   a circular hole  in  an  orthotropic  composite   sheet  under   simple 
tension  and simple shear  loadings. 

ill 
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INTRODUCTION 

In   this investigat   on,   methods were  developed   for  calculating  and  design- 
ing  joints  of comp>site materials  that  have  directional properties.     The 
introduction of   loads  into  structures,  especially  into thin  sheets,  his- 
torically has presented   problems,  even   in   isotropic   materials.     At   the 
beginning  of   this  century,   such difficulties were   overcome   for   the  case 
of   isotropic  materials.     Until now,   however,   some   simplifying  assumptions 
for  joints  of  isotropic  materials have been,   in general,  tacitly  accepted. 

In   this work,   for   -'xample,   we  found   that   the  assumption of   contact 
stresses  in  the   fo.m of   a  cosine  function   in bolt   joints  yields  unreal- 
istic   results,  even  in  isotropic materials.     For   the   present   investigation, 
the  contact   stresses were  not  assumed  but   lather  were  an outcome  contained 
in   the method  of   solution. 

First,  a stiffness matrix  was developed  by which  composites having not 
only  one but   also n-directions of   fiber   layers  could  be  taken   into 
account.    On   the   basis  of   this development,   a computer  program was estab- 
lished  through  which  the   stresses  and  displacements   in  a joint  of  arbi- 
trary  shape   can  be   found.     To  illustrate,   thre3   sets  of bolt   joints 
fabricated   from glass  fiber   or boron   fiber composites  and  an  isotropic 
material  (e.g.,   steel)  were  calculated  and  studied  in detail   for  several 
bolt   diameter-to-loop  thickness relations.     Eighteen bolt  joints  were 
manufactured,   tested,   and  compared  with  the computer   results.     Finally, 
very  simple   relations  for   the maximum  stresses were  established. 

A  similar approach  was  taken  to the  calculation  of   stresses  in cutouts  in 
composite materials.     It  was   found  that,   in  the  contours of  a circular 
hole   cut  into a  unidirectional   fiber composite,   the   stress concentrations 
are   about  twice   that  encountered  in   isotropic  materials  for  certain   types 
of   loading.     For  this reason,  a hole   in  a  fibrous composite  must  be 
designed so  that   t[ e  fibers do not  terminate  in  the  hole but   rather   lead 
around   the hole   in  an uninterrupted,   organic   fashion.     If this  is done, 
then  cutouts   in   fibrous composite materials will  be  highly efficient  com- 
pared   to their counterparts   in  isotropic   materials. 

Stress distributions  in  the   fibers  and  in  the  resin  matrix can be   found 
by  using the   stresses determined  in   this  work  as  boundary conditions  for 
micromechanical   analysis.      Such analyses  were  performed under  earlier  Army 
contracts concerned  with  oblique  loading  of  a  fiber   reinforced  com- 
posite. 



DISCUSSION 

METHOD FOR THE STRESS ANALYSIS OF 
ANISOTROPICS JOINTS OF ARBITRARY FORM 

The problem is to find ehe stress dis- 
tribution at a joint composed of an 
anisotropic material and of variable 
thickness (Figure I). 

In general, the boundary conditions 
are mixed; in other words, displace- 
ments or stresses are given along the 
boundaries. 

To find the solution, we divide the 
joint in a certain finite number of 
triangles and assume that the dis- 
placements are linear functions at 
each one of these small triaigles. 
Compatibility and equilibrium equa- 
tions for each node of this irregular 
net lead us to a system of algebraic 
equations that permit us to obtain 
the displacements at each node and, 
with this, to determine the stress. 

Figure I,  Subdivision of a 
Joint Into Finite 
Elements. 

Stiffness Matrix of a Triangular Element 

For a triangular element (Figure 2), we assume the displacements func- 
tion 

4 ,5 ,6 

»! + aa§ + 8311 

u  = a4 + aB5 + a6T| (1) 

where  a.  are constants. 

The displacements of the nodes 1, 2, and 3 are given by 

u   = a, 
xi     ' 

uxa = ai + aa^a + ^a 



y.u. 

-^X.UJJ 

Figure  2.     Triangular Element, 

u        =    ai   + a8§3 + aaTla 

U =34 
yi 

uy8    =    a* + aB§s + agTla 

ya 
a* + aB§3 + aaTli (2) 

where      §   ,  T|     is  the  local  coordinate  system,   with  origin  at  point   1. 
In matrix  form,   the  equations  (2)  are 

XI 

u 
X3 

u 
X3 

u 
y1 

V 

V 
v* J 

10 0 0    0 0 

1    |a Tla 0    0 0 

1    §3 Tla 0    0 0 

0    0 0 10 0 

0    0 0 1    5S TI3 

0    0 0 1    Is Tig 

a« 

< 

33 

a* 
) 

(3) 

■ -■fe." «MfU 



or 

(M     =     (A)   {a] (A) 

From  this  equation, 

[a]     =     [A]-1   {6} (5) 

To  find   the   inverse   of   the matrix     [A]   ,   we  write 

[A]   [a]     =     [I] , [a]     =      [A] 

and  partition in  the   following manner: 

(An)   [Axg] 

[An]   lA„] 

[an]   [als] 

[aal ]   [Ogg] 

[i]  [o] 

[o]   [I] (6) 

Taking 

[An]     =     [Ass]     =     [A*]     = 

1 0 0 

1 u \ 

1 * ?3 \ 

[Asil     =     [A18]     =     [0] 

equation   (6)  gives 

[A*] '   [an]    =    [A*] ■  [ass]    = =    [i] 

[A*] '   [a18]    =    [Oj 

[A*] •  [aai]    =    [0] 

Thus,  we  obtain the  following: 

(7) 

(*«] 
[an] 

=    [a^] 

[as2] 

[o] 

[A*] -i 

(8) 



Then,   inverting   the matrix     [ A*]     given   in equation   (7),   we   obtain 

[A*]"1     = 

A 0 0 

^3 2 \ Tla 

A A A 

§32 §3 §2 

A A A 

with =        l2^3     -    ^ 

§..     =     ^-^ ; ^     =    \-Tlj (i.j=   1.2.3) 

Thus, the inverse of the matrix [A] is 

[A] -i 
[A*]"1  [0] 

[0]    [A*]'1 

where  [A*]   is  given by equation (9). 

From equations (1), it is possible to obtain the strains 

ex = "är = a2 

du 

'y W    =    a6 

3u  x 
?xy    =      BT1    '    S§ 

3u        Bu 

(9) 

(10) 

(U) 

(12) 

(13) 
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or,   in matrix   form, 

e 
X 

A' 
Y 'xy 

V.      J 

0      10      0       0      0 

0      0      0      0       0       1 

0      0       10       10 

•( 

a3 

a* 

as 

(14) 

Symbolically, we write  equation  (14)  in  the  form 

U)    =     [D]   •     {a} 

Substituting  {a]  given by equation (5) into the last equation, we 
obtain 

{e)   -   [D] •    [Ai^fe] 

(15) 

(16) 

On the other hand,   the relationship between stresses and strains for  an 
anisotropic material  and  the two-dimensional problem is 

cll c12 c13 

ci 2       ca2       ca3 

Cl 3 £33 Cj3 

r   ^ e 
X 

■xy 

or 

{a}    =    [C]  [e] 

Putting equation   (16)   into equation   (18),  we  get 

{a}    =    [C]   [D]   [ApU] 

(17) 

(18) 

(19) 



• 

The strain energy is given by 

2 J
v   I x x   y y   Txy xyj 

dV 

=    HJ    t   [€xeyYxy]   'fy   >dx dy    =    H J t f e)T '   ^ dx ^ 
xy^ (20) 

where    t    is the thickness of  the joint and    {E}       is the transposed 
vector  of     [E]   .     But 

{e}T    =     flD]   •  U})T    =    {a]T  [D]T 

=     ([A]"1   •   {6])T  [D]T    =    [6)T   ([A]"1)1  [D]T 
(21) 

where we used equations   (15)and   (5).     With equations   (19)  and   (21),  the 
strain energy is expressed by 

w = 2 J J t ^ flAl"llT [D]T [cl [D] [A]"1 W dx dy    <22) 

Now we can assume  that  the  forces    P. 
i?   '    P2f   '    P3^   '    PiTl   •    P2T1  ' and 

P3T1    are aPPlied on the  triangle vertex,  as shown  in Figure 3. 

y.u y , 

i       p l% 
'?'UX 

•x,u »"x 

Figure 3,  Generalized Nodal Forces. 



We  can define   a   stiffness coefficient,     k v .      as   the   force   that   is necessary 
lj 

to  apply at     i     direction when  the  displacement   at      j     direction   is   the 
unit   and  all   other  displacements  are  zero.     The  directions     i     and     j     can 
be   any one  of     Pj ff   ,     Psp    ,   ...   ?3-n   .     If,   for   example,     u      =1     and 

"i a ' X2 
u       =u      =u      =u       =u       =0,   the   stiffness coefficients    k.        are   the 

xi X3 yi ya ya 12 
forces  that we  need  to apply at directions  of     l\e   ,  P3-   ,   ...   P3     ,   to 

keep  this deformation  of  the  triangle. 

To compute  the   stiffness coefficients,  we  will  use   the   second  Castigliano 
theorem, which permits us  to  find  the  generalized   fo-ce  by differentiation 
of   the   total   strain   energy with   respect  to  the  corresponding displacement. 
Thus, 

^W 
56. (23) 

Then, by differentiation of equation   (22)  with  respect  to    [6]   ,  we  have 

{P}    =      J J  tjU]"1)1  [D]T  [C]   [D]   [A]"1   dx dy       ■   {6] (24) 

and   the  stiffness matrix     [K]     yields 

[K]     =       J J  tjU]"1]1  [D]T   [C]   [D]   [A]"1   dx dy (25) 

Assuming that  the  thickness  of  the  triangle   is constant,  the  stiffness 
matrix becomes 

[K]     =     (Ul"1)1  [D]T  [C]   [D]   [A]"1   •   t Q 

with    0    equal  to  the  area  of  the  triangle. 

Equation  (24)  can be  written  as 

(26) 

{?} =  [K] {6} (27) 

which is referred to the axis x,y or, in other words, § .T] .  However, 
for certain special mixed boundary conditions, it would be useful to 



refer   equation   (27)   to  the   rotated   axis.     The  rotations  are    tt^   , QU   , 

and    OL3     at   the  nooes   I,   2,   and   3,   respectively,   as   shown   in  Figure  4. 

3y' 3y 

ly'      ly 

Figure 4,  Rotation of the Nodal Directions. 

The rotated forces vector (P1)  is related to {?}  as 

Pix 

Pax 

Pax 

< 
Pi, 

> 

> 

Pay 
v.     y 

COS   Ox 0 0 -sin CLi 0 0 

0 cos OE 0 0 -sin Oa 0 

0 0 cos 0.3 0 0 -sin a3 

sin Oj 0 0 cos OLi 0 0 

0 sin az 0 0 COS   0(3 0 

0 0 sin OQ 0 0 COS   CI3 

/•    ^\ 
p; lx 

p1 
2X 

n 3X 

P' > 

PI sy 

(28) 

or,   in condensed  form, 

[P]    -     [T]   [P'] (29) 



I 

Analogously,   we  can  wt iU1 

t]    -     IT)   [5'} (30) 

By  substituting  equations   (29)   and   (30)   into equation   (27),  we   obtain 

[P']    =     [K1]   [6'} (31) 

where     [K1]      is   the   rotated   stiffness  matrix  given  by 

[K1]     =      [T]   i    [K]    [T] (32) 

The   total   stiffness matrix  of   the  whole   structure  can be   obtained  by   sum- 
ming  in  adequate   order  the  elements  of   the  matrices     [K1]     of  each  ele- 
ment.     The   law  of   formation   for  the   elements   of   the   total   stiffness 
matrix     [K*]   is 

N 

k*.    =    >       k' . . 

n=l 

(33) 

is an element of  [K*]  and  k'..  is the element of the 

for the triangle n after the conversion of indices  i,j 

from the indices 1 through 6 to the actual indices of the whole structure. 

The summation is extended to the N triangles. 

where k*. 

matrix [K- ] 

If the numbering of the nodal directions is started by the directions in 
which the displacement is known, the matrix equilibrium equation for the 
whole structure 

[K*] (6*)  =  [P*} (34) 

can be  partitioned  as 

Kü 
VSlj [Ki2] (35) 

10 



wnerü is the VL'cLor   of   tlic  known  nodal   displacements 

is the vector   of   the unknown   nodal  displacements 

is the vector   of   the  unknown  nodal   forces 

is the vector   of  the  known  nodal   forces 

The   second  row of  equation   (35)   can be written   as 

[K2*2]   {6*3    =    [P£]   -   [Ka\]   {tf} (36) 

This is a system of linear equations that, when solved, enables us to 
know the displacements  {52} .  Once that  (62}  is known, the first row 
of equation (35) gives the nodal forces {Pjj . 

When all the nodal displacements are known, the stresses can be determined 
by substituting the displacements  [6j , corresponding to each triangle, 
in equation (19). 

It must be noted that the stresses become constant at each triangle. 
Thus, to have a good approximation, the triangular net must be more dense 
in those places where the stress gradient is greater, as occurs in areas 
of stress concentrations. 

The stress diagrams can be smoothed out adequately by taking the average 
of stresses between two adjacent triangles and assigning this average to 
the midooint of the common side. 

Computation of the Matrix  [Cj  Elements 

In the most general case we can assume that 
the material contains, at an arbitrary 
point, fibers in n-directions.  For the 
following development, we take only three \ 
different directions, a, b, and c, but 
the generalization to any number of dir- 
ections is immediate. 

We refer the material to the axes x and 
y (Figure 5).  If we impose a deforma- 
tion  [e] , the materials with fibers at 
directions a, b, and c  each have the 
stresses 

Figure   5. Multilayered 
Composite. 

K)   =    [cj{e] {ab)    =    [Cb][e] [oj    =    [Cc][e]        (37) 
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where  the  vectors     {aa]   ,     [o^J   ,     and     [cc}     and   the  matrices     [Ca]    , 
[Cjj]   ,     and     [Cc]     are  referring   to   axes x   and  y. 

Considering  a certain  total  area     A    composed  of  the  areas     Aa   ,     A,    , 
and    Ac     corresponding  to  the   three  materials,   that   is  to   say, 

A    =     Aa +  Ab +  Ac (38) 

the forces produced by the imposed deformation are 

W   =    Aa [oa]    =    Aa [ca]  [e] 

^b3   =   Ab W   =   Ab tcb] («0 

{Pc]    =    Ac   {ac)    =    Ac   [Cc]  {e} (39) 

Then the total force is 

{P} =  [Pai + (Pb) + {Pc^ 

or, by using equations (39), 

[P] =  (Aa [Ga] + ^ [Cb] + A, (Cj) {e} (40) 

On the other hand, it is possible to assume that {p}  is produced by a 
stress {a)  applied on the total area A , 

{P} = A {a} (41) 

Comparing equations (40) and (41), we find 

M   -   (T [cal + T [cbJ + T [cc0 ^ (42) 

Thus we  arrive  at  a matrix     [C]     given by 

[C]    =     na  [Ca]  +  nb   [Cb]  + nc   [Cc] (43) 
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where 
Aa 
A 

nb 
Ab 
A 

na +  nb +  nc (44) 

If  the matrix nu.   orial   (resin)   is  the   same for   the   three materials,   which 
is  the most  comn J:; case,   the numbers    na   , %   >     dn^    nc     are  ProPor" 
tional   to the  nu.iber   of   fibers   (or   layers) at   each  direction     a   ,     b   , 
or    c, 

Referring  the  elastic  constants  for   the  material     a     to the  axis     x     , 
y      (Figure  5),  we  have 

ch 

'12 

0 

12 

C22 

0 

0 

, I 
"33 (45) 

because    xa   ,     ya     are  principal  axes  of  orthotropy for  the material     a 

Equation   (45)  can  be written  in briefer  form,   as  follows: 

K)     =     tC']    {£'} (46) 

Now we want   to  transfer equation   (46)   from axis    xa,ya    to axis     x,y 
The  stresses  are   transformed  by the   following equation: 

K3 =  fTla] [ca] 

where 

and 

fTia]     = m. 

■^a 

m. 

lama 

21 ama 

-2<tama 

m. 

(47) 

(48) 

la    =     cos Cp, m. sin Cpa (49) 

The  strains  are  transformed by 

U'a)    =     [Taa]   {ea) (50) 
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with 

lTsJ     = 

"4 tama 

2 
ma tl -^a"^ 

-2^ama 2iama 
.2             2 
la   -  ma (51) 

Substituting equations   (47)   and   (50)   into equation   (46)   and   then multi- 

plying both  members  by     [Tia ] gives us 

{oa]     =     [Tia]"1   (C']   [T2]   [€] (52) 

Thus,  by comparison  of equations   (52)  and  the  first equation  (37), 
we   find 

[Ca]     =     [Txa]'1   [c;]   [Taa] (53) 

In  the  same way,  it  is possible  to find matrices    [Cjj]     and     [Cc]   , using 
the   transformation matrix     [T^bl   ,     [Tlc]   ,     [Tab] .   an^     fT2c]   • 

Thus,   the  following  steps  are  necessary to find matrix     [C]     of a triangle: 

1. Establish angle  orientations    cpa   , CPb   ,   and    (pc     of  the  fibers. 

2. Establish  the  fiber  proportions at  each direction    na   ,  njj   , 
and  nc   . 

3. On  the base  of  the constants  for each  layer,   obtain     [Ca]   , 
[C^]   ,  and     [Cc]     by using equation   (53). 

4. By  applying equation   (43),  compute     [C]   . 

The  elastic   constants  for  each   layer can be  obtained  with  the  formulas 
for  unidirectional composites based  on  the  fiber volumetric  content and 
the  elastic   properties  of  the   fiber  and matrix material. 

Computer Program 

With   the elements developed   in  this  section,   a computer  program was 
devised which enabled us  to establish  the  stresses and  displacements  for 
a joint.     The  shape  of  the  joint  can be  arbitrary as well  as  the  system 
of  applied   loads.     In  other  words,   the  joint can be   solved  under  arbi- 
trary mixed  boundary conditions.     This program also covered  a very 

U 



specific boundary condition that appears when the displacement component 
at the normal direction of a cup/ed boundary is restricted and also when 
nonfriction  is  prescribed. 

The  thickness of  the  joint can be variable.     The  analysis can  be  performed 
for  any anisotropic  material with variable  elastic  properties. 

STRESS ANALYSIS OF  BOLT JOINTS 

Basic  Assumptions 

The  stress  analysis  performed during  this contract was concerned  primarily 
with  finding   the   stresses  in  a bolt  joint  under  tension   (Figure  6). 

^ 

Figure  6.     Typical Joint, 

Between  the bolt  and  the joint  there   is a bushing of bronze  or   steel 
which prevents  the  composite  material   from coming  into direct  contact 
with  the  steel  bolt. 

Critical  points  in  a  stress analysis  of  this  type  of joint  are  the bound- 
ary conditions  to be  taken  along  the  hole  contour  in contact with  the 
bushing.     Many  investigators  adopted   the cosine   law  for   the  pressure  dis- 
tribution  on  the bolt.8     However,   the   stress distribution obtained  on   the 
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basis  of   this  assumption  does  not correlate with   the  experimental   results, 
especially  in  the  prediction  of   the  point  of   initial   failure.     In  fact, 
if  the   hypothesis  of   the   cosine   law pressure  distribution   is  adopted,   the 
critical   point   is A  in  Figure  6  while   the  actual   point   is   indicated   at   a 
position   such  as C.     A more   realistic   stress distribution   is  obtained  by 
assuming   that   the  radial   displacement   on   the  boundary AGB  is  zero,   and 
that   there   is  no  friction  between bolt   and   joint.     The  pressure distri- 
bution  on   the  hole  boundary  obtained   from this   hypothesis   shows  a consid- 
erable  difference with   respect   to the cosine  distribution.     Thus,   the 
boundary conditions  adopted  in  the  following  analysis are   those  depicted 
in  Figure  7. 

1. On  the  external  boundary: 

^n    =    Tnt    =     0 

where n,t Indicates the 
normal and tangential di- 
rections,  respectively. 

2. On the hole boundary    AGB: 

u      =    0 
r 

T =      0 

with    r    and    9   ,  polar 
coordinates,   as  indicated 
in figure  7. 

3.     On the  hole  boundary    ADB: 

a      =    T        =    0 r re 

'r-Tre 

ar=Tre=0. 

CTn=Tnt
=0 

External 
Boundary 

/1 inn 
Figure   7.     Boundary Conditions. 

These boundary conditions correspond  to a  tension  loading  on the  joint. 

Stress  Distributions 

The  stress distribution  of  joints was established  by using the computer 
program developed  on the  basis  of  the elements  given  in  the  preceding 
section.     A parametric   study was conducted  to  find   the  differences 
between  the  stress distribution  obtained  in  an  Isotropie   joint  and  those 
in  fiber  reinforced  joints, both with the  same  geometric   characteristics. 
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A joint was selected with a  ratio 
t/a = 1,02  (see Figure 8), which is 
used frequently in the applications. 
The following figures show the radial 
and tangential stresses a, and re 
in   the  joint   for  different  materials. 
The   stresses    ar     arc  all  compression 
and    Gn     are  all  tension.     The   shear 
stress    Trg    can be considered 
zero  for  practical  purposes.     Thus, 
the   stress  trajectories  of  tension 
are  approximately concentric  circles, 
and   the  compression  trajectories  are 
radial   straight  lines.     The   stress 
diagrams   shown  in  the  figures corres- 
pond  to the following cases: 

Figure 8. Dimensions and 
Coordinate Axis. 

Figure 
No. 

9 

10 

U 

12 

13 

Material 

Isotropie  (steel) 

Unidirectional glass composite with Vp = 0.6 

Unidirectional glass composite with Vp ■ 0.7 

Unidirectional glass composite with Vp ■ 0.8 

Unidirectional boron composite with Vp = 0.7 

The term unidirectional composite indicates that all the fibers in the 
part being studied (Figure 8) are parallel to the circular boundaries. 
Vp indicates the volume content of fibers. 

The stresses plotted in Figures 9 through 13 correspond to a total applied 
tension force P = 2t ; in other words, the average stress  (CTO)Q=O i8 

unity.  From the analysis of these stress diagrams, it is possible to 
draw the following conclusions: 

1. The peaks of both stresses ar  and a«  are on the 
internal boundary. 

2. The maximum difference between the peak values of 
ar  is less than 157. (from 1.14 to 1.32), 

3. The difference in the stresses a«  on the boundary 

in the critical area 200<9<800 is less than 10%. 

4. The shapes of the stress diagrams are essentially 
the same. 
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Load 
Direction 

a)    Radial  stress    or 

b)     Tangential   stress oc 

Figure   9.     Stress   Diagrams  for   Isotropie  Material   (Steel) 
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Load 
Direction 

a)    Radial stress    ar 

Load 
Direction 

• 

b)     Tangential  stress    o e 

Figure 10.  Stress Diagrams for Glass Composite Material (V = 0.6) 
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Load 
Direction 

a)    Radial  stress    ar 

Load 
Direction 

b)     Tangential   stress    aa 

Figure  11.     Stress Diagrams  for Glass Composite Material  (V    =  0.7), 
F 
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Load 
Direction 

a) Radial stress ar 

Load 
Direction 

b)  Tangential stress oa 

Figure 12.  Stress Diagrams for Glass Composite Material (V = 0.8) 
F 
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Load 
Direction 

a) Radial stress a. 

Load 
Direction 

b) Tangential stress a 

Figure 13.  Stress Diagrams for Boron Composite Material (V = 0.7), 
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It   is  therefore  possible  to analyze the   stresses   in  this  type of  joint   by 
assuming   the  isotropy  of   the  material.     The   resultant   stresses will,   for 
design   purposes,   be   sufficiently  accurate. 

Anolhei    type  of   parametric   study was performed   in   order   to establish   the 
variation  of  the   stresses with   respect   to  the  changes  of   the  ratio    t/z   . 
Two  typos  of materials,   Isotropie   and glass composite     (Vp =  0.7)   ,  were 
also considered.     Table   1  gives   the characteristics  of   the  joints   for 
which   stresses  are   shown   in  Figures  14  through   19. 

TABLE   I.     CHARACTERISTICS OF JOINTS 

Figure 
No. 

Material Ratio - 
a 

Maximum, 

^r 

CT 0   where 
ar   is maximum 

14 Isotropie 0.57 0.68 1.07 

15 Glass composite 0.57 0.59 0.98 

16 Isotropie 1.14 1.28 1.08 

17 Glass composite 1.14 1.22 1.02 

18 Isotropie 1.71 2.00 1.29 

19 Glass composite 1.71 1.92 1.20 

The   results  shown   in  this  table  confirm the  conclusion   of   the  preceding 
parametric   study  referring  to  the   small   influence   of   the  material   proper- 
ties  on   the maximum  stresses. 
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Load 
Direction 

a) Radial stress ar 

Load 
Direction 

b)  Tangential stress a e 

Figure   14.     Stress Diagrams for  Isotropie  Material   (Steel) 
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Load 
Direction 

a)    Radial   stress    a, 

Load 
Direction 

b)    Tangential  stress    a> 

Figure  15.     Stress Diagrams for Glass Composite Material  (V    =  0.7), 
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Load 
Direction 

a)    Radial  stress    ar 

Load 
Direction 

b)     Tangential   stress    On 

Figure   16.     Stress Diagrams  for   Isotropie  Material   (Steel), 
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Load 
Direction 

a) Radial stress ar 

Load 
Direction 

r i .u N^ 
e r r 

1.36 

b) Tangential stress a« 

Figure 17.  Stress Diagrams for Glass Composite Material (V = 0.7) 
F 
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Load 

Direction 

Load 
Direction 

b) Tangential stress a e 

Figure 18.  Stress Diagrams for Isotropie Material (Steel), 
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Load 

Direction 

Load 

Direction 

b) Tangential stress On 

Figure 19.  Stress Diagrams for Glass Composite Material (V = 0.7). 
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Figure  20  is  a  plot   of   Liu?   ralio    crr/max)/navg against     t/a   ,    crav       being 

the   average  stress     P/2t     and     1'    tin«  total   applied   tensile   load. 

This  relation  can be  expressed with minimal   error by the   linear   formula 

rr(max) 1.13 o avg  a (54) 

Figure 21 shows the curve of a9/oaVg with t/a as the independent vari- 
able. The value OQ  is corresponding to the point in which ar is a maxi- 
mum. This point is where the factor of safety is minimum, as we will see 
later. The curve of Figure 21 can be approximately expressed by the 
following: 

[l + 0.079 (I)'] aavg (55) 

0.5     1.0     1.5     2.0 

Thickness  t/a 

60 

15 

2.0 
i 

1.5 u 

1.0 u 

0.5 - 

"'    1 _L 
0.5      1.0     1.5     2.0 

Thickness  t/a 

Figure   20.     Maximum Radial   Strt:sb. Figure   21.     Value   of    ae     Where 

o       Is Maximum. 

STRUCTURAL DESIGN OF BOLT  JOINTS 

Failure Criteria 

Once  the  stress distribution is known,   it  is necessary to adopt  a failure 
criterion in order  to establish the  factor  of  safety of the  joint.     A 
failure  theory widely used  is the  so-called  interaction formula9 

**     * oyp,     ,     0y 2  , T xy 
-.'.- _   *     *     '          * T            * 

"x x 0y            0y 'xy 
=   1 (56) 
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where a  , a  , and xy are the macromechanicai stresses and cr * , 

Gy" , and T
xv" are the failure stresses.  The normal stresses ax and 

a  are positive (negative) corresponding to tension (compression).  The 
failure stress ax'f must be the failure stress in tension if ax is 

positive, and the failure stress in compression if ax is negative.  The 

same criterion is used with respect to cfy and Qy* .  In the formula, 

ax
,v and ay* must always be positive. The interaction formula as a 

failure criterion was introduced in Reference 7.  Other failure criteria 
are presented in References 11 and 12. 

In the following, we will adopt the interaction formula (56) as the repre- 
sentative failure criterion.  By referring equation (56) to the polar 
coordinates r and 0 , and by taking into account that Tr9 ■ 0 for the 

critical area of the joint, we get the factor c.f safety   p,: 

(57) 
CT^a ra9 
ar*a9* 

If  the joint  is made  in  the manner 
indicated   in Figure  22,  the   stress 
ar*    is the  tension  failure  stress 
for   the unidirectional composite 
in  the  fiber direction,   and    a«* 
is  the compression failure   stress 
in  the normal direction. 

Design Procedure 

The design procedure  for  a bolt 
joint will be  illustrated  on  a 
joint  selected  from the Mohawk 
plane  of Grumman Aircraft  Company. 
This  joint corresponds  to the 
wing-fuselage connection,  and  the 
ultimate  load in tension  is 
P = 30,000  lb.     Information about 
the joint design is given in 
References  13,   14,  and  15. 

Fibers 

Figure 22.  Unidirectional Com- 
posite Joint. 

Figure 23 shows the preliminary adopted dimensions by using glass fibers 
and epoxy resin with a fiber volume content of 70% to 757.. 
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I 

R0.3125 

R1.000 

RO,375 

0.6 

8.50 

Bushing 

 U. _ 

-IL 0.2 
Figure   23,     Dimensions  of   the  Bolt  Joint   (inch). 
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The ratlos    t/a   and   aavg    are 

t I.000 - 0.375 
a "       0.375 

-    1.67 

avg 
30.000 

0.6  •   0.625  •  2 40,000 psi 

Then,   from equations  (54)  and  (55),  we get 

(CTr)max    "     l-89 a avg ,       (JQ    =    1.22 a avg 

or,  with  the value  of    ^ave     obtained before, 

(ar)max    =     75,600 psi ,        OQ    =    48,800 psi 

The  failure   stresses  for   the  unidirectional  composite  employed  are 

ar*    =    30,000 psi , ag*    =    225,000 psi 

Che   failure   stress  in compression  corresponds  to the  0.2%  limit  of  strain. 
It   is  not   an  actual   'failure   stress."     By using  this value  and  on  the 
basis  of  equation   (57),  a  factor  of   safety of    [i =  0.38    results and  the 
failure   load  will be 

P*    =     0.38  •  30,000 

However,   the   failure   load  obtained 
from tests   is about  26,000  lb,   as 
shown  in  the  discussion of experi- 
mental   results  in  this report. 
This discrepancy between  analytical 
and  experimental results  stems  from 
the   following  fact:     When  the   load 
reaches  a value  of  12,000  lb,   a 
plastic   area  appears  as  shown  in 
Figure   24,   and   the   load-elongation 
diagram presents "jumps"   which 

11,400 lb 

Plastic 
Region 

Figure 2A.  Plastic Region, 
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indicate   the   successive  progress  of   the   plasticized  area.     Thus,   the   load 
obtained   from  the   linear   stress  analysis  only   indicates   the   beginning  of 
the  formation  of   the   plastic  areas. 

By taking  bushings  of   larger  external   diameter,   we  can make   joints   of 
smaller  ratio     t/a   .     The   following  two values  are  considered: 

=     1,0 -    =     0,66 

The  corresponding values  of    |i     obtained  by   following  the   same   procedure 
as above result  in the values in Table  II. 

TABLE II.  SAFETY /ACTORS 

1    - 
a 

1,0 0,66  | 

aavg 50,000 62,500 | 

(ar)max 3o,500 46,600 

1  a9 53,900 64,700 

!    v 0.504 0.582 
i                                i 

This  shows   that   tl>e   factor  of   safety   increases when     t/a     decreases. 
However,   in practical  applications of  joints,   other  limitations exist  that 
do not  permit   the  use   of  a very  low value   of     t/a   .     A ratio     t/a =   1 
appears  to be  quite   adequate  for  most   of  the  bolt  joints  of  composite 
materials. 

The ultimate   failure   load,  which   is  the  maximum  load  that  can   possibly be 
applied  to  the  joint before  it breaks  completely,   is approximately double 
the  load given by the described  procedure.     This assumption proved  to be 
valid only for    0.9 <: t/a < 1.1   . 

EXPERIMENTAL  RESULTS 

The experimental  program was divided  into  two parts,  one  concerning  a 
simple  loop  joint  and  the other  the  bolt  joint. 
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Loop Joint 

An experimental  program concerned with the   stress distribution and  failure 
loads  of   loop joints was developed. 

The joints  tested   to failure  had   the dimensions   indicated  in Figure  25. 

0.35  in. 

0.70  in. 

Klgure  25.     Dimensions  of  the  Loop Joint. 

The   specimens u.-io made  of  glass composite material  and  were  tested  in  ten- 
sion.     The   loflfi  was  applied  by using  a  fixture  schematically shown  in 
Figure   2b.     A bushing was not  used  between bolt   and  joint,   and  special  care 
was  taken   to cnsuri"  perfect   initial contact between bolt   and joint   at  the 
surface   of   lo.id   transference. i  p 

h n 
[:::::::::.] 

Figure 26.  Attachment Device for Testing. 
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The failure loads obtained from the tests are summarized in Table III. 

TABLE III. FAILURE LOADS 

Specimen 
No. 

Dimensions of a Fa ilure Avg Specimen 
No. Simple Cross Section, load , Failure Stress, 

in. lb psi X 10 3 

1 0. 342 X 0 .308 12 ,900 61. 5 
2 0. 346 X 0 .295 11 ,250 55. 2 
3 0. 344 X 0 .282 10 ,400 53. 7 
4 0. 348 X 0 .301 13 ,350 63. 2 
5 0. 346 x o .378 13 ,100 52. 0 

The ultimate strength of the joint's material in simple tension was 
150-180 kpsi. Therefore, the efficiency of the loop joint is about 0.33. 
In other words, the ultimate strength of the loop joint is one-third of 
the strength of the same material in simple tension. This conclusion is 
limited only to joints with a ratio t/a = 1. 

Figures 27, 28, and 29 illustrate the location 
and form of failure. The regions of resin under 
failure (opaque areas in the photographs) encom-
pass three-fourths of the total section. It is 
also possible to observe that the failure is 
produced for 20° < 9 < 80° . 

A failure test was performed by using a plastic 
homogeneous, brittle material loop joint. 
Figure 30 shows the failure produced. 

Photoelastic studies were conducted to estab-
lish the stress distribution in both ortho-
tropic and isotropic loop joints. Figure 31 
shows the isoclines for 0°, 30°, and 60° for 
the isotropic joint. Similar patterns were 
obtained on orthotropic loop joints by using 
the reflection method of photoelasticity. 
The position of the inclines confirms the 
analytical results in the sense that the 
shear stresses Tfg are very small. In 
fact, the isocline lines are approximately 
radial straight lines, forming angles of 
0°, 30°, and 60°, respectively. 

Figure 27. Loop Joint of 
Composite Mate-
rial After Test-
ing to Failure. 
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Figure 28. Loop Joint of Composite 
Material After Testing 
to Failure. 

Figure 29. Loop Joint of Composite 
Material After Testing 
to Failure, 
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V 

Figure 30. Failure of an Isotropic Joint of 
Brittle Material. 

(a) Isoclines of 0° 

f 1111 
I M I ' 

(b) Isoclines of 30c (c) Isoclines of 60° 

Figure 31. Isoclines for 0°, 30°, and 60° 
for the Isotropic Joint. 
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Bolt Joint 

The tested bolt joints were similar to those shown in Figure 32, Table IV 
indicates the characteristics and ultimate load of the tested bolt joints. 

(a) Composite Joints 

(b) Composite Joints 

Figure 32. Bolt Joints Similar to 
Those Tested. 
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TABLE IV. SPECIMEN CHARACTERISTICS AND ULTIMATE LOADS 

Specimen Ratio Ultimate Figure Ob servations 
No. t/a Load, lb No. 

Ob servations 

1 1.67 29,700 33 --
2 1.67 25,000 34 --
3 1.67 24,500 -- --
4 1.67 28,100 -- --
5 1.67 26,700 -- --
6 1.67 25,900 --
7 1.00 45,400 35 Laterally Supported 
8 1.00 44,500 -- Laterally Supported 
9 1.00 39,400 36 
10 1.00 38,800 --
11 0.66 42,200 37 --
12 0.66 41,500 ~ -

Specimens 7 and 8 were tested with a device that restricted lateral expan-
sion of the joint under high loads. In this way, an increment of the 
ultimate load of 10% was obtained. 

Figure 33. Composite Joint After Failure. 
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Figure 34. Composite Joint After Failure 

Figure 35. Composite Joint After Failure 
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Figure 36. Composite Joint After Failure. 

Figure 37. Composite Joint After Failure. 
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Figure 38  represents  a  typical  load-displacement  curve  obtained during  the 
tension  test  of  the bolt  joints.     It  can be  observed   that   there  are  several 
"jumps"   which correspond  to  several   steps of  failure   that  occurred during 
the   test.     The ultimate   load   shown  in Table  IV  is  the  highest,  after which 
the  joint breaks. 

Figure 38.     Testing Machine Load-Displacement 
Plotted, 
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Figure 39 shows the specimen 
mounted in the testing 
machine for tension testing. 

FABRICATION PROCESS 

The following procedure was 
adhered to in the fabrication 
of test specimens for this 
program. 

Material 

1. 12 End Roving 5994 
Glass 

2. Resin System 

a. Epon 828 50 phr 
b. Epon 1031 50 phr 
c. NMA (methyl 

endomethylene 
tetrahydro phtha-
lic anhydride 
catalyst) 90 phr 

d. Benzyldimethyla-
mine (BDHA accel-
erator) 0.50 phr 

Tooling 
Figure 39. Specimen Mounted in t 

Test Machine. 

Winding Tool ( igure 40), Aluminum-Constructed Material 

Equipment 

1. 

2. 

3. 

Temperature Controlled Hot-Melt Coater 

Fiber Tensioning Device 

Winding Machine (special throat-deep; see Figure 41) 

a. Traverse-Controlled 
b. Revolution Infinite Control 

Winding Procedure 

1. Set winding traverse to 0.600 in. to yield 9 revolutions 
per layer. 

2. Set fiber tensioning device at 2-pound fiber tension. 

3. Regulate hot-melt coater temperature to 170°-180°F. 

4. Preheat winding fixture to 160-180°F. 
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Figure 40. Aluminum-Constructed Winding Tool-

Figure 41. Winding Machine 



5. Wind 568 revolutions at 2-pound fiber tension. 

6. Apply first-stage side plates; close side plates to within 
0.062 in. to stops. 

7. Place assembly in a 2250F regulated press platen; close side 
plates just short of resin gelation. 

8. Raise temperature to 250oF, reside for 1 hour at 250oF, and 
cure at 3250F for 1 hour. Allow to cool under pressure. 

9. Disassemble tool and remove precured first-stage laminate 
from tool. 

10. Remove excess material; sandblast faying surface for second- 
stage winding. 

11. Wind 500 revolutions with fiber tension reduced to 1.5 pounds. 
Total winding revolutions of 1035. 

12. Repeat operations 6 through 9 using second-stage side plates. 

13. Remove part from tool and report all physical properties. 

STRESS CONCENTRATION AROUND CIRCULAR HOLES 
IN ORTHOTROPIC PLATES 

General Formulas 

The technical importance of the stress concentration around holes is well 
known.  The concentration factors have been established for the most impor- 
tant cases that appear for Isotropie materials in technical applications. 
For example, in a tensioned plate with a circular hole, a diagram of 
stresses ax appears as shown in Figure 42.  It is possible to see that 
the stress concentration factor is 3, because the peak of stress is three 
times larger than that of the applied stress. 

Figure 42.  Stress Concentration in Isotropie Sheet. 
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For the correct use of structural composite materials, it is important to 
know the influence of the relative volume and directions of the fibers on 
the concentration factors. This is of fundamental importance in the case 
of a structure with alternative loads, because the maximum stress concen- 
tration points are  the origin  of  the  failure  lines. 

In this part  of the  report,  we will develop the  analytical  elements and a 
computer program that will permit us to find  the concentration factors in 
an orthotropic plate with a circular hole.    As external  loads, we consider 
tension and  pure shear.     By combining the results of  these  two cases,  it  is 
possible to  solve almost  all   states of  stresses,  assuming  that the hole's 
diameter  is  small with  respect  to the dimensions on the middle plane of the 
plate. 

The  theoretical elements of  the  complex solution of  the plane  state of 
stresses are  taken from Reference  16. 

The  fundamental differential  equation of an orthotropic  plate  in plane 
stress  Is 

b      ^ + bl1 a/ + (2b!a + b33) 
8*j    , .      a** rrrr + b" —r ox oy ox 

=     0 (58) 

where     bn ,     b18)    b88,     and    h33    are  the elements of  the matrix that 
connects  stresses and  strains;   i.e., 

bl l       bi 8        0 

bj a       bjj        0 

0 0        bga 

It must be noted that  the matrix    bjj     is the  inverse   of matrix    [C]     men- 
tioned  earlier  in this report,if  this matrix also belongs to an orthotropic 
plate. 

It  is possible to rewrite  this equation in the  following  form: 

with  the constants    a*     and    CXg     defined by 

ä 

OiOa    = 
bn 
b3a 

2b 
Ola   + Og     - 

19 + b 33 

'aa 
(60) 
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In other words,    Oi     and    tta    are  the routs of  the equation  in    a 

baa a3  "  (2bia + b33) a + b^ (61) 

It Is possible to demonstrate by energy considerations that the roots of 
equation  (61)   are  real  and positive  If  the coefficients    b11 ,    b^a,     b2a, 
and baa    correspond  to any orthotroplc material. 

Taking  the complex variable    z = x +  ly    and  Its conjugate    z = x  -  ly  , 
we put the  stress function In the following form: 

i    =    f(z + Y^) + g  (z + Yaz) (62) 

Substituting this  function into the differential equation  (58), we  can 
establish  that  the  real part of equation   (62)  is a solution if    yi     and 
Ya    are given by 

Yl     - 
/gq  -  1 
/ar+1 

Ya 
/gr -1 
/cite + 1 

(63) 

Because    O-i    and    Os     are real and positive,    yl    and    Ya     He between  -1 
and 1. 

Remembering that  the  stresses are 

0*  =  i7     ;     ay 
a2* 

xy 
ill 
äxäy 

(64) 

By substitution of equation (62) , we obtain 

xy 

- (1 - Yi)" £" (z + Y^) - (1 - Ya)3 g" (z + Yaz) 

(1 + Yi )a f'' (z + Yi*) + (I + Ya)8 g" (z + Yaz) 

-1(1 - Y3!) £'' (z + Yj) - 1(1 - yl)  g" (z + Yaz) (65) 

Introducing the   function    ♦ = Mx.y)    by 

a8» 
3x5 y 

=    7** ^-^a.aa^l-   -    (i-o^d-o,)^ 
Ox Oy oxoy 

(66) 
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the displacements are given by 

hi uv ■  (bi8 " baa) c- + bi at 
ox" ü11 öy 

"v =  ^bia - baa) r- + b öy >aa at 
ÖX 

From equations (62) and (66), it is possible to obtain 

hl   ^ J±'<l 4iVs 
dx —— f (z + YI2) - rr^- 8' (z + V) 

(67) 

(68) 

With equations   (62)  and   (68),  the displacements given  in equa- 
tion  (67) become 

ux   =    (1 + YjXbia - ttabaa)  f (z + Yxz) 

+   (1 + YaHbia   " ^baa)  g' (z + yal) 

uy    =    i(l  - YjXbia   - ttibaa)  f (z + yxz) + 

+ 1(1 - Ya)(b1a  - ^b^ ) g' (z + Ya^) (69) 

Stress function  (62) must produce  single-valued  stresses, which tend to 
zero at  infinity.    Also,   the displacements must be  single-valued.    These 
conditions are  satisfied by taking as function    ♦     the real part  of 

i    =    f(z + Yi?) + {A(l  - YaXbia  - Oab^) 

+ iB(l + YaXbia " aibaa)i   (z + Yi«)   ln(z + Yiz) 

+ g(z + Yxz)   - {A(l  - YiXbia   - a^aa) 

+ iB(l + YiXbia  - aabaa)}   (z + Yaz)   ln(z + Yaz) (70) 

where     A    and     B    are  real  constants. 
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The  stresses  corresponding  to  the   function   (70)  are  obtained  by using 
equations   (64): 

^x    =     -(l   - Vi)2   [i"{z + Yi2) +  [A(l   - Ya)(bia   - aab3a) 

+ 1B(1 + Ya)(bia - ttibaa)] —-] 
z + Yi zj 

-  (1  - Ya^jg" (z + Yaz)  -   lA(l  - Yi)(bia  - 8^33) 

+ 1B(1 + Yi)(bia - aabaa)]    ^1 
z + YazJ 

«Jy    =     d + Yi)2   {f"('- + Y^) +  [A(l   ■ YaK^a   " aabaa) 

+ iB(l + Ya)(bia - ttibaa)]      ^1       \ 
z + YizJ 

+  (1 + Ya)
a{g"(z + Yaz)  -  [A(l - Yi)(bia   - ajbaa) 

+ iB(l + Yi)(bia  - aabaa)]   1—=] 
z + Y3ZJ 

Txy    =     -1(1  - Y8I) jf^z + Yiz) + [A(l  - Ya)(bia  - aaba3) 

-  (1 - Ya) [g" 

+ iB(l + Ya)(bia - ^baa)]      ^1    _] 
z + Yizj 

(z + Yaz)   -   [A(l  - Yi)(bia   - ttib^) 

+ iB(l + YiHbia  - aabaa)]      ~    _1 2 + YazJ 
(71) 

Now we introduce the two new functions of the complex variable 

z =  re 
le 

(72) 

defined by the   Integral forms 

1      P2n ze-16 + a 
-19 ze         - a 

^r-« do 
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« ■ H 
2n -16   . ze +  a 

ze •19 
(Tre)     de 

r=a 
(73) 

From these equations,   it  is possible  to  see   that  the  functions    P    and 
Q    are related  to  the  tractions on  the  boundary of  the circular  hole. 
In  these  equations,     0    is  the  angular coordinate   of  the  point  on  the 
boundary    r=a    in which the  stresses    ar    and    TrQ    are taken.     The   func- 
tions    P    and    Q     are  finite  at  infinity and 

(RelP)}^    =    -(°r)r-a 

{imfQ]}^    =    -(Tre)r=a (74) 

Substituting equations  (71)  into the transformation formulas 

ar    =    axcos    0 + Oy sin    9 +  2T      sin 9 cos 9 

Tr0    r.     (ay - ax)  sin 9 cos 9 + Txy  (cos3  0 - sina   9) (75) 

we obtain the  polar  components of the stresses: 

•=-xa (z  - Yi*) 

zz 
|f"(z + viz) + [A(i - YaXbia - ^baa) 

+ iB(l + YaXbia  - 0^33)] -^1 
)(bia  - ttibaa) 

(z  - Yaz)   ( 
 =  I g'^z + Yaz)  -   fA(l  - Yi) 

zz ( 

+ iB(l + YiHbia  - Oabaa)]   ^-n| 
« + VazJ 

"rO 
_  Kz3   -VÜ*)   ( pi 

zz 1 
(z + YiZ) +  [A(l  - YaHbia  - O^baa) 

+ IBd + YaXbia  " *&&)] 

(continued) 

+ YazJ 
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i(2    -   Viz2 

zz 
-  |R"(Z + Y2z) - [A(i - ViHbis - a^jja) 

+   iB(l + Yi)(bls   - aabas)]    i-^| 

By putting   these stresses  into equations  (74),   functions    P     and    Q 
become 

+ Ad  - YsHbxa  - aaba8) f-^ ^-r 

z 

Xb,, -a.b«) ji^i.+ -i^.J 
Z 

z 

/l  - Ya ^Ya      \ 

(76) 

-  IB(1 + Ya 

- A(l   - YiHbia  - a^aa) 

iB(l + YiKbia - aabaa) 

YfaS    ../ Yiaa 'a* 

o- i (''■■?-)'•{' + ■?-)■${' -*r)<'^-ir) 

+   (A+ iB)((l + Y )(1   - Ya)(bia   - aabaa) 

(1   - YjXl + Ya)(bia   - ^b^)] ^      (77) 

Now we define the two new variables    §    and    T|    by the  following equations: 

*{-(' ^Yia - h[-0 4^ a' ,o 
(78) 

, 
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The variable     z    must  be single-valued.     Therefore,  the  arguments  of  the 
complex expressions     1   - by,aa/la     and     1   - ^ a3/"!]3    must  be  between 
-n    and    TT. 

Combining  equations   (77) and   (78),  we  get 

^Yiaa 

(V:  " Va)|l  -    ^ I5f"(§) + A(I  - Y2)(B1a   - Oabaa) 

+  iB(l + YaXbia   - Vaa)]    =    A(l   - Ya)   (b^   - aab8a) 

- A(l  - Y^d  - Ya)^^  - ttibaa)   -  iB(l + Ya)3^^  - a^aa) 

+   iB(l + v1)(l + YaHbia   - aabaa) 

- | [P(§) + Q(5)] 

Ya§ 
[P(5) - Q(?)] 

[■•(■■ ¥(] 
[■•('■ ¥-n 

(Y.   - Ya)   I  - 
4va_a 

Tf 

a\^ 
[Tlg"^)  - A(l  - YiXbia   - a^aa) 

iB(l + Yi)(bia  - a3baa)]    =    A(l  - yif(hia - ttibaa) 

A(l   - Yi)(l  - Ya)(bia  - ttabaa)   -  iB(l + ^f (hia  - aabaa) 

(79) 

/ 

+ iB(l + YjXl + Ya)(bia  - a^a) 

+ - [P(T1) + Q(T1)] 

Yil 

'♦Ya 
(80) 

• 
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For a particular problem, functions  P  and Q can be computed by using 
equations (74), because  (ar)1.= a  and  (T «)r_a  are known from the bound- 

ary conditions.  By integration of the stresses on the boundary of the 
hole, we find the resultant forces 

=    2nA(l   - YjXl   - YaXtt!   - a8)b 38 

Y    =    2TTB(1 + Y^Cl + Ya)(a1   - aa)baa (81) 

Equations (73) can be used to find V(z) and W(z) , and by solving 
equations (81), constants A and  B can be established.  Then, from 
equations (79) and (80), we obtain f"(§) and g" (T]) .  The stresses are 
given by equations (71), where we now have 

§ =  z + YjZ I] =  z + Ya: (82) 

Stress Concentration for Pure Tension 

The tension load T  is applied at the x direction, as shown In 
Figure 43. 

y 

Figure A3.  Tension Load Applied 
at the x Direction. 

If there is no hole in the plate, the stresses are 

0x = Tx ay = 0 xy (83) 

or,   in  polar coordinates,   according  to  the  formulas   (75), 

T 
or    =    -^ (I + cos  26) 
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ae    =    -5- C   - cos 29) 

Tre    =     - T sin  26 (84) 

It  is  now necessary to find a  stress  system which  tends  to zero at  the 
infinite  and which  takes  the values 

(Or), y- (1 + cos  29) 

(oe)      =     - -f (1   -  cos 26) s 2 

T. 
(Tr9)s    = 

when     r =  a 

Thus,   from equations  (73), we get 

sin  26 (85) 

Tx  /        a^v Tx , a8v 
(86) 

With the variables    §    and    T]    introduced by equations   (78),   we  obtain 
the following  from equations  (84): 

P(?)  - Q(§)    =    P(T1)  - 0(T1) 

Txn 
P(§) + Q(§)   = 

^ri 
'■ !■ • (- ^11 

P(T1) + Q01)   = 
(■■(- 

4Yaaal^ 

Va (l +   fl 
4Vaaai^ 

Tl8 

(87) 
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Because   the  stresses   in equation   (85) do not  produce  d  resultant   force  on 
the  hole,  constants    A    and     B    are  zero,   as equations   (81)  demonstrate. 
Thus,   from equations   (79)  and   (80),  and by taking  into account equations 
(77)   and   (87),  we  get 

f"(5)     = 
T 

l(Vi - va)| 

4Yia -h 

g"(Tl)    = 
Tx^ * Yl) 

^Ya(Yi   - Ya) 
1  - 1   - 

Ay-a* 

Tf 
(88) 

Using  these equations  and  remembering equations   (82),   then  the following 
stresses result  from equations   (71): 

xy 

(1 + YlHl + Ya)Tx 

^YxYa ^(Yi   - Ya) 

(1 + Ya)(l  - Yi)' 
YiX! 

(I + Yi)(l + Ya)T 

^YlYa 

IT, 
MY!   - Y8 

(I •<- Yi)(l   - Ya)
a 

Ya^a 

 [d-H Ya)(l ■*• Yi)' 
Ya)    [ YiXj 

(I + YiX1 + Ya)' 

YaXa 

[q + Yhja - Yf)     (i + YIX1 - Va) I 
a) YiX!    " -   YaXa   - j (89) 

where  the following notation was used: 

Xi    -    Rj1    e    z 

1^ 

X8    =    R8
2 e (90) 

with 

R,   e 1«, 1  - 
AaaY1 

(z + Yiz)a 
Ra  e 

i* a    _ =    I 
4aSYa 

(z + Yaz)3 
(91) 
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The  quantities     Rj     and     Ra     are   chosen  as   positive,   and     ij     and     is 

are  to   lie  between     -Tl    and    TT   .     Also,   it   must be  emphasized   that   the 
actual   stresses  are  the   real   part   of  complex expressions   (89). 

Stress  Concentration  for   Pure   Shear 

A shear   load    TXy     is applied  on  the  plate  with the  circular hole,   as 
shown  in  Figure 44.     If  the  hole   is absent,   the  stresses  are 

ax    =    0 Oy        = 0 Txy    =    Txy (92) 

or,   in  polar coordinates. 

CTr    =    TXy  sin  29 

an    =     -Txy  sin 29 

y 

J0     ~        "xy 

Tre     =     Txy cos   2e (93) 

Figure  44.     Shear Load  Applied  on 
Plate With Circular Hole. 

/ 

Thus,   to keep  the  hole boundary  free  of   stresses,   it  is  necessary  to  sum 
to  the   stresses   (93),  the   stresses which  take  the  values 

(°r)'. -Txy  sin  26 (Tr9)s    =     -Txy cos  26 (94) 

on the hole and zero at the infinite, 
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By using equations   (73),   we  obtain 

Q    =    T 
.    2 
1 .1 

xv      z£ (95) 

and,   from equations   (8-'t), 

P(§)   - Q(!)    =     P(T1)   -  Q(T1)     =     0 (96) 

P(?) + Q(5) 
2i Txy ji  - ^i  - -rs—j j 

Pdl) + Q(T1)    = 

»J AYia 

Tl8 

{- (' - ^)! 
(97) 

The  constants    A    and     B     of  equations   (81)   are   zero because   the   resultant 
force   (X, Y)  on  the  hole   is  zero.    With equations   (96)   and  (97) ,   from 
equations  (79)  and   (80),  we  have 

f'CS)    = 

g'-Ol)   = 

2V! (Yi   - Y2)\ V1 ^  ) 

i   T xx. 
2Ya(Vi   - Ya) 

11 - (l - ^i 

-h\ 

\ 

(98) 

With   these   results  and  witii  equations   (82),   from equations  (71)   the 
stresses are   the   real   part   of   the expressions 

; Txv (a - \f a - Y8)
8} 

h   - \) 1    ^x,       - Yax,     J 

;   ^xy fa + Yi)2 (1  + Ye)') 
Wx  - V£ \     .X,     ' " vaxw     J (99) 
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ViVa   -  L ^ (100) 
xy 2viVa      'xy      2(Yi   - Y8) 

The  meaning  of    Xj     and     X8     is  given   in equations   (90)   and   (91). 

Numerical   Results 

By using  equations   (89)   and   (99),   it   is possible  to  study  the   stress con- 
centration  around  a circular hole  on  an orthotropic  plate  under  axial  and 
shear   Loads.     A computer  program based  on these  complex  expressions was 
developed. 

A  representative value  of  the  stress concentration  originated  by a circular 
hole  is  the   stress     (ax)m    at  t^e  P0int    A    when  the  applied  load produces 
unit  stress  in the  plate without  a hole.    By using  the  computer program, 
we   obtained   the results plotted   in  Figure 45.     It  can be   observed  that  the 
maximum  stress concentration  factor   is obtained when the   axial   load  is 
applied   in  the direction  of  the   fibers    (x   ,   in   this case). 

u 
o 
o 
(0 

c 
o 

4.50    - 

« 
u 
u 
c 
<u 
(J 
c 
o 
o 

Fibers  in x direction 

tJ       4.00    - 

» 

0.2       0.4       0.6      0.8       1.0 

Figure 45. Stress Concentrations (maximum stresses sKm) 
in a Unidirectional Composite With a Circular 
Hole. 
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The  magnitude  of   the  concentration   factor   indicates  that   this  phenomenon 
is more critical   than   in   the  Isotropie  materials,  where  the   factor   is 
only 3. 

It must  be  noted  that   this analysis   is based   on   the  hypothesis  that   the 
material   constants  do  not  depend  on  x  and   y.     To  satisfy  this condition, 
the  hole  must  be  made  by cutting  the   fibers   as   indicated   in   Figure  46. 

B3 
Figure 46.     Orthotropic   Sheet. 

A more  rational  form  for  the  fibers  is  shown   in Figure 47,  where  fibers 
are not cut.     The  corresponding  stress  analysis cannot be  performed with 
expressions   (89)  and   (99)  because  now  the  elastic  constants change  from 
point  to point.     In  other words,   the material   is not quasi-homogeneous. 
However,   the  stress  analysis of  this case  can be made by using  the method 
developed  on  page  46. 

Figure 47.     Nonorthotropic   Sheet. 
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The  numerical   study was  performed  for unidirectional  composites,   in  which 
the   importance of   the  stress  concentration   factor   is more evident. 
However,  formulas   (89)   and   (99)  can also be  applied   for multilayered 
composite materials  by considering the  adequate  constants    b^.   . 
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CONCLUSIONS  AND RECOMMENDATIONS 

The  introduction  of  localized  high   loads   into a  thin  sheet  on  be  accom- 
plished  effectively hy  the  use  of  bolt   joints;   contrary to  the metal- 
lic  joints,   there  are no discontinuities  present  when  joints made  of 
filamentary composites  are used,     A  furthei   advantage  of   filamentary Joints 
is  their behavior  when   loaded  to  failure.     For  example,   after   the   first 
break  occurs,   the  joint  can  still  be   loaded  to almost  twice  the   failure 
load.     Since  the   first  break  is very easily detectable,  it   is  possible  to 
avoid continuation  of  a catastrophic   failure and   still   maintain  the   load- 
carrying capability of  a  structure. 

The  stress  analysis of composite  joints,   as presented herein,   shows  that 
an  effective   safety factor can be   obtained   that   is within  the  accuracy 
demanded  by  technical  requirements. 

In a circular  form cutout  in  a unidirectional composite,   the  stresses can 
reach values  twice  as high  as  thoso  attained  in an  isotropic  material  if 
the  fibers  terminate  in  the  rim of   the cutout.    For  this  reason,   it  is 
recommended   that   the  fibers be   led   in  a continuous manner  around   the cutout 
as  far  as  fabrication requirements  permit.     Impelled  by  the  great   poten- 
tials  of composite joints,  further   studios  of other  shapes  of  joints and 
types  of   loadings  are recommended. 
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