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Abstract 

This investigation is concerned with the diffusion of an axial 

load from a bar of arbitrary uniform cross-section that is immersed 

in, up to a finite depth, and bonded to a semi-infinite solid of distinct 

elastic properties.    The bar is perpendicular to the plane boundary of 

the embedding medium.    The determination of the desired resultant 

force in the submerged bar-segment is reduced to a Fredholm integral 

equation by means of an approximative scheme developed and tested 

earlier in connection with a more elementary three-dimensional load- 

transfer problem.    Extensive numerical results illustrating the decay 

of the bar-force, appropriate to various choices of the governing 

geometric and material parameters, are presented for the particular 

case of a bar of circular cross-section. 

Introduction 

Two-dimensional load-transfer problems,  such as those 

occasioned by the diffusion of load from an elastic stringer into a 

The results communicated in this paper were obtained in the course 
of an investigation conducted under Contract Nonr-220(58) with the 
Office of Naval Research in Washington,  D. C. 



coplanar elastic sheet,  have attracted repeated attention,  chiefly 

because of their relevance to the stress analysis and design of air- 

craft structures.    The rather extensive literature on problems in this 

category goes back in its origins to a fundamental paper by Melan [l], 

in which he dealt with the transfer of an axial load from an infinite 

stringer to an all-around infinite elastic sheet .    The problem con- 

cerning the transmission of an axial load from a transverse stringer 

(tension-bar),  a finite segment of which overlaps with, and is contin- 

uously bonded to,  a semi-infinite elastic sheet, was initially posed by 

Reissner [2].    References to related publications are to be found in 

[3],  [4],  [5], which contain some recent contributions bearing on 

Melan's and Reissner's problems. 

The diffusion of load from a bar into a three-dimensional 

elastic medium presents appreciably greater analytical difficulties. 

A comparatively simple,  if somewhat artificial,  example of this kind 

is supplied by the spatial analogue of Melan's problem, investigated 

in [6].    There we considered an infinite cylindrical bar fully im- 

mersed in,  and continuously bonded to, an elastic medium of distinct 

mechanical properties occupying the remainder of the space; the bar 

was assumed to be subjected to an axial loading,  confined to, and uni- 

formly distributed over,  one of its cross-sections.    Our objective 

consisted in determining the decay of the resultant bar-force induced 

by the given loading.    This task was performed rigorously, within 

three-dimensional elastostatics, for the special case of a bar of cir- 

cular cross-section.    The results thus obtained were then compared 

TF Within Melan's approximate formulation, this problem is mathe- 
matically equivalent to the one in which the stringer is attached to 
the edge of an elastic sheet occupying a half-plane. 
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and found to be in favorable agreement, with those deduced in [6] by 

an approximate method that is applicable to a bar of arbitrary cross- 

section. 

The work summarized in [6] was undertaken primarily as a 

pilot study for the present investigation of the three-dimensional 

counterpart of Reissner's problem, which may be described as follows. 

A finite or semi-infinite elastic bar of arbitrary uniform cross-section 

is immersed in, up to a finite depth, and continuously bonded to, an 

elastic half-space of different material properties, the cylindrical 

boundary of the bar being perpendicular to the plane boundary of the 

half-space.    The applied loading is confined to the projecting portion 

of the bar and is taken to be statically equivalent to a centroidal axial 

force.    We seek the decay of the resultant bar-force in the embedded 

portion of the bar, as a measure of the diffusion of the applied load 

into the surrounding semi-infinite medium.    This problem is one of 

basic importance in structural engineering and soil mechanics because 

of its interest in connection with anchor bars and pile-supported build- 

ings.    Moreover, its solution is not readily accessible by rigorous 

means even for a bar of circular cross-section. 

The approximative scheme employed by Melan,  and later 

adopted by Reissner,  in dealing with the plane load-transfer prob- 

lems considered in [l] and [2],   respectively,  has no direct analogue 

in the analysis of the corresponding spatial problems.    To make this 

clear we recall first the simplifying assumptions underlying [l],  [2]. 

In both instances the bar is modeled as a one-dimensional elastic 

continuum, whereas the sheet is treated as a two-dimensional elastic 
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medium within the conventional theory of generalized plane stress. 

Consequently,  both Melan and Reissner regard the bond-forces exerted 

by the stringer on the sheet as an ideal line-load and impose as a bond 

condition the requirement that the axial strain in the bar match the 

appropriate extensional strain in the sheet.    This condition, with the 

aid of the familiar two-dimensional singular solutions pertaining to a 

concentrated load at an interior point of an infinite or semi-infinite 

elastic sheet,  leads to a singular integro-differential equation for the 

desired bar-force,  the integral thus emerging being convergent in the 

sense of its Cauchy principal value. 

A strictly one-dimensional bar-model,  in conjunction with a 

bond condition based on the assumption of ideal line-contact,  is no 

longer feasible in dealing with the transfer of load into a three- 

dimensional elastic medium:  here,  in contrast to the situation encoun- 

tered in two dimensions, the strain field due to a line-load is unbounded 

along the line-segment of load-application .    Indeed, the formal ana- 

logue of Melan's formulation in the present circumstances gives rise 

to a bond condition that involves a divergent integral and is therefore 

devoid of meaning. 

To circumvent the difficulty described above,  it is essential to 

amend Melan's assumptions.    A suitable approximate formulation of 

the present problem is given in Section 1.    This formulation is based 

on an adaptation of the approximative scheme devised in [6], which 

was in turn suggested by a corresponding treatment of Reissner's 

1) 
Recall that the strain singularity associated with a concentrated 
load in three-space is one order higher than its two-dimensional 
counterpart. 
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plane problem, carried out in [5]  .    The remainder of the section is 

devoted to reducing the determination of the desired resultant force in 

the bar to the solution of an integral equation of Fredholm's second 

kind.    An essential tool for the analysis in Section 1 is supplied by 

Mindlin's [7] solution to the problem of a concentrated load acting at 

an interior point of an elastic half-space  , 

In Section 2 we specialize the characterization of the bar-force 

deduced in Section 1 for the particular, physically most significant, 

case of a bar of circular cross-section.    Here we also establish cer- 

tain asymptotic properties of the solution appropriate to the circular 

bar and present illustrative quantitative results based on the numerical 

solution of the Fredholm integral equation that governs the diffusion 

of the applied load in the present instance. 

1.    Approximate formulation of problem.    Reduction to a Fredholm 
integral equation. 

We proceed now to an approximate mathematical formulation of 

the three-dimensional analogue of Reissner's problem described in the 

Introduction.    To this end,  let {0;x.,x2,x,} be a rectangular cartesian 

coordinate frame (Figure 1) with the origin O,  spanning the three- 

dimensional Euclidean space E.    Further, let x=(x., x., x.) denote the 

position vector of points in E and call e the unit base-vector in the 

x--direction. 

Consider a finite or semi-infinite cylindrical elastic bar, the 

longitudinal centroidal axis of which coincides with the x.-axis.    We 

^   See Section 3 of [5]. 

21 See Mindlin [81 for a systematic derivation of the solution to his 
problem. 



call n the generic open cross-sectional region of the bar and assume 

n to be a bounded plane region, whose boundary   811 is a simple closed 

curve,  consisting of a finite number of arcs with continuous curvature. 

Suppose H to be the open half-space given by 

H^xUeE.x-X)}, (1.1) 

designate by D the (cylindrical)subdomain of H defined by 

D={x|(x1,x2)6n,0<x3<t), (1.2) 

and set 

nz={x|(x1,x2)€n.x3 = z}     (Oix3st), (1.3) 

where 11    is the open cross-section oi'S located at x.=z.    In particular, 

I!    and 11.  stand for the interiors of the terminal cross-sections of D, 
O v 

situated at x>=0 and x~=l,  respectively (Figure 1).    Next,  consider an 

elastic body ("embedding medium") whose interior occupies the domain 

H-D and suppose one end-portion of the bar occupies T5 and is continu- 

ously bonded to the surrounding solid throughout the interface dD-II  . 

Accordingly,  O represents the interior of the embedded segment of the 

bar and I is the length of this submerged segment.    Finally,  assume 

the entire loading is confined to the projecting portion of the bar and is 

statically equivalent to a force -ep   acting along the x,-axis,  so that 

p >0 corresponds to a tensile loading.    We seek the resultant axial 

bar-force p(x-) (O^x.^t), which governs the load-diffusion into the em- 

bedding medium, on the assumption that the latter, as well as the bar 

itself, are homogeneous and isotropic linearly elastic solids of possibly 

distinct material properties.    Let r\ and v,  in this order,  stand for 

If S is a point-set in a Euclidean space of two or three-dimensions, 
we write ? and dS for the closure and the boundary of S,   respectively. 
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Young's modulus and Poisson's ratio of the embedding medium; 

Young's modulus of the bar   will be designated by ri . 

The present approximate treatment of the problem aims at, 

and is confined in its physical relevance to, a bar with a maximum 

cross-sectional diameter that is suitably small compared to the 

length of the submerged bar-segment.    As a first step we extend the 

embedding medium throughout the half-space H and consider an elastic 

body B in H with the elastic constants r\,  v of the original material in 

Tf-D.    Next, we introduce a fictitious reinforcement B* of the body B 

throughout the region O (Figure 2).    The reinforcement B^ is chosen 

in such a way that the "composite solid" occupying D is "equivalent" 

to the actual immersed bar-segment B   in the sense that its extensional 

stiffness is the same as that of B .    We thus assign to the reinforce- 

ment Bjj, the modulus of elasticity T\   given by 

T^sV-T^O. (1.4)2 

In what follows we treat the extended embedding medium B as a 

three-dimensional elastic continuum within the framework of classical 

elastostatics.    In contrast, we regard the fictitious reinforcement B^ 

as a one-dimensional elastic continuum as far as its constitutive law 

and equilibrium conditions are concerned.    Accordingly, B* is governed 

by the stress-strain relation 

XP*Ws1V*W (o**^). (l-5) 

if A is the area of 11, p#(z) is the scalar axial force in B^ at x.=z, 

positive if tensile, and ejje(z) is the associated axial strain.    Further, 

TT Poisson's ratio of the bar does not enter into the subsequent analysis. 

' Note that (1.4) rules out the practically uninteresting case in which r\<r\. 
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the equilibrium requirement for B^ furnishes the differential equation 

P (z)+q(z)=0 {0<z<l), (1.6)1 

where jgq(z) is the "bond-force" per unit bar-length exerted by B on B,* 

at x~=z.   In addition to the distributed bond-force of scalar density 

q(z) (0<z<'t), B^ is subjected to the external axial forces -ep^fO) and 

ep+(^). concentrated within the terminal cross-sections 11   and ü , 

respectively:  -gp^iO) is the portion of the applied load -£p   trans- 

mitted to B^ directly, whereas cp^C-t) is the bond-force communicated 

by B to B^ at x-si (See Figure 2). 

The forces external with respect to the body B (extended matrix) 

consist of the distributed bond-forces of lineal density -£q(z) (0<z<t) 

exerted by B# on B, together with the load-portion -e[p  -p4l(0)] trans- 

mitted to B directly at x3=0 and the bond-force -gp+il) concentrated 

within IT..    We assume the foregoing forces to be uniformly distributed 

over the respective cross-sections IT (0<z<'t), 11 , and 11. (See Figure 2). 

Let a., and e.. (i, j=lt2, 3) be the cartesian components of the 
J J 

fields of stress and strain induced in the body B by the system of exter- 

nal forces acting on B.    Further, for every x€fl-!T^ and every C€[0, t]t 

let £;{(£• C) and e. .(x, C) represent the stresses and strains at the point 

£ of the semi-infinite medium B due to a uniform body-force distribu- 

tion over the closed disk 11-,  acting in the negative x,-direction, f e 

resultant applied force having unit magnitude.   With the aid of these 

influence fields one has, for every point x€H-7! -0., 

aij<i!S)^Po-P*<0)]dij<X» 0)+P^l)6i.{&,l)^q{Q)6.i{x. C)dC.    I  (1 7) 

TT If v is a differentiate function of one variable, we write v for the 
derivative of v. 
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eij(*)=[Po-P*<0>]gij(^0)+P*^)8ij(2^)+J(l(Oeij(x,C)dC.      >    (1.7) 

Integral representations for the influence fields Ö.. and |.. 
•I »I 

entering (1. 7) are,  in turn, immediately obtainable from Mindlin's [7], 

[8] solution for a concentrated load applied at a point of an elastic 

half-space.    Indeed, designating by 5..(x, C) and e..(x, C) the stresses 

and strains of Mindlin's solution appropriate to the semi-infinite solid 

B and corresponding to the unit concentrated load in the negative 

x.-direction applied at (0, 0, C), one has 

V^)4 JV^OdA..    V*.04 J €   (x-l.OdA (1.8)1 

for all ^R-II-(O^C^-t).    Explicit representations for &.. and e..,  in 
9 J J 

closed elementary form, will be cited later on. 

Let p(z) be the desired axial bar-force at x.=z in the immersed 

bar segment B .    Then, within the approximation under consideration, 

p obeys 

p(z)=p1)|(z)+Jo33(x)dA (Otzzt), (1.9) 

"z 

where p(0)=p(0+) and p(^)=p(^-).    In order to render p fully determinate, 

one needs to adjoin to (1.9) a suitable bond condition that links the 

deformations of the fictitious reinforcing bar B* and those of the 

extended embedding medium B.    For this purpose we adopt the require- 

ment that the axial strain tAz) in B* be equal to the cross-sectional 

average over üz of the extensional strain €-,(x) in B.    Consequently, 

TT '  
' Here and in the sequel the subscript attached to the element of area 

indicates the variable of integration. 
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n„ 
(1.10) 

with the understanding that the integral in (1. 10) for z=0 and z=t is to 

be interpreted in the sense of its corresponding limits as z-»0 and z~*l 

from the interior of the interval [O.-t],    Equations (1. 5) to (1. 10) suf- 

fice to characterize p(z) completely over the range 0*z£l. 

With a view toward making the foregoing characterization of the 

bar-force p more explicit, we define the auxiliary influence functions 

a and e through 

a(z, C)=^ J 033(x, C)dA {0*z*t, 0sC«t, zH). 

n. 

e(z, C)=^ J c33(x. C)dA (0*zel, O^C^. zH). 

(i.ii) 

(1.12) 

supplemented by 

o(0,0)=a(0+,0),  a{l,l)=a{l-,l), 

e(0,0)=e(0+,0),   e{l,l)=t(l-,l). 

It will be shown subsequently that the limits involved in (1. 12) exist. 

Further,  o(z, Q) and e(z, C).   regarded as functions of C. will be found to 

possess merely finite jump discontinuities at Q=z for each fixed z in the 

open interval (0,1).    The physical significance of a and e as stress and 

strain averages associated with the influence fields Ö.. and e.. is imme- 

diate from (1. 11),  (1. 12). 

We now substitute for ^33(x),  e-^x) from (1. 7) into (1. 9),  (1. 10) 

and — after a permissible reversal in the order of the two integrations — 

invoke (1. 11),  (1. 12), as well as (1. 5), (1. 6), to arrive at 
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p(z)=P4t(z)+A{[po-p:jt(0)]a(z, 0) 

I 

+P1(t(Wz^)-Jp)fc(C)0(z,C)dc}   (Osz^), (1.13) 
0 

X~P*{*Hpo'P*iO)U{z,0) 

+P1>Wc(2,t)-Jp)ec(C)e(z.C)dC (Osz^). (i.U)1 

0 

Observe that the influence functions Q and e are computable, for a bar 

of given cross-section 11, from (1. 11), (1. 12) in conjunction with (1.8) 

and Mindlin's solution [?].    Hence (1. 14) constitutes an integro- 

differential equation for the fictitious bar-force p^.    Moreover,  once 

pAz) (O^z^-t) is known, the actual bar-force p(z) (Osz^t) follows from 

(1.13). 

Our next objective is to reduce (1. 14) to an ordinary integral 

equation of Fredholm's second kind and,  at the same time, to trans- 

form (1. 13) into a more convenient form.    In order to accomplish this 

purpose we require more detailed information as to the structure of 

the influence functions 0 and e, which are related through (1. 8),  (1.11) 

to Mindlin's [?] solution.    The latter furnishes for every C^CO.-t] and 

every x€H (x^eC), 

*33^C)=S^rrv){2(l-v)v1(x-eC)-(x3-C)v2(x-eC) 

+2(l-v)v1(x+eC)-[(3-4v)x3+C]v2(x+eC)+2Cx3v3(x+eC)}.    (1. 15) 

' In deducing (1. 14) we excluded the degenerate case ^=0,  i. e. , r\=r], 
which requires separate attention.    We shall return to this case at 
the end of Section 1. 
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S3^C)=S^T^{2(1'2V)V1(—C,"(X3-C)V2(^^) 

+2(l-2v]Fv1(Ä+cC)-[(3-4v)x3+(l-4v)Clv2(Ä+fiC)+2Cx3v3(x+eC)}.   (1.16) 

where 

"(~,=■&(fi)(n=1'2•3,• 
(1.17) 

We now define functions U and Vn (n=l, 2, 3) by means of 

dAe 
U^=-iJ|xjforall5€E' 

n. 
)       (1.18) 

8 
n 

8x- 

Thus U is the Newtonian potential of a uniform mass distribution of 

density -1/A over the disk no.    From (1. 18) follows, for every ^€E-1T0, 

"3 r 
dAs , r ls-il2-3x^      ) 

vi x =T     "; TT'    V,(x)=4-      c-^dA. 1 n M1     2     ^nTlF    ^ 

v3W-ir\ 
Sx.   -  5x2.3|x-?| 

)      (1.19) 

n. k-ä 
7—dA?. 

Finally, we introduce functions W   (n = l,2,3) by setting 

W n(z) = ^J VnU)dA (0<(z|<oo),    (n=1.2,3). (1.20) 

As is readily confirmed with the aid of (1.8),  (1. 11) and (1. 15), (1. 16), 

(1. 17), by recourse to (1. 18),  (1. 20), the functions a and c admit the 

representations 
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a(z,C)=I^(Tr7){2(1'v)Wl(z"C)"(z"C)W2(z"C)+2(1"v,Wl(z+C) 

-[(3-4v)z+C]W2(z+C)+2CzW3(z+C)}   (0*z<il,0*Q*l,zH), (1.21) 

e(z'C)="54T^Ti{2(1"2v)Wl<z-C)-<z_C>W2(z"C)+2(1"2vl'2wi(z+C) 

-[(3-4v)z+(l-4v)C]W2(z+C)+2CzW3(z+C)}  (O^zSt, O^C^, z^C).      (1.22) 

The behavior of the functions a and e is accordingly governed by, 

and may be inferred from, the properties of W   (n=lt 2, 3) given by (1. 19), 

(1. 20).    The functions W ,  in turn, are evidently continuous and possess 

continuous partial derivatives of all orders at all points of the real axis 

with the exception of the origin.    Moreover,  (1.19),  (1. 20) permit one 

to show that 

W1(0+)=-W1(0-) = ^f.   limfz^W (z)]=0 (n=2,3). (1.23)1 

z-»0 

Now let f and g be functions defined by 

C(z, C)=^[h(z-C)+f(z. C)]  (OSz^, O^C^. zK), 

e(z,C) = 2|14^j[(l-2v)h(z-C)+g(z.C)l   {0*z*l,0*Q*l,zK). 

where 

h(z) = l  (0<z<oo),     h(z)=-l   (-oo<z<0). (1.25) 

It is clear from (1. 21),  (1. 22),  (1. 23) and the regularity properties of 

W   (n=l, 2, 3) described above that f and g so defined are continuously 

)    (1-24) 

differentiable on the slit square 

S={(z, C) I OSzst, O^C^, zK) (1.26) 

See the Appendix at the end of the paper for a sketch of a proof of (1.23). 
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and coincide on S with functions continuous on the closed square 3. 

Consequently, the partial derivatives 8f/8C and dg/dQ, for each fixed 

z€[0f t], are integrable functions of Q on [0, £]. 

At this stage we substitute for a and e from (1.24) into (1. 13), 

(1. 14), bearing in mind (1. 12).    We then apply an integration by parts 

to the integrals appearing (1. 13),  (1. 14), taking proper account of the 

jump discontinuities    inherent in the step-function h.    This procedure, 

which derives its legitimacy from the previously established regularity 

properties of f and g — provided the unknown function p^ (fictitions bar- 

force) is assumed to be continuously differentiate on (0, •t) and con- 

tinuous on the closed interval [0, t] — yields after an elementary com- 

putation. 

I 
ri . (i+v)(i-2v)i   . .    n-v    r   .r.d   ,   .... 

0 

{l+v)p 
= ZTTT^[l-2v+8(z'0):i  (0««^).     (1.27) 

K 

p(z)=^[l+f(z, 0)1 + j Jp#(C)|^f(8. C)dC  (O^zsl). (1. 28) 
0 

For a specified cross-section 11 of the original bar, explicit 

integral representations of the functions f and g entering (1. 27),  (1. 28) 

are obtainable from their definitions in (1. 24) together with (1. 19) to 

(1. 22).    Equation (1. 27) is therefore an integral equation of Fredholm's 

second kind for the fictitious bar-force p..    This integral equation is 

readily amenable to a numerical solution.    Once p. has been found, the 

See the definition (1. 25) of h.    The range of integration [0,4-1 needs 
to be decomposed into the subintervals [0, z] and [z, £]. 

i 
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actual bar-force p — which is the primary unknown in the problem 

under consideration — is determined by (1. 28). 

The value of p(0) may be extracted directly from (1. 28).    For 

this purpose observe from (1. 11),  (1. 8) that 

O(0, C)=0 (0<C*t). (1.29) 

Now (1. 29),  (1. 24), in view of the regularity properties of f established 

earlier, lead to 

JZ*^' C,L=0="3?f(0' C)=0 <0<^).  f(0+. O^1- 0- 30) 

Consequently,  (1. 28) implies 

p(0)=po, (1.31) 

so that — in contrast to the situation encountered in the analogous 

treatment of Reissner's plane problem   — no concentrated load-transfer 

occurs at z=0. 

Equation (1. 27) is inapplicable   for r
l#=

r1 -11=0, i. e. , when the 

bar and the surrounding solid have the same modulus of elasticity.   In 

this degenerate instance pl|(=0 on [0,^] according to(1.5), and thus (1. 28), 

because of the last of (1. 30), gives way to 

p 
p(z)=-^[l+f(z,0)] (0<zst),   p(0)=po. (1.32) 

Finally, we note that elimination of q from the first of (1.7) with 

the aid of (1. 6), and a subsequent integration by parts, lead to the 

representation 

J 
0 

ai.(x)=podi.(x, 0)+Jp1,(C)|^dij(x, C)dC for all x€TM5        (1. 33) 

'    See Section 3 of [5]. 

2) '   See the footnote attached to (1. 14). 
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of the stress field in the original embedding medium, the influence 

field d.. being known from (1. 8) and Mindlin's solution [?]. 

2.    Specialization to a bar of circular cross-section.    Asymptotic and 
numerical results.    Discussion."    """   —■—- 

In this section we specialize the characterization (1. 27),  (1. 28) 

of the bar-force p by considering the particular case of a bar of cir- 

cular cross-section.    Thus, henceforth 

n = {(x1,x2)|xj+x^<a2),   A=ira2, (2.1) 

where "a" is the radius of the cross-section.   With a view toward 

expressing the functions f and g entering (1. 27), (1. 28) in convenient 

explicit form, we set 

x.=rcos9,   x2=rsin0  (0<r<ao, 0s9<2tr), 

^jspcoscp,   ?2 = psincp (0<p<ao, 0«P<2IT), 

and recall that the Newtonian potential at (x.,x2,x.) of a particle 

situated at (?., ?2» ^ admits the Laplace-integral   representation 

[(x1-§1)
2+(x2-?2)2+x2]"1/2= 

oo   

Jexp(-|x3|s)Jo(s/r2+p2-2rpcos(e-cp)')ds (2.3) 
0 

for all ;&€E except £=(5ii ?,, 0).    Here J0 is the zero-order Bessel 

function of the first kind.    Consequently, the disk-potential U defined 

by the first of (1. 18) may in the present instance be written as 

a 2ir oo 

U(x)=—^J   J   Jexp(-|x3|8)Jo(s/-2+p2-2rpcos(e-cp)')pdsdcpdp     (2.4) 
1Ta   0   0    0 

(2.2) 

^ Watson [9],  p. 384. 
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for every x€E.    Next,  recall the series expansion 

n—z ' 
J (s/r +p  -2rpco8(e-cp))=J (sr)! (sp) o'    ' o' 

00 

+2 Y J (8r)J (8P)cos[n(e-cp)].        (2. 5) 
£-i   n n 

n=l 

in which J   denotes the Bessel function of the first kind of order n. n 

Substituting from (2. 5) into (2. 4) and bearing in mind that 

a 
2 

Jjo(sp)pdp = |j1(sa)  (0<s<oo), (2.6) 

one obtains, after a permissible interchange of the order of the integra- 

tions in (2. 4) and upon a legitimate termwise integration with respect 

tocp, 

00 

U(x)=-|Jiexp(-|x3|8)Jo(8r)J1(sa)d8 for all Ä€E. (2. 7)3 

0 

Equation (2. 7) in conjunction with the second of (1. 18) now 

yields 

oo 

VX)^!^11^)^ J8n"lexP<-lx3l8)Jo(sr)Jl(8a)dB 

0 

for all x6E-8H (n=l,2,3), (2.8) 

where h is the step-function introducing in (1.25).    Inserting V   from 

(2. 8) into (1. 20) and carrying out the area-integration (over the circu- 

lar region 11 ) under the improper integral, as is justified, one is led 

to 

**  Watson [9], p. 358. 

2)  Watson [9], p. 18. 

3) 7  This integral representation for the Newtonian potential of a uniform 
circular disk is originally due to Weber [10]. 
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Wn<z)=-"^r[-h<z>:|nRn('z') (0<W<oo).   (nsl.2»3). (2.9) 

provided R  , for every positive integer n, is the function defined by n 

oo 

R  (t)san"1 [sn'2exp(-t8)[j1(a8)]2d8 (0<t<oo). <2. 10) 

Evidently,  R    is continuous and has continuous partial derivatives of all 

orders on (0,oo). 

It is clear from (2. 9).  (1. 21), (1. 22), that the influence functions 

a and e may now be expressed in terms of the integrals R    (n=l,2,3), 

the step-function h, and elementary functions.    Once this has been 

accomplished, the respective "continuous parts" f and g of 0 and e are 

obtainable directly from (1. 24).    In this manner one arrives at the fol- 

lowing results for a bar of circular cross-section: 

f(z,C) = -I~{(l-v)h(z-C)[2R1(|z-C|)-l]+2(l-v)R1(z+C) 

+ ^R-(|z-Cl)+[^+(3-4v)^]R,(z+C)+^R,(z+C)), a a 
^(2.11) 

/ 

g(z,C)=(l-2v)h(z-C)[2R1(|z-C|)-l]+2(l-2v)2R1(z+C) 

+^R2(lz"cl)+C(1"4v)r+(3"4v)i:iR2(z+C)+^TR3(z+C) 

a 

for all (z, C) in the region S given by (1. 26) .    The required partial 

derivatives of f(z, Q and g(z, Q with respect to C are readily computed 

from (2. 11) with the aid of the recursion relation 

1 
V^-^n+lW  <0<t<Oo)' (2. 12) 

TT As was pointed out in Section 1, the functions f and g may be con- 
tinuously extended onto S.    This claim may be confirmed in the 
special case at hand by means of (2. 11) and asymptotic estimates of 
R  (t) as t-»0, which will be cited later on (See (2. 18)). 
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^(2.13) 

which is implied by (2. 10).    This computation furnishes 

|rf(z,C)=—^—g{(l-2v)a2[R2(|2-Cl)-R2(z+C)]+a|z-C|R,(|z-C|) \ öt (l-v)aJ t c i 

-a[C+(l-4v)z]R3(z+C)-2zCR4(z+C))   (Oiz^, O^C«/, z^C), 

|^g(*.C)=4{(l-4v)a2R2(|z-C|)-a-4vf8v2)a2R2(z+C)+ah-C|R3(k-C|) 

-(l-4v)a(z+C)R3(z+C)-2zCR4(z+C)}  (Oszst, 0<C^. iK). 

We adjoin here the analogous representation for the partial derivative 

of f(z, C) with respect to z, which will also be needed subsequently. 

{(I-2v)a2[R?(|z-C|)-R,(z+C)]+a|z-CMz-Cl) l^z.Q*-^- 
(l.v)a 

a[C-(3-4v)z]R3(z+C)+2zCR4(z+C)}   (0«z<t, O^Cst, z^C).      | 
(2. 14) 

It is essential for numerical purposes, as well as for the 

asymptotic study of the actual bar-force p near the ends of the embedded 

bar-segment, to examine in detail the singular behavior at z=C of the 

partial derivatives listed in (2. 13),  (2. 14).    This behavior, in turn,  is 

evidently governed by the asymptotic character of R (t) as t-K).    The 

functions R  , introduced through (2. 10),  are expressible in terms of 

the complete elliptic integrals of the first and second kind.    Indeed, with 

ir/2 

K(k)= J 
vIZ 

dcp 

0/l-k2sin2cp 

,   E(k)= J/l-k sin cp dcp, 
0 

ksk(t) = 2a 
>   (2. 15)1 

/W 
(0<t<oo), 

1) Our previous use of "E" for the entire space ought not to cause 
confusion. 
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one has 1 

)   (2.16) 

Rl(t)4"^k[K(k)"E(k)]  (0<t<00)' 

R2(t)=^[(2-k2)K(k)-2E(k)] (0<t«x)), 

2 
R3(t)="^K<k)*a(irtk ^E(k) (o<t<o0)' 

3 

R4(t)=:1¥K(k)+^^[2(a/t)2■k2:lE(k, (O<t<00)- 

Equations (2. 16) confirm the analytic character of R    (n=l,2,3,4) on 

(0, oo).    Now, from the last of (2. 15) and familiar asymptotic estimates 

of K(k), E(k) as k-1, follows 

(2. 17) 

>   (2.18) 

K(k(t))=-log(t/8a)+0(riogt) as t-»0, 

E(k(t))=l+0(t2logt) as t-0. 

Combining (2. 16) and (2. 17),  one thus arrives at the estimates 

Rj^sy+O^logt) as t-0, 

R (t)=-i[log(t/8a)+2]+0(t2logt) as t-0, 

R3(t) = H+0(tl0gt)  a8 t"0' 

2. 
R  (t)=.2_+0(logt) as t-0 / 

■tttc 

Equations (2. 18) enable one to remove from the partial derivatives 

(2. 13),  (2. 14),  in closed elementary form, those contributions that 

become unbounded as Q—z (0£z£<t).    We now cite the decompositions thus 

established. 

' See Eason, Noble, and Sneddon [11] for the first three of (2. 16); the 
last of (2. 16) is easily deduced from the preceding one with the 
aid of (2. 12), (2. 15). 

2) See, for example, Oberhettinger and Magnus [12], p. 3. 
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|^£(z.C) = -i714^I{(l-2v)log[|z-C|/(«+C)]+irF(z.C)}, 

|^g(J!,C)=~{(l-4v)log[|z-C|/8al-(l-4v+8v2)log[(z+C)/8a] 

+ffG(z, C)}   (0«z<:t,Oi:Cs/, z^C). 

)    (2. 19) 

8 
SI1 

(2.20) 
:f(*,C)=^T^yI{(l-2v)logC|z-a/(z+C)]+TTH(z.C)) 

(Oszi-t, (hiC^. z/C). 

where F, G, H, are new functions to be discussed presently. Let S be 

the plane region obtained by deleting the origin from the closed square 

S,  so that 

S/ = {(z,C)|0<z^t,0<C^'tl. (2.21) 

The functions F, G,  and H are bounded and continuous on S ; moreover, 

for any fixed direction of approach, they possess limits as (z, C)",(0, 0). 

Explicit representations are needed merely for F and G: 

F(z, C)=-(l-2v){R2(|z-C|)-R2(z+C)+^log[|z-C| /(z+C)]) 

4r{a|z-C|R3(M)-aCC + (l-4v)z]R3(z+C)-2zCR4(z+C)) 

(0«;z^t, O^C^.z/C). 

F(z, z)=i^ + (l-2v)CR7(2z)+-log(z/4a)] 

-7 a 

)    (2.22) 

+ -^[(l-2v)azR3(2z)+z2R4(2z)l (0<zs/.), F(0, 0+)=0; 

G(z,C)=-(l-4v)lR2(|z-C|)+^log[|z-C|/8a]} 

+ (l-4\H-8v2){R2(z+C)+^log[(z+C)/8a])--^{a|z-C|R3(|z-C|) 
a 

/ 

>     (2.23) 

TT Recall (1.26). 
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-(l-4v)a(z+C)R3(z+C)-2zCR4(z+C)}   {0*z*l,0*Q*l.ztQ), 

1.8v 2r 1 . )(2.23) 
G(z, z) = -I-^+(l-4v+8v )[R,(2z)+-i-log(z/4a)] f    cont. 

+ -i[(l-4v)azR,(2z)+z2R/1(2z)](0<zst),G(0,0+)=-^üi^. 
a ' 

Equations (2. 19),  (2.22),  (2.23), together with the elliptic- 

integral representation of R    (n=2,3,4) contained in (2. 16),  supp'y — in 

a form suited to numerical purposes — the kernels 8f(z, C)/8C and 

3g(z, C)/9C involved in (1. 27),  (1. 28) for the case of a bar of circular 

cross-section.    Further, the values f(z, 0), g(z, 0) (0<zs-t), which are 

also needed in connection with (1.27), (1.28), are computable from 

(2. 11),  (2. 16) for 0<z4l, while 

f(0+,0) = l,   g(0+,0)=(l-2v)2, (2.24)1 

as is easily verified on the basis of (2. 11),  (2. 18).    The Fredholm 

integral equation (1.27), which determines the fictitious bar-force 
2 

p^(z) (Qzz^l), may now be solved numerically for any admissible choice 

of the elastic constants t) , r\, and v. To accomplish this task the range 

of integration [0,f] in (1. 27) was partitioned uniformly. The contribu- 

tion to the improper integral arising from the (integrable) logarithmic 
3 

singularity   of the kernel dg(z, C)/dC, at z=C wa8 then evaluated in closed 

elementary form (in terms of the values of p. at the mesh-points of the 

partition) upon replacing p. by a continuous, piecewise linear function. 

On the other hand, the ordinary trapezoidal rule was used to compute 

' Note the agreement between the first of (2. 24) and the last of (1. 30). 

' Recall from (1. 4) that T^rrj'-T^O and see the footnote attached to (1. 14). 

3) See (2. 19). 
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the contribution to the integral under consideration stemming from the 

bounded portion G of the kernel, which is given by (2. 23).    In this 

manner (1. 27) was reduced to a system of linear algebraic equations, 

whose solution was obtained on an electronic computer.    Once PA(Z) 

(0£z£t) had been so determined, the desired actual bar-force p(z) 

(Osz^-t) was found from (1. 28) by means of a numerical evaluation of 

the improper integral in (1. 28) that is strictly analogous to the numer- 

ical integration scheme described above. 

Before proceeding to the results thus established, we investigate 

the asymptotic behavior of p(z) at the endpoints z=0 and z=t of the em- 

bedded bar-segment.    Substituting for a from (1.24) into (1. 13) and 

differentiating the resulting identity with respect to z, one draws 

(z.O) (z.*-) 

I 

-.|rP*(C)llf<z'^dC} <0<z<'t')- 

)   (2.25) 

Moreover, for the bar of circular cross-section, df{z,Q)/dz admits the 

representation (2.20).    Next, we suppose that for some fixed a>l,  ps|t 

is absolutely integrable on [0,-t] and invoke the Holder inequality   to 

justify the estimate 

lK(C)|i^C)dCl<J|p,(C)|adc] [Jl^.C^dc] . 
0 0 0 ^   (2.26r 

a>l, ^+^ = 1.   (O^zst). 

■p 7—1  
' See, for example,  Beckenbach and Bellman L13J,  p. 21. 

2) ' Note that the second integral in the right-hand member of (2.26) exists 
by virtue of (2.20), for every ß>0.   Further, it is not difficult to show 
that this integral is bounded for Ozzzl. 
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Consequently, the integral in the right-hand member of (2.25) is 

bounded on (0,1) under the foregoing rather weak assumption concern- 

ing p .    In these circumstances it follows from (2. 25) and (2. 20) that 

p(z)=0(l) as z-»0, ] 

(l-2v)p#(t) >   (2.27) 
P(z)=   2ff(l.v)a   log[(t-z)/a]+0(l)  as z~l J 

Next,  it is essential to examine the manner in which the various 

physical parameters enter the solution of the problem under consider- 

ation.    To focus attention on this issue, we now write 

p(z)=p(z;po,a, t.ri'.T^v)  (0«z*t), (2.28) 

where,  it will be recalled, the parametric arguments p , a, £, V, TI and 

v,  in this order,  stand for the applied scalar bar-load, the radius of 

the bar, the length of the embedded bar-segment,  Young's modulus of 

the bar.  Young's modulus of the surrounding medium,  and Poisson's 

ratio of the latter.    It is clear from the structure of (1. 27), (1. 28), in 

view of (1.4),  (2. 11),  (2. 13),  and (2. 10), that the solution may be cast 

into the dimensionless form 

p(z)/po=*(z/a;Va,Ti//Tl,v) (0*z/a<:l/a). (2.29) 

so that the dimensionless (normalized) bar-force p(z)/p   depends exclu- 

sively upon the dimensionless depth-coordinate z/a, the length-ratio t/a,, 

the stiffness-ratio ri/r|,  and the Poisson-ratio v.    The function ^ in 

(2. 29) is independent of t/a. and v for T] /r\=l, i. e. ,   if the bar and the 

embedding medium have the same modulus of elasticity.    For this 

degenerate limiting case,  (1.32), the first of (2. 11),  and (1.25) furnish 

p(z)=2po[R1(z)+jR2(z)] {0<zil)t  p(0)=po, (2.30) 

with Rp R2 given by (2. 15),  (2. 16). 
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We turn now to the discussion of illustrative numerical results 

for the decay of the actual bar-force p, which are depicted graphically 

in Figure 3 to Figure 8.    The load-diffusion curves displayed in these 

diagrams show the normalized bar-force p(z)/p   as a function of the 

dimensionless depth-coordinate z/a for O^z/asl/a and various choices 

of the dimensionless physical parameters l/a, ri'Al,  V.    Each of the six 

figures under discussion refers to a single Poisson's ratio v of the 

embedding medium, to two values of the length-ratio Va,  and to four 

distinct choices of the stiffness-ratio t] fr\.    The thirty-six combinations 

of parameter-values covered by the graphs presented here are listed 

in the following table. 

Figure 3:  v=0; t/a=  5, 10; T)'/TI=1, 2, 4, 8. 

Figure 4:  v=0; i/a=10,20; ri'/rirl, 2, 4, 8. 

Figure 5: v=^; Va= 5, 10; T//TI=1, 2, 4, 8. 

Figure 6: V=T; </a=l0,20; ^7^=1,2, 4, 8. 

Figure 7:   \)=^', 1/A=  5, 10; Ti'/n=l, 2, 4, 8. 

Figure 8:  v^; t/a=10,20; ri7ri=l, 2, 4, 8. 

As is apparent from this table, the load-diffusion curves appropriate 

to lja.= lQ in Figures 3, 5, 7 are,  for comparison purposes,  repeated 

in Figures 4, 6, 8. 

All of the curves under consideration represent functions p(z)/p 

that are steadily decreasing throughout their interval of definition 

Osz/a^-t/a.    Further, in each instance. 
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p(0)/po=l.   p{l)/po>0, (2.31)1 

the first of (2. 31),  according to (1. 31), being valid for a bar of 

arbitrary cross-section.    Therefore, no part of the applied load is 

communicated to the embedding medium through bond-forces concen- 

trated at z=0t whereas a portion of the load is transmitted to the 

surrounding solid through bond-forces concentrated at the terminal 

cross-section of the bar.    The graphs indicate that this load-portion 

increases with the stiffness-ratio and is a decreasing function of the 

length-ratio; in the examples to which Figures 4, 6, 8 refer, the frac- 

tion of the load transferred at the embedded end of the bar is less 

than 10% for l/a.= l0 and less than 5% for Va=20. 

The absence of any concentrated load-transfer at z=0, predicted 

by the current solution, is interesting in view of the corresponding re- 

sult encountered earlier in an analogous treatment of Reissner's plane 
2 

load-transfer problem  :  there, a substantial part of the load was found 

to be transmitted to the sheet at the junction of sheet and stringer.    On 

the other hand, as was shown in [5],  singular load-transfer at either 

end of the attached stringer-segment is precluded within Reissner's [2] 

original formulation of the plane problem. 

For all illustrative examples considered here, the initial slope 

(at z=0) of the load-diffusion curve is finite in agreement with the first 

of (2.27); the infinity of the end-slope at z=t,  predicted by the second 

'  The analytical determination of p('t),  on the basis of (1. 27),  (1. 28), 
appears to offer serious difficulties even for the circular bar.    In 
the degenerate case Tj Al=l, p[t) for the circular bar is immediate 
from (2.30),  (2. 15),  (2. 16). 

2) See Section 3 of [5]. 
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of (2.27)    if v^l/2,  is not discernible on the scale of Figure 3 to 

Figure 6. 

As is intuitively plausible, each of the diagrams reflects a less 

rapid diffusion of the load with rising values of the stiffness-ratio. 

Even for a relatively stiff bar of sufficiently large length-ratio, however, 

most of the load-transfer takes place in the vicinity of the surface of the 

embedding medium and — in this range — is quite insensitive to changes 

of the length-ratio.    To illustrate this observation, we refer to 

Figure 6 (v=l/4) and regard the bar-radius as fixed.    An inspection of 

the curves in this figure reveals that for r\ /r\^8 and ^=20a over half of 

the applied load is transferred to the matrix by the bar-segment in the 

range 0<z<;4a.    Further, the dashed curves appropriate to t=10a are, 

in this range, practically indistinguishable from the corresponding 

solid curves  , which pertain to ^=20a.    Accordingly,  here very little 

benefit is derived from a doubling of the embedded bar-length.    This 

finding, which is also borne out by the results given in Figure 4 and 

Figure 8, would appear to be significant for design purposes. 

In conclusion we emphasize onre more that the analysis carried 

out in this section is bound to be inadequate unless the length of the 

embedded segment of the bar is sufficiently large compared to the bar- 

diameter. 

P*(^) wa8 found not to vanish in the examples dealt with numerically. 

'  The dashed and the solid curve for Tl7n=l arc identical in all figures 
since here p is independent of the length-ratio,  as well as of v. 
See (2. 30) and the remarks preceding (2. 30). 
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Appendix:   Proof of the limit-relationa (1. 23). 

We indicate here a proof of the limit-relations (1. 23) pertaining 

to the functions W    (n=l,2, 3) defined by (1. 19), (1. 20).    In order not to 

detract from the essence of the proof, we shall confine our attention to 

a cross-sectional domain 11, the boundary 811 of which is a simple 

closed curve with continuously varying curvature .    Accordingly, 

denoting by s the arc-length of du (measured counter-clockwise from 

an arbitrarily chosen fixed point of the closed curve at hand) we assume 

that du admits the parameterization 

allrx^X^s), x2=X2(s)  (0«5so). (1) 

where X, and X, are functions twice continuously differentiate on 

[0, s  ], while 

yO)=Xp(so),  Xp(0)=lß(8o).  Kp(0)=Xp(so)  (P=l,2). (2) 

s   being the total length of 811.    The curvature K of 811 is given by 

K(8)=X1(s)X2(8)-l2(8)X1(s) (3) 

and, for convenience, we set 

m= max   |K(S)|. t «^L. (4) 
0<8<8 

O 

Next, let 11   be the closed band-shaped sub-region of IT consisting 

of all points in n whose perpendicular distance from 811 fails to exceed 

t0, i.e. , 

n/ = {(x1,x2)|(x1,x2)€n, [Xl-X1(8)]2+[x2-X2(8)]2^ (0«:s^8o)). (5) 

Further, for every point (x.,x2) in 11 , let s(x.lx2) be the arc-length 

' The following argument is easily generalized to accommodate a 
boundary 811 that exhibits corners, but is composed of a finite number 
of arcs with continuous curvature. 
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associated with that orthogonal projection of (x.( x.) onto 811 which has 

the smallest distance from (Xj,x_); also, let t(x.tx.) be the distance 

of this orthogonal projection from the point (x., x_).    Evidently, 

8(x.,x-) and t(x.,x.) define an orthogonal curvilinear coordinate-net 

on n .    The underlying coordinate transformation is characterized by 

x1(8,t)=X1(s)-tX2(s), 

(6) 
x2(8, t)=X2(s)+tX1(s)  (0«s<so, 0SUto), 

and the mapping (6) is one-to-one on 11 ;  indeed,  its Jacobian obeys 

AY     Av        Av     Av 

the inequality being a consequence of (4).    Finally,  for every (x.,x2) 

in 11, we adopt the notation 

v2.,. .2^.2. E(x1,x2) = {(?1,?2)|(?1-x1)%(?2-x2rsu<:{x1,x2)}, 

U(x1,x2)=minV(?1-x1)
2+(?2-x2)2,   (5^ ?2)68n. 

)      (8) 

so that E(x.,x2) stands for the interior of the largest closed circular 

disk contained in ü and centered at (x.,x,). 

Having disposed of these geometric preliminaries, we recall 

from (1.20), (1.19). and (I. 3) that 

W1(z) = ^Jvi(x1,x2,z)dA (0<|z|<a>), (9)1 

n 

where 

' Note that we now write (x.,x2,x-) in place of the single vectorial 
argument x. 

I 
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V1(x1.x2,2) = ^J(p2+z2)_3/^dA5,  p2H(x1-?1)2+(x2-?2)i (10)J 

for all (x1,x2)€n and all z^O.    From (9) follows the estimate 

2ir 

in which 

|w1(z)-ifh(z)|5:M(z)+N(z) (0<|z|<oo), 

M(z) = ^J    |vi(x1,x2,z)-^h(z)|dA, 
n-n' 

N(z) = ^ J|vi(x1,x2,z)-^h(z)|dA (0<|z|<oo), 

n' 

(H) 

/    (12) 

whereas h is the step-function defined in (1. 25).   In order to establish 

the first two of (1. 23) it suffices to show that M(z) and N(z) tend to 

zero as z-*0. 

Now fix (x,,x2) in 11, write E and u in place   of £(x.,x.) and 

|i(x.,x2)> and infer from (10) that 

U 
ir / »   2irz f pdp       . z   r  .2,   2.-3/2,. .,,, 
v1(x1.x2.z)=-?rJ    -   zt37g+xJ (p +z >      dA? <13) 

0 (P  +z  ) 

for every z^O.    However, 

M 

n-r 

o(p +z > /u
2
+z

2 

oo )    (14) 

J(P
2

+z2)-3/2dA§<2.J-  -pdp 3/2J A   *-,    r         Pdp               27r .   yn. 
5<2ff 1 —9—■r^7r =  (z^0). J  .2^  2.3/2 =  /--—» 

Combining (13) and (14), one has 

Tf 

2) 

The subscript % attached to the element of area is to indicate that 
(?,, ?2) are the~variables of integration. 

See (8) for the definition of E(x1,x2) and u(x1,x2). 
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|v1(x1.x2.z)--?fh(z)|<—^L  (0<|z|<oo). (15) 

But, according to (5) and (8), 

0<to<M(x1,x2) for all (x1,x2)6n-n/. (16) 

Consequently, if A' stands for the area of 11 , (15) and the first of (12) 

furnish 

M(z)<±EiA^M=o(l) as z-O. (17) 
.z/TT A /t +z o 

On the other hand, the second of (12), together with (15) and the 

second of (8),  yield the estimate 

N(z)<±^Ll(z),   I(z) = J dA ; (0<|z|«x>) (18) 
A n'/t2(x1,x2)+z2, 

since   u(x1, x.)=t(x., x.) for all (x.,x-) in U .    Changing the variables of 

integration in (18) from (x.,x.) to the curvilinear coordinates (s,t) intro- 

duced in (6) and bearing (7) in mind, we arrive at 
t    s 
0    o 

I(Z)= J   J -LHilL dsdt (0<|z|<co). (19) 
0 o  fi^P 

From (19) and (4),  in turn, follows the estimate 

«        o , ____ 
0<:(z)i-^ f       dt     =:-T^[loii(t> /t^+iZ')-log|i| ] (0<|i|<ao). (20) 

Combining (18) and (20), we reach 

N(z)<ilkLl(z)=o(l) as z-0. (21) 
A* 

' Recall the geometric significance of the curvilinear coordinate 
t(x.,x-) associated with the mapping (6). 
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Finally, (11), (17), and (21) assure that 

llmCWj^-^fh^lsO, (22) 
z-K) 

which confirms the first two of (1. 23).    The remaining limit-relation 

in (1. 23) may be established by similar means. 



-33- 

References 

[l]      E.   Melan,   Ein Beitrag zur Theorie geschweisster Verbindungen, 
Ingenieur Archiv,  3 (1932),  2,  p.  123. ~   ————— 

[2]     E.   Reissner,  Note on the problem of the distribution of stress 
in a thin stiffened elastic sheet,  Proceedings,  National Academy 
of Sciences,  26 (1940), p. 300. 

[3]     R.   Muki and E.   Sternberg,   Transfer of load from an edge- 
stiffener to a sheet — a reconsideration of Melan's problem. 
Journal of Applied Mechanics, 34 (1967),  3,  p. 679.    "~ 

[4]     R.  Muki and E.   Sternberg,  On the stress analysis of overlapping 
bonded elastic sheets. International Journal of Solids and 
Structures,  4 (1968),   1, p. 75. 

[5]     R.  Muki and E.   Sternberg,  On the diffusion of load from a 
transverse tension-bar into a semi-infinite elastic sheet. 
Journal of Applied Mechanics,  35 (1968),  4, p.  737. 

[6]     R.  Muki and E.   Sternberg,  On the diffusion of an axial load from 
an infinite cylindrical bar embedded in an elastic medium. 
Technical Report No. 16,  Contract Nonr-220(58),  California 
Institute of Technology, September 1968.    To appear in 
International Journal of Solids and Structures. 

[7]     R.   D.  Mindlin,   Force at a point in the interior of a semi- 
infinite solid,   Physics, 2 (1936),  p.   195. 

[8]     R.   D.   Mindlin,   Force at point in the interior of a semi-infinite 
solid,  Proceedings,   First Midwestern Conference of Solid 
Mechanics,  Urbana,  Illinois,   1953,  p. 36. 

[9]      "     -.   Watson,  A treatise on the theory of Bessel functions, 
&^. ration,  Cambridge University Press, Cambridge,   1962. 

[10]     H.  V. ,  Über die Besselschen Funktionen und ihre 
Anwenu ^ngen auf die Theorie der elektrischen Strttme,  Journal 
fflr die reine und angewandte Mathematik,  LXXV (1873). p. 75. 

[11]     G.  Eason,  B.  Noble and I.  N.  Sneddon,  On certain imegrals of 
Lipschitz-Hankel type involving products of Bessel functions, 
Philosophical Transactions of the Royal Society of London, 
Series A, 247 (1955),  935, p. 529. 

[12]     F.  Oberhettinger and W. Magnus,  Anwendung der Elliptischen 
Funktionen in Physik und Technik, Springer-Verlag, Berlin,   1949. 

[13]     E.  F.  Beckenbach and R.  Bellman, Inequalities, Springer-Verlag, 
Berlin,   1965. 



o 

?--EZ3= 

Ui 

>- 

UJ 

» 



« 
GQ 

if) 

O 

o 

UJ 

UJ u 
O 

UJ 

UJ 

UJ 
o 
er 
o 
u. 
z 
UJ 
tr 

D 
O 

h- 
O 

UJ 
CD 
2 

CD 

5 

3 
Q 
UJ 

UJ 3 2 
Q O o 
UJ UJ z 
Q 
Z 
UJ 

2 Q 
Q 
UJ 

1- GQ 
X 2 Ui UJ 

CD 

< 
ffi 

Q 
UJ 
O 
Z 
UJ 
t- 
X 
UJ 

tr 
< 
OD 

CO 

UJ 
er 
o 

UJ o 



II 
p 

ID 
n 

JO 

O 
it 

a: 
< 
CD 

Q: 
< 

tn 
UJ 
Q: 

o 









M 

-Ho» 

HN 

QD 

g 
00      ii 

o 

m 
II 

jo 

CM 

N 
^ 

dc 
IO < 

m 
a: 
< 
-j 

^• Ü 
o: 
o 

ro K 
UJ 
a: 
o 

CJ u. 





Unclassified 
Sotiirity Classification 

DOCUMENT CONTROL DATA   R&D 
'Svrnnty r/a» si/iraffon ol title,  httdy ul ttbsttarl and indfitinti annottition amnt fee entered whvn the overall report is ctaMtilttd) 

l    OHiüiNATlNGACTiviTv (Corporate author) 

California Institute of Technology 

2«. REPORT   SECURITY   CLASSIFICATION 

Unclassified 
2b.   CROUP 

J    REPORT   TITLE 

Elastostatic load-transfer to a half-space from 

a partially embedded axially loaded rod. 
4   DESCRIPTIVE NOTES (Type ol report and inclusive dates) 

Research Report 
%   AUTHORISI (First name, middle initial, la at name) 

Muki,  Rokuro and Sternberg,  Eli 

6     REPOR T   D* TE 

April 1969 
Ta.   TOTAL  NO.  OF PACES 

41 
7b.  NO. OF HCFS 

13 
•a. CONTRACT OR GRANT NO 

Nonr-220(58) 
b.   PROJEC T  NO 

NR-064-431 

9a.   ORIOINATOR*» REPORT  NUMBEROI 

No.   18 

9b. OTHER REPORT NOIS) (Any olhar numbara Mai miay ba maalfßtad 
Ihla report) 

10    DISTRIBUTION  ST ATEMEN T 

Distribution of this document is unlimited. 

11     SUPPLEMENTARY   NOTES 12    SPONSORING MIL! TARY   ACTIVITY 

Office of Naval Research 
Washington.   D. C.    20360 

I 9     ABSTRAC T 

This investigation is concerned with the diffusion of an axial load 
from a bar of arbitrary uniform cross-section that is immersed in, up to a 
finite depth,  and bonded to a semi-infinite solid of distinct elastic properties. 
The bar is perpendicular to the plane boundary of the embedding medium. 
The determination of the desired resultant force in the submerged bar- 
segment is reduced to a Fredholm integral equation by means of an approxi- 
mative scheme developed and tested earlier in connection with a more 
elementary three-dimensional load-transfer problem.    Extensive numerical 
results illustrating the decay of the bar-force,  appropriate to various choices 
of the governing geometric and material parameters, are presented for the 
particular case of a bar of circular cross-section. 

DD """ 1473 
i NOV e» I ■» / w 

S/N   0101.807.6801 

(PAGE    1) 
Unclassified  

~ Security Classirication 



Unclassified 
Security Clasaificalion 

KEV   WOROt 
ROLE «T 

Elastostatics, load-transfer,  rod, 

half-space, three-dimensional 

DD .ISTMMTS <BACK» 
(PAGE  2) 

Unclassified 
Bi»upltti  d*aalfl^A*lAM 


