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ABSTRACT 

The continuous time optimal stopping problem is considered 
and an infinitesimal look ahead procedure is defined. 
Sufficient conditions are then given which ensure that this 
procedure, which is the continuous time analogue of the one 
stage look ahead rule in the discrete time problem,  is 
optimal.    These results are then applied to a class of 
continuous time Markov decision processes. 
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INFINITESIMAL LOOK-AHEAD STOPPING RULES 

by 

S. M.   Ross 

1.     INTRODUCTION 

Let    X >  (X    ,   t > 0)    be a Markov Process having stationary transition 

distributions,  and sample paths which are almost surely right continuous and have 

only Jump discontinuities.    The state space    S    of the process is assumed to be a 

Borel subset of a complete separable metric space and we consider the problem of 

selecting a stopping  time    T    maximizing 

(1) EX -X 
e 

T 
Tf(xT) -yvx8c(x8)d8 

where    f    and    c    are continuous real-valued  functions on    S   ,  X  > 0  ,  and    E 

denotes expectation conditional on    X    - x  . 

In the second section of this paper we show that under certain conditions an 

Infinitesimal lock-ahead procedure Is optimal.    This result generalizes certain 

discrete time results given by Chow-Robblns  [ 4 ].    In the third section a related 

approach Is described and the resultant procedure Is shown to be optimal under 

slightly more general situations.    The fourth section considers a class of 

continuous time Markovlan Decision Processes for which the criterion function Is 

-closely related  to  (1). 



2.  INFINITESIMAL LOOK-AHEAD STOPPING RULE 

A stopping time x    Is defined to be any nonnegative extended real-valued 

random variable such that for all t>0,{T<t}  Is contained In the slgma 

field generated by  {X ,0 < s < t} . A stopping time T  IS said to be optimal 
r        &       ™" i* 'n ~ ^ 

at x e S if Ex e"XT f(XT*) -/ e'
X8c(X8)ds - Max Ex|e"ATf(XT) - y* e"

Xsc(Xa)ds 

If T  is optimal at x for every x e S then it is said tu be optimal. 

For any Borel set B E S , let P (B | x) » P{X e B | X - x} , we shall 

suppose at first that X - 0 . Let 

fs  n rx|"f(v: f(x)1 (2) a(x) ■ lim E   , x e S . 
h-K3+  L    h    J 

We assume that f and X are such that both the limit in (2) exists, and also 

X f d \ that Kolmogorov's forward equation — E  [a(X  )]  -  J f(y) rr P. (dy   j  x)  — holds 
t      "       ot  t 

(see Brelman [3 ] page 327). 

Lemma 2.1; 

Under certain regularity conditions  (given below) 

t 

(3) EX / a(X )ds - EXf (X ) - f (x) V x e S   , V s > 0 

0 

Proof: 

We proceed "formally1' as follows 

t t 
(4) Exya(Xs)ds -yEX[a(X8)]ds 

0 0 

t 

(5) "//f(y) ÄPs(dy   I  x)d8 



(6) 

(7) 

(8) 

Remark: 

ßvfiVd* x)dt 

./f(y) Pt (dy   | x)  - f(x) 

EAf(Xt) - f(x)   . 

Q.E.D. 

From the proof It Is clear that regularity conditions are necessary for  (1) 

Interchanging the Integral and expectation In  (4),   (11)   interchanging the Integrals 

in  (6),  and   (ill) justifying  (7).     A sufficient condition  for  (1)  is that 
t 
y*E   |a(X )|ds  < °°  V  x,t     (see Doob,  page 63);  Fublni's  theorem provides sufficient 
0     s 

conditions for (11); and a continuity condition of the form 

(1    y- x 
11m P>i({y}   I   x) «= J is sufficient for  (ill). 
h-K)    h (0    y ^ x 

t 
Let    VJ    - f(Xj - /a(X )ds -  f(X )   . 

t t        0        s o 

Lemma  2.2: 

E  [Wt   I  X  ,0  < u < s]  - W      a.s.    V s  < t   , V x  . 
t    '      U - - 8 

Proof; 

EX[Wt   I  X  ,0 < u < s]  - W    + EX 

t   '      U       -       - s 

W    + E 
s 

f(X ) - f(X )  - fai*  )du  |  X  ,0  < u < 
L S M U U ^ ^ 

t-8 

f(Xt-S)   '   f(X0)   -    /   a(XU)dU   I   X8 

; 

■ W    , by Lemma 3.1 . 

Q.E.D. 

Let    TAn ■ min(T,n)   . 



Lemma 2.3: 

For all stopping times i such that E w •*  E w 
T.n 

(9) 

Proof: 

:(XT)  »ycCX^ )ds Exr(a(X8)  - c(X8))ds + f(X)   . 

From Lemmas 2.1 and 2.2 we have that     (W   ,t > 0)    Is a zero-mean Martingale, 

and it thus follows from a Martingale systems theorem (see Breiman  [2], p.  302) 

that   E (W ) ■ 0    for all bounded    T  .    The result then holds by truncation and 

passage to the limit. 

Remark: 

Q.E.D. 

When ET < o0 and f bounded (9) is known as Dynkin's Markov time identity 

(see [2], p. 376). 

We now define the set B e S as follows 

B H {x : oi(x) - c(x) < 0} . 

x We are now ready for the major theorem.    Let    P      denote probability conditional on 

X    » x . 
o 

Theorem 2.4: 

Suppose that E w   -*■ E w  for all stopping times T and all x . If B 
T^n 

is closed in the sense that PX{a t>0 :X(tB}-0 for all x e B , and if 

T - inf{t > 0 : X e B} 

is finite with Prob.  1, then it is optimal. 

Proof: 

By Lemma 2.3 we have reduced the problem to one in which there is no reward 

given for stopping, and there is a cost    a(x)  - c(x)    per unit time for being 



in state    x  .    The result  follows obviously from this. 

Q.E.D. 

* 
What we have done can perhaps best be described as  follows:    We define    T     , 

the  Infinitesimal look-ahead   (ILA)   rule, to be the one which stops at state    x    iff 

the infinitesimal look-ahead gain is no greater than the stopping gain.    Theorem 

2.4  then says that if the set of stopping states is closed  (in the sense of Theorem 1) 

then    T       is optimal.    This result  is clearly the continuous time analogue of the 

Chow-Robbins result of optimality of the one-stage look-ahead rule in the 

monotonic case  (see  [4 ]). 

Ex^.uu 

Let ¥..,¥„, ... be a sequence of lid random variables with cdf F , and let 

(N .t ^_ 0) be a nonhomogeneous Poisson Process, independent of the Y 's , and 

with a continuous nonincreasing rate function y(t) .  Let M • max(Y ^M ^ » 

and consider the Markov Process  {X ■ (t,M ) , t > 0} . We take f(t,m) ■ m , 

and assume that c(t,m)  is nondecreasing in both t and m . This is, of course, 

the continuous time analogue of the famous house-selling problem (though for the 

sake of generality we have not required that F(0) - 0 , see [4 ] and [ 9 ]). 

a(t,m) - lim E 
h-K) 

h^l«t-] 
u(t)E[max(Y.  ) - m] 

i,m 

y(t) / ydF(y + m) . 

Since J'ydFiy + m)  is nonincreasing in m it follows from Theorem 2.4 that 

y 

T    - inf{t > 0   :   u(t)J   ydF(y + M )   <  c(t,M )} 

Is optimal. 

V   |xldF(x)  < »  . 



Example 2; 

Let     (N  ,t > 0)    be a Polsson Process with rate    u   , and consider the Markov 

Process     (Xt -   (t,Nt)   ,  t > 0)   .    Let    c(t,Nt)  - Nt    and    g(t,Nt)  - -X(T - t)2/2   , 

where    T    is some  fixed constant.     Then    a(t,N ) -  X(T - t)     and from Theorem 2.4 

it follows that    T    • inf{t > 0  : N    > X(T - t)}    is optimal.    This problem arises 

in determining the optimal intermediate time to dispatch a Poisson Process  (see 

Ross  [10]). 

Generalizing the previous results to include the case of a discount factor 

X  > 0    is  easy.     We consider a new Markov Process    X'     consisting of the pair 

X^ -  (t,Xt)   .    Letting 

(10) 

we have that 

(11) 

Thus, letting 

where 

f'(t,x) - e"Xtf(x) 

c'U.x) - e"Xtc(x) 

Tfcx;)- f(t,x)l 
a'U.x) = lim E*'*] 2—r  

h-K) 

- lim Ex 
re-x(t+h)f(V.e-xtf(x)-j 

-Xt     xfe"Xhf(Xh) -f(x)l - e At lim EX  J   . 

B. - {(t,x) : a'U.x) - c(t,x) < 0} X 

- {x : oix(x) - c(x) < 0} , 

(12) a.(x) - lim E 
A     h-K) 

-Xh 
i e 

x 
re'Ahf(Xh) - f(x)"| 



■ 

we have from Theorem 2.4 that 

Corollary 2.5; 

If B  Is closed, and If 
A 

(13) T* - lnf{t > 0 : X e B } 
-      C    A 

Is finite with probability 1, then T  maximizes (1) for all x . 
c 

Example 3; 

I 
Let (N ,t > 0) be a nonhomogeneous Polsson Process with rate wCt) . 

Suppose the reward for stopping when N •= x Is x , and the continuation rate at 

N > x Is c(x) .  Suppose further that y(t)  is continuous nonlncreasing, and 

c(x) Is continuous nondecreaslng, and let X    be the discount factor. 

The state space is thus X - (t,N ) , and 

a (t,n) - 11m Et 
A
      h-^O 

\e-X\ -  N 1 

lim e"Xh<n + *&&  ' n 

h^O        h 

-nX + u(t) . 

Thus from Corollary 2.5 we have that 

*     (           U(t) - c(N ) 
T - inf jt > 0 : N> L- 

is optimal. This example with c(x) H C , and p(t) =  y was treated in Taylor [12] 

by a different method. 

The regularity condition E w   -»• E w  V x , V T must of course be satisfied, 
TAtl T 

where   W      is appropriately defined. 
tt Taylor's answer differs somewhat from ours as he supposed that 

-i i [log (1 + X/y)]  - c/X was an integer. 
e i 



Example 4; 

Consider Example 1 when (1) a discount factor X    Is present, (11) p(t) = \i   , 

and (111) c(t,m) = c . Then It Is easily seen that 

T - lnf{t > 0 : y /ydF(y + m) - AM < c} 

Is optimal. 

Now, consider the same problem with the exception that once an offer is 

rejected It Is no longer available.  Clearly, the optimal return for this problem 

Is no greater than the optimal return for the original problem. Thus, since the 

* 
optimal policy T  Is a legitimate policy for this new problem (as it never accepts 

an old offer) It follows that It Is also optimal for this problem. This is related to 

certain results given by Elfvlng [ ? ], and Siegmund [13]. 

Comment! 

We note here that any general discount function d(t) may be handled In the 

same manner as we dealt with e 

|: 



3.  A RELATED APPROACH 

Let Zt - e"
Xtf(Xt) - J e"X8c(X8)d8 , and let 

all t ^ 0} . Thus, B Is the set of states at which stopping Is better than 

continuing for any fixed amount of time. 

B - {x c S : ExZt <^ f (x) for 

Lemma 3.1: 

If PX{a t ^ 0 : X ^ 1} - 0 for all x E B , then 

E [Z  | X , 0 <^ u <^ s] <^ Z  a.s.  y xeB,v 8<t. 
b     U o 

Proof; 

EX[Z^ |X ,0<u<s]-Z + e"X8EX 1 t ' u *  —  —     s 
-Ut-s) f(Xt) -ye'

A(u"8)c(Xu)du - fCX^ | X8 

- Z + e-X8E 8 
s 

t-8 
-X(t- t"8)f(X. a) -  /* e'

Xuc(Xii)du - f(X )| X. t—8     J U OS 

Since x e B implies by hypothesis that x el a.s., the result follows from the 

definition of B . 

Lemma 3.2: 

If    lim EXZ        - EXZ      v    x , v    T  , and if 

then 

P*^    t>_0:Xt^B}-0        VxcB, 

Q.E.D. 

EXZ    < f(x) 
T   — 

V     X  E   B   ,   V     T   . 



I 10 

Proof: 

It follows from Lemma 3.1 that (Z » t >_ 0)  is a supermartlngale, and so the 

result obtains from a standard supermartingale systems theorem as in Lemma 2.3. 

Q.E.D. 

We have thus shown the following: 

Theorem 3.3: 

Under the conditions of Lemma 3.2 

f(x)   x e B 

Sup EX(ZT) - 

> f(x)   x ^ B . 

Proof: 

When x e B , sup * f(x)  from Lemma 3.2. When x I B , the result follows 

from the definition of B . 

Q.E.D. 

Let us define the stopping time x by 

T - inf {t >_ 0 : Xt e B} . 

Now, suppose that there exists an optimal stopping rule T for x .  Let 

T. • min (T^T) , then from Lemma 3.2 it follows that T.  is also optimal for x . 

But it is easily seen that T. must be a.s. equal to T . Thus if there exists an 

optimal rule for each x , then it follows that T is optimal. It should also be 

noted that T is Just the continuous time analogue of the functional equation rule 

(see Bellman [1]). 

All of this is assuming, of course, the conditions of Lemma 3.2. 
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Some sufficient conditions for the existence of an optimal stopping rule are 

given in Dynkin [6] and Taylor [12]. To determine the connection between T and 

* _ >   * 
TLA T  (as given by [13]), we first note that B < B>  and 8° T > T  • To 

go the other way, we need the following: 

Corollary 3.A; 

If the conditions of Corollary 2.5 hold, then 

Proof: 

We give the proof for \ * 0  .    If x c B , then since B Is closed It 
t 

follows that Ex / (o(X ) - c(X ))ds < 0 for all t , and so the result follows 
0    8     s    - 

from (9).  Similar comments hold when X > 0 . 

Q.E.D. 

Aside from its own interest, the reason we have considered this approach Is 

that one may easily construct examples in which B Is closed but B Is not. 

The idea is also illuminating, and we paraphrase it as follows: Call a state bad 

If stopping at that state is better than continuing from that state for any fixed 

amount of time.  Then If this set of states Is closed and If an optimal rule 

exists, then the rule which stops the first time it enters a bad state is optimal. 

Since a discrete time Markov Process may be regarded as a continuous time Markov 

Process (with X' - (t, X )) , it follows that this result also holds for the 

discrete time problem. 

aai^iaaaaBAMMia 
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A.  SOME RELATED CRITERIA 

In this section we consider the problem of choosing a stopping time T 

maximizing either 

(1A) 

-XT -As 
f(X ) -/e A8c(X )d 

EX[1 - e"XT] 
, where X > 0 

or 

(15) ♦t 

=[f(xT)-;c(x8)ds] 

E T 
, where 0 < E T < 0 

Criterion (14) represents expected total discounted return, and (15) the long run 

average cost per unit time, when a sequence of Independent stopping games are 

played, each starting at x . These crlterlons also arise In connection with a 

2-actlon, continuous time Markovlan Decision Process (see [11]) In which the 

"stop" action resets the process to a fixed Initial state x .  (In this connotation 

-f(y) Is usually thought of as the cost of resetting from state y). For any 

constant b , let 

(16) 

(17) 

♦ (b) - (* - b)EX[l - e'AT] 

rXTf(XT) - /V
Xs(c(X ) + Xb)ds 

T  y       s 

and let 

(18) 

(19) 

♦ T0>) - UT -  b)E T 

cT)-/(c(x8: f(X,) - I (c(X_) + b)ds 

0 
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7 

1 

Lemma 4.1: 

(1)  If for somo b , 0 - tj; A(b) • max tj; (b) , then b ■ i|/ - ■ max \\i  .   , 
T        T   * T     T   T 

and conversely; 

V 
(li) If for some b , 0 - (ji A(b) - max ^ (b) where r«{T : 0 < E t < <*>}   , 

T TCP    T 

then    b " ^ * " roax ♦     » and conversely. 
T        ter    T 

Proof; 

Follows directly from (16) and (18). 

Remark; 

Part (1) of the above Lemma seems to be new as criterion (14) does not seem 

to have been previously considered in stopping rule literature. Part (ii) is not 

new and may be found in either Breiman [ 2] or Taylor [12], 

We shall suppose for the remainder that optimal rules exist for criterions 

(14) and (15) and we let V - max \p     ,  and g * max $ 
T  

T TEF 
T 

Theorem 4.2: 

Under the usual regularity conditions 

(i)  If B - {x : a (x) - c(x) < VA} is closed, then 
X A " 

T - inf{t > 0 ; X E B.} is optimal for (14) 

(ii) If B - {x : a(x) - c(x) < g} is closed, then 

x * 
"00 T - inf{t > 0 : X £ B.} is optimal for (15) whenever 0 < E T < 

Proof; 

Follows directly from (17), C19), Corollary 2.5 and Lemma 4.1. 

Q.E.D. 

Remark; 

Since V and g are in general unknown the usefulness of Theorem 4.2 is 



14 

mainly that it enables us to determine the structure of the optimal rule. 

Example 5; 

Let (N ,t > 0) be any right continuous counting process with left limits. 

Let c(n) be the cost rate when there are n In the system, and suppose that 

c(n) is nondecreasing. Let f(x) = -R (i.e., R is the reset cost). Then the 

related Markov Process Is 

Xt - (N8,s < t) , 

and 

ax(Xt) - XR , aCXj.) - 0 

* 
T - inf{t > 0 : cCNt) > X(R - V)} is optimal for (14), and 

T - inflt > 0 : c(N ) > -g} is optimal for (15). Thus, for the average cost 

case it is optimal to reset the process whenever the present cost rate is at 

least as large as the optimal average cost per unit time. 
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