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TRANSLATION AUTHOR'S SUMMARY

It is shown that there is mn interaction between pressure gradients
normal end parallel to the surface in supersonic flows end that the effect of
longitudinal curvature increases strongly with Mach number. The second order
boundary layer equations end the matching conditions with the inviscid flow
are discussed. As well as longitudinal curvature, transverse curvature snd
variations in stagnation pressure and enthalpy, are considered as second order
effects. Integral relationships of the boundary layer equations (momentum,
energy equation, etc,) are given, The effects are demonstrated by a numerical
example of a laminar boundary layer profile and possibilities for an approximate
solution of the equations are discussed,
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1 INTRODUCTION

Methods of calculation for boundary layers have attained a high degree
of perfection., The main questions still unsolved are those in which simple
boundary layer theory is not sufficient,

Prandtl's boundary layer theory is based on the assumption of constent
pressure across the boundary layer. In the case of boundary layers on curved
surfaces this assumption is often not justified, In recent times attempts
have been made to determine the curvature effect using second order boundary
layer theory (see, for example, Murpby’, Yen and Tobea, HayuiB, van Dyke“’5
and Massey and Clayton ). Most of the work is limited to the case of
incompressible flow, It is shown that significant effects may be expected
when the thickness of the boundary layer is comparable with the radius of
curvature of the surface. Much stronger effects arise, however, in flows with
high Mach numbers.

A feature of compressible flow is the fact that pressure gradients normal
to the surface produced by centrifugal forces result in variations of the
density distribution. These directly affect the force equilibrium end thus
influence the development of the boundary layer., In the case of turbulent
boundary layers the turbulence mechanism is alsc influenced in a complicated
manner so that, even with moderate Mach numbers, strong induced effects are
observed, as has been shown by boundary layer studies on a waisted body of
revolution which were carried out jointly by R.A.E. Bedford and AVA Gattingen7.

Further flow problems exist which are cutside the scope of boundary layer
theory. These occur primarily in flows with separation and near the trailing
edge of bodies (see the work of ldichenmm"). For this type of problem a theory
of order higher than second is necessary which leads to differential equations
of the elliptic type. For the secomd-order boundary layer theory used in the
present investigation, the equations form a problem which can be solved by
'marching! downstream as in the casa of the simple boundary layer theory. The
details are limited to iaminar boundary layers, although many are also valid
for turbulent boundary layers,

2 THE EFFECT OF SURFACE CURVATURE

In order to emphasize the significance of the surface curvature, Fig.l
recalls the fact that for supersonic flow around a body there is a causal
relationship between the pressure gradients normal and parallel to the wall.
The pressure variationa are propagated along Mach lines., According to simple
theory the following relationship exists between the pressure gradients
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Tor high Mach numbers Ma this is reduced to

ggs -%%Ma o (2)

The pressure gradient normal to the surface increases proportionately to
the pressure gradient in the flov direction, and increases strongly with Mach
number reaching a miltiple of dp/ds.

It is also shown that the relative pressure change in the boundary layer
can be quite considerable. Ths spproximation for the pressure gradient normal
to the surface gives

2
% . eu
In the case of an ideal gas, the integration of equation (3) gives, for
the ratio of the local pressure to the wall pressure,

2
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where 7 is the ratio of specific heats. It can be estimated from this equation

that, for exsmple, for Ma = 10 the pressure at the boundary of a flow layer of

thickness only 1% of R, 1is epproximately 4 times the surface pressure.

The distribution of pressure in the boundary layer ¢n a convex surface is
shown in Fig.2, Since the actuel velocity u 1is different from the value u*
of the inviscid flow, different pressures are obtained for the two flows. For
convex sarfaces the actual pressure is greater than for inviscid flow, The
difference can be considarable. Consequently a boundary layer theory, which
neglects the influence of curvature can give, under some circumstances,
crropecus resuics at high Mach mmbers, In the folloving the lomgitudinal
curvature, the transverse curvature, the variation of the total pressure
(entropy) end total enthalpy are considered as second-order effects, Slip and
terpersture jump at the surface are not considered, although inclusion of these
affects does not present any fundamental difficulty.
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3 BOUNDARY LAYER EQUATIONS

The general formulation of the second order boundary layer theory corres-
ponds exactly to Prandtl's concept (see Schlichtinge): friction stresses and
heat conduction are only considered in a relatively thin boundary leayer ncar
the surface of the body. Inside this boundary layer certain terms of the
Yavier-Stokes differentisl equatione and the energy equetion may be neglected.
In the remaining flow field friction stresses and heat conduction are
neglaected, We shall discuss the boundary layer equations for steady axial
flow past a body of revolution.

An orthogonal axis system s, y is introduced on a curved, axisymmetric
surface (Fig.3). The generator of the surface is given by rw(x). The
geometrical relationships are specified on the figure. The boundary layer
simplifications derive from the assumptions

v u, 08/ds << 3/dy . (s)

Deviating from the usual boundary layer theory, we do not retain the
restrictions

1/R, < 3fds, b g 6)
vhere & is the boundsry layer thickness. The boundary layer equeations for

this case have already been treated by van Dyke5. We use the continuity,
momentum and energy equations in the following form:

Continuity:
3(Pur)  3(pvrR)
Equations of motion:
meridional:
rr 2 W 1) . p_(puvrﬁ)_ d gg der ) 8
R, s Ay = “RRTE+ Ty (8)
normal to the surface
e u2 ap
- R = = Si . (9)
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The total enthalpy ho is defined by

2
u
ho = h+‘2— . (11)

The shear atress in the laminar case is

du u '
T o= B\Gy - g) (12)
and ths heat flux is calculated from
A 3dh
qQ = q 3y (13)

where 4 is the viscosity, A the thermal cenductivity, CP the specific

heat at constant pressure and h the enthalpy.

Apart from the occurrence of radii of curvature, the equations differ
from those of simple boundary layer théory mainly By the addition of the equa-
tion for the change of preassure normal to the surface, equation (9). This
raises by one the order of the diferential equation system, The mathematical
consequences for the behaviour of the equation system have not yet been
completely investigated, but: it appears that the fundamental properties remain
unchanged. This suggests the use of similar methods of solution as in usual
boundary layer theory.

Up to now no restrictions have been made on the behaviour of the gas,
gpart from the fact that it is taken as a continuum, At best the expression
for q according to equation (13) is only valid in the case of thermodynamic
end chemical equilibrium, The behaviour of the gas must be established in
order to solve the system of equations and for the sake uf simplicity, thermo-
dynamic and chemical equilibrium will be assumed here, Pressure, density and
enthalpy are then related by an equetion of state of the usual form. The
simplest case is to take the equation of state of an ideal gas; however, it
is not necessery to be limited to this assumption. The addition of further
differential equations to take into account real gas effects makes the equetion
system quite complicated but the quoted relationships remain valid.



4 BOUNDARY CONDITIONS

Under the assumption of an impermeable surface, the velocity components
must fulfil the conditions u, = 0 and Ve = 0 for y = O, Also alternatively
h-hw or qm=aq can be given*,

The formulation of the boundery conditions is very simple with first
order hcundary layer theory. Since the pressure is constant through the
boundary layer, the pressure distribution of the potential flow at
the wall is used as a boundary condition, which is independent
of y. In the case of the second-order theory the matching to the irviscid
flow is more complicated since the properties are dependent upon y. We define
a tthicknese br such that friction and heat conduction terms need be considered
only for 0% y & br and are negligible for y & ar (Fig.4). Further, we
define a boundary layer thickness & > 51‘ 80 that for 0% y § & the boundary
layer approximations are permissible, For y & 4 the complete differential
equations of the inviscid flow are used. Thus, in the overlapping region
br i y 3 3, boundury layer approximations are permissible and the friction
forces end heat conduction are negligibvle, The boundary oocnditioms for
ér $y3 & then read:

u=29u v = v% h s« h*, p = p* . (14)

The requirement br § 8 defines the limit for the applicability of the
stated theory, l.e. the viscosity must be low enough or the Reynolds number
high enough for this condition to be fulfilled.

The inviscid flow may be considered as continuing up to the curface of
the body. In the region 08 y £ & it obeys the boundary layer equatioms in
vhich the friction and heat conduction terms are omitted. It is advantageous
to describe the inviscid flow by the tangential velocity u: or the pressure
py or t{, at the surface, Those conditions, however, are not adsquate to
specify the flow field, The equations of inviscid flow indicate that total
pressure p; and total. enthalpy h; are coustant along streamlines, Thus
p; and h; must be known &3 functicns of the stream function. Only in special
cas#s (e.g. irrotational flow) are these parameters constant,

* Taking into account slip and temperature jump at the surface, u, and v,
are given from a linear relationship with the gradients (du/dy) W (Oh/Oy)w
and (Oh/Os)w (see W’unstg).



Tt may be further noted that the requirement v* = v for br sysd is
not compatible with the condition v; =0 for y = O. The values of v; can
only be determined in the case of a known boundary layer. In many instances
the displacement effect of the boundary leyer on the external flow is neglected.
Possibilities exist of introducing the displacement effect into the calculation,
j.e. in an iterative correction or in the introduction of pressure variations in
the boundary layer equations (interaction theory); this will not be discussed
further tere.

> INTEGRAL, FQUATIONS OF THE BOUNDARY LAYER THEORY

Among the mathematical methods for the solution of boundary layer equa-
tions, epproximaticn methods, which cperate with integral thecrems for momentur,
energy etc., are of particular interest, Such methods will now be discussed.

The principle of the integral spproach is that we consider the equilibriuwn
of the momentum and energy losses produced by friction forces and heat conduc-
tion with respect to the inviscid flow considered as extended to the wall. In
the derivation of the integral conditions we assume the inviscid flow to be
xnown and require that in the region O& y & 8, as already mentioned, the
boundary layer equations are adequate without the friction and heat conduction
terms. The formal derivation is mathematically simple and need not be explained
further here. It may be noted that in the boundary layer not only velocity,
density and enthalpy but also static pressure values are assumed which differ
from those of the inviscid flow. After rearranging the terms, the equations
can be brought into forms which are largely similar to those of usual boundary
layer theory, and which reduce to these if the radius of curveture relative to
the boundary layer thickness tends to infinity.

By multiplication of the equation of motion by um, 8 differential
equation for a loss thickness 62+m can be established for each value of
m, For m= O this gives the momentum equation in the usual way; for
m= 1 we have the integral equation for mechenical energy, while for higher
values of m there is no obvious physical explanation.

The integral form of the boundary layer equation is:

13 .
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This contains the displacement thickness:
]
w*-pur
s, ‘fL(L_Y'LP“‘, o (16)
o
and the remaining boundary layer loss thicknesses are defined as follows:
14 1+m
uR
f{lp u5‘ i\,) m] { g' ]*
1+
+(1+,..,(., @ 92w
(p u )

. (17
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8
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(20)
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The integral parsmeters are aistinguished from those of simple boundary
layer theory (see Wuum) only by the loss tl.cknesses 62+m, r and °2+m,R‘
The remaining second order effects sre also included in the definitions of the
Joss thickness. Iue to the curvature normal to the streamlines, the radii
ratio r/r, eppesr in the integrands with the exception of &, - In the
case of B, the firet term corresponds to that of simple theory. In the
second term ouly properties of the inviscid flow occur. This term diseppears
for isentropic flov for vhich u'R = const. In the third term the dilference
between the static pressures sppears. The expression for ] n, 8’ in the inte-
grends of which, partiasl differential coefficients also arise, is written with
8, 1n a comon ters Jike that of usual boundary layer theory. For m =0,

a".-o.

Oo the right side of the integrai equation are the friction terms, The
first term contains the wall shear stress end, since u_ = 0, has & finite
value only #ben m = 0 (momentum equation); in this case the second term
also dissppears. The latter corresponds to the dissipation of mechanical
energy for m= 1,

The integral equation of total energy has the form:

Sl ungyn ol oy 5o - o e

vhere q is the beat flow per unit area from the body*. For the enthalpy
loss thickness

.3 .
o ity -2 G2y @

-]

the first term in the square brackets again corresponds to sizple boundary layer
theory. The second term contains only properties of the inviscid flow. It dis-
sppears in the case of isoenergetic flow, since then h* = corst,

* I£ we relinquish the no-slip condition at the surface then the term + T is

addad to the right hand ;ide of equation (21) end the first term of the right
hand side of equation (15) has a finite value for m> O. The equations are
then valid even in the case of a terperature jump at the surface,
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The loss thicknesses can be calculsted for given velocity and enthalpy
profiles, .As an example we will shov calculated results for two-dimensional
flow over convex, plane and concave surfsces. The Pohlhsusen profile assumod
is easily modified to match the inviscid flow

%-2 °;"’ 5;\' °“m 05 ysd . (@)

The equaticns of state of an ideal ges are taken. The inviscid flow is
taken as irrotational with ho = const. The wlociti'ﬁroﬁhl daviate only
slightly from each otusr for & relative boundsry layer thickness of 6/1\' = 0,01
(Fig.5). On tbe other hand the static pressure at May = 8 undergoes
considerabls variation. The merked difference between sctusl pressure and the
pressure of the inviscid flow at y = O dis particularly noteworthy. This
difference is shown in Fig.6 as & function of Mech number.

Fig.7 shows the integrands of the momentum loss; 121 is the acmentum
loss thickness of the velocity, I,, is the contribution of the static
pressure. This fraction has e large value in the exswpls shown.

Fig.8 shows the thickness ratio 61/62 and the local coefficient of
friction c, (nondimensicnal wall shear stress = 2 1:'62/ (pu):) on & logaritimic
scales as a function of the Mach pumber., With large Mach mmbers, lh"
sppreciable variations due to curvature of the wall are shown.

This suggests that an spproximete method on the basis of e single-
paramster velocity profile should be sought, vhere the Pohlhausen polynceiel
equation can be used, A ccombination of the momentum (m = 0) and mechanical
energy (m = 1) equations sppears most promising.

Anotber important relationship which is often used in boundary layer
calculation is the so-called comdition of coampatibility at the wall, In the
case of second oxrder boundary layer theory this reade

(), - Yot fetipt o G,

Here the differential coefficient of an integrated doundary layer
parsmeter sppears, so that, in the extenmsion of the Pohlhausen method to
second order boundary layer theory, a first order differential equation
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arises inltud' of an algebraic expression for the shape parameter. Thus in
weing the wall compatibility condition and dispensing witu the equatiom for
mechanical energy, s system of two simultanecus differential equations is
given.

With reference to the temperature profile, the assuption that the same
distribution of total enthalpy occurs in the boundary layer as in the inviscid
flow may be an acceptable spproximation in the case of insulated surfuces
(1.0. h = constant for iscenergetic inviscid flov). In the case of heat
transfer the integral condition for the energy conservation, equation (21),
mst be taken as. third differential equation and a suitable expression for the
enthalpy profile introduced,

6 QICLABION

The importance of second ordsr boundary layer theory in hypersonic flow
has been indicated and an example given. The longitudinal and transverde
curvature of the surface and the variations of the static pressure and static
enthalpy of the inviscid solution have been considered as second order effects.
The effect of the longitudinal curvature has been specially considered, The
mathematicel problem has been formulated and possibilities of approximate
calculation discussed, In order to have a basis of comparison for the calculated
results, more accurate methods are necessary based either on a larger number of
integral conditions and therefore making possible a larger variation of the
boundary layer prriile or difference methods for the partial differential
equations. The quoted integral conditions ave also valid for turbulent
boundary layers; hovever, ivrther data on the velocity profile, frictiom
cosfficient and shesr stress distribution and also heat transfer coefficients
are necessary for their spplication.
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