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TRANSLATION AUTHOR'S SUWdAHY 

It is shown that there is an interaction between pressure gradients 

normal and parallel to the surface in supersonic flows and that the effect of 

longitudinal curvature increases strongly with Mach number. The second order 

boundary layer equations and the matching conditions with the inviscid flow 

are discussed. As well as longitudinal curvature, transverse curvature and 

variations in stagnation pressure and enthalpy, are considered as second order 

effects. Integral relationships of the boundary layer equations (momentun, 

energy equation, etc.) are given. The effects are demonstrated by a nunerleal 

example of a laminar boundary layer profile and possibilities for an approximate 

solution of the equations are discussed. 
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1 IHTRODÜCTION 

Methods of calculation for boundary layers have attained a high degree 

of perfection.   The main questions still unsolved are those in which slniple 

boundary layer theory is not sufficient. 

Prandtl's boundary layer theory is based on the assvuqption of constant 

preseum across the boundary layer.    In the case of boundary layers en curved 

surfaces this assuniption is often not Justified.    In recent tius attenpts 
have been made to determine the curvature effect using second order boundary 
layer theory (see,  for exaaple, Murphy , Yen and Toba , Vayaai^, van Dyke '5 

and Massey and Clayton ).   Most of the work is limited to the case of 

incanpressible flow.    It Is shown that significant effects may be expected 

when the thickness of the boundary layer is conparable with the radius of 

curvature of the surface.   Much stronger effects arise, however, in flows with 

high Mach numbers. 

A feature of compressible flow is the fact that pressure gradients normal 

to the surface   produced by centriftigal forces result In variations of the 

density distribution.   These directly affect the force equilibrium and thus 

Influence the development of the boundary layer.    In the case of turbulent 

boundary layers the turbulence mechanism is also Influenced in a complicated 

manner so that, even with moderate Mach numbers,  strong Induced effects are 

observed, as has been shown by boundary layer studies on a walsted body   of 

revolution which were carried out jointly by H.A.E. Bedford and AVA Oottingen . 

Further flow problems exist which are outside the scope of boundary layer 

theory.   These occur primarily in flows with separation and near the trailing 

edge of bodies (see the work of Kuchemann   ).   For this type of problem a theory 

of order higher than second is necessary which leads to differential equations 

of the elliptic type.   For the second-order boundary layer theory used in the 

present investigation, the equations form a problem which can be solved by 

'marching' downstream as in the casa of the simple boundary layer theory.    The 

details are limited to laminar boundary layers, although many are also valid 

for turbulent boundary layers. 

2 IHE EFFECT OF SURFACE CURVATORE 

In order to eaphasize the significance of the surface curvature, Fig.1 

recalls the fact that for supersonic flow around a body there is a causal 

relationship between the pressure gradients normal and parallel to the wall. 

The pressure variations are propagated along Mach lines.   According to single 
theory the following relationship exists between the pressure gradients 
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For high Mach numbers Ma this Is reduced to 

£--£«* • (2) 

The pressure gradient normal to the surface increases proportionately to 
the pressure gradient in the flov direction, and Increases strongly with Mach 

number reaching a nultiple of   öp/ös. 

It is also ohown that the relative pressure change in the boundary layer 
can he quite considerable. The approximation for the pressure gradient normal 

to the surface gives 

2E -   ß-^ . (3) öy R 

In the case of an Ideal gas,  the integration of equation (3) gives, for 
the ratio of the local pressure to the wall pressure, 

■/£* 
o 

where   7    Is the ratio of specific heats.    It can be estimated from this equation 
that, for exanple, for   Ha > 10   the pressure at the boundary of a flow layer of 
thickness only 1< of   R^   is approximately 4 times the surface pressure. 

Hie distribution of pressure in the boundary layer on a convex surface is 
shown In ri.%.Z,   Since the actual velocity   u   is different from the value   u* 
of the inviscid flow, different pressures are obtained for the two flows.   For 
convex surfaces the actual pressure is greater than for inviscid flow.   The 
difference can be considerable.   Consequently a boundary layer theory, which 
neglects the Influence of curvature can give, under some circumstance a, 
orrcoeous resulcs at high Mach numbers.    In the folloiring tha longitudinal 
curvature, the transverse curvature, the variation of the total pressure 
(entropy) and total enthalpy are considered as second-order effects.   Slip and 
taoperature Jump at the surface axe not considered, although inclusion of these 
«ffects does not present any ftmdanental difficulty. 



3 BOOBDARY LAYER EQ.UATIOHS 

The general formulation of the second order boundary layer theory corres- 

ponds exactly to Prandtl's concept (see Schllchtlng ):    friction stresses and 
heat conduction are only considered in a relatively thin boundary layer near 
the surface of the body.   Inside this boundary layer certain terms of the 
Navler-Stokes differential equations and the energy equation may be neglected. 
In the remaining flow field friction stresses and boat conduction are 
neglected.   We shall discuss the boundary layer equations for steady axial 
flow past a body of revolution. 

An orthogonal axis system   s, y   Is Introduced on a curved, axisynnetrlc 
surface (Fig .5).    The generator of the surface is given by   '„W-    The 
geometrical relationships are specified on the figure.    Ihe boundary layer 
aimpllfications derive from the aesumptlons 

v« u,    d/ds « d/dy . (5) 

Deviating from the usual boundary layer theory, we do not retain the 

restrictions 

1/1^« d/ds,  ö« S, (6) 

where   6   is the boundary layer thickness.    The boundary layer equations for 

this case have already been treated by van Dyke  .   We use the continuity, 

momentum and energy equations in the following form: 

Continuity: 

^JgrX^Jtvpl   .   0 . (7) 

Equations of motion: 

meridionalt 

^dJe^ri^J^l . .^X£+*±J±L (8) 

normal to the surface 

^--| • (« 
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Energy: 

a(Puhor)    aJpvyR)      ^^   ^^ 
'V as öy dy dy v    ' 

The total enthaJpy   h0   is defined by 

o 2 

The shear stress In the laminar case is 

h     o   h + V .        (11) 

t » jx 

and thft heat flux is calculated from 

(l-l) <'2' 

1   "    C    dy 
(15) j^dh 

CP 

where   »A    IS the viscosity,    X   the thermal conductivity,    C     the specific 

heat at constant pressure and   h   the enthalpy. 

Apart from the occurrence of radii of curvature, the equations differ 
frcni those of simple houndary layer theory mainly by the addition of the equa- 
tion for the change of pressure normal to the surface,  equation (9).    This 
raises by one the order of the differential equation system.    The mathematical 
consequenoas for the behaviour of the equation system have not yet been 
ccnpletely investigated, but it appears that the fundamental properties remain 
unchanged.    This suggests the use of similar methods of solution as in usual 

boundary layer theory. 

q? to now no restrictions have been made on the behaviour of the gas, 
^lart from the fact that it is taken as a continuum.   At best the expression 
for   q   according to equation (1?) is only valid in the case of thermodynamic 
end chemical equilibrium.   The behaviour of the gas must be established in 
order to solve the system of equations and for the sake of simplicity,  thermo- 
dyaamic and chemical equilibrium will be assumed here.   Pressure, density and 
enthalpy are then related by an equation of state of the usual form.    The 
sinplest case is to take the equation of state of an ideal gas;   however, it 
is not necessary to be limited to this assumption.   The addition of further 
differential equations to take into account real gas effects makes the equation 
system quite cooplicated but the quoted relationships remain valid. 



4 BOUHDARY COKDITIOHS 

Utader the assumption of on Impermeable surface, the velocity conponents 
must fulfil the conditions   \ m 0   and   v   » 0   for   y » 0.   Also alternatively 
h » l^   or   1 " 1,,   can be given*. 

The formulation of the boundary conditions is very sinple with first 
order boundary layer theory.   Since the pressure is constant through the 
boundary layer, the pressure distribution of the potential flow at 
the wall is used as a boundary condition, which is independent 

of   y.   In the case of the second-order theory the matching to the invlscld 
flow is more cooylicated since the properties are dependent upon   y.   We define 
a thickness   &r   such that friction and heat conduction terns need be considered 
only for   0 * y < 6r   and are negligible for   y * ar   (Pig.4).   Further, we 
define a boundary layer thickness   6 > ft   so that for   0 < y * 6   the boundary 
layer approximations are permissible.   For   y * d   the conplete differential 
equations of the invlscld flow are used.   Thus,  in the overleaping region 
6
r 

s y * ö> boundary layer approximations are permissible and the friction 
forces end heat conduction are negligible.   The boundary conditions for 
Ö   S y S 6   then read: r 

u   ■   u#,    v   «   v#,    h   •   h*,    p   ■   p* . (U) 

The recpiirement   ör < 6   defines the limit for the applicability of the 
stated theory,  1. .e. the viscosity must be low enough or the Reynolds number 
high enough for this condition to be fulfilled. 

The inviscid flow may be considered as continuing up to the surface of 
the body.   In the region   0 * y * 8   it obeys the boundary layer eijuations in 
which the friction and heat conduction terms are omitted.   It is advantageous 
to describe the inviscid flow by the tangential velocity   u«   or the pressure 
p*   or   h^   at the surface.   These conditions, however, are not adequate to 
specify the flow field.   The equations of inviscid flow indicate that total 
pressure   p*   and total enthalpy   h*   are constant along streamlines.   Thus 
p*   and   h*   must be known CJ functions of the stream function.   Only in special 
casas (e.g. irrotatlonal flow) are these parameters constant. 

* Taking into account slip and temperature Jump at the surface,    u     and   v 
are given from a linear relationship with the gradients    (du/öy) .   (dh/dy) 
and   (öh/ds)      (see WUest^). 
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It may be further noted that the requirement   v* = v   for   6r S y S 6   is 

not conpatible with the condition   v» = 0   for   y = 0.    The values of   v»   can 

only b« determined in the case of a known boundary layer.    In many instances 

the displacement effect of the boundary layer on the external flow is neglected. 

Possibilities exist of introducing the displacement effect into the calculation, 

I.e. In aa iterative correction or in the introduction of pressure variations in 

the boundary layer equations (interaction theory);    this will not be discussed 

further here. 

5 IMIECBAl Eftü/ITIOIE OF THE BOUHDARY LAYER JHEORY 

Among the mathematical methods for the solution of boundary layer equa- 

tions,  «jiproxlmatloo methods, which operate with integral theorems for momentu!',, 

energy etc., are of particular interest.   Such methods will now be discussed. 

The principle of the integral approach is that we consider the equilibrlurj 

of the momentum and energy losses produced by friction forces and heat conduc- 

tion with respect to the inviscid flow considered as extended to the wall.   In 

the derivation of the integral conditions we assume the inviscid flow to be 

known and require that in the region   0 S y S 6, as already mentioned, the 

boundary layer equations are adequate without the friction and heat conduction 

terms.    The formal derivation is mathematically slnpl« and need not be explained 

further here.    It may be noted that in the boundary layer not only velocity, 

density and enthalpy but also static pressure values are assumed which differ 

from those of the inviscid flow.   After rearranging the terms, the equations 

can be brought into forms which are largely similar to those of usual boundary 

layer theory,  and which reduce to these if the radius of curvature relative to 

the boundary layer thickness tends to infinity. 

By maltiplicaticn of the equation of motion by   u ,  a differential 

equation for a loss thickness   ö2+m   can be established for each value of 

m.    For   m = 0   this gives the momentum equation in the usual way;    for 

m - 1    we have the integral equation for mechanical energy, while for higher 

values of   m   there is no obvious physical explanation, 

Tto integral form of the boundary layer equation is: 

13 
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dß 

^*WI--<'*     .2„ 

V 

... 05) 

This contains the dlsplacenent thickness: 

a 
5i  " /iLf:^t ^ ^ 

o       w   w 

and the remaining boundary layer loss thicknesses are defined as follows: 

^■/{^['-(Ä),1-^i['-(Ä),">      \ 

(17) 

*    r Ai«" - um  /uV  Was p* - p 

L1 + (p u dSL)»J-^5-| ^ j;^ ^ 

... (18) 

•—•/(^•^(ier* 
2+m»,  _ 2+m 

v. ■/[^^—(^^Kt^^ 
(20) 
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Tte int«gr*l pawuaeter« are distlnguHhed from tho«« of «imile boundary 
Xay»r theory (see WaU10: only *y the lose t^otoe.M.   62+^r   and   62+B(R. 
The rwainlng aecond order effects ara alao Included in the dafInltion. of the 
loai thlctoaaa.   Hue to the curvatur« normal to the straamlinea, the radii 
ratio   r/r     ^»paar in the intagrand» with the exception of   fi2+B)r«   B» *** 

caaa of   »*      th' ""* tara corp*,Pond* to tlwit of ,i,l0|,1* tbw3ry'   ^ tbe 

■accnd tanTLly propartiaa of the invlacid flow occur.   Thi« term distppaar« 
for laantroplc flow for which   ull - conat.   In the third term the difference 
hetman the «tatic pretauraa appaara.    The expreaaion for   6^,,  In the inta- 
granda of Which, partial differential coefficienta alao ariaa, la written with 
ft- In a coBBon tarn Uka that of uaunl hovmdary layer theory.   For   m - 0, 

ft       no. 
On the right aide of the integrij. equation are the friction terms.   The 

flrat teia contains the wall ahear stress and, since   i^ - 0, haa a finite 
value only »ben   m - 0   (maaentum equation);   in this case the aecond term 
also dia^peara.   The latter corresponds to the dissipation of mechanical 

energy for   « ■ 1. 

The integral a<tttation of total energy has the form: 

dh • 

;r£t(p"ho>Crw6b] + (pu);Trfti " ^ (21) 

where   q^   la the heat flow per unit are* from the body».   For the enthalpy 

loss thickness 

o 

the flrat term In the square hracketa again corresponds to ainple boundary layer 
theory.   Tbe aecond term contalna only properties of the Invlacid flow.   It dis- 
appeara In the caae of laoenergetic flow, since then   h* - ccrst. 

• If we relinquish the no-slip condition at the surface then the term + t^ la 
added to the right hand side of equation (21) and the first term of the right 
hand aide of equation (15) haa a finite value for   m> 0.   The equatlona are 
then valid even in the case of a teii«)erature Jut* at the surface. 
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•O» loe« thlckaaiMB can b« celculattd for glvtn valocity and anthalpy 
profile«.   Aa an axaqpla wa will ahoir calculatad raaulta for two-dlaanaloDal 
flow over convex, plane and ccocave aurfacai.   The Pohlhamen profile aiaunod 
la saaily aodlfled to natch the inviacld flow 

The equatlou of «täte of an Ideal gu are taken.   Xbe Inviacid flow 1« 
taken aa Irrotntlcnal with ho - conat.   The velocity profile« deviate only 
«lightly fron each otoar for a relative boundary layer thicknesa of   6/R^ - 0.01 
(Fig.?).   On the other band the atatlc praaaure at   M£ ■ 8   undergo«« 
ccnsidarabl« variation.   The narked difference between actual preaaura and the 
preaaure of the inviacld flow at   y - 0   1« particularly noteworthy.   Thla 
difference 1« «horn in Fig .6 aa a, function of Nach nuaber. 

Fig.7 «how« th« integrand« of the mcnentun lo««;    I21   i« the aoaentua 
lo«« thlckne«« of th« velocity,    1^   1« th« contribution of the atatlc 
preteure.   Thi« fraction hu a large value in the exaapla «hown. 

Fig .8 «bow« th« thlckne«« ratio   Ö-j/ög   and the local coefficient of 
friction   cf   (ncndiaenaicnal wall «bear «tre«« > 2 tJBg/öiu)») on a Icgnrlthnic 
«cale aa a function of the Rich number.   With large Nach nuabera,    N«^ 
appreciable variation« due to curvature of the wall are «hown. 

Thi« «uggeet« that an approximate aathod on the baal« of a «ingle- 
paraaater velocity profile «hould be «ought, where the Pohlbauaen polynoaiial 
equation can be uaed.   A conbination of th« acaentun (a ■ 0) and aechanical 
energy (a - 1) equatlona appear« aoat pronising. 

Another is^ortant relatiooahip which 1« often uaed in boundary layer 
calculation la the «o-called condition of coopatiblllty at the wall.   In the 
cue of «econd order boundary layer theory thi« read« 

^w ($\ ■ ^if^f^^^fm^hi^i- 
...(2*) 

Here the differential coefficient of an integrated boundary layer 
paraaater «pear«, «o that, in the exteneion of th« Pohlbauaen method to 
second order boundary layer theory, a firat order differential equation 
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arisea inatrad of an algebraic expression for the shop« parameter.   Thua In 
using the wall coqpatlbillty cooditlon and dispensing wlxu the equation for 
Bschanical energy, a systea of two simultaneous differential equations la 

given. 

With reference to the teqperature profile,  the asaunptlon that the same 
diatrihutlon of total enthalpy occurs In the boundary layer as In the Invlscld 
flow may be an acceptable approximation in the case of Insulated surfoces 
(i.e.   h   ■ conatant for laoenergetlc Invlscld flow).    In the case of beat o 
tranafer the Integral cooditlon for the energy conservation, equation (31), 
■oat be taken as third differential equation and a suitable expression for the 

enthalpy profile Introduced. 

6    gaaaMM 
The Isportance of second order boundary layer theory in hypersonic flow 

has been Indicated and an exaaple given.   The longitudinal and trensverae 
curvntwe of the surface and the variations of the static pressure and static 
enthalpy of the invlscld eolation have been cooeidered aa second order effects. 
Ihe effect of the longitudinal curvature has been specially considered.   The 
mtbemtical problem haa been formulated end possibilities of approximate 
calculation discussed.    In order to have a basis of comparison for the calculated 
reaulta, more accurate nstboda are necessary based either on a larger number of 
integral conditions and therefore making possible a larger variation of the 
boundary layer prcfile or on difference methods for the partial differential 
equations.   The quoted integral conditions are also valid for turbulent 
boundary layers;   however, farther data on the velocity profile, friction 
coefficient end shear stress distribution and also heat transfer coefficients 

are necessary for their application. 
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