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On Heat Conduction and Wave Propagation 

in Rigid Solids 

D. B. Bogy and P. M. Naghdi 

University of California, Berkeley 

Abstract. This paper is concerned with conduction of heat and the related 
problem of propagation of thermal waves in stationary rigid solicls. 
Special attention is given to rate-dependent response and the ensuing 
conditions of propagation in the conducting medium. By considering small 
time-dependent temperature variations superposed on a finite nonuniform 
equilibrium temperature field, certain conclusions are reached which also 
shed light on the so-called "second sound" phenomenon. 

1. Introduction 

This paper is concerned with heat conduction and propagation of 

thermal waves in rigid solids. Our approach and point of view is that of 

recent developments in continuum thermodynamics. We employ the balance 

of energy and the (Clausius-Duhem) entropy production inequality, as well 

as constitutive assumptions characterizing the local thermal behavior of 

the material. For example, if temperature, temperature gradient and rate 

of temperature are taken as independent variables, then the thermal 

variables such as specific internal energy, specific entropy and heat 

flux are determined by constitutive equations. When the constitutive 

assumptions include rate of temperature as an independent variable there 

arises a local production of entropy (see Eq. (2.2)) in addition to the 

entropy production due to conduction, which is inherent in the usual rate- 

independent response. The rate-dependent thermal response studied here 

and the corresponding generalization of the classical (Fourier) heat 
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conduction equation leads to a prediction of finite speed thermal waves, 

as well as to other novel phenomena associated with local thermal 

dissipation. 

Before describing the scope of the paper in detail, it is desirable 

to recall for background information certain other developments which 

bear on conduction of heat in rigid solids. Within the framework of 

modern developments in continuum physics, attention was largely con- 

fined until recently to purely mechanical constitutive equations. Argu- 

ments for obtaining necessary and sufficient conditions for the validity 

of the entropy production inequality, limited to nonlinear elastic 

materials with heat conduction and viscosity, were given by Coleman and 

Noll [ll. A more extensive discussion of generalizations of the clascical 

theory of linearly viscous fluids with linear heat conduction, in which 

the independent thermodynamic variables are temperature and temperature 

gradient, is contained in a paper by Coleman and Mizel [21,    Among subse- 

quent developments, we mention Coleman's work C3I on therraodyanmios of 

materials with fading memory, in which the therrao-mechanical constitutive 

equations are assumed to be functionals over the time histories of the 

chosen independent variables. Similar constitutive assumptions are uti- 

lized by Coleman and Gurtin [h]  in their investigation of the thermal 

behavior of rigid heat conductors. 

Certain types of well-known mechanical behavior — typical of materials 

or rate-type — such as that for linear (Newtonian) viscous fluids are 

appropriately characterized by rate-dependent functions rather than by 
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memory functionals. Likewise, we may expect certain thermal behavior of 

rigid conductors to be best described by rate-dependent functions and 

this is the underlying premise of the generalization of the classical 

heat conduction equation sought here. 

That a generalization of the classical heat conduction equation for 

solids is desirable has been recognized for several years. IMs view is 

based primarily on the fact that the classical equation is parabolic and 

does not admit the possibility of finite speeds of propagation of thermal 

pulses. Most of the previous attempts to alter the heat conduction equa- 

tion so as to predict thermal waves, often referred to in the literature 

as "second sound," have been based on an ad hoc generalization of Fourier's 

heat conduction law; see for example Chester [5] and Ulbrich [6], This 

generalization, referred to by Ulbrich as Vernotte's hypothesis [7], 

appears as 

q + T q » k grad 9 (l-l) 

We may recall here that constitutive equations of linear viscous fluids 

can be regarded as exact constitutive relations which describe the 

behavior of a class of fluids in all motions. On the other hand, in 

a functional theory (e.g., of the type developed by Coleman [3])» a 

linearly viscous material approximates a general material with fading 

memory only in the limit of "slow" motions. 
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for rigid conductors, where q, a, 6 represent the heat flux, the time 

rate of heat flux, and temperature, while T, ^ are material constants. 

With reference to (l.l) Ulbrich [6] states "Although Vernotte's proposed 

revision of Fourier's hypothesis adequately circumvents the paradox of 

infinite velocity, no apparent physical justification can be offered for 

the addition of the second term ..." 

A different approach from that based on (l.l), but with the same ob- 

jective, is taken by Kaliski [8]. He starts with the assumption that the 

heat conduction equation should be a second order hyperbolic equation 

and then generalizes Onsager's reciprocal relations and the associated 

form of the entropy inequality so as to accommodate this 

assumption. 

We also draw attention to a very recent paper by Gurtin and ripkin [9] 

whose work is motivated by (l.l). They develop a nonlinear theory for 

rigid heat conductors In which the constitutive assumptions are in the 

form of functionals over the temperature history. They show that an 

equation of the form of (l.l) is a special case of their linearized 

constitutive equation for the heat flux q . Their associated general- 

ized heat conduction equation in the linear theory is given by 

ce(x,t) + ß(0)ß(x,t) + J ß,(s)e(x,t-s)ds 

- a(0)Ae(x,t) + f a'(s)Äe(x,t-8)ds + r(x,t)  , (1.2) 
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where a(s), ß(s) are called the heat flux relaxation function and the 

energy relaxation function. This equation is in a form that predicts 

finite speeds of propagation of thermal waves. An unusual feature of 

(1.2), however, is the presence of r (rather than r) which evidently is 

due to the fact that (1.2) is obtained from the first time derivative of 

the energy equation rather than from the energy equation itself. 

In the present paper, which is concerned with rigid stationary con- 

ductors, in general we use direct (coordinate free) notation. Thus, vectors 

and points in three-dimensional Euclidean space are denoted by boldface 

Latin lower case letters while boldface Latin capital letters are used to 

designate tensors of order two; also, Greek lower case letters are reserved 

for scalar thermodynamic variables. An exception to the above notation 

occurs when we write the energy equation as a partial differential equa- 

tion in the temperature. Then, for ease of comparison and analysis, all 

quantities in the energy equation are expressed in terms of their Cartesian 

components. 

In section 2, following seme preliminaries, for clarity and later 

conparison we include a discussion of nonlinear constitutive equations 

for rate-independent response  when temperature and temperature gradient 

are taken as independent variables. A generalization, in which the inde- 

pendent variables include the rate of temperature, is introduced and 

developed in section 3» This leads to a local thermal dissipation of 

energy and to the possibility of temperature changes without heat flow. 

The appropriate "heat conduction equation" is then derived and is used 

These constitutive equations when properly linearized reduce to those 
appropriate to the classical theory of heat conduction. 
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In section k to Investigftte the existence of finite speeds of propagation 

of second order discontinuities In the temperature. 

In order to arrive at more explicit conclusions, we speclali.-e In 

section 5 the results of section 3 by assuming that the dependence on 

the temperature rate Is linear. We then re-examine the energy equation 

for the case of Isotropie materials with a center of symmetry and, in 

particular, make certain observations regarding the speed of propagation 

of thermal waves in one space dimension. Of special significance is the 

result in section 5 that real wave speeds are possible only if there is 

a sufficiently large temperature gradient present In the medium through 

which the wave is to propagate. Qualitative support for this phenomenon 

based on predictions from microscopic theories of heat transport are 

cited from the literature. 

Finally, motivated partially by the results of section 5> we derive 

in section 6 a linear heat conduction equation governing infinit3simal 

time-dependent temperature variations superposed on a finite nonuniform 

equilibrium temperature change from the reference temperature. The non- 

uniformity of the equilibrium temperature change is essential here; the 

resulting linear equation can give rise to finite wave speeds and appears 

to explain the "second sound" phenomenon. The predicted thermal waves 

are such that they may travel in only one direction relative to the 

temperature gradient - either with or against - depending on the sign of 

a certain material constant. This Is similar to the relation between the 

relative directions of the heat flux and temperature gradient vectors. 
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2. Preliminaries. Rate-Independent response. 

Let x be the (three dimensional) position vector relative to a 

fixed rectangular Cartesian coordinate system and let t denote time. 

Since we shall be concerned only with rigid stationary conductors, no 

distinction between material particles and their positions In space is 

necessary. Let e, T^, 9 and q denote the internal energy per unit 

mass, the entropy per unit mass, the temperature (assumed positive), and 

the heat flux vector, all functions of x, t in a prescribed domain. 

These quantities, together with the heat supply per unit mass r, must 

satisfy for each x, t the energy equation* 

- div £ + pr - pi  , (2.1) 

and the entropy production inequality which, for later convenience, we 

write as 

loc.  'con." 

PVloc.-PTKidivq-p|    ,      PYcon>--^ä-ß    ' 

where Ynoe 
an<i Y on represent the local entropy production and the 

production of entropy due to conduction, the abbreviation g » grad 9 

stands for the temperature gradient, a superposed dot denotes partial 

+These local forms can be deduced from the corresponding statements In 
Integral form. ESee, for example Truesdell and Noll [lOl; our q, r 
correspond to their -h, q . 

7. 
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differentiation with respect to t , and p is the mass density, a 

function of x only for rigid stationary bodies. Combining (2.1) and 

(2.2), we obtain the inequality 

- pe + pBTl - I q • g * 0 . (2.3) 

In terms of the free energy function if   defined by 

♦ - e - Tie , (2.10 

the energy equation (2.1) and the inequality (2.3) can be expressed in 

the alternative forms 

•      • 
div q + pr - p(t + Tie + Tie)  , (2.5) 

and 

- pi - pTie - £3 • g * 0 . (2.6) 

Taking as independent variables 9 and g we consider in this 

section a material whose response is characterized by rate-independent 

constitutive assumptions of the form 

♦ -♦(e,g) , Ti-ii(e,g) , q-q(e,g) .       (2.7) 

The same symbols can be used here for a function and its value without 
confusion. 

8. 
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The introduction of (2.7) into (2.6) results in 

-p(||^)e-p(|)-g-|ä-S
ä0 • (2-8) 

With 9, g, 6 fixeu, all terras in (2.8) are determined except g , 

which may assume arbitrary values. Then, in order to satisfy (2.8), we 

must have 

|*-o , *- i,(e) , (2.9) 

and (2.8) reduces to 

■p(le + ^ö " eä * £- 0 • (2'10) 

Using (2.10) and repeating the above argument with Q, g fixed and 8 

arbitrary we find 

a 

Thus the entropy is determined by the free energy, a function of 

temperature only, and according to (2.1l)2 heat cannot flow in a 

direction of increasing temperature. 

Let the symmetry group of the material be defined by the set 

of all time-dependent orthogonal second order tensors A . Then, under 

a change of reference frame characterized by A , the scalars e, 11, 9, 
A* 

^ are unaffected but the vectors q, g transform according to 

9. 



q-Aq  ,  g-Ag  . (2.12) 

The consW.tutive equations (2.7) are invariant under such a change of 

frame if and only if for each A and all values of q, g , 

A q(e,g) = q(e,A g)   . (2.13) 

If, in particular, the material has a center of symmetry the identity 

(2.13) must be satisfied also for A = -1 , where 1 is the unit tensor, 

so that 

-q(e,g) - q(e,-g) . (2.11+) 

It follows that if a is a continuous function of g at g = 0 , then 

q(e,0) » 0  , (2.15) 
rO t*j ^w 

i.e., there can be no heat flow in the absence of a temperature gradient. 

From the energy equation (2.5) with (2.?), (2.9) and (2.11) there 

follows in component form 

*% d<1k       A2* • 

where q, , g.(s 9 ), are the Cartesian components of q, g, a comma 
K   Ji    , £ im    fit 

Similar arguments have appeared many times in the literature. See, 
for example [2]. 
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preceding an index denotes partial differentiation with respect to 

rectangular Cartesian coordinates x. (k= 1,2,3) , and the usual summa- 

tion is implied by repeated indices. When q, * in (2.7)0, (2.9)o are 

given explicit representations in terms of 6, g , (2.16) provides a 

quasi-linear partial differential equation to be satisfied by 9 . From 

(2.16), together with (2.15), it follows that when the heat supply r 

vanishes in rigid conductors having the rate-independent type thermal 

response (2.7) there can be no time dependence in the temperature field 

without a corresponding spatial dependence, i.e., there can be no change 

in temperature except that resulting from the flow of heat. Correspondingly, 

in view of (2.1l)p and (2.2)_, the entropy production is due to conduction 

alone and there is no local entropy production. 

The residual energy equation (2.l6) is second order in its spatial 

derivatives and only first order in its time derivative and therefore 

clearly cannot predict thermal waves (propagating second order discon- 

tinuities) with real finite wave speeds. This will be elaborated upon 

in sections k-6. 

We close this section by noting that the classical linear Fourier 

heat conduction equation results froiii the linearization of (2.16) when 

(2.7)o takes the special form represented by the Fourier law 

q(e,g) = - K(e)g (2.17) 

and    i(t(9)    in (2.9)p is assumed to be polynomial. 

Assuming,  of course, that    *-*    does not vanish. 
36 
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3« Dependence on temperature rate. 

We consider here a generalization of the constitutive assumptions 

(2.7) by including the first time derivative of temperature, as well as 

the temperature and its gradient, as independent variables. Thus, 

instead of (2.7), we now assume 

♦ - ii(e,g,e) , Ti-Ti(e,g,e) , q » q(e,g,e) ,       (3.1) 

so that the inequality (2.6) becomes 

-p(|f^)9-p(||).i-p(äf)S-i3.gäO    . (3.2) 

With 9, jg, 9 fixed it follows from (3.1) that all terms in (3.2) are 

determined except 0 , which may assume arbitrary valuea. In order for 

(3.2) to be satisifed for all 9 , its coefficient (**) must vanish, i.e., 
50 

* must be independent of 9 • Similarly i cannot depend on g , so 
T ' Ä 

that (3.1)1 and (3.2) reduce to 

* « ♦(©) (3-3) 

and 

P<ll^)9 " ? 3 • g* 0 • (3A) 

respectively. 
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(o)      (e) * Next we decompose    Tj    into two parts    T|      ,11 defined by 

,(oWJe) (o). 11(6,8,6) - Ti^;(e) + Ti^''(e,g,e) , V (e)=n(e,o,o) .   (3.5) 

** 
Assuming that T| is continuous in 6 at 0 = 0 , we have  in the limit- 

as a -• 0 

Tl(e,g,a9) = Tl(e,g,0) + o(l)  , (3.6) 

so that 

•Il^e\R,0,ae) = o(l) , (3.7) 

where a is a real number. Now in (3>^) put g « 0 , replace 9 by 

aQ    and use (3-5), (3-7) to obtain 

-p(||+Ti(o))cye+ o(a) go , (3.8) 

where lira 2M = o . It then follows from (3-8) that 
a-0 a 

T\ (
0) 3    M 

'      36       ' (3.9) 

** 

It should be noted that the decomposition of    Tl    in (3.5) does not imply 
(o) 

that IT ' is independent of t. Here 9, g, 6 are considered as independent 
~(o)        ~ 

variables. Alternatively Tr (6) is the limit of 11(6,0^,30) as Of,P -• 0 . 

A function of a defined in a neighborhood of a    is o(l) or 0(l) as 

a -* a     according as it is zero or bounded in this limit. 

13. 



and the inequality (3A) assumes the form 

pT1(e)0 - f S • g* 0     . (3.:.o) 

In view of (3.1), (3.3), (3.5) and (3.9) the energy equation (2.5) 

becomes (in component form) 

sjt ,XK  ae    dgk ,lc   ae 

which is the counterpart of (2.16) under the assumptions (3.1)« 

Many of the conclusions drawn in section 2 are altered for the rate- 

dependent response under consideration. In particular, even though ty 

still reduces to a function of 9 only, we cannot conclude the same 

about Tl which remains dependent on g and 9 . Furthermore, it is 

clear from (2.2) and (3.10) that the inclusion of 9 as an independent 

variable in constitutive assumptions (3.1) has led to a local entropy 

production. In addition, the total entropy is no longer expressible in 

terms of the free energy as in the case not only of the rate-independent 

It is worth noting that if in place of (3.1) we had assumed ^1= ^(9,g,9,g), 
etc., that is, if the rate of the temperature gradient had been in- 
cluded as an independent variable also, then (3.3) would be replaced by 
^=^(9,g). This should be contrasted with the results obtained by 
Coleman and Mizel [ll], where is it shown that tjt cannot depend on 
temperature gradients when a dependence on rates is excluded. See 
also in this regard Eringen [12] where the rate of temperature and 
rates of temperature gradients are included as independent variables 
in the context of a general thermo-mechanical investigation. 
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type response but also of the more general response characterized by a 

functional over the time history of temperature as investigated by 

Coleman and Gurtin [1+]. 

The requirements that the constitutive equations (3.3) and 

(3.1)9 -j satisfy the appropriate transformation relations under a change 

of reference frame (imposed by the symmetry group of the material), that 

the heat flux function q be continuous in g at g = 0 and that the 

material possess a center of symmetry imply (with an argument parallel 

to that used to arrive at (2.15)) that q must be an odd, and T\   an 

even, function of g with 

q(e,o,e) = o . (3.12) 

Therefore, as in the rate-independent case, there can be no heat flux 

corresponding to zero temperature gradient. We also observe the 

inequalities 

q(e5g,o) • g * o , Ti(e)(e,o,e)e * o , (3.13) 

which follow from (3-10), but we note that q • g * 0 cannot in general 

be concluded. 
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k.    Propagation of thermal waves 

We investigate here the possibilities of the existence of propagating 

second order discontinuities,  i.e., discontinuities in the second deriva- 

tives,  in the temperature field.    For convenience, however, we confine 

our analysis to one space dimension   x .    Writing   q, g    for the x- 

components of    q, g , we obtain from  (3.11) its one-dimensional counter- 

part 

ög     ,xx        ae (Jg ,x ae 

+  ^e,x + P^^5 + 9 ^ " e ^6 =  pr    . (4.1) 

We assume that 9, g, 9 and r are continuous functions of x, t 

and denote by [ ] the value at the propagating discontinuity of the jump 

of whatever quantity it brackets. If we allow discontinuities in second 

order derivatives of 9 and assume that the first derivatives are 

continuous, there follows from (U.l) 

<l^>aW<S+'e^)[*.*!t''(9^)[5] = 0 •     ("•2, 00 00 

Using standard jump conditions     we have 

See Thomas [13] or Truesdell and Toupin [lk; Sec. l8l] 
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[°,x] - - uCe,xx]  '  [S] ■ ^txx]      > (i+-3) 

where U is the speed of propagation of the discontinuity. Substitution 

of (I4.3) into (U.2) gives 

u=ie 3§    36   ,      (k,k) 
spen- 

de 

provided LQ  J and   !   are not zero. In the event —*—   does 
,xx    ae ae 

vanish, (i+.2) and (U.S) yield 

FT u ^—rrr  • (^.5) 
^.oe^ 

The terms on the right hand side of {h.k),  {k,'?)  are evaluated at the 

propagating discontinuity so that U can be considered alternatively 

as a function of x or t only. 

The following observations are apparent from {k.h)  and (U.5): 

(i) Equation (h.k)  shows that second order discontinuities in temperature, 

i.e., thermal waves, may possibly occur with two distinct real wave 

speeds. This depends, of course, on the relative magnitudes and signs 

of the terms in (UA) and will be investigated further for particular 

** ', ^_ 

An alternate derivation of \h.k)  results from the characteristic 
relation appropriate to the quasi-linear partial differential equation 
(U.l). It is thereby seen that discontinuities of the type under 
consideration can occur only along a characteristic. See Courant 
and Hubert [l^J. 
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(e) 
representations of I)  , ^ anci <! ^n *he following sections. 

(ii) It follows from (U.5) that if T]^ is independent of 9 , then 

only one wave speed is possible. In fact we see that thermal waves may 

(e) 
occur when Ty '   vanishes altogether. Thus, thermal dissipation due 

to a local entropy production, represented by the first term of the 

inequality in (3.10), may not be necessary for thermal waves, provided 

q remains dependent on 6 as well as g . Equation ('t.') also shows 

that when T\y  '   vanishes and q does not depend on 8 , a» In th'- 

rate-independent response discussed in section 2, no t'lnlt«« ipcvd 

thermal wave can occur. 
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5. Linearity In temperature rate

Recalling (3«l)o , (3*3) «e introduce in this section specific

assumptions regarding the dependence of the response functions on the 

temperature rate. Before doing so we deccsg>ose (as was done with 

T\ in (3.5)) into two parts defined by

3(e.£.e) • • ^5.i)

nwn tn^iiles

|(i,o.4) - ♦ i^*^®.£.®) • 2 • (5.2)

taaishet by (5.1), It follows that

(5.3)

«IMA« (» '«) raam (*'.»). W* have

mM f »re arbitrary functions of e ,

ehi la Is any <e«tiliiuuua fuiiCtlon of 0, which is odd in £

aiwl sakisrisf We assume that the "extra" parts of entropy and

heal riiM, wMsaiy 0^*^ and are nonlinear functions of 0, g

kwt are Unear runcttons of degree one in 0 so that

n^'^®.*.®) - - n(0,£)0 , a^*^0,j|,e) - *(®.g)® (5.5)

19.



Assuming further that q^ , q   are polynomials in g and recalling 

(5*^)i we arrive at the forms 

ä(o)(e,g) - - K(9,g)g , q(e)(e,g,e) - H(e,g)ge .      (5.6) 

By (3.13), (5.1) and (5.2) the functions n(e,g), ^e.g) in (5.5), 
mt        f*t        & 

(5.6) must satisfy 

n(e,0) * 0      ,     K(e,g)g • g * 0    . (5.7) 

In view of (5.6), the energy equation (3.11) now assumes the form 

[- ^ (V) ^ * 4 (HkJ e3)'l9>kl t[HkJ gJ"pe' ^U'k 

- p«»» * [-(-#V < M ^Ai 

2 
p(ne + 9e^+ e^e« pr , (5.8) 

which is a quasi-linear second order partial differential equation to be 

satisfied by the temperature. The classification and type of initial- 

boundary value problem appropriate to such an equation has been exten- 

sivaly discussed in the literature. 

Hie essential character of equation (5.8) will not be altered if we 

icake some further simplifying assumptions. In particular, if we assume 

See for example [ijl. 
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that n, K and H introduced in (5.5) and (5.6) are functions of 0 

only, then (5.8) becomes 

- p(ne + ee l§ + e •2-|)e = pr 

If, in addition, we assume the material is isotr' -de with a center of 

symmetry, i.e., 

(5.9) 

K^e) = k(e)6kj  , ^(e) = h(e)6kJ 

then (5.9) becomes 

(-k+ he)e kk + 
h ^ 9 k - P

n8e 

/ök    3h*  v- 
(-äegk + äe eg^e,k 

2 
p(n0 + ee H + e ^-|)e = pr , 

o9 

and, in view of (5.7), 

(5.10) 

(5.11) 

k $ 0 (5.12) 

We now use the one-dimensional form of (5-11) to examine more 

closely the propagation of thermal waves. Following the procedure 

that led to (k.k)  we then obtain for the speed of propagation U of 

second order discontinuities the expression 
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- {he v t [(he J2 - Upne(k- h^l^l/apne ,    if n / o    , 

U =       <      (he - k)/he v    ,   if n - O    ,   hev^O (5.13) 

OB    ,    if n = 0    ,    he     "0    (classical case) 
,x 

Equation (5.13)-| reveals an interesting phenomenon. No real wave speed 

can result if both e   and 6 are zero "in front of the wave," that 

is, if the conductor into which the wave is to propagate is in a uniform 

equilibrium (time-independent) thermal state. On the other hand, real 

wave speeds can clearly occur provided the temperature gradient in the 

conductor is large enough. This result appears to be in harmony with 

the proposals made by Chester [5] and others on a microscopic basis that 

thermal waves should be detectable in many solids but only above a 

certain critical state of thermal agitation. 
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6. Infinitesimal time-dependent temperature variations superposed on a 

finite equilibrium temperature change from reference 

It was found in the previous section that a thermal wave cannot 

propagate into a rigid conductor with a rate-dependent thermal response 

unless the magnitude of the temperature gradient is sufficiently lai,-^. 

This fact suggests the possibility of predicting thermal waves charac- 

terized by a linear differential equation governing infinitesimal time- 

dependent temperature variations, provided we superpose these time- 

dependent variations on a finite time-independent temperature change 

from the constant reference temperature. Here for simplicity we 

confine our attention to an Isotropie material and use (5.11" • 

Let 

e(x,t) = e(x) + ce'(x,t) , r(x,t) = r(x) + er'(x,t) ,     (6.1) 

i.e., we consider temperature variations from equilibrium that are of 

0(e) in the limit as  c -• 0. Also let 

e(x) = e + e(x) , (6.2) 

so that    9(x)j which is not necessarily uniform, represents the finite time- 

independent variation from the reference temperature 9   .     The temperature 
A . 

variations    6    and    9      may be positive or negative within the limitations 

In this section    e    is a small dimensionless parameter.    It is implicit 
in (6.1) that the time and spatial derivatives of the temperature 
variation    9 - ^    is also of    0(e)   . 
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(6.3) 

imposed by (6.1)^., (6.2) and the assumption 9 > 0 . 

Corresponding to (6.1) we introduce the following decomposition of 

entropy Tl through its parts 1^', Tr', namely 

T1(
0).7i(o)(e) = ^o)(x) + eV

(o)(x5t) , 

T1(e) = ^^(6,6,9) ^(e)(x) + eV
(e)(x5t)  . 

*%^ f* ma 

Fran (5.5)1, (6.1) and (6.3)2 we find 

so that the entropy variation from its equilibrium value Tr0'(x) is also 

of 0(e) . 

Next we denote by ili(x) the value of the free energy at the 

equilibrium state, i.e., 

'i(x) = ^e(x)]  , (6.5) 

and let ^'(x^) stand for the time-dependent variation cf \    from 

ma 

if    so that 

^'(x.t) = ^(x,t) - 'J(x)  . (6.6) 
1        m* ma *a 

Consistent with time-dependent variations in temperature and entropy 

that are of 0(e), ^'(xjt) must be of 0(e ) and it is sufficient to 
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assume 
++ 

ii'{x,t) = - i cEce'Cx^)]2 , (6.7) 

but we make no specific assumption regarding the dependence of ty on 

9 in (6.5). Noting from (6.1) that 

_a 3_    1 a 
96 " 9e+e3B' 

(6.8) 

we obtain from (3.9),  (6.5),  (6.6) and (6.7) 

^(0)= . M+ c(ee')   , 
96 

(6.9) 

and hence by (6.3) there results 

n (0) „ 

99 
V(o) = ce' (6.10) 

Also, we have 

2 2~ 
±1-11 . c 2        ~2 (6.11) 

Making use of (6.11) and  (6.1)  in (5.11), for an isotropic rigid 

conductor we obtain 

++, We could include in (6.7) a linear term c-eö' but it enters the 
(0) development only through its coefficient c,  as a  constant in ly  ' and 

hence can be absorbed in the value of T] at the reference temperature 6 
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^V-^i^k-P^^^ö.'kk-^i^kk^^Vö'^e^e^ 

•p n e e' - ^ e k e^ - k2 e k e' + ^ e k e' 

■pe(^|-c)e' - pr'} + o(e2) = 0  , (6.12) 

where k, k,, k3, h, h, and n are defined by the Taylor expansions 

k(e) - k+1^ ee'+ IkgUe')2 + ü(c3) , n(e) = n + 0(e) 

'w  'w p      »s»     »*»      w    Hl^ i 
h(e) - h+t^ «e'+ 0(e ) ; k-k(e) , ^»^ 

r       dk _ 

e=e 
(6.13) 

d2k I /rx   r  ^/^x       dh lu - ^-1     , n - n(e) , h - h(e) , h = ^ j 
cie2  ~ 1 de| 

e-e ■e-e 

assumed to be valid. 

Equation (6.12) is satisfied to 0(e) if tt^  finite time-indepen- 

dent variation 9(x) satisfies 

-k e)kk - \  e}k » pr , (6.11+) 

and to 0(e ) if in addition to (6.1U) the infinitesimal time dependent 

variation B'fajt) satisfies 

•k ^kk + h e,k e,k - P n e e' - ^ e)k e;k + [h e)kk + ^ e)k 

pe(c -—^le' - (^i e>kk+k2 ek)e' - pr' .     (6.15) 

26. 



Since \ji, k, k,, kp, n, h and h, depend only on 6 , the coefficients in 

(6.15) are determined once the solution of (6.1U) is known. 

Equations (6.Ik)  and (6.16) determine the infinitesimal time- 

dependent temperature variation superposed on a finite equilibrium 

change from the reference temperature when the conducting medium is 

characterized by the rate-dependent constitutive relations of sections 

3 and 5. The corresponding results for the rate-independent response 

discussed in section 2, for an isotropic medium, can be obtained if we 

put n = h = h_ = 0 . Then, (6.15) becomes 

2~ 

^ e,,kk"^i^,k e,,k+p®(c"^l^'"^l^kk+^2^k)e,"prl '   (6*i6) 

where 6 continues to satisfy (ö.lU). If, in particular, 9 

coincides with 6 , then 6' is measured from the uniform reference 
o 

temperature 0 , ^ will have a value ^ , r must vanish according 

to (6.1U), and (6.16) reduces to the classical form 

■k e,,kk + P 
c e0 6' ^ P1"'  . C6-1?) 

where k , c 9  correspond to the usual thermal conductivity and 

specific heat. 

The generalization of the heat conduction equation represented by 
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(6.15) is a linear second order partial differential equation with coef- 

ficlents depending only on x through 9 and is in standard form. 

Its type (elliptic, parabolic, or hyperbolic) and hence the associated 

initial-boundary value problem that is well posed depends on the signs of 

its coefficients when reduced to canonical quadratic form. In particular, 

"X  >w  ^w 
when h, n, h. vanish it reduces to the classical parabolic equation. When 

these coefficients do not vanish but ö ,, vanishes, i.e., when the 

equilibrium temperature field is uniform, then the equation is elliptic 

since k, p n 6 are both non-negative. No finite speed waves are 

possible in either of these circumstances. 

The complete classification of (6.15) for the one space dimensional 

case is 

< 0 ... elliptic 

(he ) -Upkne |«0... parabolic (6.18) 

> 0 ... hyperbolic 

The associated speeds of propagation U of second order discontinuities 

are # 

[- h e t [(h e J -i+p k n er' }/2p n e , n^o 
,x       ,x 

U-    ^   -k/hev,n«0,hev^O (6.19) 

• , n-0 , hev.-0 

"4f  
For the classification of this equation and a reduction to its 
canonical form see [15, p. l8l]. 
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We see from (6.19) that the wave speed U must have the opposite 

r*  is) m* 

algebraic sign from h 9 „ . Hence, if h is positive, the present 

theory predicts that thermal waves can propagate only in the direction 

from hot to cold, the same direction as the part q^ ' of the heat 

flux. The entropy production inequality places no restriction on the 

sign of h . Fran (5.6), (5.10) we see that the "extra" part of the 

fe) 
heat flux qx ' changes its direction with respect to the temperature 

gradient as the sign of 9 changes. 
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