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ABSTRACT 

*> 

The use of spectral techniques for the computation of 
the expected power output of linear time invariant filters 
subjected to a nonstationary noise is studied.  The two- 
dimensional power spectrum is defined, and its use for 
computing the time varying expected power output is illustrated. 

IV The derivation of the one-dimensional energy spectrum from the 
,^v   two-dimensional power spectrum is shown. The derivation of the 
V J instantaneous power spectrum as the derivative of the truncated 
tfO    energy spectrum is shown.  It is concluded that the instantan- 

eous power spectrum is not a useful engineering technique since 
£>•    there are no expressions relating the instantaneous power 
fjf\ spectrum at the filter output to that at the input.  For the 
vv    special case in which the nonstationary noise is the product of 
frt    a modulation function and a stationary noise, it is shown that 
^■^    the problem can often be reduced to an equivalent stationary 

problem and solved in a well kvown way. 

: 

The two-dimensional power spectrum is used to compute the 
optimum bandwidth of an RC filter for detection of a rectangular 
pulse in exponentially decaying white noise.  Curves showing 
that the optimum bandwidth as a function of time and the product 
of pulse length and decay time constant are developed.  The 
results are compared with the results obtained for a stationary 
noise. 

Finally, the problem of computing the response of an RLC 
band-pass filter to volume reverberation is studied. An 
asymptotic expansion is derived which provides sufficient 
accuracy for most engineering work.  Bounds on the error are 
obtained. 
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CHAPTER I 

INTRODUCTION 

1.1   Statement of the Problem 

This thesis is an investigation into the applications of spectral 

representations of nonstationary random processes.  The investigation 

determines how the spectra are useful for computing output statistics 

of a linear time invariant filter whose input is a nonstationary 

process. Some of the nonstationary processes which the engineer 

encounters are radar clutter, noise in large auditoriums and back- 

scattered sound in the sea, known as reverberation, which will be 

frequently cited as an example. Many engineers have studied enough 

communication theory to be able to efficiently solve problems of the 

detection of signals in stationary noise background, but, when the 

background is a nonstationary noise, most are confused. One first 

wonders how to solve for the output at all. Are there techniques for 

solving for the total noise power over all time as well as for the 

expected noise power as a function of time? If the transform of the 

autotranslation function is computed as is usually done in spectrum 

computations, how should the results be interpreted? These questions 

are discussed in this thesis. 

First, the equations used to compute the output of a linear 

filtar to a stationary random noise are reviewed.  There results, not 

justified here, are taken from Lee.  A random process is weakly or 
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wide sense stationary if its autocorrelation function, defined by 

Rxx(t + T,t)  " Etx(t + T>x^>3 (1.1) 

and its expected value, or mean, K[x(t)] , are independent of t for 

any given 1 . In this thesis, for simplicity, the term stationary is 

used instead of weakly or wide sense stationary. 

The power spectrum of a p-.ationary random process is defined by 

S (u>) 
XX R (T)e-JUTdT 

XX (1.2) 

where RXX(T) - E[x(t + T)x(t)] . Observe that two 3ymbols, 

Rxx^ + T,t^ and Rxx^ » have been used to rePresent E[x(t + r)x(t)]. 

The distinction between these two symbols is that R (t + T,t) is used 
XX 

when E[x(t + t)x(t)] is a function of t and t , and R (T)  is 
xx 

used when E[x(t + a)x(t)] is independent of t and is a function of 

i only, 

Taking the inverse Fourier transform of S (to) gives 
XX 

*xx(T> - h  I \x(->e
JWTd. (1.3) 

and setting T * 0 gives 

KJO)    - E[x2(t)] - IJ 
XX AX (1.4) 

Thus, for a stationary random process, the integral of the spectrum, 

-=--- «pa*1.*!»« 



S  (u.0 , over w is proportional to the expected power. 

One of the most obvious characteristics of reverberation is 

that the expected power decreases with time,  It is clear, then, that 

reverberation cannot be a stationary process.  For this reason, the 

conventional definition of the spectrum of 5. (ü)  cannot be used. 
xx 

It is possible to treat reverberation as a transient with finite 

energy.  In such cases, Lee  defines the spectrum as the transform of 

the function, 

00 

I x(t +T)x(t)dt 

The principal difference between transients as considered by Lee and 

reverberation is the random nature of reverberation.  This brings to 

mind the possibility of treating reverberation as a random transient 

and defining its spectrum as the Fourier transform of the auto- 

translation function, 

00 

f 

R    (T)     -    E[ 
XX i x(t + T)x(t)dt] 

—00 

00 

J 
—OL> 

Rxx(t + T,t)dt . (1.5) 

This can be done and is derived in Section 2.3.  It provides a 

satisfactory answer as long as the problem does not require a 

time-varying spectrum or a time-varying statistical description. 

This requires a transformation of the autocorrelation function 

R (t + x,t) as will be seen in Section 2.2. 
xx 

v-.-'-i;;^-:;-;----'-"'--- ' •" **~ - ■ —■"■—•' — »vaf-ans,-.a ■—yi— t<■ — ~ ,^--*~- —, ^„ i_-rsmK.;.T.-.y^yi- --•***m*<mi&&yeä£* 



1•*   Reverberation Model 

The purpose of the research Is not to derive a justifiable model 

of reverberation, but it is to study spectral techniques for describing 

reverberation in order to determine useful mathematical tools for the 

engineer.  It is, therefore, helpful to review a little of what has 

been written about reverberation and its spectrum. 

A sound signal projected into water will encounter various 

impurities, inhomogene!ties and a changing index of refraction which 

are all lumped together under the term scatterers.  Each of the 

scatterers produces an echo ai:d the sum of these echoes is called 

reverberation. The random location, motion and strength of the 

scatterers makes reverberation a random process. 

Returns from scatterers not located at a boundary are called 

volume reverberation. For volume reverberation, the propagation loss 

is proportional to 

«v<*> 

-at 

0 

t > T 

t < T 

(1.6) 

where a is a constant dependent on the frequency and water chemistry 

(and ie proportional to the factor usual.lv called absorption 

coefficient), and T is the transmitted pulse length.  In this 

equation, g(t) describes the variation of sound pressure level with 

time. The variation of sound power with time is proportional to 



g/(t> - < 

-?M 

0 

t >  T 

t < T 

(1.7) 

Similarly, for boundary reverberation, the variation of sound 

pressure level with time is proportional to 

.-at 

8b(t) 
.3/2 t < T 

t < T 

(1.8) 

so that 

h 

-2at 

■(t) - < 

0 

t > T 

t < T 

(1.9) 

In observing records of actual reverberation, the author has 

observed that sound pressure level varies greatly from ping to ping 

but, when a great number of pin<rs are averaged, the sound pressure 

level does vary according to the above equations. There is, of course, 

no way of knowing if the variation is from variation in propagation 

loss or in the pcatterers. 

19 
Faure  derives oome interesting results by assuming that the 

scstterers are distributed in the medium according to the Poisson 

probability distribution. From this assumption, Faure is able to 

18 derive the well-known laws of reverberation: 

■prwsF*- -->- 



1) reverberation power is proportional to the transmitted 

energy, 

2) the expected power of volume reverberation decreases 

2 
as 1/t and the expected power of boundary reverberation 

3 
decreases as 1/t if absorption is neglected. 

Faure then shows that, if the transmitted pulse is short, the auto- 

translation function of reverberation is approximately proportional to 

2 
the propagation loss g (t)  times the autotranslation function of the 

received echoes which is a function of the probability distribution of 

the Doppler shift of the. echoes.  From this, it is argued that 

reverberation is approximately stationary and the spectrum of 

9 
reverberation can oe defined as the product of g"(t)  times the 

Fourier transform of the autotranslation function of the received 

echoes. This finally leads to the interesting conclusion that the 

2 
spectrum so defined appears as a time function g (t) multiplied by 

the convolution product of the spectrum of the transmitted signal (the 

Fourier transform of its autotranslation function) and the probability 

density of the Doppler shift; i.e., 

oo 

f 

Srr(oo)  - E[02]p(t)g2(t) I S  (u) + <fr)| p((J>)d<p 
5 c* 

(1.10) 

J 
—oo 

where S  (GO)  is the Fourier transform of the autotranslation function 

of reverberation, o is a random factor proportional to the scatterer 

cross-section, p(t)  is the probability density of the arrival of 

echoes at time t , g (t) is the expected variation of the propagation 



loss,  S  (u))  is the energy spectrum of the transmitted signal,  $ is 
ss 

the approximate Doppler shift of the echo, and p(<J>)  is the probability 

density of $ . Although the study will not be restricted to models 

based on assumptions of approximate stationarity, it will be useful to 

represent reverberation as suggested by Faure's conclusion that it is 

approximately a stationary noise times a time function. Thus, 

nonstationary processes of the form 

y(t) « g(t)x(t) (1.11) 

where g(t)  is a deterministic function and x(t)  is a stationary 

random process with spectrum 5 (co) will often be considered to 
XX 

illustrate spectral techniques. 

20 
Other authors, for example, Oi'shevskii,  state flatly that 

reverberation can be represented by Equation (1.11).  In addition, all 

laboratory simulators seen by the author model reverberation as in 

Equation (1.11), except for those which contain tape recordings of 

actual reverberation.  It should be mentioned that Faure concluded 

that the bandwidth of the random process x(t) should actually 

decrease with time and that this has been experimentally verified. 

'^fa^frr^ffijl' 



CHAPTER II 

FOURIER TRANSFORMS OF THE AUTOCORRELATION AND 

AUTOTRANSLATION FUNCTIONS 

2.1   Introduction 

In this chapter, the Fourier transforms of the autocorrelation 

and the autotranslaticn functions which lead to different spectral 

descriptions of real valued nonstationary random processes are 

considered. This is done in order to discover useful techniques for 

designing time-invariant linear filters and to learn if there is a 

physical interpretation of the resulting spectra.  It Is assumed that 

a spectral description of a random process is useful if it results in 

an equation relating the filter transfer function and the spectrum to 

the expected output of the linear filter.  If it does not, the spectrum 

is rejected as being impractical for our purposes. 

The autocorrelation function of y(t) was defined as 

Rvy(t + ***) - Efr(t +T)y(t)] 

Letting t, * t + T and t2 ■ t gives an equivalent definition, 

Ryy(trt2) " Ety^i)y(t2)] 

Then, if t- ■ t« , R
Vv^

tl,t2^ is tne exPectet* instantaneous power of 

2 
the random process at time t1   , E[y (t..)] . 

■*»waösas  ) 



2.2   Two-Dimensicnal Power Spectrum 

Let the spectrum S  (OJ,V)  be defined as the following double 

transform of the autocorrelation function: 

00   CO 

f 

S  (OJ.V)  = 
yy 

—00 --co 

-jut jvt 
Ryy(tl't2)e   e   dtldt2 

(2,1) 

It follows from an iterative use of the inversion theorem for Fourier 

transforms that 

Ryy(tl't?) 
(27T)' 

jü)tx -jvt2 
S (05»V)e   e    dodv (2.2) 

The advantage of the two-dimensional spectrum S  (u>,v)  is that it 

readily leads to an equation for the autocorrelation function of the 

output of a liner.r filter.  If ?.(t)  is the output of a linear time- 

invariant filter having weighting function h(t)  for a sample input 

y(t) , then the ccnvoJutlon ^i-^E 

EtzCt^aC^)] 
I I 

j h(T1)h(T2)E[y(t1-;1)y(t2-T2)]dT1dT2   . J  I 
(2.3a) 

Since E[y(t1-T1)y(t2-T2)3 * 
R
yy
(ti"Ti»t2  * » Equation (2.3a) 

can also be written as 

OO   CO 

r r 

E[z(tx)z(t2)  » h(T1)h(T2)R  (t1-T1,t2-T2)dT1dT2 

(2.3b) 



■*■— m     i  ■ 

Substituting Equation (2.2) in Equation (2.3b) gives 

10 

E[z(tl)z(t2)] 
(27T)2   J 

«00    «00 

h(T1)h(T2) 

jO)(t   -T   )   -jV(t2-T   ) 
S     (w,v)e e *        dwdVdT dt2 

oo      oo      oo 

(27T)2       ,       J 

-jOiC 

h(T1)e        1dT1    • 

•OO    «00    «00 

JVT, jwt1 -jvt2 
h(T2)e        dT2S     (u),v)     •    e        e doodv 

(2TT)^ 

f j(wt ,-vtJ 
H(u))H*(v)S    (u>,v)e        L      L doodv 

—00     —.00 

(2.4) 

Equation (2.4) is the result desired, an equation involving 

only a transform of the input autocorrelation function and the filter 

transfer function which gives the output autocorrelation function. 

By letting t^  - t2 in Equation (2.4), the expected value of the 

filter outpuc power as a function of time is obtained; that is, 
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00   00 
( 

E[z2(t)]  - —ä— 
(2TT)

Z 
H(o))H*(v)S  (u),v)ej(t0~v)tdu)dv  . 

J      J 
».00 —oo 

(2.5) 

The definition stated by Equation (2.1) is justified because it 

provides useful information through Equations (2.A) and (2.5). 

It is interesting to observe that the integral of the spectrum 

S  (o),v) over co and over v is proportional to the expected 

instantaneous power at t - 0 . To obtain this result, let the filter 

transfer function be H(w) - 1 for all w .  Then, 

E[zZ(c)]  - E[/(t)] 
(2TT)' 

Syy(ü3,v)e
j(u,-V)tdu)dv 

Now, if t * 0 , 

E[y2(0) 
(270' 

S  (o),v)do)dv 
yy 

which is the result desired.  If the process is stationary, the 

expected instantaneous power is independent of time and 

E[y-(t)] 
(27T)Z J 

S ,(cü,v)do)dv 

for all t . 
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2.2.1 Two-Dimensional Power Spectrum of a Stationary Random 

Process^.  If y(t)  is a sample of a stationary random process, than it 

is interesting to study the relation between the two-dimensional power 

spectrum S  (o),v)  and the one-dimensional power spectrum defined by 

yy 
R    <T)e"jWTdi 
yy 

(2.6a) 

where 

Ryyd)    S    Z[y(t + T)y(t)] (2.6b) 

To find this relation, evaluate S  (u),v)  from Equation (2.1) for y , 

a sample of stationary random process.  Letting T - (t1 - t«)  in 

Equation (2.1), there results 

S  (ü),V) 
yy 

Ryy[(t2 + T>«t2l« 

-jO)(t2 + T) jVt2 
dt2dT 

rj<«-v)tdt 

J 
—CO 

R (t + T,t)e~jU)TdT 
yy 

(2.7) 

It has been assumed that y(t) belongs to a stationary process.  Then, 

comparing the definition of R (t.,t2) with the definition of R .(t) 
yy * * yy 

in Equation (2.6b) shows that 

R (t + T,t) 
yy 

R  (T) 
yy 

and the T integration in Equation (2.7) is given by Equation (2.6a) 

Substituting Equation (2.6a) in Equation (2.7), 
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S  ((JU,V) 
yy 

rj(^-v)tdtS 
yy 

(2.8) 

Finally, recognizing the t integral in Equation (2.8) as 2TT6(t) , 

where 6(t) is the Dirac delta function, results in 

S (o),v) - 2T\S    (v)6(u) - v) 
yy       yy 

2TTS (CO)ö(U) - v) (2.9) 

Equation (2.9) is the desired relation between the two-dimensional 

spectrum and the one-dimensional spectrum. For a stationary process, 

the two-dimensional spectrum is equal to the one-dimensional spectrum 

multiplied by the Dirac delta function 6(u? - v) . 

By substituting Equation (2.9) in Equation (2.5), it can be seen 

that Equation (2.5) reduces to the well-known relation for the average 

output of a filter subjected to a stationary random input.  Carrying 

this out, there results 

E[z'(t)] 

CO   00 

f 

(27T)' 
H(u))H*(v)S^ (U3)2TT6(U> - v)du)dv 

1_ 
2TT 

J 
-00 

H(co)H*(u))S (u))dco (2.10a) 

1 
27T |H(o))rSyv(u))du) (2.10b) 

for a stationary random input. 



14 

2.2.2 Two-Plmerisional Spectrum of the Product ofa 

Deterministic Function and Band-Limited White Noise.  Suppose that we 

generate a nonsf.ationary random process 

y(t) - g(t)x(t) 

where g(t) is a deterministic function and x(t) is a stationary- 

random process with spectrum 

*«<«» 

If/2 

0 

(n <  jjuj ^ a) + 3 

otherwise 

where w > 0 . S («) represents the output spectrum of an ideal 

band-pass filter with white noise input. The autocorrelation function 

of x(t) can be determined from the Wiener-Khintchine theorem: 

R (x) - ±r xx      2TT 5xx(0))e
ja)Tda) (2.11) 

-(Vß) 
1_ 
27T 2e  dw+2? 

ÜJ +3 
f o 

1 JWT 
eJ da) 

-(u+ß) a) -3 
o 

1 ^ 

4  JT 
1 ej   I ° + 4 -jr ! 

V3 -(w+3) 

. sinßT 
COS 00 T 

o (2.12) 

BttWmwWBwm 
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The expected instantaneous power of the stationary random process 

2 
E[x (t)]     can be determined by setting T - 0 in Equation (2,12), 

which gives 

E[x2(t)j «*x(°> 
sin ßx 
—r cos (JU T 

T       o 
T*'J 

The two-dimensional spectral density of y(t)  is given by 

Equation (2.1), 

00   00 

! 
S  (oo,v) 
yy 

-JGOt  jVt 

Ryy(tl,t:2)e    e   dtldt2 

-jut jvt? 
g(t1)g(t2)Rxx(t1,t2)e   

xe   dt1dt2 

-00    —CO 

Since    x(t)     is stationary, 

Rxx(tl't2)    -    *xx(T> 

where T - t±  - t£ . Substituting T - t±  - t2 in Equation (2.12) 

gives 

■WW 
sin B(tx - t2) 

(tL - t2) cos Wo(tl " 4) 

arid    S     (w,v)    becomes 
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S  (ü),V) 
vy 

sin ß(t - t9) ,(tl,B(t4, -^^r2- 

-jut. jvt 
• COP tJ0(t1 - t0)e   ^e   dt1dt. 

oo 

r 

e(t2)e 
jvt, sin 3(t1 - O 

8U1} —(tl - t2) 

-jut. 
* cos (üQ(t1 - t2)e    

dtxdt
2 (2.13) 

The t1 integration in Equation (2.13) can be obtained from 

Parseval's theorem, 

f1(t)f2*(t)dt  -  ±y F1(n)i?
,
2*(n)dn 

where F1(n) and F2(n) are the Fourier transforms of f1(t) and 

f2(t) , respectively. To apply Parseval's theorem here, let 

-jut 

W " g(ti)e 

and 

f2(tx> - 
sin ß(t, - t2) 

<tx - 4)  
cos Uo(tl - '2> 

Then, 

F1(n) - G(n + w) 



mmmmssm gpaqw^BB i 
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where G(v)    is the Fourier transform of g(t) .  Comparing f?(t) 

with the relations derived between S («) and k    (T) , it is obvious 
XX XX 

that 

F2(n) 

71 '^2 
2 e w - 3 < h < to + 

o    —  ' — O 

cthervise 

and, therefore, that the conjugate of F (n)  is 

[   ir^2 
F2*(n)   - { 2e 0) 0 " 3 < |n| < cao + a 

otherwise 

Thus, the t^ integration results in 

-jut sin 3(t. - t.) 

cos ^(^ - t2)dtx 

-<» -0) 

1 f "      jnt2    1 
-r   G(n + u))e   dn + ± 

u> +3 

J 

jnt. 
G(n + w)e   dn 

-(o)o+3) 
j 
a) -3 
o 

and substituting in Equation (2.13), there results 



s
yy(w.v) 1 

4 g(t2k 
jvt, 

-<V6) 
jnt, 

G(n + (o)e ch 

* -(ü)O+3) 

V3 

jnt. 
G(j) + u))e dn 

v* 

dt, 

-<Vß) 

1 
A G(n + u>) g(t2)e 

j(n+v)t. 
dt2dn 

-<w+ß) 
o 

W  4fc co 

J(n+v)t9 
c(n + «)     g(t2)e ^dt2dn 

O —oo 

-vV3) 
1 
4 G(TI + w)G*(n * v)dn 

-(w+6> 

* 

18 

♦i G(n + ü))G*(n + v)dn 

vt 

(2.14) 
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Equation (2.14) is a useful form for the computation of the two- 

dimensional spectrum of a nonstationary random process which is the 

product of a modulation function and band-limited white noise.  In 

the- laboratory, roverberation is very often simulated in this way, 

although the band-limited white noise  x(t)  is only approximated by 

a good band-pass filter. 

in the event that it is desired to solve for the two-dimensional 

spectrum wheu x(t)  is venerated by a iow-pass filtir, let w - 8  in 

Equation (2.14) and there results 

S  (üO>V)  = i 
yy      4 G(n + w)G*(n + v)dn   . (2.15) 

-26 

2.2.3 Example 1.  Two-Dimensional Power Spectrum of 

Exponentially Decaying Band-Limited White Noisy.  Consider the 

nonstationary random process y(t)  obtained by multiplying band- 

limited white noise x(t)  by the exponential modulation function 

f -at 
g(t) - I e t >_ 0 (a ■> 0) 

0 t < 0 

If the spectrum of x(t)  is given by 

$     (w) 
xx 1 

* H < ß 

0 otherwise 

then, from Equation (2.15), it fellows immediately that 

j^^aa^B?i:ifrrs;gg^|L. 
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s
yy<u^> 

1 
4 (Jn + joj + a)(-jn - jv + a) dn 

-26 

20 

(2.16) 

2 
Multiplying the numerator and denominator by  (j ) ,, there results 

23 

S  (u>>v) 
yy 

l 
4 (-n - u + ja)(n + v + ia)dn 

J 
-28 

From Pierce's Tables,16 integral number 42, 

(2.17) 

s (Wfv) 
4(OJ - v - 2ja) In v + n + jot 

-in - n ± ja 

n - 26 

n - -2ß 

* (w - v - 2jcx) 
In (v + 26 + ja)  (u - 26 - ja) 

(a) + 26 - ja)  (v - 26 v ja) 

(2.18) 

2.3   One-Dimensional Energy Spectrum 

In this section, it will be shown that, if u) M v in 

Equation (2.1), the resulting spectrum S  ((*),&)  is the energy 

spectrum and that 

1_ 
27T 

S  (oo,(i))düj " E[y (t)jdt (2.19) 

—CO 

iJjfjBMc*--»***«^ -•*«*=?=. 
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Also»     SyyC^i^)     is  eqiicJ   to    Sr   (w)     defined by 

3  (w) 
yy 

yy 
CO 

r 
\y(T)e->

TdT (2.20) 

where R  (T)  ^S the auLjtranslation function defined by 

R <T) - E 
yy 

>(t + T)y(t;)dt. (2.21a) 

J 
—00 

R (t 
yy 

,t)dt (2.21b) 

The spectrum 5 (w) defined by Equations (2.20) and (2.21) is, except 

for the expected valve, identical to the energy spectrum of a transient 

function as described by Y. W. Lee. 

Xnis suggests consideting nonstationary processes with finite 

energy a.«? simply an ensemble of random transients which are treated in 

the frequency domain in the same way as deterministic transients, 

except that an ensemble average of the spectra must be computed.  This 

technique is suitable if ona is interested in the expected output power 

of a filter integrated over time as when the ratio of signal-to-noise 

energy is being computed.  This technique is net suitable if one is 

interested in the expected output as a function of time as when the 

ratio oi  signal-to-noise power at a particular time is being computed. 

In this case, the two-dimensional spectrum is needed. 

■-■•■v.- --  :...• ... . 
-:..-.. ;-.:. ._-., ■ ■.■■...- _,-._;:. _j£^ 
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To prove that 

S
yy^>  * Syy<u) 

(2-22) 

take Equation (2.2) which follows directly from the definition of 

S  (oo,v) , Equation (2,1), and let x » t, - t2 .  This gives 

\y(t2 + T>t2) 

1      (    ' jüj(t2+T; -jvt2 

(2w)2 J     J     ™ 
-oo   —co 

(2.23) 

Now, integrating both sides of Equation (2.23) with respect to  t, 

gives 

J 
—oo 

Ryy(t2 +'»t2
)dt2 

(27T)2 
S  (o),v)ejVt  • 
yy 

—CD —CO 

j(w-v)t2 
e      dtodwdv 

J 
—CO 

(2.24) 

Comparing the left side of Equation (2.24) with the definition of the 

autotranslation function, Equation (2.21), and recognizing that 

f 
5(a) - v) - ±- 

ZTJ 

j(u>-v)t, 
'dt. 

where 6(u; -  v)  is the Dirac delta function, there results 

VT) - S Syy(u),u))e
jwTdu) (2.25) 
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Finally, recognizing the right side of Equation (2.25) as the transform 

of ü (u),uj) shows that taking the transform of both sides of Equation 

(2.25 gives 

CO 

f 

J 
—CO 

Ryy(T)e"JUTdT * s
yy

(w'w) (2.2b) 

Since the left side of Equation (2.26) defines S  (w) , Equation 

(2.22) is proven. 

Taking the equation for the expected output power of a filter, 

Equation (2.5), and integrating both sides with respect to t , there 

results 

CO      oo 

f 

E[z*(t)]dt 
(27T)' 

H(u)H*(v)S     (w,v) ej(a,-v)tdtdcodv 

—OO    —CO 

1_ 
27T 

J       J 
—CO    —.oo 

H(o>)H*(v)S     (o),v)6(ü) - v)dudv 

and 

z   (t)dt 1_ 
27T 

J 
—oo 

H(w)H*(u))S    (w)du} 
yy 

(2.27) 

Equation (2.27) shows that S  (u>)  is an energy spectrum.  If H(to) 

is the transfer function of an ideal band-pass filter, 
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H(u))   -    ' 

1 

0 

*\<   H  iWH 

otherwise 

then    Equation  (2.27)   states  that 

00 

r 
U), 

[   *2<H  = fe S     (o))do) 
yy 

~°° (A) A 
Ä 

In other words,  S  (co)  gives the energy associated with the frequency 

hi .  Letting H('JO) be an all-pass filter, that is, letting H(w) = 1 

for all h) , immediately proves Equation (2.19). 

2.3.1 Example 2.  One-Dimensional Energy Spectrum of 

Exponentially Decaying Band-Limited White Noise.  The one-dimensional 

energy spectrum of the nonstationary random process described in 

Example 1 can be immediately obtained from Equation (2.16) by setting 

0) * v . 

let 

and 

S    fo)    .   i- iJg + 2ß + Ja>     fa - 2B - ja) 
*yy 8a in(w + 23 - ja)     (u - 23 + ja) 

.   J_ ltlü)2 - 4ß2 + a2 - 4ja3 
8a   2  /fl2 7 2 "  ~ " 

a) - 43 + a + 4jaß 

r -  [(a)2 - 432 + a2)2 + (4a3)2]1/2 

tan 
-1 4<*3 

2     2    2 
üT - 43 + az 
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Then, 

S (ü)) <■ 4~ In — yy     8a  rejc 

8a 

I_ tan-i £ai  
4a tan  2  ,ß2 ,  2 

u) - 4p + a 

2.4   Instantaneous Power Spectrum 

Another well-known spectral representation cf a nonstationary 

random process is the instantaneous power spectrum, first proposed by 

Page.  Page did not propose it as a spectrum for a nonstationary 

process, but as a qualitative method of determining when a suddenly 

applied noise had lasted long enough to be considered stationary. 

Q 

Lampard independently developed the same concept as a generalization 

9 
of the Wiener-Khintchine Theorem for nonstationary process.  Turner 

1C 
and Levin  developed further the concept. 

If the instantaneous power spectrum of a stationary random 

process is computed, the same answer is obtained as from the Wiener- 

Khintchine Theorem, 

5 (w) 
yy 

R (T) COS urcdi 
yy 

0 

However, for nonstationary process, the instantaneous power spectrum 

can be negative at some frequencies, although the integral of the 

**m     MWSÄUJ1     •~-:,-:^..ir..:=«St:vls^ 
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spectrum over all frequencies is always positive and equal to the 

instantaneous power. 

A more serious objection to the use of the instantaneous power 

spectrum is that no published technique exists for obtaining 

information about the output of a filter from its transfer function 

and the instantaneous power spectra. 

To develop the mathematical representation of the instantaneous 

power spectrum, suppose that all the samples y(t)  of a random process 

are truncated at some time t ■ T .  If the time function of a 

truncated sample is represented by 

/T(t) =    ■ 
y(t) 

o 

t _<  T 

t  >  T (2 28) 

then the autocorrelation function of the nonstationary process 

consisting of all tha truncated s.mples would be 

V^i'V   5   z[y (tx)y(t2)] 

1 
ci 1 T» 4 £ T 

otherwise 

The two-dimensional power spectrum of the ensemble of yT(t)  is 
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T  T 
(w,v) 

-jut, jvt? 
RyTyT

(trt2)e e        dtldt2 
_-o    .00 

T    1 

I Sy^l'V6 e        dtldt2 

In Section 2.3, it was shown that, if a) ■ v in the two-dimensional 

spectrum, the resultant spectrum is the energy spectrum.  That is, 

S   (w,v) * S   (co) 
y^y^ y»T>yrp 

T T 
r -j(t -t ) 

WV*        dtldt2 

and 

T 
t 

1_ 
27T yTyT 

(ID) dw E[/(t)]dt (2.29) 

The instantaneous power spectrum is defined as the derivative of 

S   ((.) with respect to T .  Letting p(T,w)  represent the 
y^T 

instantaneous power spectrum 

p(TtU)) =    |- S (a))    . (2.30) 
yTYT 

Differentiating both sides of Equation (2.29) with respect to T , 

'-"-'•  -•-••■-i--:--.-- J....^-;.^.3^^iH-^^-i/ 
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28 

1_ 
2TT IT 

SyTyT
(a))dai E[yz(T)] 

and making use of the definition, Equation (2.30), 

1_ 
2TT p(T,Cü)dü) - E[y (T)3 (2.31) 

Lme 

Equation (2.31) justifies the name, instantaneous power spectrum, siace 

its integral over u) is the expected instantaneous power at tin 

t - T . 

To derive the rslation between the instantaneous power specti 

and the autocorrelation function of the ensemble of truncated samples, 

T apply Equation (2.21b) to y (t) , 

T 

:rum 

R    (T) 
T T 

J 
—00 

Ryy^ + T»t)dt T < 0 (2.32) 

Since R   (T)  is an even function, it is sufficient to write the 
T T 

integral for negative T only, and the energy spectrum can be written 

from Equation (2.20) as 

00 

r 
S   (w)  - 
yTyT 

R   (T)e J  dT 
T T 
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R    (l) PCS üüTdT 
T T 

(2.33) 

Substituting Equation (2.32) in Equation (2.33), 

0  T 

S   (OJ>  - 2 
V V J TV <Y 

R  (t + T 
yy 

•t)dt1 COS WTdT 

—CC —OC 

r o 
[ 

2 | dt R (t + T,t) cos WTdT 
yy 

-OO     _00 

(2.34) 

Differentiating both sides of Equation (2.34), there results 

■L S   (03) - 2 
8T yTyT

v R (T + i,T) cos U)Tdi    , (2.35) 

or 

p(T,w)  - 2 Rt  (T + T,T) cos u)Tdi 

For y(t) , a stationary random process R (T + TtT)  is 

independent of T and can be replaced by R  (T) , giving 

0 

p(T.w) - ?      R (T) COS d'TdT - 3 (w) 

J 

v JV!&X*>U&=*Wj&£s^5Zj&&Jw 
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2.4.1  Instantaneous Power Spectrum of an Exponentially Decaying 

Low-Pass Noise.  As an example of the instantaneous power spectrum, 

consider the following signal: 

y(t) - 
-at 

e 

0 

t >_ 0 

t < 0 

where x(t)  is a stationary random process with autocorrelation 

-Bill 
function e  ' ' .  The spectrum has been changed from that used in 

Example 1 to avoid difficulties arising from t^e sin (ST)/T which 

would appear in such a way as to make the required integration 

impossible.  For the autocorrelation function given here, the spectrum 

is 

5 (w) 
XX 

23 
w + 3 

For t _> 0 , the autocorrelation function of y(t)  is 

T >-t, t > 0 

0 otherwise 

R  (t + T,t) 
yy 

E[e-a(t+T)x(t+T)2-
at-,(t)] 

e   e  R (T) 
XX 

o 

T >-t, t >_ C 

otherwise 

-2at -oti -6\i! 
e   e  o  ' 

T >-t, t _> 0 

otherwise 





CHAPTER III 

REDUCTION TO AN EQUIVALENT STATIONARY PROBLEM 

3.1   Summary of the Result 

In some cases,   the nonstationary random process is written as 

the product of a stationary random process x(t)  and a modulation 

function g(t) .  Brown  showed that the problem of computing some 

output statistics of a filter for the input g(t)x(t)  can often he 

reduced to the problem of finding the corresponding output statistics 

of a different tilter for the input x(t  , a stationary random 

1° 
process.  Miller " generalized Brown's result to a random modulation 

function g(t) . Here, only a deterministic modulation function is 

considered.  Specifically, if h(t)  is the filter weighting function, 

the transfer function of a new filter is computed: 

B(co,t) h(t - £)g«)e~jü,5d£ 

—08 

The mean square value of the output of the new filter in response to 

the stationary input x(t)  is the same as the output of the actual 

filter to the nonstationary input g(t)x(t) .  If z(t)  is the filter 

output, then 
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E[z*(fc)] 
j 

2? 
«? 

|B(o),t) |" S    (w)dw 
XX 

as in stationary problems. 

3*2   Proof of the Result 

The steps in Hrcwn's proof are repeated here.  If 

y(t) * g(t)x(t)  i« the input to the filter having the weighting 

function h(t) % the filter output is 

z(t) h(t - 4)y(C)d£ (3.1) 

z(t>  can be considered as a sample of the output or is a random 

variable.  Assume that h(t)  and g(t)  are real values with g(t) 

uniformly bounded on  C-«5,00) and that h(t) ±8  absolutely integrate 

and square inte.grable.  In addition, assume x(t)  is wide-sense 

stationary with square integrable autocorrelation function R    (T) 

and spectruai 5 ( ^ . 
iii' 

xx 
The autocorrelation function ot  the filter output is given by 

R.z(tl't2) 

( 
CO 

f 

h(tx - 5)g(Ox(C>de h(t? - n)g(n)x(?)dC 

_ J J 
-co 

(3.2a) 

*=■' ^C.«-jf^^v^b-^äÄfia,\A^G^^g; 
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CO CO 

I    r 

h(t   - ?>h(t2 - n)g(n)g(C)Elx(f,)x(n)]dcJdn 

_co   _oo 

(3.2b) 

f  i 
hu1 - C)h(t2 - n)g(n)g(C)Rxx(i, - n)d4dn 

— 30    —OO 

(3.2c) 

Now, we define      B(w,t)     as  follows: 

B(u),t)    -        h(t - 6)g(5}«"ja,Sie . (3.3) 
J 

—     00 

Then, B(aj,t)  is the Fourier transform of h(c - £)g(0 . and 

S (w)eJ   the Fourier transform o2    R  (£ - n)   Then, by P^rseval's 
XX XX 7 

theorem, the E,    integration in Equation (3.2c) becomes 

00 
f 

h(tx - £)g(0*xx(C - ^)dK    - ^ j B(wft1)Sxx(w)« 

Then,  substituting Equation  (3.4)   in Equation  (3.2c)J 

Jr»^' duo 

(3.4) 

CO        CO 

r   t 
jnw. RiZ^t1,t^    -   ^|    j B(tt)it1)Sxx(w)h(t2 - n)g(n)eJ,,u-du)dn 

—OO   _oc 

oo 

f 

~ j   B(ü),t1)B*(jJült2)Sxx(u))dai 

(3.5a) 

(3.5b) 
j 

—Co 
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The expected value of the output power is obtained by letting t. ■ t« , 

K[z2(t)] » ~  ! |B(w,t)|2 5 (w)d(ü 
i. u XX 

(3.6) 

i 
—OO 

This is the desired result which will be used extensively in Chapter V. 

An alternate form for computation of B(w,t)  can be obtained by 

applying Parseval's theorem to the definitic.i of E(w, t) , if g(t) 

is also square integrabJe.  Using the time and frequency translation 

theorems for Fourier transforms [Campbell and Foster,  pair (206) and 

(207)], the Fourier transform of the terms h(t - £) and g(0*~ 

in the integrand of Equation (3.3) are 

h(t - Oe"1n^d£ ejntH(n) 0.7a) 

J 
—00 

IgCOe -Jwe]e-jn5de G(n + co) (3.7b) 

and, using Parseval's theorem, Equation (3.3) can be written in the 

alternate form: 

B(u>,t) - ~- ! H(n)G(ri + u))ejntdn 
ZTi I 

(3,8) 

■r -: -■■ ----- .•• -     . -_ .. ssäfcy^Lri 
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3.3   Interchange of the Modulation Function with the Filter 

Weighting Function 

It can also be shown that the same results are obtained if the 

modulation function and filter weighting function are interchanged. 

First, write the convolution integral in the alternate form: 

z(t) h(üy(t - Od^ 
J 

—OO 

then, 

00       oo 

r   r 

WV h(C)h(n)s(t1 - 5)g(t2 - n)     • 

—00     —00 

E[x(t - £)x(t - n)]d£dr, (3.9a) 

Define 

00       oo 

f    f 

h(C)h(n)g(t1  - C)g(t2 - n)Rxx(C - n)d^dn 
i       i 

-»CO     —00 

(3.9b) 

B'(w,t1) h(Ug(tx - Oe~jajCd£ (3.10) 

similar to the definition of    b(co,t)   . 
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Then, 

00        00 

t 

R    (t.,t0)    *    -rr 
7,7.      12 ?7T 

B,(u),t1)Sxx(cu)b(n)g(t2 - ri)ejntV*in 

(3.11a) 

00 

r 

h   I   3,aott1)tf*(o;ft2)5xx(tj)dü) . (3,11b) 
j 

—oo 

Comparison of Equation (3.11b) with Equation (3.5b) shows that the 

output autocorrelation function is unchanged if we interchange the 

modulation function end  the filter weighting function. 

3.4   Practical Application 

The advantage of this technique, when it can be applied, is that 

the problem can immediately be reduced to a stationary problem whenever 

the Fourier transform of h(t)  and g(t) can be determined.  Then, 

after computing the transfer function of the Imaginary filter B(oj,t) , 

we can solve for the power output as a function of time.  Although, in 

general,  B(u,t)  is a complicated filter transfer function so that the 

integral /|B| S dco will often be difficult, this integration can 
xx 

usually be done graphically or numerically.  It is also worthwhile to 

observe that the time variation of the filter power output cr.n be 

determined from B(u),t) without doing the integration over frequency. 

=äS=.T=~ 5J.SSJ~feä 
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Chapter V uses Brown's result to solve for the output power of 

an RLC filter subjected to a reverberation input.  It will be seen 

that the calculations are quite complicated and require a computer 

for all but an asymptotic solution. 



CHAPTER IV 

OPTIMUM BANDWIDTH OF AN RC FILTER FOR DETECTION OF 

A PULSE IN EXPONENTIALLY DECAYING WHITE NOISE 

4,1   Introduction 

Schwartz,  in discussing matched filters for detection of 

pulses in stationary white noise, *lso gives some comparative results 

for an RC low-pass filter.  Schwartz shows that the optimum bandwidth 

of the Rr  filter is 0.2 divided by the pulse length and that the 

output signal-io-noise ratio of such a filter is only 1 dB less than 

the output signal-to-noise ratio of the matched filter.  The purpose 

of this chapter is to perform some similar calculations for white 

noise in which the spectrum level varies exponentially with time, 

according to the modulation funct5onr 

7 i e'2at        t > 0 
ig(or - - 

0 t < 0    . (4.1) 

It will be found that the optimum bandwidth is a function of time for 

small t and a constant for large t    and that it is different from 

the optimum bandwidth for a stationary random noise.  In the case when 

a - 0 , the noise becomes stationary for very large t and, as 

expected, the optimum bandwidth for large t  is the. same as that 

computed by Schwartz. 

   -—-■:-~^ii^;Ä=%t=^-3saee523s<r:; 
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4.2 Practical Significance of the Problem 

From the point of view of the designer, the practical 

significance of this problem is not the detection of a rectangular 

pulse in white noise.  It is fact that the solution is related to the 

practical problem of detecting a pulsed sine wave in white noise using 

a simple RLC fiJ 3r.  Specifically, if the frequency of the pulsed sine 

wave is the same as the resonant frequency of the RLC filter, the 

optimum bandwidth of the RLC filter is exactly twice the optimum 

bandwidth computed for the RC filter and rectangular pulse. 

4.3 Optimum Bandwidth for Stationary White Noise 

Figure 1 shows the response of an RC filter to a rectangular 

pulse, the analogous response of an RLC filter to a pulsed sine wave 

and the white noise background. The definitions of signal power and 

noise power are also illustrated in this sketch.  It will be useful 

to firs!" compute the output signal-to-noise ratio in a general form. 

This will provide an upper bound on the output signal-to-noise ratio 

which is attained by the matched filter.  Then, the output signal-to- 

noise ratio will be computed for an RC filter. The purpose of these 

computations is to provide a basis for comparison with the 

exponentially varying noise. 

If the Fourier transform of the signal is V-(w) , then the 

Fourier transform of the filter ou?.pat due to the signal i.s 

V (<JJ) - V4(u))H(u)) o       1 
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DC PULSE 
/ 

SIGNAL POWER IS PEAK 
VCLTAGE  SQUARED WHEN 
NO NOISE IS PRESENT 

PULSED SINE WAVE / 
SIGNAL POWER IS SQUARE OF 
THE PEAK ENVELOPE WHEN 
NO NOISE IS PRESENT 

NOISE 
NOISE POWER IS EXPECTED 
VALUE OF THE NOISE 
VOLTAGE SQUARED WHEN 
NO SIGNAL IS PRESENT 

Figure 1      Definition of Signal and Noise £>ower 

&4-S&& iSsSSesSSe 



The filter output as a function of time is the in-erse transform of 

v0<to> , 
00 

r 

S (t)  - i- V^HMe^dw 

If t  is the time at which the filter output due to signal alone is 
o 

maximum, then the peak signal output pov:er is 

s 2(t ) - _L- 
°  °     (2„)2 

jüJt 
V4(u)H(oj)e  °dü 

J 
—oo 

Foi white noise with a spectrum level of r watts per Hz over 

positive frequencies only, or of r/2 watts per Hz over both positive 

and negative frequencies, the expected noise output power is 

r  2i    r t[n  ]  * 7— 
o      Arr |H(w)|*dw 

i 

giving an output signal-to-noise ratio of 

E[n 2, o 

jüüt 
V1(w)H(w)e      °du; 

1 —CO 
- - 

r     j    JH(oo)|iidw 



From Parseval's theorem, the signal energy is 
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Si
2(t)dt - Aj 

J 
—CD 

|V (CJ)| dö 

Multiplying both signal and noise by the signal energy, the output 

signal-to-noise ratio can be expressed as 

o 
EO 

(4.2) 

where 

U = 

r 
Jwt    2 

| Vi(u))H(iu)e  °düi I 

i 

|V4(ü))|2dw  .|H(üü)!2duJ 

From Schwarz inequality, the maximum value of u * 1 , so the maximum 

possible output signal-to-noise ratio is 2E/r .  The filter transfer 

function, such rhat p ■ 1  is, by definition, a matched filter.  For 

the rectangular pulse in white noise background, 

!'   2  ] 
O 

2 
2V T 

o 
'max 

Having derived an upper bound on the output signal-to-nuise 

ratio which is obtainable with a matched filter, what is the maximum 
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Output signal-to-noise ratio obtainable with a simple RC filtp*-? 

Applying a pulse of amplitude  tf and duration  T  to an KC filter 

gives an output 

s0(t) 
V(l - e-t/RC) 

V{1 - e~t/RC - [1  - e-(t-D/aCJ} (4.3) 

which is maximum at t ■ T .  The maximum value of  S *(t)  is, 

therefore, 

So
2(T)  » V2(l - e"'^)2 (4.4) 

where W - 1/RC .  The output noise power is 

EO JL      1 

2    2TTRC    
r 

r 
4RC 

rW 
4 

since the equivalent noise bandwidth of an RC filter is  (n/2)  times 

the half-power bandwidth.  The output signal-to-noise ratio is, 

therefore, 

E[no
2) 

2 -VT ? 
2y_r (i - c ) 
r     WT/2 (4.5) 

Comparing this equation with Equation (4.2), it is seen that 

,. -WT.2 (1 - e  ) 
U   * ;    *— M WT/2 

The maximum value of    u    occurs at 

(4.6) 

WT    -    2TT   •  0.2    *    0.47T 



which gives 

only i dB beiow 3.0 provided by the matched filter. 

4r4   Optimum Bandwidth for Exponentially Decaying White Noise 

In order to perform analogous calculations for exponentially 

decaying white noise, l«t ehe noise i>*». equal to the modulation 

function g(t)  tines stationary white noise having spectrum level r . 

Since the signal will be exactly the same, it will be desirable to 

express the output signal-to-noise ratio i\\  the form 

So2(t)    -  2V2T uft> it (i;    > 

E[no
2(t)]     re"2at 

where y(t)  is D  function of time to be determined by the following 

calculations.  It will be assumed that the signal pulse has always 

arrived T seconds before t so that the signal reaches its maximum 

value at the filter oucput at time t . 

4.4,1 Time-Varying Expected Noise Power.  To compute the 

expected noise power as a function of time, the two-dimensional power 

spectrum derived in Example 1 can be used. Since the assumed spectral 

density of the stationary random process is r/2 watts per Hz for a 

spectrum containing positive and negative frequencies, the spectrum 

assumed in Example ] must be multiplied by r/27T .  Then, from 

Equation (2.16), 
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Syy(o),v) 4TT (jn + ju) + a)(-jn - jv + a) 
dr, (4.7) 

The transfer function of an RC low-pass filter is 

H(ü)) 
1/RC 

jU) + 1/RC 
(4.8) 

Substituting Equations (4.7) and (4.8) in Equation (2.5) gives the 

expression for the er «ected output noise: 

E[no
2(t)] 

OO   00 

r 

2(2TT)
J
 J 

[ 1/RC ejüJt 1 
jco + 1/RC j 

1/RC e"iv,t I 
-jv + 1/RC I 

dn 

(ot + jn + jcu)(a - jn - jv;) 
dwdv 

Reversing the order of integration gives 

E[n/(t)] 
c r-, ^3 

1/RC e 
jut 

2(2TT) i     J (jo) + 1/RCXjU) -1 jn + a) 
da) 

—ÜO • -oo 

1/RC e 
-jvt 

(-jv + :./RC)(-jv - jn + a) ■r dvdn 



4/ 

Using Campbell and Foster,  transform pair 448, 

1/RC e 
Jut 

du) 
2TT e 

-(a -r jn)t-e-t/RC 
5- «ILL)    Ä    i - ■ ii ■ II   '— 

RC  -jn -(a - I7RC) 

and, therefore, 

1/RC e^Vt 

(-jv + l/RC)(-jV - jn + a) 
dv 1/RC ejVt 

(jv + 1/RCXJv - jn + a) r dv 

1/RC e 
jvt 

(jv + l/RC)(jv - jn + a) 
dv 

-(a - jr))t -t/RC 
zu e -e  
RC   jn - (a - 1/RC) 

Substituting these transforms into the previous expression for 

E[nQ
2(t)] , 

E[n/(t)]    =  £-r    <   i   c   ~      + e 
4ff<RCr     |   ^ 

f    -2at   ,     -2t/RC 1 

dn 
2 "9 

J   n    +  (a - 1/RO" 
—JT ~ 2e 

-(a + l/RC)t 

cos nt 

n2 + (a - l/RC)2 
n    \     . 
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The firsf integral on the left is 

lira 
ß-KO n2 + (W - a)2 

T dn (W - a) 
— j lim tan -l n 

W - a 

n-ß 

n»6 

|w ■> a | 

To obtain the integral on the right, let 

(4.10) 

|W - a| 

Then, 

cos nt 
!  2 ~7 r dn - 

w - a 
ccs[(W - a)ut] 

(W - a)z J   l + u< 
du 

which is a tabulated definite integral [Peirce,  number (505)], 

cos ax j     7T -a 
 2 dx " ?e 

1 + xZ       2 (4.11) 

Finally, substituting the two integrals in Equation (4.9), 

E[no*(t)] W2r 

4|W - ol 
r2(Xt + e"2Wt  - 2e"(W+a)t -|w-a|t 

If    (W - a)  > 0  , 

r(W + a)t -|w - a|t    _      -2Wt 

t£— ■ ~-; . .-^.tr-.." 



and* if  (W - a) < 0 , 

-(W + a)t.-|W - alt    -2at 
e        G '     '   s e 

This gives the expression for the output noise: 

49 

E[nö*(t)] 
W2r 

41W - a! 

-2-t   -2Wt 
e    - e (A.12) 

The expected output noise power is ploiteci in Figure 2 as a function 

of time for ex ■ 1  and W ■*• IOTF , a 5 HZ low-pass filter. 

4.4.2 Time-Varying Optimum Bandwidth.  The output signal-to- 

noise ratio obtained from Equations (4,4) and (4.12) is 

S 2(T) 
o  

E[nQ
2(t)J 

4lW-°!  V2(l - e-WT)2 

W r 
i -2at   -2WT. 
e    - e 

(4,13) 

To compare this with Equation (4.5), the corresponding equation for a 

-2at 
stationary noise background, note that  r  is analogous to  re     , 

So2ffl 

E[no
2(t)J 

2E 
-2 at 

re 

(1 - e  ) 

f_wi 
2|w - aj 

T • |l - e 
-2(u)-a)T| 

The function u(t)  is, therefore, given by 

(4.14) 

M(t) 
M -WT.2 
(1 - e  ) 

I       w2 

I 2|W - a| 
T •  1 - e 

-2(aj-a)T| 
(4.15) 
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Figure 2. Low-Pass Filter Output Noise 
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—2(W — a) t 
For t sufficiently large so that e << 1 and for a « W , 

u(t) will be nearly equal to u given by Equation (4.6) and the 

optimum bandwidth will be the sama as for a stationary white noise.  In 

addition, given equivalent input noise spectrum levels at every time, 

the output signal-to-noise ratios will be nearly equal.  If these two 

conditions are not met, a different optimum bandwidth is expected. 

A computer prog^oJii has been written to solve Equation (4.15) as 

a function of aT ,  t/T , and of WT .  Basically, an aT and a 

time t/T are assumed and v(t)  is computed as a function of the 

bandwidth pulse length product WT . The program output actually 

expresses the bandwidth pulse length product as Hz times pulse length 

instead o^ radians per second times pulse length.  In other words, the 

bandwidth pulse length product is expressed as 

WT RT m    ILL 

The program also finds the maximum value of u(t) , which gives the 

maximum output signal-to-noise ratio, and the value of BT which gives 

this maximum output signal-to--noise ratio.  This value of BT , of 

course, is the optimum bandwidth pulse length product which is the 

object of the calculation. 

Figure 3 shows the optimum bandwidth pulse length product BT 

as a function of the time for aT * 0.0, 0.5 and 1.0 . Note that, for 

aT * 0 , the optimum BT is asymptotic to 0.2, the optimum BT for 

stationary white noisj. This is as expected since, for aT « 0 , the 

noise spectrum level does not change after t - 0 and, after a while, 

v...'..-...   -.:-  .,._-.:&.•.-.,--. ....... -:^.r^^r>.:_ 
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the noise appears stationary to any finite memory fiiter.  For 

Off * 1.0 , the bandwidth is asymptotic to 0»41, a value twice that 

for stationary noise. 

figure 4 shows the maximum value of u(t)  as 3 function of 

time for the same set of aT .  Recall that, for a stationary white 

noise background, the maximum value of u(t)  is 0 8 for an RC filter 

and 1-Ü for L  matched filter. 
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CHAPTER V 

RESPONSE OF A SIMPLE RLC FILTER 

TO VOLUME REVERBERATION 

5.1   Introduction 

In Chapters II and III, the required mathematical tools were 

developed.  In Chapter IV, the time variation of the optimum RC filter 

bandwidth for detection of a signal in exponentially decaying white 

noise was studied.  In this chapter, the practical problem of 

calculating the response of passive linear circuits to reverberation 

inputs using spectral techniques will be studied.  In particular, the 

response of the RLC circuit shown in Figure 5 will be computed for a 

volume reverberation input. 

The volume reverberation input r,(t)  Is modeled as described 

in Section 1.2. To review the model, if a pulse of duration T is 

transmitted at time t ■ 0 , the reverberation returns are 

r.(t) 

-at 
|  x(t) t > T 

0 otherwise 

where T is the transmitted pulse length, a i3 a constant 

proportional to the sound absorption coefficient, and x(t)  is a 

stationary random process with a spectrum S  (a)) . 
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-VW- i~i—r 
Sj(t) + rj(t) R2|   LB     ci    S0(t)+r0(t) 

J 111      I 
Figure 5. RLC Band-Pass Filter 
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The equations derived by Brown will be used since they are 

directly applicable to the reverberation model used and  nee the 

results obtained can be used with any spectrum S  (co) .  The best 
xx 

spectrum to use for x(t) will depend on the speed of the platform 

ar 1 on the directivity pattern of the transducer.  Brown's equations 

aljuow one to compute a function B(u),t) which includes the effect of 

the modulation function, in this instance, 

-at 

g(t) 

t > T 

1 (5.1) 

0 otherwise    . 

and which contains the effect of the filter. The expected filter 

output power can then be computed for any x(t)  from the equation, 

Etro
2(t)] - k. |B(0u,t|2 S (u))dw    , (5.2) 

XX 

just as if B( ,t) were the transfer function of a filter subjected 

to the input x(t) . 

5.2   Filter Weighting Function 

To compute B(u),t)  from Equation 0*3), it will first be 

necessary to compute the filter weighting function h(t) ,  From 

Figure 5, the transfer function H(w)  can be written as 

H(üJ) " A TTjflll—      • (5-3) 
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where R^ is the resistance of Rx and R« in parallel. A partial 

fraction expansion of Equation (5.3) gives 

H(w) 

I jo. + 2^c + JWo    Jw + 2R^ " j"o 

where U) ■£ j — - 

1/2 
(5.4) 

To find the weighting functica h(t) , first take the inverse 

transform of 

Hx(o)) E  i 

JW + 2R^+ Jüo    jw+«bc" jü) 
2RpC  -o 

,   (5.5) 

which gives 

hx(t) 

-t/2Rp( 
sin u) t 

o t > 0 

t < 0 (5.6) 

Then, the inverse transform of juu (co) is obtained by differentiation 

of h-(c) , giving 

h(t) 

1   -Wt 
,, D r  e  (a) cos U) t - M sin  u t)    t > 0 
U) K, L        O     O O — 
O 1 

t < 0 

where W - ^-^ , the half-bandwidth of the RLC filter.  It will be 

easier to work with h(t) if we express sin u t and cos u t in 
o o 

the exponential form. This gives the following equivalent expression 

for h(t) : 

lB3?fc=SB*aREä^MS 
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h(t)    - 1        -Wt   I  ^o 
a) R.C e 1   2 

O   1 I 

-Jut        jet 
e + e 

2 

-Jw0t    Jut 
e - e 

co R-C o 1 

t    >    0 

i_ J     "o " JW .-Wt/^V  Ä   % + JW _-Wt_jV e     e e      e 

J 

ft>0. 

(5.8) 

5.3   Integral Expression for B(cu,t) 

B(co,t)  can now be computed by substituting Equations (4.1) and 

(5.8)  in Equation  (3.3): 
t 

B(w.t) h(t - Og(Oe"jU34dC 

0) R-C n 1 

uo-JW ,-w(t-5)-jUou-t) £Ü  -j«?.. 

wo + jw f   -w(t-C)+ju) (t-O -a? 
e -s— e J  *de 

a) R,C o 1 

0) _:lw _-wt.-Jv f e
tw-a-j(^o)K 

e      e 

j 
d^ 

Mo + jtf >ft.^V &      e 

[K-ot-j(o^rt)3f;        j 

d£   y     .   (5.9) 
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Recall that W is one-half the filter bandwidth in radians per 

second and that o. is proportional to the sound absorption coefficient. 

For frequencies between 1,0 kHz and 100 kHz. the absorption coefficient 

18 
will vary " etween 0.003 and 30.0 dB per kiloyard.   Since sound 

travels approximately 1.6 kiloyards per secend, the absorption loss at 

100 kHz in one second is 

1.5 kyd • 30.C A  = 48.0 Ä- 
kyd        sec 

The coefficient a can new be computed from the equation for 

the absorption loss; 

10 log10 e 
-2at 

sec 

which gives a » 5.S at 100 kHz.  Similarly, at 1 kHz, a - 5.5 • 10"A, 

It is important to construct a filter such as that shown in 

Figure 5 which ha^ a bandwidth less than a few Hertz. Assuming a 

filter bandwidth as i ~»w && 5 K', :'•... J.e corresponding value of W 

would be 

W - 
2TT > 5 

2 
15.7 

and  (W - a) would be betwee  10,2 and 15.7.  For these reasons, it 

will be assumed that  (W - a)  is positive when obtaining an expression 

for B(ui,t1  in terms of the exponential integral in the next section. 

Then, since (W - a) >* 1 > in the following section, an asymptotic 

expansion of B(u),t)  is derived. 



'.,!! mmm.  . wt* 

for simplicity, the follcwing definition« are made: 

(,1 

a    -    W - a - j ('jü - ajQ) Re a  > 0 

b    ™    W - a - j(u) + üi0) Re b>0 

Then,  Equation  (5.9)  C3n be written as 

b(w,t)    - 
-Wt     I  u)    - jW    -jut   f    a£ 

1     o 

W   I        2 
0
    i *_ 

T 

d? 

x^+jW   jet 
+  «  e 

J 

T 

O.iO) 

5.4   Solution for B(qj,t) in Terms of the Exponent!a 1 icus* u 

An exact solution for BCco,1:)  can be obtained in terms ot the 

exponential integral, defined by 

00 

r -v 
Ei(u) 

f 

T   dv 
V 

(5.11) 

-u 

where f indicates the Cauchy Principal Value. Although Ei(u) 

j 

cannot be integrated in closed form, it has been tabulated lor real 

values of the argument and, in addition, many infinite ncrles and 

asymptotic series for both positive real, negative real and complex 

values of the argument have been published.  Jahnke and Emde,17 for 

example, contains an extensive listing of these series as well as 

several qualities for Ei(u) . 

-- -.*:.-=o-~ ~ -=:;--H£- --—== — - "-* 
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To express B(u>,t)  in terms of Ei(u) , let v 

Equation (5.10).  Then, there results: 

-a in 

-at 

B(u),t) 
e-Wt  I w0 - jW -Juot 

o 1 

-v 
dv 

-aT 

u + jW Jw t 7bt-v 
+ «  e 

-bT 

dv 

But, since the real part of a > 0 , and since T and t > 0 , 

-at 
f -v 

dv 
-v 

dv - «- 
-v 

dv - fii(at) - Ei(aT) 

-aT -aT -at 

Doing exactly the same thing for the other integral results in 

-Wt  I u - jW -jw t 
B(«,t) - JTTc j -^-j e  ° [Ei(at) - Ei(aT)) 

o 1 

(A) -H JW jü) t 
e ° [Ei(bt) - Ei(bT)] 

(5,12) 

EA\!passsBragr= UH—!■ W.  w»»*- •--- •-■^----~;:----~-^---^.---;^--~--^^-r^S:^^.-„":^E=      ( 
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5.5   Asymptotic Expansion for B(o), t) 

The large value of (W - ex) mentioned in Section 5.3 will make 

the real part of  (at) and (bt)  large for a great many values of 

t . For this reason, an asymptotic expansion for B(u),t) approximates 

the correct value. Actually, an asymptotic expansion for Ei is 

tabulated in Reference 17.  It is trivial to obtain an expansion for 

B(w,t) from an expansion for Ei . It is simple, however, to derive 

an asymptotic expansion directly from the integrals in Equation (5.10). 

This not only avoids integration through the singularity at    £ • 0 

which is required to express B(u),t)  in term*1 of Ei , but it shows 

that the expension obtained is valid for this problem. This fact is 

not clear from the tabulations. It will be found that tho expansion 

obtained is .Identical to that obtained from using the expansion 

tabulated for Ei . 

The resulting asymptotic expansion can be used to simplify the 

expression for the output cf the filter for very large values of t . 

Furthermore, it will be possible to put an upper bound on the error in 

the simplified expression, given a value of (W - cx)t . 

5.5.1 Properties of Asymptotic Expansion. This section 

reviews, without proof, the definition of an asymptotic expansion and 

13 
some of its useful properti£3. Goldman  points out that asymptotic 

series have turned out to be particularly practical in transformation 

calculus. Thus, it appears that resorting to an asymptotic expansion 

is not a technique peculiar to this study, but a common event in 

solving practical problems by means of transforms. 
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Let S (t) be the sum of the first (n + 1)  terms of the 

series 

A..   A« A 
Ao + r + 4+- • -+^ +       * <>-13> 

and let R (t) - tn[f(t) - S (t)] .  Then, if 

lim R (t) - 0    , 

for a fixed n , even though 

lim |R (t)| + oo 
n  ' 

n-Ko 

for a fixed t , we say that Equation (5.13) is the asymptotic 

expansion of f(t) .  In such a case, it is customary to write 

A   A, 
f(t)  - AQ + ~ + -| +  . . . + P'n    + (5.14) 

Ü tn 

Although an asymptotic series does not converge, It can be 

used for large values of the variable.  If the variable is sufficiently 

large, the magnitudes of the terms monotonically decrease with 

increasing n , pass through a minimum, and then monotonically 

increase. The sum of the first n terms differs from f(t) by less 

than the (n + 1)  term. Therefore, if the series is carried out to 

the minimum term, it differs from f(t) by less than the maximum term 

and a good approximation is obtained.  In addition, for a fixed number 

of terms, the approximation gets better as the value of t increases. 
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5.5,2 Derivation of the Asymptotic Expansion. The asymptotic 

«xpansion is derived from Equation (5.10) by integrating 

'.« d£ 

and 

M 
dC 

successively by parts.  For simplicity, the expansion of only one of 

these two integrals will be shown.  The expansion of the other is 

obtained by interchanging a and b .  To integrate by parts, let 

u - 1/4 

dv ea^dC 

Then, 

Vd5 uv - vdu 
C   a 

M 
dS 

Similarly, to integrate 

1 
a 

le* 

9 
let u - 1/C  and let dv remain as before.  This gives 

I'Sltt^ttfii&^EidUfe 
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1 
a —~ <*£ "  ~ + 

t    rx2     2 (aO   a 

feaC 

Continuirg this method of integration and summing all the terms gives: 

d£ «c 

n 
a 

.n+i c;C 

*5  (aC)2  UO3 (»0° 

at 2J 

(at)    (at) (at)n 

, n! -at 
+ — e 

n 
a 

dC 
J 

-00 

at t - e  4 
2! 

aT 
(aT)'  (aT) 

I fa-l)l , 

(aT)n 

, n!  -aT 
+  e 

n 
a 

.n+l d5 



From the definition in Section 5.5.1, 
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i_ + _JL_ + _i!_ + . . . + l2lii! 

at
  (at)2   (at)3 (at)n 

is an asymptotic expansion if 

t 

lim 
t-x» 

n!  -at n 
— e  t n 
a 5 

n+1 
dU ' 0 

From L'Hospital's rule, 

-j     n!     -at n lim — e      t n 
t~»a 

J5Ü 
.n+1 d 5 

,.      n!     d lim - ä? 
t- a 

.n+1 d? 

d      at -n 

lim n!    e at 

n      n+1 , -n at t-x» at at.      -n-lv       t    e e    (-nt        ) :  

. .    n! lim — 
n    -n + t/a 

t-+oo 

and the expansion is asymptotic.    This allows us  to write 

I* ,t    ^      at 
d£    "    e 1     ,       1        +      2!_ +    ^   (n-1)! 

at       (at)2 (at)3       '"   (at)n 

-e 
aT i- +      1      +    2!       +  t   B     (n-1)! 

aT      (aT)2       (aT)3 (aT)n 

(5.15) 
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and the error will be less than the minimum term of the series. 

Finally, substituting the asymptotic expansion of the integral 

into the expression for B(u,t) , Equation (5.10), there results: 

B(ü),t) %   1 
a) R.C o 1 

%  ~ W -at -jut e  e J 1     1     2! — -j- —±— + —±J— 

"  (at)2  (at)3 
+  .. . 

_ -off -jooT -W(t-T) -J'Vt-1) 
-e   e "    e 112! i_ + —i— + _£J 4. 

aT  (al)2  (aT)3 

uo + jW ,-ot-Jut i_ + _i_ + _2!_+ ... 
bt  (bt)2  (bt)3 

-aT 
-e  e -JwT -W (t-T) 

Ja)D(t~T) fl  ;  1     2! 
e      e       I K? +  ? +  

^ bT   (bT)2   (bT)3 
+ .. . 

%        1 
ii)R,C o 1 

e-ate-jut 
M. + JW w      j_    2| 

"   (at)2   (at)3 
+  ... 

+e-ate-jo>t 
w + jw 

fe'T^fb*-] 
-W(t-T) -aT -jwT 6      e  e 

-jtuo(t-T) 

(bt)'  (bt)' 

aT  , _v2  /mv3 
+ ... 

(aT)"  (aT) 

+ e 
jwo(t-T) CüO + jW 

bT -L- + -2I- 
(hT)2   (bT) 

(5.16) 
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5.5.3 Accuracy of the Asymptotic Expansion.  Recalling that 

a"W-<x-j(ü)-Go) » it- is dear that at w ■ w » a is real and 

has its minimum magnitude for fixed  (W - a) . Thus, if the real part 

of a is sufficiently large so that, at OJ - w » 

at 112! ±— + —±— + —tj,— 

(at)   (at) 
+ .... 

at 
e  
at 

(5.17) 

then, for GO J4 co , the magnitudes of the terms 

2! 3! 
2 »     1 "     A » • •• • 

(atr  (at)J  (at)* 

are even a smaller percentage of 1/at than for OJ ■ M . Thoj, tba 

approximation represented by Equation (5,17) is better at oo / u 

than at OJ ■ OJ 

Ei(21) 

It is found by trial and error that 

0.6613 • 108 

and 

21 
e  
21 

0.629 • 10v 

21 
The error in using e /21 in place of Ei(23) is 4.8 percent.  For 

arguments with real parts greater than 21, Ei(at) may be computed 

at 
from e /at with less than 5 percent error in magnitude. 

Similarly, if Ei(a) « Ei(at) for real a , than El(aT) 

will be even more negligible for complex a . To see this, form th« 

ratio Ei(aT)/Ei(at) and assume this fraction is sufficiently small at 

^&33»^s^o»ji»^^ixi^m^f^fss 
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co ■ Cü , where a is real.  In forming this ratio, remember that it is 

at being assumed that  (at)  is sufficiently large so that Ei(at) * e /at, 

aT Ei(aT) %    ate 
Ei(at) "   at aT 

(aTr  (aT)" 
+ . (n-1)I 

(aT)n 

te -a(t-T) 

T + aT2 1 *V a T 

(n-1)! 
n-lmn 

(5.18) 

Since this ratio is assumed sufficiently small at w ■ w , it is 

even smaller for w ^ Cü , where a is complex, since the magnitude 

of e       is unchanged for complex a but the magnitudes of all 

the terms containing a in the denominator decrease. 

It is found that Ei(13) - 0.3720 • 105 so that if the real 

part of aT is less than 13, the magntidue of Ei(aT)  is less than 

0.1 percent of the magnitude of Ei(at) and can be neglected. 

2 
5.5.4 Simplified Expression for E[r  (t)3  for Large t . 

Assuming that  (W - a)t >21 and that  (W - o)T < 13 ,  then 

at 
Ei(at) - Ei(aT) - 

aF (5.19) 

with less than 5 percent error.  Since this statement also applied 

to (bt) , then substituting in Equation (5.12) give /es 

B(oj,t) 
%   e-

at
e-:)wt  oj - jw ü) + jw 

2d) R,Ct 
o 1 

(5.20) 
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and the magnitude will bt correct within 5 percent. Substituting ♦''or 

a and b in the above expression gives 

%   e-a-a-jtot  (iu0 - JW)b i- (wo + jW)a ! 
B(ust)  - i 

2w R.Ct ab o 1   ; 

2, e~at e^wt j - (a + M 

" R1C | (jo))2 - jo>2<W - ex) v a)/ + (W - a)2 

(5.21) 

Since  |j^| » |a|  over any realistic, range of reverberation 

frequencies, this expression can be further »simplified to 

-at 
( > 

B(w*t;  - -T  e    — i — -J ~ 5" V . 
1  ! (ju))Z - j<o2(tf - a) + u  + (W-a; 

i ° ) 
(5.22) 

Recalling that 

2    1   IT2 
o     LC 

and comparing Equation (5.22) with Equation (5.3), it appears that 

B(cü,t)  is the product of e~^  , the modulation function e~at/t , 

and the complex conjugate of the transCar function of an RLC filter. 

The RLC filter is the same as shown in Figure 5 ?.xc; 't thaf the 

bandwidth is equal to  (W - a)  instead of W .  If H (to) represents 

the transfer function of this RLC filter, that is, If 

imMmmky»5***~» 
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H>) R-C 
JüL 

(ju))2 + jü)2(W - a) + a) 7 + (W - a)2 
, (5.23) 

then, 

^ e    -1d)t 
B(u>,t) - ^-r- e JWCH *(w) 

t2 
(5.24) 

Kotn Equation (3.6), tue expected filter output power is 

2     * e~2at 1 
H (u))H *(w)S  (üj)dw 
e   e    xx 

(5,25) 

Equation (5.25) states chat the filter output power is nearly equal to 

the square of the modulation function multiplied by the expected output 

of the filter, with bandwidth decreased by a radians per second, for 

a stationary random input having a spectrum S (w) . This equation 
AX 

2 
is correct u> within a factor of  (1.05)  or about 10 percent since 

B(u),t) is correct to within 5 percent provided (W - a)t > 21 and 

(K - a)T < 13 . 

The interesting thing about this result is that, in Chapter IV, 

*~0lt ""Ctt 
where the modulation function was e    instead of e  /t , the 

filter output power for large t was also equal to the square of the 

modulation function times the output of the same RLC filter H (w) 

for an input having a spectrum S  (w) . 
«Uli 

ZfaS&ß&m&mstse w^i^^^^^f^^f^^^^^ 



CHAPTER VI 

SUGGESTIONS FOR FURTHER RESEARCH 

This thesis is an investigation of the interpretations and the 

advantages of several definitions of the spectrum of a ponstationary 

random process.  In particular, it was deaired to learn how to describe 

such processes with a mathematical model leading to a spectrum so that 

the output of linear time-invariant filters ran be computed. Although 

the nonstationary [.rocess discussed most frequently is backscartered 

sound in the sea, the emphasis was more on studying the mathematica.1 

tools available than on actually designing filters.  Since there is no 

data available whic) gives spectral descriptions of reverberation 

based on actual observation, befote obtaining such data, it is 

necessary to decide on a nw ..aod for giving a spectral description 

which appears practical.  Tnen, ±c  is necessary tc examine actual 

reverberation to determine the constants fitting the spectral 

description.  This 'ask alone is material enough for a doctoral 

dissertation in acoustics and is the next logical £>tep. 

Certain things are clear already*  The time function describing 

the decay of tha expected volume or boundary reverberation is well 

established.  If the reverberation can be well described by multiplying 

this lime function by a stationary random process, much work can be 
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done in advance of having a complete spectral description using the 

equations of Chapter III.  Thus, Chapter V provides a partial solution 

to the output of a linear filter for volume reverberation.  This 

solution is useful no matter what is the best stationary random 

process x(t)  for simulating true reverberation.  It would be useful 

to continue the uork in Chapter V so that a computer program for 

B(ti),t)  is obtained.  Thir will lead easily to a computer program for 

the expected filter output power for any y(t) and, finally, to a 

third program which wiil compute tha optimum bandwidth of the filter 

for any x(t) just as was done in Chapter IV. On the basis of the 

results obtained in Chapter IV, one would expect the optimum bandwidth 

to be a function of time.  It is hoped that the author can continue 

this work and at least obtain some results for various assumed x(t)'s 

if not those bnsed on actual data. Having done this, of course, there 

would reiiaiu the problem of doing the entire study over for boundary 

reverberation• 

Finally, there is the interesting problem of optimum filter 

configuration which was not considered at all.  Even though time 

invariant filters were assumed, it was found in Chapter IV that the 

optimum bandwidth for detection of the signal was a function of time. 

This suggests that time varying filters are railed for ip such 

problems.  It was also found thai the maximum output pignal-to-noise 

ratio for the RC f.ilter in Chapter IV  never exceeded that of the 

classical matched filter for stationary noise backgrounds.  This makes 

S-;?B»3m««.nCTJj 
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one wonder whether or not the matched filter gives an upper bound on 

the output signal-to-noise ratio which is more generally applicable 

than stated in Chapter IV. 

! | 
■ i 
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