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ABSTPACT

The use of spectral techriiques for the computation of
the expected power output of linear time invariant filters
subjected to a nonstationary noise is studied. The two-
dimensional power spectrum is defined., and its use for
computing the time varying expected power output is illustrated.
The derivation of the one-dimensional energy spectrum from the
two-dimensicrnal power spectrum is shown. The derivation of the
instantaneous power spectrum as the derivative of the truncated
energy spectrum is stown. It is concluded that the instantan-
eous power spectrum is not a useful engineering technigue since
there are no expressions relating the instantaneous power
spectrum at the filter output to that at the input. For the
special case in which the nonstationary noise is the product of
a modulation function and a stationary noise, it is shown that
the problem can often be reduced to an equivalent stationary
problem and solved in a well known way.

The two-dinensinnal power spectrum is used to compute the
optimum bandwidth of an RC filter for detection of a rectangular
pulse in exponentially decaying white noise. Curves showing
that the optimum bandwidth as a function of time and the product
of pulse length and decay time constant arz developed. The
results are compared with the results obtained for a stationary

noise,

Finally, the problem of computing the response of an RLC
band-pass filter to volume reverberation is studied. An
asymptotic expansion is derived which provides sufficient
accuracy for most engineering work. Bounds on the error are
obtained.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

This thesis is an investigation into the applications of spectral
representations of nonstationary random processes. The investigation
determines how the spectra are useful for computing output statistics
of a linear time invariant filter whose input is a nornstationary
process. Some of the nonstationary processes which the engineer
encounters are radar clutter, noise in large auditoriums and back-
scattered sound in the sea, known as reverberaticn, which will be
frequently cited as an example. Many engineers have studied enough
comnunication theory to be able to efficiently solve problems of the
detection of signals in stationary noise background, but, when the
background is a nonstationary noise, most are confused. One first
wonders how to solve for the cutput at all. Are there techniques for
gsolving for the total noise power over all time as well as for the
expected noise power as a function of time? If the transform of the
autotranslation function is computed as is usually done in spectrum
computations, how should the results be interpreted? These questions
are discussed in this thesis,

First, the equations used to compute the output of a linear
filtar to a stationary random noise are reviewed. There results, not

justified here, are taken from Lee.l A random process is weakly or
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wide sense stationary if its autocorrelation function, defined by
Rxx(t + 1,t) = E[x(t + 1)x(t)] (1.1)

and its expected value, or mean, FE[x(t)] , are independent of t for
any given 1 . In this thesis, for simplicity, the term stationary is
used instead of weakly or wide sense stationary.

The power spectrum of a s+ationary random process is defined by

(e ]

NONE Rxx(T)e_jde , (1.2)

-0
where Rxx(T) = E[x(t + T)x{(x)] . Observe that two 3ymbols,

Rxx(t + T1,t) and RXX(T) » have heen used to represent E{x(t + T)x(t)].
The distinction between these two symbols is that Rxx(t + T,t) 1 used
when E[x(t + 1)x(t)] 1s a function of t and Tt , and Rxx(T) is
ysed when E{x(t + 1)x(t)] 1is independent of t and is a function of

T only.

Taking the inverse Fourier transform of Sxx(w) gives

o0
(
- i Jwr
R () T J S, (el ey , (1.3)
and setting T = 0 gives
[ o]
(0) = E{x2(t)] = 1—[5 (w)dw (1.4)
*X 27 J XX ) '
)

Thus, for a stationary random process, the integral of the sgpectrum,

N s aem Ly e kS he g
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Sxx(m) s over w 1s proportionsl to the expected power.

Cne of the most obvious characteristi~s of reverberation is

that the expected power decreases with time,

reverberation cannot be a stationary process.

For this reason, the

conventional definition of the spectrum of Syx(w) cannot be used.

It 1s clear, then, that

It is possible to treat reverberation as a transient with finite

energy. In such cases, i.ee defines the spectrum as the transform of

the function,

§— 8

The principal

reverberation

x(t +1)x(t)dt

difference between transients as considered by Lee and

is the random nature of reverberation.

This brings to

mind the possibility of treating reverbevation as a random transient

and defining its spectrum as the Fourler transform of the auto-

translation function,

©o

Exx(r) = E[[ x(t + T)x(t)dt]

- 4]

.
-CO

rd
+ .
J Rxx\t T,1)dt

QU

This can be done and is derived in Section 2.3.

{1.5)

It provides a

satisfactory answer as long as the problem does not require a

time-varying spectrum or a time-varying statistical description.

This requires a transformation of the autocorrelation function

Rxx(t + 1,t) as will be seen in Section 2.2.

B
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1.2 Peverberation Model

The purpose of the research is not to derive a justitiable model
of reverberation, but it is to study spectral techniques for describing
reverberation in order to determine usefui mathematical tools for the
engineer. It is, therefore, helpful to review a little of what has
been written about reverberation and its spectrum.

A sound signal projected into water will encounter various
impurities, inhomogeneities and a changing index of refraction which
are all lumped together under the term scatterers. Each of the
scatterers produces an echo and the sum of these echoes is called
reverberation. The random location, motion and streagtl of the
scatterers makes reverberation a random process.

Returns from scatterers not located at a boundary are called
volume raverberation. For volume reverberation, the propagation loss

is proportional to

Sv(t) = o (1.6)

where o 1s a constant dependent on the frequency and water chemistry
(and is proportional to the factor usually called absorption
coefficient), and T 1is the tra.smitted pulse lergth. In this
equation., g(t) describes the variation of sound pressure level with

time. The variation of sound power with time is proportional to

T N A . arod AR TS | SIS TR S eSO T S
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Similarly, for boundary reverberation, the variation of sound

Pressure level with time is proportional to

[ Rt
372 et
&
rzb(t) 5 (1.8)
-0 t <T
so that
=20t
S t>T
g () = { ¢ : (1.9)
0 t <T

In observing records of actual reverberation, the author has
observed that sound pressure level varies greatly from ping to ping

but, when a great number of pPincs are averaged, the sound pressure

level does varvy according to the above equations. There is, of course,
no way of knowing if the variation is from variation in propagation
loss or in the ccatterers.

Faure19 derives gome iuteresting results by assuming that the
scztterers are distributed in the medium according to vhe Poisson
probability distribution. From this assumption, Faure is able to

derive the well-known laws of reverberation:18
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1) reverberation power is proportional to the transmitted
energy,
2) the expected power of volume reverberation decreases
reverbaration

as l/t2 and the expected power of boundary

decreases as l/t3 if absorption is neglected.

Faure then shows that, if the transmitted pulse is short, the auto-

translation function of reverberation is approximately proportional to

the propagation loss gz(t) times the autotranslation function of che

received echoes which is a function of the probability distribution of
From this, it is argued that

the Doppler shift of the echoes.
reverberation is approximately stationary and the spectrum of

2
reverberation can oe defined as the product of g (t) times the
Fourier transform of the autotranslation function of the received

This finally leads to the interesting conclusion that the

echoes.
spectrum so defined appears as a time function gz(t) multiplied by

the convolution product of the spectrum of the transmitted signal (the

Fourier transform of its autotranslation function) and the probability

density of the Doppler shift; i.e.,

[
, |
@ = Elo'le®g’(® | | 5,0+ 0 p@e ,  .10)
/

S
rr

is the Fourier transform of the autotranslation function

of reverberation,
is the probability density of the arrival of

cross-section, p(t)
echoues at time ¢t , gz(t) is the expected variation of the propagation




loss, §;s(w) is the energy spectrum of the transmitted signal, ¢ is
the approximate Doppler shift of the echo, and P(¢) 1is the probability
density of ¢ . Although the study will not be restricted to models
based on assumptions of approximate stationarity, it will be useful to
represent reverberation as suggested by Faure's conclusion that it is
approximately a stationary noise times a time function. Thus,

nonstationary processes of the form
y(t) = g(t)x(t) (1.11)

where g(t) 1is a deterministic function and x(t) 1is a stationary
random process with spectrum Sxx(w) will often be considered to
I11lustrate spectral techniques.

Other authors, for example, Ol'shevskii,20 state flatly that
reverberation can be represented by Equation (1.11). In addition, all
laboratory simulators seen by the author model reverberation as in
Equation (1.11), except for those which contain tape recordings of
actual reverberation. It should be mentioned that Faure concluded
that the bandwidth of the random process x(t) should actually

decrease with time and that this has been experimentally verified.
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CHAPTER II

FOURIER TRANSFORMS OF THE AUTOCORRELATION AND

AUTOTRANSLATION FUNCTIONS

2.1 Introduction

In this chapter, the Fourier transforms of the autocorrelation
and the autotranslaticn functions which lead to differeant spectral
descriptions of real valued nonstationary random processes are
considered. This is done in order to Hiscover usefui techniques for
designing time-invariant linear filters and to learn if there is a
physical interpretation of the resulting spectra. It is assumed that
a spectral description of a random process 1is useful if it results in
an equation relating the filter traasfer function and the spectrum to
the expected output of the linear filter. If it does not, the spectrum
is rejected as being impractical for our purposes.

The autocorrelation function of y(t) was defined as
Ryy(t + 17,t) = E{y(t +Dy(v)]) .
Letting tl = t+ T and t2 = t gives an equivalent definition,
Ryy(tl,tz) - E[y(tl)y(tz)] N

Then, if tl = t2 5 Ryy(tl,tz) is the expected instantaneous power of

the random process at time t) E[yz(tl)] .

T, . Al o o e eV 5 AR oo e e AT T AL 3 e s S0 RT3 5 4 s S NSRS S e



2.2 Two-Dimensicnal Power Spectrum

Let the spectrum Syy(w,v) be defined as the following dcuble
transform of the autocorrelation function:
-jwe, e,

Ryy(tl,tz)e € dtldt

n

S (w,v) (2.1)
y

y 2

§ ~ s 3

R

It follows from an iZterative use of the inversion theorem for Fourier

transforms that

20 on
P jwt., =jvt
R (t,,t,) = —t S. (Ve Yo o Zdudv . (2.2
yy 172 2 vy
T @amn~
-lr el

The advantage of the two-dimensional spectrum Syy(w,v) is that it
readily leads to an equation for the avtocorrelation function of the
output of a linenr filter. If =2(t) is the output of 2 linear time-
invariant filter having wei_hting function h(t) for a sample input
y(t) , then the convolution givee
it
Elz{tz(t,)] = [ { h(T R Ely ()= )y (Ey=1)) JdT,dT, .
J
- (2.3a)

Since E[Y(tl-rl)y(tz-rz)] = Ryy(tl-Tl’tZ' V , Equation (2.3a)

can also be written as

h(rl)h(TZ)Ryy(tl-rl,tz—tz)dtldr

E[z(tl)z(tz) - [ 2
4

% t——8

(2.3b)
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Substituting Equation (2.2) in Equation (2.3b) gives
[+ o] 0
Elz(t))z(,)] = —& h(T,)h(7,) -
1 "2 2 1 2
(2m)
aC0 =00
oo x
Jwit,=1.) -jv(t,-1.)
171 272
[ [Syy(w,\))e € dwdvdrldtz
-0 =0
x > oo
1 f -jwrt
= = h(t,)e dT .
o l 1 1
-0 =00 =l
w
jvt, jwe, -jve,
. h(Tz)e drzsyy(w,v) * e e dwdv
-0
o0 [o o]
j(wt,-vt.,)
= : = [ H(w)H*(V)S  (w,Vv)e L 2 dwdv .
@n? | | yy
-00 =00
(2.4)

Equation (2.4) is the result desired, an equation involving
only a traneform of the input autocorrelaticn functicn and the filter
transfer function which gives the output autocorrelation funccion.

By letting t, = t, in Equation (2.4), the expected value of the

filter output power as a function of time is obtained; that is,

P SRR Xt

L
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E[zz(t)] = __1_1
(2m)

J H(w)H*(v)Syy(w,v)ej(w-v)tdwdv

Bo——— 8

=00

(2.5)
The definition stated by Equation (2.1) is justified because it
provides useful information through Equations (2.4) and (2.5).
It is interesting to observe that the integral of the spectrum
Syy(m,v) over w =zand over V 1is proporticnal to the expected
instantaneous power at t = 0 , To obtain this result, let the filter

transfer function be H(w) = 1 for all & . Then,

E[z2(c)] = E[Yz(t)] = L 3 S (w,v)ej(w-v)tdwdv
2r) yy
Now, 1f ¢t =0 ,
2 1
E{y“(0)] = S (w,v)dwdv R
(21T)2 [ vy

which is the result desired. If the process is stationary, the

expected instantaneous power is independent of time and

(w,v)dwdv

Ely?(t)] = —2 I ”

(211)2

[

for all t .
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2.2.1 Two-Dimensional Power Spectrum of a Stationary Random

Process. If y(t) 1s a sample of a stativmary random process, than it
is interesting to study the relation between the two-dimensional power

spectrum Syv(w,v) and the one-dimensional power spectrum defined by

= "j wT
Syy(w) =z Ryy(T)e dt , (2.6a)
whete
Ryy(r) = Ziy(t + T)y(t)] . (2.0b)

To find this relation, evaluate Syy(w,v) from Equation (2.1) for vy ,

a sample of stationary random process. Letting 1 = (tl - t2) in

Equation (2.1), there results

—jw(t2 + 1) jvt2

Ryy[(t2 + T),t2]e e dt,dT

Syy(w,v) = 2

g§+~——8
g 8

=]

3 = Wity [ Ry (€ + nLoe ¥ . 2.

/
-0

&“——--8

It has been assumed that y(t) belongs to a stationary process. Then,

comparing the definition of Ry

y(tl.tz) with the definition of Ryy(t)

in Equation (2.6b) shows that
R (t+1,t) = R (1
yy( T,t) yy( ) ’

anc the 1T integration in Equation (2.7) is given by Equation (2.6a).

Substituting Equation (2.6a) in Equation (2.7),

e s ——— cmascame o s s it
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f =j{w = vit
S V) = dtS  (w g (2.8
yy V) J € yy y
; Finally, recognizing the t 1integral in Equation (2.8) as 2md(t) ,
E where 6(t) is the Dirac delta function, results in
% 5 (wy,v) = 218 (V)é(w - v
| yy( »V) yy( )6 ( )
5 = 218 (W)d(w - V) . (2.9
yy( ) )

Equaticn (2.9) is the desired relation between the two-dimensional
spectrum and the one-dimensional spectrum. For a stationary process,
the two-dimensional spectrum is equal to the one-~dimensional spectrum
multiplied by the Dirac delta function &(w - V)

By substituting Equation (2.9) in Equation (2.5), it can be seen
that Equation (2.5) reduces to the well-known relation for the average
output of a filter subjected to a stationary random input. Carrying

this out, there results

(27)

]

f
ElzX(0)] = —i J j HEHKWS, (@276 (w = v)dudy

1
= o J H(w)H*(w)Syy(w)dw . (2.10a)
.E o
s
E [+ o]
| 1 2
] I
| = [H(w) | Syy(w)dw (2.10b)

for a stationary random input.
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2.2.2 Two-Dimensional Spectrum of the Product of a

Deterministic Function and Band-Limited White Noise. Suppose that we

generate a nonstrationary random process
y(t) = g(r)x(t) ,

where g(t) is a deterministic function ancd x(t) 1s a staticnary

random process with spectrum

[ T/2 o, = B < fu Sw, +B
°xx<w) "
0 otherwise 3

where w, > B . S __(w) represents the output spectrum of an ideal

xx(

band-pass filter with white noise input. The autocorrelation function

of x(t) can be determined from the Wiener-Khintchine theorem:

. L jur
Rxx(T) o Sxx(w)e dw (2.11)
=(w -B) rw°+8
= % _;r_ eijdw + Z_‘n ' % ejmdw
=(w +8) w =B
. eij -(wo-B) 1 ejwf wo+8
4 3t |_ 4  jt |
(w +8) w -8
o
sinft

= ——=— cos w, T . (2.12)

o . S et e v iy e
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The expected instantaneous power nf the stationary random process
E[xz(t)] can be determined by setting T = 0 in Equation (2.12),
which gives
2 ' H - - Ei_n_B_‘E n GF -
E[x7\t)] Rxx(o) T cos & T R
a0
The two-dimensional spectral density of y(t) is given by
Equation (2.1),
[e 2] [« -]
[ -jue, jve,
Syy(w,v) = } Ryy(tl,tz)e e dtldt2
-00 =00
oK ]
[ -jut, jvt,
= ! g(tl)g(tz)Rxx(tl,tz)e e cltldt2 o
% w0

Since x(t) 1s stationary,
Rxx(tl,tz) = RXX(T) ’

where T = t. - t

1 Substituting T = t, - t

1 in Equation (2.12)

2 2

gives

sin B(tl - tz)
(tl-t

Rxx(tl’tz) = cos wo(t1 - t2)

5)

and S (w,V) becomes
yy




-

Sin B(t] - t2)
Syp vy = gltdg(t,) NI

- -lety jvt2
*  cos uo(tl - t?}e e dzldt2
(o] w
d jvt sin B(t, - t.)
- g(t,)e g(tl) --YE—-:AE-S-EL- .
1 2
~00 -0
~jut,
¢ cos (uo(tl - tz)e dtldt2 . (2.13)

The t:l integration in Equation (2.13) can be obtained from

Parseval's theorem,

&

l " %
[ fl(t)fz*(t)dt - 5 :l(n).z*(n)dn ,

Lo

where Fl(n) and Fz(n) are the Fourler transforms of f,(t) and
fz(t) » vespectively. To apply Parseval's theorem here, let

-jwt

£.(t)) = g(t,)e 1

and

sin B(tl - t2)
(t1 -t

fz(tl) cos wo(tl - tz)

2)
Then,

Fl(n) = G(n + w) ’

L i A L - 4 e e et e oy o
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where G(n) is the Fourier transform of g(t) . Comparing fz(t)
with the relations derived between Sxx(w) and Rxx(T) , it is obvious

that

-jnt,
a w - B < In] Juw +8

SIE]

Fz(n) =

o

cthervise ,

and, therefore, that the conjugate of Fz(n) is

[ dney
e wy =B In| 2w, +8

INTE

Fz*(n) -

0 otherwise 3

Thus, the tl integration results in

-jwtl sin B(c2 - tl)
S(tl)e (tl = tz) cos wo(t1 - t:z)dt1 =
-(w -8 w +3
1 ( ) e, 1[0 int,
=7 G(n + w)e dn + 7 1| G(n + we dn
-(w°+8) wo-B

and substituting in Equation (2.13), there results

e e BT T S T T e e
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o -(w_-B)
1 j\)tz ( © jntz
Syy(w,\)) -7 g(tz)-. G(n + w)e dq
-(wo+8)
w0+6
int,
+ Gn + we dn dt2
wo—B J
=(w ~B) ©
1 j(n+v)t2
- G(n + w) g(tz)e dtzdr]
-(wo+B)
ruo+b T
jntv)e
+ J G(n + w) J g(tz)e dtzdn
wo-B -
-xwo—B)
= % G(n + w)G*(n + v)dn
J
~(wU+B)
.wC+B
+ % G(n + w)G*(n + v)dn (2.14)
w -B

(o)

ARGy

e e s

-4
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Equation (2.14) is a useful form for the computation of the two-
dimensional spectrum of a nonstationary random process which is the
product of @ modulation function and band-limited white noise. In
the laboratory, reverberation is very often simulated in this way,
although the band~limited white nclse x(t) 1is only approximated by
a good band-pass filrer.

In the event that it is desired *o solve for the tweo-dimensional
spectrum when x(t) is venerated by a low-pass filtir, let « =8 in
Equation (2.14) and there results

28

G(n + w)G*(n + v)dn . (2.15)

Sl

Syy(w,v) =

-2B

2.2.3 Example 1. Two-~Pimensional Powar Spectrum of

Exponentially Decaying Band~Limite¢ White Noisw. Consider the

nonstationary random process y(t; obtained by multiplying band-

limited white noise x(t) by the exponential modulation function

> > 0)
a(t) = e t2>20 (x>0)

0 t <0 .

If tee spectrum of x(t) is given hy

! m lwi <8

0] otherwise ,

thern, from Equation (2.15), it fcllows immediately that

R ArTE g TR

Bk o=——r

i[
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1 dn
(Gn + jw + @) (=jn - jv + @)

=

S Wy V
Syy(&sV)

-28

20

(2.16)

Multiplying the numecrator and denominator by (jz) . there results

1| s, (wwdw = | Ely2ce)jde
o Yy ,

-l

28
S. (w,v) = = A-( B dn (2.17)
yy© o 4 t (n-w+ i)+ v+ 50
|
J
=28
16
From Pierce's Tables, integral number 42,
;
{ n = 28
- 1 v+n+ ja ]
Syy(wg\)) 4(0.) - v - Zj(x) In '——'—_w -n - jC/-J
1= =2
é i ln| Q28 + o) (0 - 28 - jo)
Lw = v - 2ja) (w+ 28 - ju) v =234 jo)
(2.18}
2.3 One-Dimensional Energv Spectrum
In this section, it will be shown that, 1f w = v in
Equatlon (2.1), the resulting spectrum Syy(m.u) is tke energy
spectrum and that
[+
25 (2.19)
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Also, Syy(w,m) is equal to g;y(w) defined by
o
= = -jwt
MO ( Ry, (De T4 s (2.20)
’
where Eyy(r) s the aulstranslation function defined by
(<]
= i
R (1) = E | (t * T)y(t dt] 2.21a
- ) L y( )y (L) ( )
= [ Ryy(c 2 T,tidt . (2.21b)
J

The spectrum g;y(w) defined by Equaticns (2.20) and (2.21) is, except
for the expected valve, idertical to the energy spectrum of a transient
functicn as described by Y. W. Lee.

inis suggests considering nonstatjonary processes with finite
energv ae sluply an ensemble of random transients which are treated in
the frequency domain in the same way as deterministic transients,
except that an ensemble average of the spectra must be computed. This
technique is suitable if on2 is interestaod in the expected output power
of a filter integrated over time as when the ratic of signal-to-noise
energy 1is beirg computed. This technique is nct sujtable *f one is
xnterested in the expected output as a functiop of time as when the

ratio ot signal-to-noise power at a particular time is being computed.

in this czase, the two~-dimensional spectrum is needed.,
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To prove that

S = 5 , 7.22)
yy(w.w) yy(w) (

take Equation (2.2) which follows directly from the definition of

Syy(w,v) » Equation (2.1), and let T = tl - t2 . This gives
[ o] o
a0 Ju(t+1) -jvt,
Ryy(t2 + T,tz) = > J Syy(m,\))e e dwdv
(2m) J
-0 =00 (2.23)
Now, integrating both sides of Fquation (2.23) with respect to t,
gives
o=} o w
f 1 Jot
R (t, + t,t )dt, = S (w,v)e C
2 *Talh2 W2 2
=00 =00 =00
o]
j(w-\))t2
. e dtzdwdv . {2.24)
-00

Comparing the left side of Equation (2.24) with the definition of the

autotranslation function, Equation (2.21), and recognizing that

@

j(m~v)t2

e dt -

S(w=-v) = 2

N =
=

b

where d(i - v) 1s the Dirac delta function, there results

Jwt

{1) = pr J S, (w,w)e’ dw . (2.25)

!
!
i
!
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Finally, recognizing the right side of Equation (2.25) as the transform

of Syy(w,w) shows that taking the transform of both sides of Equation

(2.25 gives

(e V]

-jwt N
R _(De dt = S (w,w 3 (2.206

-~

Since the left side of Equation (2.26) defines E;y(w) » Equation
(2.22) 1is proven.

Taking the equation for the expected output power of a filter,
Equation (2.5), and integrating both sides with respect to t , there

results

@

E[z2(t)]dt =

-_...__.__58

( H@HF (WS (w,v) | ed @™V qauav
(2m)2 | vy

-0

k

-00

= %F H(w)H*(v)Syy(w,v)é(w - v)duwdv

§ 8
be— 8

and

o

.
E L S ] = %;

—_—8

H(w)H*(w)g;y(w)dm . (2.27)

be

-0

Equation (2.27) shows that §§y(w) is an energy spectrum. If H(w)

is the transfe: function of an ideal band-pass filter,
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1 e :_|w| <fw

X H

H(w) =
0 otherwise 9

then Equation (2.27) states that

-
E L zz(t)dt ] = 3; J g;y(w)dw .

é In other words, §§y(w) gives the energy associated with the frequency
w . Letting H(w) be an all-pass filter, that is, letting H(w) =1

for all w , immediately proves Equation (2.19).

2.3.1 Example 2. One-Dimensional Energy Specurum of

Exponentially Decaying Band-Limited White Noise. The one-dimensional

energy spectrum of the nonstationary random process described in

Example 1 can be immediately obtained from Equation (2.16) by setting

E

g . 3 (W i 1“(m + 28 + jo) (w - 2B - ju)

vy 8o " (w+ 28 - ja) (w- 2B + jo)
S w? - 482 + ol - 4jaB
8o 2 2, 2 :
w" = 4B + a” + 43aB
let
R (T L LR Y N
and
- o
¢ = tan a0 2 .

w" - 462 +

B SR TRy S 10 4
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Then,

-1 4o

W - 482 +a

1
7o tan 2 .

2.4 Instantaneous Power Spectrum

Another well-known spectral repiesentation cf a nonstationary
random process is the instantaneous power spectrum, first proposed by
Page.7 Page did not propose it as a spectrum for a nonstatiorary
process, but as a qualitative method of determining when a suddenly
applied noise had lasted long enough to be considered stationary.
Lampard8 independently developed the same concept as a generalization
of the Wiener-Khintchine Theorem for nonstationary process. Turner9
and Levinlc developed further the concept.

If the instantaneous power spectrum of a stationary random
process is computed, the same answer is obtained as from the Wiener-

Rhintchine Theorem,

S (W = 21 R (1) cos widr .
yy yy
J
0
However, for nonstationary process, the instantaneous power snectrum

can be negative at some frequencies, although the integral of the




spectrun over all frequencies is always positive and equal to the

instantaneous power.

A more serious objection to the use of the instantaneous power

spectrum is that no published technique exists for obtaining

information about the output of a filter from its transfer function

and the instantaneous power spectra.
To develop the mathematical representation of the instantaneous

power spectruii, Suppose that all the samples »(t) of a random process

If the time function of a

are truncated at some time t =T .

truncated sample is represented by

T y(t) t < T
y {t) =
L0 t > T , (2-28)
then the autocorrelation function of the nonstationary process
consisting of all tha truncated samples would be
R, , (c,t,) = Ely (¢)y(t,)]
YoV 1’72 1 2
Ryy(tl,tz) t < T, ty <7
] otherwise
is

The two-dimensional power spectrum of the ensemble of yT(t)

Tz Ty




Rt

o0 o0
[ ( -juwty jve,
S (w,v) = R (t,,t,)e e dc,dt
Yol . J yp¥op 1°72 1772
-0 -0
T 1
[ 7 -juty jvt,
= J J R (t.,t.)e e dt.dt .

In Section 2.3, it was shown that, if w = v in the twc-dimensicnal

spectrum, the resultant spectrum is the energy spectrum. That is,

(w,v) = § (w)

27

yTyT YV
3
| —j(tl_tz)
= J J R (t dtldt2
and
T T
5 (Wde = ( Ely’(e)lae . (2.29)
| Yy J

The instantaneous power spectrum is defined as the derivative of

-; y («.) with respect to T . Letting p(T,w) represent the
T
instantaneous power spectrum

p(T,w) = %5'5 (w) . (2.30)

Yo¥q

Differentiating both sides of Equation (2.29) with respect to T ,




28

3 = 2
37 S. ., (Wdw = E[y™(T)! )
T "yq¥q

e o]

¢
1
2

l

and making use of the definition, Equation (2.30),

1

= | et = Eyim) . (2.51)

8§ -3

Equatior (2.31) 3vstifies the name, instantaneous power spectrum, si.ce
its integral over w is the expected instantaneous power at time
t=T,

Tc derive the ralation between the instantaneous power spectrum
andl the autocorrelation function of the ensemble cf truncated samples,

apply Equation (2.21b) to yT(t) ¥

T
R ) = | R_(t+ T,t)dt T<0 . 2.32
yy() yy( yt) < ( )
T/T )
-00
Since §§ 5 (1) 1is an even function, it is sufficient to write the
T'T

integral for negative T only, and the energy spectrum can be written
from Equation (2.20) as

w®

S, W = | R (r)e Ty
Y=Yy YoVr

LS

5

ot
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= 2| R 1) cos wtdt . (2.33)
yTyT( )

Substituting Equation (2.32) in Equation (2.33),

0 T
B (w) 2 J J R (t + T t)dti] cos wWtdT
Yy
T

=00 =00
T 0
|

= 2 J dt Ryy(t + 1,t) cos widT o (2.34)
=00 -00

Differentiating both sides of Equation (2.34), there results

0
_ [
S (w)y = 2 J Ryy(T + 1,T) cos wrdt c (2.35)

or

0
p(T,w) = 2 } Ryy(T + 7,T) cos wrdTt
-0

Tor y(t) , a stationary random process Ryy(T + 7,T) 1is
independent of T and can be replaced by Ryy(T) , giving

T, = 2 R e 1d = 3
p(T,w) (1) czos wtdT oyy(w)

vy

§\—~——-.c
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2.4.1 Instantaneous Power Spectrum of an Exponentially Decaying

Low--Pass Noise. As an example of the instantaneous power spectrum,

consider the following signal:

-at
y(e) = e t 2_0

0 t <0 ’

where x(t) 1is a stationary randem prucess with autocorrelation

-8 7|

function e The spectrum has been changed from that used in
Example 1 to avoid difficulties arising from the sin (81)/T which
would appear in such a way as to make the required integration

impossible. For the autocorrelation fuaction gilveun hiere, the spectrum

is

. 28
S (w) O o= .
; XX (u2 + 82

For t > 0 , che autocorrelation fuaction of y(t) 1is3

é ~a(t+ -
[ B1e™ D (ern e (0] T, €20
Ryy(t + T,t) =
] otherwise
[ =2at_-ut
ie e R (1) T2-t, t 20
- { XX - -
i
L 0 otherwise
( |
e-Zate-a10—811, T2~t, t 20

0 otherwise

e e e AR P - e SN - .
e s ~ v "
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Irom Equation (2.35), the instantaneous power spectrum is, for

0

t

7 . |
o{T,ud = 2z | R T + 1,1) cos « 41

|

J

1

0
(
-2aT 1 [$%
= Z2e & el cos wTdT
1
b §

L

(B=a) + w

\
. -(B=0) T, . |
~ 2e-2aT AB-) - e .lLﬁ:g)CO&th - w sin wT] L
’ |
/

r- = =

Observe that for £ >> o , this reduces to

p(T,w) = ol _32§__§, L 2K ’
™+ w

which is the product of the square of the modulation function and the

spectrum of x(t) . This would be intuitively expected for 2z power

gspectrum of the process.

- P > & . e
R S DT - o = Iy.{_-"»_...,. od el PRSI o B OCl) B -
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CHAPTER II1

REDUCTION TO AN EQUIVALENT STATIONARY PROBLEM

3.1 Summary of the Result

In some cases, the nonstationary random process is written as
the product of a stationary random process x(t) and a modulaticn
function g(t) . Brownll showed that the problem of computing some
output statistics of a filter for the input g(t)x(t) can often he
reduced to the problem of finding the corresponding output statistics
of a different tilter for the input x(t , a stationary random
process. Miller12 generalized Browvm's result to a random modulation
function g(t) . Here, only a deterministic modulation function is
considered. Specifically, if h(t) is the filter weighting function,

the transfer function of a new filter is ccmputed:
©
Blw,t) = [ h(t - E)g(i)e_jmgdi .
2
The mean square value of the output of the new filter in respounse to

the stationary input x(t) 1is the same as the output of the actual

filter to the nonstationary input g(t)x(t) . If =(t) 1ies the filter

output, then
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o -

E[zz(t)] = 9; { iB{w,t)i? Sxx(w)dm

=00

as in stationiry problens.

3.2 Preof uf the Result

The steps in Mrcwn's proof are repeated here. 1If
y(t; = g{t)x(t) d4s the input to the filter having rhe weighling

function h(t) , the tilter output is

a

z(t) = h(t - §)y{£)dg . (3.1)

]
8 “.

z(t) can be considered as a sample of the output or as a random
variable. Assume that h(t) and g(t) are real values with g(t}
uniformly bounded orn (-«,©) and that h{(t) ig absoliutely integralle
and squarec integrable. Irn addition, assume x(t) 1s wide--sease

statiorary with square integrable auvtocorrelation function Rxx(r)

and spectrua S (w) .
XX

The autocorrelatior function of the filter output 18 given by

2]

[
h(t) - DBEN(OE | h(r, - MM,
J

S ®

[
Rzz(tl’tZ) - B L

;

-C0

(3.2a)

e SRS ) A B e S TR
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(
= I j h(tl - E..)h(t2 - MgMgH)Ex(£)x(n) ]didn 5
i
N (3.2b)
[ o] [+ &
( 7
- I ' - Y - a \ b o= NS
J | h{t, = Sih(c, n)g(n)g(E,Rm(c nydédn .
E S
(3.2¢)
Now, we defire B(w,t) as follows:
[o4]
-
B(w,t) = |l h(t - £rg{&de 27"dg . (3.3)
J
Then, B(w,t) 1is the Fourier trensform of h(r - &)g(&) , and
Sxx(w)ejnw the Fourler trancforu ol RXX(E - 1) Then, by Parseval's
theorem, the ¢ integration in Eguation (3.2c¢c} beccmes
[¢] o0
’ (
| het, - £)g(DIR._(E - mde = i1 Bl )S  (Wel™dw .
] 1 = k% ’ 2m | U1 Tkx
J i
- = (3.4)
Then, substituting Equation (3.4) iz Equation 13.2c):
(8] [+o)
{f r
R _(t.,t) = l—! !Bfu}t )8 (w)h(t -n)g(n)ejT‘wdmdn
zz 1" P R Rt R 2
J 4
=00 w0 f_3.53)
{
1
- — ) *(: 3 4
27 | B(m,tl)B (w,tz)Sxx(w)gm . {3.5b)
-
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The expected value of the output power is obtained by letting t] = t2,

Elz2(t)] = 3 |B(w,t) |2 S, (wdw . (3.6)

This is the desired result which will be used extensively in Chapter V.
An alternate form for computation of B{w,t) can be obtained by

applying Parseval's theorem to the definitica of P(w, t) , if g(t)

is also square integrable. Using the time and frequency translaticn

theorems feor Fourier transforms [Campbell and Faster,15 palr (206) and

(207)], the Fourier transform of the terms h(t - £) and g(g)e-ng

in the integrand of Equation (3.3) are

— 8

| hee - £ye Moy = Ity . (5.7a)
J

T o X

I lg(€)e 3*°1e™ M54 = G(n + w) , (3.7b)

and, using Parseval's thecrem, Equation {3.3) can be written in the

alternate form:

L

T H(MG(n + w)ejntdn . (3.8)

B(w,t) =

oo
S

¢
-l

at

it
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3.3 Interchange of the Modulation Function with the Filter

Weighting Function

It can aliso Le shown that the same results are obtained if the

modulation function and filter weighting function are interchanged.

First, write the convolution integral in the alternate form:

z(t) = h(g)y(t - £)dS :

b g

then,
Rzz(tl,tz) = [ h(&)h(n)s(tl - E)g(t2 -n)
/
+  E[x(t -~ £)x(t - n)]d&dn (3.9a)
T
- | | nonmsc, - o, - R (€ - mazan
/ J
{3.9b)
Define
] \ " e -ng
B (m,tl, = J h(@)g(tl - &e dg (3.10)

similar to the definition of B(w,t) .




Then,
[+ 0] 00
e l'—- ' ) ( - jnUJ \
Rzz(tl,tz) o B (w,tl;Sxx(w)h(n)g\t2 e~ Tdwdn
-=C0 =00
(3.11a)
[e o]
r
ax -]-'— LreR % T (
om | B \d,rl)K (w,tz)Sxx(u)dw 5 (3,11b)
J

Ccmparison of Equation {3.11b) with Equation (3.5b) shows that the
output autocorrelation functicon is unchanged if we interchange the

modulation function ond the filter weighting function.

3.4 Practical Application

The advaatage of this technique, when it can be applied, is that
the problem can immediately be reduced to @ stationary problem whenevar
the Fourier transform of h(t) and g(t) can be determined. Then,
after computing the transfer funcrion of the (maginary filter B(w,t) ,
we can solve for the power output as a functica of time. Although, in
general, B(w,:) 1is a complicated filter transfer function so that the
integral letzsxxdw will often be difficult, this integration can
usually be done graphically or numerically. It is also worthwhile to
observe that the time variation of the filter power output csn be

determined from B(w,t) without doing the integration over frequency.

i S g = S R AR Yo




38

Chapter V uses Brown's result to solve for the output power of
an RLC filter subjected to a reverberaticn input. It will be seen
that the calculations are quite complicated and require a nomputer

for all but an asymptotic solution.




CHAPTER IV

OPTIMUM BANDWIDTH OF AN RC FILTER FOR DETECTION OF

A PULSE IN EXPONENTIALLY DECAYING WHITE NOISE

‘\
[

Introduction

Schwarcz,2 in discussing matched filters for detection of
pulses in stationary white noise, 21sv gives some comparative results
for an RC low-pass filter. Schwartz shows that the optimum bandwidth
of the RC filter is 0.2 divided by the pulse lengch and that che
output gignal-to-noise ratic of such a filter is only 1 4B loss than
the output signal-to-nolse ratio of the matched filter. The purpose
of this chapter is to perform sume simiisar calculations for white
noise in which the spectrum level variles exponentizlly with time,
according to the mcuulation function,

: e—mt t >0

4
2 !

[g(t))™ = |

l\ 0 t <0 . (4.1)
It wiil bte found that the optimum bandwidth is a function of time for
small t and a coastant for large &t and that it is different from
the optimum bandwidth for a stationary random noise. In the case when
o = 0 , the noise becomes stationary for very large ¢t and, as
expected, the optimum bandwidth for largce t 1is the same as that

computed by Schwartz,

et Oy e - VT e i AL £33 ) b M
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4.2 Practical Significance of the Problem

From the point of view of the designer, the practical
significance of this problem is not the detection of a rectangular
pulse in white noise. It is fact that the solution is related to the
practical problem of detecting a pulsed sine wave in white noise using
a simple RLC fil 2r. Specifically, if the frequency of the pulsed sine
wave is the same as the resonant frequency of the RLC filter, the
optimum bandwidth of the RLC filter 1s exactly twice the optimu-

bandwidth computed for the RC filter and rectangular pulse.

4.3 Optimum Bandwidth for Stationary White Noise

T

Figure 1 shows the response of an RC filter to a rectangular
pulse, the analogous response of an RLC filter to a pulsed sine wave
3 and the white noise background. The definitions of signal power and
nolse power are also illustrated in this sketch. It will be useful
to firs® compute the output signal-tc-ncise ratio in a general form.
This will provide an upper bound on the output signal-to-noise ratio
: which is attained by the matched filter. Then, the cutput signal-to-
| noise ratio will be computed for an R{ filter. The purpose of these
computations is to provide a basis for <omparison with the
exponentially varying noise.

If the Fourler transfcrm of the signal is Vl(w) , then the

Fourler transform of the filter output due to the signal is

Vo(m) = Vi(w)ﬁ(w)

o

v e . —
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SIGNAL POWER IS PEAK
VCLTAGE SQUARED WHEN
7/ NO NOISE IS PRESENT
CC PULSE 4

-/ ~—

_-3lanaL powER 15 square oF
THE PEAK ENVF].OPE WHEN
BULSEDISINE WAYE - NO NOISE IS PRESENT

NOISE POWER iS EXPECTED
NCISE VALUE OF THE NOISE
VOLTAGE SQUARED WHEN

NO SIGNAL IS PRESENT
P /\ o \
\'I 1 IV v\ /
V N4

Figure 1. Definition of Signal and Noige Power
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The filter ocutput as a function of time is the 1 erse transform of

O

~8

- L. 4 Juwt
So(t) o Vi(w)H(m)e dw .

!

1f to is the time at which the filter output due t{o signal alone is

maximum, then the peak signal nutput »nover is

(o]

jwt
2 L] v Ewe %
(2) J

-0

For white noise with a spectrum level of r watts per Hz over
positive frequencies only, or of r/2 watts per Hz over both positive

and negative frequencies, the expected noise output power is

2 2
L[“o ] = Z—q { PH(WY | “dw ’
4

giving an output signal-to-noise ratio of

. jwto 2
' J Vi(w)H(w)e dw

1 -

n

1
|
Io
i
|

r
r j ]H(m)]zdw
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From Parseval's theorem, the signal energy is

w

2, . 1 . 2
s, 7(ede = 5= 1 |V, ()| "d8

™
]
ge—— 8

-00

Multiplying both signal and noise by the signal energy, the output

signal-tc-noise ratic can be expressed as

—— - £y , (4.2)

where

juwt 2

0

| !

' i Vi(w)H(w)e dw ‘
J |
o0

I }Vi(m){zdw { QH(w)lzdw
J i

From Schwarz inequality, the maximum value of u = 1 , so the maximum
possible output signal-to-noise ratio is 2E/r . The filter transier
function, such that uy =1 1is, by definition, a matched filter. For

the rectangular pulse in white noise background,

2 ¥
[ S0 l - ZVZT

! E[n02] Jmax :

Having derived an upper bound on the output signal-to~-nouise

ratio which 1s obtainable with a matched filter, what is the maximum




44

output signal-to-noise ratio obtainable with a simple RC filter?
Aprplving a pulse of amplitude V and duration T to an RC filter

gives an sutput

-t /RC
V(1 - e c,RC)
S (t) = Ty !
© vi1 - & HRC |y _ o (eDRC 4.3
which is maximum at t = T . The maximum vaiue of Soz(t) is,
therefore,
soz(r) = vl - e T)? X (4.4)

where W = 1/RC . The output noise power is

Eln 2] - 'Iql 1 - r W

o 2mC 4ZRC & ’

since the equivalent noise bandwidth of an RC filter is (7/2) times
the half-power bandwidth. The output signul-to-noise ratio is,

therefore,

2 =Lr
O - ZV“I‘ (l - C ‘IT)Z (4 5)
2 r WI/2 : ’

Comparing this equation with Equation (4.2), it is seen that

-WT, 2
s (- )
u WT, 2 c (4.6)

The maximum value of U occurs at

WEI = 21 ¢« 0.2 = Q.47

9
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which gives

— 9
(- e O.Aﬂ)h

W= ST Ey T 0.81 0

only t dB beiow J.0 provided by the matched filter.

4.4 Optimum Bandwidth for Exponentizlly Decaying White Noise

In order to perform analogous calculations for exponentially
d=caying wiiite noise, let (e noise ve egual to the modulation
function g(t) times stationary white noige having spectrum level r .
Since the signal will be exactly the same, it will be desirable to

express the output signal-to-nvise ratio in the form

2
S, (t) avly
= A = () R
. 2 It
h[n0 (e)] re

where u(t) 1is & function of time to be determined by the following
calculations. It will be assumed tiar the signal pulse has always
arrived T secondec before t so that the signal reaches its maximum

value at the filter oucput at time ¢t

4.4.1 Time-Varying Expected Noise Power. To compute the

expected noise power as a function of time, the two-dimepsional power
spectrum derived in Exiaple 1 can be used. ince the assumed spectral
density of the stationarv random process is r/2 watts per liz for a
spectrum containing positive and negative frequencies, thz spectrum
assumed in Example 1 must be multiplied by r/2m . Then, from

Equation (2.16),




8

r 1
Syy(w,v) " 4 j (3n + jw + a){(-jn ~ jv + ) o

The transfer function of an RC low-pass filter is

1/RC
jw + 1/RC )

Substituting Equations (4.7} and (4.8) iun Equation (2.5) gives

expression for the evected output noise:

E{n Z(t)] - { ( { /R eIt ; 1/RC e—jXS
o z(zn) ) l jw + 1/RCJ \ -jv + 1/RC

dn
: J (@ + jn + jw) (e = jn - jv) Gy

Reversing the order of integration gives

r
(£)] =~ } ( 1/RC_e3%t d\
2om? ] | GeF ko G e
( 1/Rc o~ 3VE

J =3y + /RO (=jv = jn ¥ o) 4vdn

=00
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Using Campbell and Foster,15 transform pair 448,

32

1/RC IS qw = 20 em(a M jn)t—e_t/RC
(jw + L/RC) (w + jn + w) RC -jn ~f{a - 1,/RC} i

i
‘

-00

and, therefore,

( 1/rc e V¢ . - 1/rc eIVt i
{(-3jv + 1/RC)(-jVv - jn + o) | (3v + 1/RC)(Jv - in + )
J
) { 1/rc 3Vt i
| (v + 1/RC)(Jv - jn + o)

- -(o0 - iyt -t/R
i e\ e /RC

RC jn - (o - 1/RC)

Substituting these transforms into the previcus expression for

2
Eln_“(t)] ,

e o)
. { dn 2 -(a + 1/RC)t
| 2 7 - o
;N + (¢ - 1/RC)”
-
cos Nt

' 2 2 n }
4 -
n~ + (¢ - 1/RC) {




-
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The first integral on the left 1is

B ( n=g
2 1 n
1ir - —— dn S lim tan
B J n? 4 W - 0 Y B0 W= lnag
-8 j
- T . (4.10)
- al
To obtain the integral on the right, let
u = -
W - af
Then,
o)
[a¢)
-l
( cosne Wl o - wue
v 7 dn , , du ,
e+ W - ) (W - q) 1+u
-0
which is a tabulated definite integral [Peirce,16 number (505)],
o0
{ cos 2 dx -% e (4.11)
;1 +x
0

Finally, substituting the two integrals in Equation (4.9),

2
E[n 2(”} - Wor ( o200t o oWt _ 28-(W+0¢)te—lw-alt]}
g 4iW - af 1 J

If W-a >0,

-(W+ o)t -|W - alt -2Wt
e e = e




and, if (W-a) <0,

(W ~W-afe o -2at

This gives the expression fer the output noise:

. 4
E[ncz(t)] = —Wr ‘ e-2ut 2ut |

&[N - a: f I

(4.1

The expected cutput noise pcwer is plo:ted in Figure 2 as a function

of time for a =1 and W~ 10w , a 5 Hz low-pass filter.

4.,4,2 Time-Varying Optimum Bandwidth. The output signal-to-

noise ratio obtained from Equations (4.4) and (4.12) is

s 2(1) 4IW - o

-WT, 2
o

|
L ovia - e

E[noz(t)} wzr |e—2at - e_ZWTI

(4.1
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2)

3)

To compare this with Equation (4.5), the corresponding equation for a

stationary noise background, note that r 1is analogous to re—ZOtt 5
s 2(m) -WT, 2
o - 2E (1l -e )
ot 2 =20t 2 \ _ _
E{n_“(t)] re [ _w . 51 o2 (W= T
I 2|W - aj
L J
(4.14)
The function u(t) is, therefore, given by
=WT,2
u(e) = . : (4.15)
W - 11 _ e-Z\w-a)T}
| 2|wW - af
L J

2 A A

i e e N R T

ey
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Figure 2. Low-Pass Filter Output Noise
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=2(W - o)t :
For t sufficiently large so thet 2 << 1 and for o << W,

u(x) will be mearly equal tn u given by Equation (4.6) and the
optinum bandwidth will be the same as for a statlionary white noise. 1In
addition, given equivalent input noise spectrum levels at every time,
the cutput signal-to-noise ratics will be nearly equal. If these two
conditions are not met, a different optimum bandwidth is expected.

A computer progr.n has been written to solve Equation (4.15) as
a function of aT , ¢t/T , and of WI . Basically, an oT and a
time ¢t/T are assumed and u(t) is computed as a function of the
bandwidth pulse length product WT . The program cutput actually
expresses the bandwidth pulse length product as Hz times pulse length
instead o. radians per second times pulse length. In other words, the

bandwidth pulse length product is expressed as

W

=

BT =

il

NS

The program also finds the maximum value of u(t) , which gives the
maximum output signal-to-noise ratio, and the value of BT which gives
this maximum output signal-to-noise ratio. This value of BT , of
course, is the optimum bandwidth pulse length product which is the
object of the calculation.

Figure 3 shows the optimum bandwidth pulse length product BT
as a function of the time for oT = 0.0, 0.5 and 1.0 . Note that, for
oT = 0 , the optimum BT 1is asymptotic to 0.2, the optimum BT for
stationary white nois:. This is as expected since, for oT = 0 , the

noise spectrum level does not change after t - 0 and, after a while,

e £ i R e i Y TR

-
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Figure 3. Optimum Bandwidth Pulse Length Product Versus Time




33

the noise appears stationary to any finite memory filter. For
of = 1.0 , the bandwidth is asymptotic to 0.41, a value twice that
for stationary noise.

Figure 4 shows the maximum value of u(t) as a tunction of
time for the same set of o1 . Recall that, for a statiocnary white
noise background, the maximum value of u(t) is 0.8 for an RC filter

and 1.0 for ¢ matched filter.

e AV T

e i SR | R R
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ult) FOR MATCHED FILTER
IN STATIONARY WHITE NOISE

u(1) FOR RC FILTER
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Figure 4. Maximum Output Signal-to-Noise Ratic Versus Time
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CHAPTER V

RESPONSE OF A SIMPLE RLC FILTER

TO VOLUME REVEREERATION

5.1 Introduction

In Chapters II and III, the required mathematical tools were
developed. In Chapter IV, the time variation of the optimum RC filter
bandwidth for detection of a signal in exponentially decaying white
noise was studied. In this chapter, the practical problem of
calculating the response of passive linear circuits to reverberation
inputs using spectral techniques will be studied. In particular, the
response of the RLC circuit shown in Figure 5 will be computed for a
volume reverberation input.

The volume reverberation input ri(:) is modeled as described
in Section 1.2. To review the model, if a pulse of duration T is

transmitted at time t = 3 , the reverberation returns are

ot
; x(t) t>T
r,(t) =

0 otherwise 0

where T 1s the transmitted pulse length, o 13 a constant
proportional to the sound absorption coefficient, and x(t) 1is a

stationary random process with a spectrum Sxx(w) o




R

f -

|
I
Si(t)+ri(t) Ro L C

L 11 ]

Figure 5. RLC Band-Pass Filter

Solt)+rg(t)
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The equations derived by Brown will be used since they are
directly applicable to the reverberation model used and nce the
results obtained can be used with any spectrum Sxx(w) . The best
spectrum to use for x(t) will depend on the speed of the platform
ar ! on the directivity pattern of the transducer. Brown's equations
al.ow one to compute a function B(w,t) which includes the effect of

the modulation function, in thic instance,

e t>T

g(t) = (5.1)

0 otherwise 0

and which contains the effect of the filter., The expected filter

output power can then be computed for any x(t) from the equation,

[+ -]

Elr _2(6)] = = | Bael®s, wa (5.2)

just as if B( ,t) were the transfer function of a filter subjected

to the input x(t) .

5.2 Filter Weighting Function

To compute B(w,t) from Equation (3.3), it will first be
necessary to compute the filter weighting function h(t) . From

Figure 5, the transfer function H(w) can be written as

Jw
. (5.3)
RiC Guwy? + %—C + -1—C
p

A S S R R AR O i s R e @t s e
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where RP is the resistance of Rl and R2 in parallel. A partial

fractinn expansion of Equation (5.3) gives

- 4 Jw 1. _ 1 ,

" Yo }yC jw + = jw jw + LS. jw

ZPTC () ZRPC o
(5.4)

[ J1/2
.. 3. 1
wheve w = Dy o oot .
o~ | TC Y J

To find the weightiug functica h(t) , first take the inverse

transform of

1 1 sy (5.5
jw+—-—-+jwo jw+ 5= - jw

i

Hl(w)

which gives

0 t <O . (5.6

Then, the ir~verse transform of ijl(w) is obtained by difierentiation

of hl(c) , glving

1 -We .

O R C e " (w cos wyt = W sin wt) t>0
h(t) =

0 t <0

where W G-E%-; » the half-bandwidth of the RLC filter. It will be

“

easier to work with h(t) 1if we express sin w,t and cos w,t in

the exponential form. This gives the following equivalent expression

for hft) :

-
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he) = ﬁ'ﬁe'ml
(

ol
-jw t jw t
B| o
2 J.
w - jw -jw t  w + W jw t
1 0 Wt 0 o -Wt 0
woRlc 2 e e + > e e t >0,

5.3 Integral Expression for B(w,t)

B(w,t) can now be computed by substituting Equations (4.1) and

(5.8) in Equation (3.3):
t

B(w,t) = f h(t - E)g(&)e-ngdﬁ

T
[ t
I U B S { (=B =jugie=g) &% e~JWEqe
w R.C ) 2 - £
nl
{ T
¢ l
. w + JW J e-W(t-€)+jwo(t-£)e-a€ Jug,, |
2 £ ‘
T ?
( " oY Weamituw ) )E
- 1 % 3 e-Wte-ju’ot ’ e__ . i___ d
w R, C 2 J 3
{ T
3 IWeam) (e ) ) \l
e Thea-d (uHe
wo+ 3§ Jut t ¢’
b °i9 E dg'i.csm
] :
T )

o ot bt e i Sy PO DAL e e b e R T L o
& A
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Recall that W 1is one~half the filter bandwidth in radians per
second and that o 1s proportional to the scund abserption cocfficient.

For frequencies between 1,0 kHz and 100 kHz. the absozption ccefiicient

will vary " etween 0.003 and 30.0 dB per kiloyard.18 Since sound
travels approximately 1.6 kiloyards per seccnd, the absorptien loss at

100 kHz in one second is

3 t8.0 £ |

3 « 2 — =
1.3 kyd * 30.C {= £

The coefficient o can ncw be computed from the equatiou for

the absorption loss:

10 log10 e_zat = - 48 §%F o

which gives a = 5.5 at 100 kHz. Similarly, at 1 kHz, o = 5.5 » 107,

It is importart zo construct & filter such as that shown in
Figure 5 which ha. a bandwidth less than a few Hertz. Assuming a
filter bandwidth as (7w as 5 Her~.. e corresponding value of ¥

would be

and (W - o) would be betwee 10.2 and 15.7. For these reasons, it
will be assumed that (W - o) 1is positive when obtainiug an expression
for B(w,t) 1in terms of the exponential integral ia the next section.
Then, since (W - a) >> 1 | ia the following section, an asympiotic

expansion of B(w,t) is derived.




&
1

Mwnummw..>-

€1
For swumplicity, the follcwing defiuiticne are made:
a = W-qn-=-3(- wo) Re a > 0
bom W-oa-jlutw) Re b >0 .
Then, Enuation (5.9) can be written as
s e-ﬂt J wy = W e-JwOL { Sii "
’ chl 2 | £ °
c1l ;
T
t \
o+ W jmt{bg
0 (] e
+——2—e !ng c (5.10)
J
T

5.4 Solution for B(w,t) in Terms of the Exponential trieg-a

An exact solution for B(w,%) can be nbtained in Lerms oi the

exponential integral, defined by

Ei(u) = - ¢ =—— dv , (5.11)

where T indicates the Cauchy Principal Value. Although Fi(u)

~

cannot be integrated in closed form, it has been tabulated Tfor real
values of the argument and, in addition, many infinite ncries and

asymptotic series for both positive real, negative reai and complex
values of the argument have been published. Jahnke and Emde,17 for

example, contains an extensive listing of these series as well as

several qualities for Ei(u) .




To express B(w,t) in terms of Ei(u) , let v = -a in
Equation (5.10). Then, there results:
-at
-Wt w., = jW - t -V
B(w,t) = Y : e jwo E_av
’ w R.C 2 v
ol
-aT
w + W jut TPty
0 ) e
+ —— e — dv 5
2 v
-bT
But, since the real part of a > (0, and since T and t > 0 ,
-at ® o
f TR e~V -v
J — dv = - dv - —~— dv = Ei(at) - Ei(aT)
v v
J
-aT -aT ~at

Doing exactly the same thing for the other integral results in

s O R |

1C 2

-jwot
e

B(w,t) [Ei(at) ~ Ei(aT)]

w R
o

W+ 3W Jut

\
|
=i © [Ei(bt) - Ei(bT)) J}

vsigen

e e e AR e SRS
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(5.12)

R R A R TR W AR R Y i
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5.5 Asymptotic Expansion for B(w,t)

The large value of (W - o) mentioned in Section 5.3 will make
the real part of (at) and (bt) large for a great many values of
t . For this reason, an asymptotic expansion for B(w,t) approximates
the correct value. Actually, an asymptotic expansion for Ei is
tabulated in Reference 17. It is trivial to cbtain an expansion for
B(w,t) from an expansior for Ei . It is simple, however, to derive
an asymptotic expansion directiy from the integrals in Equation (5.10).
This not only avoids integration through the singularity at £ = 0
which is required to express 3B(w,t) in terme of Ei , but it shows
that the expension obtained is valid for this problem. This fact is
not clear from the tabulations. It will be found that tha expansion
obtained is . dentical to that obtaired from using the expansion
tabulated for Ei .

The resulting asymptotic ewpansicn can be used tc simplify the
expressicn for the output cf the filter fo~ very large values of t .
Furthermore, it will be pcssible to put an upper bound on the error in

the simplified expression, given & value of (W - )t .

5.5.1 Properties of isymptoutic Exnansion. is section

reviews, without proof, the definition of an asymptotic expansion and
some cof its useful propertizs. Goldman13 puints out that asynptotic
series have turned out to be particulariy practical ir transfcrmation
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