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A TURBULENT MHD BOUNDARY LAYER
IN A TRANSVERSE MAGNETIC FIELD

I. P. Ginzburg and L. I. Skurin

In this work we examine the turbulent boundary layer of a
conducting fluid on a dielectric plate in a transverse magnetic
field. We investigate both nongradient and gradient flow. The
basis of the solutions 1s the semiempirical turbulence theory, anid
we use the calculating method shown in [1] for a ordinary boundary

layer.

Considering that the magnetlc Reynolds numbers are small,
we can write the -equations of the boundary layer 1n crossed electrical
and magnetic fields assoclated with the plate in the form

9 il '
RS s e (1)
0, Sk 4 po, B =1L + o B (E,— v,B), (2) :
. ‘ ) .
' ) ?‘; a%-oo . A (3) ',
u ot o0, 2 = 3 (+ ) +oE, (E,— v.B) (4)
. . pnPRT. (5)

where EZ is the external electrical field strength; B is magnétic
induction; ¢ is conductivity of the fluid; q is the transverse
component of the heat f{low vector; tv 1is the xy component of the

stress tensor; H is the total epthalpy per unlt of mass; the remaining

designations are those commonly used.

FTD-HT-23-3-69 1




Considering (3) and bearing in mind that outside the boundary
oV

x = -
layer 5y - 0 and

ar
ay

3l p du;, . '
¥ | — & =ou5r4 08U =4 BE, (6)
! where u 1s the velocity on the outer boundary of the boundary layer,

and the subscript "0" pertains to the outer ‘boundary. From (4),.

which pertains to external flow, considering that outside the

boundary layer q = t = %%_- 0, ve get

= 0, from (2) we get

o o e e e e TN

e o5, (E,—uB),

whence it follows that when E, = 0 the total heat content outside
the boundary layer

e . *M—l‘«-h s Srcrme v

ey

Hy=¢,T, +5; = const. (7

Examination of (6) leads to various statements of the problem.

1. Nongradient flow — %& = 0, In this case the velocity on
the outside :boundary is determined from the relationship

MZ‘::“,"’OB'“"’QBEt:oo (8)

where the external magnetic and electrical fields should be given.
In the particular case g9 = 0, from (8) it follows that u = const.

2. Gradient flow -~ %% # 0. In this case the pressure gradient .
is determined from (6) with given o3> U, B, and E,. Let us examine
certain of the simplest cases of the indicated statements of the

. problem. When solving, the values of t and q which enter into (2)
and (4) will be determined, starting from the semiempirical turbulence

theory, using the two-layer scheme of the boundary layer. According
to this theory,

when Y3, t-p%';!-,- q-x%’;,
1 oH 1 o
¢+"":-P[1s;'°';;+(l —'p;')i’;';,"]:
when Y>8i T = phty? (%’f—)’, q::,;kk,fﬁ&.aﬁi

dy dy '
o, [V oM t ov
8 x } 2 00T ——
g+ 0, = phty* 52 [p,t‘,y +(1 P,t)v,—-d;],

where 61 is the thickness of the laminar sublayer; u, i, cp are,

FTD-HT-23~-3-69 2
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respectively, the coefficlents of dynamic viscosity, thermal conduc-
tivity, and heat capacity at constant pressure; T 1s temperature;

C,H k .
. Pr = ~§—, Prt =¥ k, kt are universal constants of the semi-
t

empirical turbulence theory. Henceforth we will consider Pr and ¢

constant and k = kta

p

It 1s assumed th~t when crossing the boundary of the laminar
sublayer the values t, q, h =

i

; T, and v, do not undergo a discon-
¥ :

HE tinuity, while

2pc

P

. ’ (%!.)y-l 10 -*‘ (%)y-olﬂ ' (g!.;)y-rx-e = kP (:—:)’-'l_* o (9)

where kl is a universal constant.

For an approximate solution to system (1)-(5) we set

%
’E . “"“v"f"t%"‘l"“a(%‘)(’r
I

H = B, Byv, -+ Byvr when y Ky ,
| Hm Cy 4 G, wn y by (10)

!
@ f Coefificients Al’ A2, Bl’ 52’ BB’ Cl’ and C2 are determined using

§ the boundary condiitions, the motion and energy equations, relationship
f‘i (9), and the condition t = 0 when y = 6§ (6§ is the boundary layer
: thickness).

The solution for such a scheme for a nonconducting fluid i1s
given in [1]. Henceforth we will use the results of this work.

Nongradient flow, Ez = 0, o = const, We have the same boundary
conditions as for the boundary layer of an nonconducting fluid:

Jpete SRRy

y-=0. 9:-‘0’30, H—H.—C’T';
Y3, v, =u, H=H, (11)

-

. where, according to (7), Hy = const. Let us define u. The density
on the outer boundary, according to (3), (5), and (7), can be
represented in the form

teTw__2Tw .
PO"" 'To‘— Ho -U’ * (12)
l-m

FTD-HT-23~3-69 3
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Substivuting this expression into (8), where E, = 0, we get an equation
for determining the velocity at the outer boundary

¢,T. : E

Substituting«this expression 1nto (u), where Twpw = const (since

L e e

p = const), from the last equation we get

B x
re vV I Hy' (13)

Arthu = Arth 4, —

where ZE_.;‘.__.; BN g e
,Ym‘ ] .'f*——wov H.E"Fo‘o

, The integral pulse relationship, corresponding to (2), where
§ ® L 0, Eé = 0, with consideration of (8), can be written in the

X
form
d ) .

e [(1-#)a]. )
where R . :-; . '

'3"-5{;1’33(1,—{1)@, 3 m '5(1 ‘ i-f)dy.

(15)

Since in this case %i-s 0 when y = 0, the dependence of 1 og y/8
can, approximately, be represented in the form v = rw[l - %?}, aro

then for the velocity profile we get the .same expression as in [1];

LE s 111 be the same as in the absence of a magnetlic
) on g mw e th g
field.

Calculation of the integral on the right side of (1l4), using
the velocity profile obtained in [1], gives

s .
v ‘ vg 3D ,. dycosd; 4 sind
5(1—1‘)‘?)"‘%-;##““[%——‘4'

! -;—«wﬁ)
T4 — (d, cos dy+sin d,)

di+1
where d, = arcsin %[l - _%E}’ d, = arcsin 2, and, according to [1],
2u 2au
Uy = Wu , D!jD(E, Fi., Pr), a!&'a(u, He ty)

asall, &, Hy, Pr) a=a(, u, Hy, Pr1)

FTD-HT-23-3-69 4
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The values of o and Py 8S functions of x are determined by
relationships (12), (13), (5), and (11). Thus, the problem reduces
to numerical integration of (14).

Let us examine an incompressible fluid. Pulse relationship (iu)
is written in the form

P2 o Bk (16)
the velocity on the outer boundary, according to {(13), will be
defined by the expression

u=uy(1—8,), S,="T

g
the width of the lost pulse, according to [1],
. Ry v ; 2\
= iy (1) (17)
Setting iq this last relationship, approximately,, [1 - f% =
= |1 ~ ﬁ%} = 0.8 and substituting (17) into (16), we get. the
cp
following equation for determining 7 as a function of x:
d ek _ut
E—(uﬁ?=mw' (18)
To obtain an approximate analytical solution to (18) let us replace,
considering S, small, u by uy on the left side of (18) (the error in

determining f when S, < 0.4 does not exceed 6%). We then get the
solution in the form

[ 14

'erﬂdn--ah’-:%—l?e,(l*jsx‘f";'sz)' (19)
where A '

. cJ'q'e'ldn=e“‘(k§—l)‘+e“+2. (20)

¢onsidering kg to be a sufficiently large value, let us
disregard, in this last equality, the second and third terms on the

right; then, using the approximation
n"e! ~em (emn—1), n, = const, n, = const,

(21)
we get

X exp (k. —ry—
eox o Bephbma = Re,(l—s,-;-.;.s;), (22)
whence

FTD-HT-23-3-69 5




~__l_ Mexp{h; 4-ng—n, — )"

1 1 : 3
— a3 Se = Caco— 7 S (23)

For values of k¢ = 6-12, ny = 2,15 and n, = 1.25. Setting ky = k.29
ard k = 0.39, just as for the usual turbulent boundary layer, from
the last relationship we get

‘: =4 c’-o —_ 2,0_3]&

<n [2], where there is obtained a solution for the examined problem
from concepts of the theory of dimensionality, there is given an
analogous relationship with the doefficient 1.87.

v° v u, u Camo

e:-Q -—!-". ";.0 .;0— = ( (l-".gx)t

whence, using (23), we find

R 043 (1 ~ S,)

7 ',O
PR l"‘— ] ( — — * .
(- Yaeo ) Ss ,‘[Mxv(*-t’& m—l) ne,] (a2L)

Flgure 1 gives the limiting curve constructed for the case Sx = 0, on
the right side of (24). The same figure shows, for comparison, the
corresponding curve obtained in [2].

o (1-v ./"ofa).{',
090

g2 —% —$—

Fig. 1. Rate of decrease of dy-
namlc velocity_per unit of parameter

Ly he,

e - g, ¢ =

Sx[dx 0y o const|.

1 — from data in [2]; 2 — present
work.,

Let us introduce a formula for the local friction coefficient:
. 2
c,—%na-(l—s,)’. (25)

From (21), with sufficiently large n, we have

FTD-HT-23-3-69 6
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1 = (li=mn-n, .
L 4

Cl (26)

which, after substitution into (25) and use of (22), gives

i
- 2k Mexphy+-m—an, —1) s, %
c’ -","h'll’ orul

-

1 1
S .l_ 2 ‘!-;“ Q. ;,--l
whence X (l S‘_ +3 S‘) (1—S8:)*Rex’

- (1—s, +{,-si)’«‘l7'l (1—S)t

s
¢rB=0
laminar boundary layer. Comparison of the ratios of local friction
coefficients for laminar and turbulent boundary layers, given in

In [3], the value =1 - 2,69x +... was found for the

Fig. 2, shows that the magnetic field has a stronger influence on
the laminar layer.

Sy

I 1 1

gr .02 Q3 Q4

Fig. 2. Comparison of the ratios
of local friction coefficients
for laminar (1) and turbulent (2)

boundary layers dp 0, o = const

dx
Nongradient flow Ez = 0, ¢ = 0. As in (43, we use for the
conductivity, the following integral relationship:
=g F (%) (1)

FTD-HT-23~3-69 7
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whence og = 0, and then, as a result of (8), the velocity on the ovter

boundary is constant (u = const). The boundary conditions are given
by relationships (1l1).

The integral pulse relationship corresponding to equation of
motion (2), where %% =0, EZ = 0, and o is determined by (27), will

have the form

d‘“ ° 'B’

S~ (28)

The velocity profilée in the boundary layer in this case as well

can be taken approximately as in [1].

The width of the lost pulse, according to x[1], can be
represented approximately by the expression

2% o 22 P- . _Hy_pont,
. 1—u
Since u = u, = const, then T, is also constant by virtue of (7).
Henceforth we will consider that Hw = const (or Tw = const); then
Py = const, ﬁ& = const, and E& = const. Having substituted this last
formula into «(28), and making simple transformations, we get

(OBt e 1
ol T Ol (29)

t————

_ . /" H
where Dl=;,—‘-;;]/ T:!T

In the case of a uniform magnetic field (B = const), equation
(29) reduces to the quadrature

114
"“dq = Re
ND e + 1 '5; !

£
[+
<

where S = .
Pylo

To obtain a solution in elementary functions, we can use
approximation (21).

FTD-HT-23-3-69 8
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Let us examine in more detail for the possibility of comparison
with the results obtained for the laminar layer, the case when
B = Bo//f; B, = const: Let us set, in (29),

2 u,—1 Hg
3#h v 1 ’

b= “Di(1—Seh) ‘(akt_)’e‘“‘

where S = -, We get

o
=
=
o

d P 3
aRe; = paRe = se)

or

-« Re
‘ - ———
J ey = oG sey”
whence, by virtue of (20) and (21), we get

‘ =Re,

(ahr ek m - E iy

This last relationship makes it possible to transform the expression
B

for B2 to the form B = 7%, and 1s the solution of (29) for the given

distribution of the magnetic field.

Using approximation (21) we get

. ane’ S1=MRe
MC— o
T T Dy(t—-se)

1*“2
H]

(30)

From this it follows that when S > e there 1s separation of

the boundary layer.

Relationship (26), using (30), gives a. formula for the local
friétion coefficlent:

iy & AR T

pd ~ BT BT T (31)
5 2 ng + n, + 1 1-%? '
where A = 2k a neexp[— n, }Dl . Prom this the coefficient
of friction of a plate of length L
=1 ’f cpdx = A R!;Zl'- T —Semm )"'787 .
9 (32)

MP'D-HT-23-3-69 9




Using (27) and (29) it is alsn easy to calculate the cocefficient
f the stresses caused by three-dimensional magnetic forces in the
poundary layer:

L ‘( . _‘.-1 Ayt
c‘,s;__éi—j;"ag’vﬁydx—&ﬂe:‘ L T
h (1 — se~—t)™

The coefficient of resistance of a plate of length L

: R IR _1
CgECI-{- CM - ARQ.L' l(] -Se'--') M

The heat flow on the plate is giveén, according to [1], by the
expression

(33)

where zﬁ==%§u¢' Hy . Substituting (31) into (33)., we get the

distribution of the heat flow along the plate.

In the case Pr = 1, from (33) it 1s easy to determine the heat
flow of a plate of length L

i .
. —H
Q= -}54.-# = BBy o Cy,

whence, considering (32),

1
Qw - C/ o (1 e -1 ‘—57
ws~0  Cp349 (1—Sent) ™,

Figure 3 shows the dependence of the coefficients Cf, CM’ and
Cc on parameter S, Figure 4 compares the hest flow ratios with and
without a magnetic field for laminar [4] and turbulent boundary
layers. As follows from Fig. 4, the magnetic field exerts less

influence on the turbulent layer than on the laminar layer.

FTD-HT-23-3-69 10
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e s i S aw a

' 1 d 'y !’

@ %5
FPig. 3. Coefficlent of resis-

tance of the plate [%% = 0,

B
00 = 0, B‘ ]e
Reg'z
Fi(S) = Ci« = 1 -1=1;
2 —-1=M;3-1=c

> 1 1 31
0 [H] as (U (7]
Fig. 4. Comparison -of heat flow
for laminar (1) and turbulent

(2) boundary layers [%% = 0,

B
gg = 0, B = jéﬂ.

Gradient flow, o = const. In this case the pressure gradlent
is determined from (6) by giving the values u, B, and Ez. By virtue
of the constancy of the pressure across the boundary layer, we can,
substitute (6) into (2); then we get

v, dv, d ad ]
.+, tmn bt it B =) (30

When there is an external electrical field, it is more difficult
to determine the parameters of the compressible fluid on the outer
boundary since the condition of constant total heat content is not
satisfied. If we consider that there is no external electrical fileld,
the temperature and density on the outer boundary are determined from

FTD~-HT-23-3-69 - 11
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the condition of constant heat content (7) and the Clapeyron. equation
(5). Trom (7) we have

Hy W dTy . mds,
T.-;’!-,ﬁ;' -‘-%- c’dx' (35)

differentiating (5) with respect to x and using the last relationships,
we get

e BP0 R _ du
- (M~ T)“E;"“FI:
or, replacing g% from (6) (where~E o= 0),.

Ra d )
(7~ H) (G~ =t | (36)
Thus,. with given u (and also 9 and B), the temperature énd density

on thé outer boundary are determined, respectively, by the first
of relationships (35) and by relationship (36).

In the case of an incompressible fluid, 1f the conductivity
does not depend on the temperature, the dynamic and thermal problems
are separate. In particular, when ¢ = const, the electrical field
does not, .according to (34), influence flow in the boundary layér and
enters only into (6) which connects the pressure,gradient and the

velocity on the outer boundary. Let us examine this case 1n detaidl.

Coefficlents Al and A2 of approximation polynomial (10) for
friction are determined from the condltions

yeud, =0, %"0
(the last equality follows from (34}); then
y )
w=x (1) (37)

Starting with this last relationship .and using the propositions of
the semiempirical turbulence theory stated previously, we find

e ¥, 2”""2'?%'
when )’>3p =l+kC (lne: %—),
LD U
- =3t

Joining the velocity profiles on the boundary of the laminar
sublayer we get

FID-HT-23-3-69 12
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The integral pulse relationship, corresponding to (34), 1s
written in the form
L
4

45 e du a(103 V) eBv 7203
% :-::' :-%‘_;5;1__—.—) :.—ﬁfu\" (39)

u,x )
~%}, 5%#% and &% are determined from (15) (6, = p)-

31]

whére‘Rex

In view of the small thickness of the laminar sublayer; let us
calculate approximately the integrals in (15), using only the
velocity profile corresponding ‘to the turbulent part of the boundary
layer. Having integrated, and considering (38), we get

B Jheihek, -—zﬁ‘—,e"'*'e“(l &);. (40)-

Let us .calculate the constant coefficients in (38) and {(39), and the
factor in parentheses in (l40), which is the ratio &*%/¢#%; let us
average, in the proposed range of change, ; and designate it by «
(in the first approximation we set x = 1). We will have

ulee

2 e 1,05k2%, B0 LR 0 595, (41)
Substituting this into (39), we get, finally, the equation

o AN 0,29 ) B

TR e ke (L (42)
integration of which gives the solution of the problem for given
u(x), B(x).

Let us examine certain analytical solutions of (42). When
u = uo/l +b Rex and B = Bo/l +Db Rex (b > 0, ug = const, BO = const),

equation (42) reduces to the quadrature

4
j’ ey - 029

43)
) T8 (et ) her — s n(H0Re), (
cBOv
where N =

2
puo

When N > b(k + 1), integral (43) diverges at the point defined
by the relationship

. ,29
(e = =y - (4

FID-HT~23-3-69 13




From this it follows that with suffiéient large N the parameters of

the boundary layér will have limiting values that are defined by (44).

When N < b(x + 1), the nature of the change in parameters will be
the same as$ in. an ordinary boundary layer. -

Let ‘us. examine in more detall the case b = 0 (u = ug = const,-
B = B0 = const). Let us set « =.0.8 (the proposed range of change
of ki 1s from 6 to 12). Relationship (43) is rewritten in the form

- .
el <
5'l‘r%ﬂuh¥‘ ‘ Oﬁslkfr

Integrating using approximation (21) and making the .obvious transfor-
mations; we get

0,29 e~V IN Re
N *N (- )

(45)
whence, as a result of (256),
. 1
» 152. (0,29 \77 * e~ BagN e ..
-l i o Gy (46)
T
The limiting values of —!5 as fuactions of N, calculated from (44)

puo
(when b = 0), are given in Fig. 5. (Naturally, these same values
can be obtained approximately from (46) when Re, ~ w,) This same
figure gives the limiting values of the dimensionless thickness of
U0 Smax . _0.78

Ng
max
follows from (41) and (44). For comparison, Fig. 5 gives the

corresponding curves obtained in [5] using the velocity profile that
was determined semiempirically by Harris [6].

the boundary layer, calculated from the formula » which

Fig. 5. Limiting values of surface
giction and boundary layer t ickness
f 0, u = const, B = consty
usé

max T
1-1g—22% 2 - ¥ mi". Soiid 1line:

! data from this article' dash :
N | " X dats from pos shed line:

FTD~-HT-23-3-69 14
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The presently examined case corrésponds, approximately, to Ilow:
on the dielectric wall of the inlet Section of an MHD channel with
parallel walls. With a .sufficiently ilarge value of parameterr N, the
boundary layers on the -opposite walls of the -channel do not-;bin,

In this case the friction across the channel in the section -of
developed flow will be determined, according to (37), by the
relationship

where h is half the height of the channel; Reh = E%S. SUbstituting\h
here EQ%EEE and introducing the designations»M2 s °§ih?, R* = X%Q,
we get

o=(1-1B845).
From this formula it follows that there is no friction in the channel
'when %i % > 0,78 (Harris [6] obtained 22-%,> 0.6).

For a more precise solution of the problem of the boundary layer
in the channel we must taken into account the increased velocity on
the channel axis. The velocity along the axls in the inlet section

of " the -channel
“-i%“' (’"7)

which follows from the law of conservation of matter. We will conslder

that magnetic induction 1is sufficlently high and that the boundary
layers on opposite walls of the channel do not Jjoin. 'Then having
substituted into (39) the velocity from (47), we get an expression
for the friction coefficient:

e i
PPN TN LA 79 e
[ (1..“_;““ )l[ (0 + 'T"; )

+~f~°:-'-(i—:;'.:)]- (it

In 2he first approximation we can substitute into (28) the value
uns6

which corresponds to a plate, i1.e., use the expression
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which follows from (41) and (45). For the section of developed flow
(&% & .const) we have, from (48) and (41),

Mais -SN ». v 42N :
T e |
e (49)

where kg ., 1s determined from (44) (when b = 0). 1In Fig. 6 the

fription coefficiént calculated from (49) is compared with Likodis'
experimental results {7].

>

z — T

N) ]
wllLZ

a0k Qo005 0010 G015 - G020 0025 &VN '

Fig. 6. Comparison of theoretical
results for friction coefficlent in
an MHD channel with experimental data [7].

1l =~ Re = 2.5"10u; 2 — Re = 4.5°10u. ;
Squares: Re = 2u5-10u; crosses: Re = R.S-lou. ;
The segment of possible comparison is bounded, along the
abscissa, from below by the value of N for which Gma = h and which
can be determined approximately from Flg. 5, and from above by the
value of N corresponding to the transition of turbulent flow into

laminar. From the comparison it follows that (U49) corresponds to
experimental data within 5%.

Let us also note, as follows from (42), that if the velocity on :

the outer boundary of the boundary layer u and induction B are
connected by the relatlonship
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du e
G+g%e =~ o (50):

the solution of (42) can be written in. the form
x . 029!5
5 nedy === 5 adRe,.

To satisfy condition (50) we set, e.g.,

S miy

4w U ReZ™, Bom +3‘)§"E¢.Re:—§—.', om <1,

[,

Then we get ‘g
J Perds w 92 Re ;74

R K """"—-'3 Zm .

This method .of solving the problem of the turbulent boundary layer
with electrical and magnetic fields 1s also applicable during variable
electrical conductivity and another dependence of u on x. In these
latter cases the obtained differential equations should. be 'solved

numerically.
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