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A TURBULENT-MHD BOUNDARY LAYER
IN A TRANSVERSE MAGNETIC FIELD

I. P. Ginzburg ,and L. I. Skurin

In this work we examine the turbulent boundary layer of a

conducting fluid on a dielectric plate in a transverse magnetic
field. We investigate both nongradient and gradient flow. The

basis of the solutions is the semiempirical turbulence theory, and

we use the calculating method shown in [1] for a ordinary boundary

layer.

Considering that the magnetic Reynolds numbers are small,

we can write the equations of the boundary layer in crossed electrical

and magnetic fields associated with the plate in the form

V~~P Oi±.FnY 1

. (3)
OH OH ' 6

WT=pR, (5)

where E is the external electrical field strength; B is magnetic

induction; a is conductivity of the fluid; q is the transverse

component of the heat flow vector; T is the xy component of the

stress tensor; H is the total epthalpy per unit of mass; the remaining

designations are those commonly used.
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Considering (3) and bearing in mind that outside the boundaryav X

layer = 0 and- = 0, from (2) we get

,I+ *Mu (6)

where u is the velbcity on the outer boundary of the boundary layer,

and the subscript "0" pertains to the outer 'boundary. From (4),

which pertains to external flow, considering that outside theH
boundary layer q 0 .- 0, we get

-eE(E-uB),

whence it follows that when Ez -0 the total heat content outside

the boundary layer

HO = C,, - const.

Examination of (6) leads to various statements of the problem.

1. Nongradient flow- s 0. In this case the velocity on
dx

the outside cboundary is determined from the relationship

hu 0+'u--Ba,o, (8)

where the external magnetic and electrical fields should be given.

In the particular case a 0, from (8) it follows that u = const.

2. Gradient flow - # 0. In this case the pressure gradient

is determined from (6) with given c0, u, B, and E.. Let us examine

certain of the simplest cases of the indicated statements of the

problem. When solving, the values of T and q which enter into (2)

and (4) will be determined, starting from the semiempirical turbulence

theory, using the two-layer scheme of the boundary layer. According

to this theory,

q-+-' .-- [--k . W ,(

V q = pkk,yl rvx acT
- -" dy ',

where 61 is the thickness of the laminar sublayer; , P, C are,

FTD-HT-23-3-69 2
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respectively, the coefficients of dynamic viscosity, thermal conduc-

tivity, and heat capacity at constant pressure; T is temperature,;

Pr Pr = -L, k, kt are Universal constants of the semi-

empirical turbulence theory. Henceforth we Will consider Pr and Cp

constant and k - kt.

It is assumed that when crossing the boundary of the laminar

sublayer the Values T, q, h - z T, and v do not undergo a discon-

tinuity, while

1-0 ~ . 6 ,~* (;Y)r.. .aj- k1Pr (9')

where kI is a universal constant.

For an approximate solution to system (1)-(5,) we set

-"'vAjY +A.()'

H - C B + a v1+ iVjo whe & (10)-

Coefficients A1, A2, B1, B2, B3, C1, and C2 are determined using
the boundary cond!tions, the motion and energy equations, relationship

(9), and the condition T a 0 when y = 6 (6 is the boundary layer

t; thickness).

The solution for such a scheme for a nonconducting fluid is
given in [1]. Henceforth we will use the results of this work.

Nongradient flow, Ez = 0, a = const. We have the same boundary

conditions as for the boundary layer of an nonconducting fluid:

y-O, v-vy-o, H-Hw-cT.;

y _ 8, v u, H = HO,(Ii)

where, according to (7), H0 = const. Let us define u. The density

on the outer boundary, according to (3), (5), and (7), can be

L represented in the form
pT* CpTv* p.

P. - =  Ho - ' .- " (12)

FTD-IIT-23-3-69 3



Substituting this expression into (8), where E, = 0, we get an equation

for determining the velocity-at the outer boundaryC,,r. ! U
* U2 dX

Substituting this expression into (u), where TwPw  = const (since

p const), from the last equation we get

Arth Art(13)

- - - - .where ; -"

The integral pulse relationship, corresponding to (2)', where

0, E, r 0, with consideration of (8), can be written in the

form B *)1 ..+TJ,[U.- MJ- YJ, (14)

Where a -

Since in this case =0 when y =0, the dependence of T On y/6

can, approximately, be represented in the form T = Tw~l - , ar

then for the velocity profile we get the ,,same expression as in [I);

6** on will be the same as in the absence of a magnetic

field.

Calculation of the integral on the right side of (14), using

the velocity profile obtained in [l], gives

.! , o , ia +

+' (d, cos ,+,sinda
d'+1

-where d= arcsin 1, d 2 = arcsin a and according to [l]

1l 7=1 2-2ad ccrig o[1
2u 2au

asD (-, 3, 9Pr, am a R , U.);
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The values of P0 and pw as functions of x are determined by

relationships (12), (13), (5), and (11). Thus, the problem reduces

to numerical integration of (14).

Let us examine an incompressible fluid. :Pulse relationship (j.4)

is written in the form

P(16)

the velocity on the outer boundary, according to (13), will be

defined by the expression

, ( -S '), S .-o uB '
Pu,4

the width of the lost pulse, according to El],

4~ (17)

Setting in this last relationship, approximately,, 1 - _
= (1 - = 0.8 and substituting (17) into (16), we get the

k4cp
following equation for determining 4 as a function of x:

d k b u (18)
av (Ueh9 = Ohto

To obtain an approximate analytical solution to (18) let us replace,

considering S small, u by u0 on the left side of (18) (the error in

determining 4 when S < 0.4 does not exceed 6%). We then get thexsolution in the form

K '
SRe. (IS. + S'2), (9

where ,,
e jee'qd.,q e c (k's- I)' + ekc+ 2. ( 20 )

C-nsidering k4 to be a sufficiently large value, let us

disregard, in this last equality, the second and third terms on the

right; then, using the approximation

a'e ,e", (e'n- 1), it- const, n= const, (21)

we get
M exp (k, + nt - R- (n (22' os,, R[e, T-s+ . (22)

whence

FTD-HT-23-3-69 5



I M exp (k, n n i
C I sgk In Re.

LS (23)

For values of kC = 6-12, n =2415 and n= 1.25 Setting kI - 4.29

and k = 0.39, Just as for the gsual turbulent boundary layer, from

the last relationship we get

p -o-" 2,0S,.

,In [2], where there is obtained a solution for the examined problem
from concepts of the theory of dimensionality, there is given an

analogous relationship with the coefficient 1.87.

Having set v* 5 , we have
P

whence, using (23), we find

0 434 (1 _ i)
- M 0exp'(k.!+'sAil Re, (21:)

Figure 1 gives the limiting curve constructed for the case S - 0, on
x

the right side of (24). The same figure shows, for comparison, the

corresponding curve obtained in [2].

,90 "

Fig. 1. Rate of decrease of dy-
namic velocity per unit of parameter

Sxd = 0, a = consta

1 - from data in [2]; 2 - present
work.

Let us introduce a, formula for the local friction coefficient:

e - -1!t (I - S ). (25)

Prom (21), with sufficiently large n, we have

FTD-HT-23-3-69 6



,, (26)

which, after substitution into (25) and use of (22), gives

.2• kl[ exp@ki + n2 -- j x

x ( o .X R,

whence x (i(- (s+ -s)' -sYtt

cfCf
In [3), the value = 1 - 2.69x +... was found for theCfB=O

laminar boundary layer. Comparison of the ratios of local friction
coefficients for laminar and turbulent boundary layers, given in

Fig. 2, shows that the magnetic field has a stronger influence on

the laminar layer.

'1°

4 q1 43g

Fig. 2. Comparison of the ratios
of local friction coefficients
for laminar (1) and turbulent (2)

boundary layers d = 0, a = const

Nongradient flow E. = 0, a = 0. As in [4], we use for the
I *conductivity, the following integral relationship:

O. To U" (27)

FTD-HT-23-3-69 7



whence = 0, and then, as a result of (8), the velocity on the outer

boundary is constant (u const)-. The boundary conditions are given

by ielationships (11).

The integral pulse relationship corresponding to equation of

-motion (2)', where a= 0, Ez = 0.. and a is determined by (27), will

have the form
, -. -.' ** - -V

'rX ' ' U (28)

The velocity. P&rbile in the boundary layer in this case as well

can be taken approximately as in [1].

The width of the lost pulse, according to x[l], can be

represented approximately by the expression

!z H

Since u = u0 = const, then T is also constant by virtue of (7).

Henceforth we will consider that Hw = const (or Tw = const); then

Ow = const, Hw = const, and uw = const. Having substituted this last

formula into (28), and making simple transformations, we get

d em -l"" e , (29)

where D, l-="

In the case of a uniform magnetic field (B = const),, equation

(29) reduces to the quadrature

As tedi a = Rex

where S - 2

To obtain a solution in elementary functions, we can use

atpproximation (21).

FTD-HT-23-3-69 8



Let us examine in more detail for the possibility of comparison

with the results obtained for the: laminar layer, the case when

B - B0 /V7, B0 = const4 Let us set, in (29),0 0

S wB

whereS- We get
P ""

w 0

or
I (I - S-)

whence, by virtue of (20) and (21), we get

a' -t Re1

This last relationship makes it possible to transform the expression

2 BOfor B2 to the form B = r, and is the solution of (29) for the given

distribution of the magnetic fieLd.

Using approximation (21) we get

0 _(30)

i el-n2

From this it follows that when S > e , there is separation of

ithe boundary layer.

Relationship (26), using (30), gives a. formula for the local

friction coefficient:

c f .'- 1 - "'-' (31)

2 2  n 2 + n1 1
where A = 2k a n2exp 2 D1 n2 . From this the coefficient

of friction of a plate of length L

Cf-!c~dx=A'Reo (I -SeRI-1)A
L L-- --

0 (32)

1,TD-HT-23-3-69 9



Using (27) and (29) it is also easy to calculate the coefficient

'3f the stresses caused by three-dimensional magnetic forces in the

ooundary layer:

2I

M jj'.B%, dydx - A.Re-

The coefficient of resistance of a plate of length L

±_, I

CcC,-+CM ARe (--Se, V -'.

The heat flow on the plate is given, according to [1], by the

expression

I -Pr 1

2*0 l1 -(1- P) ] . • (33)

where u =!L Substituting (31) into (33),, we get theIthe

distribution of the heat flow along the plate.

In the case Pr = 1, from '(33) it is easy to determine the heat

flow of a plate of length L

Q 2 £ PuCf,

whence, considering (32),

C

Figure 3 shows the dependence of the coefficients Cf, CM, and

Cc on parameter S. Figure 4 compares the heat flow ratios with and

without a magnetic field for laminar [4] and turbulent boundary

layers. As follows from Fig. 4, the magnetic field exerts less

influence on the turbulent layer than on the laminar layer.

FTD-HT-23-3-6 9 10



44

Fig. 3. Coefficient of resis-

tance Of the plate [d 0,

Re.0.2

Fi(S) C- e. K 1 -i , 'f;i
2 - M; 3 - c.

Fig. 4. Comparison of heat flow

for laminar (1) and turbulent
(2)boundary layers - 0,

-0 ,  B

Re0

Gradient flow, a -- const. In this case the pressure gradient

is determined from (6) by giving the values u, B, and Ez  By virtue

Lz

of the constancy of the pressure across the boundary layer, we can,
substitute (6) Into (2); then we get

" " + v PO d"X+ 1"€"- 'iy )  ( 34 )

When there is an external electrical field, it is more difficult
to determine the parameters of the compressible fluid on the outer

boundary since the condition of constant total heat content is not

satisfied. If we consider that there is no external electrical field,

the temperature and density on the outer boundary are determined from

FTD-HT-23-3-69 11



the condition of constant heat content (7) and the Clapeyron equation

(5). From '(7') we have

. ,, i .. ada
CIO-A , 'pX x)

different'iating (5)' with respect to x and using the last relationships-,

we get
d' R ,f(t _._ R ,9

o1, replacing from (6) (where Ez. =)

'q H".) dr. duYi F - -P.--'u. (36)

Thus,. with given u (and also o0 and B), the temperature and density

on the outer boundary are determined, respectively, by the first

of relationships (35) and by relationship (36).

In the case of an incompressible fluid, if the conductivity

does not depend on the temperature, the dynamic and thermal problems

are separate. In.particular, when a = const-, the electrical field

does not, .according to (34)', influence flow in the boundary layer and

enters only into (6) which connects the pressure ,gradient and the

velocity on the outer boundary. Let us examine this case in detail.

Coefficients A1 and A2 of approximation polynomial (10) for

friction are determined from the conditions

y--, - Of a-0

(the last equality follows from (34)); then

,= ,,1- •(37)

Starting with this last relationship and using the propositions of

the semiempirical turbulence theory stated previously, we find

U V I

us_

Joining the velocity profiles on the boundary of the laminar

sublayer we get

FTD-IIT-23-3-69 12



f ~ (38)

The integral pulse relationship) corresponding to .(34), is

written in the form-

Swhere' Re x -= 0:' * and 6* are determined from (15) ( 0. "P)

SIn view Of the small thickness of the laminar sublayeri let us

calculate approximately the integrals in (15), using only the

velocity profile corresponding to the turbulent ,part of the boundary

layer. Having integrated, and considering (38), we get

- - (40)-

Let us ,calculate the constant coefficients in, (38) and (39), and the

factor in parentheses in (40), which is the ratio 6'*/6*; let us

1 ' average, in the proposed range of change, c and designate it by K

(in the first approximation we set K 1 1). We will have

' 1,0,5kec, - '- 7 -- =0,525eh. (4I)

Substituting this into (39)', we get, finally, the equation-

E A.hC 0.29 dt. d#82
0 +2  (J42)

integration of which gives the solution of the problem for given

u(x), B(x).

Let us examine certain analytical solutions of' (2). When
u = u0/l + b Re and B a B0/1 + b Rex (b > 0, u0 =const, B0 =const),

equation (42) reduces to the quadrature

IN, 029 (3

n 2
where N=

When N > b( + 1), integral (43) diverges at the point defined

by the relationship

(Wyl, N.l(n+I) b( 4+)

FTD-HT-23-3-69 13



II

From this it follows that with suffidient large N the parameters of
the boundary layer will have limitinlg values that are- defined by (44).

When N < b(%K + 1),, the nature of the change in parameters will'be

the sameas in an ordinary boundary, layer.

Let us examine in more detail the case b , 0 (U - u0 a const,

B = B0 =const). Let us set K = 0.8 (the proposed range of change

of kc is from 6 to 12). Relationship (-43) is rewritten in .the form
IK

40O,361 Ike,.

Integrating using approximatlon (21) and making the ,obvious transfor-

mations, we get

Ofk=- o0,i _ -,,. , (45)

whence, as a -result of (26),
I. I  I

-- -- •( 4 6 )

The limiting values of W as fuictions of N, calculated from (44)
Pu 0

(when b - 0), are given in Fig. 5. (Naturally, these same values

can be obtained approximately from (46) when Rex - -.) This same

figure gives the limiting values of the dimensionless thickness of

the boundary layer, calculated from the formula 0max 0.78h
V N4 max' hc

follows from (41) and (44). For comparison, Fig. 5 gives the

corresponding curves obtained in [5] using the velocity profile that

was determined semiempirically by Harris [6].

1. Fig. 5. Limiting values of surface
"riction and boundary layer t ickness

x 1 0, u = const, B - const
u6 Twm/ . ,\ Umax. tw mi

1 - -g;-v., 2 - mn- Solid line:

Pudata from this article; dashed line:
data from [5].

FTD-HT-23-3-69 14



The presently examined case corresponds, approximately, to flow

on the dielectric wall of the inlet section of an MHD channel with

parallel walols. With a sufficiently large value of parameter N, the

boundary layers on the opposite walls of the chahnel do not Jbin.

In. this case the friction across the channel in the sectfonoi'

developed flow will be determined, according to (37)., bythe

relationship

ii h

u0h
where h is half the height of the channel; Reh --. Substituting,

___'2 22vihU0 max as~h vn
here and introducing the designations M R* v

VP 'V V
we get

From this formula it follows that there is no friction in the channelM2  M2
when12 > 0-78 (Harris [63 obtained, . > 0.6).

RT h PT h'

For a more precise solution of the problem of the boundary layer

in the channel we must taken into account the increased velocity on

the channel axis. The velocity along the axis in the inlet section

of'the channel

9 - (47)

which follows from the law of conservation of matter. We will consider

that magnetic induction is sufficiently high and that the boundary

layers on opposite Walls of the channel do not join. Then having V
substituted into (39) the velocity from (47), we get an expression

for the friction coefficient:

Fk 8 8'+ 2.6 --P-4-

1;~~ 'N J7V Y (48)

In the first approximation we can substitute into (28) the value
u06*
0 which corresponds to a plate, i.e., use the expression
V

FTD-HT-23-3-69 15



W s

! I

Which follows from (41) and -(45 ). For the section of developed flow

(6* i- const) we have, from (48-) and (1),

Ao.2,e, ' (4 9)

where k;max is determined from (44) (when b = 0). In Fig. 6 the

friction coefficient calculated- from (49) is compared with Likodis'

experimental results [7].

ii"

Fig. 6. Comparison of theoretical
results for friction coefficient in
an MHD channel w~ith experimental data [7].14
1- Re - 2.5.1l04; 2 - Re = 41.5.1.0

Squares: Re = 2'.5.104; crosses: Re = 4.5.104

Xr

The segment of possible comparison is bounded, along the

abscissa, from below by the value of N for which .ma h and which

can be determined approximately ,Prom Fig. 5, and from above by the
value of N corresponding to the transition of turbulent flow into

laminar. From the *comparison it follows that (149) corresponds to
experimental data within 5%.

Let us also note, as follows from (42), that if the velocity on

the outer boundary of the boundary layer u and induction B are

connected by the relationship F

FTD-.HT-23-3-69 16



(+) =- ('5o)

the solution of (42), can be written in= the form

To satisfy condition (5,6) we set, e.g.,

-9ULt,1 B- 0~~-,'e O~<1

Then we get

v~'~029e;*+'

This method of solving the problem of the turbulent boundary layer

with electrical and magnetic fields is also applicable during variable

electrical conductivity and another dependence of u on x. In these

latter cases the obtained differential equations should be solved

numerically.
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