
■- ■*       i   w-m.mm.n-.ti*,.  —  

v 

SO COLUMBIA UNIVERSITY 

DEPARTMENT OF MATHEMATICS 

\ 
. 

Ri'O'oducc-d bv Ihv 
CLEAPINGHOUSt 

•>r fiiHprnl  Scu.nlidc  ft  Inchmeal 
Iniorm.ilion Spnngliold V.i   27151 

^ D D C 

y 
n^ MAY 2 2 1969 

c 

n 

JBL ji.jf.'r'ij     JIIU.J.III ijjj^m 
■ JL ••LJL^_!_-l—min_-m» 



,,, 

THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLYo 



,   -.    _ ' '-!'    ' .      I W^^^— "^TTT" ■^ 

CL- I-SUNR-K-.
V

( 

SLAHC.t AN:. :.\."C;O^::VN T:-'LCSV   • 

Part  of  final   .-.csort Or. 

Sroc ;..'.: :c Processes 

In  Ccrrii in Nava 1  Cpcrar ions 

by 

Bernard 0. Koopnan 

UNCLASSIFIED 

*    Presented  in prolminary fom before  the Operations 
Hesearch Society of America,   Chicago feting,  November 1,   1967, 

Document cleared  for public release and sale; 
its distribution  is unlimited. 

Tnis work was supported by the Office of Naval  Research, 
Code  WO^,   under Contract  N0001»»-G6-CüllS.     Xcproductlon 
in whole  or part   is  permitted  for any purpose of the 
United  States  Government. 

MM ^M ■MM mm 



^ '   ' ' II^W^PWBiBBIWJJ^fP 

SiwVilCH AND INFORMATION THEORY 

ä. 0. Koop^an 

1.  Introtlucilon 

Ever siaco the slil-ninotcen-foriios when enc thcoriot» of infonaadon 

and oi   search becano subjeccs of general intorottC, .uicr.pt.s havo been cade 

lo apply the theory of infon^ailou to problems of search.  These have proved 

disappointir.g; neither the forcuiau nor the concept» of the forcer theory 

have found a place in clarifying the problems of the laccer.  It haa seesed 

to the proaanc author chat this fact is a natural consequence of a funda- 

mental difference in ehe sub^ecc-natter of the cuo theories:  in search, 

the geometry (in Che sense of positions, distance, areas, etc.) is an es- 

sential factor of the operation—in the elementary ace of detection is to 

select a position and look near ic.  In the classical theory of Inforsadon, 

on the other hand, no attention is paid to such metric caccers, the ideas 

being confined to dichotomies:  the elementary ace is to ascertain in 

uhich of cuo subsets of a given sec (e.g., of scaccs of a syscea) ehe actual 

object (or state) belongs; and ehe geomeerical shape or exeone of Che sub- 

sees has no necessary connoccion wich ehe operaeion. 

The purpose of ehe prosone invescigacion la Co curn ehe queseion 

around, and to seek, not whae applicaciona Inforaaeion theory has eo search, 

bue uhac lighe search can ehrou on a broadened conception of inforaaeion 

ehcory. The key idea io eo scare wich ehe nocion of the olcmoneary 

decocttnF. operation and then eo see whae kind of quancicacivo aeaauro of 

informaeion can be obtained by lea opcioally repeated use  Ue, shall use 
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lite lanqudgc o: uear^ii; hue in order to bring ouc ciio essential simplicity 

and genoraiicy o: the ideas, wo shall put the definition in a somewhac gen- 

oral f u rr., 

In soarch there are tv? places where probability can enter:  in the 

proaaJility d.strlb'^tlon of the target's possible positions before the 

.■..•.irvh; ..:..! '.v.  t!.o conu i i •• r.«'. probability that the searching operation suc- 

cci-d In det-.-ciluj; it — given that it it. prer.ent at the place searched. 

Rrgurding The first, it will be as.;uacd henceforth that the target 

i!» in an unknown poaitior. x on .1 certain set X of possible positions, but 

that Its probabi1ities p of being in the various positions in X are known. 

.; there arc only .» finite r.usbcr of posit.ons in X, all their probabilities 

arc given; if X has a continue- of possible points, the probability density 

.        I 
'. n ,;lver.; etc . 

Regarding the sccond--t!;c conditional probability of detecting—it 

will bo aseusod that there Is an clcr.er.tary «ictectlnf; operation, repetitive 

In nature, and capable of answering certain of the searcher's questions 

concerning the target's position.  This operation nay only succeed with a 

certain (known) probability of giving the answer; but when it docs, 1c is 

truthfu.:  wu are no: considering the possibility of false contacts. 

Concerning the elementary detecting operations, we sec up a schema 

L  of these operations in auch a way that, by carrying them out in a suc- 

cession depending on the results as choy develop, the target's posidon is 

finally found—either exactly or within a pre-statod degree of accuracy. 

The maximum number of operation» needed may be finite, as when X has but n 

positions and the elementary operation con.itsts in asking whether the target 

is in uoao bubsoc A of X or not--the (iucstlun always being answered.  Or the 

number of operations may be one integer on one occasion and another on a 
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si> oiui--ivory jioslcivc integer representing a pobsibilicy.  Uut in every 

c..:.e tl.e schema determines a randoni vari.tble N , the number of detecting 

o;>er.»lions up   to target local lz.it ion (with the »ccuracy stated).  Since 

N,. is iuin-:;et;.it ive, it has an expected value EK_, tinite or not. 

These notions will o»- biv,-"f» concrete illustration by the examples 

examined Liter.  For tlu« raoaei.'^ ve merely observe that each performance of 

ine eleaentary detecting operation is tliought of as representing a liability 

or com expenditure (in units of money, time lose, degree of exposure Co 

danger, c:...).  Therefore, £.N  is a "bad" quantity which we seek to minimize 

by our choice of Z. 

Against this background we lay down the following: 

DMI-'I.NLTION.  The qu.tr.t i tat ivc seasurg of uncertainty U[p] in the 

probability distribution ? (i.e., in (X, S, p)) is the mininun of EN—or 

its ^rcajtoat lower bound—for all possible choices of schemata £.  Further, 

ve de; inc the information as l(p] ■ C - U(pJ the constant C being so chosen 

that I(pj ■ 0. 

2.  Opera: ion-il Conpacibi lity 

The ideas involved in the target's probability distributions and 

their combinations load to no conceptual difficulties.  But those which 

concern the elementary detecting operations and choir probabilistic com- 

binations (with each other and with the probability distribucions) give 

rise :o hitherto unsuspected difficulties, which were first brought into 

2 
avidur.ee by J. .'•'.. Dobbiu. 
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'liiere „i,  in fact a parting of the ways—according to whether the 

elcr.ieiu.ii y detecting operation has a material effect upon the situation it 

is incemlod to exanine, or whether it n-.erely increases the searcher's 

knowledge without altering anything else in the world. 

Only with the advent o: .ncdera quantum mechanics, in the nineteen 

twenties, l.as the basic issue irvolvcd here been explicitly identified. 

The "principle of indeterminacy" (Setter, "restricted accuracy") is il- 

1 .!.:.iteo by the impossibility o; experimentally determining boch the position 

..nd the conjugate momentum of an elementary particle beyond a limited 

aecura.:;,'.  7.,c reason is that, within the framework of this clieory, state- 

meats about position and momentum can only be statements about the outcomes 

ox position and momentum observations, whose actual performance involves a 

muLuai interference. 

Rather slowly it is being realized that this issue is by no means 

confined to phenomena at the level of the elementary particles of physics. 

An example from biology and from military search will illustrate what is 

basically involved. 

Suppose that a hitherto unknown mutant of a laboratory rat is to 

be examined for resistance to two toxins, A and B.  If X is the length of 

time of survival after the untreated rat is exposed to A, and if Y is the 

corresponding quantity for B, it is ovident that X and Y are defined by in- 

compatible operations.  If large numbers of such rats become available, one 

could measure the averages X and Y, and so, by the law of large numbers, 

evaluate their expected values, EX and EY.  But the expected value theorem 

E(X + Y) - EX + EY 

would be false—not because the laws of probability are violated, but because 

         ■  I llllllll    !■■■■— -^    --'"■" ' '  
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i;;c syr.-.bwl \ + Y, as a chance variable measured by the class of one-rat ex- 

pcr l".er.>.i, Involves an (jperatinn.i 1 contradiction.  More primitively, if a 

is the sc.ii<.r.;ciic "the rat dies within an hour of sole exposure to A" and ß 

is c'nc corresponding statement for B, we cannot apply the theorems of prob- 

ability to L.,I; logical combinations aß, a + ß, etc.—not because probability 

is wrong, but because a and ß are incompatible events:  oß and a + ß are 

meaningless according to the definition of a and of ß as one-rat events. 

I'he German use of search-receivers against rada. in World War 11 

giveb a ;.uco.;d illustration of the point:  After a first radar search without 

result, a second search of the same region has a probability of success 

affected, no: only by Bayesian reasoning based on the negative result 

of the first, but by the fact that tne hostile target may have detected 

the presence of the searcher and taken measures of concealment (e.g., 

submerged, if a submarine):  The first act and essentially change 

the conditions of the second. 

J. M. Dobbie's example is the case of search for an object dropped 

on a sandy beach, when a first search may have the physical effect of ac- 

2 
cidentally covering it with sand. 

Only with the basic postulate that all the events and random variables 

3 
considered together in a probability system are compatible —i.e., definable 

by non-interfering physical acts of observation—does the situation exist 

4 
for which the laws of probability are conventionally stated. 

Such compatibility shall be assumed in what follows. 

3.  Specific Cases 

The concepts of the last two sections are illustrated by cases 

falling into two types. 
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In ehe first type, Che elementary detecting operation has a unit 

probability of success.  For example, in the definite range law of search, 

it is assumed that the target is detected if and only if it is within a 

circle of "detection range R" of the searcher.  In case of the effect of 

target aspect, the circular region may be replaced by one of a different 

shape; and similarly in non-symmetrical looking (e.g., anisotropic array 

gain). 

1 
In these cases, we can say that the class S of subsets of X (ref. ) 

contains the circles, or their modifications; and that the elementary de- 

tecting operation is that of seeing whether the target is or is not in one 

of these special members of S. 

A more flexible situation is that in which any member of S—i.e., 

any operationally meaningful subset of X—can be selected; and then the 

presence or absence of the target in it determined by the detecting ob- 

servation.  We shall call this the case of unrestricted dichotomy. 

In all these cases we have defined the elementary operations, but 

have not yet examined the result of their successive performance, nor con- 

sidered the construction of Z-schemata which will guide the strategy of our 

search-to-localization.  It is here that the question of compatibility must 

be faced. 

In the case of the definite range law, let the first elementary 

operation consist in placing the observer at the point x .  The probability 

of detecting the target is the probability of its being within range R of 

x , i.e., the integral over this circle of the probability density p(x). 
o 

But suppose the result is negative; can we say that on a second performance 

of the elementary operation, centered at another point x^the probability 
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of detect: Lor. is found by applying the same formula to the probability 

density P (x) obtained from p(x) by Bayes1 formula?  The answer is in the 

affirmative only if the target's location is unaffected by the first oper- 

ation— i.e., in the case of compatibility of all the relevant events. 

A similar statement applies to the other examples just given of this 

first type of case—in particular, the case of unrestrained dichotomy. And 

in view of our present assumption of compatibility, Bayes1 formula will be 

applied. 

In the second type of elementary detecting operation, the conditional 

probability of detecting, given the target at the place of observation, may 

be less than unity.  Here the question of compatibility applies not only to 

the law of change of the a posteriori probability distribution, but to the 

conditional probability of success of later detecting operations.  With our 

assumptions, the former is Bayesian as stated before.  The latter is evidently 

given by the survival probability formula for repeated independent trials: 

if P is the probability of detection of one elementary operation (given that 
o 

the target is in the place searched), 1 - (1 - P )  is the probability of 

-Vn 
detection by n repetitions. This can be written as 1 - e " where 

y = -log(l - P ) > 0.  In this form, n may be regarded as the number of units 
o 

of searching effort. 

A more general and important situation is that in which there is a 

continuum of elementary detecting operations, measured by a parameter u which 

expresses the intensity of search, or amount of searching effort, directed 

at a given reference point x . Let P (u) be the conditional probability ° o      o 

of detecting the target, given that it is at x and that the effort u is 

applied:  i.e., make the broad but still restrictive assumption that when 

(x  u) are given, the conditional detection probability is determined, 
o « 
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Ii u is first applied and than v, the probability of detection of 

the whole operation is P (u + v). Now since we are assuming compatibility 

of the elementary operations, we can regard the latter as equivalent to the 

conjunction of the two former (e.g., first u, then v).  And since the target 

is given at x the probabilities are independent.  Therefore, by elementary 

probability, the complementary probabilities Q (u) «= 1 - p (u), etc., 

satisfy the functional equation Q (u + v) = Q (u) Q (v).  On adjoining to 

this the obvious fact that Q (u) decreases as u increases (the more effort, 
o 

the more chance of detection), we can derive rigorously the solution 

-y u       -p (x )u 
P(u)=l-e0-l-e   0 
o 

where y  is positive. This is, of course, formula of random search.  It 

cannot be too strongly emphasized that this derivation would be wrong without 

the assumption of compatibility. 

The remainder of this paper will apply the definition of information 

of f 1 first to the case of unrestricted dichotomy; second, to that of ran- 

dom search. The former will take us into contact with classical information 

theory, while the latter will lead into a new area, and throw light on the 

process of surveillance. 

4.  Unrestricted Dichotomy in the Finite Case 

We assume that the set X contains only the finite number n of 

possible positions and that the elementary detecting operation consists in 

subdividing any subset X of X (possibly = X) into any two complementary 

subsets (X = X1 + X-) and then finding which one contains the target. 
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If we wish  to repeat  this process  until the position of  the  target 

is ascertained,   we must  first decide on the decomposition of X  into X    and 

X0.     If   the  first  operation gives  that   the  target  is  in X1 ,  we must   then 

decide how  to  divide X    in two.     Similarly,   if  the target  is  given  in X9. 

This process  n-.ust  be  repeat d until  the   target is found.    Nothing prevents 

our making  all  possible choices of dichotomies  in advance.     Thus we are led 

to  the schema  Z,   consisting of a complete  system of branching dichotomies, 

as  follows   (using +  to denote  the set  sum of  two mutually exclusive  sets, 

and "order"   to mean  the number of  subdivision-and-question procedures): 

First   order:       X = X..  + X„ 

Second  order:    X    = X      + X.. _   ,     X_ ■ X-.  + X22 

Third  order:       Xn = X111 + X^ • ., X22 = X221 + X^ 

In writing  this  out  it  is understood  that  in a given horizontal  line, we 

stop a dichotomy  of any subset containing just one element;   and  on the other 

hand,  we always  push the dichotomization until this  is  the case  for every 

subset.     The  result is a schema Z appropriate  to the present problem.     It 

can be represented graphically as a  "tree",  always branching  in  two, with 

branches  finally  terminating in points,  n  in all,   corresponding with the 

number of  positions  in the searched  set X. 

-9- 
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(ground level) 

Fig. 1 A Schema Z tree with n = 9, h = A. 

Let us think of the terminations and the branch-points of the tree 

as grouped into fixed levels corresponding to the orders of the dichotomies 

they represent, their heights i above ground being the corresponding number 

of units of length.  Then i will run from 1 to h, the last order of 

dichotomy—the "height of the tree" (= 0 when there is no dichotomy:  only 

one p. =f 0).  Finally, mark the terminating points with the symbols p ,..., 

p for the given probabilities that the target be in the positions oc^j«' 

• • "X-rr^ '    Thus we obtain a graphical representation, of the type shown 

in Fig. 1, of a schema Z. We are interested in the corresponding expected 

value EN of dichotomies needed to reach the target. 

It is convenient to pass from this graphical representation to a 

mechanical one:  Imagine the tree as a weightless rigid frame of branches, 

to the n terminating ends of which are attached particles of masses p..,..., 

p , as exemplified in Fig. 1. Then the formulas of elementary mechanics 

-10- 
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show that tiN is the licight of the center of gravity of this loaded tree. 

Hence, the optimum schema, which gives U[p] by minimizing EN , is the tree 

of lowest center of gravity bearing the given p. p  in the way described 

above. 

The operations of "branch-interchange" transform a tree bearing 

p.,,...,p  into another such ttC'i:     to characterize the tree of lowest center rl     n 

of gravity we must examine their effect on the position of this point.  For 

this purpoje, a precise notation is useful: 

Consider the line segments between the levels i-1 and i:  each one 

defines a branch, composed of all the segments joined to it above (directly 

or indirectly) and all the terminating particles they bear (cf, the branch 

enclosed by the dotted line in Fig. 1). Ac one extreme, the branch could 

reduce to a single line segment terminated by one particle.  Every line 

segment will be identified by two indices (i,j), where i is the height of 

its upper extremity (i = l,...,h) and j is a second identifying index, 

running from 1 to n , the number of segments whose tops are at the level 

i.  Clearly, n, = 1; while for i = 2,...,h, we have n i£ 2. The same 

two indices identify a branch—the one determined by the line segment of 

these indices.  Let w . denote the weight of the branch (1, j); i.e., its 

total load of terminating particles. Thus, in ehe indicated branch of Fig. 1 

we have w^ 2 = P2 + P3. 

A basic cree operation is the interchange of two disjoint branches, 

e.g., (i, j) and (i , j ), having no part in common.  This, of course, 

includes the interchange of the particles themselves.  The useful and self- 

evident fact is that for the tree of lowest center of gravity, every such 

interchange raises it or leaves its height unchanged.        , 

-11- 
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I:   the   blanches   (i,   j)   and   (i   ,   ; ')   are  ac   Lhe   sar.e   level   (i.e., 

;'   j   i),   ihcir   iuLorchar.^e  prouuccu  \\u char.^o   in  the  center  or   gravity.     if, 

i 

u:\   tiie  oti.es   Iia.w,   j     -   j   ^   •   (i  •!;.   [■'•»■   intercaaii^e will   raise   the  center 

oi   ^rav a c c U t u >   w ,        •   o r   u <   w , 

..e    . ■«    > . . . inciplc,   ti.e   lu.towiiig  rwi   tact»  arc   easily 

e^ i. .itJ i * h>.c« 

'.:   all the probabl 111Ics. arc ecual (?,■...■ p  - 1/n), the 
— ' i        n 

opt l.'.ur:. »ci.ci.a JI lü uctaineU by 1. .«-ir.,; the two r.on-tiega t ive late,; ■•! ■. h, ic 

lor w;, i c .'* 

,h .h - 1 

then, i: A > ü, p...c..ir; k particle.i at tr.c level h - 1 (In n cosplutc tree 

with 1'"    terminations .it that level); anil finally, at each of the 

- ^ unused puints, placing pairs o: branches, to whose 2(2    ' - k) 

2* - 2k " n - k terr.inations are attached the renaining n - k particles. 

Using this schema, we obtain 

U - -((h - 1) k + h(n - k)] 
n 

- h - - 
n 

This .~ay be compared with the diadlc entropy 

H - -I       ?ilog2?1 - log2n 
i * 1 

of the present distribution.  We have 

U - li - h - — - lug_n 
n    2 

log9(n + k) iog2n 

io82a+^)^. 
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vi.ich,   a:, will   bo  seen  läcar,   la non-negacive.     Since 0 •  - <   1,  wo  have 
n 

ic  .»:. v., i; .ii i v.-   fornula 

Ü  -  H(l  + 0  ) 
n 

n 

A.     I:   every probabilUy In (p.,..., p  )   in a  posltivo Integral 

power ol  ~   ,   i   cc^.-x 1 h ihc diadli: (tniropy U ■ H. 'tor   in this case a iree 

n"1 
can be construcccd in an obvious mannor so chat each probability j-i 

i-<--l 

::. the =a»8 of a particle oi   iieight i—and no branch interchange can lower 

the ruaultine center o: gravity. 

C.     In the -out general caao of probability  (p.,..., p ), we have 

the inequality U i K . 

To prove thib, let I  be any schema, optitnus or not, and in the 

corrosponding tree, redetiignatc the probabilities wich two indices as p   , 

where, if there arc no particles of height I, p  • 0; if there are s  such 

particles, J is an identifying index going iron 1 to s . Clearly 

h     8i 
Hl      i  Z      P., 

i - 1  J - 1 1J 

h    8i 

Now consider a second tree, of the same branches as the given one, 

but whose particles at height 1 have the masses -r  .  That this is a 

legl:l~.ate distribution, i.e., that the sun of the masses is always unity, 

is shown by the following mass counting process:  each particle at height 

rr1 mi+1 
i  <  h and nass '—|     can be  replaced by  two particles of masses    Tj at 

height 1+1   joined   to  the original  position by  two line segments,   without 

-13- 
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altering  tho   total  aasa.     Continuing   in  tlilü way,   the   tree  is  replaced by 

one  o:   equal  weight  and  having  all   it«  particles  of  maas   '—      at height   h: 

there  being   2     such  particleu,   its   total  mass   is  unity. 

j 
I:   p       io   the tnahs  oi   the  particle  replaciug  p       in  the  original 

tree,  uo  have  by a  formula  oi   convex  functions  in  information  theory, 

h üi p( 

1   ,',   ^ij1^!    i0   ' 
I  -  I  J   -  1 P^ 

(-  0  if  and  only  if  every  p       "  P(,) 

lie nee 

H -    I      I    P1J
lo82Pij  i    I      I    Pli

lo«2Ptl 
i-1 J-l     1J       * 1J       i-1 J-l    1J       i  1J 

h      sl 

i-i j-i   1J 

h 
- -I    s^p 

i-1 1J 

This,  combined with  the definition of Uandthe  face  that  H - -Zp  logp    is 

independent of  any particular   tree,   leads  to  the desired  result U „ H  . 

Thus,   the close  relation—but  not  identity—between  the search- 

theoretic  operational definition of  uncertainty and   information  theory,  and 

the diadic entropy and  its negative,   the quantity of   information,  are shown. 

One might describe the  situation by  saying  that  only  exceptionally can  the 

full  amount  of  classical  information be extracted by  the dichotomy searching 

process. « 
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5.  L'nros'^rlcioJ Dichoioav in Coiuii^ui;r. 

»nor. Li.c sei X or possible positions x of tho cargec is a curve, sur- 

face, or lugaor dintenüion..! continuua, on which the given probability 

density p^x) is essentially cor.t inuoL.s, the expected number of dichotomy 

operations up 10 exact loc 1 i.:a; ion is, of course, infinite, and the prc- 

vloas ideas need to be modificd--ond indeed the practical probleni of search 

si.ows that tl.e difficulties are tne result of a refineraent irrelevant to 

the problem.  ror, once the target has been localized in a sufficiently small 

region, it is as good as found:  after all, the "position x of the target" 

means the position of a reference point in the target; and if the latter is 

is a solid. Its physical dimensions will extend about this reference point. 

Or if our "target" is not a solid but, e.g., a radiation, and we are 

searching for its "position" in a space of such characteristics of radia- 

tion as frequency, polarization, direction, etc., once these are "boxed 

up" in a sufficiently smalx region, the practical problem is solved. 

If X is a finite line segment and if target localization within a 

small distance Ax is sufficient, we have but to cover X by n non-overlapping 

segments (x. .  x.) of length Ax, and then to apply the methods of §4 to the 
x— i,  i 

n probabilities obtained by integrating p(x) over each of these sub-segments. 

In this case, diadic entropy becomes (usi \g the law of the mean for 

integrals, etc.) 

n  rXi rXi 
H - -I    J v  P(x) dx • log2 j    p(x) dx 

1=1  xi-l xi-l 

n  rXi 
-I    J     p(x) dx • [logjpCxi) + log2Ax] dx 
i=l   i-1 
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-   ./m'x)   log.,p(x)   dx  -   log  .'.x  + Z(Ax) 

=  H(p(x) j   -  log2ix + Z(.',x) 

wtuTi'   ;'.(.'x)   denotes  a   quantity  approaching   zero  with  Ox,   and  H[p(x)]   is 

:;nj  diudir  o..;ropy   of   a  continuous  distribution.     This means  that   (ne- 

glecting  Z(.'.xy)   it   is  not   ii[p(x)]   that  is   the  greatest  lower  bound  of   the 

uncertainty i:,   but   t'ais  quantity  pius -log2Ax,  which becomes  infinite as 

.'.x -  0.     Thcrciore,   our  search-ti^eoretic definition of uncertainty  requires 

nodiliwution,   since   in  its  previous  form its value will be crucially de- 

pendent  on   the  criterion of  accuracy Ax. 

In order  to  secure  a more  intrinsic conception of  "search uncer- 

tainty"—one  less  conditioned  by   the value  of   Ax—we may proceed  as   follows: 

When äx  is  given   (in addition  to X and  hence n),  we might  reasonably 

think of   its  "standard  effect"  as  the uncertainty  in  the special case when 

p(x)   -s most unfavorable;   i.e.,   as  the maximum expected number of dichotomies, 

when—keeping  ix,   etc.   fixed—the  results  of making all possible choices 

of  p(x)  are compared.     Evident  reasoning based  on  the results A,  B,   C of 

54   shows   that   the maximum  in question will  occur when  the n  intervals  Ax 

are  of  equal  probabilities,i.e.,  when p(x)   is  constant;   and  that  then  the 

uncertainty differs  by  less  thi.n unity from  the value  log.n =  log„L -  log„Ax, 

where L is  the  length  of   the  interval X.     Moreover,   then as Ax -»• 0   (i.e., 

n -»■ "O ,   the minimum  is  asymptotic  to  the above  expression  (their ratio  ap- 

proaching unity). 

•16- 
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The algebraic excess of the actual uncertaiaty for the given p(x) over 

its greatest possible value is pounded below by a quantity asymptotic to 

H[p(x)] - log2L , 

as Ax -*• 0.  When p(x) = constant, this uncertainty is itself asymptotic to 

the above quantity, which is itself independent of Ax. 

It is noted that, if q(x) is the uniform distribution over X, i.e., 

if q(x) = 1/L, the above expression can be written as -G[p, q], where 

G[p. q] =/xP(x) log2^-dx qO 

Kow this G[p, q] , which will re-appear later, is the fundamental two- 

distribution information (the negative of the "cross-entropy") introduced 

in 1950 by a number of authors,  and representing intuitively the increase 

in information concerning the position of x in X, conferred by any datum 

leading one to replace the probabilities q(x) by the new ones p(x). It is 

shown to be between 0 and +», equal to the former if and only if p(x) and 

q(x) represent the same probability distribution. 

It is necessary to consider cases that, in two respects, go beyond 

the simple one just discussed.  The first generalization maintains a one- 

dimensional X, but requires that the interval Ax of acceptable accuracy be 

different at different positions, as when a second type of search will follow 

the first and will have a power of detection which varies with position. 

For example, if a definite range lÄw is to be used, its range could vary with 

varying visibility or background noise from point to point.  Let two values 

-17- 
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x' and x'' (x'^'x'1) be given; the degree of Inaccuracy of a search giving 

uhac Che target x is in the interval (x1, x11), which in Che previous case 

was its length Ax = x1' -x1, is now a more general function of x', x1'; 

i.e., FCx', x"). 

Clearly, if x^Sx'1 is a third point, it seems natural to regard 

the inaccuracies as additive; i.e., 

F(x', x'") = F(x'. x") + F(x", x'") . 

But this means that, for sets composed of adjacent intervals, the inaccuracy 

F is an additive set function—obviously non-negative.  By a reasoning that 

is as old as the calculus (although re-phrased in all precision and generality 

in the modern theory of integration), we can at once conclude that under all 

conditions of physical interest, the limit 

r/ v    i •   fCx, X1) 
f (x) = lim  I - 

x'-^x x'-x 

exists, and that F(x', x1') is its integral from x1 Co X1'. 

We now make a change of variable, setting y «» Mx), where ^(x) has 

a continuous positive derivative O'Cx).  This will transform the interval 

(a 4 x g b) into another one, (a ^ y 4 b) .  On the other hand, since p(x) 

and f(x) are densities, the quantities p(x) dx and f(x) dx are preserved in 

value. Hence p(x) and f(x) are replaced, respectively by 

p(y) = p(<Kx)) - p(x)/(t.,(x) 

f(y) = f(*(x)) = f(x)/(|.,(x) . 

-18- 
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We next select   the particular change of variables  function (p(x)   so 

that  f(y)  = 1 and ä =  0;   i.e.,   take 

y = (*)(x)  -   Jo    f(x)   dx   . 

This means that since 

J -  f(y) dy - J  f(x 
b 

a   ■- '  •'   "a 
) dx = FCb, a) , 

we  obtain,   for  the  length of  the interval  (a,  b)   , 

L - F(b.  a)   ; 

and  further, 

P(y) = p(x)/f(x) 

But this change of variables leads from our general problem back Into 

the earlier one,  now applied to the set Y of  the values of the variable y, 

upon which set X has been mapped.    The reduced diadic entropy expression 

rb 
H[p(y)] - iog2L " -J_  p(y) iog2P(y) dy ~ lo82L   • 

a 

This becomes,  on substitution,  etc., 

-Ibf©(l082l7ä)f(x)dx-l0^^b'a> 

-/ p(x)   log2^-dx  ,  = -G[P,   q] 

where we have written 

, v      f(x) 
q(x) - —•  

Ja f(x) dx 

Note that the q(x)   as defined has the properties of a probability density. 
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The final result is again that the excess of the expected number of 

dichotomies needed for detection to the accuracy F(x, x') over its maximum 

value has -G[p) q] as a lower bound, asymptotically as Ax -> 0. 

Our second generalization is to the case of a higher dimensional X. 

In view of the detailed considerations of the previous cases, it may be 

permitted to treat this case rather summarily. We shall uppose that two 

non-negative additive set-functions P(A) and F(A) are given; the first is the 

probability, before the dichotomy search, that the target be in the set A; 

the second is the degree of inaccuracy of the datum that the target has 

been ascertained to I- in A. By a change of variables, X can in practical 

cases be mapped on a set Y so that F(A) is replaced by the "Extent" (length, 

area, volume, etc.) of A. When the total value F(X) is finite, we may 

"normalize" F(A) to unity, i.e., replace it by the probability set-function 

Q(A) 
F(A) 
i'(X) 

Then the greatest lower bound uX--i.liL-t—bj-x-uns^ of the expected excess of the 

number of dichotomies for localization to F-accuracy (or Q-accuracy) over 

its maximum is asymptotic to -G[P, Q] , where 

G[P, Q] = flog/f) • dP = Jp(x) log^ dx , 

in which p(x) and q(x) are the density functions corresponding to P(A) and 

dP 
QCA^—or, better, — is the derivative of the set function P with respect 

to Q.  The final result is the following, which we state here in terms of 

the search-information, as defined in §1 (The negative of the uncertainty, 

and  taken as  non-negative.) 
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The search information In the distribution P, relative to tha ac- 

curacy ätandard Q, is bounded below by a quantity asymptotic, as Q(Ax) ->■ 0, 

to the general diadic information G[P> Q] . 

6.  The Case of Random Search 

Search, in the original Naval sense of the term, is conducted by op- 

erations that do not fall into the class of the dichotomy, but which bring 

to bear upon a certain locality a determined degree of effort. As explained 

in the second half of §3, when the elementary searching operation is the 

expenditure of the degree of effort u in the locality of the point x, and 

when all such efforts there are compatible, the conditional probability of 

success is 1 - e   , where \i  may differ for different points x.  This is 

the law of random search , and will form the basis for the present ap- 

plication of the conception of search information, i .emulated in SI. 

When X is k-dimensional and dx is a k-dimensional element of volume, 

the intensity u = u(x) of search at x must, when integrated over X, give 

(with the additivity assumptions underlying the discussion) the total 

searching effort U applied to the whole of X: 

(6.1) /x u(x) dx - U . 

The problem of  the  optimum distribution of   this  given quantity of  total 

effort, when the  target's probability density p(x)   is given,  can be inter- 

preted as  follows: 

-21- 
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XaKimize  the probability of  detection 

(6.2) PIU,   p]   =    /x p(x)[l -  e"u(x)  U(x)]   dx 

subject   to   the equation   (6.1)   as well as   to  the  Inequality 

(6.3) u(x)   I 0 

5 
The solution is given in the reference . A point of view of sequential 

2 
optimization has recently been developed by J. M. Debbie , particularly in 

cases in which our assumption of compatibility is not made.  Before going 

further, we must be more precise about how the quantities are measured. 

The total searching effort U shall be measured in units of k-dimen- 

sional "volume searched" (area, if X is a region of the surface of the 

ocean).  Kence, the same will be true of u(x) dx, the element of integration 

in (6.1); and u(x) will be dimensionless if and only if the coordinates are 

lengths.  But in every case, a change of variables of integration must 

leave u(x) dx invariant, and hence multiply u(x) by the Jacobian of the 

original coordinates of x with respect to the new coordinates.  Since 

p(x) dx is both invariant and dimensionless (being a probability), p(x) is 

of dimension depending on that of the coordinates x ([L~^], if they are 

lengths), and changing as u(x) does under changes of variables of integration. 

Since, furthermore, the integral in (6.2) is a probability, and hence di- 

mensionless, the quantity p(x) u(x) must also be dimensionless; therefore, 

the dimensions of vM  must be the reciprocals of those of u(x).  Finally, 

since p(x) u(x) must, by similar reasoning based on (6.2), remain invariant 

under a change of variables of integration, such a change must multiply 
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VJ(X) by ehe reciprocal of the Jacobian of the old coordinates with respect 

to the n^w:  i.e., by the Jacobian of the new with respect to the old. 

We shall use these facts to standardize our expressions.  Let us 

introduce the new function 

(6.A) $(>;) - u(x) u(x) 

It  is  invariant under  change of variables  of  integration,  and  is dimension- 

less.     In  terms of   this,   (6.1)  becomes 

/x >M 
dx - u . 

Vi(x) 

Now make a change of variables of integration, selecting Che new variables, 

x, so tl at in the invariant expression 

dx    dx   , 
u(x)  u(x) 

the C(x) " !•  I" other words, incroduce such variables x that Che 

Jacobian 

3(x)  5(x  V 
3(x)  3(x,,..., xk) 

- u(x) - w(x,,... , x. ) 

Such a selection is, clearly, always possible. 

As a result, tha optimization problem corresponding Co (6.1), (6.2), 

(6.3), is replaced by Che one creaced ac ehe ouCseC of Che reference 

(replacing * by U) viz., of finding chac funccion «{»(x), among the class of 

functions satisfying 

(6.5) /x <Kx) dx - U ,        ^(x) i 0 , 
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(6.6) P[U. ?] = ^ p(x)Il - e"'p(x)] dx 

In oil chat follows, the notacJon and results of that reference will be 

used iir.plicityly (log denoting the natural logarithm). 

U'e have to consider the expected "number of elementary searching 

operations", EN  , up to and including detection.  Here, the number N 

i.-j evidently to be interpreted as the amount of effort, *  , used up in 

ehe aearch up to the r.oment of detection.  To obtain its maximum expected 

value, the schema £ must schedule each unit of effort optimally as a 

sequential process.  But it is known that this is the same thing as to 

have the total amount of effort up to any point optimally scheduled. 

Henceforth, the schema Z  will denote such an optimum scheduling; and 

(dropping this subscript), * shall denote the random variable defined as 

the quantity of effort just used up at the moment when detection is made- 

assuming optimum scheduling throughout.  Thus, ♦ is a chance variable 

having a probability distribution of taking on various values U. 

With this definition, the "uncertainty"—the U[p] of 51—is given 

by the expected value formula 

CO 

(6.7) U[p] ■=£*=/" U d probt« <  U] . 
•'o 

Using the notation of the reference  (log being the natural 

logarithm), we introduce the non-negative variable X, the family of sub- 

sets A of X parameterized by X, defined as the set of points for which 
A 

p(x) I  X : 
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(6.S) A = [x I p(x) > X] ; 

and also Che k-dimensional volume v -  v(X) of A  (area, if X is a plane) 

(6.9) (X: = /.  dx 

Since A  increases in content with decreasing .'■■., coinciding with X when 

X = 0, v(X) increases monotonically witli decreasing X. 

Similarly, the probability that the target be in A  , given by 
A 

(6.10) IT(X)  =   J .     p(x)  dx   , 

is a  function of  X,   increasing monotonically from 0  to  1 as  X decreases 

from + ^     to  0.     Furthermore,   for any value of  X  for which v(X)  has a 

derivative V'tX),  n(X)  does  likewise,   and 

(6.11) TT'U)  = XV'CX)   . 

This is easily shown by the elementary application of definitions and of the 

law of the mean. A generalization of such a relation to a jump relation 

öTT(X) =X6V(X) can be made, but will not be used here, since almost always 

in applications the behavior of p(x) is such that (6.11) applies at all 

points.  Finally, on setting 

(6.12)    S(X) = /.  log^T2^- dx = /  log p(x) dx - v(X) logX , 
AX   x       Ax 

^ ' 

We recall that it was shown that S(X) increases monotonically from 0 to 

+ 0° as X decreases from + bo to zero, and does so continuously, taking on 

each intermediate value exactly once. This means that any discontinuities 

in the two terms on the right in (6.12) cancel. % 
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In these terms, we can state the results of reference for the 

optimum searching scheduling as follows: 

For each given total available effort U, determine the unique X 

satisfying the equation; 

(6.13) S(X) = U . 

On the corresponding set A , apply the intensity of searching effort 
A 

(6.14) $(x) - log^- ; 

On the remaining set, X - A , apply no searching intensity:  ij)(x) - 0. 

Thus, the maximum probability of detection—i.e., the probability, when the 

effort is optimally programmed, as described, is 

(6.15) P(U) - TT(X) - Xv(X) . 

Clearly, this may also be described as the probability that the 

total searching used up at the moment of detection, i.e., <&, shall not 

exceed U: 

P(U) - prob[* - U] . 

Accordingly, (6.7) gives 

(6.16) U[p] - E$ -/0 U d[TT(X) - Xv(X)] . 

Here the right-hand expression must, in the most general case, be under- 

stood as a Stieltjes integral. But in all practical applications (6.11) 

applies and we can then reduce it to the formula 

00 

(6.17) U[p] - /0 Uv(X) dx 
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(The minus sign is absorbed in the reversal of order of integration on the 

interval 0 = X < + «, etc.) 

7.  Application to the Normal Distribution 

One of the most common situations in search is that in which the 

target's given probability distribution is normal ; i.e., when (after 

diagonalizing), 

1      1 k (Xi " ai) 
(7.1)        p(x) = ryr exp - 1/2 Z ——?  

a,...ak (2ii)k/2        iml a* 

Not only does such a distribution occur when the target's position can be 

regarded as due to the accumulation of a large number of small random 

displacements or errors of navigation or observation, so that the central 

limit theorem leads to (7.1); but in many cases of much more complicated 

probability density (uni-modal or otherwise), when the probabilities in all but 

certain places are small enough to be neglected, while in other places they 

are peaked enough to make normal law expressions acceptable approximations. 

Let us apply the formulas and methods of §6 to this case, taking 

our axes at the point (a) as origin—i.e., replacing x, - a. by x, . 

Then we have for A the k-dimensional ellipsoidal region on which p(x) ^ X, 
A 

bounded by the k-dimensional ellipsoid of equation- 

2        2 
(7.2) Xl l   ...   *k   ,,2 2     2/0 .k 

—2 + • •. + —2 ■ "log^ o. ... 0. (2IT) 
öl        0k 

2 
- w 
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The k-dimensional volume of this k-ellipsoid is found by standard processes 

of k-dimensional integration (changing variables to y. = x./(T and thus 

reducing to hyperspherical integration).  We obtain 

/— k 
(7.3) v(X) = o, ...a. -4^— wk . 

k F (| + 1) 

To apply (6.17), we have to express U in terms of X by means of 

(6.13) and (6.12).  Using (7.1), with the w as defined in (7.2), we obtain: 

2 2- 
2 

log p(x)  = logX +~ - (1/2X~ + ...  + -| )   ; 
01 ak 

whence, on transposing the first term and integrating over A., 

2 , r-s k k 
S(X) = -r [v(X) - o, ... o, -:—  k + 2 

J * 
k r(|+ 2) 

2 
w , r-sk k     2 
2 o. ••• ak (..; w  aJi^v(x) i 

r(|+ 2) 

This value is substituted for U in (6.17), while the dX is replaced by the 

value obtained from the second equation in (7.2).  On making these sub- 

stitutions, absorbing a minus sign in the process of reversing the order of 

the limits of integration when the variable of integration X is replaced 

by w, and, finally, using elementary properties of the gamma function, we 

obtain for the "uncertainty" U[p] in the present probability distribution: 
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(7.A) U[p]   = 2a,   ...  a,i/2^)k 

k r(|+ i)2 

2v[w = /2] ■k! 

(|+ 1) 

In the case of the plane, k = 2, and our uncertainty U[p] = 4v[w=/2]. 

Here v[w = '/2] is the area of the ellipse of semi-axes a^/2,  cr_/2; it is 

called the "localization area" in the modern theory of surface search.  It 

is such that the probability that the target is in it is 1   . 

More generally, the search uncertainty is proportional to the 

product of the k standard deviations, the constant of proportionality being 

explicitly expressed, through (7.4), in terms of the number of dimensions 

in question. 

The application of the notion that the search "information" is the 

negative of the uncertainty, which was appropriate in the case of dichotomies, 

seems less appropriate in the present case, since it would be a negative 

number, becoming negatively infinite as any of the standard diviations 

increase without limit.  Perhaps a more appropriate rendering of the con- 

cept would be the reciprocal of the uncertainty.  This would be proportional 

to the height of the highest point of the normal distribution, a quantity 

long used as a measure of precision, in the application to the theory of 

measurement. 
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NOTES 

1. In the  tGchnical language of the modern theory, we have a probability 
space (X, S, p), where S is the class of subsets A of X in which it is 
physically meaningful to say that the target can lie (the "measurable sub- 
sets") and p(A) their probabilities.  Cf. P. R. Halmos Measure Theory 
(D. Van Nostrand Co., Inc., 1950) Chapter IX. 

2. Cf.a forthcoming paper by J. M. Dobbie in Ooerations Research.  Cf. 
also, J. M. Debbie, "Search Theory:  A Sequential Approach", Naval Research 
Logistics Quarterly, 10, (1963), pp. 331, 332. ' 

3.  Only in quantum mechanics has this nation been systemmatically ex- 
ploited; there it is connected with the family of commuting observables. 
Cf. J. van Newmann, Mathematische Grundlagen der Quantenmechanik (Springer, 
Berlin, 1932).     '""'"'     ^ ~ —'     '     "' -' -' — 

A.  Note the precise wording of this statement.  We are not saying that the 
law of probability would be wrong when applied to incompatible events, out 
that, when precisely stated, their hypotheses would not be met in such 
cases.  Cf. B. 0. Koopman, Quantum Theory and the Foundations of Probability. 
Conference on AppDied Mathematics, Sponsored by the Courant Institute 
(KYU) and ONR, McGraw-Hill, Co., 1955. 

5. B. 0. Koopman,"Theory of Search II, III", Operations Research, Vol. 4, 
No. 5, October 1956, p. 519; and Vol. 5, No. 5, October 1957, pp. 613-626. 

6. For references and a development of this concept, see, e.g., S. 
Kullback, Information Theory and Statistics (N. Y., Wiley, 1959). 
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THE LOGICAL BASIS 0? COMBAT SIMULATION 

E, 0. Koopman 

1_. The Two Aspeccs  of  a Milicary Operation 

The eva.uiation of  planned weapon systems  or  of  proposed  tacclcs 

Tiusu be baeedf  in last analysis, upon advantages foreseen In combat:    if» 

battles not y§t fought.     But in the real world,  such events are of a com- 

ploKiCy—both of kind and of number of combining  factors—as to obscuro the 

relationships of cause and effect.    Yet if physicists can draw quantitative 

conclusions regarding  the properties of matter in spite of the inconceivable 

complexity of its detailed molecular motions, we may hope to do likewise— 

if wo learn to look in the right direction—»in the study of combat.     The 

present work examines  the various methods that have been used fo* this 

purpose   (analytic models,  machine simulation,  Monte Ca^lo,  etc.) vith  the 

object of discovering  their basic common principle. 

On  turning  attention,   not  to methods  or models,  but  to  the military 

actions  themsolves,   the mopt  striking  fact  is  their  bivalcnce;     their 

character both of  an evolving physical system,   and  of  an unfolding  set  of 

plans,   intentions,   reasoning  and counter-reasoning  of   tht men engaged  in 

the  action,   the commanders.     The  two aspects must  be  examined  separately 

before  they can be comprehended  together in the f\Ul military operation. 
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Moreover,   tor   the   evaluacion ol" weapon  sysl'.ems  and  tactics, it   is   the  pliysical 

behavior   that   is   emphasized.     How can   this  be separated  from   the  human side 

without mutilating  a whole  that  is  greater   than  the sum of   its  parts and  so 

losing   the meaning  of  both of   them? 

Two  methods have been used with   some rational basis   for  studying 

the  physical   aspect  of  combat without   the  complications  of   the  human one: 

the method  of   standardized decisions;   and   the method  of minLmax  of   game 

theory.     They   are most  clearly  explained   in  the  context  of   the  succeeding 

section.     In concluding  this one,  we merely remark that  the  nearest  to a 

systematic method  for  examining combat  in  its mental or human aspect  is—in 

addition  to   the  study of history  itself—use of  the war game,   as  carried out 

in staff  colleges. 

2.     The System and  Its States 

Basic   to  any scientific  examination of  nature is  the  concept of  the 

system:     the  set  of  interacting  things  considered.     In a military action,   the 

system is   the   totality of men and weapons  involved,   together with  their 

environment:      the medium in which  the action occurs and which  effects its 

course.     And  equally fundamental  is  the  concept of  the set  of  states  that  the 

system can be   in,   just  one at any  given  time.     Thus,   in a duel  between  two 

aircraft,   the  system is  the pair  of  aircraft,   their weapons  and  equipment and 

personnel,   and   the air in which they are  flying,   including gravitational and 

electromagnetic  fields.     In a submarine attack on a convoy,   the  system is  the 

set of vessels  involved,   their men and  equipment,  and  the  sea  and  air  in which 

the action  takes  place.     In each case,   the state of  the system includes its 
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physical stat.e:  positions and velociLies of the units, condition of armaiiie.iit.s, 

data-gathering status, and ail the meteoi oiogical specifications.  But how 

far into the mental state of the commanders must one go in dvitininj» the 

"state" of the system?  This can only be settled by asking a second quesf.iou, 

that of 1-lii-_lix'i:,-'i1 Lii.,ij 0J   'JL'0 ^tate of the systeru v/i tii the passage or time. 

Classical physics has traditionally considered that the state of a 

system is only adequately described if, once the state is given, all later 

states at'e detenu ined:  Given any (wo similar systems in the same initial 

states, all their later states will be the same—provided that their envi- 

ronmental influences (external forces) continue the same.  Thus, in Newtonian 

mechanics, the full and exact knowledge of the positions and velocities of the 

parts of a material system determine its whole future motion.  But it is only 

in the simplest military operations that such an order of determinateness 

exists. 

In far more cases, it is not feasible so to specify the state of a 

system that its subsequent evolution is determined.  What is far more common 

is to have only statistical determinateness:  in a large number of similar 

systems starting in the same state, the same proportion will go into any 

given later state.  This is the situation in statistical mechanics, and in 

the more fully developed parts of operations research.  It is the most that: 

one may expect in combat operations. 

Tliis brings out the role of the human decision-maker in the evolution 

of the system:  the most obvious lesson of history and common sense is that 

under the same conditions different commanders often make different decisions. 
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■i.'.i.iit'u   i.u.it    Luis   in   ilsuil    is   ciiuugh   ;o   rule  out   anv   strict  uci >.;!■;.. .i. i r-.u, 

v\'   '.i.iv^,   never thul usb,   to  ask wuuLiier   tliib  uaprediiitab i U t}'   c.i   ■:,' i.-. iui;  >..    ilii 

in:   LTiCuinpa.istHi   iri   a   statistical   detci'mi.nal entiSö.      hi   tiv'   coutc:-; . ■■■ 

prusciit   study,   this   is  a  purely   practical  question;     can w«   s.c,   i,..., .   .■.,•.. 

tlic   sysLcra   reaches  such  and   such  a   state,   we  can  specify   sensiuij   ti.c 

probah i i it i cs   that   the  c;om;na:,.i     s  will make   the   various   cuacclviv,-JO  • <■■     -.   ;,-.? 

.1 i    is   subiiii t ted   that   aiiy   such  ass.igniuonc  ot   probii) ; i ;    it-     ..   ''■■■   ;sj.n 

is  unreal istic  as  a  prediction  ot     i.e   future,  but  ruausw ic   i   1   J i.   i   . .   -Lt 

a  cuiiseusci,   of   experienced  i;omiiiandiirs)   as  leading   to  a mode]   .-.e.rvim.   i:c 

.iluatt:  «Jiiapon  systems  or   tactics.     Usually  a  definite  duCLoiun,   i,.,.!.   .    ■ \:,xu 

prci>abiiiti«:S   of  various  decisions,    Ls   foi.viulated   for   each   set  c-l   ..j rc.M.i 

st.UK.cs.    i.. t^. ,   for  each  state  of   our   system.     To   reach  such  a  riu.sauou:, 

may   Involve an  extensive discussion   if   several  commanders   dli'tvu'.      ii   ;iir.y 

even  require  listing  two different  opinions when agreement  cannot be  uiaohcd, 

each  of  which  is  used  on   two  performances  of   the  game—rather   than a  "toss 

up"   in  a  single  one.     Thus,   the  decision-maker's  contribution   to   the   .nu^'.cr- 

minaueness   is  removed. 

Another  common method   for   removing  humanly-caused   indeterminatuncss 

is   to  assume,   first,   that  at   each  stage of   the action,    'ach  commands   ha.s  a 

stated   degree  of   knowledge  concerning   the other,   assumes   that   the   Latter   will 

always   try   to  do him  the maximum harm,   and   then picks  his  own course  ui 

action   so  as   to minimize  it.     This   is   the minimax  convention  ol   game   theoty. 

When  applied   sequentially,   it   leads   to differential   games.     Rightly  emploved, 

it  gives a useful  indicator  in evaluations;   it can never be  relied  on  to 

predict   the   future. 
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»■'.'o..!   Lii.is   point,  oil,   we  shall   a.iMi;nc   rliat.   the  human  varlabi li Ly  'nas 

,)<.i...  ; ....; .ivini,   aiiil   tihal]   examina vliit   i:ü...aj ns:     Lhe öu.it idLlCtil i y deturiiiiiiutt; 

cvuiuLiou oi   i.li-.  niiijLai.y system. 

[j.     Vi. i ■   , j a b i_c^ S L u c. 11 a s_t:_i_c  1' r« c y 8 s 

Having   rcncln-'d   ihc  til'..,     *v  wiilr'n   the   phyfaLitai   evoi.ivi   u  ■■•i   L'M- 

:.-.y.-.; t.;..  ran  be   sf.udiOü   in   atself,   ii    i a   necessii» /   to   ;  it   the   i.i.atte;'   precisely. 

I.ec   S  he   ehe   sy.^Len  uäder  consult-, t'■•'Juri,   and   lei.  X   ne   the  ;Se.i.   ^ i.   ail   it:, 

posbibie  states,   Lhu  latter  being  denoted  by  sueh  lowcr-ca.se   Letters  as   .-., 

x',   y,   etc.     in  t.i.up.le situations—or   .ifter  slntpilf ying appt u>. imat ions-'-X 

,aay   contain  only   a   finife  number  oJ   states;   but   :n  general,   the  uumbei:   v i. L 

be   InfinLta,   and  ot   a  iiiore or   less  h\Xi,  and   complicaced  other.     We  shall, 

however,   use.  the  syiubol  I  to denote suromatlon ocd" all  its  states,   even  in 

the  cases  where  this  may actually be  an   integration,  J dx   ,   possibly  of 

a  very  general   nature   (e.g.,   Kahon-Stieltjes,   etc.). 

Let   two  states x,   x'   (distinct  or  not)   in X be given.     In virtue 

of   the  statistical  determinateness,   there   Is  a  definite prohabi. Lity 

a(x,   t   ;   x',   i-')   (possibly •= 0)   that,   if   the   system  is   in  state   x  at   time   t, 

it will  bo»,   in  state x'   at  the   later   time   t'^t).     This   is   the  probabili ty 

or   the   transition 

(x,   t)   -   (x',   l') 

and will be  denoted  by  a(x,   t   ;   x1,   t')   .      It   is  evidently   a  conditional 

probability;   explicitly: 

a(t,   x   ;   t',   x1)   "  P[S   in state x'   a t.   t'    1   S   in state x  a_t   t ]    . 
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I-A' iucni 1 v ,   if Hu' vahies of Llu? traus lt. i .in or üb:i!> LJ it ie.s 

i (x, i; ; x' , L1) WOI O ,'I]1 known, i:lie gTn1jablllt.iß5 oL" "V^V 'i.iL'.o;'^ of the 

b:ii lly  woulii bi! kiujwn--.ind Lhlsfor Kvei:y assumed .jtarcin,: sU.iL-.' 

Thus, Lha whoit; problem ot the quantitative study of militac;; 

operations is that of findiin1, the transition probabilities, from knuwled^.e 

thai can reasonably be obtain&c.  we shall see how all the stanuarJ anaiy ,.,■ 

models, Monte Carlo simulation.'j, e; ■., fi.t into this .scheme.  In every easa, 

wnat is obtained directly', by t.rü.»ti^ i.ibing into probabilii, iu.:. th'. ^hysit..;". 

knowledge of the system and how it is operated, arc the ele.nentary transit ior: 

probabilities:  those for a short increment of time At = t' - t --or, more 

exactly, transition rates.  Furthermore, a recurrence, relationship is always 

made use of (too often with insufficient justification), by means oi which 

the general transition probabllties can be "built-up" (therefore, computed) 

from the elementary ones. 

The system S with its set X of states and their transition prob- 

abilities constitute, in technical language, a stochastic process-—the 

fundamental stochastic process of the military engagement in question.  lue 

computation of the transition probabiltics reposes on the basic relationf. ok 

Liu: Llienry of stochastic processes, concerning which an abundant literature 

ex ists.A 

Feller, "An Introduction to Probability and Its Applications", Vol. 11. 
"   Wiley, New York,1966. 

Cox and Miller, "The Theory of Stochastic Processes".  Wiley, New York, 196 

Doob, "Stochastic Processes", Wiley, -Mew York, -19S3. 

Loeve, "Probability Theory", Van Nostrand, 1963. 

Hille, "Functional Analysis and Semi-Groups", American Mathematical Societ; 
Colloquium Publications, Vol. XXXI. 
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U'c*  shall   give  the methods   in  outline   (written  in   the  simple, 

nutatiun  Y.,   as   explained  abovej,    But  before  this  can  be  done,   one basic   issu''1 

iViUst  be   faced. 

4.     The  Markovian Assumption 

Suppose  given  three  successive  epochs,   t  <   t'   <   t'1   and   two  states, 

x  and  x'1,   and  consider   the   transition 

(x,   I)   +   U",   t") 

which has the probability a(x, t ; x", t") . Since this transition occurs 

by going through some intermediate state, say x', at the intermediate tlmo 

t', i.e., since the event (x, t) -> (x", t') is the event seated as follows: 

for some x' of X:  (x, t) -*   (x1, t') and (x', t') -> (x", t") 

we should be able to express the transition probability a(x, t; x", t") in 

terms of those of the intermediate transitions, by applying the laws of com- 

pound and total probability to the latter.  In general, however, this does 

not mean that a(x, t ; x", t") can be expressed in terms of a(x, t ; x', t') 

and aCx', t'; x", t"), but rather of the former and the more complicated 

conditional probability 

a(x, t ; x' , t' ; x", t") = P[S in x" a_t t" | S in x' ajt t' and S in x at t] 

by the formula 

(4.1)  a(x, t; x", t") = I  a(x, t; x', t') a(x, t; x', t'; x", t") 
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a 

In actual mathematical models or machine simulations, this general 

formula (4.1) is never used, but is replaced by the formula 

(A.2)      aCx, t; x", t") = I  a(x, t; x1, t') aCx', t'; x", t") 
x' 

which, as it is applied, it is tantamount to the assumption that 

(4.3)   P[S in x" at t" | S in x' at t' and S in x at t] 

= P[S in x" at t" | S in x' at t'] 

This is the Markoff assumption and makes our stochastic process a Markoff 

process. Then (4.2) becomes valid, and is indeed the well-known Chapman- 

Kolmogorov equation, dominating the the.ory—and hence the practice—of the 

basic stochastic process of the present type of operation. While details 

will be given later in concrete context, it may be remarked already that, in 

the case that the number of states in X is finite, the right-hand side of 

(4.2) is a matrix product. 

Under what conditions is the Markov assumption (4.3) justified?  In 

other words, when does the specification of the state x' at t' give such 

complete knowledge regarding the transitions from x' that any further data 

anterior to t' (e.g., that at t-^t' it was in state x) contributes nothing 

to the probabilities in question?  In a general way, we may say that when 

there is a material factor in the situation that remains partly unknown after 

the state x' at t' has been specified, but concerning which we may draw in- 

ferences from knowledge of the previous history of the system, then the 

Markov assumption is not justified. 

This replacement—and even the formulas themselves—are too often not 
recognized explicitly in simulations, but can be discovered as implicite sub- 
strata underlying the concrete procedures of the numerical operations. 
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Such a failure of Lhc Markov property is cümnionly produced by iiie 

attempt to simplify a treatment by an injudicious condensation of several 

different states into a single one.  An example would be in sonar detection, 

when the "state" of the system does not sufficiently specify the acoustic 

condition of the water in which it takes place:  the more detections are 

made (i.e., the more the transitions from states of noncontact to contac.) 

tl.v more the evidence that the acoustic conditions are favorable, and hen,-.? 

the greater the probability of fn-i.her detections.  The loaded die is ...not.rer 

example--the oftener it shows ace, the more the chance that it will show 

ace again:   the whole past influences probability predictions of the future. 

Of course, when methods of computer simulation are made in the usual 

way and hence depend for their validity on the Markov property, but when 

t'uis does not apply, for reasons such as those just set forth, the numerical 

results, however realistic they may appear, are without logical basis--at 

least until they are proved to give an acceptable degree of approximation. 

The act of simplifying and still retaining the Markovian character—as well 

as operational realism—is an art as well as a science.  Success is more apt 

to be achieved by limiting the objective of the study to the answer of a 

precise question rather than a diffuse multitude. 

5.  Transition Rates 

Having postulated that the basic stochastic process of our operation 

is Markovian, we shall now outline the theory and practical application of 

the methods for obtaining the operationally important transition probabilities 

(or the corresponding expected values, etc.) from the elementary transition 
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pnilKib i 1 Liiert—ihuse  applying   i'.o   b'jch  short:   interval t;  ot   lirae  ht  =   t '   •-  i 

LliaL   lho      .r^o  aspocCi;  oJ    Lhi.'   s^^Lor.i   rtmain «nclianged  except   by  '.[uantitiü! 

of   the   order   uf   At   at  munt durini.]   At. 

Any   transition proliabi. I ■ ty  a (x,   t;   :;',   t')   has   cevtaln  obvi...ub 

properties   resulting  from   the   fact   that   it   is  a  probability;   thus 

(' 5.1) afx,    i ;   x' ,    i    '■      0 •i.af:-;,    1 ;   x' ,(:')   =   j    , 

the second formula expressing the principle of total probability.  .u t ;.'■,. ■ , 

since no transition has any pxobabLlity of occurring in a zero time inter-/"1 

a{xs t; x' , t) = 0 if x' / x    By continuity, a (x, t; x', t') ■>  0 as 

t' -> t  (t.' • t), whi-n x' ^ x .  When X. [;• a finite set, we can say Lh-iL 

aCx, t; x, t) = 1, anJ that a(x) t; x, t') ' 1 as t'^t.  In the general 

case, we have to use the symbolism of the Dirac delta function fi(x' -- x) 

(the Kroneker delta in the discrete case), and write 

(x, t; x' , t') •> 6(x' - x)  as t - t' a(x 

meaning that for any continuous function f(x), 

I  f (x) a(x, t; x', t1) ->■  f (x) 

Ä.aCx, t; x' , t') f (x') •► f (x) 

as t -' c' (t'>t) . 

In all the actual physical and operational cases, more can be 

assumed:  it will always be true that, for small t'-t > 0, the two member 

of the preceding relation differ by quantities of the order of t'-t; and 

in fact a derivative exists.  The most convenient way of writing this 

"""'" II«I«»III aismaaaummm 
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In   this   finite  case,   the probier.i  of:   finding  the  general   transition 

probabilities   (here,   the matrix A(t,   t'))   from  the more  elementary   transition 

rates   (the  matrix  B(t))   is   the old  problem  of  solving a  system  of   first 

order  homogeneous   linear  differential   equations:     for  each  row  of   the matrix 

A(t,   t')   is,   for   fixed   t   (e.g.,   t  =  0)   a   system of  functions  satisfying 

the differential   system   (5.^)',  whose   initial values   (when   t'   =   t;   e.g., 

L'   =  0)   are  determined by   (5.2).     The  different  rows  in A(t,   t1)   form a 

complete  set;   of   linearly  ImiepenJent   solutions.     The resulting  solutions 

automatically   satisfy   (5.5)';   and  vice versa,   by  solving   (5.5)'    (looking 

now at   the   columns   in A(t,   t'))  we  get   the  solution of   (5.A)'.     In   the 

finite case  considered,   these  solutions  are uniquely determined  by   the 

differential   equations,   and because  of   (5.3),   they automatically  satisfy 

(5.1). 

The  situation naturally becomes   far more complicated   for   infinite x,   not 

merely with  respect   to  the approximate  numerical  calculation  of   the  solutions, 

but  even with  regard   to  such basic  questions  as   existence and  uniqueness, 

and   the deduction  of   (5.1)   from   (5.3).     Even  in  the case when X  is  a  discrete 

but  infinite  set,   as  occurs  in many waiting  line problems  and birth-death 

processes  uf  practical  interest, uniqueness     and property   (5.1)  may  fail. 

For further  discussion,   the references  given above should be  consulted. 

An essential  simplification  occurs when  the general conditions 

leading  to  the  transitions remain  the  same  throughout the period  of   time 

considered  in  the whole action.     Then  the probability of a  transition 

(x,   t)        ->        (x',   t') 

 ---- •      •   • .   •         . -.. ..    •.   . ■     ^■^„^^  
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will HOL depend on the starting time t but only on the elapsed time t'-t 

so we may write 

(3.7) a(x, t; x', t") = a(x, x'; t'-t)  . 

We   then say  that  we  have  a  stationary  transition Markov process. 

With  such  a  process,   the Chapman-Kolmogorov  equation may be written, 

in   the   norm   (with   t.   =   t'   -   t,   t     =  t"  -   t') 

(5.8) a(x,   x";   t1 + t^  =  E,a(x,   x';   t^   a(x,,   x";   t   ) 

while   (5.3)   becomes 

a(x,   x';   At)   =  6(x'   - x)   -t- b(x)   x')   At +   [At]. 

These   two  equations   express  the  semi-group  property of  our   transition 

jirobabilities   (Cf.   E.   Hille,   I.e.).     Equations   (5.A)   and   (5.5)  may  now be 

written   (with  t   replacing   t'-t  and   t"  -   t)   as 

(5.9) V7 a(x)   x",   t)   =  L.aU,   x',   t)   b(x')  x") 
o t x 

(5.10) ~ a(x)   x";   t)   =  Z,   b(x,   x')   a(x',  x";   t) 

The matrix equations now become 

(5.9/ ^=A(t)B 

(5.10/ dAM = BA(t:) 

ifiS1117rr:iTfiaagBaBSffiCfflgg" '"'"7*-' fcj-iL^:^T^:'."i"" s^m"■""-- '*-■ "*■ bJ^SSSSS"""-52:'-iSSifI  ■ '-*■'■'■'BMBSS "^*-■' — ■''"''"^■"—-■■ —^-   , ,   ■,,   t ,„ 
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A(t1) hit  )  = A(t1 T u2; , 

,,;..:  ;' cvxr.sf A(0) - I, the identical matrix. Thus, the solution problt;;?, 

;., Li.ii ui ,» sot of homogeneous linear differential equaticr.-.j with c'r.:;rant 

coefficients, which can always be given in terms of exponentials.  Since 

clearly A(c)B — BA(t) <=  C for all values of t, an obvious method of so.,;; .-■•i 

, ; to ui.jpf)niaize B, etc. 

i'.  So .■.. t; ■ r..i of tht' Stocl'.astic l-.ci..:it j ons 

h.vii.,; passed the three hurdles—the rational elimination of the 

r.v.m«;. variables, the formulation of the stochastic process, and the o'ct..i..■ i. , 

■ .  ;.:;.■ ; i ,;-.;,;-.ion probability rates—we are left with the practical problem 

of svMvir.y the stochastic equations, essentially (5.A), of the last aectio.".. 

It is submitted that this is a far easier problem than the three former.  Ore 

mav even say that unreasonable difficulties encountered in its handling are 

usually the consequence of inadequate formulation at the, earlier stages. 

The stochastic equations (5.4) have the form of the first time- 

Gerivative of the unknown, equated to a homogeneous linear functional of the 

latter.  It is a Cauchy problem, i.e,, the determination of a function from 

its initial values.  When things are not as simple as in (5.4)', there ma1,' 

i,v, conditions at the boundary or at infinity.  In moat military probier,,,-, 

there are states into which transitions are irreversible (destroyed un:tr. 

do not come back to life); and absorbing boundaries.  These do not cause •:< \'. 

difficulties.  But with infinitely extended X, there may be a finite prohiwilaty 

of a rejection to infinity (cf. the divergent birth processes, Feller, I.e., 

, linmii     .W.,I,....J    H,^ .„,.,..., i  'li'IMllllfll imaBaay^iü^D,,., ,.,y^, x.;:.:-.-.::,.:;;,!.,. •:^::,::.;: •.^ |1 ^l__ü_]^|]11 
mama—r i M 
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Vi  p. )uUj , n.- vice vertia.  In such cases one may inuroduco .'in <,i:.."i.;. 

thA, ^ 
bu-tiiuiary roii<li L iot- preventing making X bounded.  If the solucicm of the 

i i.':;ii 11 ing j tubiem shows little probabiliry ol crossing the bour.'.ary  ; hi. 

.tiiid i i'ioil version can be accepted as a sufficiently good appro;-. :;.i.i: ",   If 

on the contrary there is an appreciable probability that the state wil.l reach 

the troundary, either the ori,,''ia.l problem was incorrectly posed, ox <o\ 

i . ; atil operat iorvl reality is bei IT:- revealed. 

Assuming such matters attended to, we list the general method., 

that can be examined for the srlution of the stochastic equations. 

A.  Formal Mani-nlations 

These always succeed when the equations arc of the t;>r:: ('^ . ■' 

In more general cases, the linearity of the problem makes the   r 3. 

i.elhoas of the general theory of such equations worth examining: 

such as changes of variables, separation of vai. rabies, Green';; 

function, the method of characteristics.  They all have had ap- 

plication to certain special operational problems of the present 

type.  Much information is given in some problems by the equili- 

brium solution:  a function independent of the time. 

B.  Infinite Series 

Again the linearity of the problem makes the expansion in 

series of the unknown function a simple enough process to be wori 

a try.  For small values of t, power series in this variable car, 

be considered; but more often, expansion in a series of orthogoiv. 

functions related to the basic problem offers more promise. 

~~JiasCTTr—^•■-»^1—-~?g^r---«j.liJ^v*-——-^-^-^^^ 
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jiiLu^ril Lranslorras, and, in staCionary transition cases, 

■^pJ.'ice t;i uusi onnation on the time axis, come under this class of 

lu'hod.  So also does the method of perturbations. 

■ ■  Successive Approximations 

This method, sometimes called the Picard process, consists i- 

-viui.; in sequence '■;/ Integration the recurrent relation obtai 

-, a   (x, t; x", t') = E,a (x, t; x', t') b(x', x", t'j 
• i   r.+1. x n 

■ .".!., soise  choice--largely arbi trary--of the i.nitial approx iina'. 1 - 

'\,   l; x', t') is made.  The other approximants a (x, t' x', t') 
i.' n 

i!-.' coii'iputad successively for n=l, 2, ...  Under very general coi 

'lit ions, the sequence of functions so obtained converges to the 

desired solution.  This method has been used in celestial mecha; ; •,■ s 

lor centuries.  With the use of modern computers, much of the labor 

of calculation can be. avoided. 

D. The Approximation by Difference Equations 

The methods most used at present come under this heading. 

There are. two separate steps in the process: 

(a) The replacement of continuous time t by discrete period 

i.e., by "short" time intervals At, so that the discrete succe.^-^ . i 

of epochs 

to. t1, t2, ... ;  t. - t1_1 = At 

I   ■.!>....--.   ...  ■■..■.■..■.  ,,.    ...    .■  *    .   .„.^.^.^^ ^ ^     .^ agiMÜMMJ^ilarmi   miiin-'---^'^ ■  ■■-■ M 
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is used, b(x, x', t) is replaced by 

b.(x, x') = b(x, x', t.) At  ,  t. 1 f, t. < t. 

and a(x, t; x', t' ) by 

a. . (x, x') = a(x, t   ;   x', t ) 

Finally, Che stochastic equation (5.A) is replaced by the ap- 

proximate result of integrating it over the interval (t.  , t.) 

a. .(x, x") = S,a. , ,(x, x') b.Cx', x") 
■3,1 x j,l-l        i 

The fact that by taking the time intervals At (which need not ai~; 

be of the same length) relatively small, a useful approximation •. 

be obtained, is the practical basis of the method, which replace;, 

a differential equation by a recurrence formula.  This procedure i as 

long been used in celestial mechanics, and, under the name of CavuJ ^ 

Lipschitz method, in the theory of differential equations. 

(b) Another step in the process is taken when the number of 

states x in X forms a continuum, so that the stochastic equations 

are integro-differential equations, the I  in (5.A) and (5.5) bejr-, 

actually a / .  It is often possible to divide such a continuou:-. 

X into a finite number of cells, small enough so that the difference 

in behavior of the system at different states in the same cell c-: 

be neglected, yet large enough so that the total number N of eel's 

■ail ajw.-r;. fugggnggggggi fggjgg/ggggjgggggjgg^ggg^ ^"•^r-r----"—"^—'r—     ~;~j ■:.•<... —:~—----- .,., 
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covering X can be handled.  On labelJing each of the cells by a sub- 

script s running from 1 to N, and replacing the integration over X 

by the approximating summation, the transition probabilities. 

s  s' 
a(x, t; x', t') become replaced by elements a ' ' (t, t.' ) in an N- 

by-N matrix, and similarly for b(x, x', t) which is replaced by 

s  s' 
b '   (t).  Then (5.0 and (5.5) assume the forms (5.A)' and {:.■ 

no  that the bimple theory of such differential equation.s can be .'.. 

In particular, in the staMonary transition case, they become (I.''' 

and (5.10)' and can be solved explicitly. 

(c) Both Processes (a) and (b) \Jzed  Together.  The stochastic 

functional equations then take the form of recurrent matrix relation: 

relating the transition matrices 

M   S,s'  i I       „     | i . S,S'  I i 

s s' 
Here a.'.,  is the probability that if the system is in the state o: 

1,1 

index s at the epoch i it be in the state s' at the epoch i' . 

s  s' 
Similarly, b.' '"  is the "elementary" transition probability th. '.   H 

the system has the state index s at epoch i-1, it be in s' at the 

next epoch i.  The stochastic equations are, in matrix form 

1,1     i,i -1 i 

These are solved by recurrence, starting from the fact that A. 
11 

the identical matrix.  The solution is then 

Vi- =¥i+i ••• V 

_ -„_„____, ^^j;^-—--^:^^.---  ; :,:.^:-:-.      ^^ 
urn 
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When in particular Lhe process is 01 ötaiicnary transiLions, ii. = )i 
i 

(indepeivdenL  of   i)   and WJ have 

i,i 

If   the  probabilities   p     ''   Lliat   the  system be   initinLly   in  scuc    s 

are  i;iven,   and   if  l1     i:"i   the   (hi ri^ontal)  mütrix  oi   these   numbers,   b\   rut 
Ü 

(s) 
n' tho staae they will be replaced bv n " ; and 

o    j ■ ' n 

P  = P h ß, . .. li 
n   ool      11- 

P B 
o 

Lite Ir.st expression, for the case of stationary transitions. 

The replacement ^f the stociiast Lc [.'quatiüivs by difference eqviat ,; 

at set forth above under l)(c), is the most directly adapted to machine 

calculation, since all that has to be computed are sums of products of .••... 

numbers.  The latter can be yiven in tabular form, no curve-fitting foimi' 

being required.  It is of general, and uniform applicability, not roquirinj: 

special conditions or calling for exceptional in&ights.  Finally, it can b( 

described and understood in the terms of elementary mathematics. 

The method has, unfortunately, one major disadvantage: in orde" 

to keep the number N of cells, into which the actual states in X have bo-v;'. 

condensed,small enough not to over-run any computer, it may be necessary 

make the cells so coarse that the. transition probab i.li tie may he quire u.. 

ferent for two states in the same cells; then the basic stochastic proce,-. 

is not even approximately Markovian—and the wiioie logical just if icatioi, •: 

tlte computation disappears.  Another way of saying the same thing is to ■ 

•■-'-- Kr «rrr-     -r-.-.-?.™ 
 — ■"    -■  ^■BaBaBBM—MaaaaasBSBBaütaaBttMa - ■ -— - -  laamt  1 
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ll.aL ;.ader such condiuions, the difference equations introduced in D(c) are 

r.. L upproximations to the true stochastic equations.  Unfortunately, the numbers 

!:; uiiijj; in profusion from the computer cannot be expected to give any warning 

that the program has lost its logical basis. 

.-'.O;-.'I,L' Carlo Simulations 

In this very commonly employed method of studying military operations, 

iiafa specifying the state of affiars at any epoch of time is programmed into, 

or produced by, the computer.  A rule is also programmed, of such a nature 

that the computer, when in a particular state at a given epoch, automatically 

.-.elects a state into which it goes in the succeeding epoch.  This programmed 

selection rule may be deterministic:  just one definite state from the pre- 

ceding state.  Or it may be statistical:  by the use of a table of random 

numbers,(mapped in an appropriate way to correspond to a desired probability 

distribution,) the succeeding state is chosen at random, each possibility with 

the predetermined probability.  It is this "random machine" character of the 

operation that has given it the name of Monte Carlo. 

It should be clear that the machine, when used in this manner, is 

itself a physical system S; that things have been so arranged that it has a 

known set X of states x; and that, from epoch to epoch, its states change 

according to a known program of transition probabilities.  Since at any given 

epoch the Monte Carlo selection of the next state is drawn from a distribution 

that is determined by the state the system is ther. in, the transition process 

is Markovian.  Thus, the machine is made to form a system moving from state 

to state according to a Markov stochastic process.  The fact that this system 

■t~—        ■"■" -    IIII ■■ ■' —-    »a ...,— 
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is rogardecl as behaving in essentially the same way as the actual military 

operation has given it the name, simulation. 

To assume that such a use of machines gives even approximately valid 

information about the military operation is to assume the following: 

1. that the human uncertainties have been removed; 

2. that the combat situation involves a system that is, at any 

time, in a objectively describable state; 

3. that its state transitions are Markovian; 

4. that its stochastic equations can be satisfactorily approximated 

by difference equations, as in D(c), without losing their 

Markovian character; 

5. that the repetition of runs gives, by the law of large numbers, 

satisfactorily accurate and reliable values of the desired 

probabilities. 

Inasmuch as these are precisely the matters examined in succession 

in the preceding sections of the present paper, it can be said that the logical 

bases of Monte Carlo simulation have been laid—that it depends for its 

validity on the reasoning we have been giving. 

The question of the cost-effectiveness of its use of machine time, 

as compared with the use of machines for the direct multiplication of matrices, 

as described at the end of the preceding section, is a question that is too 

infrequently raised.  In some recent Naval studies the author has found that 

the direct computation of matrix products has had far greater cost-effectiveness. 

The method of Monte Carlo simulation has one particular value:  its 

educative or intuition building effect on those who behold the actual 

mmmrngmmmmmmammmsmmuaammmm—Tiir^-^—m mm MUM 
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It <iJ lows die results of experimental variations 

,,; .,,••„. ,;i iucturs ol: tue situation to be perceived in a direct and life-like 

..,,-.■.  7.Jr. appear,»nee of realism ia so great that it has often led observers 

to turret that they were not in fact observing Nature directly:  a disastrous 

i i" r u r . 

,-..  i'uiis J'hrun^h i he States 

i.p tu iikA.' it ii.is been tacitly assumed that the set X of states x 

(or its coarsei fmire approximation) could be described individually, so ti...:. 

■.ie Liansition ruceu or elementary transition probabilities could be listed, 

and the stochastic e<juations—however hard tl^ey might be to solve—actually 

■.'ritten down.  There are enougb examples of this situation to lead to such s 

view.  Moreover, it is the typical case in classical mathematical physics. 

A few simple problems may force a somewhat brutal change in such an 

optimistic position. 

Consider the ^ombat model of Lanchester, in which, at each time t, 

there are two forces in opposition, u units on one side and v on the other, 

the rate of destruction of either being proportional to the number in the 

other.  The system S consists of the two forces.  Each state is characterized 

by the pair of numbers (u, v).  If at the start u = u  and v = v , the number 
■ o        o 

of states would be u v .  For values even as moderate as u ~ v    =10, this 
0 0 0     0 

2 
number would be 100 and the transition matrix would have 100 = 10,000 elements. 

In the present case, however, there are two simplifying factors in the situation, 

which are typical of many cases in which the direct enumerative treatment im- 

plied in the preceding sections is impracticable, but in which the solution 

can nevertheless be given. 

"  ■■■ '■■■"'  ■-  JlltMUl IW  --  ''   " ' '- -" aia MMMM 
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'i'i'.f first simplifying i actor in the Lanchcster model is the circum- 

stance  that only a small number ol transition rates differ from zero.  'n a 

short tin.1 At, n can go only into itself (probability:  1-bvAt) or into u - 1 

(prubabilily:  bvAt).  All other transition probabilities are zero.  (All 

rheso statetuents neglect terms of higher order in At).  Lanchester was led by 

this fact to use — instead of the stochastic model—a deterministic one, in 

wiiuh (u, v) are regarded as continuous variables having time derivatives 

/.i\v;a by r.is well-known equations 

vd. 0 
au 
clt 

-bv , 
dv 
dt 

=-.au 

ho:.' a a.vi b are the "coefficients of effectiveness" of the first and secTsd 

forces.  ViiiS has the effect of making ail the states into which the system 

^oes, ot.u ting from (u , v ), determined by these initial values and the 

eiapseü time t, because of the uniqueness of the solution of the differential 

equations (8.1).  Thus, the problem has the form of problems of classical 

mechanics. 

When, to a good approximation, the transition function a(x, t; x', L") 

determines the state into which the transition can occur, we say that the 

system traces out a path in its space of states X.  When this is true except 

at a "small" number of states—nodal states—which allow a "small" number cf 

different states to be entered, we say that we have a graph of paths.  When 

certain of the paths never have any further modal points, they are called 

branches.  There may be cycles, i.e., paths returning to their original state. 

When the graph of paths has no cycles, it is called (according to the usage 

in Topology) a tree. 

HftMl aa?^.^Taia~-^!ga"rrrr;^jr^.rg^^ . 
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Thus, Llic reduction of a combat model to a graph of paths, with 

probabilities entering only at the (exceptional) nodal states, greatly reduces 

the stochastic complexity of combat models. 

How would this simplifying circumstance show itself within the general 

cuaiytic framework we have been using?  The simplest answer is in the case o£ 

finite X, when our transiti.  quantities are matrices:  Then, except at ehe 

columns of transitions out of nodal states, each row in every transitiOiM 

. .irix has ali but one element zero, the exceptional element being unity.  In 

Hie continuous case, the lormuLation would involve the Dirac delta functic.", 

i,n;i it   this point, the usefulness of attaching the special case to the gene^cl 

formuiiitiou is largely lost;  it is easier and more natural to derive it it.. 

the simpler deterministic symbolism in the first place. 

We hdi.v.i sec- {n ri ' s 9-11 how the concepts of the graph of paths: ar.c 

the endgame (usually, duel) bring the quantitative study of even quite large- 

scale military actions into the realm of practicable quantitative treatment.. 

The second simplifying factor in the Lanchester model is the pos- 

sibility of expressing the vast number of transition rates by a simple math- 

ematical law—thus avoiding the need of their individual case-by-case enumeration. 

The habit of individual enumeration is easily developed through association with 

modern computers, that are so capable, of having each special piece of numerical 

datum programmed into them—whether formulas are available or not.  In experience 

Tiiis could be illustrated by Hamiltonian dynamics, in which the state Xr 
(nosition and momentum) is a point in phase-space X, determined by itr, 
initial value x0: x,- = f(t, x0) .  Ergodic and kinetic theory make use of 
the probability distribution over X at t, p(t, x).  This evoT. es with increase 
of t according to the simple equation p(t, x) = p(0, f(-t, x)) (in the steady 
case). This is actually a transition probability (density): p(t, x) = a(x0, 
0; x, t). Yet it would be highly awkward and artificial to write it in the 
form 

p(t, x) = p(Ü, xo) 6(x - f(t, xo)) . % 



■ - . . ._ 

—^ ■-.■:'-■■■■;-fr"-. ^'■"■*■-'■■'=■--■ i ■-* i ■■■-,. «•enwcsmi 

,1 1; 

26 

confined to manageable numbers of inputs, the power and flexibility of this 

method recommend it.  But if we have to do this in well over 10,000 cases, 

it would cease to be a practicable operation. 

In the present example, let us write the stochastic equations for the 

transition matrix a(x, t; x1, t')—or, because of the steady-transition 

property, a(x, t', t'-t)—as f(t, u, v):  the probability that at t the first 

and second forces have u and v units respectively, given that at t = 0 they 

had u and v .  To terms of higher order in At, we have, for small At>0, 
oo 0 

f(t + At, u, v) = (1 - bvAt - auAt) f(t, u, v) 

+ bvAtf (t, u + 1, v) + auAtf(t, u, v + 1) 

when u > 0, v > 0; 

f(t + At, 0, v) - f(t, 0, v) + bvAtf(t, 1, v) . 

<(t, Al, u, 0) « f(l, u. v) -r auAcfU, u, I) . 

4**»JJft^ * w«f»rlUl 411?«»««« Uivi * tW *  I) ' tMi  «»4 «>ts.tUtiy for 

(A.2) 

C«.3)     — tU,  0, v) • Mil,  :,  «J 
#1 

(Ö.4) rr f(t, u,  *)) • 4w«Cs, u,  I) 

*:.-   ,.   -.  —gM,—11I: D «an 
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These are the equations of the Lanchester stochastic process, 

introduced and studied after Lanchester's time by a number of authors during 

the last quarter century  (cf., e.g., Morse & Kimba11,"Methods of Operations 

Research1,1 M.I.T. Press, Cambridge, Mass. (1951). R.H. Brown, "The Theory of 

Combat: The Probability of Winning," The Jor. of the Op. R. Soc. of America, 

Vol. 11 (1963) pp. 418-425). By making use of the simple mathematical law 

of transitions, they remove all the complexity of individual enumeration 

and reduce the problem to the form of classical analysis. 

There are two ways of setting forth the connection between these 

stochastic equations and ehe deterministic ones, (8.1).  The first recognizes 

that in the former, u and v are random variables, while in the latter, these 

symbols denote expected values (u, v): 

■ 

(8.5) u = Z f(t, u, v) u  , v a I  f(t, u, v) V . 
u,v u,v 

Let (8.2) be summed for u fixed but v going from 1 to v , and the result 

added to (8.4), We obtain, since elementary calculation shows that 

vo 
{(t,  u. 1) + fa  A^(t, u. v) - f(t, u, vo ♦■ 1) - 0 , 

the rc^uU 

TT *loHl' u' v) * ^2- v{u' »' v) • 
v«<» 

'itx^! ^Ijr SM* by  w »tmi  »^n trvci  «* Jrom. I (# u . Cm  tb«? Heft vc o-liiAia, ea 

p 

      Mm «an _____ 
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yields 

u u 
o o 

b En uA F(t, u) = -b E., F(c, u) + bu F(t, u + 1) . 
u=0  u u=l o     o 

The last term, involving an impossible value of u, is zero.  The first sum on 

the right can be written as 

u  v v oo o 
-b E1 Z    vf (t, u, v) = -bv + b j:n vf (t, o, v) . 

u=l v=o v=0 

Now if u and v are substantially greater than zero and if t is oo J  0 

moderate, the last sum has all v + 1 of its terms exceedingly small, since 
o 

this is the case of f(t, o, v).  Thus, we are led to the first equation in 

(8.1) for (u, v) = (u, v)as a good approximation.  Similarly for the second. 

The second method of connecting (8,1) with (8.2) - (8.4) consists 

in the differences by their approximations as derivatives times the lengt';. 

of the interval (unity)—deliberately ignoring the fact that f(t, u, v) hao 

originally been defined only for integral valued u, v.  We obtain from (8-2) 

Che homogeneous linear first order partial differential equation in f = f(t, 

(8.o) - 3r + bv^ + auä7"0 • 

This : :• easily solved by the occhod of characteriseico, the cquadons of 

«Jl   du        Jv 

e' 

 1»  * Li — _b.    ■—  -- 
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f of (3.6) is the function of them chosen to fit the initial conditions: 

to reduce to a given function f (u, v) when t = 0.  In the usual case, 

f (u, v) = ö.(u - u ) ö(v - v ). We will illustrate this by finding the 
ü O O 

curves in the (u, v)-plane into which the paths (in (u, v, t) -space) project. 

We have but to find the time-independent integral; i.e., to integrate the 

last equation.  It gives at once 

2.2    2,2 
au - bv  = au - bv  , 

o    o 

i.e.., a family of hypei.-bolas, which are the level surfaces of any time- 

indepiT.dent solutions of (8.6);  these are the geometric paths, traced out 

by our system with passage of time. 

It must be emphasized in conclusion that the deterministic path 

equations (ö.I; ar^ only an approximate rendering of the stochastic equation 

of the Lanchester process (8.2) - (8.4), acceptable only under special con- 

ait ions. The fact that such graph-of-paths simplifications are possible, 

■is well as the fact that they are never more than approximate, are typical of 

a host of operational problems of this category. 

9.  i'at?.o:ns of Flow 

The  points aacie   In  the  last  soclon,  and others as well,  arc  11- 

.i.  '„riled by a parilcu\^r Operation  that  excend»  the Lanchostcrian one by 

requiring il.ii: de »true: ion sui»t be preceded by detection. 

Let   ■....•   iwo  force» «•:..;.»t,.-.i   In cosibAl be coaposcd  Initially oi u 

JAUB on arne »14« 4ftJ v dn lite oth«r.    Let  It be asttuoed thAt Any unit not 
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in contact with hostile ones must first detect a hostile unit and will then 

attempt to kill it. By "detect" we mean not only perceive the presence of, 

but identify and localize sufficiently for attack. 

What are the possible states of such a system? 

Evidently each individual unit on one side can be either dead or 

alive; in the latter case, his state—in the Markovian sense, of what may 

happen to him—depends on the set A of hostile units he is detecting and the 

set B of hostile units that have detected him.  But of the set A, some may 

be detected by the unit's friends; and similarly for B.  The outcome of the 

combat may be supposed to depend also on the states of the friendly units in 

contact with A and B.  Clearly, the full set of relationships is not simple, 

even to formulate.  Let us give an indication of the possible number of states 

that may come into play. 

At any time, let there be m and n units alive on the two sides. 

Indicate the units by m dots on the right, n on the left.  Indicate that a 

right-hand unit has detected a left hand by drawing a blue line connecting 

the corresponding dots; and join with a red line two opposing dots to show 

that the one on the left has detected one on the right. The resulting colored 

graph determines the state of our system.  How many different graphs are 

possible? Of the mn possible ways of drawing the blue lines, any one can 

actually be drawn or not. Hence, there are 2  possibilities for the blue 

lines; and slollarly for the red. Conscquendy, there arc 2   poHuible 

colored graphs.  If there woro o • S Ai:d 0*4, and if the units were all 

individuaUy different in cheir characcerUdcs, a reallsclc account sight 

..-sa-iiTiffr-iT^^tt-r-^« -.■«■*.,...*—■...—.,,,, 
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40 12 24 
have to consider 2  , or over 10  different states, with over 10  elements 

in the transition matrix hnore molecules than in a liter of gasV 

The number is considerably reduced when all units on each side are 

identical.  To estimate the number of states, we note that any permutation of 

the right-hand dots followed by a permutation (in general, different) of the 

left-hand dots takes a colored graph into a colored graph, either identical 

with Che original one, or else different, but of the same type (not only 

topologically, but having the same probabilities of transitions).  Let there 

be a totality of k different types of graph, and, after giving each type a 

subscript in an arbitrary way, let there by N. different graphs of the i'th 

type.  Since there are in all m! n! double permutations, evidently N.2 ml nl . 

On the other hand, the sum of N for i = 1 k is the quantity 2 

encountered before. Putting these facts together, we obtain 

k I  22mn/ml n! 

a quantity well over the hundred millions in the relatively simple case of 

m = 5, n = 4.  Evidently, it would be useless to await the advent of larger 

and faster computers into which these states—and their transition matrix— 

can be programmed. 

Let us see if certain aspects of the dececcion-destruction engagu- 

inenc can be isolated from the welter of possible interactions suggested fbovc— 

just at» hydrodynanic relations can be isolated froa the unthinkable coaplcxUics 

of the aolccular oocions in a fluid. 

Let u» laaglne five boxes on the left and five on the right (Fig. '.). 

AU ih« units on the left side «re represented AS panicles in one of ih« five 

M —•   I'illi Ji i ••  . 
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jFüj -1   -    The    ^low   GrraJ>li.     i-n   a  Pel^b-gTx-DestractTt-W  Com^C 

c\etecXeA 5 <Aetrgcti/iac| 
^2.        .So ^T1 ?7~^ eLetce-teA. 

3J  -not   dct'iCZA 

dßtectVnd &, 'AeCect^d;        Xij 

X 

boxes on the left, according to their live-dead, detecting-nondetecting, 

detected-nondetected status, as indicated.  Similarly with those on the 

right.  If the total number of units, dead or alive, on the left is u, and 

on the right is v, the total number of ways is the number of partitions D, 

of the positive integer u into five parts (the number of ways that five 

people can be paid with u indistinguishable coins), times^nlmost)the cor- 

v u   u+r—1 * 
responding number 0^.  It is known that D - C    , the binomial coefficient 

Hence, the number of ways Che boxes of Fig. 1 can be filled is almost—but 

not quite— 

Cu+A cv+^ m  (u-H) (u+2) (o+3) (u+M (v-H) (v>-2; (v+3) (v^Q  , 
u   v Al • 41 

■ 2 
An catty way to »hov chit i« to write the geosocric series l/(l-c ) ■ 1*1 +t *. 
Take the product over i ■ 1, 2 u. On  Cho right ve have D" cems of 
iiegree r. yielding the tera D i    when every c. is replaced by t. But th.« 
«ub^tituiion replasr^s the ■»roäucc on ehe Itix.  by (l-c) , whose blnonial 
expansion yields C c «s the cent of degree r. 

mm^mMattaaamm^mmmm* 
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When u = 5, v = 4, Lhis number becomGs nearly (126) (70) = 8,820, an un- 

2   7 
comfortably large number with a (8,820) > 10 element transition matrix; but 

still incredibly less than in the earlier case. 

Two points must be considered:  First, is the rcGuction from the 

former case to the present one acceptably realistic, or is something es- 

sential lost in the passayc, so that fatal misconceptions will result from 

the simplification?  Second, granted that the description embodied in Fig. i 

is acceptably realistic, how car we manage to handle even this relative 

simplification? 

The answer to the first question will not be given hero.  It will 

depend on the situation studied and the purpose of its study.  jiut we iasii-r 

on the fact that whenever a war game is programmed on a computer, an ar- 

firmative answt-r LO this type of question is implied logically-—even though 

only unconsciously. 

We shall deal with the second question.  i"ig. 1 not only thews the 

boxes of individual states, but, by cai>ncctin>; arrows, the possible transit lors 

as well.  Thcst! are based on   the fact that a unit has a chance ot bcinf 

klllod if and only it It has boon JtUoctcU. 

Lot u» think ol iho unit» In «ach bo» HH aat^ed into .» aort oi ; u. ' 

flowing as a fluid through th« connecting line» (^IpetO in the ilirettlon .i 

the arrovft.  Uc autit ontaMltih a r^i« of » '«"^ through oath pipe. 

This bring« ua to the ucfKünitui. viicroty »Icicitiono «r.J k.. i ,.-. aio ».»<!«;. 

M« ■.-.,.'.  AAftutw»--«« »icoi-'r i jit i/«j üf ««»ny. i»»*: ;»oi »ii, cAioca ilutl   a   u»* 

;iu:n4;cr »t     . : ■ : c.. : i-:  ■...:■.:. un un« attt« in    ..    ' '..t-.:.   iKc   it«l»''llti>n ; i ^ :. i-'. .; > 

Ol   CACl,  MSill la tukiveul, ao lhft< 13»« Itf^al cÄpcsCllcJ tuaftlwrr iclcHc-4   '.r. ; i «- 

___Ä_____J.ÄM.     
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next shore period At is left unchanged.  We shall also assume that this total 

expected number is proportional to the number of enemy units that are alive 

but have not detected any unit (whether or not they are themselves detected). 

This assumption—quite different from those made in chemical kinetics— 

reflects the character of the act of detection in the present battle:  it 

involves localization and npproach, and so occupies the unit with a single 

enemy unit to the exclusion of all others.  Accordingly, the flow.box 1 to 

box ZjShall be regarded as proportional to v.. + v_; i.e., as equal to 

b-(v 4- v-) .  The constant of proportionality b is a figure of effeccivenesj 

of detection per unit on the right (b will denote effectiveness coefficients 

of the right; a., for the left). 

Concerning the kill rates, one might consider the LanchesLerian as- 

sumption that the expected number of left-hand units killed is proporcic.:. '. 

to the number of right-hand units chat have detected them.  For two rtMiaoiw, 

such an assumption cannot be applied to the j*  »one situation.  The (Irnt 

reason IG C.JC practical one that, within the franavork oi  Fig. 1. w> do not 

know how ouiny oi the v^ + v. dotocting »mlia on ih« rltihi .«ro dalo<;lln£ Iho 

•j, uniltt in box 2  on  the lail  and  hov R.A«>y, ihc u, tn Uo«. 4;  "u try ip 

specify ■...;■• would .*■■:■.  Uü back to iha  oarli«r caäc. ihc   ■.:■..,-L. ..■.:-. ^ *. i,i 

which "■.■■   the object ot   the :/•..,.;„.■._.. oi ihc  .;._.:-.«. oi   J ,,  -  Sit« 

»ecoitd rcasoss realJc» in Che con<c5»tlaPi **i   tho pteaeni   Sjrfe <*J efl^Atrtmci-! . 

vhcrc. ii  dctectien i» carried <Hit o» *n  isvJivi.}»*»! i-aalä, «a ta a *>i»fc««^«i6«? 

)s,i<l.      All   ihlft,   Oi   <<MsS'a<s,    5e   tof   m&  elcm-cAi-^tf   (tflM   5«i5«IV*i   At,   a«   a^n<} 4 

•      A»  vhon   »vv»   j'rs«!t'Jliy  unit*   «ve-v^r  c«»{;aj:*   Uio   »AO»«   cj»«.tsy  u^ti, 
f«»«»rinn  MICUAI   artnÄ*»»*  of  O«-9T. VK»rt|»ona — <*n4  »d  i«t «rcftianianic*1! •». 

ii^         -™*
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that each detected unit on the left has a chance b„ of being killed which 

is independent of the possible number of additional units on the right. 

Thus the expected number out of n detected units that are killed during 

At is b nAt, to quantities of higher order in At.  Accordingly, the flow 

rates along the pipes from boxes 3 and 4 into 0 on the left are b-u. and 

b„u. , respectively. 

The rates of flow which reflect the conceptions just set forth are 

given diagrammatically in Fig. 2, which assumes that no unit playinR an 

essential part is absent.  It is given for the left-hand side of Fig. 1. 

That for the right-hand side is the same with every IJ and v^ Incorchanged 

and nvcry a and b Intorchanßcd, oubitcrlpttt rc»aining unchAngcd. 

P^eUcti,'*** -Pet lr%tJ,&% Cti*kit 

  ^J-,^,.:...rr,- 
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;'rua  ihc»^,  bv applying »in obvioua conticrvailon principle,  ■-••: i>bt,un 

i.if .;.: ; i i «-nl l.»l   uqu.Ulonh   (li>  Adillllon   lo   iho  rcl.idon uA   »   u,   ■•   u,  ♦ u 
3 

.un .( iii(.>: 

(9.1) 

'"I 
at 

du, 

•it 

dc 

•a.u,   -  b, (v    TV.) 
11 i     I J 

-S.(vi  +  v3)   + ajUj 

'l  + b2)u3 + bl(vl + "l* 

-b2u4 + a1u3 + b1(vl + v3) 

There are tour more equations obtained  from  the above by  the   interchange oi 

u and v   ,   a  and   b. 

Thus,   our  deterministic   flow  replacement of   the  stochastic  process 

leads  to a homogeneous linear system of  the eighth order,   with constani co- 

efficient.     It  can be solved  explicitly  in  terms of  exponentials,  and  the 

evolution of   the  combat completely dominated. 

This  is  the deterministic or  flow  treatment of  the detection-destruction 

process  in  simplified  form.     A stochastic  treatment  could be  given,   Intru- 

ducing  the  function 

(9.2) f(t;  u^  u2,  u3,  uA; v^ v2, v3,  v^) 

which is  the  probability that at  the  epoch t  the state of  the  system be as 

indicated by   the   (u, v)  letters.     It  is  easy but   lengthy  to write its stochastic 

sm 
-"■-'—'■-■—■ 
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il t; oiitu lo-tl it f erotice equation slmil.tr to (9.2), etc., and to derive the 

(9.1) .i.-. the uquatlons ot tl>e characteristics of the approximating partial 

>i i 1 t ereivt ia 1 equat ion. 

It is emphasized that all the present deductions from Kig. 2, In 

particular, iquationu (9.1), ar«.- only valid in the region in tiic eight-di- 

mensional apace of the pobitive variables (u, v) for which the inciualitiea 

oi rig. 2 liohi. 

10.  A DETECTION-DESTRUCTION DUEL 

The detection-destruction engagement just examined becomes sitriple 

enough to solve analytically without approximation in the case in which it 

reduces to a duel;  only one unit on each side.  Then the set of states is 

represenuable by the diagram of Fig. 3, in which, if we call the the two op- 

ponents the "left" and "right" units (people, aircraft, naval craft, etc.), 

we have numbered the states as follows: 

State 1, neither unit detecting the other; 

State 2, left detecting right, right not detecting left; 

State 3, left not detecting right, right detecting left; 

State 4, each detecting the other; 

State 5, left dead, right alive; 

State 6, left alive, right dead. 

Since pairs of transitions have a probability of higher order than At of oc- 

curring during this interval, the stochastic equations will give a zero rate 

of change the probability that both be dead.  Therefore, this state cannot 

be entered in the present model (it can be, in many other models).  Consequently, 

l""-""- ■"~---^" '■■■'-> ■   j — - ■■   ■-■■■'•■■■,—....,,.,-''    üj ,..  ,.""" ~'^^.-^-^rr:'"~'":~^-:;;\"".r~;-^;i^ir./,:j/7. v/:,.:--a2LS^.^;.:. •.::■•■ 
■ ■ 
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coxbatcant'n ef focilvenoBs by a^,   iho«*; of   the ngbi  by b.     Thwa,  «,,  a,,  4. 
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Jtk. 
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This schema of relations  is equivalent  co ehe following cransicion raco 

nacrix,  ü of  §5,  appearing in  (5.9)'. 

B - 

li-v bi ai bl 
0 0 0 

0 -a2-bl 0 bl 
0 a 

0 0 -arb2 al b2 
0 

1   0 
0 0 ■a3-b3 b3 

a 

1   0 
0 0 0 0 0 

1   0 0 0 0 0 0 

We now apply (5.9)' to this case, writing for brevity a(x , 0; x, t) • 

P (t) (the probability that at t>0 the system be in the state x, having been 

in x0 at t»0), and denote the time derivative by P'Cx).  This leads to the 

4» 
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f. (t >    ♦    - i*. •«>. )!', <! ^ 
* til 

i*;u) • * I,:'.)   -(«,-u,>r «w 

> * j j    * 

f^d) • «2 P2(I) ♦    «j   r4(0 

Tlvcac  «quittlon« CAD be  ftolvcd ekpH<i;l>' *;•--;   '.•.■.±,.\'i,.:~~'.',y,   i»(4ritu£ 

vith the Hrat,  and working «iovn the  liat   In ihe order   in vitlch they ar« 

vrlticn.    lite room   inierceilng ca««:  16  ihal   In vhlch (he  »yatest  '.-   ialHAlly 

in Stale   I   (both undviecied):     P,(0)  •  1,   ?-(0)  •   ...   • P,(0)  • 0.     Then A» 
1        « o 

tlroe Increaitefl, the ilrst four probabillcca, after becoming positive later 

approach scro exponentially, wheroa» the laot tvo approach poeltlve llnlt^ 

rc(o} and 5* (*) (adding up to unity), Interprctable as the probablHtle« ai 
J o 

victory for the rl^ht and left, respectively. U)tlle these fora a ateady »tatc 

solution, their values cannot be calculated by «Isply replacing all the left- 

hand ccsbcra in (10.1) by eoro--a cosnonly used aethod in the study of 

ocochatitlc proccaaos. 

Solving (10.1) aa indicated above, and then letting i ■• *, vr obtain 

(after oloaoncary although perhaps tedious reductions) 

blb2 (al,H,2*bl*b2)alblb3 
(10.2)    V") " («^^(a^bj) + (a1*b1)(I3*b3)(a1+b2)(a2*b1) 

- -- - 



  

» . * i * ,   • A , ■ I     " 'i t is     »     ä>     i 

<> 1 4 ,  »'i      Ji 4 * , •'*.     i 1 J     ■*     ) < 4     »S"     ) 4» , ■?» , ) J » , "l 

£ « ill ;i . c ,     ;5     lie    Cc Jc ( ! I.;;     «.        :    »_     «äkij    l- .     *} c    Rh*< h    e.tl.» 1 L c f     '. v. ■ ."-    • ' -■        I     -- ' 

s L»*:-.: i4. ,c a .    Hie    ;ifaJf^iüiijT   et    or^:    aiiic   vi^Ä',«-,^    Jo    }o    IK»!    a!     I l-c     'I. a 

i   -t   C.'ci'. lu:i.   jato   o(   lä«s   I«»-«^       .»   {o   ".Suai   *J J    *J*c    iatlcil      del erf ■,'.**■- >       -.- 

I ..i:    4 -c . .        ;{,     ui»    Uic    o{Jicf    KftJVii,    She    (Vc    dvlVCtlOfi   " .-'. c ;    ate    |)ii*< h    lAi^ct 

; .ki.-.    ; J-.c    fci.i    1 .i ; c a ,    aa    IK»!    ■..'kc    i^ft!     i«??:«.    iO   0A£!)   (N;u4l i(M    S»    4 i-'• i )     '• ■" 

i\:*c:.   fticaJcj    tä.a«   She   utosa   be^oic,    T 2,c   via   pj «i?»*!!* i « 11 ■»■   J»!lö    ia   »a    ".Kc    .a?' 

^«icclc,;   ikiil    Ja!ca   a    ,    ^       ,      Thetc   «fc   a   JcV   Olhef    tall,e;    c-^v itf'wa   ö«* *.  ...... i, 

Its,   faaca   IkAl   oioit'C   uf    life«   '■.■■...■..:•.....   ■:.■.'.■.•-.    -j c   fln»<!ii   ._■.(•;    wr   n-. i.   s.n,a..c; 

:H»n  .■..•■;.■..   ...-- ..^Sic bv ^.»«»ij-ulal Sr.^   CIO.«),   afi4 vfatcä»,  vä-.«?« «tc*  f*in*ft,(j, 

ilvc n^Ri  o^viou« g,«nistttl üviuciiaa {torn.  (10.2),  :-■*'■.<■'.   lo   in ih« 

««»a« of  jwm««5ren« valuer of   live ««»Al^ni«:     llial  PQjM*? "'r*"nm.';a'r: »etvae ' 

jmitgacni  vuul«}  have b««n   t&kcSy lo tvavc  iSravn  alsvpi«? e4«v< 1 was«;•■.=   :;.;i   Uirfr 

«iclcci lon-4esiruci ion duel.     3iw><ut<uch a«  li;«  ^re«eal  on«   io  a>m*i   »a  a.nf.« 

d  roiillBlIc  nodat  4o  one could  «tet  up,   ihi«  conciuolpn A}>^ile«  a  tot liar', 

la any <iuei.      .-.•■   ..-.■,.<-ti: ;ca   invoivvd,   exp;eft<»c4  here i>y  c^uation   i.'j.lt. 

rettult   i roo the  c<na.5>l Ualc4 ijttanl Slal iv«   tnlerpi^y oi   = i ..'J.'. ir.r. = ,   klila, 

and  ■.-.<■.;  nulu«!  ^oreAlAl* in4f>,  lhai  are all   In ihe Aciual natwre of   ihe 

<■.-, = <•--,,..;  ^n arilfaci  of  the lechntque for  lia  tnvesii^Aiian. 

■■■i>iMMIM«MiM«MMaMMilMMM—lllllfclll—III ■      ■• « . . ■>.- — a 
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j'    .     •. Il.c {i.    ..     u.:-     iic     j | 3>.< I     '.iiuc,    J I'^c    >i« ^ ira.". i ui.   K{     »ii-.j    I 5 uih 

• .;.■. *>J     i .     re - - Jr-j     A i  ! -„i , , i     aw , i . o,j     *..,,. j     *£*i    % Kt        . c '. ! ; i.4    X     •    ••- • 

i-iii.     i     - i\ f j uT-oi ; , ,11 j. ,     J , oi ,    tit.-.    8 "    '. ''-c    }»J o e« &1     s ..,;•. c       it c ,    4Si4 

,.c."    4 J .' 5 i» «■ !, 1 J'Ji;    luc S ^-.mii    is    ; ; c   öi.c   fa.«. iil»J    1c   pfc-^ s ; c ; s •, s   a ■ui 

1 c .    of     ', a * ' ' " e i. c   • j 1 v. a;   ' • 

*. * i 
ft 

«t.o ; L 3 » 

,fcu   - •     «''   r   it)  4( 

.  2 c     -a ii.a-ic    v!     J 3«5    Jij.iii^ia    1 v ^ t a'. .-vc i    hf    ' iijc^ f a5 J01Ä   5f>    f-aSJa) 

% it 

f     ■»% 
i: >  4: 

'.■>.J8   t « aftialwt'.n^t li^ü.   5u»o   She   effect   «i   ^jf^.j...!'.'*','"^    *^*   J"'* * S» I ««tl..    »c    t *-« 1 

.1     ;«    'Dec    5} uil)    4.«; J Sva". Ivc a.       Ttir-J --oTCcJ ,    J3-..C    e.a^alS&b    of    S -..c    }cat«»Si(k£    al« 

• iSkcAf    c'<uv.sS i tuiia    lA   SJ'-c    s.«    ;>'■-'? i u j-.a   ;>    (a)    >irfcs   but    rc^uif«    live    eo^ullcn 
Q 

I»;    *•■.»    s^cJi^^St   c^alStfft  of   4«-^fc«   JugJi^r   t2u»«i   t-^c    JiJa". tf.'vcO   ihtff   }•,;•• o 

B 

lhfO>w£,h    I >    a    A*v4    ic'.{}- i     :     •        .    w««     .;■.:■.£;   IM«}«)    »f    I {v9    «^U4l>^ft 

ft 
ai •■0 

uhliti    »a    ?3»c   oS.il.^ica".    «;.»««   o{    stft   Ai-esiS,4ft   l3-.P»r«n.   »»4    &fi   ^r l*V<»,,! i«?   >T   »iÄ^.c 

ti.tt.ii      ■.::.:■: :..      ._     b4««ld    «A     .'...-:.":      •CltntUS«     -      i     '. '   c     :r -^     «itv    Of      ••      <•     ::ra-.. 



"■■"■■ 

'.'..c    tucHSminl   <i»tt,    «■{    t4)i>,|ac,    ie    aJi.|,icul    J »J    *Bj-    iftillii    Ta.^cc.       Ä.ce...la 

»a   s..tifi«   «a    ('O-.')   !»»»{   <il! icf cut   »»c   ül>{»Jj!,s«i,   «Clad   tKi*a   SH*   «^..^hts^c   ol 

t *t ',j    > unt 4< f     i^rcati^^t Cut . 

<    ..tvai*^   «««^»t ilut In^   i>- ;.    .-40    into   live   «^»»»llofca   ASVi   c a ICM. 4( is.^   I ."--e 

i e a w . t a . 

', t .jq,.. ; .V $ ^ wAS 

W«   Sv^-rc   aceo   '    i'. ,   «Ace   ?2..c   «{jctci«   off   hvn»4S>  »»sv^Jc'.i 1 ^i ; ^ . ■-      KtkVc 

.ccsi   »egf ci + tctiä,   «f-^-crjf   itan-V»!   «ituJci,   JtoOlc   C^f It)   ftlOMlACIinn   or   }>f of.ra.ii .   ;.»■> 

A(    iia   i-ajc   4   ai.1VJ»i«f   a!{ .. ;.-.c   0;   a   un&V«r&-4S    1 > i "• ;      4   6}alMV  a»it   tic 

»lAl««,   »t%il   4   «AV   S$    i 14öa I S S tf fta   iicXcJfl.isvS at U   Of   prob4l!il 1 lot K ^   JOVc J f.. Mi 

ih«   ■   ..: ..^c   oj   oi4i«4   St-*  iä.c crvolmj joa of   th«  »yftlcnt vSlh  llflM.      JTil»   -a   the 

-.«_■;   m :-.x  tii»«» A pfdcticaJL acccftftlly  »o  lo coadwci  lit« Ar.aiydlä or  iV.o 

...;!..;-t i«a» 4 in.»nl?wl4ilOR.4  tK«i  th« «iAti»tiC4l  *;u4nlUlca Jettircv!  tot A 

«Uc iaiuj-js At«  o!i(ASn«4 5»y  on   U«r4liv«  «•(«p-bf'ftt«? UulltS-wp   J?ö.n.  the  ui.!i.r.■•; 

uor.aUion probaitllUl«« or rAic«:     the 6ioeh4«(U proc«««  is tr«Aic*i a» if 

11 wors ruriuJViAn.     LogU «Jeca not  CKCIU«!«  the contrary aaau«;*; SOL,  but   thl« 

^ -   . .   ....   ,.c  :;.A,I ^.r, every e«em.entAry  transition dej»rr,il on o ^ooii part  oi   ih« 

.-:".   Matory c     the »yntem<,  ihua conpülcat in^ the »lluatlon beyond  J caa'.l iill> 

tie hAVe  neen  t3.«t   the Harkov procena ot  the coobal luoiiel   la  ....<-i;..*■.■ i 

by  the alo<haatU  equation«, w^tlch ekpreaa  inpllcltly  Ih« way  In which the 
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 ii   i'.rcc«-.,,   ! <> (    i{c t I a I ii4ko   oü   lii'.tto   «j   »»«ajMiJi   aio5c;ii.s   »i c   4c t C ä 11 i .-.c 4 

.:.;v.l,'    .ia;,i,    wtklt.lt   c » ;> } c a a    I Ivcittac (VOQ    lO    I c 5 li,a    u!     '.-"<:    c 1 Ciit.i r.', 4 J r 

.-.■...      • '. -    <<;     I .i I c u .       j'Sr.*iiT.    vc    i-svc    sccJi   !-.o'w    5;'.ci8    Bo«i.'.iu ~-     ,>«    C4i{l«iii 

.   . ', i. 4 i , T   1» r    a    viJlc!*   u{    aftairt If 4«    uJ    c ftn Jin» t S *■ J   li.i,:-.,    t    iii.;    0-4 a .    *««< * 

..;..'    4.»! a   4» c   fcn-c-v»;-..   jjfuviJotj   ;;i.a<    1 l.e   a ; .cgt 3.» a '■ ; c    en: ^» { i tie a   >.j»^ \> r 

v     . ' l c ft   il uHirj-.. 

Uc    i-.aVt»   aeeli   ll'.»t    läuc    ,A!5CJ    ^foviao,    VSsiCsn    la   ?»u    J>>c'i>!.i-n    i.-.   <.»s;V'*« 

.  :  i..      .o a    oj    «^J>..Cil    fl-a ! .'-.en«.;» { I <■ r        :i.4r   ?><•■    t'-c   5 c.5-«Jj^.».,.'Vx1':,;',,' '."4 ,.^,'".; *     '  :     '■     ^ 

■■.'.iij   «Cd :      «rven   «l!ct    Atfcj'SlftÄ  «;ö»vai»JcJ'«i!»«c   a iJip i SJ U-at I ufta   ttji   *, 

:  ■ • . :i... t i ,>i.o,   •.;.»■   «i-iiinjf   ol   i!©n.a   in  Uc vtitt<;n «t'övn of   pfogr *r.in«^   la   s 

;...w. ::.«■   ;•...•,/  ei>.et>i   t J»c   «i*nJ!»cr   -■!   iu>toc>*leti   In  A   , .; r ■;   ol   ^^tt  wsviicrr   a'.A'-.jn ' 

> , . wi l lo;va .       n.lo    ia    In   p»ii.   Uccauoc,    «TVr,;»    Ü    CJXli   ufil I     Involve««    Itt    I!«       ■  '. . 

' ..a   .i   !ii:.4.i   !i,^»«4>cr   oi    ::', x : <• t>   vh^ft   VicVc^i   Alcno,    1 h«   number   oi    UUc! - f c. ^ '. I c -.» 

bi   .ccn  lha  »«I  o'   unlia  n.<*y  b«  <■;..•! :;w,,.-..      In pari   II   la li«C4Mac <■..   :   unit 

c^tk   .;■.<•.:   b«   In A complex  ftol  oi   »laictt.     ....-••.   li   A naval  »:..::   ha»   to 

irACA an >•:.<■:>  unit  during  on opprociabio   Inicrvol  o(   Had,   Us pivo»'?,   or 

lha ago ui   it-.   iracklnK  nliuailon,   So  ra<;ulrc«l   In oriicr   co »pccliy   ll»     ..»;<■ 

in  ■.-.'■ aarkov proeäna.     ...;•.   1H A coniinuoun  paroaoicr,  uhlch, uhtm  replaced 

by a  flnlio t»ai of   Iniorvala  in a cospuiAiional ApproKl&Ation, would   load  10 

a  cunnldcrabla  incrcano   In  the nusbor of  uiAtcn  for   ii.-.i unli.     Even   If   (.hero 

wore no cuaplox of   Interconnectlotu» of oany  »yttteau,   the  fact  that  A   nyutca 

conpooed of  n slallar  unitti each having  a  poaalbla  ntatoa would be  A   »yatoa 

having about    it   ponttlblo  acacao,  and a  transition aacrlr. of»       oleaonts, 

ahowa how oanlly the act of  torn» or nuaorlcal  icoaa can grow out oi  control. 



-, _  

lists   ii ,   Vy   auill.e   ».*4t*,    a<»cÄ   jfe*!   niwi S i S-wica   »*J    ', } eiii.a   i un,; 4   1«   «-JiJt^Ä 

iitliJoi-,        iJ     Oac    tfe*< <vj *< 4«-«    *»©    }c^.3.J4.*iC    *a    «.lli*i i    t*^iiim    ci^i>3;.     .;-.c;J 

?;*,*;    »;t,»ivs I -       V^-.-a,    5«.   *    ceijiaii.   «tvuty    J ftM-e»»• & i-i   VtccioAa    »(    i.Oi,s.ii      o-i c ? 

v.'»a    ! -.4 !    *A    EiS»4 4i't.|v*#   f<sf ««ttt Ji^c   etjaj    oj    *ii»,twS    4*6.    t'**?^*'*!    nli-i-'    »««il)    ic 

«;     ',       '.a.tcaa   av.<3i   4    _:■.-:... L '. ■    W«f«   .-;...ici4.    Slue   «fea-wei    <#««4   t-w 1   V« 

»4ÄJ5   44X&o» by  <anaihe|  jvshJ«?!,   imeft>Je«J   l& (iv« oftl..   live  £c%«t»i.     . --:c   ..; 

*■..•,.:.  4» 4  .-..'-v/-- -■..■.■.'ii'.t  «  »».»»i  dünner of  Juinclt«;»,   forn.ii-.^ *  Jlinv ii:»i,,i;i 

:;..-.:   C4n be »Mly&vd nuner ic^i ty.    Of  contrs»« litis gtv«6 up t^c »lu^iiy oi 

w.-: .■.: l<-.;   inicrctciion»; bui   ;; tutty rei-Aln conttititfrabl« rcdHitn..  «» viwn o«clt 

of   ih« oppoitln^ force» renains logeiher amJ the  inieraciion»  invoK'e chief iy 

(ietociion and Approach of  the  cvo force».    When after  euch preHstin^ry 

operation»,   the actual cosbat  take» {lace between pair» of   imHviiiual»  (the 

dual),  or   in very »sail groups,   the aoro detailed  ntudy of  »uch action» can 

often  bo oado uuing  the  t.tuch.u.i-c  equations,  a»   in  $10.     Such operation» 

have boon called ondfiaooa by C.  Raisbock,   in analogy  to  the cloaing »tage» 

in chctti»;  although after  the ailitary duel»,  ourvivlng unit» cay recntcr 

the   larger  gaoo. 

For  the aoot pare,  the nffocta of the proposed weapon syateaa or 

tactic» undar study aro rovoalod by  tho endgaoo.     But  sot&e nay already be 

mmmBaammm 
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ll*Al     ;a   ^acjwi     iä.   h.c;jiit^    5 u    ccr    Ji»»l    ■  'i.* S    eiii* i.n*a • - ftiui    £ udue cv,*A5 , .1 .    v'i.»« 

jjj;.o{'.;*i   9i    c*aca,       2«    I«,    ?KcJe{«J«.    »   fc-viie    ! i)    »c ;c-r*t.c e .       it    V'u»»;4,   <«» 

itxttivife^   CiJc-c»    <ää5*«"    O{    the   vftila,    Jsvt    t»«<4uft«   aw<3-.   c4a4^4.n.ca   U'ii-Mii4   ts»» 

Ha   tij»«tt<0   «J   «KOif Jc»««   ia   a.ifeht,    thi*   IM«   lö   he   «alcfc4    laio   ili«   4«« 4    .': 

«a;   <d«5"«J <«<I i»e****   &ll»««l 1^41 loo. 

c«m4N>(   A^xitfa»   la  a  t.g<«;fto.4fy c<radiit*?a  tot  «ay  reAll«ClC   »Iwiiy  Ot   AllltAty 

coftt-«f ttfCliVMM«*.     Oi  court«  il   S* aal  a  guj i Vt S^at ccauJlliwo:     ccoaoafcic 

   : -  
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•'• ^. „v'*■-*,*-.'      W ,       .'-A-'V t'-VW* 

1 «         ■> *   V    u   »""t       ^    , ' •■        '   «         ...   -         U   t      f   9   t.  i   4                                       •          ,   ,             •       ~    .    ■ • 
^..;■'";.     .Ji i /J .T .  *J                                                                         :. . A 

i 

Ir«.        -»■»■.   »,»l       » &   T-   w    «   '       •t.«4»t*>4 

;*. ei.. -•i. ■ ^'... ■ 

c ^ - • - ,%*^NÄ" •v*-». 
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^ . .\/A 
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j                 .V/A 
v r.*. >■« cr .lava* r.citji;' . 

| Atvil A;-.a.lya-i'  J^-o,:;-^-,   Jet  ■ 
Vaibir^tor..  D.  C. 2C: 2 

0                                      | 

' Wwn a ji roli.'iu i - icy (i Inr r £but ion of a target  in given,   the prob^cT. o: detecting  ' 
ir by a civcn ätüthod üiv< alving the progretiaivc expenciture of effort . •..ill  bo 
harücr or ir.iaicr accordins to the natutv o:" the discrijucic:..     ' na: Li ft %1 • 

."scasurv of tfw do^roo of difficulty of detection by the rvethod in qu cst.on   is 
Xtw QxpoctGü value of ch i quantity of effort ut.ed  up  to the [rav.Cor.) t: cr-c-.-.t  or 
düCcct iör.--üaöu5ing that the r-.or.r effectivu uue of the effort  is mace at each 
saagnr. i 

i 

r Tta  {L~      object of thlö investigation is to aha** the  connection becvecn the 
prvac   .   concept when the search  ii» done aa a procedure of succeasive ci-cnoro^iei 
unt       .öCMIIS.I: lon--to u pre-utated oi-der of precis ion--is obtained. The  con-   \ 

1  r.i    . Lnn wSth the clüsölcal  theory of inlorr.ution   (entropy and CVQBS- entropy) 
i    tthown. 

. vc   siicond  object of this   investig.ition  is to apply the rr.cthod to fl .e  c-isc   in     ] 
■• .ich the  Iftw of random search  is applied progressively and optical] y to  the 
. .arch for a target in a linear,  planar,  or spacial  region   (or in r- space). 
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