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SEARCH AND INFORMATION THEORY

#. O. Koopzan

1. Introduciion

fEver since the =id-ninoteen-fortics when tne zheories of information
and of scarch becaze sublects ol general interest, attempts have been zade
to appiy the theory of {nlorzation to prodble=s of scarch. These have proved
disappointing; ncither the f{orculas nor the concepts of the forzer theory
have found a place {n clarifying the probie=s of the latter. It haa sce=ed
to the present author that this fact (8 a natural consequence of a funda-
mental difference {n the sublect-zatter of the two theories: in search,
the geozeiry (in the sense of positiens, distance, arcas, etc.) is an es-

sential factor of the operation--in the elezentary act of detection is to

select a position and look near it. In the classical theory of {nfor=zation,
on the other hand, no attention is paid to such metric catters, the idcas
being confined o dichotozies: the elezcentary act is to ascertain {n

vhich of tuwo subscts of a given set (e.g., of states of a syste=) the actual
object (or state) bdelongs; and the geomatrical shape or extent of the sub-
ncts has no necessary conncction with the operation.

Tha purpose of the present investigation {s to turn the question

around, and 0 sock, not what applications informatfon theory has to search,
but what light scarch can throw on a broadaned conception of information
theory. The wey i{dea is to start with the notion of tho clezentary

datecting operation and then to see what kind of quantitative measure of

infor=ation can ba obtained by its optisally repecated use We, shall use
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Lhe language of scarch; but in order to bring out the essential simplicity

and gencratity of thwe {deas, we shall put the definition in a somewhat gen-

In scarch there are LW places where probability can enter: {n the
arotaaii.iy dontribuiion of the target's possible positions before the
searcl; ownd tnothe conaitaenal nroosabliliizy that the searching operation suc-
Coed fn detecting dr==pgiven that {U Lu present at the place searched.

the Tirst, v will be assumed henceforth that the target

s in an unknown position x on a certaln set N of possible positions, but

R . : , {

thatl itn probapilitlies p ol belny {n the various positions in X are known.
{
of thera are ondy o fialte puzber of positions {n X, all their probabilicies !

are given; 8 X has a centinuuz of possidle points, the probabilicy density

|

Aegarding the second--the conditional probability of detecting--it

will be angunmed that there {n an clenmentary detecting operation, repetitive
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padle of ansuwering certain of the searcher's questions
concerning the target's position. This operation zay only succeed with a |
certain (unown) probability of giving the answer; but when {t does, {t {s
truthfu.:  we are not considering the posuibility of falue contacts.
Concerning the celementary detecting operations, we sct up a sche=a
L ol thcne operations {n such a way that, by carrying thea out {n a suc-
cennion depending on the resultn an they develop, the target's position {s
finally found--cither exactly or «ithin a pre-stated degree of accuracy.
The zaxizuz nuzber of operationn nceded zay be finite, an when X has but n

ponitiions and the clezontary operation consfnis {n asking whether the target

fu in pema nuboot A of X or aot--the question aiways being answered. Or the

.
nuzber of oporations may be ohe integaer on one occacion and another on a
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scecond--uevery positive integer representing a possibility. But in every

Case the schema determines a randoa varjable N, the number of detecting

1:.

operalions up to target localization (with the accuracy stated). Since

s onon-negative, it has an exnected value EN finite or not.

.‘-l: z »

These notions will ue given concrete {llustration by the examples
exaniaed later.  For the moacit we mercely observe that each performance of
e viementary detecting operation is thought of as representing a liabilicy
or cont cxpenditure (in units of money, time lost, degree of exposure to
daunger, cic.). Therefore, axz fa a "bad" quantity which we seek to minimize

by our choice of L.

Agaiast this background we lay down the following:

DEFIN.TION., The guantitative mecasure of uncertainty U(p) in the

probadility Jdistribution p (f.c., in (X, S, p)) is the mini{mun of Exx--gi

its greatest sower bound--for all possible choices of schemata L. Further,

2. Operational Compatibility

The ideas {nvolved in the target's probability distributions and
their combinations lead to no conceptual difficulties. But those which
concera the clementary detecting operations and their probabilistic com-

binations (with cach other and with the probability distributions) give

141
(3]

i8¢ 0 hitherto unsuspected difficulties, which were first brought into

avidence by J. M. Dobbiu.2
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There .o in fact a parting of the ways--according to whether the
cicmentary detecting operation has o material effect upon the sitcation it
{5 intended to examine, or whether it merely Increases the scarcher's
cnowledge without altering anything cise in the world.

Only with the advent of acdern quantum mechanics, in the nineteen

wenties, Las the basic issue .ovoived here been explicitly identified.
The “principle of indeterminacy"” (hetter, 'restricted accuracy') is il-

I oalrated by the impossibility o: cxperimentally determining boch the position
and the conjugate momentum of an cicmentary particle beyond a limited
Gecuracy. Yo reason is that, withuin the framework of this tieory, state-
menls about position and momentum can only be statements about the outcomes

of position and momentum observations, whose actual performance involves a
mutual interierence.

Rather slowly 1t is being realized that this issue is by no means
coniined to phenomena at the level of the elementary particles of physics.
An example {rca blology and from military search will illustrate what is
basically {nvolved.

Supposce that a hitherto unknown mutant of a laboratory rat is to
be cxamined for resistance to two toxins, A and B. If X {s the length of
time of survival after the untrecated rat is expused to A, and if Y is the
corresponding quantity for B, it i{s evident that X and Y are defined by in-
compatible operations. If lJarge numbers of such rats become available, one

could umeasure the averages X and Y, and so, by the law of large numbers,

evaluate their expected values, EX and EY. But the expected value theorem

E(X + Y) = EX + EY

would be false--not because the laws of probability are viclated, but because

M=
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the svaoel & r Y, as a chance variable measured by the class of one-rat ex-
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purinerncs, nvolves an operational contradiction. More primitively, 1f a

F is the statvaent "the rat dies within an hour of sole exposure to A" and B
is the curresponding statement for B, we cannot apply the theorems of prob- ’
ability to t.e logical cowtinations aB, a + B, etc.--not because probability
is wron,, but Levause a and 3 are incompatible events: a8 and a + 8 are
meaningliess according to the definition of a and of B as one-rat events.

The German use of search-receivers against rada: in World War II
t gives a suouad illustration of the point: After a first radar search without
resuit, o sccond scarch of the same region has a probability of success
affected, not only by Bayesian reasoning based on the negative result
of the {irst, out by the fact that tne hostile target may have detected
the presence of the searcher and taken measures of concealment (e.g.,
submerged, ifi a submarine): The first act and essentially change
the conditions of the second.
E J. M. Dobbie's example is the case of search for an object dropped

on a sandy beach, when a first search may have the physical effect of ac-

”;

cidentally covering it with sand.z
Only with the basic postulate that all the events and random variables

considered together in a probability system are comgatible3-—i.e., definable

by non-interfering physical acts of observation--does the situation exist

for which the laws of probability are conventionally stated.a

Such compatibility shall be assumed in what follows.

3. Specific Cases

The concepts of the last two sections are illustrated by cases

falling into two types.
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In the first type, the elementary detecting operation has a unit
probability of success. For example, in the definite range law of search,
it is assumed that the target is detected if and only if it is within a
circle of "detection range R" of the searcher. In case of the effect of
target aspect, the circular region may be replaced by one of a different
shape; and similarly in non-symmetrical looking (e.g., anisotropic array
gain).

In these cases, we can say that the class S of subsets of X (ref.l)
contains the circles, or their modifications; and that the elementary de-
tecting operation is that of seeing whether the target is or is not in one
of these special members of S.

A more flexible situation is that in which any member of S--i.e.,
any operationally meaningful subset of X--can be selected; and then the
presence or absence of the target in it determined by the detecting ob-

servation. We shall call this the case of unrestricted dichotomy.

In all these cases we have defined the elementary operations, but
have not yet examined the result of their successive performance, nor con-
sidered the construction of I-schemata which will guide the strategy of our
search-to~localization., It is here that the question of compatibility must
be faced.

In the case of the definite range law, let the first elementary
operation consist in placing the observer at the poiat X The probability
of detecting the target is the probability of its being within range R of
X i.e., the integral over this circle of the probability density p(x).
But suppose the result is negative; can we say that on a second performance

of the elementary operation, centered at another point xl,the Rrobability

G
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oif detection is Zound by applying the same formula to the probability
densitcy Po(x) obtained from p(x) by Bayes' formula? The answer is in the
aifirmative only if the target's location is unaffected by the first oper-

ation--i.e., in the case of compatibility of all the relevant events.

! A similar statement applies to the other examples just given of this
first type of case--in particular, the case of unrestrained dichotomy. And

in view of our present assumption of compatibility, Bayes' formula will be

applied.
In the second type of elementary detecting operation, the conditional !

probability of detecting, given the target at the place of observation, may

be less than unity. Here the question of compatibility applies not only to

the law of change of the a posteriori probability distribution, but to the

conditional probability of success of later detecting operations. With our

assumptions, the former is Bayesian as stated before. The latter is evidently

given by the survival probability formula for repeated independent trials:

if Po is the probability of detection of one elementary operation (given that

the target is in the place searched), 1 - (1 - Po)n is the probability of

detection by n repetitions. This can be written as 1 - e-Un

where
U = -log(l - Po) > 0. In this form, n may be regarded as the number of units
of searching effort.

A more general and important situation is that in which there is a

continuum of elementary detecting operations, measured by a parameter u which

expresses the intensity of search, or amount of searching effort, directed H
at a given reference point X Let Po(u) be the conditional probability
of detecting the target, given that it is at X, and that the effort u is A
applied: i.e., make the broad but still restrictive assumption that when

(xo, u) are given, the conditional detection probability is determined.

A=
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Ii v is first applied and then v, the probability of detection of
the whole operation is Po(u + v). Now since we are assuming compatibility
of the elementary operations, we can regard the latter as equivalent to the
conjunction of the two former (e.g., first u, then v). And since the target
is given at % the probabilities are independent. Therefore, by elementary
probability, the complementary probabilities Qo(u) = 1 - Po(u), etc.,
satisfy the functional equation Qo(u + v) = Qo(u) Qo(v). On adjoining to
this the obvious fact that Qo(u) decreases as u increases (the more effort,

the more chance of detection), we can derive rigorously the solution

-4 u -u(xo)u

Po(u) =l-e ° =1-c¢ .

. e . 5
where W, 1is positive. This is, of course, formula of random search. It

cannot be too strongly emphasized that this derivation would be wrong without

thhe assumption of compatibility.
The remainder of this paper will apply the definition of information
of ¢ 1 first to the case of unrestricted dichotomy; second, to that of ran-

4

dom search. The former will take us into contact with classical information

s B

theory, while the latter will lead into a new area, and throw light on the

process of surveillance.

4, Unrestricted Dichotomy in the Finite Case

We assume that the set X contains only the finite number n of
possible positions and that the elementary detecting operation consists in

subdividing any subset X1 of X (possibly = X) into any two complementary

1

subsets (Xl = Xl

+ X%) and then finding which one contaias the target.

koad




If we wish to repeat this process until the position of the target

is ascertained, we wust first decide on the decomposition of X into Xl and

X,. If the first operation gives that the target is in X,, we must then

1
decide how to divide Xl in two. Similarly, if the target is given in XZ.
This process must be repear 'd until the target is found. Nothing prevents
our mawing all possible choices of dichotomies in advance. Thus we are led
to the schema I, consisting of a complete system of branching dichotomies,

as follows (using + to denote the set sum of two mutually exclusive sets,

and "order'" to mean the number of subdivision-and-question procedures):

First order: X = Xl + Xz

Second order: xl = Xll + xl2 . XZ a x21 + X22

X + X

Third order: X,, =X 22 = 4991 222

1 = Xygp X0 X

In writing this out it is understood that in a given horizontal line, we
stop a dichotomy of any subset containing just one element; and on the other

hand, we always push the dichotomization until this is the case for every

subset. The result is a schema I appropriate to the present problem. It
can be represented graphically as a "tree', always branching in two, with
branches finally terminating in points, n in all, corresponding with the

number of positions in the searched set X. 1
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Levels

o (ground level)

Fig. 1 A Schema I tree with n =9, h = 4.

Let us think of the terminations and the branch-points of the tree
as grouped into fixed levels corresponding to the orders of the dichotomies
they represent, their heights i above ground being the corresponding number
of units of length. Then i will run from 1 to h, the last order of
dichotomy--the "height of the tree" (= O when there is no dichotomy: only
one p, + 0). Finally, mark the terminating points with the symbols Pyseees
P, for the given probabilities that the target be in the positions ¢,y ¢

++ X, . Thus we obtain a graphical representation, of the type shown
in Fig. 1, of a schema L. We are interested in the corresponding expected
value ENZ of dichotomies needed to reach the target.

It is convenient to pass from this graphical representation to a
mechanical one: Imagine the tree as a weightless rigid frame of branches,

to the n terminating ends of which are attached particles of masses Ppreees

p» as exemplified in Fig. 1. Then the formulas of elementary wechanics

0=
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show that dNZ is the height of the center of gravity of this loaded tree.

lience, the optimum schema, which gives U(p] by minimizing EN is the tree

5
of lowest center of gravity bearing the given PyresoPy in the way described
above.

The operations of "branch-interchange" transform a tree bearing
Ppres 2P into another such tree: to characterize the tree of lowest center
of gravity we must examine their effect on the position of this point. For
this purpose, a precise notation is useful:

Consider the line segments between the levels i-1 and i: cach one
defines a branch, composed of all the segments joined to it above (direcctly
or indirectly) and all the terminating particles they bear (cf, the branch
enclosed by the dotted line in Fig. 1). At one extreme, the branch could
reduce to a single line segment terminated by one particle. Every line
segment will be identified by two indices (i,3), where i is the height of
its upper extremity (i = 1,...,h) and j is a second identifying index,
running from 1 to n the number of segments whose tops are at the level
i. Clearly, ny = l; while for i = 2,...,h, we have n, & 2. The same
two indices identify a branch--the one determined by the line segment of
these indices. Let wij denote the weight of the branch (i, j); i.e., its
total load of terminating particles. Thus, in the indicated branch of Fig. 1
we have wz’ s = Py + Py

A basic tree operation is the interchange of two disjoint branches,
e.g., (i, j) and (il, jl), having no part in common. This, of course,

includes the interchange of the particles themselves. The useful and self-

evident fact is that for the tree of lowest center of gravity, every such

interchange raises it or leaves its height unchanged. N

-11-
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-12-

e,

) =

P .




T ——

A

s . )
Wi, an Wil De osced later, is non-ncegative. Since 0 § - < 1, we have
n
the anyanlalic lormula

U= t(l +0)
n

Joooit every probabiitiy dn (p.,..., pn) is a positive integral

i
power ol 7, o equaln the dladic antropy U » K. For {n this case a tree

}
can be constructed {n an obvious zanner so that each probabilicy |

e zans of a particle of helight {--and no branch iaterchange can lower

r—"
ror-

{nna

the resudting center of gravity.

L. In the zost gencral case of probability (pl...., pn), we have
e dnequallity U 3 H .
o prove this, let T be any sche=ma, optimum or not, and in the

corresponding tree, redesignate the probabilitics with two indices as p1J -

where, if there are no particles of height {, p1j = 0; {f there are 8, such
particles, § is an Iidentifying index going from 1 to 8, Clearly
U< ? i ;1 P
ja1 jm=1 M
h °1
H= 1-£ - E . pijl°gzpij c

sow consider a second tree, of the same branches as the given one,
-1

but whose particles at height { have the masses [%J . That this is a

legizi{mate distribution, i.e., that the sum of the masses is always unity,
{s shown by the following mass counting process: each particle at height

i < h and nass

-1
t 1 |
n_il

i+l
can be replaced by two particles of masses [3] at

height 1 + 1 joined to the original position by two line segmen%s, without

=] 3=
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actering the total mass. Continuing in this way, the tree is replaced by

A i
onc 0! cqual weight and having all {ts particles of =ass [;- at height h:
Le s

there belng 2% such particles, fts total mass {s unity.

Y
i p;‘ {5 the mass o! the particle replacing p in the or{ginal
o

13

lree, wWe bave by a formuia of convex functions in information ctheory,

" 2 P,
L L pijlogv—fl 20,
el §je=1 pij
(= G {f and only if every Piy " pij)
Hence
n§:‘?:11 '[‘2111
- P,,408,P,, = p,. log.p
{=1 j=1 470y j=1 13- 7271y
% : (-1)
-zp_i
fe1 yu1 4
h
= -L s4Ip
o1 1

This, combined with the definition of Uand the fact that H = -Epilogpi is
independent of any particular tree, leads to the desired result U 2 H .
Thus, the close relation--but not identity--between the search-
theoretic operational definition of uncertainty and information theory, and
the diadic entropy and its negative, the quantity of information, are shown.
One might describe the situation by saying that only exceptionally can the
full amount of classical information be extracted by the dichotomy searching

process. .
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5. Unrestricted Dichotomy in Continuun

wnen the set X of possible positions x of the target is & curve, sur-
face, or higaer dimensional continuum, on which the given probabilicy
density pux) Ly cessentiaily continuous, the expected number of dichrtomy
operiaticis up to exact locclication is, of course, infinite, and the pre-
vious ideas nceed to be modified--and indeed the practical problem of search
siwows that the diffficuleies are tne result of a refinement irrelevant to
the problem. For, once the target has been localized in a sufficiently small
region, it is as good as found: after all, the '"position x of the target"

means the position of a reference point in the target; and if the latter is

is a solid, fts physical dimensions will extend about this reference point.
Or if our "target" is not a solid but, e.g., a radiation, and we are
searching for its '"position" in a space of such characteristics of radia-
tion as frequency, polarization, direction, etc., once these are 'boxed
up” in a sufficiently smal. region, the practical problem is solved.

If X is a finite line segment and if target localization within a
small distance Ax 1is sufficienc, we have but to cover X by n non-overlapping

segments (xi_ xi) of length Ax, and then to apply the methods of §4 to the

1,
n probabilities obtained by integrating g(x) over each of these sub-segments.
In this case, diadic entropy becomes (usiig the law of the mean for

integrals, etc.)

n J‘xi Xi
Hea 121 xi-lp(x) dx - logp J—Xi—l p(x) dx

X
i -
a -g !' p(x) dx - [logzp(xi) + logopax] dx
X
i“l i-l )

-15-
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= - _fp(x) log,p(x) dx - logzﬂx + Z(Ax)
M 2

= li{p(x)] - logztx + Z(4%)

wiere Z(0x) denotes a quantitly approaching zero with &x, and i{p(x)] is
the diadic eitropy of a continuous distribution. This means that (ne-
piecting (0%, it is wot ii(pix)) that is the greatest lower bound of the

uncertainty U, but this quantity plus -logolx, which becomes infinite as

Zx o+ 0. Thereiore, our search-theoretic definition of uncertainty requires
modalication, since in its previous form its value will be crucially de-
pendent on the criterion of accuracy Ax.
in oréer to secure a more intrinsic conception of 'search uncer-
tainty'--one less conditioned by the value of Ax--we may proceed as follows:
When 4x is given (in addition to X and hence n), we might reasonably

think of its "gtandard eifect' as the uncertainty in the special case when

p(x) .s most unfavorable; i.e., as the maximum expected number of dichotomies,

when--keeping &4x, etc. fixed--the results of making all possible choices

of p(x) are compared. Evident reasoning based on the results A, B, C of

§4 shows that the maximum in question will occur when the n intervals A4x

are of equal probabilities,i.e., when p(x) is constant; and that then the
uncertainty differs by less thin unity from the value log2n = logzL = logZAx,
where L is the length of the interval X. Moreover, then as 4&x + 0 (i.e.,

n + =), the minimum is asymptotic to the above expression (their ratio an-

proaching unity).

e s
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The algebraic excess of the actual uncertaintv for the given p(x) over

its greatest possible value is pounded below by a guantity asymptotic to

H{p(x)]} - log,L ,

as Ax » 0. VWhen p(x) = constant, this uacertainty is itself asymptotic to

the above quantity, which is itself independent of Ax.

It is noted that, if q(x) is the uniform distribution over X, i.e.,

if q{(x) = 1/L, the above expression can be written as ~G[p, q], where

Glp, ql =fxp(X) log, ﬁ—é%dx ;

Now this G[p, q], which will re-appear later, is the fundamental two-

distribution information (the negative of the "cross~entropy') introduced

in 1950 by a number of authors,6 and representing intuitively the increase

in information concerning the position of x in X, conferred by any datum

leading one to replace the probabilities q(x) by the new ones p(x). It is
shown to be between 0 and +», equal to the former if and only if p(x) and
q(x) represent the same probability distribution,

It is necessary to consider cases that, in two respects, go beyond
the simple one just discussed. The first generalization maintains & one-
dimensional X, but requires that the interval Ax of acceptable accuracy be
different at different positions, as when a second type of search will follow
the first and will have a power of detection which varies with position.
For example, if a definite range 1law is to be used, its range could vary with

varying visibility or background noise from point to point. Let two values

-17-




(x'<x'") be given; the degree of inaccuracy of a search giving

target x is in the interval (x', x''), which in the previous case
was its leagth Ax = x'' -x', is now a more general function of x', x'';
i.e., F@', x'").

Clearly, if x'"''>x'' is a third point, it seems natural to regard

the inaccuracies as additive; i.e.,

E(x', '"") = Fx", x%") & Bliix"",.x""")
But this means that, for sets composed of adjacent intervals, the 1naccuracy
F is an additive set function--obviously non-negative, By a reasoning that
is as old as the calculus (although re-phrased in all precision and generality
in the modern theory of integration), we can at once conclude that under all

conditions of physical interest, the limit

]
£(x) = lim £(x, x')
x'+x x'-x
exists, and that F(x', x'') is its integral from x' to x''.
We now make a change of variable, setting y = ¢(x), where ¢(x) has

a continuous positive derivative ¢'(x). This will transform the interval

[

x £ b) into another one, (a £ y € b). On the other hand, since p(x)

(a
and f(x) are densities, the quantities p(x) dx and f(x) dx are preserved in

value. Hence p(x) and f(x) are replaced, respgct;vely by
ply) = B(o(x)) = p(x)/9¢'(x)

E(y) = £(4(x)) = £Cx)/¢' (x) .

-18~




We next select the particular change of variables function ¢(x) so

that f(y) =]l and a = 0; i.e., take

y =00 = [*£(x) dx .

This means that since

J’ b _ b
3 f(y) dy = J; f(x) dx = F(b, a) ,

we obtain, for the length of the interval (a, b) ,
L = F(b, a) ;
and further,

Bly) = p(x)/£(x)

But this change of variables leads from our general problem back into
the earlier one, now applied to the set Y of the values of the variable y,

upon which set X has been mapped. The reduced diadic entropy expression

b
HIB(y)] - log,L = -/ B(y) log,B(y) dy - log,L .
a

This becomes, on substitution, etc.,

b

- - p(x) - -
J_p(x) logzq(x) dx , Glp, ql
where we have written
f (%)

q(x) = —D - .
. f(x) dx

Note that the q(x) as defined has the properties of a probability density.
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g The final result is again that the excess of the expected number of
dichotomies needed for detection to the accuracy F(x, x') over its maximum
value has -G[p, q] as a lower bound, asymptotically as Ax =+ 0.

Our second generalization is to the case of a higher dimensional X.
In view of the detailed considerations of the previous cases, it may be

permitted to treat this case rather summarily. We shall “uppose that two

non-negative additive set-functions P(A) and F(A) are given; the first is the
probability, before the dichotomy search, that the target be in the set Aj;

the second is the degree of inaccuracy of the datum that the target has

been ascertained to t. in A. By a change of variables, X can in practical L
cases be mapped on a set Y so that F(A) is replaced by the "Extent" (length,
area, volume, etc.) of A. When the total value F(X) is finite, we may

"normalize' F(A) to unity, i.e., replace it by the probability set-function

_F(A)

Then the greatest lower bound «f=the_cxzmss of the expected excess of the
1
number of dichotomies for localization to F~accuracy (or Q-accuracy) over N

its maximum is asymptotic to -G[P, Q], where

| G(p, Q] = -flogz(%%) « dP = J‘p(x) 1og2§%§% dx , )

in which p(x) and q(x) are the density functions corresponding to P(A) and
; Q(AY~--or, better, %% is the derivative of the set function P with respect
to Q. The final result is the following, which we state here in terms of
the search-information, as defined in §1 (The negative of the uncertainty,

and taken as non-negative.)

-20-
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The search information in the distribution P, relative to the ac-

curacy standard Q, is bounded below by a quantity asymptotic, as Q(ax) =+ 0,

to the general diadic information G[P, Q] .

6. The Case of Random Search

Search, in the original Naval sense of the term, is conducted by op-
erations that do not fall into the class of the dichotomy, but which bring
to bear upon a certain locality a determined degree of effort. As explained
in the second half of §3, when the elementary searching operation is the
expenditure of the degree of effort u in the locality of the point x, and

when all such efforts there are compatible, the conditional probability of

. -pgu
success is 1 - e ¢

, where u may differ for different points x. This is
the lsw of random searchs, and will form the basis for the present ap-
plication of the conception of search informetion, 1 .rmulated in §1.

When X is k-dimensional and dx is a k~dimensional element cf volume,

the intensity u = u(x) of search at x must, when integrated over X, give
(with the additivity assumptions underlying the discussion) the total

f searching effort U applied to the whole of X:

(6.1) IX u(x) dx = U .

The problem of the optimum distribution of this giveq quantity of total E
effort, when the target's probability density p(x) is given, can be inter-

preted as follows:5

-21-
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Maximize the probability of detection

(6. %) P[U, p] = -’:.X P(X)[l - e'u(X) U(X)] dx

subject to the equation (6.1) as well as to the inequality

(6.3) u(x) 2 0

The solution is given in the references. A point of view of sequential
optimization has recently been developed by J. M. Dobbiez, particularly in
cases in which our assumption of compatibility is not made. Before going
further, we must be more precise about how the quantities are measured.

The total searching effort U shall be measured in units of k-dimen-
sional '"volume searched" (area, if X is a region of the surface of the
ocean). Hence, the same will be true of u(x) dx, the element of integration
in (6.1); and u(x) will be dimensionless if and only 1if the coordinates are
lengths. But in every case, a change of variables of integration must
leave u(x) dx invariant, and hence multiply u(x) by the Jacobian of the
original coordinates of x with respect to the new coordinates. Since
p(x) dx is both invariant and dimensionless (being a probability), p(x) is
of dimension depending on that of the coordinates » ([L~K], if they are
lengths), and changing as u(x) does under changes of variables of integration.
Since, furthermore, the integral in (6.2) is a probability, and hence di-
mensionless, the quantity p(x) u(x) must also be dimensionless; therefore,
the dimensions of u(x) must be the reciprocals of those of u(x). Finally,
since w(x) u(x) must, by similar reasoning based on (6.2), remain invariant

under a change of variables of integration, such a change must multiply k

L]




u(x) by the reciprocal of the Jacobian of the old coordinates with respect
to the new: i.e., by the Jacobian of the new with respect to the old.
We shall use these facts to standardize our expressions. Let us

introduce the new function

(6.4) $(x) = u(x) ux)

It is invariant under change of variables of integration, and is dimension-

less. In terms of this, (6.1) becomes

dx
f){ o(x)u(x) ST

Now make a change of variables of integration, selecting the new variables,
X, so that in the invariant expression
dx dx A

w(x)  u(x)

The £(X) = 1. In other words, introduce such vuriables X that the

Jacobian

a(:.‘) D(xl|---, Xk)
3(X) 3Ky eees %) = u(x) = u(Xyyooe, xh) .

Such a selection is, clearly, always possible.

As a result, the optimization problem corresponding to (6.1), (6.2),
(6.3), is replaced by the one treated at the outset of the reference5
(replacing ¢ by U) viz., of finding that function ¢(x), among the class of

functions satisfying

(6.5) Sy o) ax = v, $(x) 2 0,

btk oy s 3 ot ORI
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which waxinizes

~

(0.0) P(U, p] = Jx p(x)l - e .

"'Q(X)] dx

In uil that follows, the notation and results of that reference will be
used implicityly (log denoting the natural logarichm).

We have to consider the expected ''number of elementary searching
opcrations”, ENZ , up to and including detuction. Here, the number NZ
is evidently to be interpreted as the amount of effort, QE , used up in

the search up to the moment of detection. To obtain 1ts maximum expected

value, the schema I must schedule each unit of effort optimally as a
sequential process. But {t is known5 that this 1s the same thing as to
have the total amount of effort up to any point optimally scheduled.
ilencefortn, the schema I will denote such an optimum scheduling; and
(dropping this subscript), ¢ shall denote the random variable defined as
the quantity of effort just used up at the moment when detection is made--
assuiing optimum scheduling throughout. Thus, ¢ is a chance variable
having a probability distribution of taking on various values U.

With this definition, the "uncertainty'--the U[p] of §1--is given

by the expacted value formula
(6.7) Ulp] = E¢ = Jr U d prob[¢e S U] .
0

Using the notation of the reference5 (log being the natural
logarithm), we introduce the non-negative variable A, the family of sub-

sets A, of X parameterized by ), defined as the set of points for which

A
p(x) 2 X

==
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(6.8) By =1 )t | p(x) 2 1)

and also the k-dimensional volume v = v(\) of AA (area, if X is a plane):

(6.9) vy = f L oax
"\

Since AA increases in content with decreasing %, coinciding with X when
A = 0, v()\) increases monotonically with decreasing A.

Similarly, the probability that the target be in A, , given by

A

(6.10) () = JCA p(x) dx ,

A
is a function of A, increasing monotonically from 0 to 1 as A decreases
from + = to 0. Furthermore, for any value of A\ for which v(A) has a

derivative V'()A), m(\) does likewise, and
(6.11) () = AV'()) .

This is easily shown by the elementary application of definitions and of the
law of the mean. A generalization of such a relation to a jump relation
§n(x) =A8v(A) can be made, but will not be used here, since almost always

in applications the behavior of p(x) is such that (6.11) applies at all

points. Finally, on setting

(6.12) S(A\) = f;k lo ix dx = j;x log p(x) dx = v()) logk ,

A

We recall that it was shown5 that S()\) increases monotonically from O to

+ w as A decreases from + o0 to zero, and does so continuously, taking on

each intermediate value exactly once. This means that any discontinuities

in the two terms on the right in (6.12) cancel. . '
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In these terms, we can state the results of reference5 for the
optimum searching scheduling as follows:
For each given total available effort U, determine the unique A

satisfying the equation:
(6.13) S(A) = U .
On the corresponding set AA , apply the intensity of searching effort

(6.14) 0 (x) = logelX) ;

On the remaining set, X - AA , apply no searching intensity: ¢(x) = 0.

Thus, the maximum probability of detection~-i.e., the probability, when the

effort is optimally programmed, as described, is

(6.15) P(U) = 71(0) = Av(X) .
Clearly, this may also be described as the probability tuat the
total searching used up at the moment of detection, i.e., ¢, shall not

exceed U:
P(U) = prob[¢ = U) .

Accordingly, (6.7) gives

[- -]

(6.16) Ulpl = B¢ = [ Udlnd) - W] .

Here the right-hand expression must, in the most general case, be under~
stood as a Stieltjes integral. But in all practical applicatioms (6.11)

applies and we can then reduce it to the formula

[ -]

(6.17) Ulp) = fo Uv(r) dx

-26=
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(The minus sign is absorbed in the reversal of order of integration on the

interval 0 £ A < + =, etc.)

7. Application to the Normal Distribution

One of the most common situations in search is that in which the
target's given probability distribution is normal ; i.e., when (after

diagonalizing),

2
k (x, - a
(7.1) P(x) = o —lm exp - 1/2 1 (__13_2_1_)
YTk (2m) i=1 i

Not only does such a distribution occur when the target's position can be
regarded as due to the accumulation of a large number of small random
displacements or errors of navigation or observation, so that the central

limit theorem leads to (7.1); but in many cases of much more complicated

probability density (uni-modal or otherwise), when the probabilities in all but

certain places are small enough to be neglected, while in other places they

are peaked enough to make normal law expressions acceptable approximations.
Let us apply the formulas and methods of §6 to this case, taking

our axes at the point (a) as cvigin--i.e., replacing X, - ay by X,

Then we have for AA the k-dimensional ellipsoidal region on which p(x) & A,

bounded by the k-dimensional ellipsoid of equation. q

2 2
X X
(7.2) =+ 10+ =5 = -loga?el L. oZ(am®
01 Uk
2
- w L]
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The k-dimensional volume of this k-ellipsoid is found by standard processes

oi k-dimensional integration (changing variables to g = xilcl and thus
reducing to hyperspherical integration). We obtain

vDF
— W .

AR v(A) = o, k
T('z + 1)

.Ok

To apply (6.17), we have to express U in terms of A by means of

(6.13) and (6.12). Using (7.1), with the w as defined in (7.2), we obtain:

w? X, xﬁ
log p(x) = logi +'i—'—(l/2>(--2-+ o oo +—§) :
Ul Uk

whence, on transposing the first term and integrating over AA’

2 Ik
K
SO = ¥ w0y -0y ... g I Koy
PE + 2)
2
Wl . 2
== g, «u. g, (VU)W .
2 k y KT I v(})
1"(—2-+ 2)

This value is substituted for U in (6.17), while the d\ is replaced by the
value obtained from the second equation in (7.2). On making these sub-
stitutions, absorbing a minus sign in the process of reversing the order of
the limits of integration when the variable of integration A is replaced

by w, and, finally, using elementary properties of the gamma function, we

obtain for the 'uncertainty'" U[p] in the present probability distribution:

Y et Sttt . i s
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(7.4) U] BN 2ok o ok(/in)k ——
F('2—+ 1)

= 2viw = V2] __ifﬁﬂ_._

CE + 1)

In the case of the plane, k = 2, and our uncertainty U[p] = 4v[w=/2]. f
Here v[w = V2] is the area of the ellipse of semi-axes oi/f, 02/5; it is
called the "localization area" in the modern theory of surface search. It
is such that the probability that the target is in it is 1 —'% c

More generally, the search uncertainty is proportiocnal to the
product of the k standard deviations, the constant of proportionality being
explicitly expressed, through (7.4), in terms of the number of dimensions
in question.

The application of the notion that the search "information" is the
negative of the uncertainty, which was appropriate in the case of dichotomies,
seems less appropriate in the present case, since it would be a negative
number, becoming negatively infinite as any of the standard diviations
increase without limit. Perhaps a more appropriate rendering of the con-
cept would be the reciprocal of the uncertainty. This would be proportional
to the height of the highest point of the normal distribution, a quantity

long used as a measure of precision, in the application to the theory of

measurement.
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NOTES

1. 1In the technical language of the modern theory, we have a probability
space (X, S, p), where S is the class of subsets A of X in which it is
physically meaningful to say that the target can lie (the '"measurable sub-
sets') and p(A) their probabilities. Cf. P. R. Halmos Measure Theorv
(D. Van Nostrand Co., Inc., 1950) Chapter IX. ;

2. Cf.a forthcoming paper by .J. M. Dobbie in Operations Research. Cf.
also, J. M. Dobbie, "Search Theory: A Sequential Approach', Naval Research
lLogistics Quarterly, 10, (1963), pp. 331, 332.

3. Only in quantum mechanics has this nation been systemmatically ex-
ploited; there it is connected with the family of commuting observables.
Cf. J. van Newmann, Mathematische Grundlagen der Quantenmechanik (Springer,
Berlin, 1932).

4. Note the precise wording of this statement. We are not saying that the
law of probability would be wrong when applied to incompatible events, vut
that, when precisely stated, their hypotheses would not be met in such

cases. Cf. B. 0. Koopman, Quantum Theory and the Foundations of Probability.
Conference on Applied Mathematics, Sponsored by the Courant Institute

(NYU) and ONR, MeGraw-Hill, Co., 1955.

5. B. 0. Koopman, '"Theory of Search II, III", Operations Research, Vol. 4,
No. 5, October 1956, p. 519; and Vol. 5, No. 5, October 1957, pp. 513-626.

6. For references and a development of this concept, see, e.g., S.
Kullback, Iniormation Theory and Statistics (N. Y., Wiley, 1959).
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THE LOGICAL BASIS OF COMBAT SIMULATION

B, 0. Koopman

1. The Two Aspcets of a Military Operation

The evaluation of planned weapon systems or of proposed tactics
must be based, in last analysils, upon advantages foreseen in combat: ip
batcies not yet fought. But in the real world, such events are of a com-
piexity--both of king and of number of cambining factors--as to obscurc tae
velationships of cause and effect. Yet if physicists can draw quantcitative
conclusions regarding the properties of matter in spite of the inconceivable
complexity of its detailed molecular motions, we may hope to do likewise--
if we learn to look in the right direction~~in the study of combat. The

prescat work examines the yarious methods that have been used for this

1 purpose (analytic models, machine simulation, Monte Caglo, etc,) with the
| cbject of discovering theilr basic common principle.

On turning attention, not to methods or models, but to the military
actions themselves, the most striking fact 1s their bivalencet their
chharacter both of an evolving physical system, and of an unfolding set of ]

ians, intentions, reasoning and counter-reasoning of the men engaged in

igd)

the action, the commanders, The two aspects must be examined separately

before they can be comprehended together In the fyll military operation,

- e e A
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Horcover, for the evaluation of weapon systems and tactics, it is the physical
behavior that is emphasized. How can this be separated from the human side
without mutilating a whole that is greater than the sum of its parts and so
losing the meaning of both of them?

Two methods have been used with some rational basis for scudying
the physical aspect of combat without the complications of the human one:

the method of standardized decisions; and the method of minimax of game

theory. They are most clearly explained in the context of the succeeding
section. In concluding this one, we merely remark that the nearest to a
systematic mechod for examining combat in its mental or human aspect is--in
addition to the study of history itself--use of the war game, as carried out

in staff colleges.

2. The System and Its States

Basic to any scientific examination of nature is the concept of the
system: the set of interacting things considered. Ir a military action, the
system is the totality of men and weapons involved, together with their
environment: the medium in which the action occurs and which effects its
course. And equally fundamental is the concept of the set of states that the
system can be in, just one at any given time. Thus, in a duel between two
aircraft, the system is the pair of aircraft, their weapons and equipment and
persqnnel, and the air in which they are flying, including graviFational and
electromagnetic fields. In a submarine attack on a convoy, tﬁe system is the
set of vessels involved, their men and equipment, and the sea and air in which

the action takes place. In each case, the state of the system includes its

Ty P 1 o o= A7 70 V1A Tt Y P O T ML T PR Ao 1 PN g A T Mg WA S S AN oV o e 40 WA o Ao e P
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physical state: positions and velocities of the units, condition of armaments,
aqata-gatiering status, and all the meteorological specificaticns.  But how
tfar into the mental state of the commanders must one go in delinioy the

"state" of the system? This can only be settled by asking 4 sccond gquestion,

that ot Lhe evoiution of the state of the systew with the passage or iime.

Classical physics haw traditionally considered that the stave orf a
systen is ouly adegaately described if, once the state is given, all Jater
states are determined:  Given any two similar systems in the sawe initial
states, all their later states will be the same--provided that their envi-
roamental influences (external forces) continue the same. Thus, in Newtonian
mechanics, the full and exact knowledge of the positions and velocities of the
parts of a material system determine jts whole future motion. But it is only
in the simplest military operations that such an order of determinatcness
exists.

In far more cases, it is not feasible so to specify the state of a

system that its subsequent evoiution is determined., What is far more common

is to have only statistical determinateness: in a large number of similar

systems starting in the same state, the same proportion will go into any
given later state. This is the situation in statistical mechanics, and in
the more fully developed parts of operations research. 1t is the most that
one may expect in combat operations.

This brings out the role of the human decision-maker in the evolution
of the system: the most obvious lesson of history and common sense is that

under the same conditions different commanders often make different decisions.
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onted el Lhios an dtselr ds enongh toorule out o any strdct e aceiie,

ve o seve, nevertheless, 1o ask winether chis wnpredictabiiity i oo oo o a1l

oo viceapasyed dona statistical deterainateness. o e contes,

prescit study, this is a purely practical question; can we say oo, o

the systuen reaches such and such a state, we can specity sensivly too

probabilitics that the comuaia 5 will meake the various concedvacie con oo
it iy subaltted that auy such assegmment of probsp i, o 0 e fagonr

is uarearistic as & pradiction ol ce Juture, but reasdscic (03§00 oL Lts

a couscnsty of experienced commanders) as leading to a wodel serving, ic

sindle weapon systems or tactics. Usually a defunite cecaninn, voud- o © i
arvoabisities of various decisions, is foraulated for each set of wicoa
stances; L.e., for each state of our system. To reach such a cousuion
may Lovoive an extensive discussion if several commanders dittec. U oaay
even lequire listing two diffevent opinions when agreement cannol bu cenched,
vcach of which is used on two performances of the game--rather than & "tess
up" in a single one. Thus, the decision-maker's contribution to the nditec-
minoteness is removed.

Another common method for removing humanly-caused indeterininatonces

is to assume, first, that at each stage of the action, -ach commander bus a
stated depree of knowledge concerning the other, assumes that the faiter will
always try to do bim the maximum harm, and then picks his own course ol
action so as to minimize it. This is the minimax counvention ol gawe Lhaeuey.
When applied sequentially, it leads to differential games. Rightiy cuploved,

it gives a usecful indicator in evaluations; it can never be veljed on Lu

predict the {uture.




roow Lids poinl on, we shuil assume rhat the huanan vAariabicity has

seve Foaovad, aind shall examine vt rewadns:  the scatiscically deterainate

cvoialion i e militavy system,

Y. GLe wasic Stochastic Process

4

taving reached tho s av o whion the physiteai evolaln aoor dhe

SYsice Can be studied in dtself, 1o o pecessary o it e watter precisely.

| ’

Lec 8 be the systen wader considecstijon, and Teo X be the sel ol all it
nessible states, the latter being denoied by sudin lower-case leliers ds .,
', y, etc.  in siaple sitwations--or afcer simpritying appruz finatious--X
aay coantain only a findje number ol states; bub in geaeral, the wumber v il
be ialipice, and of a wmore or less hish aod comnlicated order. Ve shall,
however, use the symbyl ¥ to depote summatlou over all Its status, even iu
P

the cases where this may actually be en integration, J&...dx , possibly of
a very general nature (e.g., Radon=Stieltjes, etc.).

Let two states x, x' (distinct or not) in X be given. 1In virtue
of the statistical deierminateness, there 1s a definite proheability
a(x, t 3 x', ') (possibly = Q) that, if the system is in stdate x at time t,

iv will be in state x' at the later time t'(>t). This is tle Q}Obabiliti

oi the traasicion

(x, t) - (x', t")

and will be denoted by a(x, t ; x', t') . It is evidently a cunditional

probability; explicitly:

', x') = P[S in state x' at ¢' | § in state x at L] .

Al

a(t, x ; ¢
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battle wouid be known--and this for every assumed starting stals

Thus, the whole problem of the quantitative study ol wmiitlacy
operations is that of findive the transition probabilities, frow knowlede.o
that can reasonably be obloinzc. woe shall see how all tie standacd analy oo,
mudels, Monte Carlo simulations, et ., (it into this scheme. v overy casc,

what [s oblained divecely, Uy trausceiving Lloto provabilitice the Lhysical

knowledge of the system and how it is operated, are the elenentary traansition

robabilities: those for a short increment of time At =t' - Lt --0r, more
pr ’

exactly, transition rates. Furthermore, a recurrence relationship is always

made use of (tuo often with insufficifent justification), by means ¢f wiiich
the general transition probabilties can be "built-up" (therclore, computed)

from the elementary anes.

The system S with its set X of states and their transition prob-

abilities constitute, in technical language, a stochastic process-—-the

fundamental stochastic process of the military engagemeat in question. lie W
computation of the transition probabiltics reposes on the basic relat:iovs ol

the theory of stochascle processces, concerning which an abundant literature

, .
Feller, "An Introduction to Probability and Its Applications', Vol. T1.
Wiley, New York, 1966.

Cox and Miller, "The Theory of Stochastic Processes'. Wiley, New York, 1955,

Doob, "Stochastic Processes', Wiley, dew York, 1953.

Loave, 'Probability Theory'", Van Nostrand, 1963,

Hille, "Functional Analysis and Semi-Groups", American Mathematical Sociatr; ‘
Colloquium Publications, Vol. XXXT.
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We shall give the methods in outline (written in the simple
nutation #, as exiplained abuvq), But before this can be done, one basic issun

wust be faced.

4. The Markovian Assumption

TTTP PRIy I8 T W PPRRRI lﬂiA\u.a e ik Lo

Suppose given three :uccessive epochs, t < t' < t'' and two states
P p ’ ’

x and x'', and consider the transition

(x, 1) + ", ")

which has the probability a{x, t ; x'", t") . Since this transicion occurs
by going through some intermediate state, say x', at the intermediate time

t', i.e., since the event (x, t) » (x", t") is_the event stated as follows:

for some x' of X: (x, t) - (x', t') and (x', t') » (x", t")

we should be able to express the transition probability a(x, t; x", t'") in

terms of those of the intermediate transitions, by applying the laws of com-

pound and total probability to the latter. In general, however, this does

not mean that a(x, t ; x", t") can be expressed in terms of a(x, t ; x', t')

and a(x', t'; x", t"), but rather of the former and the more complicated

conditional probability

t t"|S in x' at t' and § in x at t]

afmy &l xs &' woE" 2"k = B8 In %"

by the formula

(4.1) a(x, t; x", t") = ¢ a(x, t; x', t') a(x, t; x', c'; x", ¢")
1

X

e Mk X e




In actual mathematical models or machine simulations, this general

*
formula (4.1) is unever used, but is replaced by the formula

(4.2) a(x, t; x", t") =1 a(x, t; x', t') a(x', t'; x", ")
xl

which, as it is applied, it 1s tantamount to the assumption that

(4.3) P[S in x" at t" | § in x' at t' and S in x at t]

= P[S in x" at t" l S in x' at t']

This is the Markoff assumption and makes our stochastic process a Markoff

process. Then (4.2) becomes valid, and is indeed the well-known Chapman-
Kolmogorov equation, dominating the theory--and hence the practice--of the
basic stochastic process of the present type of operation. While details
will be given later in concrete context, it may be remarked already that in
the case that the number of states in X is finite, the right-hand side of
(4.2) is a matrix product.

Under what conditions is the Markov assumption (4.3) justified? 1In
other words, when does the specification of the state x' at t' give such
complete knowledge regarding the transitions from x' that any further data
anterior to t' (e.g., that at t<t' it was in state x) contributes nothing
to the probabilities in question? 1In a general way, we may say that when
there is a mater:zal factor in the situation that remains partly unknown after

the state x' at t'

has been specified, but concerning which we may draw in-
ferences from knowledge of the previous history of the system, then the

Markov assumption is not justified.

*

This replacement--and even the formulas themselves-~are too often not
recognized explicitly in simulations, but can be discovered as implicite sub-
strata underlying the concrete procedures of the numerical operations.

e . o - o - Yy skt a4 i A o e bt Bt
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Such a failure of the Markov property is commonly produced by tie :
attempt to simplify a treatment by an injudicious condensation of several :
different states into a single one. An example would be in sonar detection, 1
when the "state" ef the system does not sufficiently specify the acoustic 4

condition of the water in which it takes place: the more detections arve

made (i.e., the more the trassitions from states of noncontact to contac.)

ti.e more the evidence that the dacenstic conditions are favorable, and liencns

the greater the probability of fo-ther detections. The loaded die is onotber

example--the ottener it shows ace, the more the chance that it will show

ace again: the whole past influences probability predictions of the future.
Of course, when methods of computer simulation are made in the uizual

.

way and hence depend for their validity on the Markov property, but when

this does not apply, for reasons such as those just set forth, the numerical

results, however realistic they may appear, are without logical basis--at

least until they are proved to give an acceptable degree of approximation.

The act of simplifying and still retaining the Markovian character--as well

as operational realism—is an art as well as a science. Success is more apt

to be achieved by limiting the objective of the study to the answer of a

precise question rather than a diffuse multitude.

5. Transition Rates

Having postulated that the basic stochastic process of our operation
is Markovian, we shall now outline the theory and practical application of
the methods for obtaining the operationally important transition probabilities

(or the corresponding expected values, etc.) from the elementary transition ;
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orobabiiilics——Lthose applyving w0 =ach shorkt intervals ot time st = ' - ¢
Lual the rge aspects of the system remain unchanged except by quantities
of the order ol ot at most during L.

Any transition probahility a(x, t; x', t') has cettain otvi.iy
properties resulting from the fact that it is a probability; thus
(5.1) alx, 1o x', + v Tl (E, LR e SR
AN
the serond formula espressing Lhe principle of total probability. Juviio,

since o transition has anv probability of ovcurring in a zervo time Interss!
alme 5 n'g M) = 047 ! Sx . By cOnttnutityg &y o8 x', ) 20 as
t" >t (o' ty, when x' 4 x . Wiep X isoa Finite set, we cal, say tha
a(x, t; x, t) =1, snd that a(x, t; x, t') » 1l as t'>t. In the genersl
1

case, we have to use the syambolism of the Dirac delta function Elx' - x)

(the Kroneker delta in the discrete case), and write

a(x, t; x', £') > &§(x" - x) as t ~ t'

meaning that for any continuous function f(x),

§ £(x) a(x, t; x', t') » f(f)
Lealx, ", ') E w £

as t » t' (+'>t) .

In all the actual physical and operational cases, more can be
assumed: it will always be true that, for small t'-t > 0, the two members
of the preceding relation differ by quantities of the ovder of t'~t; aund

in fact a derivative exists. The most convenient way of writing this

T A O T [T Y PP T o s nea g e e PR T oo Ve T M et
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In this finite case, the problem of finding the general transition
probabilities (here, the matrix A(t, t')) from the more elementary transition
rates (the matrix B(t)) is the old problein of solving a system of first
order homogeneous linear differential equations: for each row of the matrix
A(t, t') is, for fixed t (e.g., t = 0) a system of functions satisfying
the differential system (5.4)', whose initial vaiues (when t' = t; e.g.,

t' = 0) are determined by (5.2). The different rows in A(t, t') form a
complete sct of linearly independent solutions. The resulting solutions
automatically satisfy (5.5)'; and vice versa, by solving (5.5)' (looking
now at the columns in A(t, t')) we get the solution of (5.4)'. In the
finite case considered, these solutions are uniquely determined by the
differential equations, and because of (5.3), they automatically satisfy
(5.1).

The situation naturally becomes far more complicated for infinite x, not
merely with respect to the approximate numerical calculation of the solutions,
but even with regard to such basic questions as existence and uniqueness,
and the deduction of (5.1) from (5.3). Even in the case when X is a discrete
but infinite set, as occurs in many waiting line problems and birth-death
processes uf practical interest, uniqueness and property (5.1) may fail.

For further discussion, the references given above should be consulted.

An essential simplification occurs when the general conditions

leading to the transitions remain the same throughout the period of time

considered in the whole action. Then the probability of a transition

(x, t) - (x', t")

ol T L L R

L ey, =

T
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will not depend on the starting time t but only on the elapsed time t'-t,

SO we nay write

(5.7) ax, t; x', t') =a(x, x'; t' - ¢t)

We then say that we have a stationary transition Markov process.

With such a process, rhe Chapman-Kolmogorov equation may be written
in the form (with £, = t' -, t, =t" -¢t")

[S : e LN o = YE. o ' ",
(5.8) a(x, x'"; tl + Lz) g,a(x, % ks tl) a(x', x'"; t2)

while (5.3) becomes
a(x, x'; At) = 8(x' - x) + b(x, x') At + [at].

These two equations express the semi-group property of our transition

probabilities (Cf. E. Hille, l.c.). Equations (5.4) and (5.5) may now be

written (with t replacing t' - t and t" ~ t) as
(5.9) -5% a(x, x", t) = %,a(x, x', t) b(x', x'") i
(5.10) az a(x, x"; t) = E, b(x, x') a(x', x"; t) :

The matrix equations now become

5.9)7 ic‘;é—t) = A(t)B
(50 100 dA(t) . pa(e)




LY G Ay

nkcl) n(tz) = A(tl T L)

ot U Corrne A(0) = 1, the identical matrix. Thus, the soluticon prcohlen

;o ittt oi o svet of homogeneous linear differential equaticons with coustant

cocfficients, which can always be given in terms of exponentials. Since
ciearly A(e)B — BA(t) = O for all values of t, an obvious metnod of so..: .

1 H EEETI .
i to Jdiaponlaize B, atce.

e

So.uting ol thie Stochastic Hguatiang

bovine passed the threc hurdles--the rational elimination of the

femat, variables, toe formulation of the stochastic process, and the obtoicic 1
i G ime transstion probability rates--we arve left with the practical preolosn
¢f soiwiag viee steochastic equaticas, essentially (5.4), of the last seatie.. 1
. o g C . AN - - N - . ]
It is submitted that this is a far easier problem than the three former. .or2
@ay even say that uareasonable difiiculties encountered in its hancling ave K

usually the consequence of inadequate foumulation at the earlier stuges.

The stochastic equations (5.4) have the form of the first time-

Gerivative of the unknown, equated to a homogeneous linear fumctional of Ihv

latter. It is a Cauchy problem, i.e., the determination of a function .om

irs initial values. When things are not as simple as in (5.4)', there wa-

i conditions at the boundary or at infinity. In most military problicnis,
there are states into which transitions are irreversible {destroyed unitc

do not come back to life); and absorbing boundaries. These do not cause il
¢ifficulties. But with infinitely extended X, there may be a finite prubauil.uy i

-

of a rejectien to infinicty (cf. the divergent birth processes, Feller, i...,

P W ey

Abd T w r » S L r— st 1% s s s e n L
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Vool . b auYj, o vice versas In osuch cases one may introduce anoert, ol
bl y L )
boenndary condition pruvcncingAmaking X bounded. 1f the solution of the

tesalting jroblem shows little probability of crossing the boau o ary il

sodified version can be accepted as a sutficieatly good approximar . I
on the contrary there is an appreciable probability that the state wili veach
the poundary, either the or., . 7nal problem was incorrectly poscd. or an

ctaut operationsl reaiil s 1s beine revealed.

=t S

ASSWILNG Suc matiers attended Lo, we Jist the general method,
tnat can be examined for the sclution of the stochastic cquatione.

AL Lgfmdl Mnni:nl&tions

These always surceed wlien the equations are of the torsr: (50
In more general cases, the linecarity of the problem makes the = .
rethods of the peneral cheory of such equations wortic exawining,
such as changes of variables, separation of va.i«>lcs, Green's
funcrcion, the method of characteristics. They all have had ap-
plication to certain special operational problems of the present
type. Much information is given in some problems by the ecuili-

brium solution: a function independent of the time.

B, Iniinite Series

Again the linearity of the problem makes the expansion in
series of the unknown function a simple enough process to be wor!
a try. For small values of t, power series in this variable can
be considered; but more often, expansion in a series ol orthogon.

functions related to the basic problem offers more promise.
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sntepral transforms, and, in stationary transition cases,
. oplace transformation on the time axis, come under this class of

s

vethd. S0 also does the method of perturbations.

.. Successive Approximations

This method, sometimes called the Picard process, consists -
« .viug iv sequence by integration the recurrent relation obtair

IN.0)

;kﬁ ﬁr+1(x, £ X“, t') = %lan(x) £ X', t') b(X', X“; t')

*, some choice--largely arbitrary--of the initial approximati -
5, Ly z', t') is made. Tie other approximants an(x, gt b
v compuzed successively for n=1, 2, ... Under very general cuo
ditions, the sequence of functions so obtained converges to the
desired solution. This method has been used in celestial mechar:¢s

for centuries. With the use of modern computers, much of the latur

of calculation can be avoided.

D. The Approximation by Difference Equations

The methods most used at present come under this heading.

ifhere are two separate steps in the process:

—— v i

NPT PP

s

(a) The replacement of continuous time t by discrete period |
E
[}
i.e., by "short" time intervals At, so that the discrete succeac. . i
i
of epochs i

t t t e t, - t = At

o 1> 2 ’ i i~-1
'
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is used, b(x, x', t) is replaced by

1 = 1 .
bi(x, x') b(x, x', ti) At , ot
and a(x, t; x', t') by

aij(x, x') = a(x, tgs X o)

Finally, the stochastic equation (5.4) is replaced by the dap-
proximate result of integrating it over the interval (tj_], R

1

T (e DI §,a

4 (x, x') bi(X', x'")

j,1-1
The fact that by taking the time intervals At (which necd not al.
be of the same length) relatively small, a useful approximation .

be obtained, is the practical basis of the method, which replaces

Y

a differential equation by a recurrence formula. This procedure i.as
long been used in celestial mechanics, and, under the name of Cau.’

Lipschitz method, in the theory of differential equations.

(b) Another step in the process is taken when the number of
states x in X forms a continuum, so that the stochastic equations

are integro-differential equations, the I in (5.4) and (5.5) beirn.

actually a / . It is often possible to divide such a continuou: -

a

X into a finite number of cells, small enough so that the differenc
in behavior of the system at different states in the same cell c=-

be neglected, yet large enough so that the total number N of cells
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covering X can be handled. On labelling each of the cells by a sut- 1
script s running from 1 to N, and replacing the integration over X
by the approximating summition, the transition probabilities ]
S, S

a(x, t; x', t') become replaced by elements a (t, ') 1 an N-

by-N matrix, and similarly for b(x, x', t) which is replaced by

b°? S'(t). Then (5.4) and (5.5) assume the forms (5.4)' and &

s0 that the simple theory of such difrerential equations can he ..
In particular, in the stationaryv transition case, they heceme {°.°
and (5.10)' and can be solved explicitly.

joth Processes (a) and (b) Used Together. The stochastic

(¢)

functional equations then take the form of recurrent matrix relat . ns,

relating the transition matrices

(9]
re

5, 5 e . -
Here a.’i, is the probability that if the system is in the state
]
index s at the epoch i it be in the state s' at the epoch i'
1
. 1

e s, s' . ;- N
Similarly, bi’ is the "elementary' transition probability th.: i

the system has the state index s at epoch i-1, it be in s' at the

next epoch i. The stochastic equatilons are, in matrix form

These are solved by recurrence, starting trom the fact that A, | = I
i i,i

the identical matrix. The solution is then

1,1" = Bfgi+l ... B

S mtniar

.
H
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Wihen in particular the process is ol staticaary cransitious, o, = )
L
(independent of i) and w2 have
]
I CH
:\, Ly = ]IJ
i,i
A (s) 19" :
If the probabilities p that the system be initiatly in statee =
aive given, and if P) is the (irieontal) netrix oi Lhese numbers, by i
Ul
Vo . - (&)
n' the stage they will be replaced by p L and
- {
. o~
P =P aB ... 8B = PoB 5
n ] n-1 0
the last expression, for the case of statiounary traasitions.
The replacement >f the stochastic oquations by difference equat .o o
ar set forth above under D(c), is the most Jirectiy adapted to machine J
calaulation, since all that has toe be computed are sums of products of <.
numbers. The latter can be given in tabular form, no curve-ficting to.m
being required. It is of general and uniform applicability, not requiring H

special conditions or calling for exceptional insights. VFinally, it can be
described and understood in the terms of elementary mathematics.

The method has, unfortunately, one major disadvantage: in order
to keep the number N of cells, into which the actual states in X have beoe
condensed, small enough not to over-run any computer, it may be necessary
make the cells so coarse that the transition probabilitie mwmay be quite d. -

ferent for two states in the same cells: then the basic stochastic proces

is not even approximately Markovian--and tlie whole logical justiiicatiosn

thie computation disappears. Another way of saying the same thing is to

A 2 i e 443 s 4w g
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(Lt wader such conditions, the difference equations introduced in D{c) are
not approximations to the true stochastic equations. Unfortunately, the numbers
i uing in profusion from the computer cannot be expected to give any warning

tuat the program has lost its logical basis.

/. Sonte Carlo Simulations

In this very commonly employed method of studying military operations,
ditta spucifying the state of affiars at any epoch of time is programmed into,
or produced by, the computer. A rule is also programmed, of such a nature
that the computer, when in a particular state at a given epoch, automatically
~clects a state into which it goes in the succeeding epoch. This programmed

sclection rule may be deterministic: just one definite state from the pre-

ceding state. Or it may be statistical: by the use of a table of random
numbers,(mapped inan appropriate way to correspond to a desired probability
distribution) the succeeding state 1s chosen at random, each possibility with
the predetermined probability. It is this "random machine" character of the
operation that has given it the name of Monte Carlo.

It should be clear that the machine, when used in this manner, is
itself a physical system S; that things have been so arranged that it has a
xnown set X of states x; and that, from epoch to epoch, its states change
according to a known program of transition probabilities. Since at any given
epoch the Monte Carlo selection of the next state is drawn from a distribution
that is determined by the state the system is ther in, the transition process
is Markovian. Thus, the machine is made to form & system moving from state

to state according to a Markov stochastic process. The fact that this system

o e o
o i
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is regarded as behaving in essentially the same way as the actual military
operation has given it the name simulation.

To assume that such a use of machines gives even approximately valid

information about the military operation is to assume the following:

1. that the human uncertainties have been removed;

2. that che combat zituation involves a system that is, at any
time, in a objectively describable state;

3. that its state transitions are Marlkovian;

4. that its stochastic equations can be satisfactorily approximated
by difference equations, as in D(ec), without losing their
Markovian character;

5. that the repetition of runs gives, by the law of large numbers,
satisfactorily accurate and reliable values of the desired
probabilities,

Inasmuch as these are precisely the matters examined in succession

in the preceding sections of the present paper, it can be said that the logical
bases of Monte Carlo simulation have been laid--that 1t depends for its
validity on the reasoning we have been giving.

The question of the cost-effectiveness of its use of machine time,

as compared with the use of machines for the direct multiplication of matrices,

as describad at the end of the preceding section, is a question that is too

infrequently raised. In some recent Naval studles the author has found that

the direct computation of matrix products has had far greater cost-effectiveness.
The method of Monte Carlo simulation has one particular value: its

educative or intuition building effect on those who behold the actual

Lnman £ S Skt anetl o Min.
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Ceriornance wi the proceoss. Lt allows the results of experimental variations

ol cediean fdctors of the situation to be perceived in a direct and life-like

sav. Taiw appearance of reallsm s so great that it has often led observers

L0 i3

jorget that they were not in fact observing Nature directly: a disastrous ]
|

CIror.

Ao Pains Shrough the Stoates

1%

Lp to now it hien been tacitly assumed that the set X of states x
{0y its coarser 1inLee approximation) could be described individually, so coos

oo transition races or elemcutary transition probabilities could be listed,

R

amd the stociastic equalions--however hard they might be to solve--actualisy
ritten down. There are enougi examples of this situvation to lead to such 3
view. Moreover, it is the lypicel case in classical mathematical physics.
' A few simple problems may force a somewhat brutal change in such an
optimistic vnosition.

Consider the combat model of Lanchester, in which, at each time ¢,
there are wtwo forces in opposition, u units on one side and v on the other,
the rate of destruction of either being proportional to the number in the
other. The system S consists of the two forces. Each state is characterized
by tie pair of numbers (u, v). If at the start u = ug and v = Vg the number
ol states would be u v . For values even as moderate as u_ = v_ = 10, this

oo ) o)

number would be 100 and the transition matrix would have lOO2 = 10,000 elements.
ﬁ In the present case, however, there are two simplifying factors in the situatiom,
which arve typical of many cases in which the direct enumerative treatment im-

plied in the preceding sections is impracticable, but in which the solution

can nevertheless be given.

v
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ihe first simplifying ractor in the Lanchester model is the circum=~

stance  that only a small number ot transition rates differ from zero. 'n a :
i

=aori Lime AL, u can po only into 1tself (probability: 1-bvAt) or dnto u - 1 |
Comilarly oo Vo |

chiobabitity: vat)A All other transiticn probabilities are zero. (All J
b

rhese statements neglect terms of higher order in At). Lanchester was led by

this fact to use--instead of the stochastic model--a deterministic one, in

whivh (u, v) are regarded as continuous variables having time derivatives

oiven by tis weli-known equations
1
i dv
1 3. ! Y == =.au
3 ' ) dt ’ dt
Lhore w ana b oare the "eoeificients of effectiveness'" of the first and sesrnd

|

torces.  Lioas has the effect of making all the states into which the system ! §
Lo0h,y ol ting from (uo, vo), determined by these initial values and the !
olapsed tiwe t, because of the uniqueness of the solution of the differential !
; equations (8.1). Thus, the problem has the form of problems of classical
mechanics.

When, to a good approximation, the transition function a(x, t; x'., t")
E detersines the state into which the transition can occur, we say that the

system traces out a path in its space of states X. When this is true except

at a "small" number of states--nodal states--which allow a "small" number cf

dirfferent states to be entered, we say that we have a graph of paths. When

certain of the paths never have any further modal points, they are called

hranches. [There may be cycles, i.e., paths returning to their original state.

when the graph of paths has no cycles, it is called (according to the usage

in Topology) a tree.

= PR




Thus, the reduction of a combat model to a graph of paths, with
probapilities entering eonly at the (exceptional) nodal states, greatly reduces
the stochastic complexity of combat models.

ttow would this simplifying circumstance show itselr within the general
ehdivtic framework we nave been using? The simplest answer is in the case of
{inite X, when our transiti: gquantities are matrices: Then, except at tpre
cosumns of transitions out of nodal states, each row in every transictioun

ULix has all but one element zero, the exceptional element bueing unity. s
tne continuous case, the tormulation would involve the Diraec delta functic-.

1¢ tuis puint, the usefulness of attaching the special case to the generi.

[urauiation is dorgely lost: it ls easier and more natural to derive it an

Lhe simpler deterndnistic symbolism in the first place.“

We shiod see fa §%'s 9-11 how the concepts of the graph of paths anc
the endgame (usually, ducl) bring the quantitative study of even quite large-~
sCaie military actions into the realm of practicable quantitative treatment.

The second simplifying factor in the Lanchester model is the pos-
sibility of expressing the vast number of transition rates by a simple math-
ematical law--thus avoiding the need of their individual case-by-case ernumeration.
The habit of individual enumeration is easily developed through association with

modern computers, that are so capable of having each special piece of numerical

datum programmed into them--whether formulas are available or not. In evperience

*This could be illustrated by Hamiltonian dynamics, in which the state x.
(position and momentum) is a point in phase-space X, determined by its
initial value x,: x¢ = £(t, %5). Ergodic and kinetic theory make use of
the probability distribution over X at t, p(t, x). This evol.es with increase
of t according to the simple equation p(t, x) = p(0, f£(-t, x)) (in the steady
This is actually a transition probability (demsity): p(t, x) = a(x,,

case).
t). Yet it would be highly awkward and artificial to write it in the

GOr
form
p(t, x) =p(0, x ) 8(x - £Qr, x))) .

A Memarvaitima
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confined to manageable numbers of inputs, the power and flexibility of this
method recommend it. But if we have to do this in well over 10,000 cases,

it would cease to be a practicable operation.

In the present example, let us write the stochastic equations for the
transition matrix a(x, t; x', t')--or, because of the steady-transition
property, a(x, t', t'~t)--as £(t, u, v): the probability that at t the first
and second forces have u and v units respectively, given that at t = 0 they

had u, and v To terms of higher order in At, we have, for small At>0,

f(t + At, u, v) = (1 - bvAt - auAt) £(t, u, v)

+ bvatf(t, u + 1, v) + auAtf(t, u, v + 1)

when u > 0, v > 0;
f(c + at, 0, v) » f(t, O, v) + bvaef(t, 1, v) .
£(t, 2, u, 0) » (v, u, v) + ausef(e, u, 1) .

Sheee joad Al ofide (5 (he patfial wimed differente equalionn (su

Cotwting & weyaftial Siffcioue Mlu) » f(w » §) = f(4)] snd elntiatiy for

)

(4.2) 'T:‘ £(0, w, ¥) * ""*""4'“' G, ¥) » aa.'ﬁﬁ,:'(z. u, )
(v 3 0, v » 0)

(6.3) ;-“- £Qe, 0, v) » Wwilt, b, »)

(8.4) wt g, w, D) = auf{l, w. 1)

] 4
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These are the equations of the Lanchester stochastic process,

introduced and studied after Lanchester's time by a number of authors during
the last quarter century (cf., e.g., Morse & Kimball,"Methods of Operations
Research) M.I.T. Press, Cambridge, Mass. (1951). R.H. Brown, "The Theory of
Combat: The Probability of Winning," The Jor. of the Op. R. Soc. of America,
Vol. 11 (1963) pp. 418-425). By making use of the simple mathematical law
of transitions, they remove all the complexity of individual enumeration

and reduce the problem to the form of classical analysis.

There are two ways of setting forth the connection between these
stochastic equations and the deterministic ones, (8.1). The first recognizes
that in the former, u and v are random variables, while in the latter, these
symbols denote expected values (u, v):

(8.95) ue= L f(t,u,v)u , v= L f(t,u, v)vV ;
u,v u,Vv
Let (8.2) be summed for u fixed but v going from 1 to Viow and the result
added to (8.4), We obtain, since elementary calculation shows that
Vo

f(v, u, 1) + 5-1 Aj(t. u, v) = f(t, u, v, t1) =0,

the Tesull
\l

[
ISP IRV M (R

=
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ér! '(

[ S 4

Mwaetizby thla B9 w atd ow @vef w fgon | to v, On the left we odlasn, on

compatiag with (8,30, fw/dl. The fighl-Bwand Loulef, afted wIillsg
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yields

u u
(o} o

buﬁo uAuF(t, u) = _bu£1 F(t, u) + bqu(t, ug + 1) . E

The last term, involving an impossible value of u, is zero. The first sum on

the right can be written as

u v \'
o} o) o]

b L, L VE(E, u, v) = -bv + b E) VE(t, o, V) .
Now if ug and v, are substantially greater than zero and if t is '

moderate, the last sum has all 7 + 1 of its terms exceedingly small, since
this is the case of f(t, o, v). Thus, we are led to the first equation in
(8.1) for (u, v) = (;; V)as a good approximation. Similarly for the second,

‘ Tihe sccond method of connecting (8.1) with (8.2) - (8.4) consists

el ting

igithe‘differences by their approximations as derivatives times the lengtl

of the interval (unity)--deliberately ignoring the fact that f(t, u, v) hac

originally been defined only for integral valued u, v. We obtain from (8.2)

the homogeneous linear first order partial differential equation in f = f(t, u, -} |
. 3f of af
(8.0) 7T + bvs; + auav 0.

nis ius casily solved by the method of characteristics, the cquations of

which are

) ) N
\ﬁ.;) -“—!- - n‘ﬁ » -‘é::-
- by au

Sl thesc afe he ladtheates ccuwations (8.1). Thelr "fundancalal systan’ ol

taiegtave (an be fowd esplicitly by clonestary formwlan, and (hen the soi.tle>
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f of (8.6) is the function of them chosen to fit the initial conditionmns:

i

In the usual case,

to reduce to a given function fo(u, v) when t = 0.

f (u, v) = 6(u ~ uo) 5(v - vo). We will 1llustrate this by finding the

V]

curves in the (u, v)-plane into which the paths (in (u, v, t) -space) project.
Wwe have but to find the time-independent integral; i.e., to integrate the

last equation. It gives at cacie
2 2 2 2
au” ~ bv" = au_ - bv_ ,
o) o

i.e., a fanily of hyperbolas, which are the level surfaces of any time-

indepeondent solutions of (8.6): these are the geometric paths, traced out
5y our systen with passage of time.

1t wust be emphasized in conclusion that the deterministic path
eGuations (d.1) are: only an approximate rendering of the stochastic equation
of the Lanchester process (8.2) - (8.4), acceptable only under special con-

Jitions. The fact that such graph-of-paths simplifications are possible,

as well as the fact that they are never more than approximate, are typical of

4 host of operational problems of this category.

9. rarierns of Flow

“he points made in the last secion, and others as well, are il-

by a particulsr operation that extends the Lanchesterian one by

Lelaated
regLiting that destruc.ion sust be preceded by detection.

el the two [orces engaged in coabdbal be cozposed inftially of

inudis o one plde aad @ on the other. Let it be assuned that any unit not

et Lt gty
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in contact with hostile ones must first detect a hostile unit and will then
attempt to kill it. By ''detect' we mean not only perceive the presence of,
but identify and localize sufficiently for attack.

What are the possible states of such a system?

Evidently each individual unit on one sidé can be either dead or

Aetermining 2 chomas of

alive; in the latter case, his state~-in the Markovian sense, owahat may
happen to him--depends on the set A of hostile units he is detecting and the
set B of hostile uuits that have detected him. But of the set A, some may
be detected by the unit's friends; and similarly for B. The outcome of the
combat may be supposed to depend also on the states of the friendly units in
contact with A and B. Clearly, the full set of relationships is not simple,
even to formulate. Let us give an indication of the possible number of stares
that may come into play.

At any time, let there be m and n units alive on the two sides.
Indicate the units by m dots on the right, n on the left. Indicate that a
right-hand unit has detected a left hand by drawing a blue line connecting
the corresponding dots; and join with a red line two opposing dots to show
that the one on the left has detected one on the right. The resulting colored
graph determines the state of our system. How many different graphs are
possible? Of the mn possible ways of drawing the blue lines, any one can
actually be drawn or not. Hencc, there are 28% possibilities for the biue
lines; and similarly for the red. Consequently, there are 22an possible
coiored graphs. 1If there werc o = 5 and n = 4, and if the units were all

tndividually different in their characteristics, a realistic account =ight

P it P LB
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have to consider 240, or over 1012 different states, with over 1024 elements !
in the transition matriXGmore molecules than in a liter of ga%.

The number is considerably reduced when all units on each side are
identical. To escimate the number of states, we note that any permutation of

the right-hand dots followed by a permutation (in general, differeat} of the

left-hand dots takes a colored graph into a colored graph, either identical

with the original one, or else different, but of the same type (not only
topologically, but having the same probabilities of tramsitions). Let there

be a totality of k different types of graph, and, after giving each type a

subscript in an arbitrary way, let there by Ni different graphs of the 1'th
type. Since there are in all m! n! double permutations, evidently Nié ml nl . :

On the other hand, the sum of N, for i = 1, ..., k is the quantity 22mn

i

encountered before. Putting these facts together, we obtain

22mn

k 2 /m! n!

a quantity well over the hundred millions in the relatively simple case of

m=25, n= 4. Eviaently, it would be useless to await the advent of larger

and faster computers into which these states--and thelr transition matrix--
can be programmed.

Let us see 1f certain aspects of the detection-destruction engage-
ment can be isolated from the welter of possible interactinns suggested ¢bove--
just as hydrodynanic relations can be isolated from the unthinkable coaplexitics
of the =olccular zotions in a fluid.

Let us imagine five boxes on the left and {ive on the right (Fig. 2.

ALl the units on the left side are represonted as particles in one of the five

Y
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boxes on the left, according to their live-dead, detecting-nondetecting,

detected-nondetected status, as indicated. Similarly with those on the

right. If the total number of units, dead or alive, on the left is u, and
on the right is v, the total number of ways i1s the number of partitions Dg

of the positive integer u into five parts (the number of ways that five

people can be paid with u indistinguishable coins), times(nlmost)the cor-

\Y

responding number 05 utr-1

*
It is known that Di - Cu , the binomial coefficient .
Hence, the number of ways the boxes of Fig. 1 can be filled is almost--but

not quite--

o futl) (u+2) (e+3) (udd) (v+#l) (v+2) (v+3) (v+4)
41 - 4!

cu+4
u

Cv+&
v

. 2
An casy way to show this §s5 %o vwrite the geometric series 1/(l-t ) = let ML
Tare the prosuct over L » 1, 2,..., u. On rthe right we have DY teras of

degree v, yielding the tem p%:% when every t, is replaced by t. But th.s

substitution replaag?_ih? ::roz';uct on the left by (l-t)'". vhose binonial
cxpansion ylelds Cu

t as the torm of degree r.




} When u = 5, v = 4, this number becomes nearly (126) (70) = 8,820, an un-

comfortably large number with a (8,820)2> lO7 element transition matrix; but
still incredibly less than in the earlier case.

Two points must be considered: First, is the recuction frow the
former case to the present one acceptably realistic, or is something es-

sential lost in the passagc, so that fatal misconceptions will result from

o

i the simplification? Second, granted that the description embodied in Fig.
is acceptably realistic, how car we manage to handle even this reclative
simplification?

I'he answer to the first question will not be given here. It will
depend on the situation studied and the purpose of its study. »ut we insies
on the fact that wienever a war game is programmed on a computer, an ar-
firmative answer Lo this type of question is implied logically--even thouypl
only unconsciously.

We shall deal with the sccoud question. Fig. I not oaly shows the
boxes of individual states, but, by connecting arrows, the possible transfziors
as well. These are based on the fact that o unft has a chance o! bedng
xilled {f and only {f {t has been detected.

Let us thing of the undts §n cach box an cerpged (a0 o aurtl o! .y,
flowing as a fluld through the counceting iinen (pipen) {n the divection

*

the arrovwn. We zusl entablioh a rate of flow through cach pipc.

o
P
.
o
-
i
*

This brings us 0 Lhe ucclanien visefely delocliones and .. .s
We whail apnutc~-an deacriplice of many, bwl 208 aid, <anca Ihal Ll fa.

swabe? of upndolelied unila ui atie =2lde La doublicd, The dale T{on probalel. .y

of caclh wnil fa hajved, oo TRat fhe f0%al cadecicd tmanler
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next short period At is left unchanged. We shall also assume that this total
expected number is proportional to the number of enemy units that are alive

2 but have not detected any unit (whether or not they are themselves detected).

This assumption--quite different from those made in chemical kinetics--

reflects the character of the act of detection in the present battle: it

involves localization and o2pproach, and so occupies the unit with a single

PO et

enemy unit to the exclusion of all others. Accordingly, the flow:box 1 wo

box 2,shall be regarded as proportional to Vi + \£Y i.e., as equal to
bl(vi + v3) . The constant of proportionality bl is a figure of effectiven:ss
of detection per unit on the right (b will denote effectiveness coefficicnts
of the right; a, for the left).

Concerning the kill rates, one might consider the Lanchesterian au-
1 sumption that the expected number of left-hand units killed is proportica..
to the number of right-hand units that have detected them. For two reascis,

such an assumption cannot be applied to the p . tent situation. The {irnt

reason is tae practical one that, within the frazework of ¥ig. 1, Mo do not

xnow how zany ol the v, + v, dotecting units on the right arc deleciing the

l — - ]

v, unfts tn hog 2 on the loft and how maay, the u, 8 boa w0 To (¥ lo
.

; 9

; -
spectfy thin would lead ud back 1o the catiler case, lhe ofmpaiiicatiior o
wnich wan the oblect of the intsuduction of the disgfan of Jig., . ke
sccond rfeazen fealden o the conceplion of the poecnl Lyye of cngageoncs!,
vhere, 3f dotectiot b ¢arflicd oul o an Individual Basis, 20 $o & sedbocgusst

L
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that each detected unit on the left has a chance b2 of being killed which

is independent of the possible number of additional units on the right.

Thus the expected number out of n detected units that are killed during

At is bnnAt, to quantities of higher order in At. Accordingly, the flow
rates along the pipes from boxes 3 and 4 into 0 on the left are b2u3 and
b2u4 , respectively.

The rates of flow which reflect the conceptions just set forth are

given diagrammatically in Fig. 2, which assumes that no urit playing an

essential part is absent. It is given for the left-hand side of Fig. 1.

That for the right-hand side is the same with every u and v interchanged

and avery a and b interchanged, subscripte re=aining unchanged.
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{ thene, by appiving an obvioun conmervation priacipic, e obla.on
it
Lae wotterential equattions (1o addition to the reiatton Ug T U, T U, Ty ,
4 .
* U, c conLtant):
du
e =gou, = b (v !
Y Uy 7 By lvyp )
du
e =Yy (v v + AU
ul A( 1 3) 171

‘ 9.1
i
3 tlllJ
i . .

—--wa -(a. + b)u, + b (v, + v,
| du g B ity by () SV
4
1 du[
1 L b 5

—=-m <h u, + a,u, + b, (v, +v
] de 274 173 1( 1 3)
3
¢ There are four more equations obtained from the above by the interchange oi

uand v , a and b.

Thus, our deterministic flow replacement of the stochastic process

ey

leads to a homogeneous linear system of the eighth order, with constant co-
efficient. It can be solved explicitly in terms of exponentials, and the
evolution of the combat completely dominated.

This is the deterministic or flow treatment cof the detection-destruction
process in simplified form. A stochastic treatment could be given, Intro-

ducing the function

(9.2) f(C; ul’ uzv u3a UA; Vl’ V2| Y3o Vé)

which is the piobability that at the epoch t the state of the system be as

indicated by the (u, v) lettess. It 1s easy but lengthy to write its stochastic

et i A
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iterentio=ditference equation similar to (9.2), ete., and to derive the
tU.i) an tie equations ot the characteristics of the approximating partial
eifrerential cquation.

It §is emphasizced that all the present deductivns from Fig. 2, in
sarticular, cquations (9.1), are only valid in the region in the eight-di-
mensional space of the posctive variables (u, v) for which the incqualitien

¢

of Fig. 2 hold.

10. A DETECTION-DESTRUCTION DUEL

The detection-destruction engagement just examined becomes simple
enough to solve analytically without approximation in the case in which it
reduces to a duel: only one unit on each side. Then the set of states 1s
representable by the diagram of Fig. 3, in which, if we call the the two op-
ponents the "left" and '"right" units (people, aircraft, naval craft, etc.),
we have numbered the states as follows:

State 1, neither unit detecting the other;

State 2, left detecting right, right not detecting left;

State 3, lefg not a;Leézlﬁg right, right detecting left;

State 4, each detecting the other;

State 5, left dead, right alive;

State 6, left alive, right dead.
Since pairs of transitions have a probability of higher order than At of oc-
curring during this interval, the stochastic equations will give a zero rate
of change the probability that both be dead. Therefore, this state cannot

be entered in the present model (it can be, in many other models). Consequently,
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it is omttted here. We are denotdsny the transltion rates capfesalng the left
cozbattant's effectivencss by a, thone of the right by b. Thus, a,,

are the rates of detection, ®ill in states 2 and &, by left agalnat right, etc.

Feg. 3
s
Travisebion Rales

(S t‘ A

D c?,fC(tl.on - chf(u((ﬁ.'u " ?/ u(‘.f

This schema of relations is equivalent to the following transition raze

matrix, B of §5, appearing in (5.9)'.

-al-bl a, bl 0 0 0

0 -a -bl 0 bl 0 a,

- 0 0 -al—bz a, b2 0
0 0 0 -03—b3 b3 ay

0 0 0 0 0 0

0 0 0 0 0 0

We now apply (5.9)' to this case, writing for brevity a(xo, 0; x, t) =
Px(t) (the probability that at t>0 the system be in the state x, having been

in x° at t=0), and denote the time derivative by P'(x). This leads to the
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stochssl e ogwaliose {vhich flght lave tecew olialzed 5h1w515Tc:f Ison a flow

pictufe Yased ow Fig. )i

JE) o= sl e )F (0
Po(t) ¢ & ?i ) =la =y T 40

l. L] a‘ b » -‘4 a 1 y
5)\. 4143(.) { ;'a: ?)t:)

{(.0.3) # {(v) = B, P {t) * s, b (1) - (o, ) ¥ (1)
LY - - d) ) ) ol
"3&:)' bzi’)(t) o b P()
To(e) = a, #,(2) ey P, (2]

These cquatlons can be solved explicilly and tndividually, startiog
vith the firat, and wvorking down the lipg?t tn the order in wmhlch they afe
written., The mosal! inlerenting carc §6 that ia wvhich the systen is Initialily
tn State 1 (both undetected): PI(O) - 1, ?2(0) Wl = ?6(0) ® 0. Then aa
tize incrcasen, the !irst four probabilit.es, after beconing positive, later
approach zcro exponentially, vhierean the last two approach positive linits
PS(-) and Pb(w) (adding up to unity), interpretable as ithe probadbilitice of

victory for the cight and lef, respectively. While these forn a steady statc

solution, their values cannot be calculated by simply replacing all the left-
hand =cz=bers {n (10.1) by zero--a comzonly usud z=ethod {n the etudy of
stochastic proccencs.

Solving (10.1) as indicated above, and then letting t = «, we obtain
(after clexmentary although perhaps tedlous reductions)
ble (“1+n2+b

l+b2)alblb3

(10.2) P_(o) - +
) (a1+b1)(51¢b2) (al+b1)(AJ’bJ)(AI#bz)(azobl)

e e 4t i i s s e A A et o B
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deledled &iae talea a »

y *y Yhete age a fen ollicf fFathc? odwiows dee e ... o2
Lh o casea t1hat esunc of Ihe ffafaltlon Talen afc Nuch iafgc! of Mmsch sla. .ef
that olliefs, <Cotivable by nanipulating {(10.2), and which, whien once {oumd,
seall avii-evident.

Yhe noat odvioua gencfal deduction fran (10.2), hovwerer, is ian fhe

canc of nonexifene walues of the conalanlsa:  {hal #0o eisy “Commodf aenac
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LoCelization-=to a pre-stated order of precision--{is obtainec. <Tne con-
ne L lon with the classical theory of infomatfion (entropy and cross-cnitropy)
£ nhown,
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L second object of this {nvestigation {s teo apply the method to the cuse in
Culen the low of random scarch is applied progressively and optimally to the
.corch for a target in a lincar, planar, or spaciul region (or in r-space).
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