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ABSTRACT 

Detailed measurements were performed in the region of interaction 

of a laminar boundary layer with a compression corner at Mach numbers 

near 2.5. Different models were tested permitting variation in the 

angle of compression and the conditions downstream of reattachment. 

The heat flux and the resistance of equilibrium of a hot wire 

anemometer at any location in the flow field were measured. 

These measurements were supplemented by either the wall or the pi tot 

pressure to compute all thermodynamic and dynamic variables. 

The results permitted verification of the hypothesis of zero 

normal pressure gradients when the compression angle is small and the 

boundary layer is laminar. The enthalpy in the separated bubble was 

constant and equal to the wall enthalpy of a flat plate with attached 

laminar boundary layer at the same Mach number. Evidence of a reversed 

flow with velocities approximately 5% of the free stream velocity was 

observed. The recompression along the separating streamline was found 

to be very nearly isentropic. Critical points were located in the 

reattachment region and a physical explanation proposed with special 

emphasis on the location of transition. 
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1.0    INTRODUCTION 

For the design of present day high speed aircraft it is becoming 

increasingly important to understand the behavior of supersonic botndary 

layers when exposed to sudden changes in free stream conditions.    These 

changes could be caused, for example, by a shock impinging on the boundary 

layer or by a rapid change in the body shape.    Experience has shown that 

even though the region where the viscosity acts is very thin, under cer- 

tain fljw condicions this layer can move away from the body, creating 

large shifts of the aerodynamic loads.    It is, therefore, important to 

be able to predict these flow conditions and their effects on the boundary 

layer. 

This type of phenomenon occurs on wings with trailing edges of finite 

thickness, causing an additional drag (base drag); it also occurs on re- 

entry vehicles with flares, introducing a favorable effect on the aero- 
i 

dynamic heating.   The type of flow investigated in this paper is the 

separation of a boundary layer caused by a sudden compression such as 

that on wings with flaps or ailerons, or the conical flare which follows 

the cylindrical section of a Gemini capsule.   These flows all belong to 

a class of problems called separated flows. The problem which interests 

us is one of the most difficult, for, as will be seen later, neither ehe 

point of separation nor that of reattachment is fixed. 

The physical features of the flow are as follows.    A supersonic stream 

flowing past a flat plate is suddenly turned through a corner at a certain 

point   0    (see Fig. 1).    If the effects of viscosity are neglected the 

problem is a trivial one.    A ^hock originating at   0   will  turn the stream 

through the deflection angle   a.    If, however, viscosity is taken into 

account we know that there exists a thin layer near the wall which is 



slowed down by friction.    The bottom part of this layer will be subsonic, 

hence a shock cannot exist there.    The pressure Jump will be spread over 

a finite length.    When this layer approaches the corner It will sense the 

pressure Increase before reaching   0.    If the momentum of the particles 

In the boundary layer is not sufficiently large to overcome this unfavor- 

able pressure Increase the particles will move away from the wall.    There 

then exists on the wall a stagnation point   (S), which is called the 

separation point.    A streamline    (SA)   originates from this point.    As 

the flow separates the particles will pick up sufficient momentum to bring 

them into contact with the body at a point   R,   which is called the re- 

attachment point.    This point is also a stagnation point, and a streamline 

A'R    terminates there.    Using simcle arguments based on conservation of 

mass we see that, provided no flow crosses the solid boundary between   S 

and   R,    the streamline originating In   S   is the same one that cerminates 

at   R.    Hence there exists a closed region   SAA'RO   which always consists 

cf the same particles.    Looking closely at this region we see that the 

forces acting on the particles within it are:    shear stresses on the 

interface   SR,   and wall friction on   SRO.    The particles near   SR   will 

be moving downstream, so that other particles will have to replace them. 

This region therefore has a clockwise circulating motion.    Actually, it 

is not correct to call the line   SR   an   Interface, because a priori no 

discontinuities of any sort occur on this line; It is merely the line 

that separates the particles which hav? sufficient momentum to overcome 

the pressure rise at the reattachment region from those which have in- 

sufficient momentum to overcome the pressure rise and are turned back 

into the region   SRO;   for this reason   SR   Is called the separating 

streamline.    The above simpl*   arguments give a good picture of the 



expected flow; howe      , the difficulty lies in determining the locations 

of   S   and    R,    in being able to predict this location, in finding   SR, 

and more generally, in being able to predict what will happen under a 

given set of conditions. 

Theoretically, the difficulties appear quite discouraging at first 

glance.    The principal difficulty is that the boundary layer equations 

are not expected to hold at the point of separation, since a normal 

pressure gradient may exist there.    Even by assuming that there is in 

fact no appreciable normal pressure gradient it is still Impossible to 

solve these equations because the streamwise pressure distribution Is 

one of the unknowns.    However, a great contribution has been made In this 

regard by Chapman, et al..   who suggested a way to overcome this diffi- 

culty by assuming that the pressure distribution Is conditioned by the 

interaction between the laminar boundary layer and the supersonic free 

stream.    This assumption is justified by several experiments and is now 

widely used.    It is called the "free interaction hypothesis."    More pre- 

cisely, this hypothesis implies that the interaction between the viscous 

layer and the supersonic free stream depends solely on local quantities 

and 1s not directly dependent upon the geometry which induces separation. 

An extension of this assumption for the nonadiabatlc wall has been 
2 

proved by Curie. 

Several  theoretical solutions were found by using this simplifica- 

tion.    An approximate solution based on the application of Howarth's 

transformation to the compressible boundary layer equations has been 

found by Curie.    Other approximate methods based on consideration of 

the boundary layer as two layers, an inner layer in which viscosity and 

pressure forces are dominant, and an outer layer with inertia forces, 



3 4 were also found by Gadd,    and Häkkinen, et al.     More sophisticated 

5 6 mathematical methods were used by Holt   and Lees and Reeves.     Holt uses 

a multi-moment method instead of edge boundary conditions as in 

Pohlhausen's method and expresses the shear stress as a polynomial in 

u   as opposed to using a velocity polynomial.    The method of Lees and 

Reeves uses a combination of locally similar and momentum techniques. 

Both solutions use a coupling equation between the dissipative flow and 

the isentropic free stream to account for the free interaction.    Holt's 

method of solution, called the "method of integral relations," has the 

advantage of simplicity. 

Experimentally this problem has also attracted the attention of 

several researchers.    One of the earliest and still very important con- 

tributions is the work of Chapman, Kuehn and Larson    in which several 

other separated flows are examined.    In this work experimental evidence 

of the free interaction hypothesis is presented, and the influence of 

Mach and Reynolds numbors on separated lar.inar transitional and turbulent 

boundary layers is shown in great detail.    Several other investigations 

examining different aspects of the problem were carried out by Gadd, 

8 9 10 Bogdonoff and Vas,   Needham.      Recently Lewis     extended Chapman's free 

interaction correlation to hypersonic adiabatic and cooled walls using 

Curie's approach. Although a slightly different problem is treated by 

Slricx, Mirande and Delery, we will mention their work which is con- 

cerned with a detailed investigation of the reattachment region.    To 

illustrate the complexity of this type of flow we will also mention 
12 Ginoux's paper     which shows the existence of three dimensional effects 

(generally interpreted as Goertler's vortices) in flows which are essen- 

tially two-dimensional. 
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With the impressive amount of research already undertaken in this 

field the present experimental investigation finds its justification in 

the fact that most, if not all, of the preceding work consisted of 

examining global flow quantities with little attention paid to detailed 

properties. For example, to our knowledge there has been no final 

experimental evidence of the existence of a reversed flow, although 

this is physically unquestionable. We also feel that the computational 

difficulties encountered by most theoreticians in extending the solution 

to the reattachment region may not be purely mathematical, but might be 

due to the fact that the assumptions used are not valid in that region. 

Since our purpose was to provide more detailed knowledge of separa- 

tion phenomena, we sought to measure the thermodynamic and dynamic 

quantities throughout the flow field using hot wire and pitot probes. 

Since the recompression region is one of the least understood anas we 

also attempted to localize the critical points in that region and to 

interpret their roles in terms of local quantities of the boundary layer 
11 

in that region, following the work of Siriex, et al. 

During t   isent study the Mach and Reynolds numbers were varied 

only slightly . . latter always having a value low enough to Insure 

laminar flow over the whole Interaction region. The models tested were 

all adiabatic and allowed for variation of the compression angle a and 

the downstream conditions. The flow was carefully checked for two- 

dimensional behavior. 



2.0 EXPERIMENTAL APPARATUS 

2.1 Wind Tunnel 

The experiments reported here were carried out in the Aeronaut- 

ical Sciences Division 6" x 6" supersonic wind tunnel at the University 

of California in Berkeley. This facility (described in extensive detail 

13 
by Bossel ) is a closed type continuous flow tunnel. Stagnation temper- 

ature and pressure are adjustable in the range 150 < T. < 50oF and 

1.3 < P. < 35 psia, which allows a variation of the Reynolds number per 

foot in the range 1.50 x 105 < Re/ft < 7.35 x 106 at a Mach number of 

2.60. The free stream Mach number in the test section varies by 3% in 

the streamwise direction over a distance of the same order of magnitude 

as the length of the model. 

This facility is equipped with a schlieren and shadowgraph 

system which permits ore to observe and photograph the flow. 

2.2 Models Used 

Two models were used for the investigation, both of which were 

adiabatic. 

Model A (see Fig. 2) was essentially used to check for estab- 

lishment ot the flow. It permits continuous variation of the angle a 

from 7° to 23°. It also allows for changes in the distance from the 

leading edge to the compression corner from 3 to 4-1/2 inches, and could 

be used as a flat plate model by removing the ramp mounting. Pressure 

taps at 1/8 inch intervals were provided on this model. 

Model B (see Fig. 3) had the same provision for pressure measure- 

ment; however, the ramp position was fixed at 4 inches from the leading 

edge. The compression angle could be set at the values 9°, 11°, 13°, and 

15° by changing the ramp mounting. This model also had an additional 



feature--üie ramp was constructed of a flexible copper sheet soft-soldered 

on lateral ribs spaced 1/8 Inch apart, which allowed a continuous or a 

sudden deformation at any angle and at any distance from the compression 

corner.    This deformation could be produced during the run.    This feature 

was used to enable one to change downstream conditions at any point during 

and after reattachment. 

The leading edges of both models were checked carefully and 

regularly under a microscope; this proved to be beneficial In establish- 

ing a laminar boundary layer. 

The pressure taps on both models were connected to a Decker 

differential pressure transducer with a range of ±3 Inches of water, 

which was regularly calibrated against a Olbutyl-phthalate micromanometer. 

The voltage output of the transducer system was recorded on a Librascope 

X-Y recorder. 

2.3   Probes 

Several hot wire and pi tot probes were tested and calibrated; 

however, all the data reproduced in this report were obtained with the 

probes shown In Fig. 4.    These probes were chosen because they Indicated 

a minimum interference with the flow.    Both probes had the same mounting 

--a conical section terminated by a cylinder which fits the arm of the 

traversing mechanism. 

The pi tot probe consisted of a piece of stainless steel tubing 

fitted into the cone at an angle of 30° and bent parallel to the flow 

1/2 Inch from its tip.    The    portion of the tube at an angle to the flow 

Is flattened to present minimum disturbance; the mouth of the tube is 

also flattened for boundary layer measurements (see dimensions in Fig. 4). 

It was carefully constructed and regularly checked under a microscope. 

i 
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The hot wire probe had a thin plate fixed to the cone on one 

end which held one needle parallel to the flow on each side at the other 

end.   This plate was made of two sheets of copper glued together but 

isolated electrically so that with the needles soft soldered on each 

face, it served as an electric conductor between the hot wire and the 

leads to the electronic equipment.    This plate could be made very rigid 

and still very thin (see Fig. 4). 

Both probes were mounted on the test section traversing mech- 

anism which permitted positioning on the three axes with an accuracy of 

±0.001 inch. 

The pi tot probe pressure signal was connected to a Decker or a 

Wianko ±5 psi pressure transducer and the electric signal was recorded on 

the X-Y recorder where the   Y   axis was actuated by a voltage input pro- 

portional to the distance from the wall of the probe tip. 

The hot wire was connected to a heat flux constant temperature 

anemometer.    When the equipment was run in the cold resistance mode the 

resistance of the unheated wire could be measured with an accuracy of 

better than ±0.01 n.    Two other readings from the wire voltage were re- 

corded for very small overheats and since the bridge was at balance the 
-5 wire currents could be computed with an accuracy of better than ±3 x 10 

amps. 



3.0   EXPERIMENTAL TECHNIQUES AND DATA REDUCTION 

3.1    Flow Establishment 

The flow to be Investigated is the laminar two-dimensional 

flow over a compression corner.    We must then make sure the two condi- 

tions are satisfied, namely:    two-dimensional and laminar flow.    One 

additional condition is that the boundary layer approaching the corner 

should be of a Blasius type.    In other words, since our model has a 

leading edge at a finite distance from the corner, we must make sure 

that the leading edge effect has died out before the interaction 

occurs. 

3.1.1    Two-dimensional flow 

The width of the test section is 5-1/2 inches, which 

limits the aspect ratio of the model particularly because the length 

I   (see Figs. A and B) cannot be made shorter than a certain length 

i .     for the reasons explained in Section 3.1.2.    Due to these limita- 

tions our aspect ratio    (s/1)   was of the order of 1, which made it 

important to investigate the two-dimensionality of the flow.    An ex- 

tensive study of this kind has been performed by Lewis,     who found 

that by mounting side plates at equal distances from the center line 

and by varying this distance, the flow tends to a limit when the aspect 

ratio becomes of the order of or larger than one.    Using different wind 

tunnel facilities and models, Lewis proved that this limit is actually 

the desired two-dimensional flow.    This result is used in the present 

investigation.    However, since the Mach number used in our case is of 

order 2.5, an aspect ratio study was carried out.    When   AR   became 

equal to or larger than one, the limit was attained for a deflection 

angle   a £ 15°.    For larger   a   a considerably larger   AR   was needed. 

* 

■^ 
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As proved by Lewis, we will assume that the limit found does represent 

the two-dimensional flow. 

All of our final data were taken on model B where   a 

was always less than 15°.    It was observed (see Fig. 5) that taking out 

the sidf.plates altogether does not substantially affect the flow, pro- 

vided    {s/i) > 1.   The difference in the pressure distribution observed 

in that figure near the end of the ramp is due to the appearance of 

transition when the sideplatcs were mounted (see subsequent section). 

It was also observed that transition occurs more easily when the model 

spans the wind tunnel, presumably because the tunnel wall boundary layer 

is turbulent and this turbulence is fed to the main flow through the 

separated bubble in which the velocity is very small. 

In the light of these remarks, it was decided to use 

model B, which does not span the test section and has an aspect ratio 

of 1. 

A final check was performed by applying a thin oil film 

on the model and observing the oil traces.    This showed that there exists 

a region roughly 3/4 to 1 inch on each side of the centerline where the 

oil traces were essentially parallel to the main stream.    Changing the 

ramp configuration downstream of the reattachment location did change the 

oil traces, but the region of two-dimensional flow was still present.    It 

will be cssumed in what follows that the ramp length, or more precisely 

the conditions downstream of reattachment, do not affect the two-dimen- 

sional nature of the flow.    This is an important point, because the down- 

stream condition effect on the flow is an important part of this study. 

3.1.2   Boundary layer ahead of interaction 

As stated earlier it is important for our study that the 

■^^ 
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boundary layer ahead of the Interaction be a self-preserving Blasius 

flow.    Model A, which has provision for changing the distance   I   was 

used first without a ramp and then with the ramp at different locations 

I • I.    Pressure distributions In the streamwlse direction were taken (see 

Figs. 6), and It was found that   I ■ 4.00 Inches was sufficient to 

achieve this condition.   This length was used on Model B, and it seems 

to be the optimum length because   £ > 4.00   can have adverse effects on 

the location of the transition (see next section). 

3.1.3   Laminar flow 

The last condition to be satisfied is that the flow be 

laminar before, as well as after, the Interaction. 

It is a known property of laminar boundary layers that, 

when observed by a shadowgraph, they exhibit a focusing effect that pro- 

duces a bright line near their edge.    This criterion has been used by 

Chapman et al.    in their investigation.    This effect is generally Inter- 

preted by the fact that laminar boundary layers have a density profile 

of small curvature near the edge as compared with a turbulent density 

profile which exhibits a fuller curvature.    This Interpretation was 

checked by hot wire measurements on a flat plate boundary layer.    Figure 

7 shows two temperature profiles; the curvature of the laminar profile 

is much smaller than that of the turbulent one.   These two profiles 

exhibited the behavior explained earlier when observed with a shadowgraph, 

and a confirmation of their laminar and turbulent natur.- was obtained by 

a hot wire fluctuation qualitative study.    These temperature profiles 

were obtained from the steady state hot wire measurements explained in a 

subsequent section. 
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Several similar tests were carried out; all confirmed 

the existence of a bright line around the edge of a laminar boundary 

layer when observed by a shadowgraph.    This property was used in all 

subsequent runs where we could decide on the state of the boundary layer 

with a quick look at the shadowgraph screen. 

In order that transition does not occur in the region 

of interest in our flow, the tunnel was used at its minimum stagnation 

pressure; this also had another advantage, because under these condi- 

tions the stagnation pressure regulating control was extremely stable 

and Identical free stream conditions could be reproduced in different 

runs.    When transition was desired, a very small increase of stagnation 

pressure would move the transition upstream to the reattachment region. 

The stagnation temperature was also set at its minimum value for, even 

though this had an unfavorable effect on the laminar condition, it 

assured a very stable free stream temperature during each run.    This 

last point is very important in our case where temperature measurements 

were also taken. 

3.2   Flow Measurements 

All the information collected in this report was obtained from 

three basic types of measurements:   wall pressure, pitot, and steady 

state hot wire measurements.    The following sections describe all three 

procedures used in reducing these measurements. 

3.2.1   Wall pressure measurements, location of separation and 
reattachment points 

The wall pressure is an important parameter in this type 

of flow. It was measured as stated earlier with a Decker pressure trans- 

ducer and the result reconverted in p.s.i. using the transducer's 
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calibration curve.    P   was then used mostly in the form   P/l>     where   P. oo 

was the undisturbed free stream condition.   The location of separation 

and reattachment was found with the help of a technique used by Roshko 
14 15 16 and l.iomke     and others.    '       It consists of perturbing the flow at each 

pressure tap and observing whether the perturbation gives an Increase or 

a decrease In the measured pressure.    If the perturbation Is downstream 

of the pressure tap, It will create a positive pressure gradient and a 

higher pressure will be recorded.    If a lower pressure is recorded, It 

means that the perturbation is upstream from the pressure tap.    Experi- 

mentally th ^ state was realized by bringing a fine wire (diameter of 

the wire ■ diameter of the pressure tap hole), attached to the arm of the 

traversing mechanism, to one side of each pressure tap and noting the 

pressure each time.    The same procedure was then repeated, placing the 

wire at the other side of the pressure taps, and finally an unperturbed 

pressure was recorded.    The three curves were plotted on the same graph 

and the point where they intersect is the reattachment point.    (At that 

point, where the flow impinges on the surface, the perturbed pressure and 

the unperturbed pressure are equal). 

This technique was mainly used to pick up the reattach- 

ment point, the separation point being located by the thin oil film 

technique.    (Using the fact that the shear after separation is negative 

and ahead of separation it is positive, the oil will be collected by 

this action along a line which determines the separation point.) 

Finally, the wall pressure measurements were used to 

investigate the effects of change in conditions at the end of the ramp. 

This will be explained more extensively in the next chapter. 
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3.2.2 PI tot measurements 

The pi tot probe described earlier was used to take 

boundary layer stagnation pressure profiles throughout the interaction 

region.    These measurements were taken for two reasons:    (a)    to test 

the hot wire data procedure described in the next section; and (b)  to 

use   Pt   (instead of wall pressure) along with the hot wire data to 

investigate the presence of normal pressure gradients  in the boundary 

layer.    This latter quantity is difficult to measure directly due to 

the extremely small size of the region of interaction. 

Figure 8 shows a typical Mach numoer pi tot trace ahead 

of separation; the same figure also shows a Mach number profile computed 

from hot wire data and wall pressure.    Several attempts to correct the 

pitot data near the wall, using Homann's approach,     produced the same 

results as the hot wire.    Hot wire data will replace the pitot results 

for points near the wall in all that follows.   This means that when the 

stagnation pressure of the pitot is used with the hot wire measurements 

to check for normal pressure gradients, we will be unable to detect any 

pressure gradients in the bottom part of the boundary layer (roughly 

where   M < 0.3).    It is, however, very unlikely that any normal pressure 

gradient exists ttere. because as we approach the wall, the streamlines 

tend to become parallel  to it. 

3.2.3 Hot wire measurements 

Due to the size of a hot wire probe, it seemed to us 

the most practical measuring instrument for separated flows.    Thus it 

was decided that this would be the main source of data for our investi- 

gation. 

The hot wire measures essentially two quantities:    the 
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resistance of equilibrium (when the wire Is not heated) and the heat 

loss of the wire when It is overheated with respect to the flow around 

it.    These two quantities can be expressed in another form; namely, the 

temperature of equilibrium   Te„    and the Nusselt number   Nu_.    Te_    is m mm 
a unique function of   r      and the electrical resistivity of the wire, ^ em ' • 

and 

qni d 

Num   =    (Twm - Telk m mo 

wSere    q      is the heat dissipated in the wire per unit area     d    its 

diameter,    k     the thermal conductivity of the surroundings at the stag- 

nation conditions, and   Tw     the temperature of the heated wire.    The 

subscript   m   stands for "measured." 

These data have to be corrected for end losses, since the wire 

has a finite length and Is soft soldered on each end to the two needle 

supports.    The aspect ratio of our wire was of the order of 300, but, as 

will be seen later, the correction for end losses can still be appreciable. 

18 19 A derivation of this correction is given by Kovasny     and Dewey,     and 

depends essentially on a parameter   S   given by 

S 
A     Ä " r" d , / w     1 w 

"   i V F" RU~ r, 
o       m 3 

where   k     is the thermal conductivity of the wire material and   r     and w w 

r     are the resistances of the heated and adlabatic wire.    This quantity 

determines two correction factors    CN    and   Cp   which give us the Nusselt 

number and recovery ratio for Infinite wires: 

Nu
rt    

=    CN    Num o N       m 

and 
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where        n   -   Te/Tt ; r^   =   Tem/Tt 

CN    Is a function of   S    alone and   CR    is a function of   S   and the 

recovery temperature of the needle supports.    Details on these quanti- 

ties are given in the Appendix. 

Now that our measurements are corrected, we can use 

the available information on heat loss and recovery temperature of 

infinite cylinders normal  to the stream.    Several  investigations have 

shown that for small    M    and    Ite     (Re    = pud/u..)    the Nusselt number oo t 

is a function of these two quantities.    Dewey has formulated an empirical 

equation which represents a curve fit of the existing experimental data. 

This curve fit is represented by an equation of the form: 

Nu0(Re0,M)    =   Nu0(Re0.-)    ♦(Re0.M) 

where   Nu (Re »•)    represents the dependence of   Nu     on   Re     when 

M » 1    and   ♦(Re  ,M)    is the departure from this relation when   M    is 

no longer very large.    These relations are given in the Appendix. 

If we call    n    the recovery temperature   T /T.    we know 

that in continuous flow   n    is a unique function of   M;    it varies be- 

tween    1    for   M » 0    and   0.95    for   M > 2.    In our case, however, 

using very low free stream stagnation pressures, the fluid can no longer 

be considered a continuum at the scale of the wire.    Dewey has proposed 

that, if we write 

n - ri 

n* nf - nc 

where   nc   is the value of   n   at the continuum limit and   n*   at the 
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free molecular flow limit, then   n*    is a unique function of the Xnudsen 

number   Kn^   for a given    M.    This was proved by the data of several 

workers in the field, namely Sherman, Laufer and McClellan,   and Dewey. 

The relations   n     and   ru   as a function of   M    and   n*   as a function 

of    Kn^   are giver in the Appendix. 

To reduce the hot wire data practically requires an 

iteration scheme between the end loss correction and the heat loss and 

recovery factor relations.    This computational scheme is shown later in 

this section.    First we will explain the experimental procedures. 

Across the two needles of the wire support was mounted 

a 0.0002" diameter Wollaston wire (Pt.lOX Rh).    No attempt was made to 

measure the wire diameter directly and the manufacturer's specifications 

were adopted.    The wire was then annealed to a dull glow for several 

minutes and brought back to room temperature before it was calibrated. 

This procedure was carried out for all wires to avoid a great change in 

the electrical resistivity coefficient after each heating.    The wire was 

then calibrated and the coefficients    a   and   r     of a relation of the r 

form   T = ar + r     was computed.    (In our case the range of temperature 

is small and   a   is a constant independent of   T).    The resistance per 

foot at 20oC was given by the manufacturer.    Using this value, the length 

of the wire    i     was computed    (i     was of the order of 5.4 x 10     ft). 

The wire was then placed in the test section, and at each point of the 

boundary layer, two values of overheat coefficients    [overheat ■ (rw
-r

e)/
r

e] 

smaller than 0.08 were taken and the voltage drop across the wire was re- 

corded (see previous section).    The resistance was then plotted against 

1     and the slope computed (actually this was calculated directly without 

plotting because   i      is a linear function of   *•    for small overheats). 
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With the calibration curve of the wire and    r.   Tem   was then computed. em        m r 

The following computational scheme was programmed and 

computed on the CDC 6400 of the Computer Center at the University of 

California at Berkeley. 

1. Assume   n   ■ 1    (i.e.,   Te   = T.).    With this value of 

T     compute   k     and   Nu .    Compute   S   and hence   Nu ,   and from the 

relation   Nu0(Re0,M)    find   M   [note that   Nu0{Reo,M)    can also be 

written   Nu0(M, Tt, P)]. 

2. Once    M    is known, and using the same value for   T., 

compute   Kn     with either   Pt    (pitot)    or   P    (wall pressure).    Also 

compute   n*   and   nc.    and hence find   n. 

3. With the value found for M compute ri (ns = T
s/

T
0 

support recovery ratio), and hence find the end loss recovery ratio 

CR   (see Appendix). 

4. Knowing   CR   and   n   compute   n .    Go to   1    and use 

the computed value for   n     instead of   n_ = 1. 

T'n's iteration converges very rapidly and usually no 

changes to the fourth decimal place were observed after the third iter- 

ation.    In the above computation, a Sutherland's viscosity law was used. 

The knowledge of   M,   T.,    and either the wall pressure 

P   or the pitot pressure   Pt   enabled us to compute all thermodynamic 

and dynamic quantities in the boundary layer. 
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4.0    RESULTS AND DISCUSSION 

The data, collected and reduced by the methods described In the pre- 

vious sections, will now be analyzed. 

We will first give a general description of these results and attempt 

to relate them to previous experimental and theoretical papers treating 

this problem.    In the second section we will present a detailed analysis 

of the data and attempt to explain some aspects of this complicated flow 

in the light of the measurements of local boundary layer quantities which 

were obtained. 

4.1    General Discussion.    Comparison with Previous Results 

The first measurements obtained were the pressure distributions 

in the streamwise direction for different free stream conditions and com- 

pression angles   a.    These measurements show very clearly a pressure rise 

ahead of the corner, then a constant pressure region that extends to a 

small distance downstream of the corner, followed by another pressure rise 

to reattachment and beyond.    (See Fig. 5.)    This compares qualitatively 

very well with previous results of Chapman et al., Lewis, etc.    Measuring 

the pressure at separation    ps   and the pressure of the plateau region   p 

(the separation point being located by the method described earlier), we 

plotted in Fig. 9 

!kli*    and     ^A 
"o   ^ »o   -^f 

versus   M.    This correlation in which   (L = c, /[(c^ )       c)]   has been 
f       fo       fo R»106 

suggested earlier (see Ref.  1 for more details).    On the same figure we 

also used results from Chapman's investigations  (open symbols) which 

proved the quantitative agreement of our results with his, at least up 
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to the plateau pressure.    The pressure distributions in the second recom- 

pression region could not be compared qualitatively with any result because 

there is no way to correlate the measurements in that region; more details 

concerning this point will be pointed out in the next section. 

The locations of the points of separation and reattachment also 

proved to be comparable to those found by Chapman.    The pressure at the 

reparation point was always slightly mcr«? than half of the plateau 

pressure.    The pressure at reattachment cannot be given in terms of the 

difference between the final pressure and the plateau pressure;  in fact, 

it is wrong to give such a value, for, as shown in 11, and as will  also be 

shown in the next section, the final pressure downstream of the reattach- 

ment point can have different values without affecting the main flow. 

The hot wire data complemented by either the wall pressure or 

the pi tot total pressure can give us the values of all  the thermodynamic 

and dynamic quantities in the boundary layer.    Using the data reduction 

procedure explained in Section 3.2.3, profiles similar to those in Figs. 

10 to 13 were obtained.    A total of 20 such profiles were obtained at 

different streamwise locations for two compression angles and free stream 

conditions.    It is difficult to compare these results with any previous 

work, for, to our knowledge, no measurements of this kind have been per- 

formed.    The Mach number profiles across the boundary layer are quali- 

tatively comparable to those obtained by a pi tot in (10); however, our 

measurements seem to be more accurate in the region close to the wall. 

Figure 10 shows velocity profiles at two stations ahead of separations. 

Their deformation from a Blasius  type profile to a near separation 

profile is quite clear.    Figure 11 shows the static and stagnation en- 

thalpy profiles corresponding to the previous figure.    These results 
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seem to agree qualitatively very well with theoretical predictions.    Note 

that the stagnation enthalpy is not constant across the boundary layer, 

but goes from a value inferior to the free stream stagnation enthalpy, 

increases with   y,    overshoots the free stream value and decreases back 

to this value at the edge of the boundary layer.    Note also that the 

thermal boundary layer is thicker than the velocity boundary layer, al- 

though by a small amount.    This obviously comes from the fact that the 

Prandtl  number is smaller than one. 

Similar remarks can be made on the profiles of Figs.  11 and 12; 

we can add, however, in the case of Tig.  12 that there is clear evidence 

there of the existence of a reversed flow.    In this figure the minimum 

value of   u/u'    corresponds to the zero velocity line; the values of 

u/u'    below this point correspond to the reversed flow, but the hot wire 

response is independent of the stream direction. 

We give these results in this section to draw a general picture 

of the flow confirming the physical qualitative -masoning proposed in the 

introduction.    A thorough analysis of these da*    is  carried out in the 

next section. 

4.2   Detailed Study 

4.2.1     Existence of normal  pressure gradients 

Although the assumption of zero normal pressure gradient 

(dp/dy = 0) is always used by theoreticians attempting to solve this 

problem, no final experimental proof has been advanced which either proves 

or disproves this basic hypothesis.    As we mentioned in earlier sections, 

our experiments included the indirect computations of   p   across the 

boundary layer; the results are shown in Figs.  14a and 14b.    Before dis- 

cussing these results,  let us make some pertinent remarks to avoid 
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misinterpretations due to large errors caused by experimental uncertain- 

ties.    To compute   p   the following parameters were measured: 

Re».. Num   with hot wire probe mm r 

Pt   with the pi tot probe. 

However, it was impossible to measure them simultaneously (the traversing 

mechanism can hold only one probe).    So they were measured on two differeit 

runs, taking the following precautions: 

--   The free stream conditions are identical  in the two runs. 

This was relatively easy to accomplish since the tunnel 

was mostly used at its lowest stagnation pressures. 

--   The position of the probes with respect to the wall was 

carefully measured using magnifying optics. 

The first precaution proved very effective because by taking wall pressure 

measurements on the two runs they fall within 2.5% from each other.    In 

other words, the flow being measured by the two instruments at different 

runs was the same.    The second precaution was not fully satisfactory; if 

an error of 0.002" is committed on the distance between the probe tip and 

the wall this can induce errors on   p.    of the order of 30% in the region 

of large shear.    This is due to the fact that in this region all our 

measured quantities    (Re  . Nu  , Pj    vary rapidly in the   y   direction. 

Note that for this very same reason, the error will be smaller in the 

regions of low shear, namely near the wall (separated profiles), and 

around the edge of the boundary layer.    Also, we will remember (see Section 

3.2.2) that the pi tot data near the wall (M < 0.3) was corrected by using 

the hot wire data along with wall pressure.    This means that no pressure 

gradients are measurable there (using our method). 
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Figures 14a,b show plots of   P/Pwaii    as functions of 

y   at different streamwise locations.    A first remark pertaining to what 

was said above Is that   P/Pwa^    can be both   ^   than 1 Inside the bound- 

ary layer.    This Is physically difficult to Interpret and may very well 

be due solely to error contribution. 

These plots show a clear tendency toward negative (very 

small) normal pressure gradients near the edge of the boundary layer mainly 

at the stations where   dp/dx   Is l^rge (near separation and reattachment, 

but not In the plateau region).    This could be interpreted by the fact 

that, moving the probes normal to the wall, we will be crossing different 

compression lines (In the compression waves) that are present In the super- 

sonic upper layer of the boundary layer.    However, It can be safely said 

that no substantial normal pressure gradients are present In the flow we 

investigated (compression angle   a = 11°). 

Another t»st. based on the previous data was to plot the 

wall pressure and the pressure at the pdge of the boundary layer versus 

x/JL    Figure 15 shows such a plot and confirn.s the conclusions drawn above. 

On this same figure we also shnw the pressure distribu- 

tion as computed f»om the displacement thickness profile, using Prandtl 

isentroplc compression relationships with the turning angle   Aö ■ dö^/dx. 

This computed free stream pressure agrees very well with the previous 

values. 

It is worth noting that the wall pressure downstream of 

reattachment always reaches values larger than the inviscid pressure (down- 

stream of an oblique shock originating at the corner).    This is not true 

for the computed free stream pressures.    Although the difference between 

the two values is very small, it is quite probable that if the compression 
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angle is made larger, non-negligible normal pressu.-e gradients mi^ht exist 

there.    For this reason the only conclusion we can safely propose is that, 

provided the compression angle is not very large and the boundary layer is 

laminar, no evidence of the existence of large normal  pressure gradients 

is observed. 

4.2.2   Static total enthalpy; wall recovery ratio 

Variations of static enthalpy in the   y    direction are 

represented in Figs.  16 and 17.    Ahead of the interaction    h    profiles 

agree very well qualitatively with known data for a flat plate.    As the 

interaction starts, a nearly constant temperature layer starts to develop 

near the wall.    Moving further downstream this  layer becomes still thicker, 

varying roughly like the thickness of the separated bubble.    The enthalpy 

distribution in the region of high shear is still similar to that of an 

attached boundary layer. 

As the flow approaches reattachment, the inverse trend 

is observed; namely, the region of nearly constant enthalpy becomes thinner 

while the variation of enthalpy in the high shear region is still qualita- 

tively similar to that of an attached laminar boundary layer.    This trend 

continues after reattachment, but the changes become smaller as we move 

downstream for the case of a laminar boundary layer.    If the boundary layer 

begins to become turbulent, the enthalpy profile becomes fuller.    This, by 

the way, is also observed in the shadowgraph when the bright region around 

the edge of the boundary layer begins to disappear.    This effect was 

explained in a previous section. 

A closer look at the separated bubble reveals that the 

enthalpy does not vary in the y direction up to about halfway between 

the zero velocity line and the separating streamline.    Furthermore, the 
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enthalpy does not vary appreciably in the   x   direction 1n a region extend- 

ing from the beginning to the end of the plateau constant pressure region. 

(Note that the separated bubble extends both upstream and downstreem of the 

constant pressure plateau region). 

The previous remarks suggested a comparison between the 

adiabatlc wall temperature and the equilibrium temperature of a flat plate 

in a compressible flow at the same local free stream Mach number.    Using 

the value 0.723 for Prandtl number, the theoretical prediction (see Ref. 21) 

was computed at different stations downstream of the leading edge, using at 

each station the free stream Mach number measured with the hot wire.    Ex- 

trapolating the temperature profile to the wall, we find    T /T'   at differ- 

ent stations.    Figures 'C and 19 show two plots of   T /T'    compared with 

the theoretical predictlc.iS of Ref. 21. 

The agreement Is good In general.    There Is, however, a 

consistent tendency for a higher measured wall temperature even before 

the interaction starts.    The error may be due largely to the conduction of 

heat Inside the metallic model from regions of high temperatures to cooler 

regions. 

It Is safe, however, to assume that the temperature inside 

the separated bubble Is equal to the temperature that the wall would take 

If the boundary layer remained attached and the local free stream Mach 

number Is that of the separated flow. 

4.2.3   Shear stress 

The shear stress   y(3u/9y)   was calculated using Sutherland's 

viscosity law for   y   and graphically determining    9u/3y    from the velocity 

profiles mentioned earlier.    A graphical interpolation was used when com- 

puting the shearing stress on the zero velocity line.    This procedure is 

■ ,i 



based on the fact that   u    is smooth on the zero velocity line and    äu/3y 

approximated by the tangent has  the same value on each side of this point. 

Due to the inaccuracy in determining   u    for the low velocities in the 

separated bubble, the procedure described inevitably  induces large errors. 

The following results should therefore be regarded as more descriptive 

than quantitative. 

Figures  20 and 20 show the variation of 

[u(3u/8y)]r 

1 

with    x.    The reference value    [u(8u/3y)]      is  taken to be the sheur stress 

ahead of interaction    (x/H = 0.25).    At this station the boundary layer 

profile is essentially a Blasius profile. 

The variation of this quantity shows  the fast decrease in 

the wall shear stress ahead of separation and after reattachment.    In the 

separated bubble, the changes are much smaller and a clear maximum is 

observed near the corner. 

The increase of the shear after reattachment is different 

in tuese two figures.    Figure 20 shows a pure laminar reattachment (where 

the boundary layer stays laminar several boundary layer thicknesses down- 

stream of reattachment), ai.d in Fig. 21 the flow becomes transitional 

slightly downstream of reattachment.    This part of the flow will be dis- 

cussed in more detail  in the last section. 

It is clear from the velocity profiles in the separated 

bubble that the shear stress at the wall is almost equal but opposite to 

the shear on the zero velocity line.    (We used the latter in our graphs 

because the error in computing it seemed smaller than that which could 
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result from the uncertainty in the relative positions of the probe with 

respect to the wall.) Consequently, we can make a qualitative comparison 

of our results with those of Holt,  which seems to confirm the existence 

of a minimum (negative maximum) of the shear stress near the corner. 

4.2.4 Flow inside the separated bubble 

At different locations in the streamwise direction, the 

zero velocity (u = 0) point was determined as described In the previous 

section. This allows us to find at the same x the point A on the mass 

flux profile which belongs to the separating streamline 

u=0 point        A 
/        pu dy = /       pu dy 
o u=o point 

This simply says that the mass flux between the u = 0 line and the wall 

is equal to the mass flux between the u = 0 line and the separating 

streamline at the same streamwise position. Figure 22 Illustrates the 

above integration procedure which was carried out graphically by an Amsler 

integrator. A similar procedure was used to graph streamlines Inside the 

separated bubble. 

Figure 23 shows the edge of the boundary layer, the dis- 

placement thickness and several streamlines (numbered from 1 to 5) Inside 

the separated bubble. 

Defining 

y5 o 

i 

pu (y = 0, y = y5) = — / pu dy 

and 

pv (x = x , x = a) = T—- / pv dx 
5 * xs x 

The following values give an idea of the magnitude of 

the quantities of interest Inside the separated bubble: 
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at    %ll • 1 

pu (y ■ o, y - y5) 
 ^     ■    0.028 

DU (y s yc. separating streamline) 
0.067 

and along the u = 0 line 

pv (x = xs, x = £) 

VV 

pv (x = I, X = XR) 

 pv  

0.0018 

0.0022 

As for the velocities, it is clear from Fig.  23 that the 

largest velocities in the separated bubble are along the separating stream- 

line.    In the reversed flow itself, the order of magnitude of   u   was 3« 

to 10% of the free stream velocity and that of   v    (along the   u = 0    line) 

above 0.3% to 0.7% of   u'. 

Figure 23 also includes points near the separating stream- 

line that were computed such that the total pressure on these points is 

equal to the wall pressure at the reattachment point.    The fact that these 

points are quite near the separating streamline means that Chapman's 

isentropic recompression hypothesis is a valid assumption.    A double check 

concerning this point is also possible.    Along the separating streamline 

we have: 

2 
d    /    u    v    _        dp jäT 

tt{ -T*    -    ■ Bx      37 

Our result shows that    3T/3y   is small on the separating streamline (the 

curvature of the velocity profile is very large there).    8T/3y   increases 

when we get near the reattachment but so does   dp/dx,    and it is not 
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surprising that the isentropic recompression hypothesis  is a very good 

approximation. 

It is worth noting here that the accuracy of the hot wire 

measurements decreases substantially when the velocity becomes small.    The 

above results should then be considered as descriptibe, giving only an 

order of magnitude of the quantities of interest.    Again it must be pointed 

out that the verification of Chapman's hypothesis is valid provided the 

angle of compression   a   is small    (a < 13°),    and that the boundary layer 

is  laminar. 

4.2.5   Detailed study of the reattachment region 

Relatively little is known about the mechanism of reattach- 

ment as compared with the separation process where the free interaction 

theory seems so successful.    It seems to us that the main experimental 

difficulty encountered in that region is the fact that the boundary layer 

often becomes turbulent when it experiences the negative pressure gradient 

near recompression.    In the following study a special emphasis Is put on 

this point for, as we will see, a transitional reattachment can be radi- 

cally different from a laminar one. 

As stated earlier. Model B, which was used for this study, 

nad a provision for changing the conditions downstream of the reattachment 

p.iint.    More precisely, we could, at a chosen point on the ramp, create a 

positive or negative pressure gradient of any Intensity.    Furthermore, this 

pressure gradient could be imposed either suddenly by a sharp deformation 

of tne wall  (deformation spread over a distance of the order of one boundary 

layer thickness), or gradually (deforming the wall over a distance of 

several boundary layer thicknesses). 

Performing the experiment described above at different 
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locations downstream of R, we found as in Ref. 11 that there exists a 

point C, downstream of which the conditions of the flow do not affect 

the separated flow and the reattachment upstream of C.. The pressure 

distribution downstream of C, can lie between two limits P   and 1 max 

P .   ;    the range    P        - P  .      increases moving downstream (see Fig.   24). 

Disturbing the flow ahead of    C,    usually changes by 

more than 5% the pressure distribution ahead of reattachment.    However, 

a gradual pressure gradient could be applied at some location without 

disturbing the flow upstream of this location.    By a gradual  pressure 

gradient we mean a generally small pressure change spread over a distance 

larger than three or four boundary layer thicknesses.    This can be achieved 

up to a point slightly downstream of   R.    We call  this point   C^,    the 

second critical point.    Upstream of   C2    any change of the pressure dis- 

tribution however small or gradual changes the pressure distribution 

upstream by more than 5%.    This result has been observed earlier, and we 

seem to have the same problem locating the second critical point precisely. 

This may be largely due to the fact that near the reattachment point the 

velocities near the wall  are extremely small. 

It was noted that   C?    is usually located at a point on 

2       2 the pressure distribution where   d p/dx     starts to become negative; i.e., 

near the end of the almost linear increase of pressure with    x    (see Figs. 

24 and 25).    As in Ref.  11 the point   C«   was found to have an interesting 

property.    Writing 

p the pressure at   c9 
c2 L 

p the plateau pressure 

x„ the location of c0 
c2 2 
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x    the location of the end of the plateau constant 
p  pressure region 

and plotting (p -p)/(p -p ) versus (xr -x)/(x -x ) (Fig. 26), we 

see that we can correlate the pressure distributions found at different 

free stream conditions up to Cp. This figure also includes data from 

previous investigations where we estimated the location of C« using 

the property mentioned previously. 

Noting that the pressure distribution slightly downstream of 

the plateau pressure increases linearly up to C2, we ask ourselves 

if and how this slope could be related to the free stream conditions and 

model geometry. In order to compare data from different sources Instead 

of look;,  it p versus x/i, distribution, it is more meaningful to 

look at p versus Re . The most obvious parameter on which the slope 

of p might depend is the angle at which the separated free shear layer 

impinges on the ramp. Call this angle (a-ß), where ß is the angle 

of the free shear layer with respect to the flat plate. 

Figure 32 shows the dependence of the slope of p versus Re 

on (a-ß) (some of the points were taken from other references for larger 

a and M). This figure suggests a rather simple dependence; however. It 

should not be regarded as an accurate correlation for the pressure distri- 

bution near the reattachment point. It should be noted here that ß is 

a function of the plateau pressure, which is Itself a function of M,Re , 
xo 

so that the quantity (a-ß) includes both the free stream conditions and 

model geometry. The points of Fig. 32 that are computed from Ref. 1 

correspond to leading edge separation; the fact that they fit well with 

the other points suggests that the mechanism of reattachment does not 

depend strongly on the mechanism that Induced separation, but rather on the 

mixing process after separation. 
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Although the location of    C?    could not be given with an accu- 

racy of better than plus or minus one boundary layer thickness,  it was 

consistently found that its distance from the reattarhment point did not 

change very much with small  changes in the free stream Reynolds number. 

Such was not the case for   C,;    it was observed that a small  change of 

Re      could move    C,    several  boundary layer thicknsses even when the 

pressure distribution in the separated flow did not change by more than 

3%.    This casts some doubts about the critical  importance of such a 

point on the reattachment process.    Furthermore, it was noticed that   C, 

moves downstream with increasing    Re  .    This suggested a relation of this 

point with the occurrence of transition. 

Figure 27 shows velocity profiles downstream of the reattach- 

ment point.    Note that the boundary layer does not change appreciably 

over a distance of about ten boundary layer thicknesses.    In the flow that 

corresponds  to these profiles, the critical point    C,    was not detectable 

before the end of the ramp. 

Figure 28 shows transitional  velocity profiles downstream of 

the reattachment point.    The flow upstream of the second critical point 

was identical  to that corresponding to Fig.  26.    However, in this new 

case the first critical point was located and had the properties described 

earlier.    The last two figures suggest that the physical meaning of this 

point is that the boundary layer has picked up enough momentum to enable 

it to overcome finite sudden pressure gradients.    Figures 29 and 30 

further support this argument.    Looking at the relative slopes of the 

displacement thickness with boundary layer edge, we see that in a transi- 

tional flow there is substantially more momentum entering the boundary 

layer.    The location of the first critical point could thus be related 
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to the occurrence of turbulence. 

Attempts to relate the location of the first critical point in 

terms of some parameter involving mean quantities of the boundary layer 

yielded Fig.  31.    In this figure we chose the mean Mach number defined as 

6 

i 
o 

as this parameter, and we plotted   M    versus    x/Ä,    for laminar and transi- 

tional  reattachment.    Even though   FT   becomes larger than one in the 

transitional  case, it is clearly not the parameter to distinguish between 

the subcritical and supercritical conditions of the Crocco Lees, Lees and 

Reeves theory.    The theoretical parameters of these theories would indi- 

cate a subcritical  condition for an adiabatic Blasius profile.   This is 

not the case of   M    ahead of separation in Fig.  31. 

The fact that the first critical point was not detectable before 

the end of the ramp in the case of pure laminar reattachment, does not 

necessarily imply the non-existence of this point.    However, if this point 

exists it will be at several score boundary layer thicknesses from the 

reattachment.    Furthermore, there is some doubt as to the possibility of 

a laminar reattaching boundary layer becoming "supercritical" (in the 

sense of the theories mentioned above) because when the boundary layer is 

fully rehabilitated, it will tend to become a Blasius profile, and this 

profile is known to be subcritical.    This remark is clearly not valid for 

a laminar wake flow where the mean properties of the boundary layer after 

the rear stagnation point will eventually imply a supersonic behavior. 

This will also be the case for a turbulent flow where the distance over 

which the boundary layer receives enough momentum to rehabilitate itself 

will be substantially smaller and   C,    close to   C«. 



34 

Figures 29 and 30 also show a clear neck in the boundary layer 

thickness when the flow is transitional; this is not observed for pure 

laminar reattachment where the boundary layer decreases very slowly after 

the second critical point and reaches an almost constant thickness for 

boundary layer thicknesses downstream. 

To state briefly the results of this section, we can say: 

1. There exists a critical  point   Cp   slightly downstream of reattach- 

ment which plays an important role in the mechanism of reattachment (see 

Fig.  26) and whick marks the beginning of the rehabilitation of the re- 

attached boundary layer. 

2. If transition to turbulent flow occurs downstream of   Cp.    another 

critical point   C-j can be located.    This point has the property that down- 

stream of it the conditions do not affect the flow upstream, provided they 

lie in some range.    C,    ca mot be located for laminar flow (at least close 

to   R), and there is doubt about its theoretical  importance for reattaching 

laminar boundary layers. 
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5.0    CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

A detailed experimental study has been made of the two--imensional 

laminar flow over a compression corner with Mach numbers around 2.5.    The 

following conclusions were reached. 

1. For a small  compression angle   a    (a < 13°) and a laminar boundary 

layer there is no evidence of appreciable normal pressure gradients in the 

boundary layer ahead, during, and after interaction. 

2. The separated bubble has sensibly constant enthalpy equivalent to 

the wall enthalpy of a flat plate with attached boundary layer and an equiva- 

lent free stream Mach number. 

3. The shear stress along the   u = 0    line is usually not larger than 

10% of the shear stress at the wall ahead of the interaction.    The maximum 

of the shear stress along the    u = 0    line occurs near, but slightly down- 

stream of the corner. 

4. Evidence of a reversed flow about 10% the velocity of the free 

stream exists.    The maximum of   u    in the seoarated bubble is along the 

separating streamline, and is always smaller than half the local speed of 

sound.    Provided   a   is small and the boundary layer is laminar, the 

assumption of isentropic recompression is a good approximation. 

5. Two critical points were located '" the separated region.    One 

of them seems to be greatly affected by the occurrence of transition and 

is not detectable for pure laminar flow over a distance of more than 15 

boundary layer thicknesses downstream of reattachment.    The other is con- 

sistently near the reattachment point and seems to play an important role 

in the reattachment recompression process. 

Due to the limitations mentioned earlier, some aspects of the problem 

could not be investigated.    Future work based on the same techniques could 
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clarify the following points: 

1. Existence of normal pressure gradients and validity of isentropic 

recompression along dividing streamline when a is no longer small and/or 

when the boundary layer is turbulent. 

2. Attempts to locate the first critical point with a longer ramp. 

Test the critical importance of this point, if any. 

3. Detailed enthalpy study for the case of highly cooled wall. 
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APPENDIX 

1. End Losses Correction Factors 

The Nusselt number end loss correction factor Is given by; 
_     * 
a  1 + < 

C. 
a  1 + a 
w      w 

'N 
a   1 + a 

w     w 

_     * 
where   a /a as a function of   S    Is represented In Fig. A-l. 

The recovery temperature correction factor Is given by 

[1 .u(^)] (1 -u,)"1 

in 

where   tü/O-u)    as a function of   S    is given in Fig. A-l. 

A series of runs was made to determine the needle support 

temperature   Ts.   A resistance thermocouple (actually using a hot wire 

as a resistance thermocouple) was mounted on one needle and the temper- 

at different Mach numbers was measured.    The results are shown in Fig. 

A-2, together with the predicted recovery temperature of cones in super- 

sonic flow using laminar boundary layer theory.    It is this predicted 

recovery temperature which was used in the computation of   iv.    Although 

the predicted value Is very close to the experimental one it is still 

thought that this procedure is far from perfect, mainly because the hot 

wire is soft soldered near the tip of the needle and it is this local 

temperature which should be used.    For each series of runs the same 

wire was used, so that the error due to the support temperature appears 

systematically in all the data. 
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2.    Heat Losses and Recovery Temperature as Functions of   M, Re   and Kno 

The empirical relation Nu (Re  ,M)   mentioned In Section 3.23 oo 

Is of the form: 

where 

with: 

and 

with 

Nu0(Re0,M)    -   Nu0(Re0,-WRe0,M) 

Nu0(Re0,«)    -   Reo
n[0.14 ♦ ^ ♦ N2] 

Re 0.6713 

" ' ^ 5.142 + 2 Re 0-6713 

o 

0.2302 Reo
0,7114 

Nl    '    1S.44 ♦ R.0
Ö-"» 

M      .    /       0.01569  w 5 . 

* 0.3077 + Re "-^^       15 + Re J 

o o 

♦(Re0.M)    -   1 ♦ ♦1 x ^ K ^ 

#1    .   0^+0i5701[{Jil^ ,1.569^3 

1.109 

♦2    •    1.834 - 1.634 {  2 ^^ ) 
^ 2.765 ♦ Re,,1-108 

o 

As stated In Section 3.2.3. the above relation Is a curve fit 

for existing experimental results.    This curve fit gives good accuracy 
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(±1%) for   M > 0.45; below this value a more accurate curve fit is pro- 

posed (see (20)) 

<t> 3   =   b1 + c1 {1 - exp[- a^ Reo - 6 )  '  ( 
n.       Re   - 6       9 

1  '       0 )}2 
Rert - 6 o 

where 

b1    =   0.05 + 2.9   M 

c1    =    0.05 + 3.08 M 

e1    =   0.6   ♦ 1.25 M 

1.15 

1.15 

n1    «    1.137 An 

a1    =   0.1695 ' fcn[l ♦ 

This value has been used in our computation when   M < 0.45. 

The relations giving   n*.   nf   and   nc   are the following: 

Kn ,•,93 
— 00 

0.4930 + Kn TTfW 

nc   -   1 - 0.05 ( M 3.5 

IT 

and 

1.175 + M 

,2.8 
nf - nc   ■   0.2167 ( M' 

0.8521 + M tt 

As stated in Section 3.23, the relations   Nu (Re ,M)    could be transformed 

to   Nu (M,Tt,p)   because we can write 
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Re0    -   M-^-     /^I 0.1^)1/2 

and, substituting for   Y.R    and using Sutherland's viscosity law, we 

get: 

M2    1/9    21.015 Tf ♦ 4173.58 
Re0   +   MP(1+S-)1/2    U  

Tt 

    " _^|^ .^ ^^M——^ 
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FIG.A-2 NEEDLE SUPPORT TEMPERATURE 

I 



unciassinea 
SgCttHty CUnification 

DOCUMENT CONTROL DATA - R&D 
rSacunir c /•»•//(canon ol llll»   bciy ol »bilimcl mnd Induing mnnolmlion mumi 6« tnlttmd »Owi !*• omnll ttpotl it elatillli'd) 

I    OHir.lNATING *CTIU(»V ICoipom* »ul.etß 

Aeronautical Sciences Division 
University of California, Berkeley 

2«    *t»OMT  tCCUHITV    C LAfliriC« TION 

Unclassified 
2 6   amoum 

J    nfPOUT TITLF 

Supersonic Laminar Boundary Uyer Separation Near a Compression Corner 

4    DCfCNIPTIvC MO'tl (Typd ol mpo» and mclutitt *>/••; 

Technical Report 
5   A\jrHO*(S) iLfi nm>»   Imi nmm»   Ininml) 

A. A. Sfeir 

t «EPOWT D*Tt 

March 1969 
|«     CONTRACT   OK   GNANT   NO 

AFOSR Grant 268-68 
6     PHOJCC T   NO 

ft      TOTAL   HO     O*    »»Otl 

78 
7»  NO or Mtrt 

22 
IHTSJ 

AS-69-6 

• 6   OTHIK ■■»o«T  N jfS> Mnr otftar nuntor* ^af awr *• •••<#Mrf 
tft/» mporl) 

10   A V* IL ABILITV   LIMITATION NOTICES 

Qualified requesters may obtain copies of this report from DDC, 

II    SUPPLCMCNTANV NOTH 12   tPONSONINO MILITANV ACTIVITY 

U.S. Air Force Office of Scientific Research 

II    ABSTRACT 

Detailed measurements were performed in the region of interaction of 
a laminar boundary layer with a compression corner at Mach numbers near 
2.5.    Different models were tested permitting variation in the angle of 
compression and the conditions downstream of reattachment. 

The heat flux and the resistance of equilibrium of a hot wire 
anemometer at any location in the flow field were measured.   These measure- 
ments were supplemented by either the wall or the pi tot pressure to compute 
all  thermodynamic and dynamic variables. 

The results permitted verification of the hypothesis of zero normal 
pressure gradients when the compression angle is small and the boundary 
layer is laminar.    The enthalpy in the separated bubble was constant and 
equal to the wall enthalpy of a flat plate with attached laminar boundary 
layer at the same Macf^  number.    Evidence of a reversed flow with velocities 
approximately 5% of the free stream velocity was observed.   The recompresslon 
along the separating c,treamline was found to be very nearly isentropic. 
Critical points were located in the reattachment region and a physical 
explanation proposed with special emphasis on the location of transition. 

DD /Ä 1473 UNCLASSIFIED 
Sccuiliy CUMification 



UNCLASSIFIED 
Stcufity ClMitflcrtion" 

u 
KIV «OHO* 

Laminar supersonic boundary layer 

Separated flow 

Compression corner 

Hot-wire measurements 

PI tot measurements 

Critical points 

LINK A 

MOLI 

LINK ■ I LINK C 

■ OLI »T NOLI • T 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Bot« UM nan« and «ddrM* 
of th« contractor, ■ubcoalractor, grMtoo, Dopartnoat of D» 
fono« activity or otkor orgaalMtlen (cotpcrmf author) laautnf 
tho report. 

3a.   REPORT SECUMTY CLAMIFICATION:   Entor tho evar 
all aocurlty claaeiftcailon of tko rapon.   ladlcMa wMotbor 
"Raatrtciod Data" la laclado*   M«kl^ la to bo In accord- 
anca with approprlata aacurltr roflialationa. 

26.   CROUP:   Auiomailc tfoon^atfl^ la apactllod la DoD 01- 
roctlva S300.10 and Anaod Forcoa Ibduatrlal Manual.  En'or 
tha group nunbar.   AUo, whan applicabla, ahow that optloial 
marking« havo boon uaad for Group 3 and Group 4 aa author- 

of 

b 

3. REPORT TITLE:   Entor tha coo^lolo rapon tltla In all 
capital lattara.   Tltlaa In all caaaa ahould bo unclaaalflod. 
If a maaalncful tUla cannot bo aoloctad without claaalflc*. 
tlon. «how tUla claaalflcatlon In all capltala la paroMhaala 
1—«dlataly fellowlat «h« »*»••• 

4. DESCRIPTIVE NOTE»   If «propriata. onto» tha typo of 
roport. a. g.. lot aria, procroaa, auaawry, annual, or floal. 
01 vo tha laclualva dataa «rhan a apoclflc roportlng ported la 
covorod. 

5. AUTH0R(S)c   Entor tho oawKa) of authoK«) aa ahown oa 
or In tho raport.   Batar laat MM, fkat naaw 
If xilltary, ahew rank and branch of aarvlco.   Tha 
tho principal author ia an abaoluto mlnlauai roquli 

6. REPORT DATE:   Entor tho data of tho raport aa day, 
awnth, jr «r, ar atoath, yoaik   If mm* than ono dato 
on tha rhpon, uao data of publication. 

7a.   TOTAL NiniBER OP PAGES:   Tha total pago count 
ahould follow nonnal pagination procaduraa. La., ontor tho 
nuabar of pagoa containing lalormatlo» 

7».   NUMBER OP RBFERBNCEB   Entor tho total nuad>ar of 
roforoncoo cltod In tha raport. 

•a.   CONTRACT OR GRANT NUMBER:   If ^»proprlato, ontar 
tho applicabla nnabar of tho contract or pant undor which 
tha roport waa wrlttoa 

M, te, B M.   PROJECT NUM8BK:   Entor tht approprlata 
vartaoat idoa^Qcatloa. aach aa prvject aiiwhar. 

tejoct nuabar, ayato« auariMta, taak HI—bar, otb 

9a.   ORIGINATOR'S REPORT RUMBER(S):   Bator tho offi- 
cial raport nuabar by which th« daeaaaat wUI bo Idaallflod 
aad eoatfollod by tho origlaailag activity.   Thla nuabar auat 
ha ualquo to thla roport. 

96. OTHER REPORT NUMMER(S): If tha roport haa boon 
aeoignod aay otkor roport K—baa (•Hht hy «ha ortifnMor 
or by «ho tponaor), nlao oalor thla auabat<a). 

I&   AVAILABILITY/UIBTATK>N NOTICEft   Bata» any Ua> 
itatloaa aa fwthor ü—wM—H— af lha ropart, olfeor «baa thoooj 

lapo«od by «ocunty cla««i(icat>on, u«ing «tandard atatonMnta 
auch a«: 

(1) "Quallflad raquoatara may obtain copia« of thl« 
raport fron DDC." 

(2) "Forolgn announcaaonl and dl«««ainatioa of thla 
roport by DDC i« not authoriiod " 

(3) "U. S. Govornraont agoncloa nay obtain coploa of 
thla raport diroctly fron DDC.   Othar quallflad DDC 
uaara «hall raquaat through 

(4)    "U. S. military agancioa may obtain coploa of thl« 
roport diroctly fron DDC   Othar quallflad uaara 
«hall roquoat through 

(5)    "All diatribution of thla raport ia oontrollod Qual- 
lflad DDC uaara ahall raquaat through 

If tha roport haa boon furniahod to tha Offica of Tochnlcal 
Saryicoa, Dapartaont of Coaaorco, for aala to tho public, ladt- 
cata thla fact and ant« tho prico, if known 

IL   SUPPLEMENTARY NOTES: 
tory netaa. 

Uao (or additional aiplauo- 

12. SPONSORING MILITARY ACTIVITY: Eolar tho naaa of 
tho d^partnontal projoct offlca or laboratory apooaorlag fpar 
Int lot) tha raaaarch and dovolopaoot   Includa ad4baaa. 

13-   ABSTRACT:   Entor an abstract glvinf a brlaf and factual 
•uaaaiy of tha docuaont Indicotivo of tha roport. avao though 
it nay alao appoor alaoarhoro in tha body of tha tochnlcal ra- 
port.   If additional apaca ia raquirod, a continuation ahaal ahall 
ba attach«!. 

It ia highly daairabla that lha abatract of claaaiflod roport« 
bo unclaaalflod.   Each paragraph of tho abatract ahall aad with 
aa indication of tho aitltary «ocurlty claaalflcatlon of tha in- 
foraation in tho paragraph, roproaoatod aa (T$>. ($). (C). er (V) 

Thara ia no lialtatloo on tho longth of tho abatract.   How- 
avar, tha «uggaatad longth 1« fro« ISO to 22$ word«. 

14.   BEY WORDS:   Boy word« ara tachalcally naanlngftil tonn« 
or abort pbraao« that charactarUa a roport and nay ba «and aa 
ladoi aattlaa for cauloging tho roport.   Boy word« auat ba 
«aloctad so that ao aacurity claaalflcatloa la raquirod.   Uartl- 
flara, auch aa oquipnont nodol daaiviaUon, tiado aaaa, alUtary 
projoct coda naaa, googrophlc location, aay ba uaad aa koy 
word« bat will bo followod by aa ladlcatlon of tochnlcal con- 
to«t.   Hi« aaalgnaaat of link«, ralaa, aad walghta ia opüonal. 

COBM 
• JAM ?a 1473 (BACK) UNCLASSIFIED 

toegrity ClMfilBcstten 


