
MECHANICAL

l TECHNOLOGY

INCORPORATED

,..' . .) i- A P " N " '

..................................... . ......-.

1~.



MECHANICAL TECHNOLOGY INCORPORATED
968 Albany Shaker Road
Latham, New York 12110

M[TI 69TR23

REFINED SOLUTION OF PNEUMATIC HAMMER
INSTABILITY OF INHERENTLY COMPENSATED
HYDROSTATIC THRUST GAS BEARINGS

by

T. Chiang
C.H.T. Pan

March 1969



No.... JX 69TR23

DATE: March 1969

TECHNICAL REPORT

REFINED SOLUTION OF PNEUMATIC HAINR
INSTABILITY OF INHERENTLY COMPENSATED HYDROSTATIC

THRUST C(%S BEARlNGS

by
T. Chiang
C.H.T. Pan

Auther (an)

Approved
I

Approved

Prepared under

Contract Nonr-3730(00)

Task NR 062-317/1-9-68
Prepared for

Department of Defense
Atomic Energy Commission

National Aeronautics and Space Administration

Administered by

Office of Naval Research

Department of the Navy

Reproduction In Whole or In Ptrt is Permitted

for any purpose of the U.S. Government

1"
MECHANICAL TECH 2LOGY INCORPORATED

ec ALLANV- SHAKER ROAD - LATHAM. N4W OOK -PHON1 M5-0022



TABLE OF CONTENTS

PaRe No

ABSTRACT ----------------------------------------------------------- iv

1. INTRODUCTION--- -- -- -- --- -- -- -- 1

2. ANALYSIS---------------------------------------------------------... 2

3. LOAD CAPACITY AND DYNAMIC BEARING REACTIONS ------------------------ 15

Steady-State Load Capacity and Stiffness ------------------------- 15

Dynamic Bearing Reactions ---------------------------------------- 16

4. STABILITY ---------------------------------------------------------- 19

5. SUMMARY AND CONCLUSIONS -------------------------------------------- 21

vNtOreza.ATURE--------------------------------------------------------- 22

REFERENCES --------------------------------------------------------- 26

APPE NDIXES

A - The Matrix Multiplication Method in Solving Ordinary

Differential Equations --------------------------------------- 27

B - Alternate Method Using the Nozzle Equation ------------------- 36

FIGURES

L_



-iv-

A BSTRA Cir

An externally-pressurized gas thrust bearing was analyzed for both

static and dynamic characteristics. The bearing is fed through an

inherently compensated restrictor into a shallow packet. The analysis

gave special attentions to the significance of the recent finding of

restrictor flow (Ref. 4), the trade-off consideration hetween static

stiffness and stability margin, and the effects of the pocket depth.

1
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1. IN RODUCTION

Externally pressurized gas bearings have been used in many engineering

devices. It is well known that in order for the bearing to have relatively

large load capacity and stiffness it is desirable to have recessed pockets

immediately after the feeding holes. This causes the externally pressurized

gas bearings to be susceptible to pneumatic hanmmer instability. Analytical

investigations on this subject were made in References 1, 2 and 3.

In conventional analyses of externally pressurized bearings, nozzle

equations are used in calculating the flow across a restrictor. The dynamic

pressure head resulting from expansion through the restrictor is assumed to

be completely lost when entering the bearing film. This, however, is not true

as reported in References 4 and 5; a measurement of pressure at the restrictor

exit indicates that there is considerable pressttre recovery. It was shown

that the pressure loss coefficient can be correlated with the Reynolds' number

(Ref. 4); a linear relationship is chosen for simplicity.

A simple thrust plate with a feeding hole at the center and a recessed

pocket immediately after it, is to be analyzed. The same bearing configuration

was previously analyzed in Ref. 12 using the above pressure loss coefficient

correlation for the restrictor flow and the Reynolds' equation for the bearing

film but assuming a uniform pressure in the pocket. This will be modified in

the present analysis by writing another Reynolds' equation for the recessed

pocket. This modification is particularly significant when the pocket is

shallow which is usually the case as the result of a trade-off consideration

between stiffness and stability. Perturbation analysis for small oscillation

about the equilibrium position will be performed. Based on the perturbation

analysis, dynamic bearing stiffness and damping coefficients can be calculated.

Using the stability analysis of Ref. 6, stability maps are constructed. The

results using the nozzle equation are also presented for comparison.
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2. ANALYSIS

The configuration of an inherently compensated, hydrostatic, circular, thrust

bearing is schematically shown in Fig. 1. Gas at supply pressure p is led through

the feeding hole with diameter df, into the recessed pocket before entering the

bearing film. For a circular bearing it is convenient to use the polar coordinates.

If we further assume circular symmetry, i.e. no misalignment, then the radial

coordinate, r, is the only space variable required to describe the flow and the

pressure distribution. In order to facilitate a dynamic analysis let us allow

the bearing to have small axial vibrations about its equilibrium position and

express the bearing film thickness as

h - C + c cos T (2.1)

or in dimensionless form

h 1 + g cos (2.2)

where

h/C

C/C

C - equilibrium film thickness (2.3)

T - ct - dimensionless time

a)- frequency of vibration

We have assumed that the vibrations are purely sinusoidal. Note that g, the

normalized amplitude of vibration, is a small number.

The well-known time-dependent, isothermal Reynolds' equation can be written

in dimensionless form,



rh- " = a , p h rR  < r < 1 (2.5)

r bjr 3TRr 25

wil. 'e

r = r/R

p M P/ps

Pa , = squeeze number
a .(2.6)

- hR
R C dimensionless depth of recessed pocketI1 I

rF, rR R dimensionless radii of the fe.ding hole and the recessed

pocket, see Fig. I

It is scen that the pressure distributionn of both the recesd pcket

(rF '- r < r ,) and the film (r H < r < 1) are governed by the respective Reynolds'

equations (2.4) and (2.5).

The boundary condition at the outer edge is

p 1 at r - 1 (2.7)

The pressures at r ard r are designated as follows:
r R

at r = rF' P P

at r = rR- P PE (2.8)

at r = rR+) P ' PR

Note that there is a discontinuity in pressure at r - rR. The pressures, pR' F

P and pR' are yet unknown. Additional pressure flow relationships across the

inlet restriction at 7 F and at r - rR are required for the solution.

In the literature (Refs. 1, 2, 3) the well-known nozzle formula is used to cal-

cutate the expansion of air from p5 to PF and from p,, to PR' If the pressure

calculated according to the nozzle equation ore dccepted, one automatically

assumes that the velocity head resulting trom expnansion through the nozzle is
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completely lost. This is not so because part of the velocity head is recovered

as indicated by Ref. 4 and 5. In fact. a correlation formula for the pressure

drop and the velocity head was obtained by Vohr (Ref. 4). In the following,

both methods of approach, the Vohr's correlation formular and the nozzle equation,

will be used for the analysis.

Using Vohr's Experimental Correlation

The experimental correlation of Vohr (Ref. 4) shows that the pressure drop

at the entrance is related to the velocity head by

(4) ent-K' pdyn (2.9)

where pdyn is the dynamic head expressed in the form of a pressure. The film I
entrance loss coefficient, K', is c.rrelated with R (or m/ru) in Ref. 4. .,hi,_h

is reproduced in Fig. 2. For all practical purposes, a linear relationship be-

tween K' and R is satisfactory. Hence,

K, KR K m
e nrr (2.10)

Note that K is a constant, and

K 0.33 x 10"3  (2.11)

Applying the above formulation to the restriction at ? - rF, we have

s PF " K r (2.12)

Here, the velocity head pdyn can be obtained by

Pdyn n Ps - PC (2.13)

It is to be noted that p is a fictic .ous pressure through an isentropic expansion

which will carry the gas to its downstream Mach numbers ccrresponding to niF. This

can be realized jy noting that
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= e Ve ae (2.14)

where pe and Ve are the density and velocity corresponding to p e and ae is the

flow cross-sectional area. Observe the following identity

mF _ e Ve e
= -- e e M* (2.15)

C*a p C* p5  e

where C* = the speed of sound at sonic velocity

vS e (2.16)

M*= -- - Mach number with respect to C

Since both pe/P and M* are function of Mach number only (for the ficticious

isentropic expansion), let us denote

Pe
f - f (M) - - M* (2,17)e P s  e

Then, from Eq. (2.15)

f mF PeM*
e C*ap P e (2.18)

ae 2 rrrF (h +hR) J
For a given Me, the quantities 0e /p and M* can be determined with the aid of ase e
gas table. (Ref. 10). Then 6 can be easily calculated from (2.18). Note that

C* = - T (2.19)

where

y - ratio of specific heats

- gas constant - 2.47 x 105 in2 for air (220
sec 2eR

T - absolute temperature of bearing
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Conversely,once i is known, Me can be determined, which in turn yields pe/Ps'

Similarly, the loqs at the second restriction (r r R ) is

P " PR K r "R (2.21)71RLL

Now, PE is obviously the supply pressure for this restrictor and p is the pres-

sure resulting from a ficticious isentropic expansion. Corresponding to (2.Pl,

we have

fg f (Mg Lze Mg
9 9 Pe 9aPE (2.22)

a 2T rh
8 R

In solving the Reynolds' equations (2.4) and (2.5) with small periodic vari-

ations of the gap about the equilibrium position, we write in complex form,

- - iT
h i 1+ e i  (2.23)

and expand the dimensionless pressure

iT
P 0 Po + p e (2.25)

The mass flow rates 6 and 6 can be expressed in terms of pressure Lradient

as follows:
(h + hR)

6 p 2 rrF l2 Jr (2.27)
l-F
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2 14-L (2.28)

Thus, we have

- (C ( + 3 i p c 2

(Ch) - (2.29)
rF

F 1 -Fb(Po 0pi )

3~ 2 -r

=+ 2 - (2 30)

irFJ

and

rNO "rR Pa 124 OkT (2.31)

rR

6(P o Pl )

-- 2 (2.32)

rR 

From (2.12) and (2.13) it is clear that

-- iT

s Fo + PFl e

Kr F s Peo C P e i e i

Hence,

Ps PFO " r F i (Ps" Peo )  
(-3

"O(R, (2.33)

ii
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PF I. P e (2.34)
Pa PFo @o Pa - Peo

Similarly, from (2.21)

PEO PRo K TrRI (PEo" Pgo) (2.35)

and

PE P -RI- + PEJ - Pgl (2.36)

PEo PRo o PEo" Pgo

Note that we have already used the steady-state mass conservation relationship.

6R = '4 (2 37)

Before we go any further, let us observe that there is a singular point in

Eq. (2.4) at r - o. Although i is never equal to zero (f > rF >o), the gradients

may become very steep near i = iF if iF is small in comparison to unity. It is

therefore convenie t to make the following coordinate transformation-

di- dg (2.38)

or in F - (2.39)

and - (2.40)

Under the transformed coordinate, Eqs. (2.4) and (2.5) become

+ &R)3 P ] 2 _ + [R] ; 4  4 (z.41)

-a .
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[;3 ] .2 ( p, h) , o (2.42)

with boundary conditions

at 9 - F

at 9 = CR ;

(2.43)

at -o P-i

where 9F = in rF etc. (2.44)

Applying perturbation to (2.41) and (2.42), we obtain

_ 2
d dp 0 o (2.45a)

o111  e a . + (1 +&R (2 .45b)

-2]
F 1 (2.46b)

Steady-State Solution

The solutions of Eqs. (2.45a) and (2.46A) satisfying boundary conditions

(2.43) are

-= P " PFo + Fo 2 - PEo 2 12 
< t 

<  -  (2.47)P F g F - S
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-I /2

P + 1Ro2- 1) - <9 0 (2-48)

The quantities PFo' PEo and PRo are to be determined by mass conservation and
pressure drop relationships as follows:

From (2.39) and (2.31)

o 2 *2 (2.49)
As s " R

-2- 1 1 Ro- Im , .PRO 1

* - 2 (2.50)

mwhere mo - 0 - - dimensionless mass flux (2.51)

ps X 2 rF (C + hR)

A * 12P Na r F (C + i'RAs  -

- feeding parameter (2.52)

and from (2.33) and (2.35)

a~~~~~ Fo oF~~R " -p- mX +0 (2.53)

2
PEo " ;Ro " K 0 * (1 + 2 Cr (2.54)

A&

The dimensionless mass flux has a maximum when the flow is choked. In moat
circumstances, the choking occurs at the first r~strictor because the area is
smaller than that of the second restrictor. Then, from Eq. (2.51) we have

:.,c y 1.4,

(on choked 0. 0.=b8
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To additional equations are obtained from Eqs. (2.18) and (2.22),

f - _V (2.55)
e o

f !a - (Il+h) (2.56)
5E o rpR

Recall that fe and f are implicit functions of peo and pgo respectively. Thus,

we have six equations, (2.49), (2.50), (2.53), (2.54), (2.55) and (2.56) to solve

for six unknown quantities, on ,pFo' PEo' PRo' Peo and p go The system is

obviously non-linear. Iterative method is used in obtaining the solution.

Numerical computation has been programmed on a computer. Knowing PFo P and

PRo' the steady-state pressure distribution is explicitly given by (2.47) and

(2.48).

Perturbation Solution

The perturbation pressure is governed by Eqs. (2.45b) and (2.46b) with one

obvious boundary condition that p, must vanish at I = a (- 0 1). The other

boundary conditions are to be derived from the mass ionservation and so on as

follows:

First of all, since P1 is in general complex, it is convenient to assume

p0o Pl " ( + i v 'C 5))

Then, after separating the real and imaginary parts, the differential equations

are reduced to

d 2  2 (l +.

dC2 (i+ CR ) 3  ePO
(l ~ ~ ~ C LP 0  CF '' k. (2.58)

2v

[s 2 iu

, L 

- -
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[Po+ < < 0 (2 .59)

d v . a e [ P +
d2 0 o

Before Eqs. (2.34) and (2.36) can be used as boundary conditions for the differ-

ential equations, it is necessary to ,jbtain expressions for Pal and Pgl'

Since pe and fe are functions of M we can write

dp dfP; de M' and f ' di ' (2-.0)

M -- a nd dM( e
• C

The primed quantities represent perturbations.

Also, from Eq. (2.18)

fe- fe (ce ae) (2.61)

Thus, a #

3mF  bae e

f f-j - e (2.62)

Mfo 0 e

Combining (2.60) and (2.62)

- dp* f F ii' I
Pel dl e  --fe d - (2.63)

dli
e

Similarly one can easily obtain

- it"- - - i- (2.64)

S-gl dMlg - % PEodE
9



Using (2.63), (2 .64), (2 .30) and (2 .32) , Eqs. (2 .34) and (2 .36) become

1 H_______ e__1_____+__i_)

(u + iv) I (1 - He) L2E1 V~

+ 3 M (2.65)

1 +h R (Ps Po( + hR)

1 1 - - H I1 u v

PR
1 Eo PLgo PR Eoo Pgo Eo J

- - . - (u +iv) + 2 (1 ~ &-- E~(

P~(~-PO CR PEo- Pgo / L
H

+ 3 - 2 - -(2 .66)

PEo- PgQ

where

dp e /
e dM e dMe e

dp d

H dM- f -i (2.67)

22

E dM d
dg

E -.

H eand H 9can be determined by the relationships for an isentropic expansion or

by simply using a gas table (Ref. 10).

H ( .66
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spit of he ~~8-14-The mass conservation at R yields

-i -(2 .69)

3._ + 2 E- u v 3 + 2 E_ A (u + iv)

t% R- tR+

Since the pressure at the exit of the film remains ambient in spite of the gap

oscillation, the perturbation pressure must vanish.

(u + iv) I  0 (2-b9)
140

Each of the four equations, (2.65), (2.66), (2.68), and (2.69), yields twc bound-

ary conditions if their real and imaginary parts are separated. We therefore

have eight boundary conditions to solve Eqs. (2.58) and (2.59).

The formulation of the perturbation problem is now complete. The numerical

solution of this system is obtained in Appendix A using the matrix multiplication

method.

An alternative approach using the nozzle equation instead of Vohr's correla-

tion formula is given in Appendix B.
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3. LOD CAPACITY AND DYNAMIC BEARING REACTIONS

The pressure in the feeding hole region (r<rF) is uniform and steady while

the pressure distributions in the recessed pocket and in the film are given

by

T) 0 . u+ i e iT

p 0

"o (r)+ u (i) co - v (i) sin -r (3.1)

Po ()

The bearing force may be obtained by integrating the pressure relative to the

ambient, throughout the film. Thus,

W = (p - pa) 2 t r rd r

dorR R

rr 2 (P - p ) + 27 (p - p ) r d r + 2Tr (p - p) r d r (3.2)

rF R

Non-dimensionalizing the load by 1' R2 Pa we have

2 r R
"1 " rF (p- 1) + 2 (po- l+ 1 e e ) rdr

P&R r F

+- 2 4 (p 4 PIi r d (3.3)

rR

Steady-State Load Capacity and Stiffness

The steady-state load capacity can be obtained by taking the tine-independt

part of Eq. (3.3).

S 1 20o r P - 1 + 2 f. o M e• d

F

2 2 d (3. 4)

ftR



With the steady-state pressurc distribution P ( ) solved in the previous

section, 4° can be easily obtained by quadrature. The static stiffness is, by

definition,

Ck0o - c (

rR2pa SC

where the superscripts (+) and (-) refer to the load capacities at C + LC and

C - &C respectively. &C should be sufficiently small; a suitable value for A\

is O.OlC,

Dynamic Bearing Reaction

The dynamic bearing reaction due to axial vibration is, from the time-

dependent part of Eq. (3.3)

1z 2 Pi i di ei
pa r F

rF

S Re (ir (U. + iV (3,6)

j
where U - Dynamic Stiffness

2 - 22 d9- 2 4 u..e 29
9F PO 0 R 0o d9 (3.7)

V . Dynamic Damping

E 2g - 2 R r
v 2d 2 v e d9 (3.8)

•F PO fR i o
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Knowing u and v from the perturbation solution shown in the previous section,

the dynamic stiffness and damping caLi be readily calculated from Eqs. (3.7)

and (3.8) by quadrature.

Numerical computations have been programmed on a computer. Typical re-

sults are obtained for a bearing configuration with the following dimensions:

R - 2 in.

rR - 0.5 in.

rF - 0.005 in.

hR - 0.002 in.

The static stiffness is plotted against A in Figs. 3 and 4 for p 4 4 and 2.

It is seen that the static stiffness using Vohr's correlation has a maximum at* *

approximately A 0.62 for P 4 and A a 0.50 for p - 2. The static stiff-

ness using nozzle equation are also plotted for comparison; two different values

of the flow discharge coefficient are used, namely, C - 0.6 and 1.0. Since .
w S

represents the relative importance of the restrictions offered by the restrictor
*

and the bearing film, the peaks of the static stiffness occurs at different A
S

for C - 0.6 and 1.0. The flow discoarge coefficient for nozzles and orificea

was reviewed in Ref. 11. It is reported that C varies from 0.6 tu 1.0 depend-
w

ing on flow condition and pressure ratio. In general C is close to 1.0 when
w

the pressure drop across the restrictor is large; this occurs when A is smAll
* s

(large clearance operation). When % is large (small clearance and hence no

appreciable pressure' drop across the reatrictor), C is about 0.6. Althoughw

no measurement on C ,oas been made cor the inherently compensated restrictorw
used in this bearing, it is commonly accepted to use vrlues between 0.6 and 1.0.

For the bearing configuration under consideration the value of Cw a 1.0 appears

to be a good choice as the static stiffness agrees well with that using Vohr'a

correlation.

Normally, a hydrostatic thrust bearing is designed off the optimum stiffness
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point and on the larger A side for more stable operation (See Fig. 10) and
higher load capacity. It has been obseived (Ref.13) that In a hydrostatic

journal bearing, the actual stiffness on the high A s side is appreciably below

the theoretical value (using the nozzle equation and Cw 0 0.6). The same type

of romparison can be expected for hydrostatic thrust bearings. Thus, the

present analysis using Vohr's co-relation would yield results in better agree-

ment with the actual stiffness.

The stiffness and load capacity for the same bearing except with a latger

feeding hole (r. M 0.02 in. instead of 0.005 in.), are shown in Figs. 5 and 6

The stiffness curves exhibit the same characteristics as the other bearing

cnfiguration; it again har a maximum stiffness at A - 0.60 if Vohr's correla-

tion is used.

The dynamic stiffness and damping of the bearing with rF = 0.005 .n. are

plotted against frequency for various values of C in Figs. 7 and 8. When

the frequency is low (w 1), the dynamic stiffness approaches asymptotically

to the value of the static stiffness as can be anticipated. The frequency

at which V a o, is called the critical frequency which will be useful in the
z

stability analysis in the next section.
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4. STABILITY

7.n the previous section, we have calculated the dynamic bearing reactions

corresponding to small axial vibrations about the equilibrium (statically)

position. These information are directly useful in determining the bearing

stability.

In Reference 6, a stability analysis for either a single or two degree-of-

freedom system was performed. The results for a single degree-of-freedom system

are directly applicable; they may be stated as follows:

Let u)0 be the frequency of vibration at which

Vi %= 0 (4,.1)

This is the state of neutral stability. Then, the critical mass is given by

2
MO a 2 Uz 0 ° (,. 2)

A slight variation from the state of neutral stability would cduse the

system to be unstable if and only if

z 6M >

where 5M is a small mass increment above M . From Figure 8, _Vz _ >

Therefore, in order for the bearing to be stable, 6M must be less than zero, or,

the bearing mass must be kept below the critical mass.

Based on the above and a knowledge of U and V z, the critical mass can be

calculated from Eq. (4.2). Since Vohr's data (Ref. 4) are essentially for low

Mach number flows, only bearings with subsonic flow throughout the passage will

[i •_____
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be considered. Supersonic bearings are also currently under investigation.

The critical mass for the bearing with R - 2 in., rR = 015 in., rF = 0.005

in. and hR - 0.002 in. is plotted against A. in Fig. 9 for both methods of cal-

culating restrictor flow. Although the critical mass calculated with C = 1 0
w

still appears to be in closer agreement with that according to Vu'ir s correlation,

its error is not on the conservative side. In Fig. 10, the stiffness and the

critical mass uising Vohr's correlation are plotted against A . t the point

where the stiffness is a maximum, the critical mass is rather low. A trade-off

is therefore necessary between the stiffness and the critical mass. Figure 10

then would enable one to decide the design point of a bearing at which a stable

operation is possible at the expense of a reasonable decrease in stiffness

*
It can also be seen from Fig. 10 that when A is beyond a certain value for

s
a given P5. the bearing becomes infinitely stable because V is always positive*
there. Thus, we can obtain a stability map by plotting this critical A againsts

p as shown in Fig. I1. Three curves are shown there; the solid one uses Vohr's

correlation and the dotted curves use the nozzle formula. Again, the curve with

C - 1.0 is not conservative. In Fig. 12, stability maps for different values

of the pocket-to-film volume ratio are shown. It is seen that the bearing will be

more stable for smaller pocket-to-film volume ratio. One can read from Fig 12
for ps - 4 for example, the values of critical A at different volume ratio

2
1r R hR 2 1 2_

r(P2. 2 3 3 15 15

Critical A 2.4 l.b 0.9 0.44
5

The dimensionless stiffness and the critical Aa are plotted against the volume

ratio in Fig. 13. Note that we did not show the results with zero volume ratio;

the reason was that the flow is choked and supersonic flow in the bearing film

would result. From Fig. 13 it is clear that for the geometry chosen there is an

optimum volume ratio of approximately 0.1 for maximum dimensionless static stiff-

ness. It should be remarked here that one can design to achieve this stiffness

with the assurance that the bearing with A 0.7 (which is the critical value)

and volume ratio of 0.1, is at the threshold of absolute stability.

tw II .. T-- I""
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5. SUMMARY AND CONCLUSIONS

Inherently compensated hydrostatic bearings with shallow recessed pocket
near Lhe ieeding hole were analyzed theoretically. Both the bearing film and
the recessed pocket are treated by using the isothermal Reynolds' equation.
Vohr's correlation for entrance restriction was used to calculate the restric-
tor flow. Results were compared with those using the nozzle formula instead.

Based on the results obtained, the following conclusions can be drawn:

1. Steady-state load capacity and stiffness were calculated. It was found
that the static stiffness has a maximum value when the feeding parameter
A is approximately 0.6 for the geometry chosen if Vohr's urelation is

used,

2. If the nozzle formula is used to calculate the restrictor flow, then the
discharge coefficient Cw = 1.0 yields good results in static stiffness
but non-conservative stability margin.

3. Stability results were obtained based on a perturbation analysis which
yields dynamic stiffness and dynamic damping. Applying the stability
results of Ref. 6, stability maps were constructed. A combined plot of
stiffness and critical mass against the feeding parameter shows that it
is often necessary to design a bearing off its maximum stiffness in order
to gain a sufficient stability margin.

4. The stability margin of a hydrostatic bearing increases with decreasing
volume ratio between the recessed pocket and the bearing film.

5. If a hydrostatic bearing is designed at the threshold of absolute sta-
bility, there is an optimum pocket-to-film volume ratio at which the

static stiffness is a maximum.
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=NCATURE

e Area- 2  rF (C + hR)

C Equilibrium film thickness; Also speed of sound

C* Speed of sound at sonic speed

C w Nozzle discharge coefficient

Defined in (2.67)

7(TI) Defined in (B.3)

fe' f8 Defined in (2.18), (2.22)
e 9

F Dynamic bearing reaction

He, Hg Defined in (2.67)

[HI Matrix defined in (A.20)

h Film thickness

hDepth of recessed pocket

hh/C, dimensionless film thickness

k Static bearing stiffness

K' KRe

______________________e__
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Constant defined in (2.11)

M Mass of bearing

M Mach numbere

M* Mach number based on C*Ci

Ifi Mass flow rate

m Steady-state mass flow rate0

Dimensionless mass flow rate, Eq, (2.51)

p Pressure

Pa Ambient pressure

Pdyn Dynamic pressure head

Pe Defined in (2.13)

Pg Defined in (2.21)

ps Supply pressure

T P/ps

pop p1 Steady-state and perturbation pressure. defirned in (2.24)

r Radial coordinate

Y r/
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rF Radius of feeding hole

r R  Radius of recessed pocket

R Bearing radius

R Reynold's number a m/(n r L)

P, Gas constant

T Temperature

t Time

Uz  Dimensionless dynamic stiffness

V Dimensionless dynamic damping

u, v Defined in (2.57)

V Gas velocity

W Bearing load capacity

W/ R2 Pa

Y Ratio of specific heats

Amplitude of axial vibration

T Dimensionless C, " . g/C

A* Feeding parameter, defined in (2.52)
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Viscosity

,n T

Density

Squeeze number, defined in (2.6)

T Dimensionless time, ut

-I

wFrequency of vibration

w Critical w

0

Subacript

o, 1 Steady-state and perturbation quantities

FE,R Pertaining to geometrical location, see Fig. 1

Sumerscripts

Denote, dimensionless quantities

k Indicates station
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APPENDIX A THE MATRIX MULTIPLICATION METHOD IN SOLVING ORDINARY DIFFERENTIAL
EQUATIONS

The differential equations (2.58) and (2.59) derived in Section 2 are to
be solved by using the matrix multiplication method. Rewrite the equation in
the following form.

U#1 + f I v f2

V" + g u g2 < (A.)

11+ f 1 v - f2

- <  < 0 (A.2)
V" + 81 u 2

where
f 2g = 1

£ = 0

22

2 3 e P(l + hR) (A3)
f = oe Po 0

f = 0

2C

2= 2 e2  PO

The primes represent derivations with respect to . If we divide the dis-
tance betweer tF and R into N equal intervals and the distance between % and
0 into Q intervals,

CR" 9F

"I N

o - R (A .4)
'4Q
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then, in central difference form,

).Uk+l 2u k + u k-I

- k + - & I -k

k 0, 1, 2. N
uk+ 1 .u k  k ' ]"

9"(k) - k+ 2 +ku
2

k+l k k-1
u(k) u 2u + u

"2
k-N', N+ 1, N+Q

u"(k) k k
22

k
where u - U({k). Note that stations N and N' occupy the same physical location.

Substitute into Eqs. (A.l) and (A.2) and write the results in matrix form

[k] k+l + [Bk] yk + [,k] yki-l dk'A i d k

(k 0 0, 1, 2, ... N) (A.5)

[Xk] k+l + [-k] yk + [ Yk] yk-i

(k - N', N + 1, N + Q) (A.6)

where -

2 2

B k  , l

k 2

1 7 2
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c k A Ak

k k

-g2 L

A I

-2 -kB k . 2

-k

Assume that the y-vector at station "k+l" can be expressed by

k+1 k k k 

kk

Here, MH and th are unknown matrix and vector at station "k". Combining

(A.6) and (A.7) we obtain

] k =N', N+1,...IN4sQ (A8

yn = LA Mk (dk - k )

From boundary condition (2.69) it is obvious that

N+Q -L] (A.9)

_________ ____________________ 
___ _______________Loll---~ 

_
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Using (A.7) and setting k = N - Q - 1,

yN4  , N.-Q - 1 + mN+Q-1 (A .10)

Since y +Q-1 is not equql to zero, in order to satisfy "A.9) we must have

MN+Q-

m N 0

-Using (A.8) as the recursion formula, the following is easily obtained.

MN4Q-2 .[IN+Q-1 1WN+Q-1 + N+Q..l] (;N+Qi -INQL Q1

MN+Q- 3  _ jNQ N44 -2 + B N+Q-2]- [C *i+*- 2]

m Nr 4 -3 _I +Q-2 W -Q-2 + NW-2 ]"  ( +Q 2 _ N+ -2 W -2 ) (A .12)

MnN' . MN ?+ + 1 1] ( + 1]

Define
1 P E- PRo

(P' P go g - 2

PEo PEo

02 m (PEo " ;go)/PRo (A. 1)

0,3 0 IR (PEQ o -OHg) (_E -R )/ (-PO 1

- [3 (PO - sgo~ 2H] 1 (Eo PRO
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Then, Eq. (2.66) takes the form,

o'r (U + iv) a 2 (u +iv + a (u + iv) R+ + O4

or,

N N' +0 3  1 i N+2 2yN+l 3 N' +
a 1 

y = '2 y + C4 " Y + 2 - y 1 C (A:14)

44

From (A.7), one can write

N+2 _ MN+1 N+ N1y = y + m

N+I = N' N' N'

y M y + m

SubstiL-'ing into (A.14) resulLs in

y N G y N + g (A. 15)

where

[G] ~ CV + I-[-- MN+. HI+ 2I1]MN]

(A.16)

[1 3 N+ + 3 1 2 1 N' cg 2 42 2 - - - +2 m+C 4

From (2.68) we have

-(u + iv) + (A.17)

kY u+iv R '
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where 2 _ 2

Fo PEo _

Ro

_2 2

P Eo 3 "R

*6 9F -R 2 (+ (A. 18)

Thus,

N-2 N+2 yN+'

Using (A.5) to eliminate y , and (A.7) to eliminate y and y ' we obtain

S- yN-+1 AN- + 2 - CN] [BN1] N + -1 I-N- 1  N-I
IC 2

1 5(E-frJ1N'J.+AMN+i.1 iN' (.9(A.19)

where-1

L 2  - -_ -[ N

Using (A.15) to eliminate yN in (A.19),

CL.] YN .[2 1 + .1 icNjN [B- 1N + ( .[CNA - 1 dN1

-J

+ a (HG g+ M 2 m N M + (A.2 1)
A2 5- 2 LI 2 A1
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where

Thus, by comparing (A.7) with (A.21) it is clear that

MNa 2 [U " + [J [CN]j[BNl] (A.23)

mN-I1 ICL-1 FN- 1  N-I, Cr- -I
m -- - MN L LC + 26 C3

+ 2s( CJ g+ [ I + 2 i -C[93 a]

(A.24)

From which we ran calculate the rest of the M's and m's.

MN-2 = AN-i MN- + BN 1]C ]
mN-2 I MN=I + B N- dN1 - AN-1 mN-1

IP3= [AN2 MN2 + B JL]- CN 2 J

mN-3 = [ AN-2 MN- 2 + B N-2]I - [dN-2 -A N-2 m N2] (A.25)

Finally, from boundary condition (2.65),

1 (o) M(I -He/Pa 2 L (2)+ 2y M_.2 Y(0)
S, 2- _ -2 A ' 22

PFo(P" PFo )  
Pg" Peo PFo "

3 2 H 0/pa
+ .- 2 a (A.26)

Il+ hR (pg- eo)(' + h R)
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Define

7

PFo(p s- PF o

(1- e /)2 a F CR
- - -2 -2
p 6P eol PFo- PEo

3 2 He/Pa

019  
1 R seo h)(A.27)

Then, Eq. (A.26) becomes

8 ) 8 M(1) M(o) + 2 8 M() (o)

+ a [M) + 21]m -8 mG)+ C) =0 (A.28)

where

C 9 -Ca 9J

Thus,

() r 3 '8 1 8 M(1) M o) + 8 M(o)

y(I (o7 2 AI -2 A J

f8 C + 2 1 " - m C( (A.29)
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Knowing y(o) from (A.29) and M's and m's from (A.i) and (A.25), we can write

down the solution as follows:

y(1) = M(o) y(0) + M(O)

y(2) a MM y(1) + m(1)

N . N-I N-I N-i -y = y +

N'-lN --

y oi [GI-1 y N G]- g (A.30)

N+l .I' N' N'

y = y + m

N+2 = N+i N+l + N-+I

N+2 = yN.Q I Wm1 N+

yNQ 1  y~ 4. - + M

LuTZ 1
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APPE NDIX B ALTERNATE METHOD USING THE NOZZLE EQUATION

Instead of using the Vohr's correlation formula, the well-known nozzle

equation will be used to compute the flow and pressure drop through the re-

strictors. The mass flow rates at rF and rR are

S C L2  rF (h +h)J Ps

- CE (2 r h) (B.2)
Cw ( rR) p

where C discharge coefficient
w

f!fl) E [i1/2

Nondimensionalize the mass flux by

P V - 2TT rF (C + h.) as before,

C . 1 I eiG) + 7 ( -  (B.4)

1 +ihREP

(l+ e TrF L (B.5)mR w Y 1 1 + Ti r F PS PE

Apply perturbation to (B.4) and (B.5)

i T
mF + + m e = C ei

l+h

( 1 + Al -- F1 iT) (B.6)
IPaO jp o P

P!P
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IT r. eT 2 ITo - - e m C P, i r. R E o + C P E e

I w 1 L +R r F Ps

d7 I (1 *;p po
f + C P e " I B.7)

'PRO PRo PEoI
PE---o PEo

Thus, we have

PFo

PS

mo  C rX R PE.
0 

(8.9)
I + hR rF P ,

PEo

Equations (B.8), (B.9), (2.49) and (2.50) can be solved for mo pFo' PEo and

PRo" Hence, the steady-state pressure distribution is readily obtained by
Eqs. (2.47) and (2.48).

The differential equations derived for the perturbation pressure are of course
still applicable in this method. Equations (B.6) and (B.7) should be used to
obtain boundary conditions to replace Eqs. (2.65) and (2.66)

From Eqs. (2.30) and (B.6), we obtain, after some manipulation,

-I- (u +i IV z- + 2 E --I)(B.10)
Ps PFo 'Fo

Ps
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Similarly, from Eqs. (2.32) and (B.7)

-df/dI PRo d /fl (u+
2 *-- - (u ~iv) + (u iv)lEo2  P - - ?o PE, %

Po EEoo

PEo I PEo

2 +2 IE- 1  (u + iv) (B.11)

Comparing (B.1O), (B.11) with (2.65), (2.66), it can be seen that it w' dtltir

1 PRo
- -3

PEo P PEo
~Ro

PEo

PRo PRo PEo

PEo I
2 Ro f; 2

PRo " 1

2 (B.12)

1f

7 -

Ps PFo

= 1 2 2"2

o PFo- PEo

1 2

pj
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the numerical scheme in Appendix A can be used for this altert-IdLive Method

utilizing the nozzle equation provided that arp , etc. are replaced by the

primed quantities defined in (B.12).



r rR

IFig. 1 Geometry of an Inherently Compensated,
Hydrostatic, Circular, Thrust Bearing
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