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ABSTRACT

An externally-pressurized gas thrust bearing was analyzed for both
static and dynamic characteristics., The bearing is fed through an
inherently compensated restrictor into a shallow packet. The analysis
gave special attentions to the significance of the recent finding of
restrictor flow (Ref. 4), the trade-off consideration hetween static

stiffrness and stability margin, and the effects of the pocket depth.



l. INTRODUCTION

Externally pressurized gas bearings have been used in many engineering
devices. It is well kﬁown that in order for the bearing to have relatively
large load capacity and stiffness it is desirable to have recessed pockets
immediately after the feeding holes. This causes the externally pressurized
gas bearings to be susceptible to pneumatic hammer instability. Analytical

investigations on this subject were made in References 1, 2 and 3.

In conventional analyses of externally pressurized bearings, nozzle
equations are used in calculating the flow across a restrictor. The dynamic
pressure head resulting from expansion through the restrictor is assumed to
be completely lost when entering the bearing film. This, however, i{s not true
as reported in References 4 and 5; a measurement of preasure at the restrictor
exit indicates that there is considerable pressure recovery. It was shown
that the pressure loss coefficient can be correlated with the Reynolds' number

(Ref. 4); a linear relationship is chosen for simplicity.

A simple thrust plate with a feeding hole at the center and a recessed
pocket immediately after it, is to be analyzed. The same bearing configuration
was previously analyzed in Ref. 12 using the above pressure loss coefficient
correlation for the restrictor flow and the Reynolds' equation for the bearing
film but assuming a uniform pressure in the pocket. This will be modified in
the present analysis by writing another Reynolds' equation for the recessed
pocket. This modification is particularly significant when the pocket is
shallow which is usually the case as the result of a trade-off consideration
between stiffness and stability. Perturbation analysis for small oscillation
about the equilibrium position will be performed. Based on the perturbation
analysis, dynamic bearing stiffness and damping coefficients can be calculated.
Using the stability analysis of Ref. 6, stability maps are constructed. The

results using the nozzle equation are also presented for comparison.



2. ANALYSIS

The configuration of an inherently compensated, hydrostatic, circular, thrust
bearing is schematically shown in Fig. 1. Gas at supply pressure Pq is led through
the feeding hole with diameter df, into the recessed pocket before entering the
bearing film. For a circular bearing it is convenient to use the polar cocrdinates.
1f we further assume circular symmetry, i.e. no misalignment, then the radial
coordinate, r, is the only space variable required to describe the flow and the
pressure distribution. In order to facilitate a dynamic analysis let us allow
the bearing to have small axial vibrations about its equilibrium position and

express the bearing film thickness as
h=C+ e¢cos 7 2.1)

or in dimensionlesgss form

h=1+¢cos T 2.2)
where

h = h/C

€= ¢/C

C = equilibrium film thickness (2.3)

T = wt = dimensionless. time

w = frequency of vibration

We have assumed that the vibrations are purely sinusoidal. Note that ;, the

normalized amplitude of vibration, is a small number.

The well-known time-dependent, isothermal Reynolds' equation can be written

in dimensionless form,

LI

3 D - - - -
= [(;) (h + by) pgg—]- a-§;[5 (h + "a’] ;B < B<E (2.4)
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1 :! - - - y . — = . — —
— = ,rh p QE a g < i ph ol r, <1< 1 (2.5)

r ar ! ar AT

wh e
T = r/R
P = PP,
12
~ = l%ﬁﬁ {%; = gquceze number
a .
\
) (2.6)

HP = Eh = dJdimensionless depth of recessed pocket
;F’ ;P = Jdimensionless radii of the feeding hole and the recessed

pocket, sce Fig. 1

It is scen that the pressure distributions of hoth the recessed pocket
r., - r .
( F

equations (2.4) and (2.5).

< ;P) and the film (rR << 1) are governed by the respective Reynolds'

The boundary condition at the outer edge is

P o= 1 at t = 1 (2.7)
Ihe pressures at ;% and ;k are designated as follows:’

s T =%, 7 o= b !

at Tt = ;R_, P = ;g | (2.8)
at ; = ;R+’ ; - ;k :

Note that there is s discontinuity in pressure at r = ;R' The pressures, ;%’

;g and ;ﬁ, are yet unknown. Additional pressure flow relationships across the

inlet restriction at r = e and at r = rp are required for the solution.
In the literature (Refs. 1, 2, 3) the well-known nozzle formula is used to cal-
curate the expansion of air from P, to pp and from P to Pg* If the pressure
calculated according to the nozzle equation arc accepted, one automstically

assumes that the velocity head resulting trom expausion through the nozzle is
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completely lost. This 1s not so becausc part of the velocity head is recovered

as indicated by Ref. 4 and 5. 1In fact. & correlation formula for the pressure
drop and the velocity head was obtsined by Vohr (Ref. 4). 1In the following,

both methods of approach, the Vohr's correlation forwular and the nozzle equation,

will be used for the analysis.

Using Vohr's Experimental Correlation

The experimental correlation of Vohr (Ref. 4) shows that the pressure drop

4t the entrance is related to the velocity head by

(ép)ent " K pdyn

2.9)

where pdyn is the dynamic head expressed in the form of a pressure. The film

entrance loss coefficient, K'. {s correlated with R_ (or m/mru) in Ref. &4, which
-

is reproduced in Fig. 2. For all practical purposes, a lineatr relationship be-

tween K' and Ee is satisfactory. Hence,

g m

' - = ———
K K Re K p—

Note that K is a constant, and

K = 0.33 x 1073

Applying the above formulation to the restriction at T = ?%, we have

. &

TTEu pdyn

Here, cthe velocity head pdyn can be obtained by

den = Py - Pe

It is to be noted that Pe is & ficticious pressure through an isentropic

(2.10)

(2.11)

(2.12)

(2.13)

expansion

which will carry the gas to its downstream Mach numbers ccrregponding to d%. This

can be realized Ly noting that




(2.14)

where Pe and Ve are the densitv and velocity corresponding to Pes and a, is the

flow cross~sectional area. Observe the following identity

.F °e ve pe
B e el a2 Mk (2.15)
* *
c a6°s Pq C Py e

where C* = the speed of sound at sonic velocity
(2.16)

\
M: = E% = Mach number with respect to C¥*

Since both pe/ps and M: are function of Mach number only (for the ficticious

isentropic expansion), let us denote

[+
£ M (2.17)
e

£ o= £ (M) = =
< ps

Then, from Eq. (2.15)

b P

= * - —
€ C*a, Ps Pg

0%

(2.18)

ae‘ = 2nr, (h o+ hp)

For a given Me, the quantities °e/°s and M: can be determined with the aid of a
gas table. (Ref. 10). Then ﬁF can be easily calculated from (2.18). Note that

o/ o
C* '\/_Y‘+1 RT (2.19)

where
¥ = vratio of specific heats B
5 _in?
® = gas constant = 2.47 x 10 2 for air (2.20
sec”*R
T = absolute temperature of bearing J



Conversgely, once iF is known, M_ can be determined, which in turn yields pe/pSK
Similarly, the loss at the second restriction (r = rR) is
= K ”lR

PR ntRu (2.21)

p -

Now, Pg is obviously the supply pressure for this restrictor and p_1is the pres-

sure resulting from a ficticious isentropic expansion. Corresponding to (2.1%;,
we have

9 * mR
f - f M = -2 M = ——
8 g Pe 8 CTa o
(2.22)

88 = anRh

In gsolving the Reynolds' equations (2.4) and (2.5) with small periodic vari-

ations of the gap about the equilibrium position, we write in complex form,

h o= 14+, €T (2.23)
and expand the dimensionlegs pressure

- - - = ir

P ] po -+ epl e (2-25)

. . - . iT

SR L T 2:20)

The mass flow rates ﬁr and ﬁR can be expressed in terms of pressure gradient
¢s follows:

3 .
il hR)’ p 2 (2.27)
F 12u ar .
Je

tiIF--Zm'

- - - - -— -— S st e a S e
L o A R - o cm——— -




[

-7-
how - h_ 2
me 2m'R IZHE ar (2.28)
r
R
Thus, we have
_ , (C+ hR)J p 2 !
; = - m_ p 2 | (2.29)
"ro F 8 120 RT B; I_
%
alp, py) ‘
. ) 3 T
Lo+ h.R dp “/dr |
r
i F
] ]
and
-2
3 op
. e = 2 _¢T o
o TR Pg 124 RT ar |- (2.3
R
[}
' - - i
’ 3p, Py)
. . Jr
"L % o [P * 2 — (2.32)
3
0
- x ;R -
From (2.12) and (2.13) it is clear that
_ .- i+
pe pFo € Ppp €
. - . ir
‘K“1F0+emFle - .= eiT
m‘Fu ps peo € Pey
Hence,
li’o
Pg = Pp, = K L (Ps - Peo) (2.33)
S e R S L s T

hiiiadita

Sk
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- PRl - .H_L"‘.l - _S___p 1 (2.34)
Ps i pFo Mo ps - peo

Similarly, from (2.21)

P - P - 2.35

Eo Ro Ty u (Pgo Pgo) ¢ )
and

Per - Pri . %, PE1 T Pgy (2.36)

PEo T PRo T PEo ~ pgo

Note that we hsve already used the steady-state mgss conservation relationship.

m'Ro = mFo = mo (2.37)

Before we go any further, let us observe that there is a singular point in
Eq. (2.4) at T = o. Although T is never equal to zero (% > §F>o), the gradients
mgy become very steep near r = T_ if T_ is small in comparison to unity. It is

F F
therefore convenie t to make the following coordinate transformation.

=9
a1

£ = dg (2.38)
or Int = g (2.39)
and 7 —8— =2 (2.40)

Under the transformed coordinate, Egqs. (2.4) and (2.5) become

‘gg- [(B+ER)3E '3%] - 2%, -g; [5 (E+ER)] A I (2.41)

-- - e ——— S em o easREas
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with boundary conditions

at g = gF
at & = gR_

st t g,

at £ = o

etc.

where gF = 1ln iF

Applying perturbation to (2.

_ 2
e |%%
ag  |ae
N AR
-1 -4 of

_ 2
o [
dg | dk

_L[53;, AL]”u .

14 ! [-14

Steady-~-State Solution

The solutions of Eqs. (2.458) and (2.46A) satisfying boundary conditions

(2.43) are

J-
(ph); &, <E€<o (2.42)
P - b
b= bp
- - (2.43)
P =Py
p=1
(2.44)
41) and (2.42), we obtain
(2.45a)
) L <8 &)
g g - .-
e ﬁ:gﬁ;)? 1 [po + (1 + hy) pl] (2.45b)
(2.46a)
- - (&, <8 <o)
si [Po + "1] J (2.46b)

3 B(Popl{] . ezg

Py

aT

2 -

- Pp

.2 o2
; =[;F Peo " & Pro
° % %W

¥ &

2 1/2
— g ] g <§ <%

~9-
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. ) 1/2
P, ™ [1 + (pRo - 1) _éld L+ <8 <o (2.48)

The quantities BFo’ 5Eo and SRo are to be determined by mass conservation and

pressure drop relationships as follows:

From (2.39) and (2.31)

: P )3 = 2 =-2
B : 1 (1 + h) Pe, ~P
; I 5 - :R Fo Eo (2.49)
Ag Py ¥ T %R
1 pe2- 1
i - 1 Ro (2.50)
o 2 * . 32
As Pg %R
: m
vhere M = - o = dimensionless mass flux (2.51)
o
Py WVQI 2nr, (C + hR)
* .
no- IZan‘RI‘ T EC + n&)
p, €
= feeding parameter (2.52)
and from (2.33) and (2.35)
- - . zé 2 rl:
P, = Pp, = K & ™ (1 + hR) T (ps - pr‘.o-) (2.53)
c 2
S S O LI S .
Pro = Ppo = K@, A* (1 + hy) T Pg, pgo) (2.5¢4)

[3

The dimensionless mass flux has a meximum when the flow is choked. In wmost
circumstanceg, the choking occurs at the first restrictor because the area is

smaller than that of the second restrictor. Then, from Eq. (2.51) we have

’ . ¢ Y’l-‘b,

: RN .
(mo)choked 0 v+ 0.68

—_ e, R
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Two additional equations are obtained from Eqs. (2.18) and (2.22),

(2.55)

Py Tp - : 1
f - o— - 1l 4+ m 2.56
g Pee  Tx ( he) & 2v ( )

Recall that f and f8 are implicit functions of B and 58 regpectively. Thus,
we have six equations, . 49), (2. 50), (2.53), (2 54), (2.55) and (2.56) to solve
for six unknown quantities, mo’ PFo’ pEo, pRo, peo and p8 . The gystem is
obviously non=-linear. 1Iterative method i1s used in obtaining the golutiocn.
Numerical computation has been programmed on a computer. Knowing BFo’ BEo and
pRo' the steady-state pressure distribution is explicitly given by (2.47) and
(2.48).

Perturbation Solution

The perturbation pressure is governed by Eqs. (2.45b) and (2.46b) with one
obvious boundary condition that Bl must vanish at € = o (f = 1). The other
boundary conditions are to be derived from the masg conservation and so on as

follows:

First of all, since Bl 1s in general complex, it is convenient to assume

P Py = U(D) + 1 v (E) 2 5"
Then, after separating the real and imaginery parts, the differentisl squations

are reduced to

g& = [FUSIEES - R ezg [-(1 + ) v
de (1 + hg) Po
. LA (2.58)
2 L+ Ry
dv . 2¢ [:- ] i
e P+ u
e a+E) °o” P, |
P 3
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2

du 2¢ N, 7
; . 2 c e Il
I a¢ P
| .5
i ) gR+ <gf<o (2.59)
| g—% - o et ;o + =
) ag P

| °J
Refore Eqs. (2.34) and (2.36) can be used as boundary conditions for the differ-

ential equations, it is necessary to ubtain expressions for Pel and p 1

Since Pe and fe are functions of M we can write

dpe dfe
' [ (. -1 ' 2.60
Pe dMe He and £, an, Me ( )

The primed quantities represent perturbations.

Also, from Eq. (2.18)

- T .61
£, £, (mF, ae) (2.61)
i
Thus, af af
£! = —f g, —£
g 28, ¢
l fe e (2.62)
; - — - == a .
; e o F % €
Combining (2.60) and (2.62)
_ dp £ h
p., - 3'£ df= o L (2.63)
€ Me e tnl.-‘o 1 + hR
ﬁ dM
e
Similarly one can easily obtain
| by ffﬂ __fs_ Ry 1 El (2.64)
P - ol - - .
gl dM_  df N =
8 _=& ° PEo
dM

g
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Using (2.63), (2.64), (2.30) and (2.32), Eqs. (2.34) and (2.36) become

H
- -.—-—:-l-—-_—-— (u+ 1‘,) = 1 - _+_ 251 M
P._ (P~ P Ps™ Peo ot
Fo s Fo gp £
F
2H
! ¢ —_— . ——e (2.65)
L+hy  (pm Peg) (L + hp)
/ -
H
:l— - L - - = L — - = x— _1 7 (u + iv)
PEo Pro™ PRo PEo pgo PEo pgo PEo J ER
~
H
-1
- —1 (u + iv) + 2 1-_—‘-——) M——-—)-“'ag“
pRo(PEo PRo) PES” pgo
| gR+ SR+
H
+ 3 -2 —Bm (2.66)
PEo” pgo
where
dp /éf
H = —£ ¢ —£
e dM e dM
e
g [
Hg = an_ t aN_ (2.67)
-2
dpo
E - ae
4

He and Hg can be determined by the relationships for an iséentropic expansicn or

by simply using a ges table (Ref. 10).
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The mass conservation at gR yields

3 -1 a(u + iv) -1 a(u 4+ iv)
- + 2 E = J+2 3
1+ hy ot s

£

™

(2.68)

Skt

Since the pregsure at the exit of the film remains ambient in spite of the gap

oscillation, the perturbation pressure must vanish.

(u + 1v) =

(2.69)
£=20

Each of the four equations, (2.65), (2.66), (2.68), and (2.69), yields twc bound-

ary condicions if their real and imaginary parts are separated. We therefore

have eight boundary conditions to solve Eqs. (2.58) and (2.59).

The formuletion of the perturbation problem {s now complete. The numerical

soclution of this system is obtained in Appendix A using the matrix multiplication
me thod .

An alternative approach using the nozzle equativn instead of Vohr's correla-
tion formula is given in Appendix B.
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3. LOAD CAPACITY AND DYNAMIC BEARING REACTIONS

The pressure in the feeding hole region (r<rF) is uniform and steady while

the pressure distributions in the recessed pocket and in the film are given

by
(T, T) =B (D) + € ytiy e’
Eo
- So (t) + € u(xr) cosg v -V (r) sin T (3.1)
p_ (1)

o
The bearing force may be obtained by integrating the pressure relative to the
ambient, throughout the film. Thus,
T

u-Z (p-pa) 2nrdr
R

R
2
= - - 4+ 2m - rdr (3.2
mrp (pg pa)+2ﬂj (p-p) rdr [(P e,) (3.2)
rF rR
Non-dimensionalizing the load by ™ R2 Py» we have

2 T

R Rl -
W vzl -?F (58-1)-»-2[ (50-1+ep1ei‘r)rdr
ﬁRpa EF
1
+ 2 f- (po-lwepleif)rdr (3.3)
'R

Steady-State Load Capacity and Stiffness

The steady-state load capacity can be obtained by taking the time-independt
part of Eq. (3.3).

+ 2 P, (®) 7 et (3.4)
gR
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With the steady-state pressure distribution Bo (%) solved in the previous
section, io can be easily obtained by quadrature. The static stiffness 1s, by
definition,

Ck - - (+) - (-)

o = - C D (R) = - C JW - W ;.5
-z € ° 2ac | ° °
R P W

where the superscripts (+) and (-) refer to the load capacities at C + AT and
C - AC respectively, AC should be sufficiently small; a suitable value for AC
is 0,01cC.

Dynamic Bearing Reaction

The dynamic bearing reaction due to axial vibration {s, from the time-
dependent part of Eq. (3.3)

1
Fz = ¢ 2 51 T dr eiT
e, :
F
< ir
= - € Re e (Uz + i Vz)\ (3.6)

where Uz = Dynamic Stiffness

a - 2 u 28 af - 2 u 2t
- e - e dt 3.7)
|4 P
Se ° R °
Vg = Dynamic Damping
3 r 28
2
- -2 v B[ o e (.8)
gF pO gR Po
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Knowing u and v from the perturbation solution shown in the previous section,
the dynamic stiffneéss and damping can be reedily calculated from Eqs. (3.7)
and (3.8) by quadrature.

Numerical computations have been programmed on a computer. Typical re-

sults are obtained for a bearing configuration with the following dimensions:

R =2 in.

r., = 0.5 in.
0.005 in.
0.002 in.

T "
L
[

The static stiffness is plotted against I\: in Figs. 3 and & for 55 = 4 and 2.

It is seen that the static stiffness using Vohr's correlation has a maximum at
approximately A: = 0.62 for Es = 4 and As* « 0.50 for Bs = 2. The static stiff-
ness using nozzle equation are also plotted for comparison; two different values
of the flow discharge coefficient are used, namely, Cu = 0.6 and 1.0. Since A:
represents the relative importance of the restrictions offered by the restrictor
and the bearing film, the peaks of the static stiffness occurs at different A:
for Cw = 0.6 and 1.0. The flow discasrge coefficient for nozzles and orifices
was reviewed in Ref. 11. 1t is reported that Cw varies from 0.6 tu 1.0 depend-
ing on flow condition and pressure ratio. In general Cw is cloge to*l.O when
the pressure drop across the restric:or is large; this occurs when As is small
(large clearance operation). When \g is large (small clearance and hence no
appreciable pressurc drop across the restrictor), Cw is about 0.6. Although

no measurement on Cw vas been made ror the inherently compensated restrictor
used in this bearing, it is commonly accepted to use vclues between 0.6 and 1.0,
For the bearing configuration under consideration the value of Cw = 1.0 appears
to be a good choice as the gtatic stiffness agrees well with that using Vohr's
correlation.

Normally, a hydrostatic thrust bearing is designed off the optimum stiffness
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point and on the larger A: side for more stable operation (See Fig.lQ) and
higher load capacity. It has been obseived (Ref.13) that in a hydrostataic

Journal bearing, the actual stiffness on the high A: side is appreciably below
the theoretical value (using the nozzle equation and C = 0.6).

of comparison can be expected for hydrostatic thrust bearings.

The same type
Thus, the
present analysis using Vohr's co-relation would yield results in better agree-
ment with the actual stiffness.

The stiffness and load capacity for the same bearing except with a larger
feeding hole (rF ® 0.02 in. instead of 0.005 in.), are shown in Figs, 5 and 6.
The stiffuess curves exhibit the same characteristics as the other bearing

%*
configuration; it again has a maximum stiffness at As = 0.60 1f Voht's correla-
tion 1is used.

The dynamic stiffness and damping of the bearing with r. = 0.005 :n. are
plotted against frequency for various values of C in Figs. 7 and 8. When
the frequency is low (u:é 1), the dynamic stiffness approaches asymptotically
to the value of the static stiffness as can be anticipated. The frequency
at which Vz s 0, 18 called the critical frequency which will be useful 1n the

scability analysis in the next section.

bl

Lob
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4.  STABILITY

in the previoues section, we have calculated the dynamic bearing reactions
corresponding to small axial vibrations about the equilibrium (statically)

position, These information are directly useful in determining the bearing
stability,

In Reference 6, a stability analysis for either a single or two degree-of-
freedom system was performed., The results for a single degree-of-freedom system

are directly applicable; they may be stated as follows:

Let W, be the frequency of vibration at which

. (6. 1)
W
o
% This is the state of neutral stability. Then, the critical mass is giver by
2
. P
M a R {e.2)
o = -—-—2—-—-—Uz
Cw w
o o

A slight variation from the state of neutral stability would czuse the
system to be unstable 1f apé only {f

s+ e v e P S PRI —S {55 S i

a_Vz. M >0 (4. 3)
dw
[0
: [<]
! vhere gM ic a small mass increment above M . From Figure 8, sz > 0.
| © dw |w
\ o
i

Therefore, in order for the bearing to be stable, &M must be less than zexro, or,

the bearing mass must be kept below the critical mass.

i Based on the above and a knowledge of Uz and Vz, the critical mass can be
; calculated from BEq. (4.2). Since Vohr's data (Ref, 4) are essentiaily for low

Mach number flows, only bearings with subsonic flow throughout the passage will
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be congidered. Supersonic bearings are also currently under investigation.

The critical mass for the bearing with R = 2 in., r, = ¢.5 in., r_ = 0.005

in. and hR = 0.002 in. is plotted against A: in Fig. 9 fgr both methodi of cal-
culating restrictor flow. Although the critical mass calculated with Cw = 1.0
still appears to be in closer agreement with that according to Vuur's correlation,
ite error is not on the conservative gide. 1In Fig. 10, the gtiffness and the
critical mass using Vohr's correlation are plotted against A:. "t the point
where the gtiffness is a maximum, the critical mass is rather low. A trade-off

is therefore necessary between the stiffness and the critical mass. Figure 1C
then would ernable one to decide the design point of a bearing at which a stable

operation is possible at the expense of a reasonable decrease in stiffness

It can also be seen from Fig. 10 that when A: is beyond a certain value for
a given Pg» the bearing becomes infinitely stable because V2 is always zositive
there. Thus, we can obtain a stability map by plotting this critical As against
pa as shown 1n Fig. ll. Three curves are shown there; the solid one uses Vohr's
correlation and the dotted curves uge the nozzle formula. Again, the curve with
C" = 1.0 is not conservative. 1In Fig. 12, stability maps for different values
of the pocket-to-film volume ratio are shown. It is seen that the bearing will be
more gtable for smaller pocket-to-film volume ratio. One can read from Fig 12

- *
for Py = 4 for example, the values of critical AS ar different volume ratio,

2
e by

2 1 < A

n(R2- rRz c 3 3 15 15
*

Critical A I 2.4 1.6 0.9 0.44

The dimensionless stiffness and the critical A*s are plotted against the volume
ratio in Fig. 13. Note that we did not show the results with zero volume ratio;
the reason was that the flow is choked and supersonic flow in the bearing film
would regult. From Fig. 13 it is clear that for the geometry chosen there is an
optimum volume ratio of approximately 0.1 for meximum dimensionless static stiff-
negs. It should be remarked here that one can design to achieve this stiffness
with the agsurance that the bearing with A: = (.7 (which is the critical value)

and volume ratio of 0.1, is at the threshold of absolute stability.

esitubionortudiobbildied b
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3. SUMMARY AND CONCLUSIONS

lnherently compensated hydrostatic bearings with shallow recessed pocket
near the teeding hole were analyzed theoretically. Both the bearing film and
the recessed pocket are treated by using the isothermal Reynolds' equation.
Vohr's correlation for entrance regtriction was used to calculate the regtric-

tor flow. Resuits were compared with thoge using the nozzle formula instead.
Based on the resultg obtained, the following conclusions can be drawn:

1. Steady-gtate load capacity and stiffness were calculated. It was found
that the static sctiffness has a maximum value when the feeding parameter

*
A, is approximately 0.6 for the geometry chosen if Vohr's cerrelation is
used,

2. If the nozzle formula is uged to calculate the regtrictor flow, then the
discharge coefficient €, = 1.0 yields good results in static stiffness

but non-conservative stability margin.

3. Stability regults were obtained based on a perturbation analysis which
yieids dynamic stiffness and dynamic damping. Applying the stability
results of Ref. 6, stability maps were constructed. A combined plot of
stiffness and critical mass against the feeding parameter shows that it
is often necessary to design & bearing off its maximum stiffness in order
to gein a sufficient stabiliry margin.

4. The gtability margin of a hydrostatic bearing increases with decreasing

volume ratio between the recessed pocket and the bearing film.

5. If a hydrostatic bearing is designed at the threshold of absolute sta-
bility, there is an optimum pocket-to-film volume ratio at which the
static stiffness is & maximum.




NOMENCLATURE

., Area = 2 r. (C + hp)
c Equilibrium film thickness; Also speed of sound
C* Speed of sound at sonic speed
Cw Nozzle diascharge coefficient
E Defined in (2.67)
(M) Defined in (B.3)
fe, f8 Defined in (2.18), (2.22)
Fz Dynamic bearing resction
He’ Hg Defined in (2.67)
i:] Matrix defined in (A.20)
h Film thickness
hR Depth of recessed pocket
E h/C, dimensionlegs film thickness

i Vo

k Static besring stiffness

K' KR
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"y

Constant defined in (2.11)

Mass of bearing

Mach number

Mach number based on C*

Mass flow rate

Steady-state mass flow rate
Dimensionless mass flow rate, Eq. (2.51)
Pressure

Ambient pregsure

Dynamic pregsure head

Defined in (2.13)

Defined in (2.21)

Supply pressure

P/P,

Steady-state and perturbation pregsure, defined in (2.24)
Radisl coordinate

r/R

.




=1

Radius of feeding hole

Radius of recessed pocket
Bearing redius

Reynold's number = m/(n r u)
Gas constant

Temperature

Time

Dimensionless dynamic stiffness
Dimensionless dynamic damping
Defined in (2.57)

Gas velocity

Bearing losd capacity

2
W/m R P,

Ratio of specific heats
Amplitude of axial vibration
Dimensionless ¢, ¢ = ¢/C

Feeding parameter, defined in (2.52)




93 Viscosity

g tn ¥

o Density

o} Squeeze number, defined in (2.6)

T Dimensionlegs time, wt

w Frequency of vibration

@, Critical w

Subgcript

o, 1 Steady-state and perturbation quantities
F,E,R Pertaining to geometrical location, see Fig. 1
guperscripts

- Denotes dimensionlesgs quantities

k Indicates station
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APPENDIX A THE_MATRIX MULTIPLICATION METHOD IN SOLVING ORDINARY DIFFERENTIAL

EQUATIONS

The differential equations (2.58) and (2.59) derived in Section 2 are to
be solved by using the matrix multiplication method. Rewrite the equation in
the following form.

u' o+ fl vV = f2
gF < ; < gR- (A'l>
v o+ g u = g, J
W+ Ty o= ]
1 2
Lt <8 <0 (A.2)
o4 El u = 32 J
where 2e
£ = — = = -- g
(1 + hp) Py
f2 = 0
2 —
g = L 5
(1 + hp) (A.3)
— - 2§ - . —
£ oe P, g,
?é = 0

= € =
8y o€ pg

The primes represent derivations with réspect to €. 1If we divide the dis-~
tance betweer gF and gR into N equal intervals and the distance between gR and
0 into Q intervals,

2 5
! N
0 - gR (A.4)

% = T3




then, in central difference form,

u'(g) =

un(gk)

U'(gk)

ul'(gk)

where uk - u(gk)

Substitute

[Akji Sl [Bk] NN [Ck] gkl ok

where
k 1
S
-
-2
2
Bk-AI
(3
g
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k=0,1,2, ... N

k=N, N+1, .. . N+Q

. Note that stations N and N' occupy the same physical location.

into Eqs. (A.l) and (A.2) and write the results in matrix form

(k=0,1,2, ... N) (A.5)

(k =N',N+1, ... N+ Q) (A.6)

rO




|
=

'
(S

—
[ ]
—
NN
IS
—

=k - —k
B
—k -
-k
g;

Assume that the y-vector at station "k+1'" can be expressed by
= My + m (A.7)

k
Here, M and mk are unknown matrix and vector at station "k". Combining

(A.6) and (A.7) we obtain
k-l —« k =k |t [ =
M = A M + B -C
k-1 —K R
o A< Mk 4 BX (@ - 2% oy
From boundary condition (2.69) it is obvious that

0
wo |

Lo

k = N', N+, ... N4Q (A.8)

B e TP S GEEENER
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Using (A.7) and setting k = N + Q - 1,
] yN"Q = ) -1 yN"'Q.l + mm-l (A.10)
! MQ-1 , .
{ Since y is not equal to zero, in order to satisfy {A.9) we must have
L L,
(A.11)
mN+Q-1 = 0
.-Using (A.8) as the recursion formula, the following is easily obtained.
Q-2 [oNQ-1 Q-1 | —g-1 -1 Q-1 —)
=14 M + B -C
. L -
) 0. PN . oot 17V —ngon —NeO. .
: mmz_Am1MN+QL+BN+Q1J (dN-+Ql_AN+leN+Ql)
E L
s [+ = -1 p
w3 LAN-rQ-Z W2 gHR-2 - o2
4
- -l-l 0
Q-3 =[Amq-z Q-2 Bmo-zj JHQ-2 _ MQ-2  N4Q-2 )
(A.12)
i ' —Nel s =l | =N+1
W =|a M+ B _J c
E
1) —" - -l — -
N _[Azm oo BuH-l] (dN+1 ol mn+1) ]
Define 5 -3 )
W 2o 3 . . Ee __Ro
oy = (Pro Pgo) Hg —
PEo PEo
ay = (pg, - Pgo)/ Pro (A.13)
o = 28 G B -H) G- pe ) (e 2 D)
3 Eo - g Eo Ro Ro
; - - - -
o, = [3 (pEo - pgo) ) 2“3:] (pEo - pRo) J
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Then, Eq. (2.66) takes the form,

|

, . a (u+ 1v)

o (u + iv) = o, (u + iv + ay ub; v + @,
: Sr- SR+ SR+
] & t
N _ N 3 1 N2 M1 _ 3 N

| a ¥y = o, ¥ + Az ( 2 y + 2y > Y ) + CA (A.14)
|

A

where C4 = . We have used the forward difference formula.
o

From (A.7), one can write
yN+2 - MI\H—l yN+l + mN+l

] ] 1]
\ ML R

Substic."ing into (A.14) results in

N ]
aly =[G.l yN + g (AIS)

(A.16)

J
From (2.68) we have
i
) gua; iv) - B (u+ iv) + o (a.17)

A [

Sz
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where -2 T 2

o = Fo Eo gR

3 - & P21

Ro
-2 _2 -

o = o~ T 3 M (A.18)

6 &~ &% 2 1+71R J '
Thus,

3 N N-1 1 N-2 bras [ 1 w2 ML 3 N'-] A, &

7Y -2y " +3y = TSy o+ 2y =Sy [+ |16

2 2 5, 2 2 | 0

Using (A.5) to eliminate yN-z, and (A.7) to eliminate yN+2 and yh+1’ we obtain

J oo -
- i—: as{[inN' + [- % Ml 21] o - % m¥t! } +C, (4.19)
wher&ﬁ]- i:- -;- YRR 21? [:MN':] - % 1
Cem [Alo%] (A.20)

Using (A.15) to eliminate yN in (A.19),

ol - -1 1 N1 N' 1 Ml
+ = a (HG g+ |-=MTL i’ o 1Ml (4.21)
b, 2 2
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where -1 A
3 11 N-1 N-1 5 = -1
(- 2 1 z[c ] l} :]' 5, 1% HG (4.22)
Thus, by comparing (A.7) with (A.21) it is clear that
-1 -1 .1 TN Rt S
= 2] + 5 (1] [c J [B ] (A.23)

-]_ .
mola . %[LJ'I [:CN-l] FLER I |:Lj'1 c

Iy g
1 -1 -1 i 1 w1 N' 1lr9-l M4l
+ AZQS(CLJ (8] e+ (1 [-ZMN"’ +21Jm -2 e )
(A.24)
From which we ran calculate the rest of the M's and m's.
-lr
N2 =[AN-1 N BN-I] i CN—l] )
N-2 -: N-1 _N-1 N1 N-1 N-1 N-1
m =l-A HN + B ] d -A " m ]
L
-3 N-2 _N-2 8-21"' N-2
v =[A M2 4 ] -c :]
-l
mN_3 =[AN-2 MN-Z + BN-Z] dN“2 - AN-?' mN-Z] (A.25)
- J
Finally, from boundary condition (2.65),
1 (o) B /p, SR OL 1 @ . ()3 ()
N A A TSI Y U A A B
Pro{Ps Pro) Pg™ Peo Pro” Pio
2 H /p
+ — s s (A.26)

Lehy (P P (L + )




WP TS LA IR L SRR

Define -
oo ——l
N I
Ppo Ps PFo
q/p -
a8- (1'_e__a)2_g§ ERZ
ps- peo pFo- pEo
- 3 2 He/Pa
09 - -
L+ hp  (Pgm P ) (L + h)
-

_3 % 18 1) () %8
[(017 2Al)I-2 lM M +2EM(°) (0)
Bl.1,0 () %
+ Al l: 2 M + 21 - EZ— m
where
- Q,
[ 7]
0
Thus,
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(A.27)

(A.28)

(A.29)




Knowing y(o) from (A.29) and M's and m's from (A.1l2) and (A.25), we can write

down the solution as follows:

y(1)

)

NORNONRNCY

W) (@

(A.30)
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ALTERNATE METHOD USING THE NOZZLE EQUATION

Instead of using the Vohr's correlation formula,

the well-known nozzle

equation will be used to compute the flow and pressure drop through the re-

strictors. The mass flow rates at e and rp are
p
- - 2 S < B
e c, [(2m rp (0 + h)) -ly_l T f (p) (B.1)
s
P
. 2 E = |p_
C (2nr_ h) . = f( (B.2)
mR w R y-1 m Py
where Cw = discharge coefficient
1 V12
Tm=1Y l-T‘IYJ (B.3)
Nondimensionalize the mass flux by
Pe RT 2n e (c + hR) as before,
. \
T e q+—— 7 ) 7[R (B.4)
v ¥ 1+ hR Py
. r P
g = ¢ /&% —— a+7 iy B 27 (E— (B.5)
Y 1+ K F s Pe
Apply perturbation to (B.4) and (B.5)
- - - i -
Ppo *t € Ty € - cw %¥I L+ l— € e
' 1+ hR
i P
- d - Fl i7
f P + E% 0 ¢ F— e (B.6)
Fo Fo s
Ps Ps

e ot et 2 A LA Al i b L

o
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: . - ir
W o+e om eTag 2y, l+gotm TR PEot € P ® .
. - —i— =
"Ro le w y-1 1+ h'R e Pg
s - _ -
Jg ' + df e e eiT . .Re P eiT (8.7)
T PE Rl 2 El
\_ i PRo PRo ° PEo
!PEO PEo

Thus, we have

. /> - |
= . Y
m Cu A V) f (B.8)

N T Pp.
m = c“-\/% L R Bo 7 (8.9)
- 1+ I p -
hR F s pRo
PEo
: , - - -
Equations (B.8), (B.9), {2.49) and (2.50) can be solved for LI . PEo and

Eho. Hence, the steady-state pressure distribution is readily obtained by
Eqs. (2.47) and (2.48).

The differential equations derived for the perturbation pressure are of course
still applicable in this method. Equations (B.6) and (B.?7) should be used to

obtain boundary conditions to replace Eqs. (2.65) and (2.66)

From Eqs. (2.30) and (B.6), we obtain, after some manipulation,

- (v + 1iv) | - ?—_ —2— 4 [E.l AL‘%-H)] (B.10)
ps pFo |§F %% _ 1+ hR gF

Pro

»
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Similarly, from Eqs. (2.32) and (B.7)
[ 1 df/dy | P | dE/d7 | |
'\_—3- LD | Rel e 4+ 4D - (u+ iv) |
£ | = p £ = pg_ P ‘
Eo ‘! PRo Eo IgR_ ipRO Ro “Eo ; §R+
- - !
{ pEo i‘pEO
- 2 +2,E-1 ﬁ.(.u_am}.] (B.11) i
| L 5 ER+
Comparing (B.10), (B.1ll) with (2.65), (2.66), it can be seen that 1t w¢ detine
: P
' - 1 - g Ro
] 5. 2 ,bj_ 5 3
Eco |PRo Eo
p!:‘.(3 i
1
1 -
% P - =
Pro Pro PEo
* ?pEo
2%
N =
! 2
pRo
g df/dn
a{: =2 ;9= = (B.12)
' om . 1
o ag—
Ps Pro
- 1 R
ag = 2
8 - - 2 =2
, Q% !PFO pFo B pEo
Pg
. o = 1 2
PFo 1+ hR
Ps J

o — o S e e - R - B I T




the numerical scheme in Appendix & can be used for this alteraative method
utilizing the nozzle equation provided that oy Ay etc. are replaced by the
primed quantities defined in (B.12).

L
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(FROM VOHR, REF. 4)

Fig. 2 Loss Coefficient versus Film Entrance Reynolds Number
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