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OCPARTMENT OF THE ARMY

This contract wes initiated to determine the seroelastic stability
limites of arciculated and unsrticulated helicopter rotor systems ot
high forvard speeds. The four primsry modes of sercelestic instabiiity
(classical flutter, stall flutter, torsional divergence, and {lapping
o {latvise bending instability) were investigated. The possibility
of a [lap-lag instability suggested by Dr. Meurice 1. Young of the
Vertol Division, The Boeing Company, vas investigated as & spesial case
of flapping imstability.

The reoults are published as & five-volume set; the subject of each
voluas §s as follows:

Volume 1 fquations of Motion
Volume 11 Classical Plutter
Volume 111 stall Flutter
Volume 1V Torsional Divergence
Volume ¥ Plepping Instabilicy

These reports have beea reviewed by the U. $. Army Aviation Materiel
Laboratories. These reports, vhich are published for the exchange of
information and the stimulation of ideas, are considered to be tech-
nically sound vith regard to techaical spproach, results, conclusions,
and recommended parvemster ranges for accurate usage.
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SWOURY

The purposes of this research program vere to extend or develop analytical
aethods for determining rotor blade aeroelastic stadility limits and to
perfora stadbility cclculations over a range of design and operating vari-
ables for srticulated and nonarticulated configurations. The usefulness of
simpler analytical methods vas investigated by comparing results vith oper-
ating boundarics from the more elaborate analysis.

In the part of the investigation presented in this volume, a simple energy
balance method for detormining static stadbility vas used to evaluate rotor
blade torsional divergence boundaries, and & set of blade design charts ~=s
generated. To compare the results of this simple analysis vith a more re-
fined method, and to {nvestigate the effects of parameters not included {n
the simple method, other calculations vere made vith the extended Norsal
Mode Transient Analysis.

One type of practical rotor blade operating boundary i3 defined by peak-to-
peak torsional stress. The static torsional divergence stadility boundary
usually approximates this practical operating limit, as verified by the
Normal Mode Transient Analysis calculations. This spproximation is valid
for an important number of tlade parameters.

This part of the investigation is introduced with a description of the tor-
sional divergence concept as it applies to rotorcraft dlades. The condensed
development of the simple energy balance method is given. The unifors blade
design charts are the result of the application of this sethod. The unifors
blades treated in the charts are of arbitrary size, control system flexidbil-
ity, asrodynamic root cutout, and section ceanter-of-gravity location. The
results of additional calculstions vith the simple method for nonuniforms
blades are also given graphically. The independent effects of nonuniform
blade chord, torsional stiffness, and inertia are gshown, vith inertial
effects reflected by the use 5f the natural torsional vibration sode as an
assumed divergence mode. The independent effects of nomuniform lift-curve
slope caused by Mach nuasdber, pitch-flap coupling, and nonarticulation are
presented in similar fashion. Normal Mode Transient Analysis calculations
for verification of the siapler analysis include investigations of the
effects of nonarticulation, reduced air density, control system flexidbility,
aft center-of-gravity position, and pitch-flap coupling on articulated
blades. The effects of gyro feeddback coupling on nonarticulated blades are
also presented. Discussion of the results of this part includes the signif-
icance of the idealized torsional divergence parameters, the relative effecs
on torsional divergence of the various parameters, and permissidle analyt-
ical assumptions useful in the calculation of the torsional divergence

stadbility dboundary.

Recommended preliminary design procedures, incorporating the charts gen-
erated for this volume are given for the rapid definition of blades wvith
adequate torsional stiffness.
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The investigation pres-nted in this volume is part of a general study of
rotor blade asrcelasti. instabilities, vhich is contained in five volumes.
The vork vas performed under Contract DA bl-177-AMC-332(T) vith the U. 8.
A'my Aviaticn Materiel Laboratories, Fort Bustis, Virginis. The progreas
vas sonitored for USAAVLABS by Mr. Joseph McGarvey.

The ro%or blade torsional divergence analysis, design charts, and discus-
sions in this volume u-e the result of vork done et Sikorsky Afrcraft by
Mr. Charles F. Niebancs and at the United Alrcraft Research lLaboratories

by Mr. H. L. Elman,

Volume I of this report contains the development of the differeatial equa-
tions of sotion of an elastic rotor dblade vith chordvise mass unbalance.

Volume Il presents a linearized discreet azimuth classical flutter analysis
for rotor blades, vith an appropriate parameter variation study, a camparison
vith test data, and a comparison vith results calculated by using the method
of Volume I.

Volume IIl descrides a stall flutter analysis based on the calculation of
aerodynamic vork for e cycle of dblade torsional vidration. 7Tvo-dimensional
unsteady airfoil test data vere used in the evsluation of the ssrodynamic
vork. The analysis wvas used to senerate stall flutter doundaries.

Volumse V presents the results of a study of flapping and coupled flap-lag
fi=stadbility. The results of a parametric study based on s single-degree-of-
freedra flapping or flatwise bendiig analysis are presented. Compariscns
are sade vith results from the more eladorate method of Volume I. The re-
sults odtained by using the method of Volume I to determine the coupled
flap-lag response of a rotor to a nuzber of sudden comtrol changes are pre-
sented.
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INTRODUCTION

One of the basic aeroeclastic investigations applying to fixed wings is the
torsionsal divergence analysis, fcr cases vhere the center of pressure is
ahead of the elustic axis. The central concept is the presence of an aero-
dynamic torsional couple on the wing, vhich increases linearly with angle
of attack and vhich therefore varies in similar fashion as the ving twints.
These couples, vhich are opposed by an elastic restoring torque, increase
vith the square of the forvard velocity for a given angle of attack. In
such a case, the aerodynamic couple {s proportional to the square of the
speed and linear vith the twisting deformation, vhile elastic resisting
couple is proportional to the twisting deformation alone. It is clear

that a velocity will exist for which an increment in the serodynamic twist-
ing couple is equal to the corresponding increment of elustic resisting
couple for any arbitrary deflection. This is known as the torsional diver-
gence speed. Belov this speed, the elastic resistance to an increment in
torsional deflection wvill be greater than the corresponding serodynamic
couple, and the deflection will find its equilibrium value. Above it, the
increment in elastic resistance vill be less thaa the increment in the
serodynamic couple, and the simple divergence theory predicts a continuous
grovth in deflection. It should be noted in passing that the divergence
speed may be either larger or smaller than the classical flutter speed.

The above concept of a torsional divergence for a fixed wving led to an
examination of similar situations existing for helicopter rotors. Obvioudy,
the velocity distribution on a helicopter rotor varies along the span and
is rapidly and continuously changing. Hence, the static stadbility analysis
for torsional divergence applies only to an instantaneous condition. 1In
fact, the torsional divergence situation for a helicopter rotor bdlade
usually develops on the retreating blade for advance ratios greater than
unity. The blade is then traveling backvards (sharp edge first) through
the air for part of each revolution, and the aerodynamic center moves close
to vhat {s normally the 75% chord position. This produces a large tor-
sional moment arm about the blade elastic axis and center-of-gravity posi-
tion at or near the 25% chord position. Hence, torsionai divergence will
be encountered for the retreating blade even though the relative velocity
is comparatively lov.

A more detajled descriptiocn of the theoretical approach to the torsional
divergence calculations will follov later. However, a definition of tor-
sional divergence can be given at this point. In terms of theory, the
torsional divergence bLoundary is that set Of flight conditions vhere blade
static aeroelastic stability in torsion is just satisfied at either the
advancing or retreating blade positions. The practical effect of exceeding
this boundary has been found to be a steep rise in bLlade torsional vibra-
tory stress levelc.



In this volume of the report, the flight conditions for torsional diver-
gence have been examined extensively, and useful design charts have been
prepared. These critical flight conditions have also been examined with
the much more rigorous extended Normal Mode Transient Analysis, which
provides solutions for the flexible blade equations of motion. It is gen-
erally verified that the torsional divergence analysis fulfills its pur-
pose, vhich is the definition of potentially troublesome flight conditions
vhich should be avoided or investigated further.



DEVELOPMENT AND DISCUSSION OF TORSIONAL DIVERGENCE ANALYSIS

Rotor blades on high :.ipeed helicopters can experlence torsional divergence
as discussed earlier. One essential difference beiween helicopter blade
and fixed wing torsional divergence is the role played by the center-of-
gravity location. For a {ixed wing, the torsional moment causing the
divergence is the lift force increment multiplied by the distance between
the aerodynamic center of pressure and the elastic axis. For articulated
rotor blades, and nonarticulated rotor blades of conventional stiffness,
most of the resistance to blade vertical deflection is supplied Ly centri-
fugal force components rather than by elastic forces. For this reason,
the torsional moment causing the torsional divergence of a rotor blade of
conventional stiffnes: is very nearly the 1lift force increment multiplied
by the distance between the aerodynamic center of pressure and the center
of gravity. On a blade of conventional stiffness, the distance between
the elastic axis and the aerodynamic center will have very little effect
on the torsional divergence speed.

In the case of nonarticulated rotor blades which are to be stopped in
flight, the torsional divergence mechanism is more like that for fixed
wings. As the rotor angular velocity, is decreased, the blade vertical
eciffness due to centrifugal effects diminishes, and the vertical elastic
fcrces must resist a larger portion of the vertical loads on the blade.
If the rotor is stopped, the basic torsional divergence mechanism is the
same as that for a fixed wing. It should be noted that the combined
effects of centrifugal and elastic stiffness are considered in the non-
articulated blade torsionel divergence analysis to be presented later.

As explained above, the torsional moment which causes blade torsional
divergence arises because the lift forces on the blade are not coincident
with the center of centrifugal and elastic forces resisting the vertical
deflection of the blade. In order for the moment to produce a potentially
unstable mechanism, the moment must cause the blade angle of attack to
become greater when the lift force becomes greater. This condition is
obtained when the aerodynamic center of pressure is forward cf the center
of the effective centrifugal and elastic forces resisting vertical motion
of the blade. If the aerodynamic center of pressure is aft of the center
of effective vertical resistance, torsional divergence cannot occur, since
an increase in 1ift will result in a blade torsional deflection which will
decrease the angle of attack.

It is instructive to examine the conditions for which a conventional blade
can encounter the stable and unsteble situations Just described. If the
blade center of gravity, aerodynamic center of pressure, and elastic axieg
are at the 25% chord position, > torsional divergence is possible on an
advancing blade, since the aerodynamic center of pressure coincides with
the center of vertical resistance. If the center of gravity is ahead of
the 25% chord position, the moment produced by a lift increment is stat-
ically stabilizing. In this case, the blade on the advancing side of the
rotor will tend to twist so as to reduce the 1lift increment due to a gust
or a control movement. If, on the other hand, the center of gravity is
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aft of the 25% chord position, the moment produced by a lift increment is
potentially unstable for the sdvancing blade. As pointed out earlier, the
relative position of the elastic axis with respect to the aerodynamic
center has a similar but much weaker ef'fect for the conventional rotor
blade. Thus the usual rotor blade ~onfiguration will be immune to tor-
sional divergance on the advancing side of the rotor. This is not true,
however, for a blade on the retreating side of the rotor when the advance
ratio is high enough to produce reverre flow over most of the blade. In
the reverse flow region, the blade is traveling through the air backwards,
and the aerodynamic center of pressure moves to the position which is
usually referred to as the 75% chord position. Since the blade center of
gravity and elastic axis remain at the 25% chord position, the distance
between the aerodynamic center of pressure and the center of the effective
blade vertical stiffness is 50% of the chord, This produces a potential
static instability, which fortunately is mitigated by the lower dynamic
pressures on the retreating blade. It should be noted that for the re-
treating blade, moving the center of gravity towards the normal trailing
edge decreases the unstable tendency, since it is then closer to the actual
aerodynamic center. The opposite effect is produced by moving the center
of gravity forward towards the normal leading edge.

As mentioned in the previous discussion, the usual rotor blade configura-
tion will experience static torsional divergence only in a region of re-
verse flow. A single degree of freedom analysis is adequate for a study
of the effect of torsional stiffness on torsional divegence of an artic-
ulated blade with this normal configuration. In order to evaluate the
effects of pitch-flap coupling and nonarticulation with arbitrary center
of gravity location, a two-degree-of-freedom analysis is required, and
vas therefore used in this investigation.

The general approach followed in this analysis is the development of two
equations of static stability involving one torsionel and one flapping,

or flatwise bending, degres of freedan. The determinant of these two
hamogeneous equations is evaluated. A zero value for this determinant -
indicates that the blade is operating on the boundary between a statically
stable and a st~*ically unstable regime. Operatior of the rotor in a
flight condition beyond this static stability boundary does not imply that
blade deflections will increase indefinitely, since the condition will
generally exist over only a portion of the rotor disc. The amplitude of
the blade deflections is affected not only by the extent and severity of
the statically unstable region, but also by tlade inertia, damping, and
blade motions upon entry into the unstable region. Therefore, the results
of an analysis of the type presented here serve principally to indicate
those flight conditions which are potentially troublesome from the stand-
point of adequate blade torsional stiffness «nd which should be analyzed
in further detail.

Inclusion of chordwise mass unbalance for nonarticulated blades and pitch-
Tflap coupling effects requires consideration of blade deflection out of
the plane of rotation as well as blade torsional deflections about the
elastic axis. It was assused that the first natural torsional vibration
mode and the rigid flapping mode would adequately represent the deflections
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of articulated rotors. It var further assumed that the first torsion and
flatwise bending modes would reprecent the deflection of nonarticulated
rotors. The total torsional spring coefficient was obtained from the
blade equations of motion presented in Volume I of this report. A list of
the principal simplifying assumptions made to arrive at the equations used
here is given below:

1. All dynamic tcrms are neglected.

2. All edgewise and lag terms are neglected, as are the terms
involving flatwise and torsional modal amplitudes other
than the first.

3. For articulated rotors, the flatwise bending amplitude
is zero; for nonarticulated rotors, the blade is rigidly
cantilevered at the root.

L. The lift rorce is the only aerodynamic force. It is
described by means of a linearized lift-curve slope,
vhich is the same absolute magnitude in both conven-
tional and reverse incompressible flows. When desired,
compressibility effects can be accounted for by the
Prandtl-Glauert correction, which is applied to both
conventional and reverse flow.

5. Only steady-state eerodynamics are considered and the
aerodynaniic center of pressure is located at the 25%
chord for conventional flow or at the 75% chord for
reverse flov.

6. The resultant section velocity is equal to the tangential
velocity component.

T. Terms involving collective or cyclic pitch, blade pre-twist,
preconing and second and higher products of modal amplitudes
are neglected.

8. Blade angles of attack remain small in forward flow and are
close to 180° in reverse flow.

The equations of static stability were developed by applying the assump-
tions mentioned above to modal equations, used in the Normal Mode Transient
Analysis of Volume I. These modal equations arise by effectively setting
the virtual work done by the aerodynamic lcads and centrifugal effects
equal to the change in strain energy during a virtual displacement of the
assumed modes. This consideration of energy terms gives rise to the
description of the static stability analysis as an "energy method".
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The development of the analysis will begii with the modal equations give:
in Volume I. The equations needed are the flatvise dending modal equatiorn,
the torsional modal equation, and the flap angle modsl equation. In Volume
I these appear as BEqs. (80), (89), and (91) respectively. For convenience,
they are reproduced belov as Eqs. (1), (2), and (3). Many of the terms in
these equations from Volume [ arc eliminated herein, since they do not per-
tain to the static divergence concept. Some terms will be used fur the
divergence analysis of both articulated and nonarticulated blades, while
others will be applicable to articulated blades only, or to nonarticulated
blades only. The specific reasons for deleting the various terms will be

given. Volume I, of course, gives a more complete discussion of the modal
equations.

The flatvise bending modal equation from Volume I of this report is
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The torsional modal equation from Volume I of this report is

v = - 1
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The flap angle equation from Volume I of th!s report is
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The modal constants C, through C are defined {n Appendix IV of
Volume I. They ure reproduced belov for convenience
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The nondimensionsl serodynamic tvisting moment (M), and the non-
dimensional serodynamic shearing force (S.); appear in the above
equations, and are pertinent to the static divergence analysis. The ex-
pressions for these quantities are given as Eqs. (1il) and (1k6) in Volume
I of this report. They are reproduced belov as Eqs. (S5k) and (55).

(s‘)‘s = *(%) 4 (#i)z(c; Cos ¢ + Cysind) (5h)

oo 4 () {0 emg - F () P03 - o)
+7,°§! (&)2 [cmO (cecosd + cq sin¢)

3@ (cysin¢g - cccotd’)]} (55)

The angle ® 1is given by Eqs. (147) through (149) of Volume I. The
pathematical definition of @ 1is reproduced belov as Eq. (56).

® = Gygp - Agcosy -Bgsing - ton8, [B +(W.')no]

+ 6,(8+7-075) + 6 (50)

The angle ¢ is the local angle between the plane of rotor roiation and
the local resultant velocity vector, as shown in Figure 5 of Volume I.

In accordance with assumptions 3 and T of this volume, vhich were given on
page 5 , Eq. (56) becomes

® & 8.“3'0"8' (57)

Note that 83 does not exist for the nonarticulated blade.

In accordance with assumption 2, Eq. (ST) becomes

® * 75,98, - B1onBy (49)



As in Figure 5 of Volume I,

a: @ +¢ (59)

In accordance with assumptions L and 8, and through the use of Eq. (58)
and (59)

(Crcosgp + Cosing) = o(79,qp, - Btondy + ¢) (60)
is obtained for conventional flcw., For reverse flov,

(Cpcosp + Cosmngp) = -o(¥,a9, - Blond, + w-¢) (61)

is obtained in the same way.

When Eq. (60) or (61) is substituted in Eq. (5L4), the expression for the
nondimensional flutvise aerodynamic shear force for conventional flow
becones

(Sa)zy - %(%:—.)f (&)2 0(7,q9 - Blonld; + ¢) (62)

and

(Su)zy = -3 (42) € (k) 0 7o,ag, - B1ondy + v -9 (63)

for reverse flov.

For conventional flow, and in accordance with assumptions 4, 5, and 8,

Cmese 2 O (6L)
for reverse flow,

Cmee = -Cp/2 (65)
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When Eq. (60) and (64) or (61) and (65) mre used in Eq. (55), and consid-
eration is given to assumptions 1, 5, and 7, the expression for the uon-
dimensional aerodynamic twisting mome.it becomes

Ma)sg * -i-(ﬁﬂ;'){v.w. 3(3?,;)2 o (7, ag, - B tonds +¢)} (66)

for conventional flow, and

(M = 3 (485) (T () § (0,99, - B10N3 + = - 4)

~Yocm 6(*)‘0(70'00'-3'0n8,+1-0)} (67)

for reverse flov.

Eq. (67) can be written in the folloving form by collecting terms.

(Mahy = ¥ (45 {(25)° (F - Foen) Ta (75,09, Brandy + = - 4)} (€0)

In accordance with assumption 8,

S

¢ = '°ﬂ¢ 2 (69)

for conventional flow, and

"
]
sl
3
2

7-¢ Z tonlw-¢)

for reverse flowv.
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The express:on for U,/ QR is given as Eq. (139) of Volume I. When all
dynamic terms are eliminated in accordance with assumption 1, the follow-

ing expression is obtained.

& - P[("if) siny + Scosw] +8 + 7(1- €-') - VioscsaVe
- B[ We cosg +(Ve + Vioses) 06 |
+(We sing - Ve'cose)[-/.t(cosw -8siny) - A\sB - Tiosere cose]
= e'[Ve sing + W,cme] i cos ¥ (71)

For this static divergence analysis, using assumptions 7 and 3,

6= - 1ong, (12)
8'=0 (73)

Vnen assumptions 2 and 7 are used on Eq. (71), considering Eqs. (72) and
(13),

B = opsing + & +7 (74)

The expression for Us/ QR is given by Eq. (1L40) of Volume I. When all
dynamic terms are eliminated in accordance with assumption 1, the follow=-
!ng expression is obtained.

‘%’% : x,(l-g-) - pBlcosy - 8siny) - B[(Vu— Vio gcse ) €088 -W.sine]
+ (Wecos + Ve sing) [-F(cosw - 8siny) - AgB - Viosese cose]

- ' cosy (Vecosy - Wesiny) (15)

When assumptions 2 and 7, and Eqs. (72) and (73) are employed with Eq. (75),
the following simplified expression for Up/§lR results.

g5 = M- MUY ~BTose - LWV = o, e (76)
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The terms containing Vioscse in Eq. (76) are small, and will be neg-
lected in the remaining development.

When Eq. (76) is used with Eqs. (69) and (70) and assumption 6 in Egs.
(62) and (63), the following expressions result.

The expression for conventional flow is
(52 = & (AE)E[(ER) 0 (76,5, - ronds)
+(§E) ol - pBeosy - uWecosy )] (17)
The expression for reverse flow is
(Sadey = -4 (#8) T [($2)° o (26,00, - Bronds)

~(82) o (g -pBeory - uWgeony )] (18)

When Eqs. (69), (70), (76), and assumption 6 are used in Eqs. (66) and
(68), the following expressions result:

The expression for conventional flow is

(Ma)yy, = i‘(ﬁao:)coy'oc/. [(%'ﬁ)z (78,99, B1an8;)
+ (ﬁ%)(x. - pBcosy - uWe cos-y)] (79)

The expression for reverse flow is

. R’ ur)2
(Ma)y, = '&(&3)50 (i 'ybocn) [(Q—;) (%,9g, - B tan 85)
v —C
-(zr;)(x.-pﬁcosw—pwecosw)] (80)
The algebraic sign of Uy as given by Eq. (T4) determines whether a
particular blade section is in conventional or reverse flow, If Uy 20
the blade section is in conventional flow. If Ur<O the blade section is

in reverse flow. Therefore a single expression can replace Eqs. (77) and
(78), through the use of the absolute value of Ut . This expression is

(gl)z. z * (-ﬂf;—!)('.o[%!%ﬁl (Yg,Qg,-Btonss)
+(58) O - pBeory - uWgcony)] (81)

16



Similar consideraticns can be used to provide a single expression for
("‘a)x. , 8180 va.id in both forward and reverse flow, from Eqs. (79) aid
(80). This expression is

(Ma)xy = %( %.)CO Vu[%(%,%fﬁtonag)
+(%¥)(x.-p3cmw-pwo°cu\”] (82)

Where the quantity VY, is given by

et Toon- §(Upt) o

The flatwise bending modal equation was presented in this volume as Eq.
(1). This equation is now simplified by using assumptions 1. 2, 3, T,
and 8 1listed on page 5 . The resulting equation is

0 : (fo';w,(’o'.)z. d') - Gy (qu.ﬁwi:)

N QO. (c'7l.l -C“l.l - C.'a,o) - COO.(‘I.) (8L)

The Cs7,,, modal constant accounts for spar centroid to elastic axis dis-
tance, and tip supported counterweight effects. This modal constant is
small and is therefore deleted hereafter.

The torsioanal modal equation was presented in this volume as Eq. (2). This
equation is now simplified by using assumptions 1, 2, 3, 7, and 8 on page
5 . The resulting equation is

i
0 = (j; Y %9, (Ma)x, d?) + Cyy, + Coo, - cu'qolma.'
- Caa, [‘B'onS:] + Qw, [‘ C“,", - CC“'.. = C“...]

- Coe, [m + q,,] - Cos, [B] (85)
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The Cge,, »ndal constant accounts for spar centroid to elastic axis
distance and tip supported counterveight effects. This constant is small,
and i{s omitted from the following development. The term involving Cus,
is also small, and {s deleted in the following development. This term re-
flects the steady centrifugal twisting couple due to blade flapping when
pitch-flap coupling is present.

The flap angle equation was presented in this volume as Eq. (3). This

equation is now simplified by using assumptions 1, 2, 3, 7 and 8 of page
S . The resulting equation is

£
0O = (fo (gn)t.' d') =S M.'c.('ﬂ’"z.) = I.B
+ CppBton8; + Cy 881t0nd,

+ Qa(’a:)" 630 tond, (86)

The terms containing Cy¢ and Cy are small compared to the others, and
vill therefore be neglected hereafter.

When the articulated blade is considered in accordance with assumption 3
of page 5 , the following equation results from the substitution of Eq.
(82) in Eq. (85):

£
{(8) [ ! %uc o i 1 - oot }

-{(f:'—:) ton8, L" Y% Yaclo l(';z_l:)v'! or

[ £
+ {-ﬁ"%pcmWfo '73.74»:50%%"' + IC.,,+C.,,}B

? o _
= =Csr, = Coo, + Coo,T24 -({%o) X._/; %, Yac Co%-;l ar (87)

When the articulated blade is again considered in accordance with assump-
tion 3 on page S5, the following equation results from the substitution of

18



{(5%:)[, rCa, %1%" a@ - (79:)"(‘,'30 '°"a'} %,

[ 4
+(L.‘ “C“W‘L '7COI%% ar + ﬁl 'cg‘ + I.}B

r
- -(g%) *'L rTailar ¢ Meteg s (88)

‘'hen the procedure used to obtain Eqs. (87) and (88) is repeated for the
nonarticulated blade, Eq. (82) is substituted in Eq. (85), and Eq. (81) is
substituted in Eq. (84). The following pair of equations result.

T
R? | B Ur|uy| _2

[£
Rl T b - (V]
-{fm—o pcoswl/; %, Ve, Yac Co ‘—175 a + !Cn.'cu...} Qu,

(4
R? e V1|
i %—mo X,,/; %, YcCa iR &7 = Car, - Cao, + Conlay

(89)
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In the above, the substitution

We = 7w aw, (91)
has been made.

Eqs. (87) and (88) and Egs. (89) and (90) are two sets of two linear
equations each. These equations could be solved for Qqg, and B

from Eqs. (87) and (88) for articulated blades, and for qg, and Q,, ,
from Eqs. (89) and (90) for nonarticulated blades, if all the other par-
ameters were given. Houwever, the objective is to find conditions for
boundaries of static stability. The boundaries of static stability are
those sets of conditions for which static equilibrium is present when the
right hand sides of Eq. (87) through (90) are zero. It should be noted
that the right hand sides of these equations represent steady torsional
and flapping or flatwise bending moments, independent of the deflections
and consistent with the simplifying assumptions employed. The conditions
for a static stability boundary are thus those conditions such that in-
definitely large static deflections can occur even though these independ-
ently applied steady forces are zero.

In this way, the following pair of equations was obtained for articulated
blades:

2 '7 2 2
0 = %"‘LO j; 79' Y.c CO Uy IUyI aF - C'l we q9|

R! 'Y
- tan8s | Yo Yac Co¢ldyl oF
{‘5?‘,0 jo‘ 6, Yac TiUy

r -—
+ {%: [-LCOS*f')&YAc Colirld? + 8Cyp + Cn}B (92)
0
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h
- {f% 1008.4 7Co0, |0yl or

/ :
+ {_:T: F.COIVL TCalor dr + MaTeg¥ + T} B (93)

In Eq. (92) and (93), the term U:r/lR  has been replaced by Gy . This
approximation is in considerat'~n of assuuptions 2 and 7 on page 5

In a similar manner, the tollowing pair of equations was obtained for non-
articulated blades:

0 : {%::_\: jo"rb: Yac Codvlyl oF -C“ma.} qol

e { '
- % pcow‘é '70, Yw, VacColi a7 + ¥Cqy + C..} Qw, (94)

7
2 T
o+ {# [ntomia -c. -Cu}

Ty
2 []
-{-%%opcow YwYw Califar + C, m\:}q" (95)
In Eq. (92) through (95),
= a Ut
Ur = AR (96)
Uy = &+7+ using (97)
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ao 3 GJo/Mo( QR.)' (98)
'Y

I, = LMY'G? o
Ty

MyTeq - fo Y o o)

In further developments, the following more convenient notation will be used
for the distance from the elastic axis to the center of gravity:

Yeo = Tioeg (101)

In the case of an articulated rotor, the determinant of the two homogeneous
equations (92) and (93) is formed and evaluated for many values of advance
ratio u , with all other input being held constant. The value of u

for which this determinant is zero is found within the desired degree of
approximation by a computer trial-and-error procedure. This value of u

is nonsidered to be the value at vhich torsional divergence occurs. The
process is similar with a nonarticulated rotor except that Eq. (94) and (95)
are used.



TORSIONAL DIVERGENCE DESIGN CHARTS

DISCUSSION

The limits on rotor operating conditions imposed by blade torsional diver-
gence have been studied extenzively by means of the relatively simple method

described above.

A fairly large number of parumeters have been selected for this study, with
various combinations being chosen to be of maximum future use in the pre-
liminary evaluation of new blade designs. Design charts have been generated
to facilitate such evaluations without performing new calculatioas.

The various parameters crigina.ly chosen to be varied were as follows:
1. Blade inertia ratio, mg kS /pCotoR’.
2. Control system spring ratio, K,Lg/GJo.
3. Blade frequency parameter, GJo/mok:(IlRf
L, Blede chord distribution.
5. Blade torsional stiffness distribution.
6. Blade pitching inertia distribution.
7. Blade average lift-curve slope.
8. Aerodynamic root cutout.
9. Blade center-of-gravity dictribution.
In addition to the above, the effect of blade lift-curve slope spanwise
variation caused bty Mach number effects was investigated. The effects of

pitch-flap coupling were evaluated, and calculations were carried out for
nonarticulated blade designs.

Blade designs with uniform chord, mass and stiffness properties were used

in order to obtain design charts for the effects on torsional divergence
boundaries of control system flexibility, aercdynamic root cutout, and
center-of-gravity position. The independent effects of the cther parameters
mentioned above were studied with additional calculations. The various
charts and pertinent assumptions used in their preparation are described in
this subsection. The significance of the simple energy analysis r-sults

and the permissible analytical assumptions and preliminary design procedures
are given later under the appropriate subsections, after the Normal Mode
Transient Analysis results have been presented.
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The inertia distribution is included as a parameter in this study, even
though the static stability calculation does not, strictly speaking, con-
sider inertial effects as such. The natural vibration mode is used as an
assumed divergence mode; thus, inertial effects on the divergence calcula-
tion are actually a reflection of changes in mode shape. Certain unpud-
lished preliminary results have indicated that correct trends are predicted
by using the : \tural mode shape in this manner.

It 1s instructive to consider the differential equation of torsional static
deflection of a rotor blade. This differential equation expresses the
equilibrium of static elastic and aerodynamic torsional couples on an in-
finitesimal spanwise increment:

F(ev @) = -acice = -qouce (102}

It is assumed that the blade is uniform, with properties of the reference
75% radius. Then the differential equation is

Gy g = =qC1Co0o = -Q0g8Co (103)

The symmetrical hlade is assumed to be operating at zero angle of attack,
except for the angle caused by the torsional deflection.

The dynamic pressure q due to velocity components normal to the radius
is given by the folloving:

q = Fl@r+vene) = §(x+psinv) (@R’ (10L)

Nondimensionalizing and using Eq. (104) in Eq. (103) gives
G_:Q 99 = -f e psine) @R %Ca ()6 (105)

For the case wvhere Yy =270°, and with u 2! , reverse flow exists over the
entire span, and ¢,/C, equals 0.5 for the normal 25% chord center-of-
gravity and elastic axis positicns.

Thus, the differential equation becomes
2 4 'R.
- -f oS tR e (106)

ol



dd;g . -Lahfl'. 8 (107)

The nondimensional parameler S, s defined by
S 3
TG (108)

Rigorous s.tisfaction of the above differential equation, assuming m 21 ,
is provide' by the following irfinite series:

8 : f[ i"[‘)“ ]
Po & | (28 ) (4n)(@n-1)(4n-4) (4n-S)an-8)(an-8)  (a)(3)
. o %[ (l_")dnol ]
v & [(25a) (4n e 1) (@n)(4n-3)(an-4)(4n-T7)(4n-0) - (SX®) (109)

The series given as Eq. (109) converges fairly rapidly, so only s fev terms
need be used for numerical evaluations.

The appropriate boundary conditions for the blade fixed at the root are

8 =0 when x:0 (110)
gﬂ
| )
U~e of these with Eq. (109) provides two homogeneous equations. Setting
the determinant equal to zero provides a characteristic equation in !/S,
if u 1is given. The lowest value of I1/Se which makes the determinant
zero is the critical value of interest. When this has been found, the
value of p, in terms of p, can be found by using one of the boundary
conditions. The above procedure was cerried out for u =1 wich the results

shown in Figure 1 and with a solution rcr critical S, = .031. Also shown
for comparison is the uniform hlade nttural vibration mode.

(111)

o
3
4
E]

The digital computer waus used to predict a divergence advance ratlo, using
Eq. (92) and (93) as described previously. The first natural torsional
vibration mode wvas used in these calculations. With a value of Sa: 031,
the predicted value of critical aivance ratio was u = 1.03, ompared with

H = 1.0 for the differential equation solution. This {emonstrated that
the use of a natural vibration mode as a divergence mode ic n good simplify-
ing assumption, even for advance ratios near unity.



The most important conclusion to be drawn from the above, hovever, is that
the advance ratio u, and the torsional stiffness coetficient S,  are
the basic parameters for the study of retreating uniform blade static tor-
sfonal divergence. The same parameters also arise from inspection of a
single-degree-of-freedom energy analysis, where Sa apjears as a paraneter
along vith the nondimensional integrals of strain eneryy and virtual work.
The parameter Sa {8 also the product of blade i{nerti. ratio and frequency
parsmeter, divided by average lift-curve slope. These parameters are among
those listed at the beginning of this section. Variations in these par-
ameters are included as variations {n the more basic Ss parameter. The
numerical value of Sa for a typical rotor blade operating at design tip
speed is approximately 0.0LO.

The parameter Sa has been developed with a 50% chord distance between the
agrodynamic center of pressure and the center of gravity, which is coin-
cident vith the elastic axis. This is appropriate to the usual retreating
blade case.

The Jasefulness of attempting the definition of a parameter even more gen-
erally applicable than Sa has been examined. Specifically, Eq. (106) can
be revritten, retaining the nondimensional distance between the aerodynamic
center of pressure and the center of gravity, wvhich is coincident with the
elastic axis.

g':'. : =(n+puiny)’ §(f2) 2R ’ntﬂ (112)

It i{s evident from consideration of the right hand side of Eq. (102) that
divergence wvill first appear, as aircraft forward speed increases, at that
azimuth angle vhere the coefficient of 6 reaches a maximum absolute value.
From Eq. (104) it can be seen that two particular azimuth angles are of
primary interest; these are y = 90° and ¢ = 2709, Note that the value
of e/Co 1is, in general, different at these tvo azimuth angles. For

v = 909, for example

a b3 7“ (113)
vhile for v = 270°, and u 2|
a% 8 ,50*?:. l:lh\

vhere 7“ i{s cons:ant along the blade radius. When only the two
specific azimuth angles ¢ = 90° and ¢ = 270° are considered, Eq. (112)
has two possidle forms. These are
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o ¢ E(E) T wente (115)
for ¢y =90° and

49 _ ; [eo) 9Cq 'R 3

s -%(ag) i (x-wre (116)

for ¢ = 270°. It night be concluded from the above that the coefficient
of (x+um)?@ and (x-u)?8 in the above equations is the most general par-
ameter. This wouli ne true if only advance ratios greater than unity were
of interest. For advance ratios u < 1, the above simple concepts are
not true even for a uniform blade, since e,/Co will vary radically between
the inboard portions of the blade where reverse flow is present, and the
outboard portious where conventional flow is pres:-at. An effective value
of eo/Co might be defined, but this itself would be a function of advance
ratio. Thererfore it is advantageous to accept the Sn parameter as the
basic parameter, and consider variations in ey/Cy through the generation
of both advancing and retreating blade stability boundaries, and through
the treatment of Y.q as an independent parameter.

The energy analysis described during the development of Eq. (92) through
(95) introduces a flapping or bending degree of freedom to the torsional
divergence analysis. This accounts for the fact that blade static torsional
stability always involves some blade t'lapping due to 1lift caused by tor-
sional deflection. The resistance to flapping of conventional rotor blades
is provided mainly by a centrifugal force component which acts at the blade
chordwise center of mass.

If the center of mass does not coincide with the aerodynamic center the
resulting couple causes potentially divergent torsional deflections. At
azimuth angles of 270° and 90°, the results for articulated blades with no
pitch-flap coupling are practically identical with single-degree-of-freedom
analyses if the torsional couple caused by the distance between the aero-
dynamic center and the center of mass is considered.

The uniform blade design charts, Figures 2, 3, and 4, were produced for a
completely uniform blade with a chord-to-radius ratioc of 0.050 and negligible
flapping hinge offset. The value of mass ratio M, was 11.9. Calculations
were carried out for practicsl variations in this parameter, and divergence
results were identical within the reading and data input accuracy. The
ratio of the blade torsional radius of gyration to rotor radius was(.012.
The elastic axis was assumed tc lie along the 25% chord line. The lift-
curve siope was assumed to be constant along the blade span, with no tip
loss being considered.



The boundaries were generated by finding the critical advance ratio for 10
different values of nondimensional stiffness coefficient Sa for each of
the otherwise identical blade configurations.

Torsional elastic stiffness was changed to vary the nondimensional stiff-
ness. Identical values of torsional stiffness coefficient Sa were gen-
erated by changing rotational speed with elastic stiffness held constant,
and calculations were carried out to verify that identical velues of crit-
ical advance ratio would be obtained. Smsll variations in torsional mode
shape due to different rotational speesds were not found to be significant.
The effects of rotation on blade torsional stiffness were also unimportant.

The first set of design charts, Figure 2, presents plots of the critical
advance -~atiou versus torsional stiffness coefficients S, for various
values of aerodynamic root cutout Xpa . Each plot is for constant values
of control stiffness paramecter, I/K |, and chordwise center-of-gravity
offset, Y¢/C . These plots are for critical values of u occurring at
azimuth angles of either 270° or 90°. The 90° azimuth torsional divergence
occurs only for the aft center-of-gravity positions (negative Y¢/C ),

and is represerted by the branch on the left side of the break in these
curves. The d.vergence boundaries for the 90° azimuth are shown only as
they are more critical than the 270° azimuth boundaries, and vice versa.
This set of curves will be useful in the evaluation of specific blade
designs.

The second set of design charts, Figure 3, presents cross plots of the
first set at various constant values of u and Yee/C . The values of u
presented are 1.2, 1.4, 1.6, 1.8, and 2.0, which cover the range expected
to be of greatest future interest for torsional divergence. Both positive
and negative values of Yes/C are included. The values of Yee/C are .10,
0, -.02, -.06, and -.10. The reciprocal of the control stiffness ratio K
is plotted against Sa at constant values of Xga . This set of curves
can be used in trade-off studies concerning the relative benefics of changes
in Sp and K. Since Figure 3 is composed of direct cross plots of Figure
2, it also reflects instabilities at azimuth angles of either 90° or 270°,
depending on which is most critical.

The third set of design charts, Figure 4, also presents c.ross plots of the
first set, bul with Y¢e/C plotted against S, at various constant values
of Xpa . The values of u and |/K remain ccnstant for each of these
plots. This set of curves can be used in trade-off studies concerning the
relative benefits of changes in Sp and Y¢/C . As with Figure 3, the
boundaries are shown for azimuth positions of either 90° or 270°, depending
on which i3 most critical. The azimuth angle to which a particular point
on any of the boundaries pertains is easily determined by reference to
Figure 2.

The independent effects of certain other parameters on the static divergence
stability boundaries are shown in Figures 5 through 14, The value of Sp

in these cases was determined by using the values of GJo , 0o , and Co
existing at the 75% radius. The shapes and frequencies of each of the tor-
sional modes are appropriate to each configuration. The rigid flapping
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mode wus used for deflections out of the plane of rotation for the articu-
lated rotor. The first flatwise bending mode appropriate to the given
values of a parameter lﬂ/pOoC:. the ratio of torsional tn flapwise bending
stiffness EI;/GJo , and the torsional stiffness coefficient Sap was used
in the case of the nonarticulatzd blades. In eacn case where blade cross-
sectional properties were varied scparately for this set of charts, they
were made equal to the uniform blade properties at the 75% rotor radius.
Information as to how the various parameters were varied is contained on
the captions and legends for each figure.

The effect on retreating blade torsional divergence of a linearly varying
blade chord is shown in Figure 5, for different values of tip-chord-to-root-
chord ratio. The chord-to-radius ratio at the 75% radius remained at the
value used for the uniform blade, and Sa 1is also based on this value.

All other blade properties remained as for the uniform blades.

The effect of a structural flexibility cutout, Xgsg on retreating blade
torsional divergence {s shown in Figure 6. The structural flexibility
cutout refers to a torsionally rigid inboard section. Thus, when Xgg = .10
the inboard 10% radius of the blade is considered to be torsionally rigid.
The remainder of the blade is identical to the previously considered uniform
blades. The torsional deflection modes used in these calculations are
natural vibration modes appropriate to these blades with torsiomally rigid
inboard sections.

The effect on retreating blade torsional divergence of a linearly varying
blade torsional stiffness is shown in Figure 7 for different values of tip-
stiffness-to-root-stiffness ratio. The nondimensional stiffness coefficient
Sp is defined at the three-quarter radius. The blade torsional deflection
modes used in these calculations are the appropriate natural vibration
modes. The significance of the small apparent effect of tapering stiffness
will be discussed later.

The effect of inertial cutout on retreating blade torsional divergence is
shown in Figur: 8. 1Inertial cutout refers to a uniform tlade, with an in-
board section of negligible torsional inertia. This has an effect on tor-
sional divergence through the use of the natural vibration mode as an
assumed divergence mode. Thus, comparison with the completely uniform
blades reflects cnly the effect of the change in mode shape on the static
stability calculation. Except for the cutout, the blades were identical to
the previously considered uniform blades.

The effect of linearly varying inertia on retreating blade torsional diver-
gence 1s shown in Figure 9. The inertia was made equal to that for the
previously corsidered uniform blades at the 75% radius, with different
ratios of root inertia to tip inertia. Except for the variation in inertia,
the blades were identical to the previously considered uniform blades. It
should be noted that the effect on the torsional divergence static stability
stems only from the alterations in the torsional natural mode shape.



Torsional divergence cases were considered for the retreating blade with
spanvise variations in the chordwise center-of-gravity offset position.
These included offsets of Yeo/C = ,10, extending from inboard fractional
radii of 0.25 and 0.45 to the tip, and linearly varying offset distances,
with Yce/C equal to 0.10 at the 75% radius. Linearly varying offsets,
such that the ratio of root-to-tip offsets was two and three, were chcsen
and also used in separate sets of divergence calcu’ations. The results for
all of these calculations were within 1 percent of the values for the
uniform blade; therefore, no separate charts were made.

The next charts, Figures 10 and 11, show the effect of the distribution of
Glauert's lift-curve slope correction due to Mach number. The effects on
the advancing, as well as on the retreating, blades are shown. "he par-
ameter S¢, defined in the table of symbols, is als equal to the parameter
Sa , evaluated with a lift-curve slope of 27 , and multiplied by the
square of the ratio of rotational tip speed §R to the speed of sound.
The value of Sp in Figures 10 and 11, however, refers to the value at
the 75% radius with the lift-curve slope correction applied. The zero
value of S¢ refers to the earlier uniform blade cases without Glauert's
correction. A 0.0143 value of S¢ refers to conventional blade stiffness
coefficient and rotaticnal speed under the standard conditions, as typified
by the CH-3C rotor. It should be noted that the curves of constant S¢ in
Figure 10 are very nearly curves of constant advancing blade Mach number at
the 75% radius. The advancine blade 75% radius Mach number along the curve
Sc = .0286 ranges between 0.68 and 0.71.

The next charts, Figures 12 and 13, show the comparative divergence bound-
aries for articulated and nonarticulated blades, with the nonarticulated
uniform blades rigidly built into the hub at the center of rotation. Ad-
vancing as well as retreating blade divergence is considerec. Note that
the nondimensional stiffness concept remains valid for the nonarticulated
blades, so long as the ratio EI;pOOC:/rnGJo remains constant. This
point will be discussed later. The value of El¢/GJo of G548 refers to
conventional practice as typified by the CH-3C rotor.

The effect of pitch-flap coupling as predicted by the simple divergence
analysis is shown in Figure 1lL. The effects on the retreating blade only
are shown, siace pitch-flap coupling will greatly increase advancing blade
divergence acdvance ratio and decrease it for the retreating blade. The
effects of pitch-flap coupling were investigated for the articulated blade
only, since the provicion of an appreciable amount of this type of coupling
is mechanically difficult with nonarticulated blades.
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TORSIONAL DIVERGENCE CALCULATIONS WITH THE EXTENDED
NORMAL MODE TRANSIENT ANALYSIS

DISCUSSION OF PURPOSE _AND METHODS

A number of golution: of the flexible blude equations of motion for tor-
sional divergence conditions were accomplished, by use of the extended
Normal Mode Transient Anulysis. The solutions demonstrate the effect on
torsional divergence /' blade flatwize and edgewise flexibility, in con-
Junction with consideration of all signifjcant inerticl terms. This was
done for coincident and noncoincident section elastic und center-of-gravity
axes and for articuluted and nonarticulated blades. In addition to this,
cases were run at red ced air density, to provide data at higher values of
torsional stiffness coefficient Sp . Control system flexibility was also
investigated for the articulated blades.

The effects of pitch-flap coupling cn the torsional divergence of an artic-
ulated blade were calculated, and the effect of a representative system of
gyro feedback on a nonarticulated blade was determined.

The solution of the blade equations of motion was generally conducted by
starting a typical blade, whose properties are given in Table I and II at
an azimuth angle of zero. Collective pitch and inflow were also made equal
Lo zero.

The elastic modes considered for the articulated blades were the first
through the third flatwise bending modes, the first edgewise bending mode,
and the first torsional mode. These elastic modes were in addition to the
rigid blade flapping and lagging modes for the articulated blades. For the
nonarticulated blades, the first through the fourth flatwise bending modes,
the first and second edgewise bending modes, and the first torsional mode
were considered. The solution for blade motion was then obtained for one
revolution of the rotor by using the extended Normal Mode Transient Analysis.
The values of aircraft forward speed and rotor rotational speed at the var-
ious values of advance ratio were chosen by setting the advancing blade tip
Mach number equal tc0.85. The aerodynamic data were appropriate to an NACA
0012 airfoil, with Mach number and stall effects included. Rotcr shaft
angle of attack was set constant at zero degrees. The parameter used to
evaluate blade response was one-half peak-to-peak stress variation.

It will be noted that the effect of blade center-of-gravity offset was
studied at a constant value of advance ratio, with a collective pitch B7sa
of 2 degrees and an inflow A of 0.

This alternate method was necessary to demonstrate the existence of the
practical operati..z limits appropriate to the torsional flexibility of the
advancing blade. The excitation of the unloaded advancing blade was found
to be very small at the predicted static stability boundary. Extensive
penetration of this boundary without important blade response could occur
for the completely unloaded rotor. However, the addition of a small load
resulted in a torsional stress rise similar to that for t e reireating blade.
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In view of the objective of correlating the simple energy analysis for tor-
sional divergence with practical operating limits, the advancing blade
cases were carried out with the moderate loadings generated by the 2 degree
collective pitch setting. One possible explanation for the lack of ex~i-
tation on the advancing blade is the stabilizing center-of-pressure move-
ment at high subsonic Mach numbers. This would tend to prevent torsional
divergence until a relatively large section of the rotor disc, including
the lower Mach number areas, is unstable. A small amount of cyclic pitch
vas used to eliminate rotor pitching and rolling moment for the nonartic-
ulated rotor. The method of solution was otherwise identical to the other
Normal Mode Transient Analysis cases for this section, with the starting
values for the blade differential equations of motion being given as zero
flapping, lagging, and elastic modal displacements and velocities at an
azimuth angle  of O degrees.

The pitch-flap coupling effects were evaluated with the unloaded rotor as
described previously. Inclusion of this type of coupling in the calcula-
tions is a routine provision of the Normal Mode Transient Analysis.

The study of the effect of a control gyroscope on torsional divergence is
much more involvec. The scope of this work is such that one typical gyro-
scope installation could be included. The control gyro parameters of in-
terest are given in the descriptions of configurations to follow.

At this point in the discussion, it is appropriate tc outline the manner in
which the gyro is assumed to act. Consistent with the remainder of the
investigation,no shaft or fuselage motion is included. In addition to the
torsional moment, a small component of blade flapping moment at each of the
blade roots is reacted by the pushrod, because of a small built-in angle
between the blade axis and the feathering axis. This effect has been found
to be small for this torsional divergence study, since bending moments are
initially small for the unloaded blade. The blade moment about the feather-
ing bearing is provided by the gyro reaction to pushrod force, acting
through its moment arm. The gyro motion, and the resulting pitch position
input to the blades, depends on the pushrod loads applied vy all the blades.

In order to assess the effect of the gyroscope, blade response calculations
were first performed with the gyroscope assumed as being fixed to the shaft.
The loads on the gyroscope were calculated, and then its respnnse to these
loads was calculated. Finally, the gyro response was used to define new
cyclic pitch control positions for another blade response calc..ation. The
change in blade response due to the new control positions was then noted.
The rrocess could be repeated to improve accuracy, although one cycle was
Judged to be sufficient for the purposes of this study.

CONFIGURATIONS AND FLIGHT CONDITIONS STUDIED

The pertinent characteristics of the basic rotor system used for torsional
divergence studies with the extended Normal Mode Transient Analysis are
shown in Table I.



The chord, stiffness, mass, blade center-of-gravity chordwise position, and
section properties of the blade are constant, except for the aerodynamic
and structural cutouts. The elastic axis was assumed to lie along the 25%
chord. The blades had an NACA 0012 airfoil section. The nonarticulated
blade was identical to the articulated blade except for the removal of the
flag-lag hinge. Control gyro parameters of interest are a lead angle of
1.5° between blade axis and feathering axis, and a gyro polar moment of
inertia QO0l times that of the rotor. The pushrod was assumed to lead the
blade feathering axis by an azimuth angle of 45°. No mechanical damping
was applied to gyrc motion.

The various configurations used for this part of the torsional divergence
study wiith the extended normal mode analysis are shown in Table II.

The various flight conditions used for this part of the study are shown in
Table III. 7The advancing blade tip Mach number remained constant at M, ¢
= .85.

The ccmbinatiouns of conrigurations and flight conditions are shown in
Table IV.

RESUL?S OF NORMAL MODE 1TRANSIENT ANALYSIS CALCULATIONS

Figure 15 shows a three-revolution time history of blade first torsion
modal response, after bei.g started with zero collective pitch, cyclic
pitch, flapping, lagging and elastic modal displacements and velocities, at
an azimuth of zero (directly aft). This figure is for the basic erticulated
rotor configuration, operating at an advance ratio of 1.6. Note that the
retreating blade torsional response is more severe du. ing the first revo-
lution than during the following two, which justifies the use of a single
revolution to evaluate peak torsional divergence response.

Figure 16 shows a similar two-revolution time history of blade first tor-
sion modal response, with the 15% chord uft center-of-gravity position,
which is the articulated blade configuration 6. The response is calculated
with 2 degrees of collective pitch present to supply additional loading, as
discussed earlier. Note that in this case the first and second revolution
maximum response is virtually identical, again suvporting the use of the
first revolution to evaluate torsional response for the lightly loaded
blade.

Figure 17 shows one-half peak-to-peak stresses calculated during the first
revolution after starting the blade at Yy =0 , with no initial loadings,

at various values of advance ratio. This is for the basic articulated
rotor. Also shown is the stability boundary predicted by using Figure 6.
Figure 6 was used by finding the intersection of the Xos = .06 stability
boundary and a plot of u versus Sp appropriate to standard sea level
atmospheric conditiors and the advancing biade tip Mach number of 0.85. The
method of obtaining this relationship will be explained later, under the
general discussion of preliminary design methods.
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Figure 18 is similar to Figure 17, with calculations carried out at a value
of air density p at 2/3 of that for standard sea level conditions. This
corresponds to an altitude of approximately 13,000 fret.

Figure 19 shows the Normal Mode Transient Analysis one-half-peak-to-peak
stress results for the basic rotor with control system flexibility. The
effects of control system flexibility on the static Lorsional divergence of
the blade with structural cutout was not determined with the simple anal-
ysis, since structural cutout was a parameter whose independent effect was
determined. In order to estimate the static divergence boundary for the
combined effects of structural cutout and control system flexibility, the
independent effects of each were, in effect, superimposed. This procedure
is not rigorous in a strict mathematical sense, but is Jjustified by the
approximations inherent in the strtic torsional dive:rgence analysis. The
procedure will be described mathematically in the follnowing development.
This particular discussion is limited to the case of the blade with uniform
spanvise properties except for cutout, in order to present the procedure in
as simple a manner as possible.

It can be observed that, in principle, the advance ratio for stati: diver-
gence can be expressed as a function of all the variables considered.

H = f(s'v"lKoxO.oxOA97C.) (117)

If 4 1is known for a pariicular set of values of S, I/K, Xos, Xoa,
and ‘Y, , a Taylor's series may be written about that value. The elements
of that set are identified below by the "a" subscript.

p E #o+§s%[sa--°>~.] +f(€—)[l'r'fza] *a%i:)[xos"‘%o]

¥ a_(o’%u)[x“'x“o] L4 367%[7“_?“0] o (118)

Wher values of the variables considered above remain suitably close to

Swyy 17Kq , Xos,, Xos, o and VC% , the specific terms appearing in Eq.
(118) furnish a satisfactory approximation. The derivativesin Eq. (118)
are evaluated at Sp,, 1/Ko, Xos,, Xoa, and Yes,

The particular case at hand will now be treated by using Eq. (118). The

values of the variables with the "a" subscript are chosen to be consistent

with the available data. They are

/_LIJ = |.39 (llg)
107 (120)

Shq
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I/Kg = O (121)
Xosg =0 (122)
Xorg = O (123)
Yoo = O (124)
It is desired to find u for the values of the variables given as
I/K = 2 (125)
Xos = .06 (126)
Xoa = 19 (127)
JaRiC (128)
Note that Y is equal to V¢ » which causes the last term in Eq.

(118) to vanish. Thz values of uo and Se, were found from Figure 2,
at “he intersection of the aprropriate divergence boundary and a plot of
M versus S, calculated for the advancing blade tip *.ach number of
0.85. This particular relationship will be defined later :n Eq. (1l4l). 1In
the present case, Eq. (141) provides a relationship between u and Sa
which is written as the following equation.

Sa = .01855(1 +p)2 (129)

The values of the derivatives in Eq. (118) are found from Figures 2 and 6
by dividing an increment in 4 by an increment in the variable. For
example,

13

dp

~e
—_—=

aE A

X
S—

(130)

vhere the increments Au and A({I/K)  are taken while all other variables
are held constant. The values or the derivatives needed are

d

3';—. = 5% =32 (131)
OK  ~ 8 . g0 (132)
o -
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A%es) = 1.33 (133)
o <
o = 3 - .oe (13%)

When the values given by Eq. (119) through (128) and by Eq. (131) and (134)
are used in Eq. (118), the following equation is obtained:

B F 130 +3.2(Se-.107) = .98 + 3.2Ss (135)

When E3. (135) is used in Eq. (129) the final values of 4 and S, are
found. These values are

p = 1.30 (136)
Se T .10 (137)

The effects of pitch-flap coupling are reflected in Figure 20 for the re-
treating blade. The combined effects of pitch-flap coupling and structural
root cutout on the static torsional stability boundary were found by using
Figures 6 and 14 with a method analogous to that demonstrated by Eq. (117)
through (137).

The effects of a.’t center of gravity on the articulated blade are shown in
Figure 21 for an advance ratio of Q60. The rotor was assumed to be in a
lightly loaded condition, as mentioned earlier under the Discussion of
Purposes and Methods. A specific static stability boundary was calculated
with the simple energy analysis; the same values of tip loss and structural
root cutout as those for the extended Normal Mode Transient Analysis cal-
culations were used. 7This is the boundary that appears on Figure 21,
Almost the same boundary is obtained from Figure 2 by defining the stiffness
coefficient Sy in terms of the blade length from structural cutout to
the outermost aerodynamically effective radius. When the strictly uniform
blade without tip loss or structural and aerodynamic root cutout is con-
sidered, the static divergence analysis predicts a critical center-of-
gravity offset of 7% chord. This offset is measured aft of the 25% chord,
where the advancing blade center of pressure and elastic axis are located.
The boundary shown on Figure 21 appears at a center-of-gravity offset of
10.3% chord. Thus a reasonably conservative result for critical center-of-
gravity location can be obtained by igncring tip loss and the normal amount
of structural cutout.
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The information on Figures 22 and 23 is for the nonarticulated rotor. It
can be seen that the torsional stress response is very siniiar to that for
the articulated blade. The absence of the blade hinges does, of cource,
cause the blade bending stresses to be somewhat higher. It should be
remembered that this particular result is for a uniform blade and that
design refinements can alter the stress distributioa. The stress results
presented here are intended only to show that a practical operating limit
is being approached. The static torsional stability boundaries are vir-
tually identical for articulated and nonarticulated blades at u = .6, as
shown by Figure 13.

Figure 2L shows the results of the gyro fcedback calculations. It can be
seen that a fairly large increase in blade torsion response occurs because
of the gyro action with the particular control gyro parameters chosen.



DISCUSSIONS OF TORSIONAL DIVERGENCE RESULTS

SIGRIFICANCE OF TORSIONAL DIVERGENCE DESIGN PARAMETERS

The scope of this study included independent variations in all of the
important parameters affecting the torsional divergence calculations for
helicopter blades. The various charts included in this volume show the
relative significance of the various design parameters us well as quantita-
tive dats. The practical significance of changes in some of these par-
ameters will, however, be clarified by additional discussion.

The basic relationship for the torsional divergence toundaries is between
the familiar advance ratio u and the nondimensional stiffnese coefficient

Sa , which is basically a ratio of elastic and aerodynamic torsional
stiffness effects. It should be noted that the rotational tip speed is
used in the formation of these parameters. Thus, an increase in Sa can
signify a larger torsional elastic stiffness or a decrease in the quantity
in the denominator in Eq. (108). This may occur for a given blade because
of operation with lower air density or rotational speeds. As would obvi-
ously be expected, increasing the value of §, raises the critical advance
ratio in all cases. An increase in S, resulting from a decrease in ro-
tational speed does, however, result in a drop in critical aircr:ft forward
speed for retreating blade divergence. Therefore, the typical appearance
of the divergence boundaries of a representative blade on a tip speed versus
forwvard speed plane is of important practical interest. Examples of this
relationship are shown in Figures 25 through 28. Tuese charts were pre-
pared from Figures 2, 3, and 4, with Sa assumed to be 0.040 when tip speed
is 660 ft/sec. This is a uniform blade comparable to the CH-3C blade when
operating under normal conditions with a lift-curve slope of 27

The effect of changing the parameter S.(Rm2= ZGJO/POOCOZRZ is shown on
Figure 25. Note that this parameter includes blade torsional stiffness,
chord, radius, air density, and lift-curve slope. The boundaries shown on
the chart for various values of this parameter include that for the repre-
sentative blade and those for 2/3 and 3/2 of that value. Note also that
any number of these boundaries may be plotted from a single Sp Vversus

p# plot. Thus, this choice of parameters greatly condenced the number of
charts necssaary to evaluate the effects of any appreciable variations in
2GJg/p0ayCo“R .

The effect of blade chordwise center-of-gravity position is shown by the
various corresponding boundaries in Figure 26. The aft center-of-gravity
positions give rise to advancing blade boundary segments, which appear as
lines nearly parallel to the constant advancing tip Mach number line. The
effect of changes in blade lift-curve slope due to Mach number is not in-
cluded on this chart, since only approximate quantitative information is
desired. If the correction for Mach number is desired, the actual lift-
curve slope for a given Mach number at the 75% radius can be used in the
definition of S, . The Mach number is generally low on the retreating
blade, so the lift curve slope on the corresponding segment of the boundary
will not be appreciably affected by compressibility effects.
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The most inboard nondimensional radius for which significant aerodynamic
blade torques are produced is called the aerodynamic root cutout, Xga .
This parameter has a significant effect on retreating blade torsional
divergence, since tr - inhoard blade sections are subjected tc the highest
velocity reversed flow. It can be seen from Figures 2, 3, and L that the
beneficial effect of root cutout is more pronounced with the larger values
of 1/K, as would alro be expected, since a smaller control stiffness causes
greater blade deflections, particularly close to the root. For the repre-
sentative blades, Fizure 27 shows the effects of changing roc. cutout on
the flight condition boundaries.

The control stiffness ratio, KK, Lg/JyG » can be also defined as blade
deflection divided uy the control system deflection when the blade and
control system are zibjected to a torsional couple at the tip. It will be
noted that this parameter is treated in inverse form on the charts to per-
mit plotting very large values of K. The value K = 1,000 is large enough
80 that only infinitely small effects on torsional divergence due to root
flexibility occur. For the representative blades, Figure 28 uhows the
effects of changing control stiffness ratio.

It will be noted from Figures 25 through 28 that the practical variations
considered for root cutout, center-of-gravity position, and control stiff-
ness ratio generally have only moderate effects on the flight condition
boundaries for the retreating blade. The aft center-of-gravity positions
do, of course, make an advancing blade torsional divergence possible at
much lower speeds.

The ratio of blade chord to rotor radius Cq,/R, has a negligible effect on
the two-degree-of-freedom torsional divergence analysis for variations of
Co/R between Q.04 and 0.06.

The independent effect of linear taper in chord is showa in Figure 5. It
should be remembered that these variations were made with blade chord at
the 75% radius remaining constant, and with the torsional stiffness coef-
ficient defined using that chord. All other blade properties wele the same
as for the corresponding uniform blade. It is interesting to note that
with the above definition of S, , the addition of chord taper causes a
moderate reduction in retreating blade divergence advance ratio. However,
if Sq 1is ' efined further inboard, the boundaries could practicully coin-
cide or ev n be reversed in their relative positions. The practical con-
clusion f'or this type of taper is better suggested by Figure 5, with a
moderate reduction in divergence speed because of larger inboard chord in
the region of higher reversed velocity.

The structural cutout, or torsionally rigid inboard section has the
straightforward effect shown in Figure 6.

The independent et'fect of tapered torrsional stiffness on retreating blade
divergence is shown in Figure 7. It can be seen that the nondimensional
boundary is virtually unaffected, provided the torsional stiffness coef-
ficient Sg is defined using blade stiffness at the 75% radius station.
This result arises because sm.ller stiffness outboard of the 75% radius
counteracts the benefit of increased stiffness inboard.
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The independent effects of nonuniform inertia, which enter into the tor-
sional divergence static stability calculations because of variations in
the assumed torsionel mode shape, are shown in Figure 8 and 9. Figure 8
wvas prepared for two values of aerodynamic cutout by assuming an inboard
section with negligible torsional inertia. It can be seen that this vari-
ation hae only a small effect. As would be expected, the gener~lly smaller
deflections inboard for the mode shape of the blade with inertir cutout
cause o higher critical advance ratio to be predicted.

The effect of a linear variation in inertia is shown in Figure 9. This
figure was prepared by assuming torsional inertia at the 75% radius equal
to that of the uniform blade. It can be seen that the generally larger
inboard deflections for the mode shape of the blade with inertial taper
cause a small decrease in predicted divergence advance ratio.

Spanwise variations in center-of-gravity location, with the location at the'
75% radius remaining constant at the 10% chord forward position, were con-
sidered. Inboard cutouts of center-of-gravity offset up to the L45% radius
and linear tapers with the ratio of root offset to tip offset as high as
three produced virtually no effect on the retreating blade cases considered.

The effect on advancing blade divergence of a lift-curve slope distribution
due to the familiar Glauert Mach number correction is shown in Figure 10.
Note that the torsional stiffness coefficient is defined by using the local
lift-curve slope at the 75% radius. The value S¢ = .0286 refers to a
blade similar to a conventional blade with twice the torsional stiffness
operating under normal conditions. It can be seen that with torsional
stiffnese coefficient defined in the manner described earlier, very little
effect due to Mach number lift-curve slope variation can be noted on the
nondimensional charts. Even less effect is noted on the retreating blade,
shown in Fizure 11, as would be expected. Even though the radial variation
in Mach number effects has little effect on the nondimensional charts, it
should be remembered that an effect will be felt on the actual flight con-
dition boundary, since a larger average lift-curve slope is reflected in a
smaller stiffness coefficient.

The effect of bending mode shape for a nonarticulated blade, as compared
with the r 1id flapping mode used for the articulated blade, is shown in
Figure 12 and 13. It should be noted that the uniform blade natural bend-
iag mode shape and natural fresuency to rotatiovnal speed ratio depend only
on the parameter El,/mnzﬂ ,» 80 that a definite mode shape and
frequency ratio is defined by the product of Sa , the ra%io of bending
to torsion stiffness EI,/GJ, , and a parameter p0,C,/m . The
effect of articulation wvas determined for twé values of El,/GJy with the
standard value of poocozlm . The same variations in critical advance
ratio would occur for ~ change in the product of these two parameters

Elr p0gCo?/ Guom by the same factors. The value Ely/GJ, ©0f0.598 is
similar to conventional jractice, while Poocozlm is also appropriate to
a lift-curve slope of 27 and standard sea lev:l conditions. It is readily
apparent that the values considered produce very little effect On torsional
divergence for the retreating blade and a moderate effect for the advancing
blade. The changes in the relative positions of the various boundarjes are



probasbly caused by interac+irs favorable effects of bending stiffness and
unfavorable effects of the various bending mode shapes.

The pronounced lowering of retreating blade torsional divergence advance
ratio predicted by the simple energy method for pitch-flap coupling is

shown in Figure 14. It should be noted that the studies with the extended
Normal Mode Transient Analysis show this predicted effect to be very oin-
servative. The effects of pitch-flap coupling for the initially unloaded
rotor can be seen by comparing Figures 17 and 20. The peak-to-peak tor-
sional stress is actually reduced by pitch-flap coupling for a given advance
ratio while the peak-to-peak flatwise stress increases. However, the practical
retreating blade advance ratio stress boundary is very little affected by
the addition of 83 = 45O, according to these Normal Mode Transient
Analysis results.

The provision of the control gyro configuration used in this study was

found to increase blade torsionul response, and, therefore, to lower
slightly the permissible advance ratio for a given stress by a decrement of
approximately .10. This is shown in Figures 22 and 24. It should be remem-
bered that the effect of the gyro can be changed by altering the various
parameters and that no general implications can be drawn without further
analyses.

It has been demonstrated, as discusted earlier in this section, that the

most significant improvements in toretional divergence speed may be brought
about by changing the quantities involved in the torsional stiffness coef-
ficient Sm . Thus, an increase in the quantity Gdy/p0oco’R , which can

be brought about by an increase in blade iorsional stiffness or a decrease

in chord, rotor radius, lift-curve slope, or air density, will raise the
speed. On the other hand, decreasing rotor roiation.l speed will lover the
aircraft divergence speed for retreating blade divergence, but will increase
it for advencing blade divergence. If the blade ras an excessively large

aft chordwise center-of-gravity position, very large improvements in tor-
sional divergence speed are possible by returning to the ncrmal balanced

blade configuration. Significant improvements may also be reaii.cd Ly pro-
viding stiff inboard blade sections, as illustrated by Figure 6. This

should not be undone by decreasing the stiffness of outboard blade sections.
In Figure |, it can be seen that the divergence boundaries for a tapered
blade and & uniform blade sre almost identicsl. The beneficial high inboerd
stiffness indicated by Pigure 6 must be derived from san inboard stiffness thet
is higher in an sbsolute sense rather than higher relative to the tip. 1c
should he remembered that Pigure 7 was prepared vith the same stiffness st the
75% readius for tapered snd untapered blades, with sll other parameters, includ-
ing chord, remaining unchangcd. Other parsmeters investigsted were found to
heve moderate independent effects, but it can be expected that significent im-
provements will be achieved through the combined favorsble effects of changes
in 8 number of them. The significence of the various parsmeters investigated
hag been discussed above, with respect to the torsionul divergence calcu-
lated results. The practical significance of the torsional divergence
concept itself should be reviewed, as it applies to a helicopter rotor

blade. The most superficial inspection of the Normal Mode Transient Anal-
ysis results, such as Figures 19 and 16, shows that the calculated stability



boundary for torsional divergence corresponds generally to the onset of
torsional oscillations of comparatively high frequency. Thus, the basic
equations of static torsional divergence, which neglect all inertial
effects, cannot be viewed as a mathematical model of a physical phenomenon
in the usual sense. The torsional divergence calculated results should
rather be viewed as a so-called "rule of thumb". The virtue of these re-
sults lies in the relatively simple manner in which they can be obtained
and the fact that the results do indeed correspond with those of a much
more elaborate method. The practical boundary for retreating blades, as
limited by perk-to-peak torsional stress, is accurately predicted for all
parameter variations considered with the Normal Mode Transient Analysis,
except for the effect of pitch-flap coupling. The aft center-of-gravity
advancing blade stress "boundary" is not as well defined, probably because
of complicated compressibility effects. The torsional static stability
boundary provides a conservative estimate of the rather gentle onset of
high torsional stresses for the unloaded blade.

Therefore, in view of the above, the inclusion c¢f a large number of elab-
orate features in a torsional divergence calculation is apparently not
warranted. It should also be pointed out that predicted trends for par-
ameters not investigated previously may not necessarily be accurate or
correct. Torsional divergence resuits for parameter variations not yet
considered and for radically different designs should therefore be checked
wvith more elaborate methods, as was done under this contract for some par-
ameters. The effect of inertia distributions on torsional divergence should
be checked with particular thoroughness.

The ultimate objective of torsional divergence calculations should always
be a guide for more elaborate methods. When a relatively large number of
torsional divergence calculations have defined flight conditions and con-
figurations critical for blade torsional stiffness, a much smaller number
of dynamic solutions can be used to check these critical regions.

PERMISSIBLE ARALYTICAL ASSUMPTIONS

In the following, the torsional divergence calculations and results will be
reviewed with the otjective of outlining useful analytical assumptions for
such calculations.

The results shown in Figures 2 through L establish that the basic advance
ratio versus torsional stiffness coefficient relationship is affected by
practical variations in the aerodynamic root cutout, control stiffness
ratio, and blade chordvise center-of-gravity position. The effects of these
parameters are interrelated in such a way that no generally useful statement
concerning negligible values, vhich will be suitable for all cases can be
given. The effect of root cutout, for example, is more pronounced when the
control stiffness ratio is low.

Figures 5 and 6 shov that spanvise variations {n chord and structural cut-
out have moderately important effects.



Figure 7, on the other hand, shows that linear variations in torsional
stiffness may be neglected in the simple torsional divergence calculation,
if the value of stiffr:ss at the 75% radius is used to represent an equiv-
alent blade with unifcrm stiffness.

Figures 8 and 9 reflect variations in torsional mode shape consistent with
quite extensive varia‘ions in blade mass distributions. These can be seen
to produce rather small changes in calculated torsional divergence results,
and the use of a unifcrm blade torsional mode shape will be adequate for
most cases. This would not necessarily be true for even more extensive
variations in modal properties, such as those appropriate to a weightless
blade with tip mass. It should be pointed out again that the effect of
mass on torsional divergence is not logically consistent with the basic
assumption of no inertial effects. Earlier work, however, has indicated
that the correct trends appear to be produced by using the natural mode
shape corresponding to the mass distribution in the static torsional diver-
gence calculations. While a basic inconsistency is present from a strictly
logical point of view, the use of torsional divergence calculations for
rule-of-thumb purposes makes this practice reusonable, since the effect of
mass distribution on torsional stress appears to be preaicted with the
desirei accuracy. This characteristics of the torsional divergence calcu-
lations should be checked with more elaborate analyses, as mentioned pre-
viously.

Figures 10 and 11 show that lift-curve slope corrections may be confined to
the lift-curve slope at the 75% radius in the definition of torsional stiff-
ness coefficient Sp . This will be true if the spanwise variation is no
more severe than that due to the Prandtl-Glauert correction for an advancing
blade 75% radius Mach number of approximately 0.TO.

Figures 12 and 13 show that nonarticulated blades of conventional design
will have calculated torsional divergence speeds close to those for artic-
ulated blades. This is confirmed by the Normal Mode Transient Analys’s
results shown in Figures 17, 21, 22, and 23.

Figure 1L shows a large drop in torsional divergence advance ratio due to
pitch-flap coupling, which was not reflected in the results of the Normal
Mode Transient Analysis shown in Figures 17 and 20. The effects of §8j
should therefore be investigated with a more rigorous analysis.

In addition to the above considerations, the independent effects of varia-
tions in mass ratio M. vere found to be negligible. The effects of
linear spanwise variation in chordwise center-of-gravity position were also
small, if the position at the 75% radius was used to compare with the uni-
form blade results.

TORSIONAL DIVERGENCE PRELIMINARY DESIGN PROCEDURES

The following paragraphs incluie recommendations as to the use of the tor-
sional divergence charts in the preliminary design stages of newv rotor
systems.



It should be recognized that a complete outline of preliminary design pro-
cedure is beyond the scope of this study. Fxamples of how information
ugseful in preliminary design may be obtained from the charts are given.

The designer should determine the specific studies to be made. These
studies must determine advantageous combinations including not only required
stiffness but also items such as weight, cost, and aerodynamic perfcrmance.

'The torsional divergence charts can be used to define allowable relation-
ships between torsional stiffness, blade geometry and operating conditions.
It can be expected that large torsional stresses will arise if these re-
lationships are exceeded significantly.

It should be remembered that high torsional stresses may arise for other
reasons, even though the blade is satisfactory from the standpoint of tor-
sional divergence. The presence of classical or stall flutter, which may
occur well below the torsional divergence boundary, will also result in
high torsional stresses. Excessive flapping motion may also result in
large torsional stresses, depending on the modal coupling present. Tor-
sional resonance with rotor orders must also be avoided.

It must be assumed that certain parameters have been defined at the start
of a preliminary design effort by the basic mission requirements and the
resulting aerodynamic preliminary rotor design. In particular, it is
agssuned that rotor diameter, blade chord, aircraft forward velocity, rotor
rotational speed, and air density are known or chosen. In preliminary
design, it is recommended that Figures 2 through U be used. If the normal
amounts of tip loss and structural root cutout are neglected, an srpropriate
amount of conservatism will be introduced.

With the quantities just mentioned, the advance ratio is calculated, and
Figures 2, 3, or U entered to find a required S, for the desired values
of aerodynamic root cutout Xgu . Then the definition of Sa given in
Eq. (108) is used to find the torsional stiffness GdJg required. The
lift-curve slope 0, is appropriate for the conditions at the 75% blade
radius on the advancing or retreating blade.

The above procedure can be carried out quickly for systematic variations
in control stiffness ratio and center-of-gravity location by using the
trade-off charts in Figure 3 and 4. The blade weight for each combination
of torsional stiffness, control stiffness ratio, and center-of-gravity
position can then be determined to find the minimum weight configuration
for the given flight condition.

Another possible procedure might begin with blade stiffness, chord, approx-
imate lift-curve slope, and radius defined, so that variations in the
quantity S, (RQ )' are determined by air density and rotational tip
speed. Then flight condition boundaries similar to those shown in Figures
25 through 28 can be determined for various values of altitude, root cut-
out, or control stiffness ratios. This is done by choosing a list of ad-
vance “1tios, determining the corresponding list of critical Sa values
from Figures 2, 3, or L, and then solving for rotational tip speed &R
from the value of S, (R a? , consistent with the assumed altitude. MNote
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that the altitude 1s reflected in the value of air density. The exact Mach
number and lift-curve slope will not be known until the boundary is deter-
mined if this method is used; therefore, it may be desired to repeat the
process with the lift-curve slope appropriate to the approximate Mach
number for each of the advance ratio and rotational tip speed solutions.

An alternate procedure to obtain flight condition boundaries, such as those
described ir the preceding discussions, is based on the assumption of vari-
ous advancing blade tip Mach numbers. This procedure permits the use of
the correct liftecurve slope without need for trial and error, but it is
slightly more elaborate. This method is especially useful for the high
advance ratio and high Mach number conditions.

The advancing blade tip and 75% radius Mach numbers on the advancing and
retreating blades are given respectively by

Miswo * —L!LQRAH ) (138)

7
Mo = B Ly, k] (139)
QR|u-7 |- 75
M2s,270 = %—ﬂ £ M,.”-'Lﬂ‘-l (140)

When Eq. (138) is used in the definition of SRs

26J, . 26y’
pGCo (AR’ ~ p0gCo R (A"M, o)

Sa *= (1L1)

When the advancing blade tip Mach number M, ,, and the value of advance
ratio u are defined, Eq. (141) can be used to calculate a value of Sa.
The lift-curve slope at the 75% radius {s used in this calculation. The
lift-curve slope is corrected for the Mach number at the 75% radius which
is calculated by using Eq. (139) or Eq. (1L0) for the advancing or retreat-
ing blade respectively. Thus, two curves of 4 versus Sa are obtained,
one for the retreating blade and one for the advancing blade if there is
an aft center-of-gravity location. These are plotted on the appropriate
chart in Figure 2, and the intersection with the divergence boundaries is
noted. The same u and M, g intersection is then plotted on a rote-
tional tip speed QR versus forvard speed (V) chart to give a point on
the flight condition boundary. This is repeated for other values of M, ¢
until a torsional divergence boundary is defined. Other boundaries can be
determined as desired by using a nev value of the quantity 2GJo/pCe’R®

in Eq. (14l1). Obviously, changes in this group of parameters can come
about because of variations in torsional stiffness, air density, and blade
area. The effects of aerodynamic root cutout, control stiffness ratio, and
center of gravity are considered by using the proper curves in Figure 2.
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Approximate corrections for chcrd taper, structural cutout, inertia varia-

tions and nonarticulation may be made if desired. This can be done by

adding the appropriate increment to Sa , as indicated at each value of
4 1in Pigures 5 through 10 and 12 and 13.

A few procedures have been outlined above for the rapid definition of sat-
isfactory relationships between blade torsional stifiness and rotor per-
formance objectives using the design charts presented. These should not

be considered as restrictions, however, since other procedures will probably
occur to various users. Detailed explanations of how the charts were ob-
tained have been given to allow individual users to develop their own pro-
cedures. The major restriction on the development of other procedures is
that they be simple, rapid, and consistent with the approximate nature of
the torsional divergence concept for helicopter blades. In the later stages
of design work, the more critical flight conditions must be reevaluated
with more elaborate methods, including those for the prediction of forced
blade motions and stresses, c.assical flutter, and stall flutter.
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TABLE I. BASIC PROPERTIES OF ROTOR SYSTEM USED IN TORSIONAL DIVERGENCE

STUDIES WITH THE NORMAL MODE TRANSIENT ANALYSIS

Iten Swmbol  Value Unit
Radius R 310 e
Number of Ejades b 5 -
Chord c 1,52 re
Flatwise Stiffness Elp  L56x10°  1b-t’
Edgewise Stiffness Bl  L7mx10°  vert
Torsional Stiffness GJ 2,43x10°  1brt’
Mass per Unit Length n 0202 slugs/ft
Flap-lLag Hinge Offset ) «0339 -
Tip Loss Factor B 97 -
Aerodynamic Root Cutout Xoa 12
Structural Root Cutout Xos .060




TABLY II. ROTOR CONFIGURATIONS FOR TORSIONAL DIVERGENCE STUDY WITH
THE NORMAL MODE TRANSIENT ANALYSIS

Krticulated 1 ~ Control
Configuration ) Tans, Xo _ Oyro
Mumber Nonarticulat.ed 4 T Condition
1 Articulated «001 0,0 0,0 -
2 Articulated 20 0,0 0,0 -
3 Articulated «001 1.0 0.0 -
L Articulsted «001 0.0 =05 -
1 Articulated 001 0,0 =10 -
é Articulated 01 0,0 =15 -
7 Nonarticulated ,001 - 0.0 Tived
P Nonarticulated 001 - =05 Fixed
9 Nonarticulated ,001 - = 10 Fixed
10 Nonarticulated .00l - =15 Fixed

11 Nonarticulated 001 - 0.0 Acting
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TABLE III. FLIGHT CONDITIONS FOR TORSIONAL DIVERGENCE STUDY
WITH NORMAL MCDE TRANSIENT ANALYSIS

ch‘:;::n Advance Ratio, u A;L:%:P. ,
1 0,6 00378
2 1.0 «0N2 78
) 1.2 (U078
L Lb «002378
5 1.6 +002378
6 1.4 +001585
7 1,6 ~UN1565
8 1.8 001585
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TABLE 1V.

CONFIGURATION AND FLIGHT CONDITIQN COMBINATIONS
FOR TORGIONAL DIVERGENCE STUDY WITH THE NORMAL
MOD:. TRANSIENT ANALYSIO

Configurstion Condition
(TABLE II) (TABLE III)
1 152,3,4,5,6,7,8
2 2,3k
3 2,3,4,5
b 1
5 1
6 b
' 1 L,5

8 1
9 1

10 1

n L




3.

CONCLUGS 10NS

The static torsional di{vergence boundary usually approximates a
practical operating limit defined by a rapid rise in peak-to-peak
torsional stress. This approximation is valid for a useful number
of blade parameters.

Critical advance ratio for static torsional divergence is affected
mcst strongly by blade clastic torsional stiffness, air density,
lift-curve slope, rotational tip speed, chord, radius, chordwise
center-of-gravity position, aerodynamic root cutout, control stiff-
ness, and structural root cutout.

The torsional divergence characteristics for articulated and non-
articulated bladees of conventional stiffness are practically
{dent{cal.

The basic parameters for the study of static torsional divergence
are the advance ratio 4 and the torsional stiffness coefficient
s. .

The use of the first natural vibration mode as a divergence mode
is a good simplifying assumption for static diverge.ce calculations.
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RECOMMENDATIONS

The present static stability analysis is adequate for the rapid generation
of approximate blade operating boundaries for a broad range of parameters

and blade characteristics. In order to predict the effects of pitch-flap

coupling and inertia variations with greater confidence, a two-degree-of-

freedom torsion-flapping dynamic analysis should be considered.
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