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DEPARTMENT OF THE ARMY
U S ARMY AVIATION MATERIEL LASORATORIES

FORT EUSTIS, VIRGINIA 23004

This contract was initiated to determine the aeroelastic stability
limits of articulated and unarticulated helicopter rotor systems at
high forward speeds. The four primary modes of aeroelastic instability
(classical flutter, stall flutter, torsional divergence, and flapping
or flatwise bending instability) were investigated. The possibility
of a flap-lag instability suggested by Dr. Maurice I. Young of the
Vertol Division, The Boeing Company, was inveF igated as a special case
of flapping instability.

The results are published as a five-volume set; the subject of each
volume is as follows:

Volume I Equations of Motion
Volume 1I Classical Flutter
Volume III Stall Flutter
Volume IV Torsional Divergence
Volume V Flapping Instability

These reports have been reviewed by the U. S. Army Aviation Materiel
Laboratories. These repoIst, %hlch are published for the exchange of
information and the stimulation of ideas, are considered to be tech-
nically sound with regard to technical approach, results, conclusions,

and amended parameter ranges for accurate usage.
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The puiposes of this research program were to extend or develop analytical
methods for deternining rotor blade aeroelastic stability limits and to
perform taubiliy calculations ovei a range of design and operatin va-ri
ables for ar-ticulatcd and nonarticulated conifigurationsý. The, usefuli:css
of simpler analytical me)thods was inve-sticateu by crrpari ,G results with
opcratir4g boundaries from the more elaborate analyý is.

The analytical study in this volumc waRs carried out to determine the
susceptibility of helicopter rotor bladcs to a stall flutter instability.
This analysis was based on the use of urnsteady aerodynamic datu previously
obtained by Sikorsky Aircraft for an NACA 0012 airfoil oscillating in pitch
about its quarter-c hord cver a wide range of values of incidence angle,
oscillatory frequency, amplitude of motion, and free-stream velocity.
These data were originally available in the form of moment coefficient-
incidence angle loops, and a twofold task was performed i.• carrying out
the present study. First, it was necessary to convert the moment coeffi-
cient data to an aerodynamic damping parameter form. This was accomplished
by integrating the moment over one cycle of motion to yield the aerodynamic
work per cycle, and this in turn was multiplied by appropriate conversion
factors to produce the desired two-dimensional aerodynamic damping.
Second, it was necessary to apply these two-dimensional rezults to a heli-
copter rotor to evaluate the weighted three-dimensional damping at each
azimuth station, and to interpret the implications of any predicted region
of instability.

It was found that under certain comnbinations of forward speed and high
disc loading, a helicopter rotor blade could encounter regions of negative
torsional aerodynamic damping while operating as a retreating blade. The
extent of the negative dam],ing regime was sensitive to change in "ncidence
angle distribution, and for some parameter combinations it could produce
two or three cycles of unstable torsional motion per revolution.

Generally good agreement was found to exist between 'ie results of the
present study and those of other investigators at alJ. stages in the devel-
opment; e.g., the two-dimensional damping data were in good agreement with
the results of Reference 1 and the final three-dimensional damping vari-
ation with azimuth over the rotor disc was in qualitatively good agreement
with the recent work of Reference 2.

The stall flutter analysis was used in conjunction with the blade motion
solution of Volume I to provide flight condition boundaries for stall
flutter intensity.
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The invebtlgatitln prcsented in this volumie is plart of ani extensive study,
which js presented in fjve voljumes. Tfe work was performed under Contract
PA bt-l77-AC-332(T) witlh the 11. S. Army Aviation Materiel Leboratories,
Fort Lu-stjs. Virtinia. The p~rogram was monitored for USAAVLAB3S by

Mr. Joseph MeGa-rvey.

The rotor blade stall flutter analysis prestnted in this volume is the
work of Mr. Franllin 0. Carta of tlh United Aircraft •escarch Laboratories,
Thu test data used in the analysis are from a wind tunncl test which was
performed previously under Sikorsky Aircraft sponsorship.

The subheading entitled "Stall Flutter Flight Condition Boundaries" is
the result of work done at Sikorsky Aircraft by Mr. Charles F. Niebanck.
The informution under that subheading is the result of tile application of
tvje stall flutter unal~ysis of this volume in conjunction with the Extended
Normal Mode Transient Analysis of Volume 1.

Volume I of this report contains the development of the differential
equations of motion of an elastic rotor blade with chordwise mass un-
balance.

Volume 11 presents a linearized discrete azimuth classical flutter analysis
for rotor blades, with an appropriate parameter variation study, a com-
parison with test data, and a comparison with results calculated by using
the method of Volume I.

Volume IV contains the results, of a study of static torsional divergence.
A set of design charts and the effects of a range of parameter variations
are presented. Tile results of the statS, divergence calculation are com-
pared with results calculated by using the method of Volume I.

Volume V presents the results of a study of flapping and coupled flap-lag
instabilities. The results of a parametric study based on a single degree-
of-freedom flapping or flatwise bending analysis are presented. Compari-
sons are made with results from the more elaborate method 0l Volume I.
The results obtained by using the method of Volume I to determine the
coupled flap-lag response of a rotor to a number of sudden control changes
are presented..
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I NTROI) )fCT I ON

Recently, as a re~sult of tlh combined requirements of higher forward speeds
and greater blade loadings for helicopters, there has been a renewed in-
terest in the study of stall-induced oscillatory blade Instabilities, with
particular emphasis on the effects of these extreme requirements on the
stall flutter phenomenon. This is evidenced by the work reported in
References 2, 3, and L, to name only a few. However, with the exception
of Reference 2, all of these studies had one major deficiency in common -
a dearth of valid, unsteady aerodynamic data encompassing a substantial
portion of the stall flow regime. In fact, even in Reference 2 the data
were synthesized and ideali ed from a number of sources.

These increased performance requirements were foreseen some time ago, and
Sikorsky Aircraft obtained a large quantity of two-dimensional unsteady
aerodynamic test data from an isolated NACA 0012 airfoil section, which
was oscillated in pitch about its 25% chord. These data are utilized in
the stall flutter stability analysis described in this volume.

Similar data were obtained from Reference 1. These data were converted to
a form comparable with the Sikorsky data and were used in a similar sta-
bility analysis. The tio sets of results showed good qualitative agreemeint.

The stall flutter stability analysis was used to provide stall flutter j
boundaries for a typical rotor. The boundaries Indicate flight conditions
for which stall flutter may be particularly troublesome.
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DESCRIPTION OF TEST EQUIPMENT, MODEL INSTALLATIoN, AND PROCEDUR•

TEST EQUIPMENT AND MODEL

The experimental program was conducted in the two-dimensional channea of
the UAC 8-foot main wind tunnel, which has an atmospheric, single-return,
closed-throat circuit with an octagonal throat. Tcst section Mach number
is variable below M = 1.0, and the Reynolds number for the 2-foot chord
model used in the test program was approximately Re - 1.4 M x Io7. Figuret
1 shows schematically the mechanical system used in the dynamic tests to
obtain unsteady aerodynamic data for the oscillating airfoil.

The NACA 0012 model tested during this program consisted of a balsa wood
core supported by chordwise aluminum stiffeners and wrapped in three layers
of fiber glass. The model, which had a span of 33 inches and a chord of
24.11 inches, is shown in Figure 2. Thirteen pairs of differential pressure
orifices were located on the top and bottom of the model along a chordwise
line which was 11.5 inches inboard from the tip. The orifices were connec-
ted with internal tubing to 13 miniature differential pressure pickups of
the variable reluctance type which were enclosed in a cavity in the model
tip. In this manner, pressure acting on the airfoil surface at a given
chordwise station was converted to an electrical signal which was trans-
mitted to a recording oscillograph. Representative oscillograph traces of
the pressure transducer signals are presented in Figure 3. In addition, a
linear transformer was attached to the end of the shaft, and its output was
used to record variations in angle of attack.

TEST PROCEDURE

In general, the following test procedure was employed. A set of eccentric
cams was installed which fixed the amplitude of motion, E . After a pre-
liminary shake test, all recording instruments were zeroed and the tunnel
was started and brought up to its operating Mach number M . At the pre-
scribed Mach number, the mew- angle of attack, Q-% , was varied over a
range of values, and for each value of am the frequency, f , was varied
over a range of values. After data had been recorded at all of the desired
combinations of am and f , the Mach number was changed and records !-ere
taken for a new set of values of am and f . Fii.ally, after all
desired values of M had been- obtained, the cams were changed to obtain
a new value of a and the entire process was repeated.

The oscillograph records of the steady and unsteady pressure response were
taken for most combinations of the following parameter values:

Amplitude of motion, a = + L, 6, 8 deg

Mach number, M = 0.2, 0.3, o. 4

Mean angle of attack, aM = 0 to 33 deg in 3-deg increments

Frequency, f = 0.0, 0.5, 1, 2, 4, 8, 12, 16 cps



in the interest of txpedLency or safety, certain combinations were omitted.
For example, it was decided to limit the maximum frequency to 12 cps for
mean angles of attack greater than 24 degrees to ensure the structural
integrity of the systen, particularly at the higher Mach numbers.

I
I
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TEST RESULTS

DATA REDUCTION

The oscillograph records were read, and the measured data were tabulated.
A digital computer was then used to reduce these data to obtain, for each
run, the chordwise differential pressure distribution as well as normal
force and moment as functions of instantaneous angle of attack. The mag-
nitude of the corrections to the measured pressures for the influence of
tunnel wall constraint under steady-state conditions was estimateL to be
less than 3% of the flull-scale values in tht linear range; therefore, no
corrections to the data were made. The unsteady wall interference effects
were small compared to the gross unsteady parameters being measured and
were also neglected (Reference 5).

PRESSURE DISTRIBUTIONS

The output of each pressure transducer was directly proportional to the
local, instantaneous pressure difference,

Ap*(xt)= A (x P P ,upper lowerC)

where the asterisk denotes a complex quantity and the superscript bar
denotes an amplitude function. The pressure difference amplitude 1Dp
is expressed as a complex number,

Ap:tA• + lAD (2')

to account for possible phase differences between the local pressure
response and the motion. Ac shown in Figure 3, the peak-to-peak difference
in the oscillograph trace was proportional to the absolute magnitude of the
complex -,ressure difference given in Eq. (2),

Some representative results of these measurements P-e shown in Figures 4,

and 5, in which the absolute magnitude of the pressure difference from
Eq. (3) has been divided by the dynamic pressure,

-- pU 2 (4)
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and the resilting precssure coefi'icie i., lz /iq I ha,: been plotted as a
function of dimensi,,nicss chordal tat'ion. In Figurc I, the experimentally
determined values of this dimensionless wuplitude of the differential
pressure coeffipicent are presentecd for o ralnge of mean angIe; of attack
(am = 0 to 32 degrees in 3-degree increrlents) at a fixed frequency of 4
cps. In Figure 5,a similar set of results is prese.,ntCd for a range of
frequencies (f = )1, 5, 22, 16 cps) for a giver set of mean angles of attack
(a• =0, 3, b, 9 degrees). In both 'igUreS, the so0lid curve represents the
pressure coefficient predicted from classical unsteady potential flow
theory. In the present case the theoretical pres-sure distribution formula
was obtained from Reference a, which is b.,toed on the fundamental work of
Theodorsen (Reference 7). The pitching results in Rieference 6 have been
derived for & pivot axis at the.'5. chord; for convenience, the real and
imaginary parts are reproduced below, with the notation revised slightly
to conform to present uUage.

q) k ' ) -I _+

q-) T4h [ f k 2 F j*) : 1 +6)

In these formulas, x is the dimensionless chordwise position relative to
the midchord; in semichords, and k is the reduced frequency parameter,

S - u (7)

and F and G are the real and imaginary parts, respectively, of the

Theodorsen circulation function, C(k) vF(k) + itG(k.
It is seen, from Figure L, that at low to moderate incidence angles, the

experimental values are in good agreement with theory; even at high in-

cidence angles, the leading-edge peak is still maintained, aithough the
agreement between theory and experiment has deteriorated. Finally, at
extremely high incidence angles, even Lhe leading-edge experimental values
no longer agree with theory. The eflfects of zlicreasijng frequency at. low
incidence angle are shown in Fjigure 5, and it is" seen that in all four parts
of this figure the agreemrent between thiiery and experiment is excellent.



NORMAL FORCE AND MOMENT AMPLITUDE

On pages 394 and 395 of Reference 3 are found the equations for normal
force and moment about the pivot axis in terms of the pressure distribu-
t ions,

: b fp(8)
a,-I

M b (x0a)Ap*(x)aX (9)

or, in coefficient form,
if, ' Ap'(x) :

CM ....; J(.-o) __-"X dx (ii)
CN 2 q

C'' 7q 61 q ,dy' •-_

Pressure data obtained during tLe experimental program were reduced to
coefficient form by use of Eqs. (10) and (11). The results of these in-
tegrations form the basis for, the stability analysis to follow. However,
before proceeding with this analysis, consideration will be given to Figure
6 in which the =mplitudes of CO and C have been plotted versus
reduced frequency, k , over a small range of mean angles of attack.
Included in both of these figures are the theoretical variations of these
functions as predicted by the potential flow analysis (Reference 7'. The
analytic-i expressions used here may be obtained from Reference 8, and the
explic..t relationships for unsteady moment cuefficient will bt conzidered
in great detail in a subsequent section of this volume. For the moment,
though, it is sufficient to note that the general trends of the experi-
mental data are in good agreement with the theory for mean incidence angles
up to (M = 9 degrees; in fact, the data for zero mean incidence angle are
in excellent agreement with theory.

NORMAL FORCE AND MOME'T HYSTERESIS LOOPS

When the instantaneous normal force or moment coefficient is plotted versus
angle of attack, the resulting ciosed curve surrounds an area which, in the
case of the moment, is representative of the energy absorbed or discipated.
This is found to be the case in both classical and separated flows. Con-
sider the case depicted in Figure 7. The two upper curves represent hypo-
thetical sinusoidal variations of angle of attack and either normal force
or moment, both expressed in arbitrary units, as a function of time. In
the example shown, the normal force or i-.omnt leads the angle of attack by
one-eighth of a cycle or 15 degrees in phase. In the bottom portion of



the figure, the time variable has been eliminated and the normal force or
moment has been plotted directly as a function of angle of attack. The
arrows denote the direction of increasing time. This figure shows that a
phase shift between f'orce or moment and motion produces a loop which en-
closes a finite area. The same elffect will be found to exist in the case
of a nonsjnusoidal force-motion-time relationship caused by the presence
of separated flow. In classical or potential flow, the closed contour will
be elliptici,]; whereas in separated flow, the contour will be distorted.

Normal Force Loopýs

A few representative unsteady normal force coef:'icient loops are presented
in Figure 8 for a constant amplitude of01' ( degrees and a constant
Mach number of M = 0.3. In this figure the experimentally determined un-
steady normal force coefficients are plotted versus instantaneous incidence
angle, with the superimposed arrowheads indicating the direction of in-
creasing time. The solid lines represent the unsteady dats,and the dashed
lines represent the steady-state characteristics (also obtained from
pressure readings in this test). The arrows indicate the direction of in-
creasing time. Three of the inset figures were for a constant frequency
of 4 cps and serve to snow the effects of varying mean incidence angle,
from aM = 6 to 12 to 18 degrees. The two right-hand inset fig'tres are
both for a mean incidence angle of a M = 12 degrees and illustrate the
effect of a change in frequency from 4 cps to 16 cps. It is clear that the
increase in mean incidence angle to values greater than the steady-state
stall angle has a rather profound effect on the dynamic force response of
the oscillating airfoil. It is also clear that an increase in frequency
produces a radical change in the dynamic stalling behavior of the airfoil.
Specifically, at low frequency the dynamic force response reaches its peak
value just before the maximum incidence angle is ro!ached; it then drops
precipitously to a value far below the steady-state stall value and remains
there for almost the entire region of decreasing incidence. In contrasT to
this behavior, the effect of nigh frequency is to maintain a nearly ellip-
tical response loop, even for incidence angles beyond stall, over the
entire range of instantaneous incidence angle. The further significance
o0' this behavior will be explored at length below and in subsequent sections
in connection with the moment coefficient loops and their stability impli-
cations.

Moment Loops

Some representative unsteady moment coefficient loops are presented in
Figures 9 through 11. These loops are the basis for the stability analysis
which follows; hence,they are shown in greater detail than the normal force
]oorps. 1i these figures, an effourt has buex. made to £±iSuxtetý urie valri-
ations in the moment hysteresis loops for each of the variable test paraxm-
eters. Thus, the effect of varying mean incidernce angle, aM , ds fohCwn
in Figure 9; the effect of varying frequency, f , is shruwn in Figure 10;
and the effect of varying Mach number, M , and torsional amplitude, a ,
is shown in Figure 11. In all oi' tbese figures,the superimposed arrowheads
indicate ' direction of increasing time.



Fuolsa the variatin in moment coefficient with incidence
angle at the fixed conditions M = 0.2, d = 6 degrees and f = 4 cps.
The solid curves are associated with the unsteady motion presently under
consideration, and the dashed curve represents the steady-state moment
(from balance data) for the same Mach nunber and Reynolds number. (Once
again, the arrows indicate the direction of increasing time.) I can he
seen that all three moment loops generally follow the steady-state curve,
and it will be shown presently in Figure 10 that thu loop for QtM = 0
degrees is in good agreement with the results obtained from potential flow
theory. (This is also evidenced by the proximity of the data point for
Qm = 0 degrees to the theoretical curve in Figure 6 for a reduced fre-

quency value of k = 0.112.) The character or tne hystercsis 1 oop changes
radically as aM incrcases, mad the moment loop for am = 12 degr, s dis-
plays the characteristic crossover behavior of the unsteady moment in the
neighborhood of the stalling angle. Tnis separation-induced distortion of
the moment hysteresis loop has been the subject of a number of early in-
vestigations, including those reported in References 1 and 9 and, hence,
will not be discussed at length herein. However, it will be shown later
in this report that the system stability is strongly dependent on the
direction in which the area of the moment loop is enclosed; in particular,
it will be shown that a countert2lockwise enclosure is stable, whereas a
clockwise enclosure is unstable,. Thus, it is seen that in some mean in-
cidence range containing aM = 12 degrees, there may be some potentially
unstable regions which could affect the stability of rotor systems.
Finally, for a mean incidence angle of 24 degrees, the moment loop once
again implies a stable motion.

Figure 10 shows the effects of increasing iie frequency from 4 cps to 16
cps for two mean angles of incidence. Also in Figure 10, the experimental
results are shown as solid curves, and the results from unsteady potential
flow theory are shown as dashed curves. (A brief discussion of these
theoretical predictions is presented later in this volume in Appendix I).
It is seen that except for a slight upward displacement of the experimental
results relative to the theoretical curves, the two are in excellent agree-
ment. The right side of this figure shows that for UZM = 15 degrees, the
effect of an inercase in frequency (and, hence, ai increas, in reduced
frequency) appears to be stabilizing, even though the incidence angle is
considerably greater than the stalling angle over much of the range. This
is in accord with the implied results in References 10 and 17, as pointed
out and further amplified by Reference 1, and also as reported in Reference
12. However, in the left column of Figure 11, it appears that an increase
in reduced frequency (caused by a decrease in Mach number at constant fre-
quency, f = 4 cps) yields a contradictory result in that the stable
closed loops for k = 0,056 and 0.075 are replaced by a marginally stable
crossed loop for k = 0.112. It is believed that this behavior is char-
acteristic of very small values of k , and it will be seen later in this
volume that all of these results are self-consistent. Finally, the right
column of Figure 11 shows the effect of increasing the torsional amplitude.
Superimposed on each curve in Figure II is the steady-state moment vari-
ation, represented by the dashed line. Once again, the results appear to
be self-consistent.
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This concludes the review of the original test program. In the next sec-
tion, the analytical expressions necessary fol the stability investigation
,wll be developed; following this, the application of this analysis to the
data will be discussed. The last section of the report will deal with the
stability characteriztics of a typical rotor under various loading con-
ditions.

AI



ANALYSTS

TWO-DIMENSIONAL WORK PER CYCLE

The differential work done by the aerodynamic moment during the course of
the torsional motion is obtained by computing the pfoduct of the in-phase
components of moment, and differential twist, or

dW : MRdaR (12)

where MR and aR are the real parts of these quantities. Hence, the
work per cycle of motion is obtained by integrating Eq. (12) over one
cycle, or

W MRdaR (l3)

This may be rendered dimensionless by dividing both sides of the equation
by �Pu 2 (2b)2 , which yields the equation for the work coefficient in
terms of the integral of the moment coefficient, as follows:

CWw - CM daR (1.4)Cw _pur'?bIT

To evaluatc the integral in Eq. (2.4), it is necessary to introduce the
quantities CMP and aR , The derivation of these functions i5 _'rccented
in Appendix I, which has been included ir the present volume for complete-
ness. From Eq. (74), after expanding the exponential function in sines
and cosines, the real part of the moment coefficient nay be obtained in
the form

C - CM + Cos wI -W sin wtI (15)

The differential of Eq. (80) is

daR -d sinwi d(wt) (16)
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and after Eqs. (15) and (16) are substituted into Eq. (14), the result is

Cw: [[ CM MUF coswLt - CMUSiinwt a] SinWt dG(wt) (17)

.0.

(The integration range, Of! wf2Tr , is equivalent to one complete cycle
of motion.) After the integrations indicated in Eq. (17) are performed,
it is found that the term involving thu mean moment vanishes as well as
the term containing the real part of th.ie unsteady moment; the final result
for the theoretical work ooefficient is given by

Cwmd 8C~ (18)
Mui

This is the work done by the air on the airfoil; hence, a positive value I
of Cw will indicate an unstable motion, since this implies a net energy
exchange from the surrounding medium to the airfoil, whereas a negative
value of Cw will indicate a stable, or damped motion.

TWO-AIMD THREE-DIMENSIONAL AERODYNAMIC DAMPINC

Before proceeding with the analysis of the aerodvynamic damping of the sys-
tem, it is useful to review briefly the behavior of a linear, damped, tor-
sional system such as the one described by the differential equation

I d+ C" K 0 (19)

where I is the inertia, C is the damping, and K is the stiffness of
the system, If the motion is essentially sinusoidal (i.e., only slightly
damped and, hence very nearly a constant amplitude sinusoid) then Eq. (69)
of Appendix I is a solution. The equation becomes

(-W1 + iwc + K 0) (20)

It is seen that the damping coefficient is contained in the imaginary part
of this expression, and it may be assumed that the equivalent damping terms
for any similar linear system will also be contained in the imaginary part
of the differential equation solution.

Eq. (19) reprosents a system oscillating in torsion in a vacuum. If the
same system were to oscillate in torsion in a moving airstream, the right-
hand side of the equation would no longer be zero but would represent the
unsteady moment imposed by the moving air on the body, or

16*+ c&+ C* (21)U



It is shown in References 8 and 13 that in the case of Ya single-degree-of-
freedom torsional o ithe .t,. ''"-dj momsent is a fu.ction of the
torsional displacement and its first two time derivatives and may be ex-
pressed in the general form

M =Mta + M. + M(2

In the results cited in References 3 and 1,3 for an isolated airfoil oscil-
lating in an incompressible, potential flow (based on Theodorsen's theory,
Reference 7), the component 1"0! is a pure real quantity, whereas both

Mý and M* are complex; hence,
3*

2 M M2R 4 W 21

M3 , M3 3R + iM 31  (23)

After Eqs. (22) and (23) are substituted into Eq. (21) and the terms are
rearranged slightly, the result is

((C,) a -..( - 'M21) -, -+R 31) 0 (24)

Once again, if the damping is sufficiently small, the motion will be nearly
sinusoidal and Eq. (69) represents a solution, whereupon Eq. (24) becomes

[~2(I M1)+ W (C - M42R? iM 21)~ M3R 31()5

After collecting real and imagirary parts,

[{2(I M,) M2 + K -M 3R}+ i { W (C- M2R)- M31}] 5 2

As in the case of the system oscillating in vacuum, the imaginary part of
Eq. (26) will represent the total damping of the system, as follows:

total damping = w (C-M 2 R)- M3 1

Since the quantity cvC constitutes the system damping in the absence of a
moving airstream, then the remainder of Eq. (27) must be the effective
aerodynamic damping of the system, as follows:

-wM 2 R' M31



The symbol ý denotes the (dimensional) aerodynamic damping parameter of
a system executing a single-degree-of -freedom torsional motion. Return
now to Eq. (22). It will be assumed that the left-hand side of this equa-
tion is a time dependent, sinusoidal function having the form

M ' Aue (29)

where

U UR+ m U

After Eqs. (29), (30), and (69) are substituted into Eq. (22) and the ex-
poentia]l factor e ")t is cancelled, the result is

MUR + i I~UI: {W -wM 2 I+ M.5R}+ i fWM2R4 M 3 1}a()

When real and imaginary parts are equated, it is seen that

Mut = JM2 R + M31]> (32)

A comparison of Eqs. (28) and (32) shows that the aerodynamic damping
parameter, C , is equal to the negative of the derivative of the imaginary
component of the unsteady moment with respcet to the amplitude of motion,

-d -. [(dM"R+ M31J (33)

It is convenient at this point to rewrite Eq. (33) in dimensionless coef-
ficient form, as previously done in Eq. (l4). Hence, 9fter defining the
dimensionless two-dimensional aerodynamic damping parameter in pitch by
the symbol

""22 (Ii2)p U2 (2b)2  (34.'

then Eq. (33) may be rewritten as

dCMux _ WM2R+ MM

-a2=_ da (i/2)pu 2(2b) 2 (35)



In the ultimate formulation to be obtained herein, it will be useful to
express the aerodynamic damping parameter in terms of the work per cycle
of motion, since the latter is a quantity which is mont easily measured
from the available test data. To accomplish this, a few manipulations are
necessary. First, Eq. (76) of Appendix I will be rewritten in the form

CMUJ :: ý.Tlýk lo )(30)

where

rl(k ,0) zj5 MaX - (L+ 1 4 Mh1)(j +0) + Lh1 (-L + 0) (37)

is a function of k and a only. Now, substitute Eq. (36) into
Eq. (18) to obtain

Cw (38)

and next substitute Eq. (36) into the derivative of Eq. (35) with the
result

SdCv 1 u ((39)""Z od( - r-T

Finally, after solving Eq. (38) for 1T , substitution into Eq. (39)
yields the useful formula

- _ ow (ho)
--a2 dn, 2

Ultimately, these two-dimensional data mubt be used• in the stability eval-
uation of the three-dimensional rotor system; hence, they must be converted
to three-dimensional aerodynamic damping form. This has been done in
Appendix II.

0,- = Za 2 v2( rf)fa2 c(7) d77 (41)

where 21(77) is the spanwise velocity ratio, fa(7) is the spanwise
mode shape distribution, and 7j is the dimensionless spanwise variable.

Ii,



SPECIALIZATION TO 25% CHORD PIVOT AXIS

Most of the analytical dc•elopmnCt in the preceding sections of this voliume

has been derived for an arbitrary location of the pivot axis. The experi-

mental data to be used in the stability analysis were obtained on an air-

foil pivoted about its 25% chord and the rotor blade to be analyzed below

will also have its ef"ective pivot axis at or very near the 25% chord

(assuming a conventionally de.,signied blade system). It will be useful,

then, to convjert the results of the previous sections for the special case

of 25% chord pivot axis location, iin anticipation of the need for these

specialized formulas in subsequent sections.

It was stated earlier that for a 25% chord pivot location a = - ./2, and

hence, the factor 1/2 - a = 0. When this is substituted into Eq. (76) of

Appendix I the result for the imaginary part. of the unsteady moment coef-

ficient amplitude becomes

CM: - Mj±U (142)

and substitution into Eq. (1B) yields

for the work coefficient. Similarly, Eq. (40) becomes

*2- -irk2

-a _2 Mal (144)

for the two-dimensional damping coefficient. In the case of an incompress-

ible, potential flow past the airfoil, the imaginary part of Eq. (84) will

be substituted from Appendix I for Mai Eqs. (42), (43) and (44) then

become

C = -1-7r2k (46)

,L 

'



a~n

k 0 17
0a2 2

Eq. (46) shows that for these ideal conditions, the work coefficient
will always be negative (i.e., the system will always be stable), and is
directly dependent on both k and d . Similarly, Eq. (47) shows that
the aerodynamic damping is always positive and is independent of amplitude.

I
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FINAL DATA PEDUCTI ON

in the course• of the original test program, approximately 550 test points
were taken; for each of these a CM-a loop was generated. Figures 9, 10,
and 11 contain fourteen separate examples of these lccps. In principle,
Eq. (14) was used to evaluate the work coefficient for each of these loops;
however, a planimeter was used to obtain the actual area. Each loop was
planimetered at least three times, and an average of these three measure-
ments was used to represent the area of a given loop. (The muximum error
incurred by this averaging procedure is estimated to be less than 3%).
Appropriate conversion factors were used to transform the raw area data
into work coefficient form, and Eq. (40) was then used to convert these
work coefficients into two-dimensional damping parameter form.

The results of these calculations are presented in Tables I through III.
The gaps in these tables denote values of frequency and/or mean incidence
angle at which either no data were taken or no data were reduced. For
example, only a limited amount of very low frequency data was taken, and
these points were restricted to mean incidence angles of th = 12 degre-s
and greater. Also, as Mach number was increased, some of the higher fre-
quency and higher incidence angle runs were omitted. Occasionally, a
double entry was made in the tables for a particular combination of f and
Um . This occurred whenever a CC, -- loop failed to close on itself.
For example, in Table I, for d = 6 degrees at the point m = 3 degrees
and f = 4 cps ( k = 0.1125) there are two values. The loop for this
case does not return along the same path after one cycle of motion. In
this case, as in other similar cases, an estimate was made of the two most
likely loops, the areas of both were taken, and both numbers were entered
in the appropriate table.

A representative group of these reduced damping parameter values is shown
in Figures 12 and 13. These results were plotted directly from the second
subtable of Table I. This pair of figures shows the variation of ;i2
with reduced frequency k for the entire range of mean incidence angles.
Included in each plot is the predicted theoretical variation of S0 2  with

k , taken from Eq. (47) for 251 chord pivot. It is seen from Figure 12
that the experimental values are in good agreement with theory for am = 0,
3, 6, and 9 degrees. However, the data show considerable departure from
the theory for incidence angles of 0 m = 12 degrees and above; in fact,
there is a range of incidence angles, 12 < cr < 21 degrees, in which
the aerodynamic damping is negative (indicating an instability) over some
portiion of the k range. Finally, at extremely large values rf incidence
angle, am Ž 24 degrees, the values of ;Z02 become positive once again
and seem to approach the theoretical ]prediction at the highest incidence
angles shown here.



There are innuma-rable ways of presenting the entir:e mass of data contained
in Tables I througn III. One obvious method is to go through each stb-
table, plotting the results in an analogous fashion to t1he results:, shown
in Figures 12 and 13, with each set represertins a. speclfic combination of
Mach number and torsional ampli.tude. This precedunŽ is unwieldy it. the
ultimatt erplication of' the data, which is to deýtermine the stability
characteri-stics of heli oster rotor blades. Thorcr 0oe, an effort has Seen
made to reduce the number of independent armwreters by combinin6 these
data sets in various ways,

The method to reduce the number of independent parameters which was chosen
for this program utilized the grouping of data as, presented in Tables I
through III. Specifically, all of the data for 14 = 0.2 were combined, and
an effort was made to eliminate d as a parameter. Similarly, the data
for M = 0.3 and for M = 0.4 were also treated separately. The elimination
of 6 as a parameter was effected by plotting the vakiation of a2
with k for each mean incidence a.-gle and by including data for all three
values of the amplitude. This decision to eliminate 6 w°q base in part
on the fact that the theoretical result presented in Eq. (47) 1- z2
is independent of a

After all of the data had been p)lotted in this fashion ( Fc2 versus
k for each ZM , for each M , with the data for all values of d en

each plot), a set of curves was faired through the data for each set of
parameter values. A tabulation of the coordinates of the faired curves
was then made for a large number of conveniently spaced v4alues of k at
the given values of 1M , and a set of cross plots of Sea2 versus

CM was made using these tabulated values. Once again, a set of curves
was faired through the data, and the coord~inates were tanulated. this time
for a closer spacing of incidence angles than were previously availablOe
(every degree instead of every 3 degrees:. This process was repeated
sufficiently often to reduce the scatter of the coordinates of the faired_
curves to a negligible amount; in effect, a graphical iteration process
was employed to .smoth the data. (The reason for adopting this rrocedore
was to provide a smoothed set of unsteady aerodynwmic data suitaLie for
bivariant interpolation on a high-speed digital comruputerr. The res.ults of
this process are presented in Tables IV, V, and VI for Mach numbers M a
0.2, 0.3. and 0.4, respectively.

A comparison of the original dats and the final smoothed data is shoizn •n
Figures 14, 15, a:nd 16. These figures contain almost all of the: aerody-
namic damping data for M -- 0.2 which were originally obtained frnm the

CM- a ]oops and were presented in Tablke 1. The faired curves were taken
from Table P. Similar plots could be constru.ctecd fur M " 0.3 and 0.-
from the original data in Tables II and 111 and the smoothed data in '.Tables
V and Vi, However, in the izterest of bruvity, they are not included here.

A number of conlausions may be reached by studying the: results presented
in these figures, as; enumerated below. It is seen from Figurie 14 that the
experimental results are generally in good agreement with the, theory at low
mean incidence angle ( am-S 9 d.!N ) for a] amli3 tudes. As the mean inci-
dence angle is increazs,:d to ,auD C. greater than ('M 12 degrees, the
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aerodynamic damping is seen to depart from the theory and, in some cU.Veo,
t. become negative over some range of k . A study of Figures 1 and 15
isquite instructive :ic explainiag the apparent contradiction noted earlier
in the behavior of =-02 with increasing k . In these figures, it is
seen that for sufficiently large k , an initially unstable or marginally
stable condition will become more stable as k is increased, as stated
earlier in this ropcr.. however, at very' low values of' k , the aerody-
nwxxicu dumping initially increases from a zero value at k = C and reaches
a smali positive value before becoming, nrgative at. a higher value of k
This wAc pointed out earlier i connection with the behlvior of the loops
in Figure 1.1. Finally, as shown in Figuqre 15 for su1ffjc*iently large values
of YM , the system once again exhibits a stabie behavior.

A similar behavior in the variation of ra2 with U, is seem to exist
for intermediate values of k (Figure 16). This figure shows the aerody-
namic damping to be initially stable at low incidence angle, unstable in
the approximate range cf 12 degrees < am < 22 degrees, and then stablle
once again. Thus, thern appears to be a "pocket" of instability surrounded
by stable regions at bota higher and lower incidence angles, and at lower
vacui of reduced frequency.

This isolated region of instability is graphically illustrated in Figures
17, 18, and 19. In these figures, the aerodynamic damping is represented
as a surface relatise to the k , %2 -plane for Mach numbers of iA =
0.2, 0.3, and 0.1h. These aerodynamic damping surfaces are, presented in
both an isometric view and a near plar-form view in each figure. The super-
imposed rectangular grid lines on each surf'ace represent values
of either k or uM, , arid the dark-colore reg2ion lying below the k

0w -plane is a region of negative aerodynamlic dus-log anc hence, repre-
sents a potentially unstable aerorly,omic condition.

CONVER(SION OF REFERENCE 1 DATA

A number of years ago, an extensive experimental program was carried out
ais. repo)_rLed 1 J Pi i raefene a J to det1ltie tii -j. I li iJit U an.ý moment
coefficient on a 12% thick airfoil oscillating in both pitch and transla-
tion over a wide range of incidence angles. This work wa-. limited in some
respects by the restriction to low free-stream velocities and by The fact
that the pivot axis for pitching motions was located at the 37% chord sta-
tion ( a - 0.26). C however, the ty-pe of a-irfoil emrloyed in the tests
and th,: range of parameters ovw.r wlich ,xl] <rjrnental data were obtained make
the Iei arouse - sult"si jotoxtially quit<e useful in the I-resent analysis.
The remaiFnder of this section is -dewvted to. the transformation necessary
to convert ther.-e coef'icicents to e forx' whilh can be compared directly with
the results of the pro'sent -nalys

Theý- experimcantal d'O,. tablated in RCe'erence I are presented in the form of
an nmpj inUde au i p•, se angle for u;ch cnmpor,-.at. Specifi cally, the quan-
tities involved arO ('I, #LT , CLP i 4 UP 5 CMT * (PMT CMP I ,MP
where C represents the ampitcude of the coeffictient; 5 , the phase
an,gle by which the force or moment leads the motion; and the subscripts
LT , .P , ,I * MP , the lift due to translation, lift due to pitch,



moment due to translation, and moment due to pitch, rcspectively. It will
be shown below that all four coefficients and their phase angles are needed
to convert the Reference I data to a form comparable Vith the data p'o.-
sented in this volume. This is because the reslt.j- given in Reference 2.

were obtained for a 37% chord pivot axis, wherc,,as the prcsent repor' is
concerned with a pivot axis at the 25% chord Aafstti-on. Other majior 1if-
ferences between the Refere;nce 1 and the present results involve the def-

initions of the coeffieients and the fact th,:-t the measured. urnsteady coef--
ficients of Reference 1 were not lnti.Tpendent of tne amplitudes of oscilla--
tion. These differences w•il be resolved :in the course of the analysis.

In Peference 1 the lift and moment coefficients are defined by the cqiqu-
tions

azid

2PU2b2 = t

where, for example,

CLT* CLT(COSOLT t i sinkflT) (50)

and where the superscript H in Eqs. (48) and (49) is used to denote the
coefficient form employed in Reference 1. Eq. (48) and (49) may be solved
for the unsteady lift and moment as

Lu z 2PU2 b(CLT+CL:) (51)

Mu 2,Pu 2 b2(cM;+CM) (5C)

Note that neither the dimensionless bending deflrctfion amplitude Ezh/b nor
the twist deflectiorn E appears on the right side of these equations.

As stated earlier, this is because the Peference i coefficients are not in-
dependent of the amplitudes of motion. The actual values of the parameters
used in Reference 1 will be substituted into these equations later in the

development.
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The unsteady lift and moment amplituae4i associated with both tra;islation
and pitch abouL a pivot axis at O may be takeni from References 8 or 13.

L 2 Jw h ++ L0-(--4-0 }(53)

[M,- .+.0 I + +o)L1aM1' 2~1

(5L)

A combination of Eqr.. (5i) "And (5-3) and Eq's. (52) and (5),) yields the

Srelationships

+ r7k2  
55)

[Mh-(- +O)Lhh + Ma -(• +O)(La +Mh)+I(, -+)2 Lh+ o

7--( MT + (56 )

After separating the motions into single-degree-of-freedom oscillations in

bending and torsion, Eqs. (55) and (56) may be recast in an equivalent form

as four equations, as follows:

L (57)-2 2

Lhh 7rk2 L (59)

[Ma-( + 0)(La + Mh) + (+ +)2 Lh] a C CI•I: (CIO)

I



These, in turn, may be solved for the standard coefficients Lh, L ,
Mh MO

2C cL

L -- --=-- (c,)

V2 Lh "n"

k2 2( r - C I + (Ca:•

kMh + ((3)

32 0 (64)

The quantities on the right side of Eqs. (61) through (64) represent the
experimental values obtained in Reference 3 Numerical values must be in-
serted for the pivot axis location, a - 0.26, and for the dimensionless
displacements, h=h/b = 0.9/5.808 = 0.155, and d = 6.087r/180 = 0.106.
The quantities found or, the left sides of these equations will also repre-
sent the experimental values; however, these quantities will be independent
of pivot axis location, at least according to the linear theory employed
here.

To use the Reference 1 data in the present analysis, the imaginary part of
Eq. (64) must be substituted into Eq. (44). After inserting the value
o = - 0.26, the result for the two-dimensional aerodynamic damping is

= -- [cMpsin#mP + O.240LPS14*LJ-a2

SCM[, sin0.MT + 0. 2 4 CLT sin(PLT] (65)

This cquation was used to evaluate ;--a2 from the Reference 1 coef-
ficients after inserting the values h = 0.155 and a = 0.106.
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C0,2TAARIS0N OF PRESV.T R1-nULTS WTTH PEFF2ENCE 1 DATA

Before these results could be applied in tl-h present stability analysis,
some basis of comparison had to be established for the present data and the
Reference 1 data, as described bElow. Three configurations were tested in
Reference I -- the blunt wing, the intermediate wing, and the sharp w:'.g--
in which the profiler- differed only in the vicinity of the leading edge.
Since there is a sliýhlit differtence in both the steady-state (i.e., stalling
angle) and nonsteady behavior of these configurations, the data for each
are presented separately in Reference 1 as functions of mean incidence
angle, CM , and reiuced frequency, k . It was decided to correlate
these results with ore another arid with the present data by means of a
stall angle parameter,

O"T a GM/aS (66)

The angle a. is the stalling angle for the particular configuration under
consideration, This varied from configuration to configuration in Reference
1, in the present casie it was taken to be 0s$ = 13 degrees, which is the
incidence angle- at which the slope of the steady-state normal force curve
becomes horizontal in Figure 8. This choict, of a cr:rrelation parameter
appuarea to h-e a logical one in view of the strong effect the stall point
has on unst•ady resp.onse. It can be seen from Figure 16, for example, that
the aerodyr,,. Ic duani ng is nearly constant below the stalling angle and
begins to vary only when the combination of mean incidence angle and ampli-
tude of mhotioh, cuse the airfoil to be affected by stalling effects.

Au in the case of the prescnt results, the Reference I data were bivariantly
dependent on both Q and k ; a graphical iteration scheme, simiL'r to the
method used on the present data, was employed to smooth these data. Equa-
tion (65) was then used to calculate the two-dimensional aerodynamic damping
as a function, thir time, of stall. angle parameter, @'T , and reduced fre-
quency, k . These results are tabulated in Table VII.

A comparison of the two-dimensional aerodynamic damping results from the
present data and from the Reference I data is presented in Figures 20 and
21. it is seen from these figures that the agreement between the two sets
of data is quite good at -ou valRl.s uf k , is excellent at intermediate
values of k , and is qualitatively good at the highest value of k . Of
particular significance is the fact that both sets of date predict. essen-
tially the same two-dimensional, stability boundary at moderate values of
k in the range 0.2 C k 7i 0.3 and, in addition, predict the same damping
level as a fu-nction of 0T Thus, it is seen that the pivot axis trans-
formation procedure is valid, and the use of the stall angle parameter as
the basis for correlation is aLso valid, at least within the variable ranges
considered herein.



One further comparison of the two-dimensional aerodynamic damping parameter
was -ade for the r.sults of the present study and those of Reference 14.
The aerodynamic damping curve for 25% chord pivot and U/bw= 3.0 (i.e.,
for K = 0.333) was taken from Figure 85 of Reference 14 (which, in turn,
was obtained from a cross plot of previous results preserted in Reference
12) and was compared with the curve for M = 0.2, kI 0.3375 from Figure
16 of this volume. A direct comparison was impossible to make since the
airfoil section of Reference 12 was a thin (less than 0.04 thickness ratio)
NACA 6 5-series profile which undoubtedly did not have the same stalling
characteristics as the NACA 0012 airfoil used herein. Unfortunately, the
static stall angle of this 65-series airfoil was not provided in Reference
12. Hence, to provide some sort of comparison of the Reference 14 results
and the present results, it was necessary to improvise a basis of correla-
tion. To this end, it was decided to scale the abscissa in Figure 14 of
Reference 14 to force a coincidence of the first zero crossing of "`!a 2
for the 25% chord pivot curve with the first zero crossing of the curve in
Figure 16. This comparison is presented in Figure 22, in which the abscissa
has been converted to stall angle parameter form.

It is obvious that this comparison can have only qualitative value, in
view of the liberties taken with the scale of the abscissa values from
Reference l4. Nevertheless, the comparison shows a general agreement
between the two results, including the extent of the negative damping
region and the recovery at higher values of a,. , despite the large dif-
ferences in the airfoil configurations and the test procedures employed.
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ROTOR STAbILITY CALCULATIONS

DESCRTPTION OF TYPICAL ROTOR CONFIGURATION

The Sikorsky S-61F rotor was chosen for the application of the stability
analysis described in previous sections of this report. The rotor blade

had a total chord of 1.521 feet and extended from a root radius of ro =

8.438 feet to a tip radius of rT ý 31.0 feet. Performance data for this

configuration were calculated for four flight conditions: forward speed of

165 knots and 10,660 pounds gross weight, 165 knots and 12,460 pounds, 149
knots and 18,200 pounds, and 210 knots and 16,280 pounds. The tabulated
data provided for each condition consisted of radial and azimuthal varia-
tions in incidence angle and Mach number.

It was assumed that the rotor blade was capable -of responding to an in

nitesimal disturbance in its fundamental tor;sional, mode at every azimruth.
position, and the stability analysis was eiployed to determnine the dampin6

of this incipient vibration. The fundamental torsional frequency of the
S-61F rotor blade is f = 27.3 cps or W 171.4 rad/sec; this quantity,
together with the semichord dimension b = 0.76 feet, was used in Eq. (7)
to calculate the numerator of the reduced frequency parameter, k . At

each azimuthal station selected for the analysis, the radial variation in
Mach number was converted to a comparable radial variation in velocity by
multiplying each value by the assumed local speed of sound, 1100 ft/sec.

This was used to calculate the radial variation in k which, together with

the given radial variation in a. , was used to interpolate the appropriate
aerodynamic damping table for the required value of =a2 at each radial

station. (Polar plots of typical 1 - and a - distributions over the
rotor disc are shown in Figure 23.) The reference velocity, UT , was

chosen to be the tip value of the velocity at the zero azimuth station,

4, 0°, and it was used to compute the velocity ratio, I(D) , defined by

Eq. (98) in Appendix II. The computed torsional mode shape function, f•U7)

was calculated for the S-61F helicopter rotor blade and is presented in Table
VIII. With the introduction of these quantities into Eq. (41), the span-

wise integral was calculated and the three-dimensional damping parameter,
=03 (O) , was obtained for each value of azimuth angle.

STABILITY ANALYSTS

Three different procedures were employed in extracting information from the
tables. In the first case, only the M = 0.2 table was used and the actual

Mach number was used only to calculate U . If the value of either k
or a exceeded the tabulated value in Table IV in a corner value of the
damping parameter was used; i.e., the oversize parameter was artifically

returned to the maxim=m tabulated value, and the interpolation with respect
to the other parameter was performed.

A second case involved data for all three Mach numbers from Tables IV
through VI. Here the actual Mach number was used to interpolate between
tables as well as to provide values of th velocity, U Corner values

were also taken here; however, because of the truncation of the tables for

the higher Mach numbers, this procedure led to somewhat unsatisfactcry
compromises.

•LI



The third case utilized the Reference 1 data presented in Table VII. Once
again, the Mach number was used to calculate U only, as in the first,
case; and, once again, corner values were employed.

Stability analyses for the four flight conditions nontioned earlier were
carried out by using each of these three options. The results are pre-
sented in Figures 24 and 25, in which the variation of the three-dimensional
aerodynamic damping paramaetcr, = a5 , with azimuth angle, p , is pre-
sented. In each figure the abscissa has been extended by 10 degrees beyond
a full cycle to show more clearly the behavior of the damping in the region
surrounding 4 = 0 degrees.

In Figure 24, for a flight speed of 165 knots and moderate gross weights,
all three sets of' data are in good agreement and predict a stable operation
over all values of 41 . The results from the present data arc somewhat
more conservative than the Reference 1 results for the advfAncing blade
region ( 00 S 4, 180°0 ), and all three inputs are in very close agreement
over the retreating blade region (1800 `- 4/ 5 3600). As expected, the
damping is greater in magnitude for 00 5 kk ! 1800 than it is for
1800 <_ + f 360. This is because the dynamic pressure attains a maximum
value in this region; hence, the square of the velocity ratio, which weights
the integrand in Eq. (h4) will also attain a maximum value.

In the upper portion of Figure 25 the flight speed has been reduced slight-
ly, but the gross weight has experienced a significant increase, relative
to the previous two figures. Once again, the results of the three damping-
table options are in generally good agreement; and, once again, the Ref-
erence 1 data yield less conservative results than the present data in the
range 0o < 4 - 1800. It is seen that in the region of the retreating
blade, the system damping decreases to very small values, which implies
reduced flutter margin for the retreating blade.

Finally, in the lower portion of Figure 25, both flight speed and gross
weight are considerably increased relative to the previous three cases. As
shown in Figure 23, an extensive region of the rotor disc is simultaneously
operating at large values of k and at incidence angles exceeding the
steady-state stall angle ( Os = 13 degrees). As a result, both the present
data for M = 0.2 only and the Reference I data predict a region of lurge
negative damping over the approximate range 3400 5 4/ < 3660. This be-
havior will be considered in detail in a later section. (Note that the
present data for M = 0.2 only also predict a shallow region of negative
damping over the approximate range 2330 <_ 4' < 2510. This, too, will be
studied in more detail later.) First, it should be ngoted that although the
present data taken from all Mach numbers do not agree with the other two
sources in predicting the instability for the retreating blade, they do agree
elsewhere for the advancing blade. This disagreement is caused in part by
the method adopted in the computer program in choosing the corner values.
The corner values used in the case of free interpolation among Mach numbers
are determined by the tabular value of M nearest to the actual local value
of M. It is seen from Figures 18 and 19 that available damping information
is truncated for both a and k as M is increased. Hence, although k
and a may have large values on the retreating blade, if the Mach number
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is hig,,hrnough, t.-. c-n..r vajue imposcd by the interpoiation scheme may
yied a value of the, damping which is considerably removed from the actual
damping for the Liven conditions. It is felt that this compromise limits
the usefulness cif tl.v free Mach number interpolation scheme; and the re-
nainder of the resul ts coQN'idered Iieerii will be restricted to the use of
the present data for ! = 0.2 oniy, with occasional reference to the use of
the ]-,Refeence 1 dat'.

The actual eff'ect fi tuL'e potuntially unstable regi.ns on the stall flut-
ter respon'se of the rotor is p-,robabLy rot too serious for the few cases
considered so far in jl, s rpyert. Phi s is because I h. torsional vibration
frequency of 27.3 ci-a corrcsponds to an 8-cycle-j er-revolution torsional
motion; hence, each complete cycle will extend over 15 degrees of azimuth.
The largest of the Ký'o unstablu regions predicted ty the use of the present
data for M = 0.2 extends for only 25 aegrees o! azimuth; therefore it is
inc'apable of exciting more than a half cycle of torcional response. There-
after, the aerodynamic damping returns to a large, positive value, which is
sufficient to damp out the motion.

COMPAPISON WITH RESULTS OF PE.EIPEN'CE 2

After the work reported y-erti , we: -.2. under way, it was found that a
parallel study had been carried out, Reference h, i which both an oscill-
atory limit-cycle experiment was conducted and a stability analysis based
on available aerodynamiiic data was carried out. The significant result of
Feference 2 is the fact that a reEion of instability can exist, for the
retreating blade. This is shown in Figure 13 oa Reference 2 and it is
interestirng to note that the dnmjding variation with 4 rertrayed in this
figure first increases with y, for th11 advancing blade and rev he• a
maximum value at approximately U =0 degrees, after which it ..reases
to zero at approximately y = 225 degrees, which indicat- an instability
over the approximate range 22o50 < q tc:. is bears a cry strong re-
semblance to the results shown in the lower portion of F i.n't 3 of the
present volume, although there are certain significant diffe .Ices between
the two results, particularly in the region of the retreati'Ig blade.
Specifically, the 'ýeet renl•; . i ca- twt harts',unstab.', r Gons
separated by a stable region, while the Reference 2 result prt icts a
rather broad, continuous region of instability. (Note that the result
based on Reference I data in Figure 25 ajso agrees closely with the result
from the present data; the deer instability over the range 34 0 '< 4 K_

3660 is matched almost exactly,and the.re is a tenuency toward instability I
in the vicinity of 4/ = 240 degrees.)

The general agreement between the rresent results and tho. e of Reference 2
is very encouraging in view of the faLu tliat, altnough these were parallel
studies, they were carried out ihdependently of one another and utilized
distinctly different sets of input data, tnJLIIz" utuc .erforsiance charac-
teristics and for unsteady aerodya•imc damping data.

The differences in input data lead directly to the differences in the sta-
bility results on the retreating bla-e. First, the damping data used in
Reference 2 were synthesized Pron eas.2ier results in Reference 4 , 12, and



15. Although these data were corrected 1c1 Static stalling angles and
rotational axis location, the bansic profile shapes were undoubtedly d'f-
ferent from the NACA 0012 prof Jc used herrein and could conceivably lead to
differences in the coefficient valu,,s. In particular, the first two-dinen-
sional damping carve to become negative in Figure V of Reference 2 is that
for a 8 degrees; whereas in the present study, the first to become neg-
ative is that for a = 13 degrees, as seen in either Figure 14 or in Table
IV. These differences in damping coefficient behavior are certainly re-
flected in the tnree-dimensional damping response differences noted above.

A second important difference between the two results lies in the rotor
loading characteristics considered in each case. In Reference 2, the max-
imum blade incidence angle is 0 2 16 degrees on the retreating blade,
which yields almos.t the maximml possible value of netgative aerodynamic
damping. in contrast to this, the maximum rotor incidence angle for the
present case is a = )10 degrees on the retreating blade (see Figure 23)
which is considerably beyond the point of maximum negative damping and, in
fact, is also co, ide--ably beyond the point where the two-dimensional darmp-
ing becomes positjve- once again. Thus, the double instability predicted in
".'Figure 25 is explained quite simply by a careful study of Figure 23. In
particular, Figure 23 indicates that an initial region of instability may

.'ountered in the third quadrant as the incidence angle increases
thruuj;< the negative damping regime, followed by a stable regicn as the
positive damping regime is penetrated at high incidence angles. A second
region of instability may be encountered near the interface of the fourth
and first quadrants, as the incidence angle decreases once agiin through
the negative damping regime.

STABILITY IMPLICATIONS OF LOADING VARIATIONS

The observat'ons of both the similarities and differences between the pres-
ent work and the results of Reference 2 led rather naturally to the question
of rotor loading variations and to what their effect oi rotor stability
might be. L. cifically, it was decided to reduce the effective loading of
the maximum -aa condition of the s-g6F to determine whether or not the
system would experience the same extended region of instability as that
described in Reference 2. Rather thaun employing an exact rotor pertormance
calculation for each new loading condition desired, it was decided instead
to multiply the entire incidence angle distribution over the rotor by a
constant factor. In other words, a factor of 0.5 might be applied to the
incidence angle distribution over the rotor disc, whereupon all incidence
angles would be halved before the table search for damping values would be
employed. No changes were made in the k-distribution. Although this pro-
cedure neglected the effect of loading changes on rotor inflow, it was felt
that any error incurrrC would be of second order in relation to the ob-
served changes in stability characteisuieb.

The values of the incidence angle multiplier chosen for this study were
0.9, 0.8, 0.7, 0.667, 0.5 and 0.375. The results obtained with these mul-

tipliers are presented in Figure 26. it is clear, from the bottom portion
of' Figure 26 that the incidence angle reduction uroduced by the 0.8 and 0.9
multipliers was insufficient to remove the stable region lying between Lhe



unstable extremes, although the two unstable regions tended to move toward
one another. Furthermore, thie azimuthal extent of' each unstable region in-
creased with decreasing multiplier level.

In the center portion, the 0.667 and 0.7 multipliers both yielded contin-
uously unstable regjons. In both of these cases, it appears that the mul-
tiplier caused a sufficient reduction in 0 to prevent the incidence angle
from exceeding the uppter limit of the unstable region. Although the ini-
tial and final azimuth angles for instability are somewhat less than they
were for the original data, the total extent ot' the unstable region is con-
siderably greater for the 0.7 multiplier than fuor the original data. Spe-
cifically, it encompasses 95 degrees of azimuth, for an 8-cycle-per-
revolution torsional motion, this amounts to sl,ghtly more than two full
cycles of motion which can be excited by this unstable region. This be-
havior is now quite consistent with the result given in Reference 2.

Finally, in the top portion of Figure 26, the multipiliers 0.5 and 0.375 are
small enough to reduce the incidence angle to levels below the unstable
limit. In fact, use of the 0.375 multiplier yields a near sinusoidal re-
sponse, characteristic of potential flow behavior. No stall flutter would
be possible with these multipliers.

A further clarification of these stability characteristics is afforded by
Figure 27 in which the k - a trajectory for one cycle of motion for each
of three multiplier values has been superimposed on the top view of the
aerodynamic damping surface for M = 0.2 only. Tnoi figure clearly shows
that, in the case of the original data, the trajectory passes completely
through the unstable region twice and emerges into the stable regions on
either side of it each time. This accounts for the double region of in-
stability for this case. It is also seen that the trajectory for a mul-
tiplier of 0.7 remains within the unstable region over a substantial por-
tion of each cycle, which produces the extensive region of instability.
Finally, tbh trajectory for a multiplier of 0.5 is seen to miss the un-
stable region completely.



RESULTS

With regard to the two-dirlensional darmur ing parameter in pitch for the NACA
0012 airfllthr, followi nr results were obtained:

1. The measured values of the two--diiensi onae aI t dvnmnic dwrpnreg pal-
ar2 re in good agreemnitt with potentjal flow theory for

low mean incidence angl.es, aM m1 90 and del .. t from the thleory for
0 M ->12°.

2. At low incidence anglee, •o2 increases linearly with reduced
frequency parameter, k .

3. At high incidence angles, 4a2 tially increases with k
then decreases t: a negati-ve level (smplying instalhli ity) , Und finally
increases again.

4. The Reference 1 and the 1prrosent data art- iný geverally gso& ag: ement
over a substantial range of both ý and aý. Both sets of data
predict essentially the same two-dimensiional sxability boundary at
moderate values of k Othei results for nuch different profile
shapes are in gcod qualitative agreement with the present data.

With regard to the three-dimeniAonal i0amPnig in pitch and the attendant
stability of an S-61F helicopter rotor blade, the following results were
obtLa il ed

5. At. low blade loading and flight -1 'ed, the ra-tor bl,.ade i stable Uvdr
the entire disc. The dumnping in p1iti. is greater for the advancing
blade than for toe retreating blade.

6. At large blade. loading and flightL scneed, tL,: rotor blade is stil
stable over the advancing portion but tend: toward i nsetbility over
the retreating portion of the rotor disc.

7. In the case of the largest loading and flight .peed conn'idlered thus
far, the predicted negaLive damying regio.n f'or the retreat-'ing blade
is confined to two small pocketo , caich of' which extc.wJ:3 ov,:r an in-
sufficient azimuth range to ey ti!e mroreý than one-half cycle of tor-
Si oral motion,

8. Use of the i{eference I data yi] ci:s 2os'] y la-rger 'tlade dir'ipng, for
thf-- ad,4a:ing b ut iloQ,•icc.r, gooU agreerme.-t with the present duta
f'or ti: ,-':treat I ig ]i a ,''v i;,.. tne car>,e of ri. treutinrg Lhide i nsta-
bili"y

9. If h. .oadnrig in reuoced (wi tj, ul, chungi rag ioJ'.ow) , a conu teco can Y
be r-eached wherei two luIll cycles of torrA onel notion canL be e.xcite-s
by th,.' negative dr'1u.Tyjng Ot' the retreatiihg blade,.



10. The resuits of the present stability analysis are in good qualitative
agreement with the results of Reference 2.

11. The available two-dimenslonal data for M = 0.3 are iuadequate for use
iln the stability analysis. The data for M = 0.2 are sufficient, but
they ar•'e liuited to the low-velocity incompressible flow regime.

I
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TABLE I. ORIGINAL TWO-DIf-ITSIONAL AERODYNAIC

DAMPING DATA, FOR M = 0.2
02 M

f(cps)= 0.5 1.0 2.0 4.0 8.0 12.0 16.0
k o.0140 0.0281 0.0562 0.1125 0.2250 0.3375 0.4500

a:m° Pitching %niplitude, 5 = 40

0 0.111 0.222 0.386 0.536
30.ill. 0.261 0.386 0.536
6 0.0)2 0.235 0.373 0.523
9 0.092 0.261 0.392 o.516

12 -0.020 -0.052 -0. 020 0.072 0-307 o.451 O.431
15 -0.020 -0.183 -0.235 -0.346 -. o26/-.o65 .268/.046
1.8 0.536 -0.686 0.360 .785/.569
21
24
27 0.477 0o157 0.732 1.124/1. 431
30 0.307 0.065 .523/.503 1.131/i.o46
32 -0.118 -0.190 .602/.915 -. 301/-. 810

aM° Pitching Amplitude, d = 60

0 0.131 0.259 0.485 0.636
3 .177/.119 0.264 0.447 o.619
6 0.137 0,279 0.462 o.651
9 0.160 0-,14 n. 482 o -(2

12 -0,012 0 017 0.029 -0.044 0.058 0.392 0.6o4
15 -0.081 -0.078 0.099 0.055 -0.177 .038/.195 0.351.

18 -0.i1( 0.110 0.015 0.099 -0.360 -0.674 -0.293
21 o.4o4 0.4'9 -0.346 -0.572 -0.468
24 0. 029 0.020 0.058 0. 471 0.911 o. 813 0.279
27 a.0o4 0.369 0.270 0.503 0.709 1.173
30 0.232 .148/.256 0.569 1,156
32 O.116 o.465 0.691 0.918

37'
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f(cps) =0, 1.0 2.0 4.0 8.0 1). 0 16.0
k = 0.014-0 oCN281 0.05: 0.1125 o.2.50 0.3375 0. 4500

aM 0  PitchiliCi, 'rplitudc, Z g°

0 0.127 0.266 o. 46'2 0.619
3 0.139 0.286 0.1444
6 0.139 0.296 0.458
9 0.152 0.310 0.477

12 0.020 0.059 0.292 -0.062 -0.093 0.248 0.536
15 0.047 0.054 0.015 0.052 -0.221 -0.098 0.092
18 0.047 0.170 0.237 0.190 -0.258 -o.6o6 -. 30-
21 o.066 0.137 0.294 0.369 -0.183 -o.660 -o.804
24 0.051 o.141 0.399 0.430 0.417 -0.186 -0.784
27 0.111 -0.007 0.330 0.150 0.595 0,770 1.028
30 0.085 0.093 0.508 0.023 o.458 0.585 1.085
32 0.028 0.036 -0.103 o.145 0.469 0.802

-1



TABLE II ORIGINAL WIO-DIýTNSIONAL AERODYfNAMIC

DPAMPING DATA, • P F0 M 0.3

f(cps)= 0.5 1.0 2.0 4.o 8.0 12.0 16.0
0.0094 0.0187 0.0375 0.0750 0.150 0.225 0.300

ama Pitching Aimplitudc, Q = 40

0 O.065 0.176 0.281 0.392
3 0.085 0.183 0.3314 O.366
6 0.098 0.209 0.314 0.399
9 0.098 0. 222 0. 340 o. 444

12 0.059 -0.052 0.013 0.092 -0.150 -0.013 -0.477
15 0.007 0.177 0.320 0.085 o.288 0.026 -1.373/-.889
1.8 0.059 O.601 0.726 .196/-.281
21 1.431 0.902 1.712/.758 .431/.7o6
24 o.863 o. 614 0.595 1.373/1.575
27 0.523 1.229/1-.503 1.203/1.-il4

aM° Pitching Amplitude, a 6 6°

0 0.096 0.1Tf 0.285 0.383
3 0.087 0. 168 0.279 0.398
6 0.099 o. 186 0.282 o.412
9 0.038 o.166 0.311 0.430

0.070 0.215 0.017 -0.073 -0.171
15 -0.058 0.157 0.134 0.322 0.IS0 -0.523 -0.250
18 0.009• o. 022 0.261 0.360 0. 317 -0. ii0 0.099
21 o.6ol 0.424 -0.032 o.613
24 0.221 0.749 o.651
27 0.273 0.468 0.511 o.186
30 0.192 0.325 0.314 0.581
32 0.131 0.224

L___



TAFLE I T - CTI ILUDEP

f(cps) 0.5 1.0 2.0 48.0 12.0 16.0

k = 0.00)4 0.018 0.037" 0.0(50 0.150 0.225 0.300

Q2M0  Pitching f.mp) 'tutl, 80

0 C.Obj 0.193 0.312 0.407
3 0.085 o.186 0.314
6 0.093 0.214 0.309
9 0.131 0.021 0.227

12 -0.013 -0.087 0.095 -0.154 0.240 -0.04) 0.291
15 -0.025 -0.103 -0.134 0.294 .358/-173 0.322 0.103
18 -0.062 -0.003 0.172 0. 324 0.387 -. 157/-. 229 .002/.060
21 0.078 0.047 0.245 0.358 o.485 o.163 0.216
24 0.221 -0.526 -0.371
27 -o0,54 -0.002 -0.198 0.340 o. 44_9 o.544
30 -0.075 -0.162 -0.062 0.201 0.216 0.567

• I II I



TABLE I]I. ORIGINAL TWO-DW4SIONAL AERO1DYNAMIC
DA1WTING DATA =o 2, F0OR M = 0.4

f(cPs)= 0.5 1.0 2.0 4.0 8.0 12.0 16.o
k = 0.007 O.O14 0.028 0.0562 0.1125 o.1688 0.225

am Pitching Amp itude, i = 1o

0 0.072 0.124 0.222 0.307
3 0.072 o.144 0.216 0.314

0.085 0.163 0.242 0.320
9 o.144 .150/.137 0.281 .373/.281

12 0.013 0.026 0.098 0.183 0.412 0.484 -. 170/.i1
15 0.059 -0.072 o.196 0.039 o.418 0.543 0.569
18 0.320 0.575 1.013 0.771
21 0.373 0.131 O.765 1.020
24 0.183 0.523 1.020

am° Pitching Amplitude, d = 60

0 o.064 0.122 0.206 0.288
3 0.o61 0.139 0.212 0.296
6 0.093 o.186 0.267 0.369
9 0. 090 01714 0.183 .163/.232

12 0.006 0.020 0.006 0.134 0.116 0.163 0.102
15 0.015 0.023 0.110 0.078 0.038 0.067
18 0.055 -0.023 0.041 0.151 0.3892 0.177 0.090
21 o.343 0.378 0.392 0. ý05
24 0.035 0.256

12MO Pitching Amplitude, d = 8°

0 0.o60 0.136 0.214 0.320
o.o065 o.149 0.239

6 0.098 0.126 o.147
90.113 0.142 0.1)41
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STALL FLUTTER FLIGHT CONDITION BOUNDARIb

PURPOSES AND METHODS

Upon completion of the stall flutter analysis described previously, it was
recognized that stall flutter stability analyses for a more comprehensive
set of rotor loading conditions were needed to provide some definition of
those flight conditions which would be particularly troublesome from the
standpoint of stall flutter.

The S-61 :otor was chosen rnz a medlum for thoe:e additional studies, and
the Normal Mode Transient Analysis wic usud to calculate required input
data for the stability analysis. lIwtor rutatl:2:] tip speed was kept at
66D ft/sec. Rotor shaft angle war c:is:'sci• t]y zero, and uniform inflow
was assumed. It should be noted that cleuLtlc ilade deflections were in-
cluded in the analyses. Rotor fanjjIije, wan trimmed within 2 degrees for
all cases, while collective pitch wa!; chanwed to produce variations in
rotor lift and torque. Advance reation of .537, .473, .422, .381, .317, and
.256 were chosen, corresponding toj forward speeds of 210, 185, 165, 149,
124, and 100 knots respectively. At each advance ratio, from five to eight
collective pitch settings were found which caused the rotor blade to be
torsionally unstable for part of the azimuth, in addition to one or two
which caused it to be completely stable. The Normal Mode Transient anal-
ysis provided azimuthal and radial variations in angle of the attack and
Mach number for input to the stall flutter stability analysis described
earlier. These data included elastic blade deformations due to inertial
and quasi-steady aerodynamic forces, including stall and compressibility
effects. The stability analysis program provided data such as that shown
in Figures 24 through 26. The Sikorsky Aircraft test data for Mach number
M = 0.2 were used, since these data were the most comprehensive and appli-
cable. With reference again to Figure 25 as an example, the total number of
degrees of a2,imuth for which negative three-dimensional aerodynamic damping
existed was determined and designated *Sk "This was used as a parameter
for measuring the intensity of stall flutter. With the present analysis,
this would seem to be the most suitable parnmeter for judging the severity
of stall flutter.

RESULTS

The total unstable stall flutter azimuth range PsF was plotted against
rotor lift coefficient solidity ratio CL/a for the advance ratios .537,
.473, and .422. These plots are shown in Figure 28. Note that these
graphs define the parameter yPsF as a single-valued function of CL/a
for each advance ratio. Unfortunately, similar relationships were not
generally obtained for the lower three advance ratios. It was found in-
stead that a range of values of qS' were possible for a given value of
CL/a . For this reason, plots of the form shown in Figure 28 could not
be provided for the advance -atios .381, .317 and .256. However, the re-
sults shown in Figure 28 were cross-plotted as shown in Figure 29, to pro-
duce boundaries on a CLIa versus /i plane. as originally intended.
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In order to produce flight condition boundaries which would include the
lower advance ratios, some other rotor performance parameter was needed,
and the rotor torque coefficient-solidity ratio was chosen for this pur-
pose. Figure 30 was therefore prepared from the previously calculated
data. The corresponding cross plot is shown in Figure 31.

DISCUSS[ION

One of the basic aspects of flutter on helicopter blades in forward flight
is its dependence on quantities which chano-e with azimuth angle. This is
particularly true of stall flutter, which tends to occur on the retreating
blade side of the rotor disc, eince angles of attack beyond stall occur
there. Thus, as would be expected, the stall flutter analysis predicts a
limited azimuthal range of ipstability. It would be expected in practice
that blade torsional vibrations would increase while in the unstable re-
gion and decrease or damp out while in the stable azimuthal region. There-
fore,it is obvious to expect that the torsional amplitude reached and the
number of cycles of significant torsional amplitudes would grow with the
azimuthal range of instability. This range of instability is conveniently
obtained from the present stall flutter analysis. More elaborate param-
eters might be proposed for use with the data in their present form, such
as an integral of work done on the blade by the aerodynamic torsional
couples as the blade vibrates continuously at some nominal amplitude and
traverses the region or regions of instability. In view of the limited
range of data available, the selection of the extent of the total azimuthal
range of instability as a parameter is a 1.xropriate.

The curves on Figure 29 define values of rotor lift coefficient for which
the stability analysis predicts various amounts of unstable azimuth range.
At a given advance ratio, increasing rotor lift from the stable region
first causes a small region of instability over a range of azimuth angles
on the retreating blade. This area increases in extent with rotor lift,
until the blade angles of attack reach high enough values to enter another
area of stability. The region of instability then splits into two smaller
regions, which diminish in size and grow farther apgrt in auimuth as rotor
lift increases. These observations are illustrated by Figures 2h through
27 and in the corresponding earlier discussion. Note that the boundary
segments which are below the maximum value of q'sF at each advance ratio
on Figure 29 correspond generally to a continuous region of instability,
and will probably cause the highest torsional amplitudes.

It is of particular interest to compare Figure 29 with a chart of a similar
type appearing as Figure 12 in Reference 2. The slender region srF = 1000
on Figure 29 approxmates an extrapolation of the points plotted for the

full-scale H-21 test on Figure 12 of Reference 2.

The practical significance of the boundaries on Figure 29 will be discussed
next. Since the S-61 rotor torsional natural frequency and the expected
stall flutter frequency are about 8 cycles per revolution, each period of
torsional vibration at its normal tip speed is represented by about 45
degrees of azimuth. Some judgement is required in order to stipulate how
many cycles of instability are required to produce truublesome amounts o0

7 0



torsional vibrationl, Comparison with the above results of Reference 2
would Suggest that at luast two Cycles Of Insaii Y sF9

0

are required.

The largest values of' Y5F obtained at the lower three advance ratios

( = .381, .317, and .256) occurred at values of CL/o , which were

),ractically ci nciderit with the test values for the 11-21 rotor on Figure
12, ]Rcference 2, which was mentioned earlier. The values'• of ýPs! were
1200, 1300, and IL0' respectively. It was found, however, that %P51
could vary widely with little or no change in C1_/a because of heavy rotor
cstalling. Thus, the trimmed rotor could be operated at advance ratios and
lift coeffici(.nts close to those given above with very little stall flutter
instability. The occurrence of stall flutter was found to be more the re-
sult of extensive blade stalling than the result of attairmient of a partic-
ular value of rotor lift.

Since the occurrence of blade stall is accompanied by - rapid rise in blade
section drag, it was suspected that rotor torque would provide a more
definitive indication of conditions for stall flutter. This proved to be
the case, and Figures 30 and 31 show the resulting boundaries. It will be
noted that the lower boundaries occur at a fairly constant torque level as
advance ratio is varied.

The calculation of a few rotor loading cases for the untrimmed rotor and
for shaft angles other than zero showed that the stall flutter boundaries
will be moderately affected, although no particular trends could be de-
fined.

The radial and azimuthal distribution of angle of attack would, of course,
be somewhat different if n,ln niforn inflow were used in place of the
assumed uniform inflow. Usually, the inclusion of nonuniform inflow tends
to reduce angles of attack on the retreatingW blades; hence, the boundaries
presented would probably be shifted upward somewhat.
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CONCLUSIONS

1. The measured values of two-dimensional aerodynamic damping parameter
in pitch, Sa2 , are in good agreement with potential flow theory
for low mean incidence angles, am < 90, and depart from the theory
for a. > 120.

2. At high incidence angles, am - 120, the damping parmeter in pitch
decreases to negative or unstable levels; it then increases to positive
values again if the mean incidence angle is increased enough. This is
true unless the reduced frequency k is smaller than about .15.

3. The Reference 1 data and the present data are in generally good agree-
ment over a substantial range of both k and am . Both sets of
data predict essentially the same two-dimensional stability boundary
at moderate values of k

4. The available data corresponding to M = 0.2 are adequate for the
analysis of contemporary rotor systems. More extensive ranges of re-
duced frequency and angle of attack data are needed at other Mach
numbers.

5. The results of the stability analysis for the S-61 rotor are in good
agreement with those of Reference 2.

6. Use of the Reference 1 data yields slightly larger blade damping for
the advancing blade but produces good agreement with the present data
for the retreating blade, even when instability is present.

7. The rotor lift coefficient-solidity ratio is a suitable parameter for
definition of stall flutter boundaries at advance ratios of .42 and
above.

8. The rotor torque coefficient-solidity ratio is a suitable parameter
for definition of stall flutter boundaries for all advance ratios.
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RECOMMENDATIONS

1. The existing data described in this report are adequate for contem-
porary rotors and operating conditions. As rotorcraft forward speeds
increase, it is evident that a much larger range of data will be
needed, including data for a simulated reverse-flow region.

2. The analysis described in this report is based on the calculation of
torsional work for a hypothetical cycle of torsional vibration which
takes place at a number of discreet azimuth locations. On the actual
rotor, the azimuth angle and therefore the mean angle of attack and
relative velocity changes continuously during the torsional vibration
cycle. In future stall flutter analysis and testing, consideration
should be given to the time history of the large variations in relative
velocity and mean angle of attack that are actually taking place during
a cycle of torsional vibration.
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TWO DIMENSIONAL UNSTEADY MOMENT FORMULATION

In the following analysis, it is assumed that the two-dimensional airfoilI, section is executing a single-degree-of-freedom torsional motion about a
pivot axis at a . This motion is assumed to have a torsional amplitude,

, and a torsional frequency, w = 27rf . (As stated earlier in the main
body of this report, complex quantities will be denoted by an asterisk
superscript, and amplitudes of sinusoidal functions will be denoted as
barred quantities, such as .

The complex, unsteady, totkl twisting moment MT*OT experienced by the
airfoil about its pivot axis will consist of the sum of the steady mean
moment MM associated with the mean incidence angle am and the unsteady
moment M* associated with the torsional displacement relative to the
mean incidence angle a*

MTO: Mm+ Mu (67)

A convenient expression for the unsteady moment due to a single-degree-of-
freedom torsional motion about a pivot axis at a is given in References
8 and 13 as

MU: 7rpb - L+M)L+0 h(2(8

In Eq. (68), the quantities Lh , La , Mh , Ma are unsteady lift and
moment functions which may be taken from any convenient theoretical or
empirical source, and the unsteady torsional displacement has been written
in terms of the torsional amplitude as

* =: 'di06 (69)

The moment coefficient will be defined by the general equation

M
CM _I PU 2 (2b) 2  (70)

2

and after a bit of manipulation, Eq. (68) becomes

CU M.-(L.+Mh)(•" +a)+ Lh + a iwt (71)
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This formulation will be returned to later. Initially, though, the anal-

ysis will proceed in a more general fashion, beginning with the coefficient
form of Eq. (67),

CTOT : c + cMU (72)

and if it is assumed that the unsteady moment coefficient is a perir'dic
function, it may be written as

CM* = 60 e•

w C M U (73)

where the amplitude C, is still regarded as a complex quantity to
account for the phase shift between torsional displacement and moment re-
sponse. Thus, Eq. (72) becomes

CMTOT= CMM+ 6M t

and in terms of the notation of Eq. (71), the real and imaginary parts
are given by

CM = 2! 4MOR -(LaR+ MhR)(I + a) + LhR (I~ + a)2] Z,(5

It is convenient at this point to derive the expression which was used to
provide the unsteady theoretical moment loops shown in Figure 10. To do
this, the condition of 25% chord pivot will be imposed on Eqs. (74), (75)
and (76), whereupon the mean moment vanishes, Cmm =0 , as does the factor
1/2 + a= 0 . Then, substitution of Eqs. (75'/ and~ (76) into Eq. (74) and
expansion of the exponential factor yields the equation

CMT.OT k2k(MQR+ 'Mai) (cos wt + isin wi ) (77)



which has a real part given by

CMTOTR .- k2( MaR c sut - Mai sin wt )
2 (78)

The time variable in Eq. (78) may be eliminated by manipulating the ex-
pression for the total incidence angle, which consists of the sum of the
mean incidence angle, aM , and the torsional displacement relative to the

mean incidence angle, a* , or, by using Eq. (69),

@t

aTOT : aM+a*: aM+5e'w (79)

The real part of Eq. (79) is given by

aR = aM+aCOS Wt (80)

which may be solved for cos wt as

coswt = -R-M (81)

Use of the well-known trigonometric identity relating sin 2 
Cjit and cos2 wt

yields

si-wt = -- 2 -(,,R-QaM)2 (82)

and substitution of Eqs. (81) and (82) into Eq. (78) leads to the result

Tk2[M aR(aRj-am)±MaI a2a-(aR am)2 (83)

which is valid for an airfoil oscillating in pitch about its 25% chord.
For use elsewhere in this report in comparing theory with experiment, the
function Ma may be specialized to the case of an incompressible, poten-
tial flow past the airfoil (Reference 8)

Ma- 3 i8 k (34)



whereupon Eq. (83) reduces to the form

CMTOT, :r [ k (aQM)± - 2' 2 (aR-aM)] (85)

In this equation, the negative sign is associated with increasing QR
and the positive sign with decreasing aR



APPENDIX II
DERIVATION OF THREE-DIMENSIONAL DAMPING EQUATION

The equations necessary to determine the three-dimensional aerodynamic
damping vill now be derived. Use will be made of the formulation pre-
sented on page 210 of Reference 8, with the notation altered to conform
with present usage. As in Reference 8, the development begins with the
relations for the virtual work due to a torsional displacement,

W :Mu Cr) -r o fa(raMr. (86)

where

Mu2  - rT-ro (87)

is the unsteady moment per unit span and

f(r) af(r)dT (88)

is the spanwise twist amplitude distribution, aT is the twist amplitude
at some reference station (in the present case, the reference station is
at the blade tip), and fa(r) is the normalized mode shape distribution.
The subscript 2 has been appended to the unsteady two-dimensional moment
to distinguish it from the three-dimensional quantity which will be in-
troduced presently. The generalized force per unit span in torsion is
obtained by dividing the virtual work by the virtual displacement.

8W Mu2  f() (89)
=.T /

Hence, the generalized force over the entire span (i.e., the three-dimen-
sional unsteady moment) is obtained by integrating Eq. (89) over the span
of the rotor blade, or

SrT rf 0 *IrM
ro- aro f 2 a(dr (90)
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As in Eq. (69), the two- and three-dimensional moment coefficients are
defined by the formulas

Mu*--(r): tplr)u2(r)[2b r)2CMur

2 2 L 2

MU3  -PT UT ( 2 bT)2 CMU 3  (91)

where the subscript T denotes values taken at some reference station.
After Eqs. (91) are substituted into Eq. (90) and the equation is divided
through by the reference quantities, the result is given by

SPu2b CMu2 * fa (r r'(92)
U3  rT-ro fro UTU bT 2

The imaginary part of each side of the equation will now be taken, in
amplitude form, and use will also be made of the dimensionless spanwise
variable

77=r- rO(3
rT-ro (3

whereupon Eq. (92) becomes

CMU 31: f (PTu =b) C 1auf(77)Of)d?77  (94)

The two-dimensional moment coefficient amplitude function on the right-hand
side of Eq. (94) may now be replaced by Eq. (36); and after using Eqs. (39)
and (88) for p. and (77) , respectively, Eq. (94) becomes

( PU2b$ 2CMU 31 0Q~ Uo 2 a~~0 ~ (iý)dV7 (95)



As in Eq. (35), the three-dimensional aerodynamic damping in pitch will be

defined by the derivative form,

S.-' dmu31a 3 : ddT (96)

After the operation defined by Eq. (96) is applied to Eq. (95) the result
is

O-C3 :fOIP 2b ) 0-0 2 f a2 (7)) d7l (97)
•.• '• T2b2. -

In the most general case, Eq. (97) takes into account the possible span-
wise variations in the parameters p , U , and b . However, in the
present study, both the density and the semichord will be assumed to be
constant over the entire active span of the rotor blade, and only the
velocity will be considered to be a variable quantity. Thus, after de-
fining the spanwise velocity ratio by the formula

V (77) = UW7 )/UT (98)

the final form of the three-dimensional damping parameter will be

I ( 9
2

03 ~ 1, M) ~0 z7f 0 (77)d177(9-*a32(
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