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DEPARTMENT OF THE ARMY
U S ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS, VIRGINIA 23604

This contract was initiated to determine the aeroelastic stability
limits of articulated and unarticulated helicopter rotor systems at
high forward speeds. The four primary modes of aeroelastic instability
(classical flutter, stall flutter, torsional divergence, and flapping
or flatwisc bending instability) were investigated. The possibility

of a flap-lag instability suggested by Dr. Maurice I. Young of the
Vertol Division, The Boeing Company, was inves igated as a special case
of flapping instability.

The results are published as a five-volume set; the subject of each
volume is as follows:

Volume 1 Equations of Motion
Volume II Classical Flutter
Volume TII Stall Flutter
Volume IV Torsional Divergence
Yolume V Flapping Instability

These reports have been reviewed by the U, S. Army Aviation Materiel
Laborateries. These repoits, which are published for the exchange of
information and the stimulation of ideas, are considered to be tech-
nically sound with regard to technical approach, results, conclusions,
and amended parameter ranges for accurate usage.
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SUMMARY

The purposes of this regearch program were to extend or develop analytical
metheds for determining rotor Lisde aeroclastic stability limits and to
rerform ciability calculations over a range of design and operating vari-
atles for articulated and nonarticulated configurations. The uscfulness
of simpler analytical methiods was investigated Ly cumparing resulis with
operating boundaries frum the more elsborate analysis.

The analytical study in this volume was carriad out to determine the
sugsceptibility or helicopter rotor blades to a stall flulter instubility.
This analysis was bused on the use of unstecady aerodynamic dulu previously
obtained by Sikorsky Aircratft for an NACA 0012 sirfoil oscillating in pitch
about its quarter-chord uver a wide range of values of incidence angle,
oscillatory freguency, amplitude of moticn, and free-stream velocity.

These data werc originully available in the form of moment coefficient-
incidence angle loops, and a twofold task was perrormed ia carrying out

the present study. Firsi, it was necessary to convert the moment coeffi-
cient data to an aerodynamic damping parameter form. This was accomplished
by integrating the moment over one cycle of motion to yield the aerodynamic
work per cycle, and this in turn was multiplied Ly appropriate conversion
factors to produce the desired two-dimensional aerodynemic damping.

Second, it was necessary to apply these two-dimensional recults to a heli-
copter rotor tc evaluate the weighted three-dimensional damping at ecach
azimuth station, and to interpret the implications of any predicted region
of instability.

It was found that under certain combinations of forward speed and high
disc lcoading, a helicopter rotor blade could encounter regions of negativa
torsional serodynamic damping while operating as a retreating blade. The
extent of the negative damping regime was sensitive to change in “ncidence
angle distribution, and for some parameter combinations it could produce
two or three cycles of unsteble torsional motion per revolutiown.

Generally good agreemcnt was found to exist between the results of the
present study and those of other investigators at all siages in the devel-
opment; e.g., the two-dimensional damping data were in good agreement with
the results of Reference 1 and the final three-dimensional damping vari-
ation with azimuth over the rotor disc was in qualitatively good agreement
with the recent work of Reference 2.

The stall flutter analysis was used in conjunction with the blade motion

solution of Volume I to provide flight condition boundaries for stall
flutter intensity.
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The inveotigation presented in this volume is part of an extensive study,
which is presented in five volumes. The work was performed under Contract
DA LL-A7T-AMC-332(T) with the U. $. Army Aviation Matericl Leboratories,
Fort Eustis, Virginia. The progranm was monitored for USAAVLABS by

Mr. Joseph McGarvey.

The rotor blade s4all tlutter analysis prescented in this volume is the
work of Mr. Franklin Q. Caris of the Unjtled Aircruft Recearch Laboratories,
The test data used in the analysis are from & wind tunncl test which was
rertfarmed previously under Sikorsky Aircraft sponsorship.

The subheading entitled "Stull Flutter Flight Condition Boundaries” is

the result of work done at Sikersky Aireraft by Mr. Charles F. Niebanck.
The informsiion under that subheading is the result of the application of
iie stell flutter analycis of this volume in conjunction with the Extended
Normal Mode Transient Analysis oif V¥»lume 1.

Volume I of this report contains the development of the differential
equations of motion of an elsstic rotor blade with chordwise mass un-
balance. L

Volume 1l presents a linearized discrete azimuth classical flutter analysis
for rotor blades, with an appropriate parameter variation study, a com-
parison with test data, and a comparison with results calculated by using
the method of Volume I.

Volume IV contains the resulte of a study of static torsional divergence.
A set of design charts and the effects of a range of parameter variations
are presented. The results of the stati: divergence calculation are com-
pared with resultc calculated by using ithe method of Volume I.

Volume V presents the results of a study of flapping and coupled flap-lag
instabilitiec. The results of a paramciric study based on a singlec degree-
of-freedom Tlapping or flatwise bending analysis are presented. Compari-
sons are made with results from the more elaborate method ot Volume I.

The results obtained by using the method cof Volume I to determine the
coupled flap-lag response of a rotor to a number of sudden control changes
are presented.,
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INTRODUCTTON

Recently, as a result of the combined requirements of higher forward speeds
and greater blade loadings for helicopters, there has been a repeved in-
terest in the study of stall-induced oscillatory blade instabilities, with
particular emphasis on the effects of these extreme requirements on the
stall flutter phenomenon. This is evidenced by the work reported in
References 2, 3, and L, to name only a few. liowever, with the exception

of Reference 2, all of these studies had one major deficiency in common —
a dearth of valid, unsteady aerodynamic data encompassing a substantial
portion of the stall flow regime. In fact, even in Reference 2 the data
were synthesized and idealiied from a number of sources.

These increased performance requirements were foreseen some time ago, and
Sikorsky Aircrafi obtained a large quantity of two-dimensional unsteady
aerodynamic test data from an isolated NACA 0012 sirfoil section, which
was oscillated in piteh about its 25% chord. These data are utilized in
the stall flutter stability analysis described in this volume.

Similar data were obtained from Reference 1. These data were converted to
& form comparable with the Sikorsky dats and were used in a similar sta-
biiity 2nalysis. The twu sets of results showed good qualitative agreement.

The stall flutter stability analysiz was used to provide stall flutter
boundaries for & typical rotor. The toundaries indicate flight conditions
for which stell flutter may be particularly troublesome.
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DESCRIPTION OF TEST EQUIPMENT, MODEL INSTALLATION, AND PROCEDURZ

TEST EQUIPMENT AND MODEL

The experimental program was conducted in the two-dimensional channel of
the UAC 8-foot main wind tunnel, which has an aUnospheric, single-return,
closed-throat circuit with an octugonal throat. Test section Mach number
is variable below M = 1.0, and the Reynoclds number for the 2-foot chord
mnodel used in the test program was approximately Ro = 1.4 M x 107, Figure
1 shows schematically the mechanical system used in the dynamic tests to
obtain unsteady aerodynamic data for the oscillating airfoil.

The NACA 0012 model tested during this program consisted of & balsa wood
core supported by chordwise aluminum stiffeners and wrapped in three layers
of fiber glass. The model, which had a span of 33 inches and a chord of
24.< inches, is shown in Figure 2. Thirteen pairs of differential pressure
orifices were located on the top and bottom of the model along a chordwise
line which was 11.5 inches inboard from the tip. The orifices were connec-
ted with internal tubing to 13 miniature differential pressure pickups of
the variable reluctance type which were enclosed in a cavity in the model
tip. In this manner, pressure acting on the airfoil surface at a given
chordwise station was converted to an electrical signal which was trans-
mitted to a recording oscillograph. Representative oscillograph traces of
the pressure transducer signals are presented in Figure 3. In addition, a
linear transformer was attached to the end of the shaft,and its output was
used to record variations in angle of attack.

TEST PROCEDURE

In general, the following test procedure was employed. A set of eccentric
cams was installed which fixed the amplitude of motion, @ . After a pre-
liminary shake test, all recording instruments were zeroed and the tunnel
was started and brought up to its operating Mach number M . At the pre-
scribed Mach number, the meun angle of attack, I » ¥es varied over a
range of values, and for each valae of @, the frequency, f , was varied
over a range of values. After dats had been recorded at all of the desired
combinations of Q,, and f , the Mach number was changed and records were
teken for a new set of values of Qy, and f . Fi.slly, after all
desired values of M had been obtained, the cams were changed to obtain

a new value of @ and the entire process was repeated.

The oscillograph records of the steady and unsteady pressure response were
taken for most combinations of the following parameter values:

Amplitude of moticn, @ = + L, 6, 8 deg

Mach number, M= 0.2, 0.3, O.b4

Mean angle of attack, @, = 0 to 33 deg in 3-deg increments
Frequency, f = 0.0, 0.5, 1, 2, 4, 8, 12, 16 cps

e
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In the interesi of expediency or safciy, certain combinations were omitted,
For example, it was decided to 1imit the maximum frequency to 18 cps for
mean angles of attack greater than 24 degrees to ensure the structural

integrity of the system, particularly at the higher Mach numbers.
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TEST HESULTS

DATA REDUCTION

The oscillograph records were read, and the measured data were tabulated.
A digital computer was then used to reduce these data to obtain, for each
run, the chordwise differential pressure distribution as well as normal
force and moment as functions of instantaneous angle of attack. The mag-
nitude of the corrections to the measured pressures for the influence of
tunnel wall constraint under steady-state conditions was estimatea to be
less than 3% of the full-scsle values in the linear range; therefore, no
corrections to the data were made. The unsteady wall interference effects
were small compared to the gross unsteady parameters being measured and
were also neglected (FKeference 5).

PRESSURE DISTRIBUTIONS

The output of each pressure transducer was directly prcoportional to the
local, instantaneous pressure difference,

» L Am® wt _ w .

Ap™(x, 1) = APMx)e ™ = Popper ~ P tower (1)
where the asterisk denotes a complex quantity and the superscript bar‘
denotes an amplitude function. The pressure difference amplitude Ap
is expressed as a complex number,

AP "= OB, +i0p ()

to account for possible phase differences between the locel pressure
response and the motion. As shown in Figure 3, lhe peak-to-peak difference
in the oscillograph trace was proporticral to the absolute magnitude of the
complex -ressure difference given in Eq. (2),

= /A% 2 = 2 3
IApI = AP+ AP (3)
Some representative results of these measurements are shown in Figures L
and 5, in which the absolute magnitude of the pressure difference from
Eq. (3) has been divided by the dynamic pressure,
! 2
g: 5 pPY (W)




and the resulting precsure coetficient, 1Ap/ql , has been plotted as a
function or dimensionless chordal station. In Figurce k4, the experimentally
determined values of this dimensionless amplitude of the differential
pressure coefficieut ure presented for s rapge of mean angles of attack
(aM = 0 to 32 degrees in 3-degree incremepts) at a Trixed frequency of 4
¢ps. In Figure 5 a similar set of results is yresented for a range of
frequencies (f = 4, 8, 12, 16 cps) for 8 given set of mean angles of attack
(aM =0, 3, 6, 9 degrees). 1n both fjpures, the 50lid curve represents the
pressure coefficient predicted trom classical unsteudy potential flow
theory. In the present case the theoretical pressure distribution formula
was obtained from Reference ©, which is besed on the fundamental work of
Theodorsen {Reference 7). The pitching resulis in Keference § have been
derived for & pivot axis at the 25% chord; tor convenience, the real and
imaginary parts sare reproduced below, with the notution revised slightly
to conrorm to present usage.

0N L _agwe |- 11X s F _i> =
()= e [ v (- )V )

[

(_A-‘-’_>I < -aak | VIR e (S aea L)/ EX (6)

In these formulas, x 1is the dimensionless chordwise position relative to
the midchord;in semichords, and Kk is the reduced frequency vparameter,

bw

k v (7)

and f and G are the real and imaginary parts, respectively, of the
Theodorsen circulation function, C(k):=F(k) + 1G{k},

It is seen, from Figure b4, that at low to moderate incidence angies, the
experimental values are in good agreement with theory; even at high in-
cidence angles, the leading-~edge pesak is still maintained, asthough the
agreement between theory and experiment has deterjorated. Finally, at
extremely high incidence angles, even the leading-edge experimental values
no longer agree with theory. The effects of increasing rrequency at low
incidence angle are shown in Vigure 5,and it is seen that in all four parts
of this figure the aggrecment between theory and experiment is excellent,
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NORMAL FORCE AND MOMENT AMPLITUDE

On pages 394 and 395 of Reference § are Tound the equations for normal
force and moment about the pivet axis in terms of the prezsure distribu-
tions,

1
N = bf:l,ﬁp (x)dx (8)
|
M* = b?Iw(xfo)Apr)dx (9)
or, in coefficient form,

L A I Aty ) -

Cn - qizty @ -[. q s (10)
. N v Ap™ix)

e TR % L (x-0a) —q ax (11)

Pressure data obtained during the experimental progrem were reducei to
coefficient form by use of Egs. (10) and (11). The results cf these in-
tegrations form the basis for the stability analysis to follow. However,
before proceeding with this anualysis, consideration will be given to Figure
6 in which the emplitudes of Ch and (] have been plotted versus
reduced frequency, Kk , over a small range of mean angles of attaczk.
Included in both of these figures are the theoretical variations of these
functions as predicted by the potential flow analysis (Reference 7). The
analytic -l expressions used here may be obtained from Reference 8, and the
explic.t relationships for unsteady moment coefficient will be considered
in grest detail in » subseqguent section of this volume. For the moment,
though, it is sufficient to note that the general trends of the experi-
mental data are in good agreement with the theory for mean incidence angles
up to ay = 9 degrees; in fact, the data for zero mean incidence angle are
in excellent agreement witn theory.

NORMAL FORCE AND MOMENT HYSTERESIS LOOMS

When the instantancous normal force or moment coefficient is plotted versus
angle of attack, the resulting ciosed curve surrounds an area which, in the
case of the moment, is representative of the energy aboorbed or diseipated.
This is found to ve the case in both classical and separated flows., Coun-
sider the case depicted in Figure 7. The two upper curves represent hypo-
thetical sinusoidal veriaticns of angle of attack and either normal force
or moment, both expressed in arbitrary units, as a function of time, 1In
the example shown, the normal force or woment lesuds the angle of attack by
one-eighth of a cycle or 15 degrees in phase. In the bottom portion of




the figure, the time variable has been eliminated and the normal force or
moment has been plotted directly as a function of angle of attack. The
arrows denote the dircction of increasing time. This figure shows that a
phase shift between force or monent and motion produces a loop which en-
closes & finite area. The same effect will be Tfound to exist in the case
of a nonsinusoidal force-motion-time relationship caused by the presence

of separated flew. In classical or potential flow, the closed contour will
be elliptical, whereas iu separated flow, the contour will be distorted.

Hormal Force Loops

A Tew representative unsteady normal force coeflicient locps are presented
in Figure B for a constant amplitude of @ = € degrees and a constant
Mach number of M = 0.3, In this figure the experimentally determined un-
steady normal force coefficients are plotted versus instantanecus incidence
angle, with the superimposed srrowheads indicating the direction of in-
creasing time. The s0lid lines represent the unsteady dats,and the dashed
lines represent the steady-state characleristics (also obtained frem
pressure readings in this tcst). The arrows indicate the direction of in-
creasing time. Three of the inset figures were for a constant frequency

of 4 ¢ps and serve to show the effects of varying mean incidence angle,
from Qy = € to 12 to 18 degrees. The two right-hand inset figires are
both for a mean incidence angle of am = 12 degrees and illustrate the
ei'fect of a change in frequency Tfrom L cps to 16 cps. It is clear that the
increase in mean incidence angle to values greater than the steady-state
stall angle has a rather profound effect on the dynamic fcrce response of
the oscillating airfoil. It is also clear that an increase in frequency
produces a radical change in the dynamic stalling behavior of the airfoil.
Specifically, at low frequency the dynamiz force response reaches its peak
value Just before the maximum incidence angle is reached; it then drops
precipitously to a value far belcw the steady-state stall value and remains
tnere for almost the entire region of decreasing incidence. In contrast to
this behavior, the effect of nigh frequency is to maintain a nearly ellip-
tical response lcop, even for incidence angles beyond stall, over the
entire range of instantaneous incidence angle. The further significance

of this behavior will be explored at length below end in subseqguent sections
in connecticon with the moment coefficient loops apd their stability impli-
cations,

Moment, Loops

Some representative unsteady moment coefficient loops are presented in
Figures 9 through 11. These loops are the basis for the stability analysis
which follows; hence,they are shown in greater detail than the normal force
loops.  in these {igures, an effortl has been made Lo 1llustrate ithe vari-
ations in the moment hysteresis loops for euch of the varisble test poran~
eters. Thus, the effect of varying mean incidence angle, Qn , is sncwn
in Iigure 9; the effect of varying frequency, t , is shrwn in Figure 10;

and the effect of varying Mach number, M , und torsional amplitude, g ,

is shown in Figure 11. In all of trene Tigures,the superimposed arrowheads
indicate

4

s direction of increasing tine,
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Figure 9 illusirsies the variation in moment coefficient with incidence
angle at the fixed conditions M = 0.2, @ = 6 degrees and { = k cps.
The solid curves are associated with the unsteady motion presently under
consideration, snd the dashed curve represents the steady-stale moment
(from balance data) for the same Mach number and Reynolds number. (Once
again, the arrows indicate the direction of increasing time.) I+ can be
seen that all three moment loops generally foilow the steady-state curve,
and it will be shown presently in Figure 10 that the loop for au =0
degrees is in good agreement with the results obtained from potential flow
theory. (This is also evidenced by the proximity of the data point for

Gy = 0 degrees to the theoretical curve in Figure 6 for a reduced fre-
quency value of k = 0.132.) The character ot tne hysteresis lool chlanges

radically as @y inCrecases, aud the moment locp for ay = 12 degr: s dis-
plays the characteristic crossover behavior of the unsteady moment in the
neighborhood of the stalling angle, This separation-induced distortion of
the moment hysteresis loop has been the sublect of a number of early in-
vestigations, including those reported in References 1 and 9 and, hence,
will not be discussed at length herein. However, it will be shown later
in this report that the system stability is c¢trongly dependent on the
direction in which the arecs of the moment locp is enclosed; in particular,
it will be shown that a counter:lockwise enclosure is stable, whereas a
clockwise enclosure is unstuble. Thus, it is seen that in some mean in-
cidence range containing @y = il degrees, there may be some potentially
unstable regions which could affect the stability of rotor systems.
Finally, for a mean incidence angle of 2L degrees, the moment loop once
&gain implies a stable motion.

Figure 10 shows the effects of increasing .ue frequency from 4 cps to 16
cps for twe mean angles of incidence. Also in Figure 10, the experimental
results are chown as so0lid curves, and the results from unsteady potentisl
flow theory are shown as dashed curves. (A brief discussion of these
theoretical predictions is presented later in this volume in Appendix I).
It is seen that except for a slight upward displacement of the experimental
results relative to the theoretical curves, the two are in excellent agree-
ment. The right side of this figure shows that for @y = 15 degrees, the
effect of an increase in frequency {(and, hence, an increase in reduced
frequency) appears to be stabilizing, even though the incidence angle is
considerably greater ithan the stalling angle over much of the range. This
is in accord with the implied results in References 1C and 17, as pointed
out and further amplified by Reference 1, and also as reported in Reference
12. However, in the left column ot Figure 11, it appears that an increase
in reduced freguency (caused by a decrease in Mach nunber at constant fre-
quency, f = 4 cps} yields a contradictory result in that the stable
closed loops for k = 0.056 and 0.075 are repiaced by a warginally stable
crossed loop for k = 0.112. It is believed that this behavior is char-
acteristic of very small values cf K , and it will be seen later in this

- volume that all of these results are self-consistent., TFinally, the right

column of Figure 11 shows the effect of inereasing the torsional amplitude.
Superimposed on each curve in Figure 11 is the steady-state moment vari-
ation, represented by the dashed line. Once again, the results appear Lo
be self-consistent.
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This concludes the review of the original test program. In the next sec-
tion, the analytical expressions necessary for the stability investigation
will be developed; following this, the application of this analysis to the
data will be discussed. The last section of the report will deal with the
stability characteriztics of a typical rotor under various loading con-
ditions.
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ANALYSIS

TWO~DIMENSJONAL WORK PER CYCLE

The differential work done by the serodynamic moment during the course of
the torsional motion is obtained by computing the product of the in-phase
camponents of moment and differential twist, or

aw :MRdaR (l?)

where Mg andl agr are the real parts of these quantities. Hence, the

work per cycle of motion is obtained by integrating Eq. (12) over one
cycle, or

w = fMgdaa (13)

This may be rendered dimensionless by dividing both sides of the equation
by L pu2(2p)? , which yields the equation for the work coefficient in
terms of the integral of the moment coefficient, as follows:

W

Cw W H §CMRC’QR (1)

= "%—?

To evaluctc the integral in Eq. (1L), it is necessary to introduce the
quantities CMs and Oos; . The derivation of these functions is presented
in Appendix I, which has been included ir the present volume for complete~
ness. From Ea. (74), after expanding the exponential function in sines
and cosines, the real part of the moment coefficient muy be obtained in

the form
Cw.* Cu + Ty cos wt -C, sinwt '
R ™M UR Ul (15)

The differential of Eq. (80) is

da, = -a sinw! d(wt) 019)

1>




and after Eqs. (15) and {16) are substituted into Eq. {14), the result is

L] M

2 ' .
Co® ™ [ ,”CM + T coswt - &, sinwt] asinwt o(wt) (17)
Y0 M UR ul

{The integration range, OSwWS2T | is cquivalent to one complete cycle
of motion,) After the integrutions indicated in Eq. (17) are performed,
it is found that the term involving the mcan moment vanishes as well as
the term containing the real part of the unsteady moment; the final result
for the theoretical work coefficient is given by

C,:mac (18)

Thig is the work done by the air on the airfoil; hence, a positive value
of Cw will indicate un unstable motion, since this implies & net energy
exchange from the surrounding medium to the airfoil, whereas a negative
value of Cy Wwill indicste & stable, or dumped motion.

TWO~-AND THREE-DIMENSIONAL AERCDYNAMIC DAMPINC

Before proceeding with the analysis of the aerodynamic demping of the sys-
tem, it is useful to review briefly the behavior of a linear, damped, tor-
sional sysiem such as the one described by the differential equation

I1a"+Ca®*+ xa":=0 {19)

wvhere I is the inertia, ¢ is the darping, and & is the stiffness of
the system, If the motion is essentially sinusoidal (i.e., only slightly
damped and, hence very nearly a constant amplitude sinusoid) then Eq. (69)
of Appendix I is a solution. The equation becomes

(-wI +iwcanx)a =0 (20)

It is seen that the damping coefficient is concained in the imaginary part
of this expression, and it may be ascumed that the equivalent damping terms
for any similar linear system will also be contained in the imaginary part
of the differential equation solution.

Eq. {19) represents a system oscillating in torsion in a vacuum. If the
same system were to oscillate in torsion in & moving airstream, the right-
hand side of the equation would no longer be zero but would represent the
unsteady moment imposed by the moving air on the body, or

. ® . * »*
Ia+Ca+ <a =M, (21)
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It is shown in References 8 and 13 that in the case of n single-degree-of -
freedom torsicnel cceillation, the unsteady moment is & function of the
torsional displacement and its first two time derivatives and may be ex-
pressed in the general form

L]

. LR L
MU =M|Q‘+ M2(1+M30 (20)

In the results cited in References 8 and 13 for an isolated airfoil oscil-
1sting in an incompressible, potentisal flow (based on Theodorsen's theory,
Reference 7), the component f; is a pure real quantity, whereas both

M% and M3 are complex; hence,

After Eqs. (22) and (23) are substituted into Eq. (21) and the terms are
rearranged slightly, the result is

(1-M) a"e (c Mo iMZI)d' + (K Mg iM31> a =0 (21)

Once again, if the damping is sufficiently small, the motion will be nearly
sinusoidal and Eq. (69) represents a solution, whereupon Eq. (24) becomes

[-w2 (I-M)+iw (c My iMZI)ﬁ-(K My iMM)]a =0 (25)

After collecting real and imagirnary parts,
[{""2(1 M)+ wMppe k- Msn}* i {“’ (€~ Mag)- Mu}] @:0 (n)

As in the case of the system oscillating in vacuum, the imaginary part of
Eq. (26) will represent the total damping of the system, as follows:

total damping = w (C "My} My (o)
Since the quantity wc¢ constitutes the system damping in the absence of a
moving airstream, then the remainder of Eq. (27) must be the effective

aerodynamic damping of the system, as follcws:

£ 7 rwMyp My (28)




The symbol § denotes the (dimensional) aerodynamic damping pasremeter of
a system executing & single-degree-of-freedom torsional motion. Return
now to Eq. (22). 1t will Le assumed that the lefi-hand side of this equa-
tion is a time dependent, sinusoidal function having the form

Mg el {29)

where

After Egqs. (29), (30), and (69) are substituted into Eq. (22) and the ex-
poential factor e'w! is cancelled, the result is

Myr+ iMyg = [{-w2M| -wMprt M_—,R}+ [ {wM2R+ MM}]E {(21)

When real and imaginary parts are equated, it is seen that

Myug = EA—'M2R+ Mbl] a (32)

A comparison of Eqs. (28) and (32) shows that the aecrodynamic damping
parameter, § , is equal to the negative of the derivative of the imaginary
component of the unsteady moment with respect to the amplitude of motion,

am
£:-- —d&_m = - [‘”Mea’f Msx] (33)

It is convenient at this point to rewrite Eq. {33) in dimensionless coef-
ficient form, as previously done in Eq. (14). Hence, after defining the
dimensionless two-dimensional aerodynamic damping parameter in pitch by
the symbol

= ¢

Fa (2 e aoR (3

then Eq. (33) may be rewritten as

L dEMUI . wMopt+ Map .
az ga (172)pud(2b)? (35)

111

(o)




Iin the ultimate formulation tc be obtained herein, it will be useful to
express the &erodynamic damping parsmeter in terms of the work per cycle
of motion, since the latter is a queantity which is most easily measured
from the available test data. To accomplish this, a few manipulations are
necessary. First, Eq. (76) of Appendix I will be rewritten in the form

Tmyg = Hilk @)@ (30)

where

2
Motk,Q) = -’-'2"‘—- [MaI - (Lag *th)(’lg‘ +Q) H-m(*'z— + 0)2] (37)

is a function of g and @ only. Now, substitute Eq. (36€) into
Eq. (18) to obtain .

Cw 2 W/.LTQ_Z (38)
and next substitute Eq. (36) ints the derivative of Eq. (35) with the
result _

dCum
— Ul
Hopo=gg — = M1 (39)
Finally, after solving Eq. (38) for 4, , substitution into Eq. (39)
vields the useful formula
=) Cw (40)

=, I
a2 Tae

Ultimately, these two-dimensional data must be used in the stability eval-
uation of the three~dimensional rotor system; Lence, they must be converted
to three~dimensional aercdynamic demping form. This has been done in

Appendix II,

'H
Ea3=fozaz v2 () (M) a7 | (41)

where V(7)) is the spanwise velocity ratio, fa (M is the spanwise
mode shape distribution, and 7 is the dimensionless spanwise variable.
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SPECIALIZATION TQ 25% CHORD PIVQOT AXIS

Mnst of the analytical developnent in the preceding secticns of this volume
has been derived for an arbitrary Jocation of the pivot axis. The experi-

mental data to Le used in the stability analysis were obtained on an air-

Toil pivoted about iis 25% chord and the rolor blade to be unalyzed below
will alsc have its ey“ective pivot axis st or very pear the 25% chord
{assuming & conventionally designed blade cystem). It will be useful,
then, to convert the results of the previous sections for the special case
of 25% chord pivol axis locatiorn, in anticipation of the need for these

specialized formulas in subsenquent sections.

It was stated earlier that for a 25% chord pivot location Q@ = - i/e, and
= 0. When this is substituted into Eq. (76} of

hence, the factor 1/2 + 0 =
Appendix I the result for the imaginary part, of the unsteady moment coef-

ficient amplitude becomes

-’rkz - Y
Cug~ "2 Mg, @ (h2)

and substitution into Egq. {18) yields

i 2 (43)

Cy = 17 Ma®

for the work coefficient. Similarly, Eq. {4L0) becomes

- k2
Bqe® -2 M (k)

for the two-dimensional damping coeflicient. In the case of an incompress-
ible, potential flow past the airfoil, the imaginary part of Eq. (8L) will
be substituted from Appendix I for Mgr - Eas. (42), (L3) and (L4) then

become

K @ (45)

=L .1
Cugr * 2

i _
Cw = -5 mka’ (4€)
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and

L (n7)

Eg. (46) shows that for these ideal conditions, the work coefficient
will always be negative (i.e., the system will always be stable), and is
directly dependent on both k and § . Similarly, Eq. (47) shows that

the aerodynemic damping is always positive and is independent of amplitude.
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FINAL DATA REDUCTION

In the coursce of the originel test program, approximately 550 test points
were taken; ror each of these a Cy-a loop was generated. Figures 9, 10,
and 11 contain Tourteen separate examples of these lccps. In principle,
£q. (1h4) was used to evaluate the work coefficient for each of these loops;
hovever, a planimeter was used to obtain the actual area. Each loop was
planimetered at least three times, and an average ofF these three measure-
ments was used to represent the area of a given loop. (The maximum error
incurred by this averaging procedure is estimated to be less thaa 3%).
Appropriate conversion factors were used to transform the raw area data
into work coefficient fcrm, and Eq. (L0) was then used to convert these
work coefficients into two-dimensional damping parameter form.

The results of these calculations are presented in Tables I through III.
The gaps in these tables denote values of frequency and/or mean incidence

angle at which either no data were taken or no dzta were reduced. for
example, only a limited amount of very low frequency data was taken, and
these points were restricted to mean incidence angles of aQy = 12 degress

and greater. Also, as Mach number was increased, some of the higher fre-
guency and higher incidence angle runs were cmitted. Occasionally, a
double entry was made in the tables for a particular combination of ¢ and

apm . This occurred whenever a Cm-Q loop failed to close on itself,
For example, in Table I, for @ = € degrees at the point Qy = 3 degrees
and f =k eps ( kK = 0.1125) there are two values. The loop for this

case does not return along the same path after one cycle of motion. In
this case, a4s in other similar cases, an estimate was made of the two most
likely loops, the areas of both were taker, and both numbers were entered
in the appropriate table.

A representative group of these reduced damping parsmeter values is shown
in Figures 12 and 13. These results were plotted directly from the second
subtable of Table I. This pair of figurcs shows the variation of Egz
with reduced frequency Kk for the entire range of mean incidence angles.
Included in each plot is the predict=d theoretical variation of Sqg2 with
k » taken from Eq. (L7) for 25% chord pivot. It is seen from Figure 12

that the experimental values are in good agreement with theory for Qm = 0,
3, 6, and 9 degrees. However, the data show considerable departure from
the theory for incidence angles of @m = 12 degrees and above; in fact,

there is a range of incidence angles, 12 < gy € 21 degrees, in which
the aerodynamic demping is negative (indicating an instability) over some
portion of the K range. Finally., al extremely large values ~f incidence
angle, Qu> 24 degrees, the values of 5502 become positive once again
and seem to approach the theoretical jrediction at the highest incidence
angles shown here.




ey

There are innumzrable ways of preseniing the entive meas of data contained
in Tatles I through III. One obvious method is to go through each subw-
table, tlotting the results in an analogous fashicn to the results shown
in Figuies 12 sand 13, with each set represerting a specirfic combination of
Mach number and torsional amyplitude. his procedure is unwieldy in the
ultimale zrplication of the duata, whiech is to determine the stabilicy
characlerjistics of helicoyter roter bladez., Theretore, an etfort has been
made to reduce the number of independent yarameters by combining these
data sets in various ways.

The method to reduce ihe number of independent parameters which was chosen
for this program utilized the grouping of data as presented in Tables I
through 1I1I. Specifically, all of the data for M = 0.2 were combined, and
an effort was made to eliminate q wus & perameter. Similarly, the daia
for M = 0.3 and for M = 0.k were ulso treated separately. The elimination
of g as a parameter was effected by plotting the vaviaticn of Z=,,
with Kk for each mean incidence angle and by including data for all three
values of the amplitude. This decision to eliminate 4 +w=2c base 1in part
on the fact that the theoretical result presented in Eq. (L7) 1- 2
is inpdependent of a .

After all of the data had been plotted in this fashion { Haz versus

K for each @y , for each M , with the data for all values of @ o©n
each plot), a set of curves was faired through the data for each set of
parameter values. A tebulation of the coordinates of the faired curves
was then made for a large nmumber of conveniently spaced values of K at
the given values of apm 5, and a set of cross plots of EZGZ Versus
ay was made using these tabulated values. Once again, a set of curves
was faired through the data, and the coordinates were tapulated, this time
for & closer spacing of incidence angles than were previcucly avallatle
(every degree instead of every 3 degrees). This process was repeated
sufficiently often to reduce ihe scattier of the coordinates of ithe faired
curves to a negligible amount; in effect, & graphiczl iteration process
was employed to smooth the dava. (The ressen for sdopting this procedure
was to provide a smccothed set of unsteady aerodynamic date suitatlie for
bivariant interpolatiun on a high-cpeed digital coemputer.; The results of
this process are presented in Tabies IV, V, and VI for Mach numbers M =
0.2, 0.3. and 0.4, respectively.

A comparison of the original data and the final smooihed cdata is shewn in

Figures 14, 15, and 1€. These figures contain almost all of the acrody-

namic damping data for M = 0.2 which were originally obtuined from Lhe
Cm~a Jooups ani were presented in Table 7. The faired curves vere taken

from Table Iv. Similar plots could be construcied for M = G.3 and O.=

from tre original data in Tablesz I1 and 111 and the smoothed data in Tableg

V and V1. However, in the interest of Yroevity, they are not included here.

A number of conclusions may be reached by studying the reculis presented

in these figurzs, as cnumerated below. It is scen from Figure 14 that the
experimentsl resulis are generally ir good agreement with ithe thecry at low
mean incidence angle ( @y< 9 dugy for all amplitudes. As the mean dnei-

a8y

dence angle is increased to valucs greater than dy = 12 degrees, the

1%




aerodynamic damping is seen to depart from the thecry and, in some cuses,
tn become negative over some range of k . A study of Figures b and 15
isquite instruntive in explairiug the apparent contradintion noted earlier
in the behavior of Fg» with increasing Kk . In these Tigures, it is
seen thet for sufficiently lwmrge k , an initially unstable or marginally
stable condition will veccomc more statle as K is increased, as stated
earlier in thic repcr.. However, at very low values of k , the werody-
namic dumping initially increases from a zero value at k= C and reaches
z small positive value belore becoming nigative at & higher value of Kk,
This waz pointed out earlier in conaecticn with the behavior of the loops
in Figure 11. TFinally, as shown in Figure 1% for cufficiently large values
of dpm , the sysiem once again exhibits a staple behavior.

A similar behavior in the variation of 5502 with dp is gseen to exist
for intermediste values of k (Figure 16). This ligure shows ilhe aercdy-
namic damping to be initially stable at low incidence angle, unstable in
the approximate range of 12 degrees < am< 27 Jdegrees, and then stable
once again. Thus, therc appears to be & "pocket" of instability surrounded
by stable regions at botn higher and lower incidence angles, and at lowver
Vaiucs of reduced freguency.

This igolated region of instability is graphically illustratel in Figures
17, 18, and 19. In these figures, the aerodynamic damping is represented
as a surface relative 1o the k 2y -plane for Mach nunbers of 4 =
0.2, 0.3, and 0.4. These aecrodynamic damping surfaces are presented in
both an isometric view and & near planform view in esach figure. The super-
inposed rectangular grid lines on each surtace represent constant values
of either § or  {y, , and the dark-ceolored region lying beiow the k

Ay -plane 15 a region of negative aerodynamic dawping sod hence, repre-
sents a poitentially unstable aercdyrnamic conlition.

3

CONVEKSTON OF REFERENCE I DATA

A numbtier of years ago, an extensive experimental program was carried cut

us reported in Reference 1 to determine tbhe Varisations o 110t and moment
coefticient on a 12% thick airfcil ozeillating in both pitch and treansla-
tion over s wide range of incidence angles. This work was limited in some
respects by the restricticn to low f{ree-stream velocities and by the fact
that the pivot axis Tor pitching mctions wes locaied al the 37% chord sta-
tion { g = - G.20). However, the type of airfoil emrlcoyed in the tesis
and the range cf parameters over whizli experimental datu were obtained make
the Heference | resulty poternsially quite useful in thie present anslysis,
The remsindsr of thiz section is deveoted tc the *rancformation necessary

Lo convert these coefficients to ¢ form which can Lz compared directly with
the resulivs of Lthe present analysis.

The experimentael dute tabulsated in Reference 1 are presented in the form of
an ampritaede and prace angle for cuch componre-nt. Zpecifically, the quan-
tities involved arc Cot, @7, Clp > Pe s Cmr 5 Pur > Cmp s Pre >
vherce C  rvepresents the ampliitude of the coefficient; ¢ , the phase
angle by which the Iorce or momernt lesds the motion; and the subscripts

LY y LP 5, MT . MP , the 1if1 due Lo translation, 1lift due to pitch,




moment due tu transliation, and moment due to pitch, respectively., It will
be shown below that all four coefficients and their phase angles are needed
to convert the Reference 1 data to a form comparable with the data pre.
sented in this volume. This is becausc the resulis given iu Reference 1
were cbtained for a 37% chord pivot axis, wheress ihe present repor® is
concernesd with a pivol axis at the 25% chord sta%ion., Other major dif-
tferences between the Reference 1 and the present results involve the def-
initions of the coeffir~ients and the fact thet the measured unsteady coef--
ficients of Reference 1 were not independent of the amplitudes o oscilla--
tign. These differences will be rescived in the course of the aralysic,
In Reference 1 thellift and moment coefficients are defined by the equa-
tions - ' !

/ = it - * ~ = X
- Wtz TGS i)
and Lo
; ik
~ #H _ My » » '
Cwy T ZeumZ T Gwr tlw (L9)

where, for example,

Cur

C,r(cosg y + 18N ;)

and where the superscript H in Egs. (48) and (49) is used to denote the
coefficient form employed in Reference 1. Eg. (u48) and (43) may be solved
for the unsteady 1lift and moment as

-
<
¥

2PUZb(C MO (51)

<
<

2F Uzbz(cu;*'cm;) (5)

Note that neither the dimensionless bending defl-ction amplitude k=h/b nor
the twist deflecticr @ appears on the right side of these equations.

As stated earlier, this is because the Ileference 1 coeff'icients are not in-
dependent of the amplitudes of motion. The actual values of the parameters
used in Reference 1 will be substituted into these eguations later in the
development.




The unsteady 1ift and moment ampiituaes asscciated with both translation
and pitch about a pivot axis at @ may be taken from References 8 or 13.

(e 3 2{ h o+ »-(—'-~-o)L16} . )
LU = 7eb w _Lh + La 5 hJ (53)
i+ oottt ([ (0)f \
. ) ¢ ] s LY 3 P
1’[MQ-—(-§+Q}‘(}_G+Mh/‘+(—é+ﬂ)21.h}0{
(5k)

A combiration of Ege. (5i) and (93) and kqs. (52) and (5h) yields the
relationships :

T R S Tg. . 2 [t *
LT\}' + {Lu ( 2 ('G)thll ' "ERE (\‘-'LT + CLP\

{Mh“(% +O‘}‘-Lh]5 +'[Ma~—(-'§ +0)(La +Mh)~‘r-(—2'—+o)2 L ]a

= ez (cur + Cie ) (56)

After separating the motions into single-degree-of-freedom oscillations in

bending and torsion, Egqs. (55) and (5€) may be recast in an equivalent form
as four equations, as follows:

Lhh = 257 C% (57)

[La- (3 ta)in]a = Facle (58)

[Mn - (4 +a)enlh = oo Clr (59)

[Ma-(z +o)(arm)« (g+0f n]a - Er cho (co)
21

J (55)
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These, in tuwrn, may be solved for the standard coefficients L, , Lag »
Mh s Mg
2 _ 2 oy
KSln = 7 T (61)
2 o2 ck | Clr
k“"Lg = —.n.—{—a-+ (—+0)-'FT- (e2)
[ »
2 2 | Cwmr (L Gt
th-"lF +( +Q)F] \(3)
*
2 . 2 [Cab (L 4o\l 4 (L _C_MIJ.)ELL
kM, = W{a +(2+°l s +(2+o) 2 +{+o - (6%)

The quantities on the right side of Egs. {6l1) through (6L) represent the

experimental values obtained in Reference 1. Numerical values must be in-
serted for the pivot axis location, a4 = - 0.26, and for the dimensionless
displacements, h=h/p = 0.9/5.808 = 0.155, and @ = 6.08 7w /180 = 0.106.
The quantities found on the left sides of these equations will also repre-
sent the experimental values; however, these quantities will be independent

of pivot axis location, at least according to the linear theory employed
here.

To use the Reference 1 data in the present analysis, the imaginary part of
Eq. (64) must be substituted into Eq. (LL). After inserting the value

Q = - 0.26, the result for the two-dimensional aerodynamic damping is
— _ | . «
0.24

- T[CMT singyur + 0.24C sin¢LT] (£5)

This cguation was used to evaluate __5502 from the Reference 1 cuef-
ficients after inserting the values h = 0.155 and & = 0.106.
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N OF PRESENT RESULTS WITH REFFRENCE 1 DATA

Before these results could be applied in th= present stability analysis,
some basis of comparison had tc be established for the present data and the
Reference 1 date, as described below. Three configurations were tested in
Reference 1 ~-the blunt wing, the intermediate wing, and the sharp w’.ag--
in which the profiice differed only in the viecinity of the leading edge.
Since there is a slipht difference in both the steady-state (i.e., stalling
angle) and nonsteady behavior of ithese coufigurations, the data for each
are presented separately in Reference 1 as functions of mean incidence
angle, Qy , and reduced frequency, Kk . It was decided to correlate
these results with cope another and with the present data by means of a
stall angle parameter,

m/ 0 (66)

The angle ag 1is the stalling angle for the particular configuration under
consideraticon, This veried from configuration to configuration in Reference
1, in the present case it was taken to be ag = 13 degrees, which is the
incidence angle at whici. Lhe slope of the steady-state normal force curve
becomes horizontal in Figure 8. This choice of a c¢orrelation parameter
appeared to be A legical one in view of the strong effect the stall peint
hes on unsteudy response. It can be seen from Figure 16, for example, that
the aerodynnmic dumping is nearly constant below the stalling angle and
begine to vury only when the combination of mean incidence angle and ampli-
tude of motion cuuse the airfoil to be affected by stalling effects.

As in the case of the present results, the Reference 1 data were bivariantly
dependent on both Q@ and k ; a graphical iteration scheme, similer to the
method used on the present data, was employed to smooth these data. Egua-
tion (65) was then used to calculste the two-dimensional serodynamic Gamping
as a function, thic time, of stall angle parameter, OJ7 , and reduced fre-
quency, k . These results are tabulated in Table VII.

A comparison of the two-dimensional aerodynamic demping results from the
present data and from the Reference 1 data is presented in Figures 20 and
21. It is seen from these figures that ithe sgreement between the two sets
of data is quite good &t iow valius of & , 1s excellent at intermediate
values of k , and is qualitatively good at the highest value of k . Of
particular significance Is the fact that both sets of data predict essen—
tially the same two-dimensional stability boundary at moderate values of

k in the range 0.2 £ k < 0.3 2nd, in addition, predict the same damping
level as a function of 97T . Thus, it is seen that the pivot axis trans-
formation procedure is valid, and the use or the stall angle parameter as
the basis for correlaticn is alsc valid, at least within the variable ranges
considered herein.




One further conparison of the two-dimensional aerodynamic damping parameter

was made for the results of the present study and those of Reference 1lh,
The aerodynamic damping curve for 25% chord pivot and W/ bw= 3.0 (i.e.,
for k = 0.333) was taken from Figure 85 of Reference 14 (which, in turn,
was obtained from a cross plot of previous results preserted in Reference
12) and was compared with the curve for M = 0.2, k = 0.3375 from Figure
16 of this volume. A direct comparison was impossible to make since the
airfoil section of Reference 12 was & thin (less than 0.0k thickness ratio)
NACA 65-series profile which undoubtedly did not have the same stalling
characteristics as the NACA 0012 airfoil used herein. Unfortunately, the
static stall angle of this 65-series airfoil was not provided in Reference
12, Hence, to provide some sort of comparison of the Reference 14 results
and the present results, it was necessary to improvise a basis of correla-~
tion. To this end, it was decided to scale the abscissa in Figure 14 of
Reference 1l to force & coincidence of the first zero crossing of Efag

for the 25% chord pivot curve with the first zero crossing of the curve in
Figure 16. This comparison is presented in Figure 22, in which the abscissa
has been converted to stall angle paremeter form.

It is obvious that this comparison can have only qualitative value, in
view of the liberties taken with the scale of the abscissa values from
Reference 1L, WNevertheless, the comparison shows a general agreement
between the two results, including the extent of the negaitive damping
region and the recovery at higher values of Oy , despite the large 4if-
ferences in the airfoil configuraticns and the test procedures employed.




ROTOR STABTLITY CALCULATIONS T 3

DESCRTPTION OF TYPICAI, ROTOR CONFIGURATION

The Sikorsky S-61F rotor was choscn for the application of the stability
analysis described in previous sections of this report. The rotor blade
had a total chord of 1.521 feet and extended from a root radius of fop =
8,438 feet to & tip radius of ry = 31.0 feet. PFerformance data for this
conTiguration were calculated for four flight conditions: forward speed of
165 knots and 10,660 pounds gross weight, 165 knots and 12,460 pounds, 149
knots and 18,200 pounds, and 210 knots and 16,280 pounds. The tabulated
datea provided for each condition consisted of radial and azimuthal varia-
tions in incidence angle and Mach nunmber.

It was assumed that the rotor blade was capable of responding to an in
nitesimal disturbance in its fundamentsl torsional mode at every azimutih.
position, and the stability anslysis was employed 1o determine the dauping
of this incipient vibration. The f'undamental torsional frequency of the
S-61F rotor blade is f = 27.3 cps or w = 171.4 rad/sec; this quantity,
together with the semichord dimemsion b = 0.76 feet, was used in Eq. (7)
to calculate the numerator of the reduced freguency parameter, Kk . At
each azimuthal station selected Tor the analysis, the radial variation in
Mach number was converted to a comparable radial variation in velocity by
multiplying each value by the assumed local speed of sound, 1100 ft/sec.
This was used to calculate the radial variation in k which, together with
the given radial variation in a , was used to interpolate the appropriate
serodynamic damping table for the required value of 5,, at each radial
station. (Polar plots of typical ¥ - and a - distributions over the
rotor disc are shown in Figure 23.) The reference velocity, Ug , wWas
chosen to be the tip value of the velocity at the zero azimuth station,

= 00, and it was used to compute the velocity ratic, v(n) , defined by
Eq. (98) in Appendix II. The computed torsional mode shape function, fq(7),
was calculated for the S-61F helicopter rotor blade and is presented in Tasble
VIII. With the introduction of these quantities into Bg. (4l), the span-
wise integral was calculated and the three-dimensionail damping parameter,
Say (W) ., was obtained for each value of azimuth angle.

STABILITY ANALYSTS

Three different procedures were employed in extracting information from the
tgbles. In the first case, only the M = 0,2 table was used and the actual
Mach number was used only to calculate U . If the value of either k

or a exceedad the tabulated valus in Table IV in a corner value of the
damping parameter was used; i.e., the oversize parameter was artifically
returned to the maximum tabulated value, and the interpolation with respect
to the other parameter was performed.

A second case involved data for all three Mach numbers from Tables IV
through VI. Here the actual Mach number was used to interpolate hetween
tables as well as to provide values of th- velocity, U . Corner values
were also taken here; however, because of the truncation of the tables for

the higher Mach numbers, this procedure led to somewhat unsatisfactcery
compromises.
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The third case utilized the Reference 1 dota presented in Table VII. OQOnce
again, the Mach number was used to calculate U only, as in the first
case; and, once again, corner values were employed.

3tability snalyscs for the four flight conditions mentioned eurl.er were
carried out by using each o1f these three options. The results are pre-
sented in Figures 24 und 25, in which the variation of the three-dimensional
aerodynamic damping parameter, = g3 , with azimuth argle, ¢ , is pre-
sented. In each figure the abscissu has been extended Ly L0 degrees beyond
& full cycle to show more clearly the behavior of the damping in the region
surrounding ¢ = 0 degrees.

In Figure 24, for a flight speed of 165 knots and moderate gross weights,
all three sets of data are in good agreement and predict a stable operation
over all values of ¢ . The results trom the present data ure somevhat
more conservative than the Reference 1 reszults for the advancing blade
region { 0°< ¢ < 180°), and all three inputs are in very close agreement
over the retresting blade region {1800 $ ¥ ¥ 360°). As expested, the
damping is greater in magnitude for 09 € ¢ < 180° than it is for

180° <€ ¢ < 3609 This is because the dynamic pressure attains a maximum
value in this region; hence, the square of the velocity ratio, which weights
the integrand in Eq. (L.) will also attain a maximum value.

In the upper portion of Figure 25 the flight speed has been reduced slight-
ly, but the gross weight has experienced a significant increase, relative
to the previocus two figures. Once again, the results of the three damping-
table options are in generally good agreement; and, once again, the Ref-
erence 1 data yield less ccnservative results than the present data in the
range 0% < ¢ < 180°. It is seen that in the region of the retreating
blade, the system damping decreases to very small values, which implies
reduced flutter margin for the retreating blade.

Finally, in the lower portion of Figure 25, both flight speed and gross
weight are considerably increased relative to the previocus three cases. As
shown in Figure 23, an extensive region of the rotor disc is simultaneously
operating at large values of k and at incidence angles exceeding the
steady-state stall angle ( @5 = 13 degrees). As a result, both the present
data for M = 0.2 only and the Reference 1 data predict a region of lerge
negative damping over the approximate range 340° < ¢ < 366°., This ve-
havior will be considered in detail in a later section. (Note that the
present data for M = 0.2 only also predict a shallow region of negative
damping over the approximate rauge 233° < ¢ £ 251°, This, too, will be
studied in more dctail later,) First, it should he noted that although the
present data taken from all Mach numbers do not agree with the other two
sources in predicting the instability for the retreating blade, they do agree
elsewhere for the advancing blade. This disagreement is caused in part by
the method adopted in the computer program in choosing the corner values,
The corner values used in the case of free interpolation among Mach numbers
are determined by the tabular value of M nearest to the actual local value
of M. It is seen from Figures 18 and 19 that available damping information
is truncated for both a and k as W 1is incressed. Hence, although k
and a may have large values on the retreating blade. if the Mach number
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ugh, the corner vailue imposed by the interpolation scheme may
yie: d 4 valup of the damping which is considerably removed from the actual
damping Tor the given conditions. It is relt that this compromise limits
the uscfulness ¢of tle rree Mach number interpolaticn scheme; and the re-
mainder of the resulis cons \deud herein will be restricted to the use of
the present data tor M = 0.2 only, with occasional reference to the use of
the Rhetference 1 dato.

The actusl effect of thuere potentially unstable repions ou lhe stall fiut-
ter respouse of the rotor is probally not too serious Teor the rew cases
considered so rar in this report. This is Lecause e torsional vibration
frequency of 27.3 ¢ps corresponds Lo an 8-cycle-per=-revolution torsional
motion; hence, each complete oycle will extend over Y% degrees or azimuth.
The largest of the lwo unstable regions predicted by the use of the present
data for M = 0.2 extends for cnly 25 acgrees of azimuthj; therefore it is
incapable of exciting more than a half cycle of torsional response. There-
after, the aerodynumic dmmping returns te a large pesitive value, which is
sufficient to damp out the motion. i

COMPARISON WITH RESULTS OF REVEREKRCE 2

After the work reported lierciv wi:i wwll under wayr, it was found that a
perallel study had been carried out, Reference 7, "5 which both an oscill-
atory limit-cyecle experiment was conducted and & stability analysis based
on available aerodynamic data was carried out. The significant result of
Reference 2 is the Tact {hat a reglion ot instability can exis} for the 3
retreating blade, This is shown in Figure 13 ol Reference 2 and it is

interesting to note that the damping varisasvion with | rportrayed in this

Tigure f'irst Increascs with y  for the advancing blade and reaher a

b sk

maximum value at approximately ¥ = €0 degrees, after which i¢ .. reases
to zero at approximately o = 225 degrces, which indicatss an instability
over the approximate range 225°< § < 300%. ~ is beurs a -2ry strong re-

semblance to the results shown in the lower portion of Figar« 5 of the

present volume, although there are certain significant diffe - .ices between

the two results, particularly in the region of the retreating blade.

Specifieally, the present resuii iodicates two narrow,unsiab.s rogions

separated by a stable region, while the Relerence £ result pre icts a

rather broad, continuous region of instability. (Note that the result

based on Reference 1 data in Figure 25 2iso agrces closely with the result o
from the present data; the deep instability over the range 3L0° < ¢ <

366° is matched almost exactly,and there is s tendency toward instabilivy

in the vicinity of ¢ = 240 degrees.)

ISV

The general agreement between the present resultz and tho e of Reference 2
is very encouraging in view of the Tace that, altnough these were parallel
studies, they were carried out independently oi one another and utilized
distinctly different sets of inputl data, Luih Jur r1otur gerformance charac-
teristics and for unatcady aercdyramic damping data.

The cdifferences in input data lead directly to the differences in the sta-
bility results on the retreating bla‘e. First, the damping data used in
Feference 2 were synthesized from esy.ier results in Reference &, 12, and
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15, Although ihese duta were corrected for static stulling angles and
rotational axis location, the basic profile shapes were undoubtedly d°f-
ferenl from the NACA 001> profile used herein and could conceivably lead to
differences in the coerficient values. 1n particular, the first two-dimen-
sional damping carve {0 become negative in Figure & of Reference 2 is that
for a = 8 degrees; whereas in the present study, the first io become neg-
ative is that for & = 13 degrees, as secen in either Figure 1% or in Table
IV. These differences in damping coefficient behavior are certainly re-
flected in the three-dimensional damping response differences noted above.

A second important difference between the two results lies in the rotor
loading characteristics considered in each case. In Reference 2, the max-
imum blade incidence angle is ¢ = 10 degrees on the retreating bdblade,
which yields almout the maximum possible vulue of negative acrodynamic
damping. In contrast to ihis, the maximum rotor incidence angle for the
present case is o = L0 Gegrees on the retreating blade (see Figure 23)
which is considerably beyond the point of maximum negative damping and, in
fact, is also cor.iderably beyond the point where the two-dimensicnal damp-
ing becomes positive once again. Thus, the double instability predicted in
¥igure 25 is explained quite simply by a careful study of Figure 23. 1n
particular, Figure 23 inilirates that an initiual region of instability may
i m ountered in the third quadrant as the incidence angle increases
thruy, % the negative damping regime, Tollowed by a stable regica as the
positive damping regime is penetrated at high incidence angles. A second
region of instability may be encountered near ithe interface of the fourth
and first quadrants, as the incidence angle decreases once again through
the negative damping regime.

STABILITY IMPLICATIONS OF LCADING VARTATIONS

The observations of both the similarities and diTrerences beuwcen the pres-
ent work and the results of Reference 2 led rather naturally t¢ the question
of rotor loading varistions and to whal their effect on rotor stability
might be. (. cifically, it was decided Lo reduce ihe effective loading of
the maximun .oac. zondition of the S-61F to determine whether or not the
system would exrerience ithe same extended rerion of instasbility as that
descrited in Reference 2. Rather than employing an exsct rotor periormance
calculation for each new loading condition desired, it was decided instead
to multiply the entire inc.dence angle distribution over the rotor by a
constant factor. In other words, a factor of 0.5 might be applied to the
incidence angle distribution over the rotor disc, whereupon all iuncidence
angles would be halved before the table search for damping values would be
employed. No changes were made in the k-distribution. Although this pro-
cedure neglected the <ffect of loading changes on rotor inflow, it was felt
that any error incurrre’ would be of second order in relation to the ob-
served changes in stabiliiy characteristics.

The values of the incidence angle multiplier chosen for this study were
0.9, 0.8, 0.7, 0.667, 0.5 and 0.375. The results cbtained with ihese mul-
tipliers are presented in Figure 2. 1t is clear, from the bottom portion
of Figure 26 that the incidence angle reduction vroduced by the 0.8 end 0.9
multipliers was insufficicnt to remove the stable region lying between the
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unstable extremes, although the two unstable regions tended to move toward
one gnother, TFurthermoare, the azimuthal extent of each unstable region in-
creased with decreasing multiplier level.

In the center portion, the 0.667 and 0.7 multipliers both yielded contin-
uously unstable regions., In both of these cases, it appears that the mul-
tiplier caused & sufficient reduction in @ to prevent the incidence angle
from exceeding the upper limit of the unstable region. Although the ini-
tial and final aczimuth angles for instability are somewhat less than they
were for the original data, the total extent of ithe unstable region is con-
siderably greater for the 0.7 multiplier than for the original data. Spe-~
cifically, it encompasses 9% degrees of azimuih, for an 8-cycle-per-
revolution torsional motion, this amounts to slightly more than two full
cycles of motion whieh cuan be excited by this unstable region. This be-
havior is now gquite consistent with the result given in Reference 2.

Finally, in the top portion of Figure 2, the multipliers 0.% and 0.37Y are
small enough to reduce the incidence angle to levels below the unstable
limit. In fact, use ot the 0.375 multiplier yields a near sinusoidal re-
sponse, characteristic of potential flew behavior, No stall fluiter would
be possible with these multipliers.

A further clarification of these stability characteristics is atforded by
Figure 27 in which the k~-a trajectory for one cycle of motion for each
of three multiplier values has been superimposed on ‘e top view of the
aerodynamic damping surface for M = 0.2 cnly. This figure clearly shows
that, in the case of the original data, the trajectory passes coupletely
through the unstable region twice and emerges inuto the stable regicns on
either side of it each time. This acccunts for the double region of in-
stabilitly for this case. 1t is also zeen that the trajectory for a mul-
tiplier of Q.7 remains within the unstable region over a substantial por-
tion of each cycle, which produres the extensive region of instability.
Finally, the trajectory r1or a rmultiplier of 0.5 is seen to miss the un-
sitable region completely.
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RESULTS

With regard to the two-dimensional damping parameter in pitch for the NACA
0012 airfojl, Lhe following resulils were obtained:

1. The measured values of the tvo-dimensional serodynamic darping pai-
are in good agreement vith potential {low theory for

ameter, g
am < 9% . and der-t from tlie theory Tor

low mesn incidence angles,

apy 212° .

2. At low incidence angles, riaz increases linearly with reduced
frequency puarameter, Kk .

3. At high incidence aangles, ~g2 i-i4ially increases with k

then decreases to a negative level (umplying instability), and inally

increases again.

4, The Reference 1 and the preosent duta are in gererally gowi ag: enent
over & substantial range of both k and auw . Both sets of date
predict essentially the same two-dimensional stau’lity boundary at
noderate values of K . Other results for nuch different profile
shapes are in gcod qualitative agreement with the ypresent data.

With regard to ths three-dirmensional Jdamping in pitch and the atiendant
5tability of an S-61F helicopler rotor blade, the following results were

obtained:

. At low blade loading and rlight syeed, the rator blade is stable over
the entire cdisc. Tre domping in pitchk is grester for the advancling
blade than for tne retreating blade,

6. At large blade loading and Tlight speed, the rotor blade is stid:
stable over the advancing portion but fends toward instability over
the retreating pcriion of the rotor dicsc,

7. In the cuse of the largest loading and flighi speed considered thus
far, the predicted negative damping regicn {or the retreating b.ade
is cenfined to two small pocrets, each of which exterds over an in-
sulfficient amzinuth range to ex ite more than one-half cycle o tor-
cjonal motiown,

8. Use of the Refercnee 1 datg yields s)iphtly larger Tlude dwnmping for
the advancing blade Lutl jroducer 2000 agreeme,t with the present duts
yor the retreating vtlade, oven in the cane of rotreating bLiude insta-
bilivy,

9. If the lecading ic reduced (without chunging iunflow), a conditicn can
bLe reached wherein two 'all cycles ol torsionsl molion can be cxcited
vy the negative damping of the retreating bLlade.
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10, The results of the present stab
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lity anelysis are in good gqualitative
agreement with the resulis of f
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3 are iuadequate for use
0.2 are suflficient, but
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1l., The available iwou~dimensional date for M = 0,
r ible flow regime.

in the stability analysis. The data for M :
they sre linited to the low-velccity incompre
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TABLL I. ORIGINAL TWO-DIMENSIONAL AFRODYNAMIC
DAMPING DATA, Eiaz, FOR M= 0.2
f(cps)= 0.5 1.0 2.0 k.o 8.0 12.0 16.0
K = 0.0140  0.0281 0.0562 0.1125 0.2250 0.3375 0.h500
Qe Pitching Auplitude, O = 4°
o 0.111 0.222 0.386 0.536
3 0.111 0.261 0.386 0.536
6 T0.092 0.235 0.373 0.523
9 0.092 0.261 0.392 0.516
12 -0.020 =C.052 -0.02n0 0.072 0.307 0.4351 0,431
15 -0.020 -0.183  -0.23% -0.346  -.026/-.065 .268/.045
18 0.536 -0.686 0.360 L7865/ .569
21 :
24
27 0.477T  0.157 0.732 l.12h/1. k31
30 0.307 0.065 .523/.503  1.131/1.046
3R -0.118 -0.190 .602/.915 -.301/-.810
ap® ' Pitching Amplitude, @ = g°
0 0.131 0.259 0.485 0.636
3 177/.119  0.264 0.h47 0.619
6 0.137 0.079 0.467 0.651
9 0.160 0.1k 0.482 0.£30
12 -0.012 0 017 0.029  -0.04k4 0.058 0.392 Q.60k
15 -0.081 -C.078 0.099 ¢.055  -0.177 .028/.195 0.351
18 -0.11¢ 0.110 0.015 0.099  -0.360 -0.67h -0.253
21 ' 0 .40k 0.459  -0.346 -0.572 -0.468
24 0.029 0.020 0.058 0.471 0.911 0.813 0.279
27 0.0ks 0.369 0.270 0.503 0.709 1.173
30 0.232 .148/.2v6 0.569 1.156
) 0.1%6 0.465 0.691 0.918

Ly




TARLL T - CON CLUDED
f(cps) = 0,5 1.0 2.0 4.0 8.0 12.0 16.0
k = 0.0150  0.028L  0.0%7:  0.110%  0.2250 0.337% 0.14500
ame Pitching Amplitude, & = 8°
0 0.127 0.266 0.4602 0.619
3 0.130 0.286 0. 4hk
6 0.139 0.266 0.458
9 0.152 0.510 O.hTT
12 0.020 0.059 0.292  «0.062  -0.0%3 0.248 0.536
15 0.047 0.05k 0.015 0.0%2  -0.221 ~-0.098 0.092
18 0.0hT 0.170 0.237 0.190  -0.258 -0.006 -0.302
21 0.066 C.137 0.294 0.369 ~0.183 -0.660 ~0. 80k
2h 0.051 0.141 0.399 0.430 0.417 -C.186 -0.784
27 0.111  -0.007 0.330 0.150 0.595 0.770 1.028
30 0.085 0.093 0.508 0.023 0.458 0.585 1.085
32 0.028 0.036 -0.103 0.145 0. 469 0.802
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TABLE II ORIGINAL TWO-DIMENSIONAL AERODYHNAMIC
- DAMPING DATA, = FOR M = 0.3

—
gD

t{cps)= 0.5 1.0 2.0 4.0 8.0 12.0 16.0
k = 0.009k  0.0187 €.0375 0.0750 0.1%0 0.225 0.300
A p° Pitching Amplitude, @ =4°
0 0.064 0.176¢ 0.281 0.392
3 0.085 0.183 0.31k 0.366
6 0.098 0.209 0.314 0.399
9 0.098 0.000 0.340 0. 4Ll
12 0.059 =0.052 0.013 0.092 -0.150 ~0.013 -0.477
15 0.007 ©0.177 0.320 0.085  0.7288 0.026  -1.373/-.889
18 0.059 0.601 0.726 .196/-,281
o1 1.431  0.902 1.712/.798  .431/.706
2bh 0.863 0.614 0.595 1.373/1.575
27 0.523 1.229/1.503 1.203/1.1hk4
an® Pitching Amplitude, @ = 6"
o} 0.096 0.177 0.285 0.383
3 0.087 0.168 0.279 0.398
6 0.099 0.186 0.282 0.L12
9 0.038 0.166 0.311 0.430
1z : 0.070 0.215 0.0L7 ~0.0T73 -0.171
15 -0.058 0.i157 0.134 0.322 0.182 -0.523 -0.250
8 0.0y 0.122 0.261 0.360 0.317 ~0.110 0.059
21 0.601 0. kel ~0.032 0.613
2h 0.221 0.749 0.651
27 0.273 0.4¢8 0.511 0.186
30 0.192 0.325 0.314 0.581
32 0.131 0.224




TASLE 17 - CONCLUDED
f(cps)= 0.5 1.0 2.0 b0 8.0 12.0 16.0
k =0.009%  0.0137  0.,037% 0.0Y52  0.150 C.204 0.300
am® Pitching £fmpl tuda, @ = 8°
0 C.05, ¢.193 0.312 0,407
3 0.085 0.186 0.314
6 0.093 0.214 0.309
9 0.131 0.001 0.227
12 -0.013 -0.087 0.095  -0.15h4 0.240 -0.045 0.291
15 -0.025 -0.103 -0.134 0.294% .358/.173 0.322 0.103
18 -0.052 -0.003 0.172 C.324 0.367 ~.157/-.229  .002/.060
21 0.078 0.047 .24y 0.358 0.4k85 C.163 0.216
o4 0.221 -=0.526 -0.371
27 -0.054 -0.002 -0.138 0.34%0 0.4h9 0.54k4
30 ~0.075  =0.162  =0.0462 .01 0.216 0.567
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TABLE I1X,  ORIGINAL TWO-DIMENSIONAL AERODYHRAMIC
DAMPING DATA, E,,, FOR M= 0.k
(cps)= 0.5 1.0 2.0 4.0 8.0 12.0 16.0
k = 0.00T 0.014 0.028 0.0562  0.1125 0.1688 0.225

a,’ Pitching Amp. itude, @ = L°

o 0.072 0.124 G.222 0.307
3 0.072 0.1kL 0.216 0.31k
& 0.085 0.163 0.242 0.320
9 0.14%  .150/.137 0.281 .373/.281
iz 0.013 0,026 0.098 0.183 0.412 0.484 -.170/.111
15 0.059 -0.CT2 0.196 0.039 0.418 0.543 0.569
13 0.320 0.575 1.013 0.771
21 0.373 0.131 0.765 1.020
24 0.183 0.523 1.020
an® Pitching Amplitude, @ =6°

0 0.06L 0.122 0.206 0.288
3 0.061 0.139 0.212 0.29G
€ 0.093 0.186 0.267 0.369
9 0.090 0.17k 0.183 .163/.232
12 0.006  0.020 0.006 0.134 0.116 0.163 0.102
15 0.015 0.023 0.110 0.078 0.038 0.067
18 0.055 -=0.023 0.041 0.151 0.38a¢ 0.177 0.090
21 0.343 0.378 0.392 0.30%
24 0.035 0.256

ap’® Pitching Amplitude, & = 8°

0 0.0560 0.136 0.21k 0.320
3 0.06% 0.149 0.239

6 C.098 0.126 0.147

Q 0.113 0.1kp 0.1h41
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PARLE VIIT . TORSIONAL MODE SHAPE FURCTION, foiw)
Dimeunsionless Mode Chape

Radiug,r, (1) Spunwise Ctution,n Function,fy
8.4Y4 0.000 .32
10.81 0.105 o.h2
13.19 0.211 0.51
15.56 0.316 0.50
17.9k4 0.421 0.09
20.31 0.526 0.78
22.69 0.637 0.8
25.06 0.737 0.93
27. 4L 0.842 0.98
29.81 0.ohT 1.00
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CHANNEL WIDTH=273FT
CHANNEL HEIGHT =775 F71

PITCHING LINKAGE WITHIN
SPLITTER PLATE

MODEL

AIRFOLL

SPLITTER PLATE
LEADING €DGES

75-HP, 3-PHASE
MOTOR

ECCENTRIC CAM
SYSTEM

MODEL SUPPORT PEDESTAL

Figure 1. Two-Dimensional Channel for UAC
8-Foot Octagonal Wind Tunnel.
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jii
PROPORTIONAL  TO } i
PRESSURE DIFFERCNCE

AMPLITUDE, tApIx 2

Figure 3. Oscillograph Traces of Pressures ou Oscillating
Two-Dimensional NACA 0012 Airfoil; M=.4, f =4 cps,
c=2+%t, k=.057, @ =6°
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Figure 5. Unsteady Pressure Coefficilent Magnitude Versus

Chord Station; a =&° M=.3.
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Frequency; 3 = 6°
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STALL FLUTTER FLIGHT CONDITION BOUNDARIES

PURPOSES AND METHODS

Upon completion of the stall flutter analysis described previously, it was
recognized that stall flutter stability analyses for a more comprehensive
set of rotor loading conditions were nceded to provide some definition of
those flight conditions which would bLe particularly troublesome from the
standpoint of stall flutter,

The S-61 otor was chosen a3 & medfum fur these additionel studies, and

the Norual Mode Transiernt Anulysis wae used to calculate required input
data for the stability snalysis. Hotur rotatizr4l tip speed was kept at
660 ft/sec. Rotor shaft angle wars cssentinlly zero, and uniform inflow

was assumed. It should be noted that elastic hilade deflections were in-
cluded in the analyses. Rotor flajjlng was trimmed within 2 degrees for
all cases, while collective pitch was chianged to produce variations in
rotor lift and torgue. Advance ratios of 537, 473, .Lke2, .381, .317, and
.256 were chosen, corresponding tu forwurd speeds of 210, 185, 165, 149,
12k, and 100 knots respectively. At each advance ratio, from five to eight
collective pitch settings were found which caused the rotor blade to be
torsionally unstable for pert of the azimuth, in addition to one or two
vhich caused it to be completely stable. The Normal Mode Transient anal-
ysis provided azimuthal and radial variations in angle of the attack and
Mach number for input to the stall flutter stability analysis described
earlier. These data included elastic blade deformations due to inertial
and quasi-steady aerodynamic forces, including stall and compressibility
effects. The stability analysis program provided data such as that shown
in Figures 2L through 26. The Sikorsky Aircraft test data for Mach number
M = 0.2 were used, since these data were the most comprehepsive and sppli-
cable. Witn reference again to Figure 25 as an example, the total number of
degrees of azimuth for which negative three-dimensional aerodynamic damping
existed was determined and designated Wy . This was used as a parameter
for measuring the intensity of stall flutter. With the present analysis,
this would seem to be the most suitable parcmeter for judging the severity
of stall flutter,

RESULTS

The tctal unstable stall flutter azimuth range vy was plotted against
rotor 1ift coefficient solidity ratio C_/c for the advance ratios .S37,
473, and .422. These plots are shown in Figure 28. Note that these
graphs define the purameter wgs as a single-valued function of CL/o

for each advance ratio. Unfortunately, similar relationships were not
generally obtained for the lower three advance ratios. It was found in-
stead that a range of values of g were possible for a given value of
CL/oc . For this reason, plots of the form shown in Figure 28 could not
be provided for the advance -atios .381, .317 and .256. However, the re-
sults shown in Figure 28 were cross-plotted as shown in Figure 29, to pro-
duce boundaries on a (/0 versus g plane. as originally intended.

€

Shach,




In order to produce flight condition beoundaries which would include the
lower advance ratios, some other rotor performance parameter was needed,
and the rotor torque coefficient-solidity ratio was chosen for this pur-
pose. Figure 30 was thereforec prepared from the previously calculated
data. The corresponding cross plot is shown in Figure 31.

DISCUSSION

One of the basic aspects of flutter on helicopter blades in forward flight
is its dependence on quantities which change with azimuth angle. This is
particularly true of stall flutter, which tends to occur on the retreating
blade side of the rotor disc, since angles of attack beyond stall occur
there. Thus, as would be expected, the stall flutter analysis predicts a
limited gzimuthel range of irstability. Tt would be expected in practice
that blade torsional vibrations would increase while in the unstable re-
gion and decrease or damp out while in the stable azimuthal region. There-~
fore,it is obvious to expect that the torsional amplitude reached and the
number of cycles of significant torsional amplitudes would grow with the
azimuthel range of instability. This range of instability is conveniently
obtained from the present stall flutter analysis. More elaborate param-
eters might be proposed for use with the data in their present form, such
as an integral of work dorne on the blade by the aerodynamic torsional
couples as the blade vibrates continuously at some nominal amplitude and
traverses the region or regions of instability. In view of the limited
-range of data available, the selection of the extent of the total azimuthal
range of instability as a parameter is a;iropriate,

The curves on Figure 29 define values of rotor 1ift coefficient for which
the stability apalysis predicts various amounts of unstable azimuth range.
At a given edvance ratio, increasing rotor 1lift from the stable region
first causes a small region of instability over a range of azimuth angles
on the retreating blade. This aree increases in extent with rotor 1lift,
until the blade angles of attack reach high enough values to enter ancother
area of stability. The region of instability then splits into two smaller
reglons, which diminish in size and grow farther apart in azimuth as rolor
1lift increases. These observations are illustrated by Figures 24 through
27 and in the corresponding earlier discussion. Note that the bcundary
segments which are below the maximum value of g at each advance ratio
on Figure 29 correspond generally to a continuous region of instability,
and will probably cause the highest torsional amplitudes.

It is of particular interest to compare Figure 29 with a chart of a similar
type appearing as Figure 12 in Reference 2. The slender region yg = 100°
on Figure 29 approximates an extrapolation of the points plotted for the
full-scale H-21 test on Figure 12 of Reference 2.

The practical significance of the boundaries on Figure 29 will be discussed
next. Since the S-61 rotor torsional natural frequency and the expected
stall flutter frequency are about 8 cycles per revolution, each period of
torsional vibration at its normal tip speed is represented by about kS
degrees of azimuth. Some judgement is required in order to stipulate how
many cycles of instability are required to produce trouvlesome amounts or
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The lurgest values of  ygr cbtuined at the lower three advance ratios

( = 381, .317, snd .0°%0) occurred at values of Ci /0 , which were
practically ccincident with the test values for the H-71 rotor on Figure
12, Reference 2, which was mentioned ecurlier. The values of  yer were
120°, 1307, and 1409 respectively. 1t was Tound, however, that wge

could vary widely with litile or no change in C /0 Dbecausc of heavy rotor
stalling. Thus, the trimmed rotor could be operated at advance ratios and
lift coefficients close to those given above with very little stall Tlutter
instability. The occurrence of stall rlutter was found to be more the re-
sult of extensive blade stalling than the result of attainment of a partic-
ular value of rotor 1lift.

Since the occurrence of btlade stall is accompanied by 1 rapid rise in blade
section drasg, it was suspected that rotor torque would provide a more
definitive indication of conditions for stall flutter. This proved to be
the case, and Figures 30 and 31 show the resulting boundaries. It will be
noted that the lower boundaries occur at a fairly constant torque level as
advance ratjo is varied,

The calculation of a few rotor loading cases for the untrimmed rotor and
for shaft angles other than zero showed that the stsll flutter boundaries
will be moderately affected, although no particular trends could be de-
fined.

The radial and acimuthal distribution of angle ot attack would, of course,
be somewhat different if nonunitorm intlow were used in place of the
assumed unirorm inflow. Usually, the inclusion of nonunitorm inflow tends
to reduce angles ol attack on the retreating bludes; hence, the boundaries
presented would probably be shifted upward somewhat.
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CONCLUSIONS

The measured values of two-dimensional aerodynamic damping parameter
in pitch, Hao2 , are in good agreement with potential flow theory
for low mean incidence angles, aw < 9°, and depart from the theory
for ay 2 12°.

At high incidence angles, ay 2 12°, the damping parvmeter in pitch
decreases to negative or unstable levels; it then increases to positive
values again if the mean incidence angle is increased enough. This is
true unless the reduced frequency k 1is smaller than about .15.

The Reference 1 data and the present data are in generally good agree-
ment over a substantial range of both k and a, . Both sets of
data predict essentially the same two-dimensional stability boundary
at moderate values of k .

The available data corresponding to M = 0.2 are adequate for the
analysis of contemporary rotor systems. More extensive ranges of re-
duced frequency and angle of attack data are needed at other Mach
numbers.

The results of the stability analysis for the S-61 rotor are in good
agreement with those of Reference 2.

Use of the Reference 1 data yields slightly larger blade damping for
the advancing blade but produces good agreement with the present data
for the retreating blade, even when instability is present.

The rotor lift coefficient-zolidity ratio is a suitable parameter for
definition of stall flutter boundaries at advance ratios of .42 and
above.

The rotor torque coefficient-solidity ratio is a suitable paramefer
for definition of stall flutter boundaries for all advance ratios.
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RECOMMENDATIONS

The existing data described in this report are adequate for contem-
porary rotors and operating conditions. As rotorcraft forward speeds
increase, it is evident that a much larger range of data will be
needed, including data for a simulated reverse-flow region.

The analysis described in this report is based on the calculation of
torsional work for a hypothetical cycle of torsional vibration which
takes place at a number of discreet azimuth locations. On the actual
rotor, the azimuth angle and therefore the mean angle of attack and
relative velocity changes continuously during the torsional vibration
cycle. In future stall flutter analysis and testing, consideration
should be given to the time history of the large variations in relative
velocity and meen angle of attack that are actually taking place during
a8 cycle of torsional vibration.
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. APPENDIX I
TWO_DIMENSIONAL UNSTEADY MOMENT FORMULATION

In the following anelysis, it is assumed that the twn-dimensional airfoil
section iz executing a single-degree-of-freedom torsional motion about a
pivot axis at 0 . This motion is assumed to have a torsional amplitude,

@ , and a torsional frequency, W = 2mf . (As stated earlier in the main
body of this report, complex quantities will be denoted by an asterisk
superscript, and amplitudes of sinusoidal functions will be denoted as
barred quantities, suchas @ .)

The complex, unsteady, total twisting moment Mfhr experienced by the
airfoil about its pivot axis will consist of the sum of the steady mean
moment My associated with the mean incidence angle am and the unsteady
moment M} associated with the torsional displacement relative to the
mean incidence angle g*

L
Mror = My + My (67)

A convenient expression for the unsteady moment due to a single-degree-of-

freedom torsional motion about a pivot axis at Q@ 1is given in References
8 and 13 as

i = 7ot - (ot ) ald + T A G

In Eq. (68), the quantities Lpn , Lg , Mh , Mg are unsteady lift and
moment functions which may be taken from any convenient theoretical or
empirical source, and the unsteady torsional displacement has been written
in terms of the torsional amplitude as

o* =G (69)

The moment coefficient will be defined by the general equation

M
3 PUR(2b)? (70)

Cu*

and after a bit of manipulation, Eq. (68) becomes

» k2 2 o
Cw, = 5 [Ma -(La+ Mh)(é— +o>+ Lh (;_,— +o) ] gow! (71)

80

e oo 1 it R b A



R AT LT ST YR WY

g

This formulation will be returned to later. Initially, though, the a?al-
ysis will proceed in a more general fashion, beginning with the coefficient
form of Eq. (67),

» »
CMTOT = Cu, * CMU (72)

and if it is assumed that the unsteady moment coefficient is a perindic
function, it may be written as

iwt
Cuy, = Twy @' (73)

*
where the amplitude emg, is still regarded as & complex quantity to
account for the phase shift between torsional displacement and moment re-
sponse. Thus, Eq. (72) becomes

* = * _jw!
CMTOT- CMM+ CMU e
z Cy. +(Cy +i iwt '
o + (gt 1Tuy ) @ (74)

and in terms of the notation of Eq. (71), the real and imaginary parts
are given by

Cmyg ® ‘WZLZ[MGR“ (LaR"‘ Mha)(—é' +0) + Lhn(% + 0)2] a (75)
Cuy = -’LZ"-Z[MOI ~(Laz+ Mhz)(5 +a) +Lng (—'2-+c)2]6 (76)

It is convenient at this point to derive the expression which was used to
provide the unsteady theoretical moment loops shown in Figure 10. To do
this, the condition of 25% chord pivot will be imposed on Egs. (74), (75)
and (76), whereupon the mean moment vanishes, Cwvm O , as does the factor
1/2 +0=0 . Then, substitution of Egs. (75) and (76) into Eq. (74) and
expansion of the exponential factor yields the eguation

% .
Cmror = %kz(MaR*‘ IMgr)(cos wt +isnwt)a (17)



which has a real part given by

C“TOTR 2 %kZ(MQR cosut - Mgy sinwt ) a (78)

The time variable in Eq. (78) may be eliminated by manipulating the ex-
pression for the total incidence angle, which consists of the sum of the
mean incidence angle, @y , and the torsional displacement relative to the
mean incidence angle, g% , or, by using Eq. (69),

ajor = am+a*: ay+ae'w (79)
The real part of Eq. (79) is given by

Qp = @y +acos wt (80)

wvhich may be solved for cos wt as

-a
coswt = -9-35—“- (31)

Use of the well-known trigonometric identity relating sin® wt and cos?w!?
yields

and substitution of Eqs. (81) and (82) into Eq. (78) leads to the result

CMror, © gkz[Man(0R~GM)1’-’Ma1«/02‘(QR-GM)z] (83)

vhich is valid for anm airfoil oscillating in pitch about its 25% chord.
For use elsewhere in this report in comparing theory with experiment, the
function Mg may be specialized to the case of an incompressible, poten-
tial flow past the airfoil (Reference 8)

Ma = 5 - ¢ (8L)

[@2]
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whereupon Eq. (83) reduces to the form

CMrote * 1r2k ['g—k (aR‘aM)t.‘\/az" (aR"aM)z]

In this equation, the negative sign is associated with increasing ar
and the positive sign with decreasing ar

(@4
tas

(85)
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APPENDIX II
DERIVATION OF THREE-DIMENSIONAL DAMPING EQUATION

The equations necessary to determine the three-dimensionel aerodynamic
damping will now be derived. Use will be made of the formulation pre-
sented on page 210 of Reference 8, with the notation altered to conform
with present usage. As in Reference 8, the development begins with the
relations for the virtual work due to a torsional displacement,

- My _
SwW = MU:/SG (r) = 7;}7’%‘5) fa(r)adr (86)
where
s/ . Mu*
MUZ/ b It~ (87)
is the unsteady moment per unit span and

is the spanwise twist amplitude distribution, @; is the twist amplitude
at some reference station (in the present case, the reference station is
at the blade tip), and fg(r) is the normalized mode shape distribution.
The subscript 2 has been appended to the unsteady two-dimensional mcment
to distinguish it from the three-dimensional quantity which will be in-
troduced presently. The generalized force per unit span in torsion is
obtained by dividing the virtual work by the virtual displacement.

AL : |
0" 5. ATt )falr) (89)

Hence, the generalized force over the entire span (i.e., the three-dimen-
sional unsteady moment) is obtained by integrating Eq. (89) over the span
of the rotor blade, or

rr v
* wy, -
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As in Eq. (69), the two- and three-dimensional moment coefficients are
defined by the formulas

2
MU;:(r)=-%p(rnF(r)[2bU)] CMU:(')

Mu3 = $Pr Ur? (2br)? Cuy (91)

where the subscript T denotes values taken at some reference station.
After Eqs. (91) are substituted into Eq. (90) and the equation is divided
through by the reference quantities, the result is given by

» | rif PUZb2 »
z C fqlr)or
SO e M e 5Z )Mz fa (92)

The imaginary part of each side of the equation will now be taken, in
amplitude form, and use will also be made of the dimensionless spanwise

variable

_I-rn

m = re=ro (93)
whereupon Eq. (92) becomes
- ! pu2 b2 -
CMUSI - [o <pTUTz sz> CWZI fa("”‘”? (9h)

The two-dimensional moment coefficient amplitude function on the right-hand
side of Eq. (9%4) may now be replaced by Eq. (36); and after using Eqs. (39)
and (88) for p and  a(m , respectively, Eq. (9L) becomes

— _ - | Puzbz —
Chyy, = -1 [ PLUE b.2> Fazfa (m)dn (95)



As in Bq. (35), the three-dimensional aerodynamic damping in pitch will be
defined by the derivative form,

HCuy gy

as = - d&T (96)

I

After the operation defined by Eq. (96) is applied to Eq. (95) the result
is

1

:j" _-P_ﬁt?.i_ = fZ
a3y " J, P uZbf ) 92 a (M d7 (97)

In the most general case, Eq. (97) takes into account the possible span-
vise variations in the parameters p , U , and b . However, in the
present study, both the density and the semichord will be assumed to be
constant over the entire active span of the rotor blade, and only the
velocity will be considered to be & variable quantity. Thus, after de-
fining the spanwise velocity ratio by the formula

v(m)=Uu(n/Ur (98)

the final form of the three-dimensional damping parameter will be

I
— — 2
Ea,* f Eapv2(Mfa(man (99)
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