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FOREWORD

Pulling down the vent of a parachtute is a standard method of controlling

the drag. This report presents a coherent theory for predicting the shape,

drag, and stresseý3 in a steadily descending canopy with a pulled-down vent.

P. computer program is based on the analysis.
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:1 1ABSTRACT

I~

The previous analysis of the author for flat circular canopies in steady

descent is here- extended to deal with canopies having a ?ulled-down vent. A

general theory iz developed, and a partial, approximate solution is found in

I closed form for certain conditions. The general theory is taken as the basis

S I of a computer program. An example is worked out to demonstrate the use of

Sthe program in determining the optimum length of ce.,ter line. The results are1 -
compared with tests and fairly good agreement i-n obtained. The most interesting

! • outcome is the prediction that the maximum fabric stress is greatly reduced by

pu.l..ng the !ent down.
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1. INTRODUCTION

S[~I*

In an earlier paper [ll the writer described a procedure for analyzing

the shape and stresses in a flat circular parachute during steady vertical

descent. This treatment does not assume that the shape is known in adv3nce

but finds it and the stresses as functions of the pressure distribution. The

resulting computer program gave reasonable results for more or less practical

pressure distributions.

The purpose of the present paper is to show how this analysis may be

extended to deal with a canopy having a so-called pulled-down vent (see

Figure 1). Much of the analysis is identical with that in [1), but there are

subscantidl differences in the edge conditions. These differences make it

possible to derive moderately accurate, approximate formulas for the canopy-

shape in some cases, but increase slightly the difficulty of solving the

-I problem by numerical means.

The analysis of the canopy with the pulled-down vent is described in the

"next Section. Section 3 contains a derivation of the approximate formulas

for the canopy shape. The approximata formulas are not used- in the na-ln in-

vestigation becauae they are sometimes inaccurate. Rather, the principal

effort in this paper is a numerical analysis leading to a computer solution

of the problem, and this is described in Section 4. Section 5 presents -the

results of the analysis, showing how the drag, shape and stresses depend on

the length of the center line that Pulls down the vent. The resul2t's are - -

"I!. discussed ir, Section 6.

'Numbers in brackets designate References at end of paper.
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Figure 1. Sketch of Canopy in Flat, Circular (Undeformed) State.
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2. ANALYSIS

We shall assume that the canopy may be treated as in Ei]. The most im-

portant hypotheses introduced in this analysis are listed below:

a. The canopy is descending vertically, and each gore and cord has

- the same shape and forces as all the others, i.e., the caopy is, roughly

speaking, axially symmetric.

b,, All meridional forces are borne by the cords, and the gore.s ex-

oerience only circumferential stress.

c. All strains are small, although displacements and rotations may

be large.

d. The meridional curvature of the deformed gore is negligible con- £Ar
ii• • areid dith the circumferential curvature.

, e. Points of a gore that in the flat, circular state lie on a cir-

I , "cular arc about the canopy center lie X, the deformed state on a plane, cir-
{ _=

cular arc, that plane being perpendicular to the deformed cords.

General sketches of typical undeformed and deformed gores are shown in

Figures 1 and 2.

4 With these assumptions the equations governing the canopy were found inI} I

*i , .i], and we reproduce them here withot.t deriving them. The details of the

I : derivation can be found in [Ei.

dr/dR f cos (1)

d#/dR (f/Ns) [pra - 2Nc sin(a/2) sin#] (2)

dN /dR = 2 fNc coso sin(a/2) (3)

a
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where

f 1 + ts, ts Ns/Ec (4)

:'nd the various quantities are defined in the Nomenclature. The quantity Nc

is found as follows:

let

A 1 + [prc/(2Lf)] - (w/2) (r/R) (5)

if A < 0: Nc = Ef cos B [(r/R) (W/sinB) -1] (6)

where B is found by solving

sin e 8- B r/R + [pra/(2Ef)) = 0 (7)

and

0

If A> 0 NC 0, 8 w/2 and o' RaA/2 (8)

Figure 3 shows sketches of the two possible cases that give rise to the

alternatives A c 0 and A > 0. The circumferential fabric stress is

expressible in terms of 8, as

SNf = Ef [B(r/R) csc 8-11 (9)

bThese equations constitute a system of three first-order, non-linear,

ordinary differential equations for the quantities r, * and Ns. This differs

from common systems of such type in that the right sides of the equations

cannot be explicitly written down in terms of R, r, * and N., for Nc is ex-

I pressed implicitly in terms of r and R by Equations (5) to (8).

In order to solve this system, we must append suitable boundary condi-

tions and information about the pressure distr.ibution p, in the deformed

state. So far as our mathematical models are concerned, the only differences

.4
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between an ordinary flat, circular canopy and one with a pulled-down vent

occur in these two phases of the problem. We shall deal first with the

boundary conditions, where the most important differences are found.

Figure 4 shows a sketch of the shape of a typical. suspension line

during steady drop. Four elements make up this shape, the load lines

(deformed length Lo), the cords of the camp.y itself, the vent lines

(deformed length Li), and the central, pull-down line (deformed length

L,). The geometry of the Figure imposes the following conditions:

I

r(Ri) Li cos [-$(Ri)) (10) 1'

r(Ro) Lo sin 0 (11)
I

S+ Li sin[-4(Ri)] Z(Ro) + 1o cos f (12) -

Z(Ro) f(=') sino(R') dR' (13)_0 .JR'= (13) I
RI= R.

a O(RO) - (i/2)

The tension forces in the various structural elements are shown in

Figure 4. N is the force in the center line, Ns(R.) that in each vent

line, Ns(R) the variable tension in each cord and Ns(R.) the force in

I £ each load line. Eq~,iiibrium requires

SII� N; GNs(Ri) s!.•[-iRi)] (14)

i j WL = Np + GNs(RQ) cos 8. C(15)

7
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The linear elastic relations for the structural elements are

N {(L /L') -l1 (16)
p p p p

Ns(Ri) =Ei {(Li/Li') - i} (17)

Ns(Ro) Eo (Lo/Lo') 1), (18)

where Ep, Ei and Eo are the elastic moduli of the centerý vent and load lines
respectively and L L- and are the undeformed lengths of the corres-

pon ding lines.

We may rearrange these equations and eliminate e with the aid of (13)

to get

GiJ (Ri) sin [-O(R,) (19)

p= LI, {l + (ND)/Ep)J (20)
, !I

L. Li' {1 + Ns(Ri) ( ,.i 1 (21) I
.r(i) Li cos [-,(Ri)) (22)

together with iF

L L°'. + t Ns(R°)/E0 ) (23)

Sr(Ro) + Lo cos O(Ro) 0 (24)

"L + L. sin [-ý(R)! z(R) + Lo sin (R) (25)
Ip 110 0 0

and

ii W = N + GN(R) sin O(Ro) (26)
L p 50 0

19
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"We shall now introduce dimensionless quantities as fcrllows:

R = xRi, r =yRi, Ro X

A fp' i , L1.1 x=Ri L I I '

x, -i Li XiRi, Lo x Ro
•;• i L = pP'' L = A~i'L° •°° • (27)

Ns = tsEc, Nf = tfEf, 1 = tcEf, 2p 7 )pEp

p = 2Efq/Ri, Ef = Ecuf/EfRi

"2 = ECUP = cUo, ="

S Then the differential equation system becomes in dimensionless form.

dy/dx f cos (28)

dO/dx (fuf/ts) [2qay - 2tc sin(a/2) sin 1] (29)

I dts/dx 2fuf tc cosý sin(a/2) (30)

"f = 0+t(

and tc is found as follows: let

a 1 + qay - [Ey/(2x)]. (32)

If a < O, then a = 0 and

tc [(ylx)(8/sin3) - 1] cos S, (33)

where 0 is found by solving

sin8 - (By/x) + qay = 0. (34)

If a > O, then

t = 0 (35)

a = xaa/2. (36)

10



The vent conditions can be writter. in dimensionless form as

t = - (G/lu) ts(l) sin$(l) 037)

; p (1 + tp) (38)

• iI= 1 + ts(t.)] (39)

y(l) Xi cos(l() (40)

and the skirt conditions become

S=Xo U1 + Et s(%o)/Io]} (41)

-- Y(Xo) + A0 cOsO(Xo) 0 (42)

Z(x) + X sin(x) A + +Xi sino(l) 0 (43)

The load relation is then

w = u t Gts(xo) sin,(xo) (44)

We shall tai-e the system (28) to (31) as the equations governing the

shape and st-zesses in the canopy. The numerical procedure, to be described

•4 in the next Section, is based on this system. Before u~ndertaking this pro-

cedure it is necessary to say a few words about the pressure distribution,

q(x), that wt shall use. In practice the pisssure distribution is not kncwn

S* in advance but has to be found either experimentally or by scolving a fluid

I • flow problem jointly with the present elastic deformation problem. In the

absence of reliable information about the pressure, we shall proceed as in

[]i, ide., we shall assume that q is a polynomial of third degree in €,

I2
- q = Co + C10 + C2

2 + C3 0A

* and try various choices for the constants C, C , C and C

C1

lI
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3. APPROXIMATE SOLUTION FOR Tile SHiAPE

A certain amount of nunerical experimentation with the system (28)-(31)

shows that sometimes ts is nearly constant and raises the possibility of an
Is

approximate solution based on this assumption. We shall investigate this

possibility in this Section and see that an approximate solution can be found

provided we make some additional hypotheses.

Since the strains are assumed to be small "n the cords, we comniit li-ttle

erior if we take

f - i.

Also the number of gores, G, is usually so large that
IL

sin(a/2) = a/2.

I With these unessential simolifications we can write the system as

Sdy/dx = Cos 0 (45)

dO/dx (cLuf/ts) [2qy - tc sin,] (46)

dts/dx tcUf cos 0. (17)

w•e shall assume that the tezns containing tc are small enough to be neglected
7

in (46) and (47). It is not easy to see when this assumption is valid, be- -

cause more is involved than merely the smallness of tc itself. Numerical

experiments show that the assumption is tolerably accurate provided there is

high enough stress in the center line.

In any case with this assumption we obtain that ts is independent cf x

and the remaining equations reduce to

12



dy/dx cos * (48)

dO/dx Hy (49)

H = 2qauf/ts (50)

This system is rather simple in appearance but still non-linear. If H is

constant (i.e., if q is constant), it can be solved by standard methods,

giving

y 1{ + (2/H) [sin¢- sino(l)]}'/2 (n1)
I

x = 1 + (Hy)-ldo (52)

as the solution satisfying the conditions:

Sat x 1, y 1 and d q:C().

As yet, H is unknot because t is unspecified. To complete the
s

determination of the solution we must evaluate H eni O(W) by means of the

edge conditions. If we neglect the extensions of the various lines, so

that

jp = )p't i = = 1, X0 o'

jwe get from (42) and (43) the conditions

)L0 cos°o + Y( 0 o) =0 (53)

Ssin 0o X ine) + (Hy)-i sine d4 0 (54)

0i p
I0

I - xo 1 + (Hy)-' do. (55)J. -(i)

13



I The solution of these equations for the three quantities H, o and *(i) requires

I an iterative process dnd is at least as complicated as the corresponding steps

in the analysis using the original equationz.

it is useful to have the formulas (52) to (55) since they serve to check

the accuracy of computed results for appropriate conditions. However, they are

not generally valid, and tne difficulties in meeting the boundary corditions

-are still present. We conclude that ouir main effort must still go into a

numerical analysis of the original equations, (28')- (31).

14
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4. NUMERICAL ANALYSIS

The fundamental procedure used in this problem is similar to that used

for an ordinary, fiat circular canopy [iE and is based on a Punge-Kutta

solution of the differential equation system (28) to (31). The princilal

difference is in the treatment of the boundary conditions,

In the earlier case, where there was no- center line, there were no ver-

tical forces on the vent, and hence

S*O.) 0. j
The condition (43) was not applicable. The prcocedure was to guess ts(l),

. calculate

y(l) = 1 + tS(l),

integrate (28) to (31) numerically from x I to x = x0 and see whether

(42) was satisfied. Various values of ts(l) were tried, based on the Rule

of False Position, until (42) was satisfied with sufficient accuracy.

The present case is more complicated becauw - both O(l) and ts(l) are

unknown and have to be chosen so as to satisfy the two conditions (42) and

,I (43). Thus a two-way iterative process is required now. After some experi-

mentation the following iterative scheme was adopted. First, a value was

I assumed for O(l). An iterative process then found the value of t(l) that

I i caused satisfaction of (42). The entire procedure was repeated for different

|| choices of O(l) until one was found that also caused (43) to be satisfied.

SThis gave the fifial solution. Some difficulty was experienced in making
I ,

good first guesses for t(l) and #(l).

15
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Because of the extra iteration the running times for the present cal-I

culations were much greater than for the flat, circular case. To keep thei-
running times within reason, it was necessary to use as coarse a mesh as

possible in the Runge-Kutta integration. Accordingly, the calculations
|
I were all run using a ten-point mesh. 7he results are surely less accurate

I than the earlier ones for a flat, circular canopy, but comparison with

j experimental results and with the approximate solution derived in the next

S I Section indicates that the accuracy is satisfactory for practical purposes.

16
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5. RESULTS

in this Section we describe the computer predictions about the effect

on a typical canopy when the vent is pulled down by center lines of different

lengths. First, the program developed in [I] for a flat circular canopy was

run in order to find the limiting behavior when the center line is either

absent altogether or so long that it does not pull the vent down. Then the

present programa was run for various lengths of center line.

The canopy parameters used in the calculation are those for a G-li-A

100 ft-diameter canopy and are as follows:

i 1.875 ft vent radius

50 ft skirt radius

G = 120 number of gores

Lo' 95 ft = length of load lines

Ec 2 x 103 lb =-modulus of cords

+ 4f = 3 x 10J lb/ft = modulus of fabric

=modulus of load lines=

0 = 2.4 x 10-4 lb secz/ft = mass density oi air

The net .,ressure was sDecified in terms of the dimensionless pressure

coefficient, Cp, where

p (1/2) PU2Cp (56)

and U is the velocity of steady descent. In the present investigation C

was taken as constant over the whole canopy. In the preliminary runs on

flat, circular canopies it was found that Cp - 1.5 gave a drag coefficient

CD 1.41

p 7

17
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! i for a considerable range of U-valuss. This a•rees we!l "•'ith experiment.< on
S! the drag of hemispherical, sheet-metal •aps .•eported by Hoerner [2]. For

: °• • - 1.5 it was found that a drop velocity of •
• p

• U = 2g ft/sen 1

•i ; caused d drag of about 3500 pounds, which is a commonly accepted value for

!•: } the load. These values, •

S,-
U = 2g ft/sec I -

•) and were used in the program for the pull-down vent a& well• I

:: i The main subject of study in this analysis of the pull-do'•n vent was •

!:i the effect of the center line length. The elasticity of the center line ' i
%" • {
•i•. was taken as •

SEp

1.7 x !0" ib • : :

i and the length of the center line was •:aried in :he range 1.5 < •'IRo < 2.35. g

•! Host of the runs were made with the standard values ,f Cp and U, but some
:i

Sruns were made at other values to assess the effects o• velocity or pr•.•sure

{ changes. The results are shown in Figures 5 - 9. in these Figures the

4 center line length is expressed in terms of Up, whereil -
•| " Figure 5 shows how the cmnopy drag and cente•- line tension are affected

Si by changes in the center line iengtt. A maxim• draK of •bout g150 ib, cot- : __

i• • responding to CDo = .739, is found when np -" 1.88 or •' = 9g ft This :

. }

%
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Drag 3530 lb

CD .651
0

The center line tension force, N reaches a maximum of about 1670 lb,

when np 1.65, and drops to zero at the flat, circular value, n 2.35.
p p

The configuration of maximum drag, np = 1.88, gives a control line force,
Np 1360 lb.

The influence of n on iAo geometrical parameters is shown in Figure 6.

rThe ratio of the maximum radius to the flat, circular radius, r /A
"max 0

reaches its greatest value (.731) at n = 1.9. The corresponding value for
p

a flat, circular canopy is seen to be

Ra/R = .679.
max o

The angle of the lires at the vent, q,(xi), is seen to change almost linearly

from ý(x.) -6lto 4(x.) 0. as np iacreases from 1.5 to 2.35. Inciden-

tally, the angle of the lines at the skirt, ý(xo), is almost independent of

lnp and has the value

•(xo) = 1100

The profiles of the canopy lines are shown in Figure 7. We see that

the maximum drag corresponds to a shape (np = 1.88) where the vent is pulled

down about halfway to the skirt. The constancy of (xo) is easily observable

in this Figure.

The effect of n on the cord strain distribution is shown in Figure 8.

As the center line is made shorter (iie., np decreases) the tension in the

cords becomes more nearly constant. When n < 2, we have the conditions under

Swhich the approximations of Section 3 are valid. The cord strain remains

21
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fairly constant near the skirt in all cases, but as n approaches the flat,

I circular value the cord strain drops rapidly near the vent.

The most spectacular effect of pulling down the vent is seen in rigure 9,

which shows (on a semi-logarithmic plot) the fabric strain distribution. We

1 observe that, as the vent is pulled down, the location of maximum fabricI strain is shifted outward (toward the skirt) and the fabric strain itself is

greatly reduced. For instance, if np is decreased from 2.35 to 1.88 the maxi-

mum value of tf is reduced to about 7% of its previous value. Further shorten-

ing of the center line, from np= 1.88 to n. 1.5, causes the maximum tf to

move outward almost to the skirt and continue decreasing, although the rate

of decrease is slower than before.

The effects of changing the drop velocity, U, or the assumed constant

pressure, C, are essentially the same since both enter the calculation onlyip
1 via the formula for the pressure (56). Moderate changes in either quantity

cause negligible changes in shape, and the changes in stress and drag are

just proportional to those in the pressure. This conclusion is not valid if

very large changes occur in C or U, or if C is permitted to vary substan-
p p

tially with position on the canopy.

I-

2'4
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6. DISCUSSION

In this Section we shall first outline the main conclusions drawn from

this work, then discus,, questions of accuracy and finally sketch explanations

for some of the effects of pulling down the vent.

The principal conclusions to which this work has led are these:

(i) The most spectacular effect of pulling down the vent is the ex-

traordinary decrease in maximum fabric stress, which may be reduced to 10%

or less of its value Jor a flat circular canopy.

(ii) A careful choice of center-line length will give a drag about 18%

nigher than the drag for the corresponding flat circular canopy at the same

speed. The (undeformed) center-line length which accomplishes this is very

close to thb (undeformed) length of the load lines.

(iii) The cord stress is nearly constant when the center-line length is

less than about two skirt radii.

The accuracy of the results may be tested either by comparison with

alternative theoretical ways of calculation or by comparison with experiments.

A theoretical comparison is shown in Figure 10, where the functions y(O) as

calculated for two n -values, first by the computer program (using a ten-
p

point mesh), and second by the formula (51) are compared. In using (51) the

value of ts was taken from the computer program. The two results are seen

to be in excellent agreement and give some confidence in the accuracy of the

two procedures for these cases. However, this test is not a severe one.

The more telling comparison is that between theory and experiment. Here

the picture is beclouded by the variability of experimental results on

26
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parachutes. However, several points are clear. r'i.•st, experiments on tne

G-11-A canopy led to the conclusion that the greatest drag was obtained when

the center-line length was the same as the load line length (between skirt

and load). The theory duplicates this result very closely. Second, tne

measurement of fabric strain is very difficult, and the author has .been unable

to find any experimental data dealing with it.

Third, we may present an experiment result [3] and the correspondin'

theoretical calculation. A flat, circular G-iI-A canopy with a load of 5.,V) lJ

was found to drop steadily at a speed of 25.5 ft/sec, giving a drag coefficient,

CD .863.

Tne same canopy was then modified by installation of a -35-foot centerline and

dropped again with the same load. This time, the rate of descent was ,neasured

as 24.2 ft/sec, giving

C = .980.
. = 0Do

To duplicate these tests theoretically the program for a flat, circular

canopy was first run for a rate of descent, 25.5 ft!sec, and various values of

C (assumed constant over the canopy) were tried. It was found that

C 2.008
p

gave a drag of 5410 lb and a drag coefficient, CDo = .883. The -rogram for the

pull-down vent was then run with CI) 2.008, and various velocities were tried,

giving the restlt that the drag (load) was 5410 lb when the rate of descent was

23.7 ft/sec. The corresponding drag coefficient was

CD = 1.023
D0

Hence in this case theory predicted that pulling Gown the vent would give a

16% increase in CDo, while the experimental result showed an 11% increase in

28



CD. This agreement is not extremely good, but in view of tne uncertainties
0

in measuring rate of descent during full-scale tests, it is not bad.

We conclude that the theory given here is in fairly good agreement with

experiment, although we cannot be .ure because of the difficulty in obtaining

repeatable experimental results. The difference between the drag coefficients

of CDo = .65, used for the standard flat circular conditions, and CD .88

in tne experiments described in this Section is apparently typical of the

variability that can occur.

In understanding the mechanic4 of the pulled-down vent, the main thing

we have to explain is the great decrease in maximum fabric stress. We may

explain it this way. In the flat, circular canopy the circumferential fabric

str'xCs is very high at the vent, and the angle B (the edge angle of the gore)

is nearly zero, so that from (9)

N;- Ef {(r/R) - 1).

When the vent is pulled down, it is also pulled inward, toward the axis, and

(r/R) is reduced, thus reducing Nf near the vent. Thus the high peak of N4

near the vent is knocked down.

We may understand the effect of pull-down on the drag (Figure 5) if we

attribute changes in drag to corresponding changes in projected area or

maximum radius. For we may it.tegrate (1) to obtain

R
rx max

-• •rmax = r .• f(R') cosO(R')dF.',
i!R|

where Rmax is the R at which rmax occurs. Pulling down the vent has tvo op-

posite effects on this formula. First, it reduces ri, and second, it increases
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the integral because more of the peak in the cosine function near € 0 is

included in the integral. For moderate amounts of pull-dcwn the second effect

dominates, and rmax increases. However, if the vent is pulled down far enough,

the first effect takes charge, and rmax decreases. This accounts for the

general shape of the drag curve in Figure 5.

The author is grateful to E. j. Giebutowski, S. J. Shute, and E. I.. Haik

of the Airdrop Engineering Laboratory at U. S. Army Natick Laboratories fo,"

helpful discussion and suggestions in this work.
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APPENDIX: NOMENCLATURE

A Function used in determinetion of N

SCoCIC21C3 Constants in the pressure distribution

CDo CD Coefficients of drag, based on flat, circular and projected
0 p

areas, respectively

Coefficient of pressure

Ef, Ec Elastic moduli of fabric and cords

Ep, Eli, Eo Elastic moduli of center line, vent lines and load lines

f Extension of cords = 1 + ts

G Number of Gores

H Function of Dressure used in approximate solution

Li, Li' Deformed and undeformed lengths of vent lines

Lo, Lo' Deformed and undeformed lengths of load lines
LO, L' Deformed and undeformed lengths of centar line

"Nf, Ns Tension forces in fabric and cords

Nc Equivalent circuanfer-ential tension force

SNp Tension force in control line

p Net (outward) pressure

q Dimensionless outward pressure

r, R Cord radius in deformed and undeformed shapes

Ri, Ro Vent and skirt radii of undefo-med shape

tf, 1ý Dimensionless fabric and cord stresses (or strains)

to Dimensionless circumferential s-.ress

t p Dimensionless stress (or strain) in center line
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U Velocity of steady drop

Uf, UP, uo Dimensionless ratios of elastic moduli

W, Weight of the load

w Dimensionless weight of the load

x Dimensionless undeformed radius

Xo Dimensionlesa skirt radius in undeformed shape

y Dimensionless deformed radius of cords

Z Axial distance from vent of points on the cords

z Dimensionless axial distance of cords from vent

4 33
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I

a Central angle of gores

6 Slope angle of gore where it intersects cords

5 Depth of gore bulge

n p Ratio of center line length to undeformed skirt radius

a Angle betweer lcad lines and canopy axis

Ai, Xi' Dimensionless deformed and undeformed length of vent lines

Xo, 01o Dimensionless deformed and undeformed lengths of load lines

0, A' Dimensionless deformed and undeformed lengths of center lines!p

Mass density of air

of Contact length between adjacent gores when A > 0

o Dimensionless contact length between adjacent gores

IAngle between cords and horizontal

0 Angle between cords and horizoatal at skirt

L
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