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FOREWORYD
Pulling down the vent of a parachute is a standard method of controlling
the drag. This report presents a coherent theozy for predicting the shape,
drag, and stresses in a steadily descending canopy with a pulled-down vent.

.. computer program is based on the analysis.
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3
i The previous analysis of the author for flat circular cancpies in steady :
9 descent is here extended to deal with canopies having a pulled-down veant. A :
3 general theory is developed, and a partial, approximate solution is found in
E- closed form for certain conditions. The general theory is taken as the basis :
5 .
3 of a computer program. An «xample is worked out tc demonstrate the use of
the program in determining tine optimum length of ceuter line, The results are
compared with tests and fairly good agreement is obtained. The most interesting :
cutcome is the prediction that the maximum fabric stress is greatly reduced by :
pulling the wvent down.
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1. INTRODUCTION

In an earlier paper [l}l, the writer described a procedure for aralyzing
the shape and stresses in a flat circular parachute during steady vertical
descent, This treatment does not assume that the shape is known In advance
but finds it and the stresses as functions of the pressure distribution. The
resulting computer program gave reasonable results for more or less practical
pressure distributions,

‘The purpose of the present paper is to show how this analysis may be
extended to deal with a canopy having a so-called pulled-down vent (see
Figure 1). Much of the analysis is identical with that in [1], but there are
subscantial differences in the edge conditions. These differences make it
possible to derive moderately accurate, approximate formulas for the canopy
shape in some cases, but increase slightly the difficulty of solving the
problem by numerical means.

The agalysis of the canopy with the pulled-down vent is descpibéd ihrfgéi

next Section. Section 3 contains a derivation of the approximate formulas

for the canopy shape. The approximatz formulds are not used in the main in= -

vestigation because they are sometimes inaccurate. Rather, the principal
effort in this paper is a numerical analysis leading to éfcomputerrsqlhtién
of the problem, and this is described in Section 4. Section 5 presents tber
results of the analysis, showing how the drag, shape and stresses depend on
the length of the center line that pulls down the vent. The resulls are

discussed in Section 6,

‘Numbers in brackets designate References at end of paper.
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2. ANALYSIS

We shall assume that the canopy may be treated as in [1]. The most im-
portant hypotheses introduced in this analysis are listed below:

a. The canopy is descending vertically, and eiach gore and cord has
the same shape and forces as all the others, i,e., the ca wpy is, roughly
speaking, cxially symmetric.

b All meridional forces are borne by the cords, and the gores ex-

perience only circumferential stress.

c. All strains are small, although displacements and rotations may
be large.

d. The meridional curvature of the deformed gore is negligible com-
pared zith the circumferential curvature.

e. Points of a gore that in the flat, circular sZate lie on a cir-
cular arc about the canopy center iie “a the deformed state on a plane, cir-
cular arc, that plane being perpendicular to the deformed cords.

General sketches of typical undeformed and deformed gores are shown in
Figures 1 and 2.
With these assumptions the equations governing the canopy were found in

.11, and we reproduce them here withoit deriving them. The details of the

derivation can be found in [1].

dr/dR

= fcos ¢
d¢/dr = (£/Ng) [pra - N, sin(a/2) sing]
dN /dR = 2fN_ cos¢ sin(a/2)

(1)
(2)
(3)
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where
£ = 1+t, tg = Ng/E, (4)

and the various quantities are defined in the Nomenclature. The quantity N,

is Found as follows:

iet :
A = 1+ [pra/(?Ef)] - (u/2) {r/R) (s5)
I£ A<D N. = Eg cos B [(r/R) (8/sin8) - 13 (8)
where B is found by solving %
: sin g - B r/R + [pra/(2E¢)] = 0O (7)
% and
; g'* = 0
% 2 If A>C: N.= 0, B = /2 and o' = RaA/2 (8)
“E : Figure 3 shows skatches of the two possible cases that give rise to ths
§ % - alternatives A < 0 and A > 0, The circumferential fabric stress is
% exprassible in terms of B, as
N¢ = Eg {B(r/R) csc B - 1} (9) :
These equations constitute a system of three first-order, non-linear, .
ordinary differential equations for the quantities r, ¢ and Ng. This differs ;

from common systems of such iype in that the right sides of the equations -

cannot be explicitly written down in terms of R, r, ¢ and Ng, for Hc is ex- 2

pressed implicitly in terms of r and R by Equatiocns (5) to (8).
In order to solve this system, we must append suitable boundary condi-~
tions and information about the pressure distribution, p, in the deformed

- state. So far as our mathematical models are concerned, the only differences

= SRS A TERR
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between an ordinary flat, circular canopy and one with a pulled-down vent
occur in these two phases of the problem. We shall deal first with the
boundary conditions, where the most important differences are found.
Figure 4 shows a sketch of the shépe of a typical suspension line
during steady drop. Four elements make up this shape, the load lines
(deformed length L,), the corés of the cancpy itself, the vent lines

ideformed leangth L;), and the central, pull-down line (deformed length

Ls). The geometry of the Figure imposes the following conditions:

1]

r(R;) L; cos [-¢(R;)]

r(Rc) L, sin 8

Lp + Lj sinl-¢(Rj)] = &(Ry) + Lg cos 6

Z(R) = f(R') sing(R') 4R’
° JR': R,
i
8 = ¢{(R,) - {w/2)

The tersion forces in the various structural elements are shown in

Figure &, Np is the force in the center line, NS(Ri) that in each vent

line, Ng(R) the variable temsion in each cord and Ng(R,) the force in
each locad line., Eguilibrium requires

Ny = GNg(Ry) sinl-4tR;)]

W = Ny + GNg(R,) cos 8.

(10)
(11)

(12)

(13)

(14)

{15)

L
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The linear elastic relations for the structural elements are

N, = E {(LP/LP') - 1}

]

Ng(R;) E; ((Ly/L;") - 1}

]

Ng(Rj) Eq, ((Ly/Ly') - 11,

where Ep, E; and £  are the elastic moduli of the center, vent and load lines
respectively and L', L;' and L,' are the undeformed lengths of the corres-
ponding lines.

We may rearrange these equaticns and eliminate 6 with the aid of (13)

§ to get
NP = GNs(Ri) sin [-¢(R3)]
= Lp' {1+ (NP/EP)}
Ly = Ly' {1+ INJ(R)/E G}
- r(Rj) = Lj cos [-¢(R;}]
together with
L, = Lyt {1+ IN(RO/EST)

0

v(Ry) + L, cos ¢(R,)

Lp + L sin [-¢(Ri)) z(Ro) + L, sin ¢(R°)

and

wL = Np + GNs(Rb) sin ¢(R°),

LA gr e fa o mrem - o=

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

{(24)

(25)

(26)
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We shall now introduce dimensionless quantities as fcllows: .
. 7 R = xRi, r = yRy, Rg = xRy, 4= zki\x .
Lp' = ApTRis Lyt = ARy, Lo' = Xo'R,
Lp = ApRi’ L; = ARy, Lo = AgRg
(27)
Ng = tgE., g = tgEg, Ho = t.Eg, pr = tp[:p

; L p = 2Efq/Ri’ Ef = Ecuf/EfRi
>:~”‘ Ep - Bcupa B, = ECUO’ dL = HEC ,

Then the éifferential equation system becomes in dimensionless form

dy/dx = £ coc ¢ (28)
d¢/dx = (fyp/tg) [2qey ~ 2t. sin(a/2) sin ¢] (29)

dt /dx = 2fyg t, cos¢ sin(a/2) (30) i
£ o= 1+ tg (31)

and tg is found as fcllows: let

a = 1+ qay - [ny/(2x)]. (32)
If a <06, then a = 0 and

t. = [(y/x)(8/sind) - 1] cos 3, (33)
wnere 8 1is found by solving

sin B - (B8y/x) + gay = O, (34}

If a > 0, then

L]
o

t

c (35%)

o xaa/2, (36)
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The vent conditions can be writter. in dimensionless form as

ty, = - (G/w) t5(1) sing(1) {37)

L Ao = Ap' L+ ty) CONN
A= At L1+ tg(2)] (29)
y(1) = X; cos¢(l) (40) %

and the skirt conditions become

ot 0

iUbe

Ay, = A {1 + [ts(xo)/uo]} (u1) %1
y{xg) + A5 cose(x,) = 0 {(42) E
z(xy) + A, sin¢(x;) - Ap + A sing(i) = 0O {43) g‘

The load relation is then % )
W = thuy + Gtglxg) sing(xg) {uu)

bt e s

e shall tare the system (28) to (31) as the equations governing the
shape and siocesses in the canopy. The numerical procedure, to be described

in the next Section, is based on this svstem. Before undertaking this pro-

R R TN T Y Ny S TN PN

cedure it is necessary to say a few words about the pressure distribution,

e i st LA AP S il ¢ R Sy

q{x), tnat we shall use. In practice the pressure distribution is not kncwn
in advance but has to be found either experimentally or by sclving a fluid
flow problem jointly with the present elastic deformation problem. In the
absence of reliable information about the pressure, we shall proceed as in
{1], i,e., we shall assume that q is a polynomial of third degree in ¢,

q = Co + C3é + Cyd? + Cz¢3

. and try various choices for the constants C;' Cz' C3 and C,.
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3. APPROXIHATE SOLUTION FOR THE SHAPL

A certain amount of numerical experimentation with the system (28)-(31)

shows that sometimes t_

g iS nearly constant and raises the possibility of an

approximate solution based on this assumption. We shall investigate this
possibility in this Section and see that an approximate solution can be found
provided we make some additional hypotheses.
Since the strains are assumed to be small o the cords, we comait little
erior if we take
f = 1.
Also the number of gores, G, is usually so large that
sin{a/2) = a/2.

With these unessential simplifications we can write the system as

dy/dx = <os $ (u3)
d¢/dx = (aug/ty) [2qy - t, sins] (ug)
dtg/dx = t.ug cos d. (u7)

We shall assurme that the terms containing t. are small eaough to be neglected
in (46} and (47). It is not easy to see when this assumption is valid, be-
cause more is involved than merely the smallness of t, itself. Kumerical
experiments show that the assumption is tolerably accurate provided there
high enough stress in the center line.

In any case with this assumption we obtain that tg is incdependent c¢f x

and the remaining eguations reduce to
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dy/dx = cos ¢ (u8)
d¢/dx = Hy (49)
H = 2quuf/ts (50)

This system is rather simple in appearance but still non-linear. If H is

constant (i.e., if q is constant), it can be solved by standard methods,

giving
y = {1+ (2/8) [sin¢ - sin¢(1)1}!/% (31)
$'=9
x = 1 +‘[ (Hy)~d¢ (52)
$'=¢(1)

as the solution satisfying the conditions:
at x = 1, y=1 and ¢ = ¢(1).
As yet, H is unkno'm because T, is unspecified. To complete the
determination of the solution we must evaluate H ani ¢(1) by means of the

edge conditions. If we neglect the extensions of the various lines, so

that

N I

we get from (42) and (43) the conditions

A, cos¢, +y(g,) = 0O (53)
¢('."
Ao' singg = A ' + sing(1) + | (Hy)=! sing d¢ = 0O (54)
¢
¢()
X, = 1+ (Hy)=! dg¢. (55)
$(1)
¢, = ¢(xo)
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The solution of these equations for the three quantities H, 3, and ¢(1) requires
an iterative process dand is at least as complicated as the corresponding steps
in the andlysis using the original equationc.

it is useful to have the formulas (52) to (55) since they serve to check
the accuracy of computed results for appropriate conditions. However, they are
not generally valid, and the difficulties in meeting the boundary corditions
are still present. We conclude that our main effort must still go into a

numerical analysis of the original equations, (28) - (31).
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4, NUMERICAL ANALYSIS

The fundamental procedure used in this problem is similar to that used
for an ordinary, fiat circular canopy [1] and is based on a Funge-Kutta
solution of the differential equation system (28) to (31)., The princijal
difference is in the treatment of the boundary conditions,

In the earlier case, where there was no-center line, there wera no ver-
tical forces on the vent, and hence

(1) = o,
The condition (43) was not applicablg. The pracedure was to guess ts(l).
calculate

y(1) = 1+ t,(1),
integrate (28) to (31) numerically from x =1 to x = X, and see. whether
(42) was satisfied. Various values of tg(1l) were tried, based on the Rule
of False Pcsition, until (42) was satisfied with sufficient accuracy.

The present case is more complicated becau: : both ¢(1) and tg(1l) are
unknown.and have to be chosen so as to satisfy the twc conditions (42) and
(43). Thus a two-way iterative process is required now. After some experi-
mentation the following iterative scheme was adopted. First, a value was
assumed for 4(1). An iterative process then found the value of t(1) that
caused satisfaction of (42), The entire procedure was repeated for different
choices of ¢(1) until one was found that also caused (43) to be satisfied.
This gave the fin2l solution. Some difficulty was experienced in making

good first guesses for t(1) and ¢(1).
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Because of the extra iteration the running times for the present cal- -

el

culations were much greater than for the flat, circular case. To keep the
: 31 running times within reason, it was necessary to use as coarse a mesh as

possible in the Runge-Kutta integration. Accordingly, the calculations

were all run using a ten-point mesh. The results are surely less accurate 5

il

than the earlier ores for a flat, circular canopy, but comparison with

experimental results and with the approximate solution derived in the next

Section indicates that the accuracy is satisfactory for practical purposes.,
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5. RESULTS

In this Section we describe the computer predictions about the effect

on a typical canopy when the vent is pulled down by center lines of different

lengths, First, the program developed in [1]
run in order to find the limiting behavior wh

absent altogether or so long that it does not

for a flat circular canopy was
en the center line is either

pull the vent down., Then the

present prograa was run for varicus lengths of center line,

The canopy parameters used in the calcul

100 ft-diameter canopy and are as follows:

ation are those for a G-11-4

Ry = 1.875 fr = vent radius

R, = 50 ft = skirt radius

G = 120 = number of gores

Lo' = 95 ft = length of load lines

E. = 2x 10315 = mnodulus of cords

E¢g = 3 x 103 1b/ft = modulus of fabric

E, = medulus of load lines = Eg

p = 2,4 x 107% 1b sec?/ft"* = mass density oi air

The net pressure was specified in terms of the dimensionless pressure

coefficient, Cp, where
p = (1/2) puch
and U is the velocity of steady descent. In

was taken as constant over the whole canopy.

flat, circular canopies it was found that o

-~

oF =
DP

17

(58)

the present investigation Cp
In the preliminary runs on

= 1.5 gave a drag coefficient

l.4l
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for a considerable range of U-values. This agrees wel: with experiment< on
the drag of hemispherical, sheet-metal caps reported by Heerner [2]. For

~ -

< E 1.5 it was found that a drop veloeity of
u = 24 ft/sec
caused a4 drag of about 3500 pounds, which is a commonly accepted value for

the load. These values,

@]
u

8
PR

D L

24 ft/sec

C
"

were therefore adopted as more or less standar<d conditiuns for this canopy
and were used in the preogram for the pull-down vent as well,

The main subject of study in this analysis of the pull-down vent was
the effect of the center line length. The elasticity of the center line
was taken as

= 14
EP 1.7 x 10" 1t

and the length of the center line was varied in the range 1.5 E.Lp'/Ro < 2.35,
¥ost of the runs were made with the standard values ¢f Cp and U, but some
runs were made at other values to assess the effects of velocity or prassure

changes. The results are shown in Figures 5 - §, In these Figures the

center line length is expressed in tecms of n_, where

p'
np = Ly'/Re

shows how the canopy drag and center line teasicn are affected

o

Figure
by changes in the center line leagth. A maximum drag of abusut 4150 1b, cor-

responding to Cp = .739; is found when 1

< 1, o ~ Thi
o P 1.8& or Lp 9y £t This

represents ar 18% increase over the flat, circular values,
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3530 1b

Drag

c .651
DO

The center line tension force, Np, reaches a maximum of about 1670 1lb,

when np = 1.65, and drops to zero at the flat, circular value, n_ = 2,35,

The configuration of maximum drag, n, = 1.88, gives a control line force,

NP = 1360 1b.

The influence cof n, on 140 geometrical parameters is shown in Figure 6,

‘The ratio of the maximum radius tc the flat, circular radius, r /R ,
max o

reaches its greatest value (.731) at np = 1,9, The corresponding value for
a flat, circular canopy is seen to be

R __/R = ,679,
max’' "o

The angle of the lires at the vent, ¢(xi), is seen to change almost linearly
from ¢(xi) = -61°t0 ¢(xi) = O? as np ijcreases from 1,5 to 2,35, Inciden-

tally, the angle of the lines at the s<irt, ¢(x,), is almost independent of

"p and has the value

- o
¢(x°) = 110

The profiles of the canopy lines are shown in Figure 7. We see that

the maximum drag corresponds to a shape (np = 1,88) where the vent is pulled

down about halfway to the skirt. The constancy of @(xo) is easily observakble

in tnis Figure.
The effect of np on the cord strain distribution is shown in Figure 8,

As the center line is made shorter (i.e., "o decreases) the tension in the

cords becomes more nearly constant, When n < 2, we have the conditions under

which the approximations of Section 2 are valid, The cord strain remains

21
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Figure 7. Effect of Center-line Length on Profile of a Suspension

Line,
22 -




16
t,x10

CIRCULAR
FLAT

14

1.2

1.O

o 2 4 6 8 I
R/Re ©

Figure §. Effe:ct of Center-Line Length on the Distribution of Cord
Tensile Force, '

23




{1 B Hiasorsmon

fairly constant near the skirt in all cases, but as np apprcaches the f{lat,

cirsular value the cord strain drops rapidly near the vent.

The most spectacular effect of pulling down the vent is seen in Figure 9, ’

PPN TETL TR

winich shows (on a semi-logarithmic plot) the fabric strain distribution, We

observe that, as the vent is pulled down, the location of maximum fabric

strain is shifted outward (toward the skirt) and the fabric strain itself is :
] greatly reduced, For instance, if " is decreased from 2,35 to 1.88 the maxi-

mum value of ty is reduced to about 7% of its previous value. Further shorten-

ing of the center line, from n_ = 1,88 to n_ = 1,5, causes the maximum Tg to

P P
move outward almost to the skirt and continue decreasing, although the rate
of decrease is slower than before.

The effects of changing the drop velocity, U, or the assumed constant

pressure, Cp' are essentially the same since both enter the calculation only

via the formula for the pressure (56), Hoderate changes in either quantity

cause negligibie changes in shape, and the changes in stress and drag are .
just proportional to those in the pressure, This coaclusion is not valid if
i very large changes occur in Cp or U, or if Cp is permitted to vary substan-

tially with position on the canopy.
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Figure 8. Effect of Center-line Length on the Distribution of
Circumferential Fabric Stress,
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6., DISCUSSION

In this Section we shall first outline the main conclusions drawn from
this work, then discus: questions of accuracy and finally sketch explanations
for some of the effects of pulling down the vent.

The principal conclusions to which this work has led are these:

(1) The most spectacular effect of pulling down the vent is the ex-
traordinary decrease in maximum fabric stress, which may bLe reduced to 10%
or less of its value for a flat circular canopy.

(ii) A careful choice of center-line length will give a drag about 18%
nigher than the drag for the corresponding flat circular canopy at the same

speed, Tne (undeformed) center-line length which accomplishes this is very

close to thz (undefcrmed) length of the load lines,
(iii) The cord stress is nearly constant when the center-line length is
less than about two skirt radii,
The accuracy of the results may be tested either by comparison with

alternative theoretical ways of calculation or by comparison with experiments.

A theoretical comparison is shown in Figure 10, where the functions y(¢) as
calculated for two np~va1ues, first by the computer program (using a ten-
point mesh), and second by the formula (51) are compared. In using (51) the
value of t, was taken from the computer program. The two results are seen
to be in excellent agreement and give some confidence in the accuracy of the
two procedures for these cases., However, this test is not a severe one.

The more telling comparison is that between theory and experiment. Here

the picture is beclouded by the variability of experimental results on

26
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parachutes, llowever, several points are clear, [iDnst, experiments on the
G-1i-A canopy led to the conclusion that the greatest drag was obtained when
the center-line lengtn was the same as the load line length (between skirt
and load). The theory duplicates this result very closely. Second, tne -
measvrement of fabric strain is very difficult, and the author has been unable
to find any experimental data dealing with it.

Third, we may present an experiment result [2] and the correspending
theoretical calculation. A flat, circular G-1l-A canecpy @With a load of 5817 1k
was found to drop steadily at a speed of 25,5 ft/sec, giving a drag coefficient,

¢, = .863.
DO

The same canopy was then modified by installation of a 35-foot centerliine ang
dropped again with the same load. This time, the rate of descent was measured
as 24,2 ft/sec, giving

c. = .980.
DO

To duplicate these tests theoretically the program for a flat, circular
canopy was first run for a rate of descent, 25.5 ft/sec, and various values of
C. (assumed constant over the canopy) were tried, It was found that N

P
C = 2,008
P

gave a drag of 5410 1b and 2 drag coefficient, CDo = ,883, The -rograﬁ for the
pull-down vent was then run with Cp % 2,008, and various velocities were tried,
giving the resvlt that the drag (load) was 5410 1> when the rate of descent was
23,7 ft/sec. The corresponding drag coefficient was

CD = 1,023

[o]

Hence in this case theory predicted that pulling down the vent would give a

16% increase in Cp , while the experimental result showed an 11% increase in
(o]
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CDO. This agreement is not extremely good, but in view of tne uncertainties
in measuring rate of descent during full-scale tests, it is not bad,

we conclude that the theory given here is in fairly good agreement with
experiment, although we cannot be cure because of the difficulty in obtaining
repeatable experimental results. The difference between the drag coefficients
of CDO = .6F, used for the stardaru flat circular conditions, and CD° = .88
in the experiments described in thig Secticn is apparently tyoical of the
variability that can occur.

In understanding the mechanics of the pulled-down vent, the main thing
we have to explain is the great decrease in maxiwum fabric stress, We may
explain it this way. In the flat, ciccular caropy the circumferential fabric
stress is very high at the vent, and the angle B (the edge angle of the gore)
is nearly zero, so that from (9)

Ng = Eg {(r/R) - 1},
When the vent is pulled down, it is also pulled inward, toward the axis, and
(r/R) is reduced, thus reducing N¢ near the vent., Thus the high peak of Nig
near the vent is knocked down,

We nmay understand the effect of pull-down on the drag (Figure 5} if we
attribute changes in drag to corresponding changes in projected area or

maximum radius. For we may integrate (1) to obtain

max
= r; +j f(R*) cos¢(R')dAR},
R

where R, is the R at which rjp,, occuns. Pulling down the vent has twe op-

posite effects on this formula. First, it reduces r;s anc second, it increases

28
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i the integral because more of the peak in the cosine function near ¢ = 0 is .
5 included in the integral., [For moderate amounts of pull-dcwn the second effect )
£}
T s . - ' s . a .
i dominates, and Poax lncreases. Hlowever, if the vent is pulled down far enouzh,
i the first effect takes charge, and Trhax decreases. This accounts tor the §
23
34 general shape of the drag curve in Figure 5,
E:
3
4] The author is grateful to E. J. Giebutowski, S. J. Shute, and E. IL. Ka3jk
3 of the Airdrop Engineering Laboratory at U. S. Army Natick Laboratories fol
- nelpful discussion and suggestions in this work,
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APPENDIX: NOMENCLATURE

Function used in determinction of Nc

Constants in the pressure distribution

e e R LA N

Coefficients of drag, based on flat, circular and proiected

areas, respectively

Coefficient of pressure

Elastic moduli of fabric and cords

Elastic moduli of center line, vent lines and lcad lires

Extension of cords = 1 + tg

Number of Gores

Function of pressure used in approximate solution
Deformed and undeformed lengths of vent lines
Deformed and undeformed lengths of load lines
Deformed and undeformed lengths of center line
Tension forces in fabric and cords

Equivalent circurferential tension force
Tension force in control line

Net (outward) pressure

Dimensionless outward pressure

Cord radius in deformed and undeformed shapes

Vent and skirt radii of undeformed shape

Dimensionless fabric and cord stresses (or strains)

Dimensionless circumferential s:ress

Dimensionless stress (or strain) in center line

32
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Velocity of steady drop

Dimensicnless ratios of elastic moduli
Weight of the load

Dimensionless weight of the load
Dimensionless undeformed radius

Dimensionless skirt radius in undeformed shape

Dimensionless deformed radius of cords
Axial distance from vent of points on the cords

Dimensionless axial distance of cords from vent

33

g

O B

s .

+ RIS et s




|

s g
el

LU MR R

‘

. L - N ‘., a IR
b st s ottt AT N AR A

abue ettt

1ot
i

[ b

9 14000 s 1 oty by siaro ot s AR R T
™ ramt e s

et

A
’y 7 e

yet

i
B
!
]
i
3
E:

Central angle of gores

Slupe angle of gore where it intersects cords

Depth of gore bulge

Ratic of center line length to undeformed skirt radius
Angle betweer lcad lines and canopy axis

Dimensionless deformed and undeformed length of vent lines
Dimensiocnless deformed and undeformed lengths of load lines
pPimensionless deformed and undeformed lengths of center lines
Mass density of air

Contact length between adjacent gores when A > 9
Dimensionless contact length between adjacent gores

Angle between cords and horizontal

Angle between cords and horizoatal at skirt
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