This document is approved for release and sale; its distribution is unlimited.

AD 687 307

TECHNICAL REPORT 69-71-CSD AD

ANALYSIS OF A PARACHUTE JITH A

PULLED-DOWN VENT

bÿ

Edward H. Ross, Jr. Hathematician

February 1969

Best Available Copy

U. S. ARHY NATICK LABORATORIES Natick, Massachusetts 01760

FOREWORD

Pulling down the vent of a parachute is a standard method of controlling the drag. This report presents a coherent theory for predicting the shape, drag, and stresses in a steadily descending canopy with a pulled-down vent. A computer program is based on the analysis.

CONTENTS

;

A STATE AND A DESIGNATION

まま モラインスノン

desturbing its. "AP they have a state of the form

の以北北の加加にあ

		Page
	Figures	v
	Abstract	vi
1.	Introduction	1
2.	Analysis	3
3.	Approximate Solution for the Shape	12
4.	Numerical Analysis	15
5.	Results	17
6.	Discussion	25
	References	30
	Appendix: Nomenclature	31

iv

FIGURES

1.	Sketch of Canopy in Flat, Circu.ar (Undeformed) State.	2
2.	Sketch of a Deformed Gore.	4
з.	Possible Cross-Sectional Shapes of a Gore.	6
4.	Profile of a Suspension Line, Showing the Forces Acting in the Various Parts.	ن ا
5.	Effect of Center-line Length on Drag and Center-line Tensile Force.	13
ů,	Effect of Center-line Length on Maximum Radius and Cord Angle at the Vent.	20
7.	Effect of Center-line Length on Profile of a Suspension Line.	22
8.	Effect of Center-line Length on the Distribution of Cord Tensile Force.	25
э.	Effect of Center-line Length on the Distribution of Circumferential Fabric Stress.	25
10.	Comparison between the Approximate Solution of Equation (51) and the Computed Values of $v(4)$.	27

v

.

Page

ABSTRACT

The previous analysis of the author for flat circular canopies in steady descent is here extended to deal with canopies having a pulled-down vent. A general theory is developed, and a partial, approximate solution is found in closed form for certain conditions. The general theory is taken as the basis of a computer program. An example is worked out to demonstrate the use of the program in determining the optimum length of center line. The results are compared with tests and fairly good agreement is obtained. The most interesting outcome is the prediction that the maximum fabric stress is greatly reduced by pulling the vent down.

vi

1. INTRODUCTION

In an earlier paper [1]¹, the writer described a procedure for analyzing the shape and stresses in a flat circular parachute during steady vertical descent. This treatment does not assume that the shape is known in advance but finds it and the stresses as functions of the pressure distribution. The resulting computer program gave reasonable results for more or less practical pressure distributions.

The purpose of the present paper is to show how this analysis may be extended to deal with a canopy having a so-called rulled-down vent (see Figure 1). Much of the analysis is identical with that in [1], but there are substantial differences in the edge conditions. These differences make it possible to derive moderately accurate, approximate formulas for the canopy shape in some cases, but increase slightly the difficulty of solving the problem by numerical means.

The analysis of the canopy with the pulled-down vent is described in the next Section. Section 3 contains a derivation of the approximate formulas for the canopy shape. The approximate formulas are not used in the main investigation because they are sometimes inaccurate. Rather, the principal effort in this paper is a numerical analysis leading to a computer solution of the problem, and this is described in Section 4. Section 5 presents the results of the analysis, showing how the drag, shape and stresses depend on the length of the center line that pulls down the vent. The results are discussed in Section 6.

Numbers in brackets designate References at end of paper.

2. ANALYSIS

We shall assume that the canopy may be treated as in [1]. The most important hypotheses introduced in this analysis are listed below:

a. The canopy is descending vertically, and each gore and cord has the same shape and forces as all the others, i.e., the cacopy is, roughly speaking, axially symmetric.

 b_c All meridional forces are borne by the cords, and the gores experience only circumferential stress.

c. All strains are small, although displacements and rotations may be large.

d. The meridional curvature of the deformed gore is negligible compared with the circumferential curvature.

e. Points of a gore that in the flat, circular state lie on a circular arc about the canopy center lie in the deformed state on a plane, circular arc, that plane being perpendicular to the deformed cords.

General sketches of typical undeformed and deformed gores are shown in Figures 1 and 2.

With these assumptions the equations governing the canopy were found in [1], and we reproduce them here without deriving them. The details of the derivation can be found in [1].

$$dr/dR = f \cos \phi$$
 (1)

$$d\phi/dR = (f/N_s) [pra - 2N_c \sin(\alpha/2) \sin\phi]$$
(2)

 $dN / dR = 2fN_{c} \cos\phi \sin(\alpha/2)$ (3)

Figure 2. Sketch of a Deformed Gore.

where

$$f = 1 + t_s, t_s = N_s/E_c$$
(4)

and the various quantities are defined in the Nomenclature. The quantity N_{c} is found as follows:

let

$$A = 1 + [pra/(2E_{f})] - (\pi/2) (r/R)$$
(5)

If
$$A < 0$$
: $N_c = E_f \cos \beta [(r/R) (\beta/\sin\beta) - 1]$ (6)

where β is found by solving

$$\sin\beta - \beta r/R + [pra/(2E_f)] = 0$$
(7)

and

If
$$A > C$$
: $N_c = 0$, $\beta = \pi/2$ and $\sigma^* = R\alpha A/2$ (8)

Figure 3 shows sketches of the two possible cases that give rise to the alternatives A < 0 and A > 0. The circumferential fabric stress is expressible in terms of β , as

= 0

$$N_{f} = E_{f} \{\beta(r/R) \csc \beta - 1\}$$
(9)

These equations constitute a system of three first-order, non-linear, ordinary differential equations for the quantities r, ϕ and N_s . This differs from common systems of such type in that the right sides of the equations cannot be explicitly written down in terms of R, r, ϕ and N_s , for N_c is expressed implicitly in terms of r and R by Equations (5) to (8).

In order to solve this system, we must append suitable boundary conditions and information about the pressure distribution, p, in the deformed state. So far as our mathematical models are concerned, the only differences

between an ordinary flat, circular canopy and one with a pulled-down vent occur in these two phases of the problem. We shall deal first with the boundary conditions, where the most important differences are found.

Figure 4 shows a sketch of the shape of a typical suspension line during steady drop. Four elements make up this shape, the load lines (deformed length L_0), the cords of the cancey itself, the vent lines (deformed length L;), and the central, pull-down line (deformed length $L_{\rm D}$). The geometry of the Figure imposes the following conditions:

$$r(R_i) = L_i \cos \left[-\phi(R_i)\right]$$
(10)

$$r(R_{o}) = L_{o} \sin \theta$$
 (11)

$$L_{D} + L_{i} \sin[-\phi(R_{i})] = Z(R_{O}) + L_{O} \cos \theta$$
 (12)

$$Z(R_{o}) = \int_{R'=R_{i}}^{R_{o}} f(R') \sin\phi(R') dR'$$
(13)
$$\theta = \phi(R_{o}) - (\pi/2)$$

The tension forces in the various structural elements are shown in Figure 4. N_p is the force in the center line, $N_s(R_i)$ that in each vent line, $N_s(R)$ the variable tension in each cord and $N_s(R_p)$ the force in each load line. Equilibrium requires

$$N_{\rm o} = GN_{\rm s}(R_{\rm i}) \sin[-\phi(R_{\rm i})]$$
(14)

$$W_{\rm L} = N_{\rm p} + GN_{\rm s}(R_{\rm o}) \cos \theta.$$
 (15)

Figure 4. Profile of a Suspension Line, Showing the Forces Acting in the Various Parts.

The linear elastic relations for the structural elements are

$$N_{p} = E_{p} \{ (L_{p}/L_{p}^{\prime}) - 1 \}$$
(16)

$$N_{s}(R_{i}) = E_{i} \{ (L_{i}/L_{i}^{\dagger}) - 1 \}$$
(17)

$$N_{s}(R_{o}) = E_{o} \{ (L_{o}/L_{o}^{\dagger}) - 1 \}, \qquad (18)$$

where E_p , E_i and E_o are the elastic moduli of the center, vent and load lines respectively and L_p ', L_i ' and L_o ' are the undeformed lengths of the corresponding lines.

We may rearrange these equations and eliminate $\boldsymbol{\theta}$ with the aid of (13) to get

$$N_{\rm D} = GN_{\rm s}(R_{\rm i}) \sin \left[-\phi(R_{\rm p})\right] \tag{19}$$

$$L_{p} = L_{p}^{\dagger} \{1 + (N_{p}/E_{p})\}$$
(20)

$$L_{i} = L_{i}' \{1 + [N_{s}(R_{i})/E_{c}]\}$$
 (21)

$$\mathbf{r}(\bar{\mathbf{A}}_{i}) = \mathbf{L}_{i} \cos \left[-\phi(\mathbf{R}_{i})\right]$$
(22)

together with

$$L_{o} = L_{o}^{t} \{1 + [N_{s}(R_{o})/E_{o}]\}$$
 (23)

$$\mathbf{r}(\mathbf{R}_{0}) + \mathbf{L}_{0} \cos \phi(\mathbf{R}_{0}) = 0$$
 (24)

$$L_{p} + L_{i} \sin [-\phi(R_{i})] = z(R_{o}) + L_{o} \sin \phi(R_{o})$$
 (25)

and

$$W_{L} = N_{p} + GN_{s}(R_{o}) \sin \phi(R_{o}), \qquad (26)$$

We shall now introduce dimensionless quantities as follows:

$$R = xR_{i}, \qquad r = yR_{i}, \qquad R_{o} = x_{o}R_{i}, \qquad Z = zR_{i}$$

$$L_{p}^{\dagger} = \lambda_{p}^{\dagger}R_{i}, \qquad L_{i}^{\dagger} = \lambda_{i}^{\dagger}R_{i}, \qquad L_{o}^{\dagger} = \lambda_{o}^{\dagger}R_{o}$$

$$L_{p} = \lambda_{p}R_{i}, \qquad L_{i} = \lambda_{i}R_{i}, \qquad L_{o} = \lambda_{o}R_{o}$$

$$N_{s} = t_{s}E_{c}, \qquad N_{f} = t_{f}E_{f}, \qquad N_{c} = t_{c}E_{f}, \qquad M_{p} = t_{p}E_{p}$$

$$p = 2E_{f}q/R_{i}, \qquad E_{f} = E_{c}u_{f}/E_{f}R_{i}$$

$$E_{p} = E_{c}u_{p}, \qquad E_{o} = E_{c}u_{o}, \qquad M_{L} = wE_{c}$$

$$(27)$$

i i

3 8 24

4

Then the differential equation system becomes in dimensionless form

$$dy/dx = f \cos \phi$$
(28)

$$d\phi/dx = (f_{uf}/t_s) [2qay - 2t_c \sin(\alpha/2) \sin \phi]$$
(29)

$$dt_{s}/dx = 2f_{uf} t_{c} \cos\phi \sin(\alpha/2)$$
(30)

$$f = 1 + t_s \tag{31}$$

and t_c is found as follows: let

$$a = 1 + q\alpha y - [\pi y/(2x)].$$
(32)

If a < 0, then $\alpha = 0$ and

$$t_c = [(y/x)(\beta/\sin\beta) - 1] \cos \beta,$$
 (33)

where β is found by solving

$$\sin\beta - (\beta y/x) + q\alpha y = 0. \qquad (34)$$

If a > 0, then

 $t_{c} = 0$ (35)

$$\sigma = xa\alpha/2.$$
 (36)

The vent conditions can be written in dimensionless form as

$$t_{p_*} = -(G/u_p) t_s(1) sin\phi(1)$$
 (37)

$$\lambda_{\rm p} = \lambda_{\rm p}^{\rm r} (1 + t_{\rm p}) \tag{38}$$

$$\lambda_{1} = \lambda_{1}^{*} [1 + t_{s}(1)]$$
(39)

$$y(1) = \lambda_i \cos\phi(1) \tag{40}$$

and the skirt conditions become

$$\lambda_{o} = \lambda_{o}^{\dagger} \{ 1 + [t_{s}(x_{o})/u_{o}] \}$$

$$(41)$$

 $y(x_0) + \lambda_0 \cos\phi(x_0) = 0$ (42)

$$z(x_{o}) + \lambda_{o} \sin\phi(x_{o}) - \lambda_{p} + \lambda_{i} \sin\phi(1) = 0$$
 (43)

The load relation is then

$$w = t_p u_p + Gt_s(x_0) \sin \phi(x_0)$$
(44)

We shall take the system (28) to (31) as the equations governing the shape and stresses in the canopy. The numerical procedure, to be described in the next Section, is based on this system. Before undertaking this procedure it is necessary to say a few words about the pressure distribution, q(x), that we shall use. In practice the pressure distribution is not known in advance but has to be found either experimentally or by solving a fluid flow problem jointly with the present elastic deformation problem. In the absence of reliable information about the pressure, we shall proceed as in [1], i.e., we shall assume that q is a polynomial of third degree in ϕ ,

$$q = C_0 + C_1 \phi + C_2 \phi^2 + C_3 \phi^3$$

and try various choices for the constants C_1 , C_2 , C_3 and C_0 .

3. APPROXIMATE SOLUTION FOR THE SHAPE

A certain amount of numerical experimentation with the system (28)-(31)shows that sometimes t_s is nearly constant and raises the possibility of an approximate solution based on this assumption. We shall investigate this possibility in this Section and see that an approximate solution can be found provided we make some additional hypotheses.

Since the strains are assumed to be small in the cords, we commit little error if we take

Also the number of gores, G, is usually so large that

$$\sin(\alpha/2) = \alpha/2.$$

With these unessential simplifications we can write the system as

$$d\phi/dx = (au_c/t_c) [2qy - t_c \sin\phi]$$
(46)

$$dt_s/dx = t_c u_f \cos \phi_{\bullet}$$
 (47)

We shall assume that the terms containing t_c are small enough to be neglected in (46) and (47). It is not easy to see when this assumption is valid, because more is involved than merely the smallness of t_c itself. Numerical experiments show that the assumption is tolerably accurate provided there is high enough stress in the center line.

In any case with this assumption we obtain that t_s is independent of x and the remaining equations reduce to

$$dy/dx = \cos \phi \tag{48}$$

$$i\phi/dx = Hy$$
 (49)

$$H = 2q\alpha u_f / t_s$$
 (50)

This system is rather simple in appearance but still non-linear. If H is constant (i.e., if q is constant), it can be solved by standard methods, giving

$$y = \{1 + (2/H) [sin\phi - sin\phi(1)]\}^{1/2}$$
(51)
$$x = 1 + \int_{\phi}^{\phi^{*}=\phi} (Hy)^{-1} d\phi$$
(52)

as the solution satisfying the conditions:

at x = 1, y = 1 and $\phi = \phi(1)$.

As yet, H is unknown because t_s is unspecified. To complete the determination of the solution we must evaluate H and $\phi(l)$ by means of the edge conditions. If we neglect the extensions of the various lines, so that

 $\lambda_{\mathbf{p}} = \lambda_{\mathbf{p}}', \quad \lambda_{\mathbf{i}} = \lambda_{\mathbf{i}}' = 1, \quad \lambda_{\mathbf{o}} = \lambda_{\mathbf{o}}',$

we get from (42) and (43) the conditions

$$\lambda_{0}^{\dagger} \cos\phi_{0} + y(\phi_{0}) = 0 \tag{53}$$

$$\lambda_{o}' \sin \phi_{o} - \lambda_{p}' + \sin \phi(1) + \int_{\phi_{i}}^{\phi_{o}} (Hy)^{-1} \sin \phi \, d\phi = 0 \qquad (54)$$

$$x_{o} = 1 + \int_{\phi(1)}^{\phi_{o}} (Hy)^{-1} d\phi.$$
 (55)

$$\phi_{O} = \phi(x_{O})$$

The solution of these equations for the three quantities H, ϕ_0 and $\phi(1)$ requires an iterative process and is at least as complicated as the corresponding steps in the analysis using the original equations.

It is useful to have the formulas (52) to (55) since they serve to check the accuracy of computed results for appropriate conditions. However, they are not generally valid, and the difficulties in meeting the boundary conditions are still present. We conclude that our main effort must still go into a numerical analysis of the original equations, (28) - (31).

. NUMERICAL ANALYSIS

The fundamental procedure used in this problem is similar to that used for an ordinary, flat circular canopy [1] and is based on a Runge-Kutta solution of the differential equation system (28) to (31). The principal difference is in the treatment of the boundary conditions,

In the earlier case, where there was no center line, there were no vertical forces on the vent, and hence

$$\phi(1) = 0.$$

The condition (43) was not applicable. The procedure was to guess $t_s(1)$, calculate

$$y(1) = 1 + t_s(1),$$

integrate (28) to (31) numerically from x = 1 to $x = x_0$ and see whether (42) was satisfied. Various values of $t_s(1)$ were tried, based on the Rule of False Position, until (42) was satisfied with sufficient accuracy.

The present case is more complicated becau: \pm both $\phi(1)$ and $t_s(1)$ are unknown and have to be chosen so as to satisfy the two conditions (42) and (43). Thus a two-way iterative process is required now. After some experimentation the following iterative scheme was adopted. First, a value was assumed for $\phi(1)$. An iterative process then found the value of t(1) that caused satisfaction of (42). The entire procedure was repeated for different choices of $\phi(1)$ until one was found that also caused (43) to be satisfied. This gave the final solution. Some difficulty was experienced in making good first guesses for t(1) and $\phi(1)$.

Because of the extra iteration the running times for the present calculations were much greater than for the flat, circular case. To keep the running times within reason, it was necessary to use as coarse a mesh as possible in the Runge-Kutta integration. Accordingly, the calculations were all run using a ten-point mesh. The results are surely less accurate than the earlier ones for a flat, circular canopy, but comparison with experimental results and with the approximate solution derived in the next Section indicates that the accuracy is satisfactory for practical purposes.

5. RESULTS

In this Section we describe the computer predictions about the effect on a typical canopy when the vent is pulled down by center lines of different lengths. First, the program developed in [1] for a flat circular canopy was run in order to find the limiting behavior when the center line is either absent altogether or so long that it does not pull the vent down. Then the present program was run for various lengths of center line.

The canopy parameters used in the calculation are those for a G-11-A 100 ft-diameter canopy and are as follows:

 $R_{i} = 1.875 \text{ ft} = \text{vent radius}$ $R_{o} = 50 \text{ ft} = \text{skirt radius}$ G = 120 = number of gores $L_{o}' = 95 \text{ ft} = \text{length of load lines}$ $E_{c} = 2 \times 10^{3} \text{ lb} = \text{modulus of cords}$ $E_{f} = 3 \times 10^{3} \text{ lb/ft} = \text{modulus of fabric}$ $E_{o} = \text{modulus of load lines} = E_{c}$ $\rho = 2.4 \times 10^{-3} \text{ lb sec}^{2}/\text{ft}^{4} = \text{mass density of air}$

The net pressure was specified in terms of the dimensionless pressure coefficient, $C_{\rm p}$, where

 $p = (1/2) \rho U^2 C_p$

and U is the velocity of steady descent. In the present investigation C_p was taken as constant over the whole canopy. In the preliminary runs on flat, circular canopies it was found that $C_p \equiv 1.5$ gave a drag coefficient

C_D ≈ 1.41

(56)

Tensile Force.

for a considerable range of U-values. This agrees well with experiments on the drag of hemispherical, sheet-metal caps reported by Hoerner [2]. For $C_{_{\rm D}} \equiv 1.5$ it was found that a drop velocity of

$$U = 24 \text{ ft/sec}$$

caused a drag of about 3500 pounds, which is a commonly accepted value for the load. These values,

were therefore adopted as more or less standard conditions for this canopy and were used in the program for the pull-down vent as well,

The main subject of study in this analysis of the pull-down went was the effect of the center line length. The elasticity of the center line was taken as

$$E_{\rm D} = 1.7 \times 10^4 \, \text{lb}$$

and the length of the center line was varied in the range $1.5 \leq L_p^{+}/R_o \leq 2.35$. Most of the runs were made with the standard values of C_p and U, but some runs were made at other values to assess the effects of velocity or procesure changes. The results are shown in Figures 5 - 9. In these Figures the center line length is expressed in terms of n_p , where

$$I_p = L_p^2/R_{o^2}$$

Figure 5 shows how the canopy drag and center line tension are affected by changes in the center line length. A maximum drag of about 4150 lb, corresponding to $C_{D_0} = .739$, is found when $n_p = 1.88$ or $E_p^{+} = 94$ ft. This represents an 18% increase over the flat, circular values,

Figure 5. Effect of Center-line Length on Maximum Radius and Cord Angle at the Vent.

$$C_{D_{O}} = .651$$

The center line tension force, N_p, reaches a maximum of about 1670 lb, when n_p = 1.65, and drops to zero at the flat, circular value, n_p = 2.35, The configuration of maximum drag, n_p = 1.88, gives a control line force, N_p = 1360 lb.

The influence of n_p on uso geometrical parameters is shown in Figure 6. The ratio of the maximum radius to the flat, circular radius, r_{max}/R_{o} , reaches its greatest value (.731) at $n_p \approx 1.9$. The corresponding value for a flat, circular canopy is seen to be

$$R_{\max}/R_{o} = .679.$$

The angle of the lines at the vent, $\varphi(\mathbf{x}_i)$, is seen to change almost linearly from $\phi(\mathbf{x}_i) \approx -61^\circ$ to $\phi(\mathbf{x}_i) = 0^\circ$ as η_p increases from 1.5 to 2.35. Incidentally, the angle of the lines at the skirt, $\phi(\mathbf{x}_o)$, is almost independent of η_p and has the value

The profiles of the canopy lines are shown in Figure 7. We see that the maximum drag corresponds to a shape $(n_p = 1.88)$ where the vent is pulled down about halfway to the skirt. The constancy of $\phi(x_0)$ is easily observable in this Figure.

The effect of n_p on the cord strain distribution is shown in Figure 8. As the center line is made shorter (i.e., n_p decreases) the tension in the cords becomes more nearly constant. When $n \leq 2$, we have the conditions under which the approximations of Section 3 are valid. The cord strain remains

an on the strategy of the

.

 $J_{4}(\mu) \notin f_{\rm E}$

Figure 8. Effect of Center-Line Length on the Distribution of Cord. Tensile Force.

23

fairly constant near the skirt in all cases, but as n_p approaches the flat, circular value the cord strain drops rapidly near the vent.

The most spectacular effect of pulling down the vent is seen in Figure 9, which shows (on a semi-logarithmic plot) the fabric strain distribution. We observe that, as the vent is pulled down, the location of maximum fabric strain is shifted outward (toward the skirt) and the fabric strain itself is greatly reduced. For instance, if n_p is decreased from 2.35 to 1.88 the maximum value of t_f is reduced to about 7% of its previous value. Further shortening of the center line, from $n_p = 1.88$ to $n_p = 1.5$, causes the maximum t_f to move outward almost to the skirt and continue decreasing, although the rate of decrease is slower than before.

The effects of changing the drop velocity, U, or the assumed constant pressure, C_p , are essentially the same since both enter the calculation only via the formula for the pressure (56). Moderate changes in either quantity cause negligible changes in shape, and the changes in stress and drag are just proportional to those in the pressure. This conclusion is not valid if very large changes occur in C_p or U, or if C_p is permitted to vary substantially with position on the canopy.

Circumferential Fabric Stress.

6. DISCUSSION

In this Section we shall first outline the main conclusions drawn from this work, then discuss questions of accuracy and finally sketch explanations for some of the effects of pulling down the vent.

The principal conclusions to which this work has led are these:

(i) The most spectacular effect of pulling down the vent is the extraordinary decrease in maximum fabric stress, which may be reduced to 10% or less of its value for a flat circular canopy.

(ii) A careful choice of center-line length will give a drag about 18% nigher than the drag for the corresponding flat circular canopy at the same speed. The (undeformed) center-line length which accomplishes this is very close to the (undeformed) length of the load lines.

(iii) The cord stress is nearly constant when the center-line length is less than about two skirt radii.

The accuracy of the results may be tested either by comparison with alternative theoretical ways of calculation or by comparison with experiments. A theoretical comparison is shown in Figure 10, where the functions $y(\phi)$ as calculated for two η_p -values, first by the computer program (using a tenpoint mesh), and second by the formula (51) are compared. In using (51) the value of t_s was taken from the computer program. The two results are seen to be in excellent agreement and give some confidence in the accuracy of the two procedures for these cases. However, this test is not a severe one.

The more telling comparison is that between theory and experiment. Here the picture is beclouded by the variability of experimental results on

litte

4

here, " as brough half, HRUMA

£

parachutes. However, several points are clear. First, experiments on the G-11-A canopy led to the conclusion that the greatest drag was obtained when the center-line length was the same as the load line length (between skirt and load). The theory duplicates this result very closely. Second, the measurement of fabric strain is very difficult, and the author has been unable to find any experimental data dealing with it.

Third, we may present an experiment result [3] and the corresponding theoretical calculation. A flat, circular G-11-A canopy with a load of 5410 lb was found to drop steadily at a speed of 25.5 ft/sec, giving a drag coefficient,

$$C_{D_{o}} = .863.$$

The same canopy was then modified by installation of a 95-foot centerline and dropped again with the same load. This time, the rate of descent was measured as 24.2 ft/sec, giving

To duplicate these tests theoretically the program for a flat, circular canopy was first run for a rate of descent, 25.5 ft/sec, and various values of C_D (assumed constant over the canopy) were tried. It was found that

gave a drag of 5410 lb and a drag coefficient, $C_{D_0} = .883$. The rogram for the pull-down vent was then run with $C_p \stackrel{2}{=} 2.008$, and various velocities were tried, giving the result that the drag (load) was 5410 lb when the rate of descent was 23.7 ft/sec. The corresponding drag coefficient was

$$C_{D_0} = 1.023$$

Hence in this case theory predicted that pulling down the vent would give a 16% increase in $C_{D_{c}}$, while the experimental result showed an 11% increase in

C_D. This agreement is not extremely good, but in view of the uncertainties o in measuring rate of descent during full-scale tests, it is not bad.

We conclude that the theory given here is in fairly good agreement with experiment, although we cannot be sure because of the difficulty in obtaining repeatable experimental results. The difference between the drag coefficients of $C_{D_O} = .65$, used for the standard flat circular conditions, and $C_{D_O} = .63$ in the experiments described in this Section is apparently typical of the variability that can occur.

In understanding the mechanics of the pulled-down vent, the main thing we have to explain is the great decrease in maximum fabric stress. We may explain it this way. In the flat, circular canopy the circumferential fabric stress is very high at the vent, and the angle β (the edge angle of the gore) is nearly zero, so that from (9)

$$N_{f} = E_{f} \{ (r/R) - 1 \}.$$

When the vent is pulled down, it is also pulled inward, toward the axis, and (r/R) is reduced, thus reducing N_f near the vent. Thus the high peak of N_f near the vent is knocked down.

We may understand the effect of pull-down on the drag (Figure 5) if we attribute changes in drag to corresponding changes in projected area or maximum radius. For we may integrate (1) to obtain

$$r_{max} = r_{i} + \int_{R_{i}}^{R} f(R^{*}) \cos\phi(R^{*}) dR^{*},$$

where R_{max} is the R at which r_{max} occurs. Pulling down the vent has two opposite effects on this formula. First, it reduces r_i , and second, it increases

the integral because more of the peak in the cosine function near $\phi = 0$ is included in the integral. For moderate amounts of pull-down the second effect dominates, and r_{max} increases. However, if the vent is pulled down far enough, the first effect takes charge, and r_{max} decreases. This accounts for the general shape of the drag curve in Figure 5.

The author is grateful to E. J. Giebutowski, S. J. Shute, and E. L. Haak of the Airdrop Engineering Laboratory at U. S. Army Natick Laboratories for helpful discussion and suggestions in this work.

REFERENCES

- Ross, E. W., Jr. "Approximate Analysis of a Flat, Circular Parachute in Steady Descent", U. S. Army Natick Laboratories Report Nc. 69-51-OSD, December 1968.
- 2. Hoerner, S. F., "Fluid Dynamic Drag", published by the author, Midland Park, New Jersey, 1958.
- 3. S. J. Shute, Jr., Private Communication, January 1969.

•

APPENDIX: NOMENCLATURE

はた自然にあるが言い

Shik 2 (Shiri) (Change and Shiri)

A	Function used in determination of N _c
c _o ,c ₁ ,c ₂ ,c ₃	Constants in the pressure distribution
C _D , C _E	Coefficients of drag, based on flat, circular and projected
•	areas, respectively
С _р	Coefficient of pressure
E _f , E _c	Elastic moduli of fabric and cords
E _p , E _i , E _o	Elastic moduli of center line, vent lines and load lines
f	Extension of cords = $1 + t_s$
G	Number of Gores
н	Function of pressure used in approximate solution
L _i , L _i '	Deformed and undeformed lengths of vent lines
L _o , L _o '	Deformed and undeformed lengths of load lines
L _p , L _p	Deformed and undeformed lengths of center line
Nf, Ns	Tension forces in fabric and cords
Nc	Equivalent circumferential tension force
Np	Tension force in control line
P	Net (outward) pressure
q	Dimensionless outward pressure
r, R	Cord radius in deformed and undeformed shapes
R _i , R _o	Vent and skirt radii of undeformed shape
t _f , ⁺ s	Dimensionless fabric and cord stresses (or strains)
t _c	Dimensionless circumferential stress
tp	Dimensionless stress (or strain) in center line

U	Velocity of steady drop
u _f , u _p , u _o	Dimensionless ratios of elastic moduli
йL	Weight of the load
w	Dimensionless weight of the load
x	Dimensionless undeformed radius
×o	Dimensionless skirt radius in undeformed shape
У	Dimensionless deformed radius of cords
Z	Axial distance from vent of points on the cords
Z	Dimensionless axial distance of cords from vent

. 33

α	Central angle of gores
в	Slope angle of gore where it intersects cords
5	Depth of gore bulge
'np	Ratio of center line length to undeformed skirt radius
θ	Angle betweer lcad lines and canopy axis
λ _i , λ _i '	Dimensionless deformed and undeformed length of vent lines
λ ₀ , λ ₀ ,	Dimensionless deformed and undeformed lengths of load lines
λ _p , λ _p '	Dimensionless deformed and undeformed lengths of center lines
Q	Mass density of air
σt	Contact length between adjacent gores when $A > 0$
σ	Dimensionless contact length between adjacent gores
φ	Angle between cords and horizontal
φ _o	Angle between cords and horizontal at skirt

Market Report of the second sec

Nikumetre stadio

TECHNICAL REPORT DISTRIBUTION

Сор	ies To
1	Office of the Director, Defense Research and Engineering, The Pentagon, Washington, D. C. 20301
20	Commander, Defense Documentation Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314
1	Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio 43201
2	Chief of Research and Development, Department of the Army, Washington, D. C. 20310 ATTN: Physical and Engineering Sciences Division
1	Commanding Officer, Army Research Office (Durham), Box CM, Duke Station, Durham, North Carolina 27706 ATTN: Information Processing Office
1	Commanding General, U. S. Army Materiel Command, Washington, D. C. 20315 ATTN: AMCRD-RC-M
2	Commanding General, U. S. Army Electronics Command, Fort Monmouth, New Jersey 07703 ATTN: AMSEL-RD-MAT
1	Commanding General, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809 ATTN: Technical Library
1	Commanding General, U. S. Army Munitions Command, Dover, New Jersey 07801 ATTN: Technical Library
1	Technical Library - U. S. Army Natick Laboratories Natick, Massachusetts 01760
1	Commanding General, U. S. Army Satellite Communications Agency, Fort Monmouth, New Jersey 07703 ATTN: Technical Document Center
1	Commanding General, U. S. Army Weapons Command. Research and Development Directorate, Rock Island, Illinois 61201 ATTN: AMSWE-RDR
1	Commanding General, White Sands Missile Range, New Mexico 88002

Copies

anaronina università di la constructione de la constructione de la construction de la construction de la constr

ģ.

" And articles with a part of

TUNAL V

L	Commanding Officer, Aberdeen Proving Ground, Maryland 21005 ATTN: Technical Library, Building 313
L	Commanding Officer, Frankford Arsenal, Bridge and Tacony Streets, Philadelphia, Pennsylvania 19137 ATTN: Library Branch C 2500
L	Commanding Officer, Department of the Army, Ohio River Division Laboratories, Corps of Engineers, 5851 Mariemont Avenue, Cincinnati, Ohio 45227 ATTN: ORDLB-TR
1	Commanding Officer, Picatinny Arsenal, Dover, New Jersey 07801 ATTN: SMUPA-VA6
4	Commanding Officer, Redstone Scientific Information Center, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809 ATTN: AMSMI-RBLD, Document Section
1	Commanding Officer, Watervliet Arsenal, Watervliet, New York 12189 ATTN: SWEWV-RDT, Technical Information Services Office
1	Commanding Officer, U. S. Army Aeromedical Research Unit, P O. Box 577, Fort Rucker, Alabama 36460 ATTN: Technical Library
1	Commanding Officer, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia 23604
1	Director, Naval Research Laboratory, Anacostia Station, Washington, D. C. 20390 ATTN: Technical Information Officer
1	Chief, Office of Naval Research, Department of the Navy, Washington, D. C. 20315 ATTN; Code 423
5	Headquarters, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio 45433 ATTN: ASRCEB
1	U. S. Atomic Energy Commission, Office of Technical Information Extension, P.O. Box 62, Oak Ridge, Tennessee
L L	National Aeronautics and Space Administration, Washington, D. C. 20546 ATTN: Mr. B. G. Achhammer Mr. G. C. Deutsch Mr. R. V. Rhode

-2-

Copies

hed to a

t

То

1 1	National Aeronautics & Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812 ATTN: R-P&VE-M, Dr. W. R. Lucas M-F&AE-M, Mr. W. A. Wilson, Building 4720
1 1 1 1	Commanding Officer, U.S. Army Materials & Mechanics Research Center, Watertown, Massachusetts 02172 ATTN: Mr. J. F. Mescall Mr. J. I. Bluhm Mr. O. L. Bowie Mr. R. B. Beeuwkes
l	National Aeronautics & Space Administration, Langley Research Center, Hampton, Virginia 23365 ATTN: Dr. R. W. Leonard
1	President US Army Airborne Electronics & Special Warfare Board Fort Bragg, North Carolina 28307
l	Commanding General U.S. Army Materiel Command, Washington, DC 20315 ATTN: AMCRD-F
l	Commanding Officer, 6511th Test Group (Parachute), Naval Air Facility, El Centro, California 92243
ı	Commander, Wright Patterson Air Force Base, Dayton, Ohio 45433 ATTN: FDFR
٦	University of Minnesota, Department of Aeronautics & Engineering Mechanics, Minneapolis, Minnesota 55414

÷

	ENT CONTROL DATA		
(Security classification of title, body of abstract IIGINATING ACTIVITY (Corporate author)	and Indexing annotation mus		e overall report le classified) SECURITY CLASSIFICATION
			Assified
US Army Natick Laboratories		25. GROUP	
Natick, Massachusetts C1760			
ANALYSIS OF A PARACHUTE WIT	HAPUTTRO-DOUN V	EVIII .	
ISCRIPTIVE NOTES (Type of report and inclusive da	tes)		
ITHOR(5) (First name, middle initial, last name)	<u> </u>		
Edward W. Ross, Jr.			
PORT DATE	78. TOTAL P	IC. OF PAGES	75. NO. OF REFS
February 1969			3
ONTRACT OR GRANT NO.	Sa. ORIGINA	TOR'S REFORT NU	MBER(\$)
ROJECT NO. 1F162203D195	69-	71-0SD	
-	SO. OTHER	REPORT NO(S) (Any	other numbers that sury be assign
	this repoi		
• •	I	•	
This document has been appr is unlimited.	oved for public r	elease and s	ale; its distributio
UPPLEMENTARY NOTES	12. SPONSO	RING MILLTARY AC	TIVITY
	US A	rmy Natick I	e boratories
	1	-	setts 017ó0
BSTRACT			
The previous analysis of the descent is here extended to A general theory is develop found in closed form for ce as the basis of a computer the use of the program in d The results are compared wi The most interesting outcom stress is greatly reduced b	deal with canopi ed, and a partial ertain conditions. program. An exam letermining the op th tests and fair he is the predicti	es having a , approximat The genera uple is worke timum length ty good agre- ton that the	pulled-down vent. e solution is il theory is taken ed out to demonstrate of center line. ement is obtained.
		-	
			-
	•		
	a. 1 des da. Cinem di		
1473 Statute Par Statut	85.	[]r	nclassified

١

-

and a company of the second second

ferrites a standard and the stand of the standard and the standard standard standard standard standard standard

UNCLASSIFIED Security Classification

4. KEY WORDS		LINK A		LINK B		кс
	ROLE	WT	AOLE	WT	ROLE	WT
Stress analysis	8					
Length	6					
Parachute lines	6					
Center	0					
Vents	6					
Fabrics	7					
Stresses	7					
Shape	7					
Parachutes	9					
Computer programs	10					
			•			
•						
- -		-				
- · ·						
						l
	U	RCLASS	SIFIED	cation		
			,			

: 2

ئان راين ^ر دير

,