AL
/ u‘\w % ’

ey

-..*.'k" -):‘
w %
B 1‘ m P -

a
<C
£
. ,‘N. . M
v 3 &
.T ml.w ,M mm
» iy
Am i & (W)
[0 A .M.. nl
0 o P Z
...M-.. Ll . ) s
I- = c
— Q =— = C.
>- w = o a Q
. — D 2 MW = mr- h\v -D
o o © © — e > 7
=2 Q. -WJ . M ~ M . Mw x <
o |
T O 23 o>
' = Q c © | . it = b=
o< —— ~ W 4 S E £ < -
o z S - = ' ez
a =) @ 2 U@ g
2., ]
(F] - VC - =] cQ _D
o M" M c < lm ;N
. ‘ ox: £2 ui = “w
- 5 = A
< 2 =5 &
- mm Z o o
- 1 M g
=4 Qwn £
[ o L >
o e O
“H O &
3 b=Z
o U W4
<« nm =
[ - [3
Vi<t
D0
s 821 ¥ 144
N Do
% ~
N _
~ 9 e s e e



Destroy this report when it is no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as
an official Department of the Army position, unless
sQ designated by other authorized documents.



BALLISTIC RESEARC

1428
1140

MARCH 1969

HARMONIC POLYHEDRA

. John H. Giese
Ceslovas Masaitis

£

This document has been approved for publ
its distribution is unlimited.

RDT&E Project No. 1T061102B14A

B E

DEEN PROVING GROUND, MARYLAND



BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1428

T Giaca/CMacaitie /Rl
Ul&ulDDD, \JLV].G-DG.L\-LD, AN
Aberdeen Proving Ground, Md.
March 1969

HARMONIC POLYHEDRA

ABSTRACT

A polyhedron of genus p is harmonic if the number of its faces
(vertices) is the harmonic mean of its numbers of its edges and vertices
{faces). The determination of all permissible combinations of numbers
of vertices, edges, and faces is reduced to solution of Pell's equation.

Realizations of all such polyhedra with p=1 are described, as well as

£ e
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"The usefulness of considering lines, angles and figures is the
greatest, because it is impossible to understand natural philosophy

without these.' -- Robert Grosseteste, De Lineis, Angulis et

Poa b E ok ]

FIEuLLS.

I. INTRODUCTION

Let V, E, and F be the number of vertices, edges, and faces

a v 1 renus p with simply connected faces.
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Then the Euler equation asserts that

V is the harmonic mean

1 1Y
1 =)

(2) v = 2‘\

-

we shall say that the polyhedron is V-harmonic. We shall also say

that any triple of positive integers (V, E, F) that satisfies (1) and (2)

is V-harmonic. Similarly, if.
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we shall say that the polyhedron is F-harmonic, and that any triple
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of positive integers (V, E, F
The cube, with p=1, V=8, E=12, F=6 is V-harmonic, and its

dual, the regular octahedron, with p=1, V=6, E=12, F=8 is F-harmonic.

We shall show that there are no toroidal (p=0) harmonic polyhedra. For
other values of p the determination of harmeonic triples reduces to the

construction of solutions of a Pell's equation., According to well known

algorithms for the construction of the complete set of solutions of Pell's



equation, for each p# 0 there are infinitely many V-and F-harmonictriples.
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or p=1w
polyhedra corresponding to every harmonic triple with V =24, For
each p= -1 we show that a natural modification of the constructions

used for p =1 will produce examples of all harmonic polyhedra of

II. DETERMINATION OF HARMONIC TRIPLES

Let V.. and F.. be solutions of (1) and (2) for V and F as functions

A% v
of E and p. Similarly, let VF and FF be solutions of (1) and (3). Then
(4) Vy(E,p) = FL(E,p) = p + 2E - D(E, p) ,
and
(5) Fy(E, p) = Vo(E,p) = p - E + D(E, p),
where D satisfiesa Pell's equation
(6) D3(E, p) = 2E% + p° .
Note that by {6) D and p always have the same parity. Then by

For p=0, equation (6) has only the trivial, irrelevant solution

D = E = 0. Hence there are no toroidal harmonic polyhedra. For

other values of p the solutions of our Pell’s equation are described

mYy. A3 4
T discussion can be
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I
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First, for p = £ 1, all pairs of positive integer solutions (D, E) of

(6) are generated by the sequence



(7) D_+E_VZ=(3+2/2 ) n

v
—

By forming the product of (7) and

1) t2_9 /I

D -E /2 =(3-2/2)
n n

we can immediately verify that Drz1 - ZErzx =1, That (7) vyields

all desired solutions for p =+ 1 will follow from our later discussion.
For p =1 the first five elements of the sequence and the corre-
sponding values of V and F have been listed in Table I. The

entry for n = 1 is irrelevant for our purpose, since V24 for

all polyhedra.

Table I. First Five Harmonic Triples (p = 1).

| n| D V,=F_. | E F, =V,
g n V F n V F
o 3 2 2 2
2 17 8 12 6
3 99 42 70 30
4| 77 240 408 170
| 5| 3363 1394 2378 986
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function of n, it is apparent from the entry for n = 3 that none of
the other regular polyhedra is harmonic. It is also clear from

Table I. that none of the stellated regular polyhedra is harmonic.
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From (4) and (5) we deduce that

VolE, 1) = F(E, =1) = V(E, 1)-2 = F(E, 1) -2
which can be used to adapt Table I for p=-1.
- e 4 1at IDF T¥Y he anv pair of t
Now, ifor any integer p 7 v 18l v , o j 2POF 245 pass ol positive
. . *
integers that satisfy (6). At least one such pair, e.g. D =3 lpl,

(8) D_+E/Z-= (D¥+E¥/2) 3+2/2)".
If we form the product of (8) and

D -EJ/Z=(D'-E¥2)(3-22)"

n n

(3]

2 2
we immediately obtain D - 2E” = p°. If we refer (6) to rectangular

»

coordinates with horizontal D-and vertical E-axis, a point starting

(D ,E ) for increasing nZ0. Now we shall show that if the point

n 1

i, VS,

moves downward along the same branch it will pass through the

successive points (D_, E_) for decreasing n=0. From (8) we find
n n

(9) D +E ./2=(D +EJ/2)(3-2/2)

F n-1 n-1 n n

for all integers, n. If

(10) D >0,

[
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then

_ . ,0.5
(11) D =(2E®°+p°)
I1 N Il - P
D 23D -4k -3 2m2. 2
D _,=3D -4E_ =32E_+p ) 4
(12)
- i o a2 2
=3E_-2D =3E_-2VZ2E +p°.
n-1 n n n n

From (12) we find that regardless of the sign of En

(13) D _,>3/Z|E | -4E_zo.
n-1 n n
Hence, if (D , En) is on the right branch of (6}, so i
and by induction, all points (Dn-j"En— ) . Next
(14) E .z0
A n-—1
if and only if
(15) E_z 2|p]|
(15) n- ¢IP| -
As a corollary, if
(16) 0sE_<2]|p|,
then
(17) E; <0, j=n-1.

If (15) is satisfied, then by (12) and (14)

E _,<{(3-2/2)E_< 0.2E_.
n-1 n n

1A

~
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—
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Thus, as long as En—i > 0 we have
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—



< J
(19) 0<E _, = (0.2/E .

Hence for some uniquely determined J = 0

(20) 0<E__=2]|pl|

n-J
and

= 12
(21) E_;S0, jzJ+1.
By (12) and (21)
(22) |E 1 >(3+2/2 ) |E_ . |

I n—j—lI N J 1y e

Hence (Dn, E_) moves downward on the right hand branch of (6) as
n decreases.

In t
an v

T lete set of

-

solutions of (6) in the first quadrant of the DE-plane can be determined

as follows. Select from the set of integers 0 < E = 2 |p| the subset

-~

5 > \
/. for which 2E° + p° is a perfect square. With each E* of L

associate the corresponding D = (2E +p" ) and then use the
> lh* *\ a £ FRY 1o\ £ > N
pair (U , L ) tO 10rm the sejuence (o) 10r 1n = V.
.
For p =% 1, the subset /. consists of the single value E = 2.
N

For any p # 0, D = 3Ip[ , E = Z!pl satisfies (6), so L is always

non vacuous. The following example shows that for certain choices

) -

of p the set L. may have
h

wo or more elements. If

(/g

2 2 2
(23) D" -p =2E
then the choice
r
{24) E=2"N

12



where N is odd,allows various possibilities for the factors D= |p|

that yield
D= 28 1N2+22r s ,
{28\
\&3)
Vo s=-1_.2 2r-s
|p| =2 N -2 , 1=ss2r.

We can guarantee p<-1 and E < -2p by taking
(26) Nz 2% (1+/3).

Another set of choices for Dt |p| yields

(27) r<s=2r.

Strong indications of the structure of harmonic polyhedra can be

determined from bounds on the average number of edges at a vertex,

(28) A(E) V(E) = 2E.

For V-harmonic polyhedra we must have

0.5

1 V\r(E) .\=l')r‘2|_2\
A __(E) 2E 2E

-‘V'\ 7

by (4). Then
0.5

d 75 1 r/ 2 2\ . 5 2 2 2
aE I‘)— —p\QZE +p ) -p I /ZE QZE +p)

13



imnlice that A [E)ice an increacinog [decreacino) functinn nf
impiies that Ay(&j is an increasing (cecreasing) lunciion of
for p = 1(p<0). Furthermore
lim A (E)y=2+/2 .
Ar\nn?r‘-lnnr tn Tahla T =212 for n Rut then {12 = 13
ccording to laovie l, L = iZ1icrp But then Ayiie) 13
Thus
(29) 3sA(E)<2+/2<3 , p=1.
4 V\ 7 tHd Ir
For p <0 we have
(30) A (-12p) = 4.
v
Thus
(31) 3.4<2+fZ<AV(E)§4,Eé-lZp,p<0.
h py ) d e e om 2 m e m T L m D cerm Lo
FOTr r-—narmoniC poiynéara weé nave

by (5). Then

p—

=~

+Pp

 O—




implies that AF(E) is an increasing (decreasing) function for

p = I{(p<0). Furthermore

limg_ AL(E) = 2(1 +/2) .

Accordingt o Table I, E = 12 for p=1. But then AF(IZ) =4,
Thus
(32) 4= AL(E) = 2{1+/2) < 4.84 , p=1.
For p <0 we have
AF(- 12p) =6, AF(_7OP) =5,
Thus
(33) 4.3<2(1+/§)<AF(E)§5, Ez-70p, p<o0.

1 3

a polyhedron with the
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appropriate numbers of vertices and three edges at each vertex. A

prism, P(n,0), with two congruent regular n-gons as horizontal

bases and n congruent squares as vertical faces has the desired

perty. Now let us mod 7 drawing one diagonal in each

—
(¥, ]



of r successive square faces. This suggests that by slightly displacing

ekl e o~ L AL o e e Lo e A e = - — —
CIrLICECS Ul e upper vasc L

PR - - = S Y
1ew positions in its plane

uccessi

r s ve V
we can replace r square faces of P(n,0) by 2r triangular faces with
r additional edges. In this way we can construct a set of polyhedra,

P(n,r), for 3s=nand 0 =r = n for which

(34) V=2n, E=3n+r, F=n+r+2.

Note that 3 = 2E/V = 3+r/n =4 . For the values (34) let

(35) f(n,r) = 0.5(1/E + 1/F) - 1/V .
Then in particular,
f(n, 0) = (n-4)/6n(n+2).
According to Table I, V = 2n Z 8 . Hence
| f(n,0) =z 0, nz 4,
On the other hand

n) = - (n+3)/8n(n+1) < 0 .

TuiirtharrmAara
4 KlatvilvalllVa v,

Thus, if we choose for V = ?.n0 one of the possible values that occurs

in a V-harmonic triple for p=1, then the equation
f(nﬂ, 1"\) = 0
v v

has a unique integer solution, L such that 0 = r §no . Hence

Din » )
“\n_,Tr

o o

16



Since the simplest F~harmonic polyhedron is a double pyramid,
let us seek other examples by generalizing this observation. First

suppose V = 2n+ 2 for an F-harmonic triple. Then let 9 be the

vertex of a pyramid which has as its base a regular 2n-gon with vertices
9:,95,...,Q,_ . For simplicity let all triangular faces of the pvramid
i S ? %2n r y g Py

be congruent isosceles triangles, Now construct a second pyramid
with vertex qzn_’_1 and with the r—sided polygon q1q2q3 o o ql_q1 as
a base. For convenience let q, and SPI be on opposite sides of the
common plane of the bases of both pyramids. If r = 2n, let Q(n, 2n)

be the union of our two pyramids. If 3 = r < 2n adjust the choice of

qoqj; at an interior point qj , for r+1 = j = 2n. Then 9,9 - = N
1 N

9,.9,_,, are the vertices of a polyhedron Q(n,r) for nz 2 and
il LellT X :

3=r<2n. For r=2n, Q(n,r)has

(36) V=2n+2, E=4n+r, F = 2n+r .
NT -~ 41 P 4 . P - .
Note that 9 9. 9..,.-.9,,9;9, is one of the faces of Q(n,r). Also
note that
4nt3  2E _ 8nt2r _ 6n |
ntl = V 7 2n+2 T n+l
which for n Z 5 covers the range required by the inequalities (32).

o~
W
-~
-
3
)
e

For fixed n and r= 3, g(n,r) is an increasing function of r, since



aln 3Y = n_nz\/u“u\17n¢2\14n¢2\ <N
6‘11’ .l, ‘-l 44 ,I x‘l.].l L"I-J.l.l J,‘T&&IJ, ~ Vv
for nz 2, and
g(n, 2n) = (n-2)/12n(n+1) =z 0
3f o~ = 2 ITam~a if vwna AbhAan~nge
L Al = &L o LLCII\-C, L4 WT CLI1VUUDCT

for any F-harmonic triple (p=1), then the equation

g(no9 rO) =0

will have a unique integer solution, T s such that 3 < T = Zno .

Hence Q(no, ro) will be F-harmonic,

Note that (2, 4) is a regular octahedron.

V. REALIZATIONS OF HARMONIC POLYHEDRA FOR p<0,

(3 o VSRS SNSUUIPI Y 1 RIS ~ R [SPe. S, I |
1Nne construcions o1 w 10piCall
described in Section 4 can be modified as follows to produce spheres

with l1=-p handles. For a V-harmonic triple, let V= 2n . Let us begin

by constructing a prism P(N, 0), of the type described in Section 4,

Now let d be an

connects two non—-consecutive vertices, and let d, be the orthogonal
4

projection of du onto the lower base, Now cut l-p congruent non-

.
s

intersecting prismatic holes, with square cross—sections and vertical,
rectangular walls in P(N, 0). If the square cross—section is small

18



enough, we can place each of these shafts so that a diagonal of its upper
(lower) square boundary lies on du(dl). If we delete these diagonal

segments, then Z - p segments of d (dl) remain. Now in each of

u
h o (\f M1 r ” trni‘f’“ha‘l 'F:Ir‘ﬂc HT'Q‘XI a2 fq';: (Yn“ﬁ-l T“ " 1C WXrasyy o .hﬁ'tiﬂ
rS Wi Vi 14 Veibivadld +tavw o A CALYVYY L= u;usvlla;. Lidl LILL O AA -9 Y o 11 V &
produced a net with
(39) Vz=2n, E=3n+2(2=-D)+ » =n+4+r .
N L4 \ IV &y, = =< = - &
T€ v Yimman $hn simmnasm armAd Tawwrae haocaaae ~F I/IAT N\ P WA | aemed A
il W<CT IIL 156 LiIcT uPPCL alill 1UWCL DastTdy> Ol r‘l‘, U’ d.lUllg (9} alnua ul
u

we

;

shall produce a polyhedron P(n,p, r) for which (39) holds. Note that

(40) 3+42(2-p) /n S2EN = 4 4+ 2(2-p)/n
\ 7 \ rr7 7/ 7 A} Fult ¥ ) .
Tha tntowoal 140 will incliidae +ha intarval (R1) 3 €
4d 11T lLilvT L Val \-IV’ VW LLL LIIVAUNMG LIIU LIAVO A VO L \J -I.I L4
(41) n>2(/2+1)(2-p)>13.5-6.7p.
For the values (39) let

1
(42) f(n,p,r) =5(1/E+1/F) - 1/V .

Then
f(n,p,0) = [nz- 8n - 8(2-p) J /2n (n+4) [3n+ 2(2-p) _l .
For p<0 and n = 2{(/2+1)(2-p)

f(n,p,0) >0

because its numerator has the value -4(3+2/2)p(2-p) >0 .

19



For n=z 8, {(n,p,0) is an increasing function of n. Hence (41) implies

1A

f(n,P,0)>0: P -1,

On the other hand,
f(n,p,n) = - [nz + (8-p)n+ 4(2—p)}/4n(n+2)(2n+2—p) <0.

Furthermore, f(n,p,r)is a decreasing function of r for 0 = r = n . Thus,
if we choose for V = Zno one of the possible values that occurs in a
V-harmonic triple for some specified P, <0, and if n_ and P, satisfy

(41), then the equation
f(no, P, r) =0

has a unique integer solution r = T such that 0 = T = n_ . Hence

P(n ,p ,r ) is V-harmonic.
o’fo’ o

For an F-harmonic triple with p=-11let V = 2n+t2 . Let us begin
by constructing a polyhedron of the type Q(N, r) described in Section 4

for
(43) N=n —4(l-p).

If rz 4, Q(N, r) has six triangular faces q, qjqj+1 and 9, +1qjqj+l

*
for 1= j = 3, which we shall first modify as follows. Let q, - q: , q; ,

and q; be interior points of the segments qoq2 , qoq3 , and

* 92n+192
h hat q, qr and q}q} llel N
q2n+lq3 chosen so tha q2 q3 an q2q3 are parallel to q2q3 . ow
displace q, slightly outward along the line 9,9, to a new location qé ,
. 4 .
and displace a3 outward along 94493 to q3 - Since 9,9, 93> and Ay

are coplanar, q; and qé will also be inthe same plane. Let us choose q'3

20
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I1€ Uripililal BCgIIlCIlt Yy

am Ll ~
L

- ~ 2o Py L DI I ~ s AL o
S0 ua. q2q3 1> d..la.}.lcx to t q3 . y these

P 2
changes we have determined a new polyhedron Q*(N, r) which differs
from the original polyhedron Q(N, r) to the extent that two vertices
have been moved and four vertices have been added, with the following
consequences for the set of six triangular faces mentioned above. The
four "outer' triangles have been replaced by plane quadrilaterals, e.g.
qoqlqz by qoqlqéq2 . The two”inner“triangles have been replaced by
two smalier trianglies and two trapezoids, e.g. 9,9,9; by qoqz q§ and

* X 4/
94,9393 9, - Thus the numbers of vertices, edges, and faces have been

increased h\r amounts

sl i STe QRILIIV Wi S

(44) AV =4, AE =6, AF =
Now cut l-p congruent non-intersecting prismatic holes with square

) *
cross—sections in Q (N, r). If the square cross-section is small enough

we can cause a pair of opposite long parallel edges of each hole to
intersect both a_a. and a thi
el i g 42 13 -

segments into Z-p segments and ''scallop' one edge of each of

1is way we break each of these

%* ok ’ P ) )
q q2q3 ) qZ q2 q3q3 ’ q2n+1 qz q3 » qzqz q3 q3 We have also added

4(1-p) faces to produce a polyhedron Q(n, p, r) for which by (36), (43)

and (44)
(45) V=2n+6, E=z4n+2p+r+4, F=2n+4p+r -2
for 4 =r = 2n, where the value of E is most conveniently confirmed

by use of (1). Note that



1A

so that for 4= r = 2n
(46) (4n+442p)/(n+3) = 2E/V = (6n+2p)/(n+3).

For p <0 the lower bound in (46) is always less than 4. The upper

bound will be at least 5 for
(47) nz 15-2p.

Hence, when (47) holds, the interval (46) contains the interval (33).

For the values (45) let

(48) g(n,p, ) =#(1/V+1/E) - 1/F .
Note that (47) implies
dg(n,p,r)/3r >0 for rz 0,

i.e. g is an increasing function of r for the combinations of n, p,

and r that interest us.

Iy
ANU vV

g(n,p,4) = L—nz +(5p=17)n+ 2p2+ 10p- 10_]/4(n+3)(n+2p+2)(2n+p+4).
For n>0th
nz-2p

the numerator is no greater than
s 2 . . A cm aa A .,
-12p + 44p - 10<-12-44-10 = - 66 .
Since for n Z -2p the denominator is positive, then

g(n,p,4) <0,

N
N



the other hand
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, the equati

o
o’

23 - 37p + 12p~ > 0,
(o]

g(n,p,2n) >0 .
g(n ,p
is F-harmonic.

4

the numerator
o

o T)
o

Q(n ,p
(o)

PRY

with large enough n

and then



1. T. Nagell, ''Introduction to Number Theory, ' New York, Chelsea
Publishing Company, 1964.
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