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HARMONIC POLYHEDRA

ABSTWCT

A polyhedron of genus p is harmonic if the number of its faces

(vertices) is the harmonic mean of its numbers of its edges and vertices

(faces). The determination of all permissible combinations of numbers

of vertices, edges, and faces is reduced to solution of Pen’s equation.

Realizations of all such polyhedra with p = 1 are described, as well as

for all negative p with large enough numbers of edges.

3



I.

II.

III.

Iv ●

v.

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . .

INTRODUCTION . . . . . . . . . . . . . . . .

DETERMINATION OF HARMONIC TRIPLES . . . .

THE AVERAGE NUMBER OF EDGES AT A VERTEX

●

●

●

●

REALIZATIONS OF

REALIZATIONS OF

REFERENCE . .

HARMONIC POLYHEDRA FOR p =

HARMONIC POLYHEDRA FOR p <

. . . . . ● ***O ● .***

DISTRIBUTION LIST . . . . . . . . . . . . . .

●

●

●

●

✎

✎

1

0

●

●

●

✎

●

✎

✎

●

✎

●

3

7

8

13

15

18

24

25

5



“The usefulness of considering lines, angles and figures is the
greatest, because it is impossible to understand natural philosophy
without these. “ -- Robert Gross eteste, De Lineis, Angulis et——

Figuris.

1.

Let V, E, and F be the

INTRODUCTION

number of vertices, edges, and faces

respectively, of a polyhedron of genus p with simply connected faces.

Then the Euler equation asserts that

(1) V-E+F =2p,

where p is an integer less than two. If V is the harmonic mean

of E and F, i.e.

(2)

we shall say that the polyhedron is V-harmonic. We shall also say

that any triple of positive integers (V, E, F) that satisfies (1) and (2)

is V-harmonic. Similarly, if.

(3) A=
*(

11
F

~“+- )v’

we shall say that the polyhedron is

of positive integers (V, E, F) that

F-harmonic, and that any triple

satisfies ( 1) and (3) is F-harmonic.

The cube, with p=l, V=8, E=12, F=6 is V-harmonic, and its

dual, the regular octahedron, with p=l, v=6, E=12, F=8 is F-harmonic.

We shall show that there are no toroidal (p=O) harmonic polyhedra. For

other values of p the determination of harmonic triples reduces to the

construction of solutions of a Pen’s equation. According to well known

algorithms for the construction of the complete set of solutions of Pen’s



equation, for each p # O t“ht?re are infinitely many V-and F-harmonic triples.

For p = 1 we give simple constructions for examples of harmonic

polyhedra corresponding to every harmonic triple with V z 4. For

each p= -1 we show that a natural modification of the constructions

used for p = 1 will produce examples of all harmonic polyhedra of

genus p for large enough values of E.

II. DETERMINATION OF HARMONIC TRIPLES

Let Vv and Fv be solutions of (1) and (2) for V and F as functions

of E and p. Similarly, let VF and FF be solutions of (1) and (3). Then

(4) VV(E, p) = FF(E, p) = p + 2E - D(E, p) ,

and

(5) FV(E, p) = VF(E, p) = p - E + D(E, p),

where D satisfies a Pen’s equation

(6)
2

D (E, p)
22

=2E+p.

Note that by (6) D and p always have the same parity. Then by

(4) to (6) E, V, and F must be even.——

For p = O, equation (6) has only the trivial, irrelevant solution

D =E = O. Hence there are no toroidal harmonic POlyhedra. For——

other values of p the solutions of our Pen’s equation are described

at length in [1] . The discussion can be summarized as follows.

First, for p = + 1, all pairs of positive integer solutions (D, E) of

(6) are generated by the sequence
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(7)

By forming

Dn+En~=

the product of

(3+ti2 )n

(7) and

we can immediately verify that D: - 2E~ = 1 . That (7) yields
Al 1A

all desired solutions for p = * 1 will follow from our later discussion.

For p = 1 the first five elements of the sequence and the corre-

sponding values of V and F have been listed in Table I. The

entry for n = 1 is irrelevant for our purpose, since V 24 for

all polyhedra.

Table I. First Five Harmonic Triples (p = 1) .

D
I ‘v

= FF
n

3 2

17 8

99 42

577 240

3363 1394

4-=-
212

12 I 6

70 I 30

408
I

170

2378 I 986

The entry for n = 2 includes the data for the cube and regular

octahedron. Since the number of faces Fv or FF is an increasing

function of n, it is apparent from the entry for n = 3 that none of

the other regular polyhedra is harmonic. It is also clear from

Table I. that none of the stellated regular polyhedra is harmonic.

*[, :,,. ,b



From (4) and (5) we deduce that

VV(E, -l) = FF(E, -l) = VV(E, 1) ‘2 = FF(EZ 1)-2

VF(E,-l) = FV(E,-l) = VF(E$ ~)-z = Fv(Ej 1)-2

which can be used to adapt Table I for p = - 1 .

Now, for any integer p # O let (D*, E*) be any pair of positive

integers that satisfy (6). At least one such pair, e. g. D* = 3 1P I ~

E* = 21pl, exists. With (D*, E*) we can associate the sequence

(8) Dn+Enn= (D*+ E*n)(3+a)n ●

If we form the product of (8) and

D- Enfi = (D*- E*~) (3 - fi)n
n

D2
22

we immediately obtain n - 2En = p . If we refer (6) to rectangular

coordinates with horizontal D - and vertical E-axis, a point starting

at (D*, E*) in the first quadrant and moving upward along the right-

hand branch of the hyperbola (6) will pass through the successive points

(D ,E ) for increasing n= O. Now we shall show that if the point
nn

moves downward along the same branch it will pass through the

successive points (Dn, En) for decreasing n ~ O. From (8) we find

(9)

for all integers, n. If

(lo) Dn>O,

10



then

(11) ( 2
20.5

Dn = 2En + p
)

<

.0.5
D = 3D -4E = ‘2 E:+p2~ - 4En-1 n n n

(12)

E = 3E -2D =3E F-2’ 2En+p .
n-1 n n n

From ( 12) we find that regardless of the sign of E
n

(13) ~l>3~lEnl_4E ~ooD_
n

Hence, if (D En) is on ~e right branch ~f (6), so &( Dn_l, En ~),— n’ ——

and ~ induction, Next

(14) E
n-1

if and only if

(15) EnZ 21pl .

As a corollary, if

(16) OSE <21PI,
n

then

(17) Ej <(), j~n--l.

If (15) is satisfied, then by (12) and (14)

(18) OSE n_le(3-2~) En< 002E
n’

Thus, as long as E > 0 we have
n-j

11



(19) O<E
n-j

= (O. 2)j E
n“

Hence for some uniquely determined J Z O

(20) ()< En_ JS21pl

and

(21)

By (12) and (21

(22)

Hence (Dn, En)

n decreases.

In the light

solutions of

as follows.

\-

E .s0,
n-J

j2J+l.

)

IE l>~3+2fl)l En jl”

n-j- 1

moves downward on the right hand branch of (6) as

of what has just been proved, the complete set of

(6) in the first quadrant of the DE-plane

Select from the set of integers O < E S

)_ for which 2E
*2

+p
2

is a perfect square. With

can be determined

2 Ip I the subset
1

each E* of L

* *2 70.5
associate the corresponding D’- = (2 E-’- + p~ ) and then use the

pair (D*, E*) to form the sequence (8) for n Z O.

For p = & 1, the subset z consists of the single value E = 2.
1

For any p+ O, D* =31pl, E* = 21pl satisfies (6), so L is always

non vacuous. The following example shows that for certain choices
1

of p the set L may have two or more elements. If we rewrite (6)

in the form

(23) D2
2

-P = 2E2

then the choice

(24) E = 2rN

12



where N is odd, allows various possibilities for the factors D+ Ipl

that yield

D = 2s-1 N2 + 22r-s ,
(25)

Ipl = 2S-1N2 _ 22r-s ,

We can guarantee p <- 1 and E <- 2p by taking

(26) N= 2r-s (1+~3) .

Another set of choices for D* Ip I yields

D .(2s-1 + 22r-s)N ,
(27)

Ipl .(2s-1 - 22r-91v.
r<s S2r.

III. THE AVERAGE NUMBER OF EDGES AT A VERTEX

Strong indications of the structure of harmonic polyhedra can be

determined from bounds on the average number of edges at a vertex,

A(E) , defined by

(28) A(E) V(E) = 2E.

For V-harmonic polyhedra we must have

VV(E)

;(E)
= —=1+

2E

by (4). Then

2E

Q ~ 2 2°”5
0.5

Al
dE ~

=-p 2E +p‘1-P /2E2 (2E2 +p2)

13
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i
t’

?2
““

v’

implies that AV(E) is an increasing (decreasing) function of E

for p = l(p <O). Furthermore

limE=mA~(E) = 2+~ ●

According to Table I, E z 12 for p = 1. But then AV(12) = 13 .

Thus

(29) 3~AV(E)<2+~ <3.42, p=l.

For p < 0 we have

(30) AV(-12p) = 4.

Thus

(31) 3.4<2+~<AV(E) =4, Ez-12p, p<0.

For F-harmonic polyhedra we have

0.5

l/AF(E) = VF/2E = [(2E2+ p2) + p-E ]/2E

by (5). Then

r 1

%GF)=-P[(2E2+P2)O”5+P@2@2+p2)O”5

14



implies that AF(E) is an increasing (decreasing) function for

P= l(p< o). Furthermore

limE=~ AF(E) = 2(1 +~ ) .

According o Table I, E Z 12 for p= 1 . But then AF(12) = 4 .

Thus

(32) 4 s AF(E) s 2(1+~) < 4.84 ,

For p < 0 we have

AF(- 12p) = 6, AF(-70p) = 5.

Thus

(33) 4.8< 2(l+~)<AF(E)s5, Ez -70p, p<0.

IV. REALIZATIONS OF HARMONIC POLYHEDRA FOR p = 1.

The inequalities (29) for V-harmonic polyhedra suggest that we

begin our search for examples by constructing a polyhedron with the

appropriate numbers of vertices and wee edges at each vertex. A

prism, P(n, O), with two congruent regular n-gons as horizontal

bases and n congruent squares as vertical faces has the desired

property. Now let us modify P(n, O) by drawing one diagonal in each

15



of r successive square faces. This suggests that by slightly displacing

r successive vertices of the upper base to new positions in its plane

we can replace r square faces of P(n, O) by 2r triangular faces with

r additional edges. In this way we can construct a set of polyhedra,

P(n, r), for 3 5 n and O S r ~ n for which

(34) v= 2n, E = 3n+r, F =n+r +2.

Note that 3 S 2E/V = 3 + r/n 54 . For the values (34) let

(35) f(n, r) = O. 5(1/E + l/F) - l/V .

Then in particular,

f(n, O) = (n-4) /6n(n+2).

According to Table 1, V = 2n Z 8 . Hence

f(n, O) = O,

On the other hand

f(n, n) = - (n+3)/8n(n+l) <0.

Furthermore, for fixed n, f(n, r) is a strictly decreasing function of r.

Thus, if we choose for V = 2no one of the possible values that occurs

in a V-harmonic triple for p= 1, then the equation

f(no, ro) = O

has a unique

P(no, ro) is

integer solution, r such that O S r S n Hence
0’ 00”

V-harmonic.

16



let

Note that P(4,0) is a cube.

Since the simplest F-harmonic polyhedron is a double pyramid,

us seek other examples by generalizing this observation. First

suppose V = 2n + 2 for an F-harmonic triple. Then let q. be the

vertex of a pyramid which has as its base a regular 2n-gon with vertices

q@2,0*Wq2no For simplicity let all triangular faces of the pyramid

be congruent isosceles triangles. Now construct a second pyramid

with vertex q2n+ ~ and with the r-sided polygon qlq2q3 . . . qrql as

a base. For convenience let q. and q2n+l be on opposite sides of the

common plane of the bases of both pyramids. Ifr= 2n, let Q(n, 2n)

be the union of our two pyramids. If 3 S r < 2n adjust the choice of

‘2n+ 1
so that the plane q Zn+lqrql will intersect each of the segments

qoqj at an interior point q; , for r+l S j s 2n. Then qoql. . . qrq~+l . . .

q~n q2n+1 are the vertices of a polyhedron Q(n, r) for n z 2 and

3Sr<2n. For r 5 2n , Q(n, r) has

(36) v = 2n+2 , E=4n+r, F=2n+r .

Note that qoqrqr+l. . . q~nqlqo is one of the faces of Q(n, r). Also

note that

*3 ~ 2E 8n+2r < 6n—.
n+l – V - 2n+2 ‘Z1’

which for n Z 5 covers the range required by the inequalities (32).

For the values (36) let

(37)

For fixed n and r = 3 s g(n~ r) is an increasing function of r, since



~g/~r >0 . Now

g(n, 3) = (3-n2)/4(n+ l)(2n+3)(4n+3) <0

for nZ2 , and

g(n,2n) = (n-2) /12n(n+ l)= O

ifn Z20 Hence, if we choose

v= 2no+2 = VF

for any F-harmonic triple (p= 1), then the equation

g(no, ro) = O

will have a unique integer solution, ro, such that 3 < r S 2n
o o“

Hence Q(no, r. ) will be F-harmonic.

Note that Q(2, 4) is a regular octahedron.

V. REALIZATIONS OF HARMONIC POLYHEDW FOR p <0.

The constructions of topologically spherical harmonic polyhedra

described in Section 4 can be modified as follows to produce spheres

with l-p handles. For a V-harmonic triple, let V = 2n . Let us begin

by constructing a prism P(N, O), of the type described in Section 4,

with

(38) N=n - 4(1-p) .

Now let du be an arbitrary diagonal of the upper base of P(N, O) that

connects two non-consecutive vertices, and let dl be the orthogonal

projection of d,. onto the lower base. Now cut l-p congruent non-
U

intersecting prismatic holes, with square cross-sections

rectangular walls in P(N$ O). If the square cross-section

18
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is small



enough, we can place each of these shafts so that a diagonal of its upper

(lower) square boundary lies on du(d~). If we delete these diagonal

segments, then 2 - p segments of du(dl) remain. Now in each of

r of our n vertical faces draw a diagonal. In this way we ‘have

produced a net with

(39) v= 2n, E = 3n+2(2-p)+r, F =n+4+r .

If we hinge the upper and lower bases of P(N, O) along du and dl

slightly close the hinges, and slightly displace suitable vertices, we

shall produce a polyhedron P(n, p, r) for which (39) holds. Note that

2E/V = 3 + [r+2(2-p) ]/n

so for OSr Sn

(40)’ 3 + 2(2-p) /n S2E/VS 4 + 2(2-p)/n .

The interval (40) will include the interval (31) if

(41) n>2(~2+ l)(2-p)> 13.5- 6.7p.

For the values (39) let

(42)

Then

For p<O

because its

f(n, p, r) = ~(1/E + l/F) - l/V .

[
f(n, p,() ) = n 2- 8n - 8(2-p) ~ /2n (n+4)[3n+ 2 (2-P) ] .

and n = 2(K2 + 1)(2-p)

f(n, p,())>O

numerator has the value -4(3+ ti)p(2-p) >0 .

19



For n28, f(n, p, O) is an increasing function of n. Hence (41) implies

f(n, p,(l) > 0 ) P~-1”

On the other hand,

[f(n, p,n) = - n 2 + (8-p) n + 4(2-p~/4n(n+2)( 2n+2-p) < 0 .

Furthermore, f(n, p, r) is a decreasing function of r for O 5 r S n . Thus,

if we choose for V = 2no one of the possible values that occurs in a

V-harmonic triple for some specified p. <0 , and if no and p. satisfy

(41), then the equation

f(no, po, r) = O

has a unique integer solution r = r. such that O ~ r. ~ n . Henceo

P(no, po, ro) is V-harmonic.

For an F-harmonic triple with p ~ -1 let V = 2n+2 . Let us begin

by constructing a polyhedron of the type Q(N, r) described in Section 4

for

(43) N = n -4(1-p).

If r z 4, Q(N, r) has six triangular faces

for l~jS3, which we shall first modify

and q: be interior points of the segments

‘O ‘jqj+l and q2n +lqjqj+l

as follows. Let q; , q;sq;s

‘oq2 $ ‘oq3 $ ‘2n+l q2 ) and

‘2n+l ‘3
chosen so that q; q; and q; q; are parallel to q2q3 . NOW

displace q2 slightly outward along the line q ~q2 to a new location q; ,

and displace q3 outward along q4q3 to q; . Since ql~ q29 q3> and q4

are coplanar, q; and q; will also be in the same plane. Let us choose q:

20



.

so that q; q; is parallel to the original segment q2q3 . By these

changes we have determined a new polyhedron Q*(N, r) which differs

from the original polyhedron Q(N, r) to the extent that two vertices

have been moved and four vertices have been added, with the following

consequences for the set of six triangular faces mentioned above. The

four “outer” triangles have been replaced by plane quadrilaterals, e. g.

,*
qoq& bY !lOqpzqz ● The two’’inner’’triangles have been replaced by

two smaller triangles and two trapezoids, eOgo qoq2q3 bY qoq~ q; and

q; q;q; q; ● Thus the numbers of vertices, edges, and faces have been

increased by amounts

(44) Av = 4, AE = 6, AF =2.

Now cut l-p congruent non-intersecting prismatic holes with square

cross-sections in Q*(N, r). If the square cross-section is small enough

we can cause a pair of opposite long parallel edges of each hole to

intersect both q; q; and q; q; ● In this way we break each of these

segments into 2- p segments and “scallop” one edge of each of

4( l-p) faces to produce a polyhedron Q(n, p, r) for which by (36), (43)

and (44)

(45) v= 2n+6, E= 4n+2p+r+4, F=2n+ 4p+ r-2

for 4 S r S 2n, where the value of E is most conveniently confirmed

by use of (l). Note that

2E/V = (4n+r+2p)/(n+3) ,

21



so that for 4 S r S 2n

(46) (4n+4+2p)/(n+3) S 2E/V s (6n+2p)/(n+3).

For p <0 the lower bound in (46) is always less than 4.

bound will be at least 5 for

(47) nZl5- 2p ●

The upper

Hence, when (47) holds, the interval (46) contains the interval (33 ).

For the values (45) let

(48) g(n, p, r) = ~(1/V+ l/E) - l/F .

Note that (47) implies

~g(n, p, r)/3r >0 for rZO,

i. e. g is an increasing

and r that interest us.

Now

r 3

of n, p,

g(n, p, 4) = [ -n~ + (5p- 17)n+ 2p2 + 10p- 10 /4(n+3)(n+2p+2) (2n+p+4).—
L A

For n > 0 the numerator is a decreasing function of n. For

n~ - 2p

the numerator is no greater than

Since for n 3

2- 12p + 44p - 10< -12-44-10” =-66.

-2p the denominator is positive, then

g(% p, 4) <0 .

22



On the other hand

g(n, p, 2n) = [ 12n2 + 8(p-2) n + 2p2 + 3p-17 /4(n+3)(2n+2p- l)(3n+p+2).

For nZ8- 4p the numerator is an increasing function of n, and the

denominate r is positive. For

(49) n= 10-5p

the numerator has the value

23 -
2

37p+ 12p >0,

and then

g(n, p, 2n) >0 .

Hence if for some p = p. we consider any F-harmonic triple V = 2no + 2

with large enough no , the equation

g(no, po, ro) = O

will have a unique integer solution r such that 4 S r < 2n Hence
o 0 o“

Q(no, po, ro) is F-harmonic.

23
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