

.

FTD-HT- 23-1114-68

EDITED TRANSLATION

ABRASIVE WEAR OF MATERIALS IN A BLAST FURNACE UNDER ACTUAL WORKING CONDITIONS

By: G. P. Mel'nichenko, M. A. Tylkin, et al.

English pages: 6

i

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya (News of Institutions of Higher Learning. Ferrous Metallurgy), Vol. 10, No. 8, 1967, pp. 159-162.

Translated by: L. Heenan/TDBRO-2

THIS TRANSLATION IS A RENDITION OF THE ORIGI-MAL POREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ASVOCATED OR MPLIED ARE THOSE OF THE SOURCE AND BO NOT HECESSARILY REPLECT THE POSITION OR OPHNON OF THE POREIGN TECHNOLOGY DI-VISION.

PREPARED BY

TRANSLATION DIVISION POREIGN TECHNOLOGY DIVISION WP-APB, CHIQ.

FTD- HT - 23-1114-68

- -

Date 7 Mar 19

_		DATA HANDLING PAG	enne ander ander ander der Petrick aus ander der Anderse ander ander E	₩.₩₩~{{}}}
01-ACCESSION NO.	10-DOCUMENT LOC	39-TOPIC TAGS		
09-TITLE ABRASI MATERIALS IN FURNACE UNDE WORKING COND	A BLAST R ACTUAL	variation, p	, abrasiveness, lasticity, meta steel, austenit teel	l hardness.
47-SUBJECT AREA	4. + , , , , , , , , , , , , , , , , , ,			
	NEL'NICHENKO V. M.; 16-SYSUY	, G. P.;16-TYLK EV, YU, A.	IN, M. A.;	10-DATE OF INFO
43-SOURCE IZVESTIYA VY	SSHIKH UCHEBNYK ALLURGIYA (RUSS	H ZAVEDENIY.	FTL	68-DOCUMENT NO. -HT-23-1114-68 69-PROJECT NO. 72301-78
63-SECURITY AND DO	NGRADING INFORMATION		64-CONTROL MARKINGS	97-HEADER CLASH
UNCL, O			NONE	UNCL
76-REEL/FRAME NO.	77-SUPERSEDES	78-CHANGES	40-GEOGRAPHI CAL AREA	NO OF PAGES
1888 0586			UR	6
CONTRACT NO.	X REF ACC. NO.	PUBLISHING DATE	TYPE PRODUCT	REVISION FREQ
	65-вс8012886	94-00	TRANSLATION	NONE
STEP NO.	0148/67/010/008	/0159/0162	ACCESSION NO.	
various stee charging mac tests were c between the varied. The pairs of ste the cup): 1 30KhGSA, 30K T590; T620, Kh20N10G6; T590, 3Kh2V8 and forged m tempered at best erosion at high temp wear than ha and for this	l (in mutual co hinery) in an a arried out in a pair of materia gas and dust c els were tested 0, 10; 35,35; hGSA; R18, R18 T620; G13, G1 lKh18N9T, 1Kh18 ; 1Kh18N9T, 1Kh18 ; 1Kh18N9T, 45 aterials, as we 400 degrees, we resistance was ., such as T590 rd materials, b	study was to de ntact as they a tm. of blast-fu n industrial bl ls and the angl ompns. are give (1st figures f 45, 45; 50G2, ; 3Kh2V8, 3Kh2 3; U15Kh17N2, N9T; U20Kh17T, ; and 1 Ch18N9T, 11 as materials re tested for 3 shown by mater and T620. Aus ut the former s n be recommende ion wear.	re present in b rnace gas and d ast furnace, wh e of the gas en n in the text. or the bell, 2n 50G2; 6KhV2S, V8; 2Kh13, 2Kh U15Kh17N2; Kh2 U20Kh17T; 30Kh T590. Cast, w forged, quench consecutive da ials which reta tenitic steels howed higher pl	plast-furnace lust. The hereby the gap trance were The following d figures for 60KhV2S; 13; T590, 0N10G6, 0SA, T590; welded-on, hed, and ys. The ined archess showed more asticity,

ABRASIVE WEAR OF MATERIALS IN A BLAST FURNACE UNDER ACTUAL WORKING CONDITIONS

G. P. Mel'nichenko, M. A. Tylkin, V. M. Grebenik, and Yu. A. Sysuyev

Reference [1] offers data on the wear of contacting surfaces, which were obtained in laboratories from samples whose shape and dimensions not even remotely simulated real parts.

The purpose of **our** work is to study the wear of contacting pairs, made from various materials, in a flow of gas under conditions quite similar to the operating conditions of the charging machinery in a blast furnace.

Tests were made on one of the blast furnaces at the F. E. Dzerzhinskiy Plant. The size of the gap between the samples, the approach angle of the gas to the gap, and the cup-bell coupling profile were varied with the aid of a device whose operating principle is easily understood from Fig. 1.

To calculate the effect of gas temperature on sample wear chromel-copel thermocouples [2], joined by compensation wires with an EPP-09M electronic potentiometer, were mounted on this device. The daily mean temperature of the samples varied from 350 to 450°C. At the same time the potentiometer recorded the temperature of the blast-furnace gas in the gas vents.

The gas consisted of, %:

FTD-HT-23-1114-68

ì

CO,	CO	N ₁	CH,	H,
14.0	28,2	55,0	0,4	2,0

Percentage of dust in the gas was, %:

\$10,	A 140 a	CeO	MEO	Te .	FeO	Fe1O ₈ Zn	C
7,60	3,36	7,40	1,38	31,20	16,21	35,03 0,20	4,00

The material studied was heat-treated, forged steel having various chemical compositions and alloys based on St. 6 steel (see table). The contacting surfaces could be made from the same or different material.

Tests were made on each pair of samples for twelve days. After each 24-h period the samples were taken from the device, photographed, and weighed, after which the test continued.

It was found that the character of the wear on samples representing the cup and the bell is approximately the same. If the gas jet enters at a 60° angle, maximum wear is localized near the inlet. With the passage of time wear extends along the entire surface and into the sample.

The dependence of sample wear on the length of the test is a linear dependence. Low-carbon, soft steels wore more rapidly, and also alloys, such as T590 and T620, had decreased in weight by a factor of 15 after twelve days. However, in combination with softer steels they wore more rapidly than when paired with the same brand. For example, a bell of sormite 1 combined with a cup of 35 steel wears 1.5 times faster than when both parts are made from sormite 1.

On the basis of the data obtained, we have plotted the amount of wear versus the hardness of the samples (Fig. 2).

Fig. 1. Device for the wear-testing of parts in a flow of blast-furnace gas: subassembly A - mounting of device on the furnace; subassembly B - cassette assembled; 1 - cassette; 2 - working chamber; 3 - valve; 4 - 3 mm gap; 5 - generating line of the bell; 6 - generating line of the cup.

For parts with a ferrite + carbide phase state and hard alloys, the variation in wear is expressed as a hyperbolic function (Fig. 2, Curve 1). For austenitic steels with hardness from 200 to 500 HB, wear remains virtually constant. This peculiarity in the abrasion resistance of austenitic steels can be explained by the surface cold-hardening of their abrasive particles. As is known, austenitic steels harden more than other steels mainly because part of the austenite becomes martensite.

Thus, of all the studied alloys, those possessing high hardness at elevated temperatures (T590, T620) have the best resistance to PTD-HT-23-1114-68 3

erosive wear (Fig. 3). The resistance of alloys T590 and T620 is 1.8 times higher than the resistance of sormite 1 which is widely used for welding.

Austenitic steels wear more than hard alloys; however, they have high plasticity. Because of this, highly alloyed austenitic steels can be recommended for facing surfaces operating in abrasive conditions.

FTD-HT-23-1114-68

Table. Wear in samples representing the coupling of a bell with a cup in an active blast furnace.

No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. </th <th>1</th> <th></th> <th>Treatment</th> <th>int –</th> <th>н</th> <th>НВ</th> <th></th> <th></th> <th></th> <th>Losses</th> <th>-</th> <th>e reight</th> <th>t, R</th> <th> </th> <th></th> <th>/</th>	1		Treatment	int –	н	НВ				Losses	-	e reight	t, R			/
Andress Andress Andress Andress Andress Andress 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>×</th><th></th><th>-</th><th></th><th>1</th><th>7</th><th></th><th>i I</th></t<>									×		-		1	7		i I
2 1	ł	3		5	 }	3			Perioda			÷.	1	Periode		
30 31 <td< th=""><th></th><th>•</th><th></th><th></th><th>' • </th><th></th><th>-</th><th>=</th><th>Ξ</th><th>2</th><th>Total</th><th>-</th><th>=</th><th>Ξ</th><th>2</th><th>Total</th></td<>		•			' •		-	=	Ξ	2	Total	-	=	Ξ	2	Total
35 35 <td< th=""><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th><th> </th><th></th><th> </th><th>ł</th><th></th><th></th><th></th></td<>													ł			
88 7	01	0		"	3	3	39.34	46 84	48 36	10 51	00 001	10.10	2		;	
••••• ·••• •••• ·•• <	8	R		2	152	152	26,10	34,52	88	18 28	25 7 C	20, 16		- -	14°96	119
5.02 7/2	ð.	3			174	174	29.92 29.92	37 16	26.11	27,16		23,000		23.14	22	95.23
3 5	2000	220		=	197	761	24,15	3	23 25	S. 30	101,35	20.35	5 (2) (2)	19.49	23, 59	84.23
2 1	2005	2002	-		222	รีร์	67 01	₽: 28	10.70	11.25	20.10 0.10	9,15	12 21	10.01	10,45	41,52
7.005 1.1 <td< th=""><th></th><th>SCANDS</th><th></th><th></th><th>\$.°</th><th>777</th><th>20.0</th><th>el 77</th><th>(+)</th><th>19,02</th><th>76.43</th><th>17,35</th><th>2 2 2 2</th><th>12,17</th><th>16,35</th><th>68,17</th></td<>		SCANDS			\$.°	777	20.0	el 77	(+)	19,02	76.43	17,35	2 2 2 2	12,17	16,35	68,17
Nu Nu <td< th=""><th>A CONTRACT</th><th>actingsa</th><th>-</th><th>() H</th><th>22</th><th>3.5</th><th>20.00</th><th>₽. 12</th><th>17 17</th><th>9 9 9</th><th>30.15</th><th>6.6 6.6</th><th>77. 11</th><th>10.23</th><th>8,16</th><th>10.01</th></td<>	A CONTRACT	actingsa	-	() H	22	3.5	20.00	₽. 12	17 17	9 9 9	30 . 15	6.6 6.6	77. 11	10.23	8,16	10.01
3620 7 <t< th=""><th></th><th>RIG</th><th></th><th></th><th>17</th><th>13</th><th>50</th><th>20</th><th>12</th><th>29</th><th>87,69</th><th>19.02</th><th>22.20</th><th>18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th></th><th>19,02</th></t<>		RIG			17	13	50	20	12	29	87,69	19.02	22.20	18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		19,02
201 201 2	BY SADE	BION2 VB		: X	51	SSI SSI	4.27	22	34.6		17 25	27	66	52	ي. ري	
2 3 3 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 5 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1	ELADIS	210113		H	198	- H	ې: ص	11 15	10.57	2	56	2:	4	2	5.2	
2 T 5 1 1 4 0 1 30 8 4 1 9 6 10 17 10 30 17 10 30 17 10 30 17 10 30 17 10 10 10 10 10 10 10 10	Seraite 1	Sormitte 1		I	583	5 87	3,59	4 42	2,41	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		‡2 ~~		37	5.5	
T500 H H $B05$ 605 145 2.20 2.21 1.75 801 1.623 T620 H		. 2		н	101	380	8. ₩	9.61	10,12	10 %	198	10.70		5.4	1.00	2 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1590	1590		N	6	ું	- -	2.00	2,21	1.75	8.01		3		33	
113 I_1 I_2 I_2 I_2 I_1 I_2 I_2 I_1 I_1 I_2 I_1	To.0	T620		I	283	521	2,61	33	3,25	3.90	12.33	2 11	2.20	3.9	2 91	10 33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	11		5	222	92	0 5 6	₽ +	4.23	3.85	18,43	5.15	6	÷₽. ₽	3.22	17.77
Townsor Π <t< th=""><th></th><th></th><th></th><th>z :</th><th>101</th><th></th><th>त्र जुर</th><th>6.22</th><th>12 i 9</th><th>4,17</th><th>21.47</th><th>4,55</th><th>5,81</th><th>3,99</th><th>5,23</th><th>19,63</th></t<>				z :	101		त्र जुर	6.22	12 i 9	4,17	21.47	4,55	5,81	3,99	5,23	19,63
Uzednit H H H65 4.21 5.17 4.01 3.47 16.80 9.91 0.85 3.31 5.05 15 17 4.01 3.47 16.80 9.91 0.85 15 17 4.01 3.47 16.80 9.91 0.85 15 16 17 13 2.65 15 17 10.11 3.47 16.80 3.31 5.00 4.31 5.65 11 5.01 4.31 5.66 1.81 5.67 13 2.65 13 2.65 13 2.65 13 2.65 13 2.65 14.71 3.01 3.32 2.67 13 2.65 14.73 5.66 13 14.75 2.66 14.75 2.66 14.75 2.66 14.75 2.67 14.75 2.65 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66 2.75 14.75 2.66	101.18.191	I IONIA NOT		20	50	22	2,5	2 <u>4</u> 0	1 T	3.30 1,30		4.16	60	10 0 0	3 .50	2
Some to 1 Π H 94 587 53,35 54,55 55,30 23,37 5,00 4,41 5,50 13 Tigo Π H 152 587 32,13 28,45 29,36 27,40 117,32 5,85 4,41 5,50 141 5,50 141 5,50 15 17 20 17 20 331 5,00 4,41 5,50 18 17 20 332 130 27,00 331 5,00 4,41 5,50 18 17 20 331 5,00 4,41 5,50 18 17 20 331 5,00 4,41 5,50 18 17 20 331 5,00 4,41 5,50 18 17 20 17 20 331 2,00 4,41 5,50 18 17 20 11 331 5,00 4,41 5,50 18 17 20 11 331 141 5,50 141 5,50 141 5,50 141 5,50 141 5,50 141	JZOKH17T	U2 CMM17T		, I	69	89	4.21	2	32	25			16.6 -	67		5
T590 H H 152 587 32.13 28.44 29.36 27.40 117.32 5.85 4.60 5.25 4.75 20 T590 H H 605 30.40 34.25 27.40 117.32 5.85 4.60 5.25 4.75 20 300208 H H 605 33.21 22.2 3.35 4.97 17.73 5.85 4.60 5.25 4.75 20 17.6 27.55 4.75 20 17.6 27.55 4.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 17.75 20 11.17 30.55 14.11 5.85 17.75 20 17.75 20 17.75 20 17.75 20 14.30 8.75 24.31 25.75 14.31 26.55 17.75 20 21.11 25.7	0	Sora to		H	5	282	53.33	21	65,10	57.30		2.5	58 • •		5.5	
T590 H H 269 606 $30,40$ $34,24$ $27,32$ $124,66$ $9,45$ $10,68$ $12,70$ $10,16$ 11 300203 H H 269 560 $30,40$ $34,27$ $124,66$ $9,45$ $10,68$ $12,70$ $10,16$ 11 45 H H 605 551 2560 322 3.33 4.97 $14,23$ $6,79$ $7,55$ 4.11 6.56 25 $21,72$ $18,41$ $14,39$ $65,76$ $24,311$ $26,54$ $30,111$ $255,55$ $30,111$ $256,75$ 109 $56,75$ $20,911$ $256,75$ 109 $56,75$ $26,75$ $100,65$ $7,433$ $8,655$ 311 T 54,00 H H H H H 131 $200,41$ $20,40$ $22,20$ $81,91$ $8,12$ $65,95$ $7,433$ $8,65,75$ $310,11$ $26,75$ $7,433$ $8,65,75$ $7,433$ <th>ห</th> <th>•</th> <th></th> <th>11</th> <th>152</th> <th>587</th> <th>32,13</th> <th>38 F</th> <th>29,36</th> <th>27.40</th> <th></th> <th>5.5</th> <th>55</th> <th>5</th> <th>312</th> <th>200</th>	ห	•		11	152	587	32,13	38 F	29,36	27.40		5.5	55	5	312	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3010hGSA	1590	×	N	269	3	97 (R	31.2	27.70	37,32		96	10 05	12,20	10 16	5
45 Π <th>159)</th> <th>310h2 VB</th> <th>F</th> <th>н</th> <th>605</th> <th>551</th> <th>2,69</th> <th>3.22</th> <th>3.35</th> <th>4 97</th> <th></th> <th>6.79</th> <th>12</th> <th>7</th> <th>92</th> <th>25.31</th>	159)	310h2 VB	F	н	605	551	2,69	3.22	3.35	4 97		6.79	12	7	92	25.31
1340 11 131 600 18,17 24,34 20,40 22,20 81,91 8,12 6,93 7,43 8,65 31	10018401	45	2	2	101	22	15,85	21,72	18,41	14,39		24.31	23.33	30,11	2.2	8
	16maruni	0691	-	11	131	200	18,17	24,31	20,40	22,20		8,12	6.9	7,43	3	31,45
					_											

Note: 1. k = rell; y = cup; $\Pi = \text{forged piece}$; H = welded piece; $\Pi(3) = \text{forged piece}$, hardened and tempered at 400°C. 2. Each period lasted three days.

.

_ _

PTD-HT-03-1114-08

References

1. Leynachuk, Ye. I. Trudy NTO ChM. Metallurgizdat, 1960, Vol. 21.

2. Tylkin, M. A., et al. Stal' (Steel), 1964, No. 5, p. 408.

Dneprodzerzhinsk Metallurgical Plant-Institute Received 12 May 1966

FTD-HT-23-1114-68

1.00