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by

Sven G. Hedman

SUMMARY

Wing systems that contain several wing surfaces are considered. The surfaces are arbitrarily divided
in the chordwise and spanwise directions into pancls (“boxes”). The panel load is simulated by a
horseshoe vortex, and the boundary cosdition is fulfilled on every panel at one point. IFor each surface
the vortices and the control points are positioned on a wing chord plane. These planes are perpendicular
to the y- or z-axis. The incidence distribution or the load distribution may Pe found from a system
of linear equations, when one of these distributions is given. The calculations can be performed for
elastic wings, if the clastic properties are known in the form of & deformation matrix.

The calculation procedure has been programmed for an clectronic computor. Good correlation has
been obtained bétween the results from this method and those from other lifting surface methods or
experiments.

Stockholm, October 1965

! The work was initiated by the author in 1960, while he was cemployed by the Bocing Co. IL has been ex-
tended at the FFA and partly sponsored by the SAAB Co. A similar method has been developed independently by
Rubbert, Ref. 1.
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WIRBELNETZVERFAHREN FUR DIE BERECHNUNG YON
QUASISTATIONAREN BELASTUNGEN AN DUNNEN UND ELASTISCHEN
TRAGFLACHEN BEI UNTERSCHALLSTROMUNG

yon

Sver: G. Hedman

ZUSAMMENFASSUNG

Es werden Tragfliigelsysteme betrachtet, die aus mchreren Fliigelfliichen bestehen. Die Flichen
werden in Profilschnenrichtung und in Richtung der Spannweite beliebig in Felder (boxes) untert iit.
Die Feldbelastung wird durch einen Hufeisenwirbel nachgebildet und die Randbedingungen werden
in jedem Feld an einem Punkt erfiillt. An jeder Fliiche sind dic Wirbel und die Aufpunkten auf einer
Fliigelschuenfliche angeordnet. Diese Fliichen stehen senkrecht zur y- oder z-Achse. Dic Anstell-
winkelverteilung oder die Lastverteilung kann aus einem System linearer Gleichungen gefunden wer-
den, wenn cine dieser Verteilungen gegeben ist. Die Berechnungen kdnnen fiir elastische Fliigel durch-
gefiibrt werden, sofern die clastischen Eigenschaften in Form einer Formiinderungsmatrize bekannt
sind.

Der Rechenvorgang wurde fiir einen Rechenautomat programmiert. Dic Ergebnisse dieser Me-
thode stimmen gut mit jenen anderer Tragfliichenbcrechnungen oder Versuchen itberein.

METHODE A LATTIS DE TOURBILLON POUR LE CALCUL DE CHARGES
QUASI STABLES SUR AILES DEFORMABLES ET MINCES
‘EN REGIME SURSONIQUE

par
Sven 6. Hedman

RESUME

Les systémes de voilure comportant plusieurs surfaces d’ailes sont pris ici en considération. Les
surfaces sont arbitrairement divisées longitudinalement et transversalement en panneaux. La charge du
pannecau est simulée par un tourbillon lié et deux tourbillons libres et la condition limite est appliquée
en un point de chaque panneau. Pour chaque surface, les tourbillons et les points de contrdle sont
positionnés sclon un plan référence de I’aile. Ces plans sont perpendiculaires aux axes y cu =, La di-
stribution d’incidence ou la distribution de charge peuvent &tre trouvées grice A un systéme d’équations
lin¢aires 4 condition que I'une des deux distributions soit donnée. Les calculs peuvent &tre effectuds
pour des ailes déformables si les propriétés d’¢lasticité sont connues sous forme d’une matrice de
déformation.

Les procédés de calcul ont été programmés pour une calculatrice électronique. Une honne corrélation
existe entre les résultats obtenus par cette méthode et ceux ontenus par d’autres méthodes ou des

essais.
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VORTEX LATTICE METHOD FOR CALCUGLATION
OF QUASI STEABY STATE LOADINGS
ON THIN ELASTIC WINGS IN SUBSONIC FLOW

Sven G. Hedman

1. INTRODUCTIGN

In the literature a great number of meth-
ods are available for the approximale
saleuiaiion -of load distributions on wings
in subsonic flow. Most of these methods
were constructed before the arrival of the
automatic computor, and thus the number
of unknowns had to be kept low. This was
accomplished by assumptions on the chord-
wisce and spanwise load distributions. These
assumptions were well founded for a
majority of wing designs. One of these
methods was the vortex laftice method of
Faulkner. However, with the eclectronic
computor available, the number of un-
knowns in a system of equations can he
permitted to rise considerably, and therefore
the assumplions on load varialions are
unnecessary, and, as they are not always
suitable, it is betier to avoid them.

This report describes an clementary
method for load calculations. Let the
conlinuous vortex distributions, which re-
present the continuous loading on the lifting
surfaces, be replaced by a system of discrele
vortices. The strengths of the vorlices are
determined by the requirement of tangen-
tial flow in as many points, control points,
as there arc vortices. The system can be
thought of as a colleclion of horseshoe
vorlices. Each horseshoe vortex induces the
same flow ficld as an clemental lifting arca
of the wing, a panel, does. For each wing
surface the vortices and the control points
are positioned on a wing chord plane;

Because the panels can be laid out in
rather arbitrary palterns, the boundary con-
dition can be fulfilled on.any planforni.

However, the proposition that the voriices
are arranged in planes, limits the method
to preblems with such incidences that no
vortex roll up exists over the leading edges,
and that the trailing vortex sheets are close
to their original wing chord planes.

2. NOTATIONS

b y-coordinate of the leading edge of wing
part, 2b,,, equals span

Cp drag coefficient

C, lift cocificient

C; rolling moment coefficient

C,, pitching moment coefficient

C, local lift coefficient

C, Yyawing moment coefficient

Cy side force coefficient

¢ wing chord

I hall the width of horseshoe vortex

L’ spanwise loading coefficient

P, 9, R acrodynamic influence coefficients

p  rateof mll

g  dynamic pressure or rate of pitch

s area of wing panel

S; matrix of acrodynamic influence cocfficients

u, v, w components of disturhance wvelocity
along x, y, z-axis, respectively

V  free-stream velocity

x, i, = Carlesian coordinates

«  wing angle of attack
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B V1 -2r, where M is Mach number
I' vortex intensity

d  wing camber

0 2g-(zp ~2)err

/4 angle of sweep of bound vortex

0 density of air

¢ PYlbous

w «+0+0+¢$ panel angle of attack
SUBSCRIPTS

D control point
V  vortex

3. FLOW MODEL

The lifting system may consist of several
wings, or it can be the horizontal projection
of a complete airplane.

For the derivation of the formulas relating
incidence and load, the lifting surfaces will
be replaced by a number of plane quadri-
laterals or panels. Thus the planform of
the original system will be approximated
by polygons, and the angle of attack distri-
butions of the surfaces will be expressed
through the incidences of the plane panels.

The load carried by one of these panels
induces a flow field that can be calculated
with the aid of a horseshoe vortex. The
bound vortex will be positioned on the
panel’s quarter chord line for reasons out-
lined in Appendix 1. The control point,
where the condition of tangential flow is
satisfied, will be positioned on the three
quarter chord line of the panel and halfway
between that line’s inhoard end and out-
board end. For each wing the vorlices and
control points will be in a representative
wing chord plane, perpendicular to the
y-axis for a vertical tail and to the z-axis
for a wing. The frec vorlices are taken
parallel to the x-axis.

At every control point, the normal velocity
induced by all the vortices must cancel the
normal componernt of the free stream flow.
The induced velocities are calculated ac-
cording to Biot-Savart’s law. As the free
vortices are assumed to be parallel with
the x-axis, the equations for the induced
velocities will be linear in the vortex inten-
sities.
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4. GEOMETRY OF THE WING
PANELS

The method is not very sensitive to the
pattern of panels chosen to represent the
wing, except that panels behind each other
should be in streamwise ¢olumns. Otherwise
a control point of one psnel may lie very
close to the trailing vortex of another panel,
where the induced velocity is high and not
representative of the average induced ve-
locities in the range between the trailing
vortices.

The horseshoe vortex is geometrically
defined by the coordinates xy, yy, =y, N, 2,
and a control point by xp, yp, 2p, as shown
in Fig. 1.

) b4
l'
k)
, x
I rc/t
L y
——) g S LPC

i)

x Y, "% LPC/?
7~~~

~
(LPCatocct penal chord)

Fig. 1. Wing divided into panels and panel with vortex.

Rather than determining all these coor-
dinates manually, it is advisable to define
the input for the calculations through the
major dimensions of the wing and the
number of columns and rows of panels.
The scheme in Appendix 2 may then be
followed for the determination of the
coordinates for vortices and control points.

The slope of a panel, o, is composed of
several items. The stationary contributions
are the reference angle of attack, «, which
is assumed to have onc value for the whole
lifting system, and the camber distribution
or aileron deflection d.

Quasi steady contributions appear for a
rotating airplane. Let ¢ be the angular
velocity of rotation around the axis x =a,,
z=0. At a point ap, yp, zp the normal ve-
locity due to rotation is ~0-(xp~,). The
corresponding load is the same as for a
stationary surface so cambered that the
normal velocity is —0-(xp—a,). Let 0 be
the panel incidence that corresponds {o a
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rolation around the piich axis (in & =),
and ¢ the incidence corresponding to a
steady roll.

1)

where 0 and ¢ are positive for a sinking
trailing edge and a sinking starboard tip
respectively. 4 and p are the dimensionless
rales of pitch and roll resp., and b, is
the wing half span.

q= 0 crer/(?' V)
P=¢boy|V

The total panel incidence o is obtained
through summation

w=a+0+0+¢

Angles are positive, when dz/dx <Q.

5. AERODYNAMICS OF A SET
OF PANELS

The expression for the vortex induced
flow ficld is derived with the aid of Biot-
Savart’s law which implies direct applica-
tion only to incompressibie flow. However,
if the Prandtl-Glauert rule is accepted, the
validity of the derivation can be extended
to all suberitica! Mach numbers.

Appendix 3 is a derivation of the for-
mulas which give the induced velocity
components 1, v, w in incompressible flow
at a point (xp, fyp, fzp) due to a horseshoe
vortex strength I'; at (xy, Byy, fzv)-

uy=P,T,
vy=QyT, 2)
wy, =R, I‘,

The influence coefficients P, Q, R depend on
the geometry of the ‘horseshoe vortex and
on the position of the downwash point
relalive to the voriex. The cocfficients are
calculaied with Eq. (A3.1). The total in-
duced velocity components are ohtained

7

through summation over all the vortices.
Let there be n of them on planes parallel
to the x, y-plane.

n n
=3 uy=3 P,T,
-1

J=1
1= 0=73 QUI‘; 3
j=1 J1

n n
w=73Y wy=3 R,T,

J=1 =2

A cruciferm configuration may carry-load
on bpoth horizontal and vertical surfaces.
Let m—n be the number of verlical surface
vorlices. To avoid introducing a further
sel of equations to calculate the influence
coefficients for these vortices, an z',y’,z'-
coordinate system will be inserted accord-
ing to the sketich below.

z

’ ’
uy=uy =PyT,

vy=—wy=—Ru,rn+1<j<m

- , ’

“)U = Uu = Qu r‘,
The primed influence coefficients are ob-
tained from Eq. (A3.1), if § and : from
the configuration are inserted into the
cqualions in the places ol ~z and y respec-
tively. The total induced velocity for a
cruciform configuration is obtained through
summation over all the m vortices.

( n m
U= z PUF,'*!‘ Z PuIII
j=1 Jen+1

{oy=3 QuF;" > R;,F,
i=1

j=n+l

L"’F,ZXRUPJ*' S QT

Jmn+l
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The condition of tangential flow si the
control points is formulaied under the
assumplion that the surface slope po, is
small.

w, L. T .
_ﬂwi=‘7=zlfu"?,+ QU ‘y) <n
t 41 + 4 nq
n I I
—fo,= V"‘ S Qu V.o = R,,V’,
{f -1 2 genel

n+1<ig<m

I' will be replaced by C,, where C, is
the coefficieni for the average pressure
diffezence between the p'mcl's lower and
upper surfaces. The area.of-the-trinsformed
paiel 18 260 -2{xp —xy).

oV,T,- 2ph,
1oV2-2phy- 2(ap—~ wy)

r, 1 v

e _‘.?
¥

7 P
V oap—ay,

C; (incompr) =

The compressible flow pressure coefficient
C, is oblained from Prandtl-Glauert's rule.

The tangential flow cquations are then
written in terms of pressure cocfficients

VIin v

+ S‘ Qu(Q—D/ ’14',) Cp,] i<n

I-nﬁ
Vs v
_ﬁ V ? Ql;(mD['—xV,)V Cp)
Vv
- ? Ry (xp,— v VC ], n+l<gi<m
l-n+l

In a parallel flow field of constant velocity,
Vy=V,=V. For this condition these equa-
tions can be reduced to a matrix equation.

NN R ’.'Q'
= — [SI] Tp—~ Ty Cp; [S] ...........
(w=-pisi[ -G
O

The upper parts of the commns of w and
C, contain values for the horizontal surfaces
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and the lower parls values for the verlical
ones. With the above equation, the camber
o can be caleulated for a wing that carries
the loading C, in a compressible subsonic
flow.,

However, for an clastic wing, the camber
will change when the wing is unloaded.
The effects of elasticity are trealed in
Appendix 1.

The load distribution that corresponds to
a given incidence distribulion can be cal-
culated after inversion of Eq. (4).

{C’}="l"“ e AR OO

After the pressure distribution is known,
force and moment coelficients are easily
summed.

Cc =1t (6)

} 5y (s — ) Gy
l-l

Cn= Q)
Cret z SI
-1
m
2z s,Cy
_J=n+l
CY_ n
S,
-1
m
S 8 (Teer—3y) Cyy
_i=n+1
C.= =
?'bmax 2. S,
=1
n m
,z Slyv, Cp,'*‘, 2 lsl"'"lcpl
- - >
Cl= n (6)
20 2 5
J-1

In these equations, s is the pancl area
sy=4hy(xp,—y), )

¢ 18 the reference point for pitching and
vawing moments, ¢ is the reference length
for the pitching moment coefficient, and
2b..x {=total span) is the reference length
for the 1»lling moment cocefficient.
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For many problems, the spanwise lead-
ing cocfficient for unit Iift coefficient is of
great interest. This parameler is commonly
wrilten  (¢;-¢){(C,-c,,), where ¢, is the
average chord. It can also Le defined as the
relative change in lift due to a change in
the dimensionless spanwise coordinate.

12 A b
o Ilq Ay

4
bmlz (xp;— i) G

3 hy-(vp—n) Cyy
i1

where s <j<[{ is the interval in j corre-
sponding to the panels in column [.

From the spanwise loading, the drag
cocfficient is readily obtainable. Ref. 2
contains a suitable expression for symmet-
rically loaded wings.

Va

T S
ol = e

=
* Umax

b I

—L}-(0.0561 L; +0.7887 L)
— L;-(0.7352 L +0.8445 )]

Li, L3, L3, and L; are the values of L’ at the
spanvwise stations y,/b,,, =0.9239, y,/b_, =
0.7071, y,/bg,,=0.3827, and y,/b,,,=0, re-
spectively.

So far no restrictions of symmetry have
been made. If the problem is symmetric
or antisynmetric, great savings in the
amount of computation for a given accuracy
can be made. For planfcrms thai are
symmetric with respect to the ., z-plane,
only onc half, say the starboard half, of
the configuration needs to be defined geo-
metrically.

When the camber distribution is sym-
metric, the vortex intensity I'® of the j-th
panel of the starboard side is the same as
the vortex intensily I'™® of an equally posi-
lioned pancl of the port side. The induced
velocity due to such a panel pair is the
sum of each panel’s contribution,

Let the superscript (ss) indicate that as

9

well vorlex as control point are situaled on
the starboard side. The induced velociti=s
are wrilten analogously to Eq. (2)

(533 _ . )
Lt =Pyre
v{;" = Qg:) F;”

w:lu) = Rgs) I*;s)

The contrii,ution of the port side vorlex lo
the velocities at the starboard control point
are the same as the starboard side voriex
velocity contributions in a conitrol point
placed symmetrically on the porl wing
(except for the sign of the y-component).
The latter approach is chosea because il is
simpler to move the control point tiwan the
vortex from starboard to port wing half.

u“ﬂ) - puﬂ) () p(vx) (3)

4] i F’ i P’

U“F) = ()5 l p) (p$) I Ws)
] Q" ] Q” }

w;;p) = R‘(;n) I*;n) = Rﬂ"" P}”

The influence coefficients with superscript
(ss) are obtained from Eq. (A3.1), and the
ones with superseript (ps) can also be
obtained from: that ecuation, il y, in the
equation is replaced by (—yp).

The total velocity components are arrived
at by sminmation.

.

n
uy= 3 (P2 + PPN,
i=1

n
fo=3 o -0gn,
i=1

n
wy=3 (RY"+ RENT,
L fw1

n is the number of panels on onc wing
half. The Eqgs. (4-7) can be used to solve
symmetric problems, if the following state-
ment is met:

[ Py=Pio+ P

Q=0 - Qf®

Ry =R + R
Let finally the camber distribution be
antisymmetric, and apply the same reas-

oning as before. It should be recognized
that I'{? =-T¥».
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1= 3 (P~ P,

-1

=
jo=3 (" +¢") T,
-3

w, =z ("= RE™)-T,

X

Antisymmelric cases can then be solved
by Egs. (4, 3) and (8).

P,=P— P
Q=057+ 05"
l{Rl,i:’ .u)_R:;‘!)

6. EXAMPLES OF CALCULA-
TIONS

The presented method has been program-

med for SAAB’s compuior D21. A Jarge
number of calculations has been performed.
Some of them which arc of general interest
will be discussed.
- -‘Fig. 2 contains a comparison of the
spanwise distribulions of load and cenler
of pressure calculated by the lifting line
method, by several lifting surface methods,
and measured by Malavard in an electric
potential tank. The wing is a 45° delta wing
of aspect ratio 3. The SAAB calculations
were performed on a model with four rows
of parcls distributed over the chord and
with 10 columns on the half span. Material
for the comparison is taken from Refs. 3
and 4. The table in the figure shows the
integrated values, lift coecfficient and total
chordwise center of pressure. The agree-
ment is good.

To investigate how much the panel pat-
tern influences the calculated values of lift
cocfficient and cenler of pressure several
patterns have been chosen as input for this
parlicular delta wing. In all cases the chords
were divided into equal rows of panels,
and in the five {irst cases the half span was
divided into equally wide columns of pan-
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LOCAL CENTERS OF
FRESSURE X /s

s N3 | Md
IANNSE  SIOWNE Minew V8

e

SPARWIEE LOAGING  COCPFICIENT &Lé‘

Melhed Symbol Crx =tfc
Liftingline = = ==Z00@mee—- 3.68 0532
Lifting surface Welssinger - - - 30i 0521

Lifting surface Multhopp - — — 306 0535
Lifting surface Falkner — 3.19 6532
Potential tank Malavard 3.10 0535
Vortex lattice, present method (o) 3.14 0534

Fig. 2. Loading for a della wing. Comparison between
methods.

cls. In the sixth case the spanwise division
was made in intervals of the angle =/20,
y =sin (xnf20), 0 <n <10.

Center
of pressure
Number Number Lift curve- -

Casc of rows of columns slope x-coord y-coord
1 1 5 3.20 0.531 0437
2 2 5 3.20 0536 0.436
3 4 5 3.20 0.538 0.436
4 8 5 3.20 0.539 0.435
3 4 10 3.14 053¢ 0.129
6 4 10 3.17 0.534

0.428

All values are within 29 of anc another.

Mecasured and calculated loadings are
mpared in Fig. 3 for a delta wing con-
higuration in a M =0.7 air stream. In the
calculations the body was not considered.
Instead the exterior wing was extended to
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LOADING Cp/
(=]
N

3T e

011 | B =057
!

OEXPERIMENTS a=1°
Yy 3°
(] 5°

CALCULATION

Fig 3. Measured and calculated loading on a delta wing at M =0.7.
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—— CALCULATIONS

DOWNWASH ANGLE ¢*

Fig. 4. Measured and calculated conditions away from
the surface of a swep! wing at 8,2° angle of attack.

the planc of symmetry. The loading at
7=0.17 is overeslimaled by the thcory.
For the rest of the wing the 2greement
belween measurements and calculations is
belter. However, this agrcement deteriorates
with increasing spanwise coordinatle and
incidence. This discrepancy is due to the
increasing strength of the free vortex over
the leading edge.

The flow conditions outside the wing
chord planes can also be determined. The
calculated data are shown together with
experimental ones in Fig. 4. From the
experiments reported by Alford in Ref. 5,
the effect of 8.2° angle of attack was ob-
tained by subtracting values for zero angle
of attack from values for 8.2°. The com-
parison is limited to one line y=3b/4;
z=—10.15¢, where b is the wing semispan,
and c is the local chord. In points along
this line the disturbance velocities u, v and
w were calculated. They are shown in the
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Fig 5. Measured and calculated lift coefficiciis fur a
wing in 2 propeller slipstrea= at 15° angle of attack.

graphs as a local dynamic pressure qfq,.
sidewash angle 6, and downwash angle &.
All the fow characteristics are well pre-
dicted by the calculalions except, curiously,
the upwash angle under the wing.

Finuily, one example with a wing in the
slip stream of a propeller will be shown.
The experimental dala are taken from Ref.
6. The approximate lavout of the wing and
propeller appears in Fig. 5. The panel
pattern is chosen such that some panels
arc completely contained inside the slip-
stream at a thrust coclficient C3 =6.14 and
the other paneis are exterior to the slip-
stream. The wing and propeller axis form
an angle « to the free stream direclion, a
flap covering all the lrailing edge is de-
flected an angle é. The boundary condition
is [ulfilled in a plane parallel to the free
stream velocity V. V, is the propeller slip-
stream velocity. For a panel situated in the
slip stream the propeller’s downwash is
considered, and only the vector w is con-
tributed by the vortex system. For small
angles w bhecomes

w=(a+E(V+V,)-aV,

Fig. 5 also contains a chart that shows
C,(d, C7) for a=15° Cz is the propeller
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thrust cocificient based on free stream ve-
locily and wing area. It appears that a gocd
ostimnaie i tie lilt coelficient-can-be made,
when no flow separations are present. Flap
separations should increase with. flap..de-
flection and decrease with thrust coefficient.
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APPENDIX 1

LOCATION OF VORTICES AND
CONTROL POINTS

In the two-dimensional case the vorlices
and control points can be so located on a
straight airfoil chord that the vortex lattice
gives the same lilt and pitching moment as
thin airfoil theory does.

Let the chord be divided into r equal
parts, and let the vortex be placed a distance
& times the part chord from its leading edge
and the control point a distance 7 tiiaes
the part chord behind the vortex. The
following figure applies to the i-th part.
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The x-coordinate for the i-th control point
Is xp..

Coe N\ :as
Tp = (I~ 1) +E+7)]
The j-th vortex is positioned in xy,

Cep. o
1‘:'.=;{(I" n+s;
The veiocily induced at xp, ducto the voriex
at xy, is w,,.

I‘"r

W= e i=j+7)

The distribution of induced velocities is
relatrd to the veriex distribution by a sect
of lincar equalions.

Jnsert this equation into the equation fer the
total lift of the airfoii.

1

i—j +n]‘l{w}

L=oV-l1l{T}=aV -1

Likewise an expression for the moment is
oblained

...'IC

M=pV-lx,{[} = oV ——-1j~-1+§]

* [i —; +11] _l{w}

From thin airioil theory the lift and
moment are known.

L =1oV*-c-2x-w|V

M=L-c/4

13
After identification of the two cquations

for L and M respeclively, 3 and £ can be
solved.

1

It

& [i—}+ﬂr{l}

" 1_.:;[ (Al.1)

|"m

9
r
8
= J'-'7]

1

ll

The inversions have only been performed
for r=2,3.

% |, [ a1
EEEE 1)] '[r;(n-l) 1-71]
-y e
==
(GF =67 ~1) (=1 (@+2) ]
4 2 2 2
3(n = l)’(n*")
_75(’32'—12)(71:_")'_), GE-1)%
N -G
1n—17@-2) _7GF-1)(n-2)
4 2 2 2
@G -1)67~-4)

The solutions for 7 and § are

7= é! §= }

if r=1,2,3. These 3- and &-values numer-
ically satisfy Eq. (A1.1) for useful values
of r.

‘The same vortex and control point posi-
lions, i.e. £§=14%, =4, have been chosen
also for the three-dimensional case. Calcu-
Iations with different panel patterns for one
wing planform have given very consistent
values of lift coefficient and center of pres-
sure, which is shown in the table on P, 10
and in Fig. 2. The suggested locations are
therefore thought to bie very uscful approxi-
mations.
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APPENDIX 2

DIVISION OF THE LIFTING
SURFACE INTO PANELS

Let the real planform be approximated
with a number of trapezoids. In Fig. A2.1
three trapezoidal wing parls represent star-
board hali of the wing. The parls are
defined by the coondinaies a, b, c. Each
wing part is divided in the spanwise and
chordwise direction t¢ form g columns and
r rows of panels.

Fig. A2.1 shows thal the interval b, <y <
b,., is divided at stations y =e¢,;, and thal
the chordwise division is made by straight
lines between the points (a, +d; -6, by)
and (ax; 5 desy, m"Cre1s Dray)- Inthis way the
wing parts are divided into wing panels.

It is convenient to have the panels num-
bered. The following system may be used.
Panel number 1 is the panel in the first
wing parl’s first column and first row.
Number 2 stands for the panel in the first
column and second row, and so on. r
becomes the number of the panel in the
last row. The first panel in the second
column has number r+1. The last panel
of the first wing part is gr. The numbers for
the other wing parls fnllow after gr. The
number i of a panel is obtained from its
location in the wing part %, panel column L
and panel row m

k-1
i=m+(-1)r+ ’Zl 957,

where g, and ~; are the total number of
columns and rows, respectively, for wing

part j.
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Fig. A2.1. Wing parts and panels.
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g, A2.2. Wing panel with horsesi:oe voriex and con-
trol point.

The following set of equations can be
used for obtaining the quantitics that speciiy
the vorlices a3, Yy, h, 2 and the contrel
points xp, yp from the quantities that deter-
mine the panels a, b, ¢, d, and e. Fig. A2.2
illustrates the variables for vortices and
conlrol points.

Y =Up= (€x.1F €142

Tp=0y+ - (3dg o+ dy )4+ (Yue—bo)- 182
Tp=ay+ Cx* (Uz, n+ 3y, )4

Sl (SWOR (MR 17 APy 1

— e (o 3 )+ Crr— ]

x Uy —b)[(bx-1— by)
h=(ex 11— ck.l)l?'
1g2=[crs1- Bdier, n+ dray. m)) 4
~(3dy, o+ dp nar)4

T gy — "k]/(bk-1 -by)

APPENDIX 3

THE INFLUENCE COEFFI-
CIENTS P, Q, R

The horseshoc vortex is positioned in u
plane z=const. with the bound vortex
forming an 2ngle to the y-axis and the
trailing vortices parallel to the x-axis. The
geometry is obtained from the real wing in
a Mach number M air stream through a
Prandtl-Glauert transformation, that is the
y and z coordinates are multiplied by

B, B=V1—AMf2
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Fig. A3.1. The transforined vortex.

The three disturbance velocily compo-
nents at the point (xp, fyp, fzp) due to a
horseshoe vortex of intensity I' and with
the geometry defined by the coordinates
(xy, fiyy, B=y) and the dimensicons $h and p
will be calculated by Biot-Savart's law.

The dound vortex forms part of the line

gup-(y-—ys) =x—x4, =Pz
A straight line vortex induces velocities that
lay in planes normal to the vortex. The in-
duced velocitly in a point P is also normal
to the straight line, which connects P and
the vortex. Fig. A 3.2 shows the line vorlex
belween Q and R and the induced velocity
vector in P. PS is the line through P normal
to the vorlex. P'S is the projection of thui
line on the plane z = fz,. The equalion for
P'Sis
=B-(y—up)tgn =x —ap

Fig. A3.2. The bound vortex.
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This determines the point of infercept S

G. B ﬁ’zr)

l“',u'-8 (Yo—yr)igu
g +1

fn= ﬁyp . ﬁy"lo n= (xn—xv)lo,u
tg@u+1

NYe

W, will denoie the velocity induced in

D leee 33~ o
Pbyv the bound-verlex.

T(cos ;»+<os ¢}

AL S s ed
R ey

0S__ IBC
0P VB C+Z

cosy>0 for p>y.—h

cosy<0 for n<y;—h

*TRP [XiD:ELZ
cosp<0 for p>py.+h
cosp>0 for p<y.+h

A2 =8P = (o) + 8- (0~ o)
B=B-(1—ys+1h)
C=¢—xy+phigu
D=3 (yo+h-79)
E=x‘.-=-ﬁlxl"u—5

=B-(zv—2»

The disturbance velocily Wj is resolved
into its components along the coordinate
axis ug, vg, Wg

up =—Wjgsinecosu
vy = Wysinesinu
wy=—Wgcose

’,

sing= ————
YAz Z2
+4 cose>0 for xp>¢
COS.,—’—._‘;—.:—-_-_:;E
VAR 722 cosg<0 for ap<¢

The perl free vortex and the velocity vec-
Ot Weinduced at P are shown in Fig. A3.3.

- I‘ 1 +cos-
ey

W
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g- A3.3. Port free vortex.
i
=z ] =
VG+H+Z*

G=83-(yp—ys=h)
H=x,—x+phigpn

COS z=

The components of velecities along the
coordinate axis are up, vp, and ws.

=0
vp=—Wipsinr
wp=—Wpcos»

si ——
ez

COSy=

VG +Z3

The velocities Ws due to the slarboard
[free vorlex are obtained similarly.

z

¥ig. A3.4. Starboard free voriex.

_T'cosg+1

S Az yIEr
cosg= J__.__
VIR J* 4+ 22

I=8(yv+h—yo)
J=xp_xv‘_ﬂhtg.u
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The components of W aleng the axis are
us, vs, and ws.
Us = 0
rs= Wssinzt

ws=— Wscost

The complete horseshoe vorlex causes a
disturbance velocily with the components
u, v, w

U=Ug+Up+Us
U=0g+Up+Us

W =Wy ¥+ Wp + Ws

_ Dcosy+cosg, _ ]
u——E——.is-Z—?—ACOS.M—PP
"_£ cosyteosg . _I-tcosx
T4z £ Z27 $TTEET
cosg+1
s | Z=0 A 3.1
1=+z=] or (43.1)
_ T _cosy+cosp 1+cosx .
'""4.-:["" T
cosg+1
==

The rule of signs for the first terin in w
is: use minus when ap > &, use plus when
xp <&,

APPENDIX 4
EFFECT OF WING ELASTICITY

Eq. (1) yields the distribution of angle
of attack that corresponds to a given load-
ing. The obtained angles for the loaded
wing, we, are the same, whether the wing
is rigid or clastic. However, when the elastic
wing is unloaded, it will in general change
its shape. The corresponding change in
streamwise angle will be denoled Agw. It is
often of interest to know the distribution
of angle of altack for the unloaded clastic
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wing, o, 3ostly o, is the input for the
calculation of the loading of an clastic wing.

e} = {w)} + {Aa)

The angle of deformation is obtained
from a deformalion matrix [D} of the struc-
ture and the load veclor {I} for the de-
formed wing

{Aw} = [Dj{1}

The load vector is found from Egs. (5) an-l
9-

4
-{B= -—{;«] . [\h \] [S,1wo}

A combination of these equations gives the

17

unicaded wing angle of atlack distribution
. 4 N\ -
wa=[[1 ]2 r s oo
nw N L N J
(A4.1)

The loaded wing angle of attack distribution
is obtained frcm Eq. (A4.1)

N
(A4.2)
Inserling Eq. (A4.2) into Eq. (3) gives an

equalicn for calculation of loadings for
clastic wings.




