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1. INTRODUCTION AND SUMMARY

In a previous report [1], the use of MAD (mean absolute deviation)
in the analysis of demand variability as propcsed by R. G. Brown [3]
and presently used by NavSup [4] was discussed. In particular, the use
of exponentially smoothed estimates of MAD was criticized on theoretical
grounds and s case was made for further siudy into the probability
distributions of the various estimators presently in 1.se. Of special
importance, the uge of MAD in setting safety levels was mentioned as a
problem area in need of further investigation.

The present report concerns itself with the extension of resesrch
investigations in the areas just mentioned. Several attempts to derive
the necessary probability distribution theory for MAD estimators
resulted in disappointing futility for the most part. This was
anticipated for, as previously mentioned in [1], abgoiute deviation as
a measure of variability has been abandoned for years on theoretical
grounds by Statisticians.

Two minor results that were obtained concern the ratio of MAD, A,
to standard deviation, 0. The complete result of this ratio has been
determined for the Poisson case. As alluded to in [1], the universal
use of [; 4 0.8 for this ratio is especially bad for low demand
Poisson item. The same general criticism can be made in the negative
binomial case. However, it was found that for the choice of parameters
presently being used by NavSup, the approximation of this ratio by

0.8, is a good one.



Failing to obtain the required distribution theory to study the
behavior of MAD estimates, simulation was used to compare smoothed
estimates of O to the usual maximum likelihood estimates mostly tor
the case of normal demsnd. Parameter choices that reflect high demand
items were selected in order to give MAD the best possible advantage in
the comparison with alternate methods of estimation. 3uch parameter
choices were made after consultation with NavSup personnel in order to
duplicate situations that actually exist; moreover, large amounts of real
data are available for such cases. In every single case studied, the
sample variance of the smoothed estimate of MAD and consequent estimate
of 0 was roughly twice that of the maximum likelihood estimates of d.
The same was true in a slow mover case or two that was examined. This
confirms in a general way the observation made in a gimilar study carried
out by Asher and Wallace (2] in which they found MAD to be significantly
less efficient (about 20%) compared to the classical minimum variance
estimators under the Gauss-Markov assumptions.

Not content merely to confirm this observation, however, the estimates
found were used further to see what the actual effects on reordsr levels
vere. This was approached in several ways. First, MAD and maximum
likelihood were compared by computing the percentage of time the known
theoretical reorder level was overestimsted, thereby resulting in too
much on hand stock. Secondly, the results were examined to see what
percentage of the obsarvations fell witlin k wunite of the theoretical
order leve) for k = 1,2,°** and various fixed values of risk. FPinally,

the two methods were compared by setting reorder levels and then computing



the actual risk attained by those levels where, for each rase again, the
theoretical or true risk is known. As seen in Section 4, exponentially
smoothed mean and MAD cawe off se-cnd best :ompared with maximum likeli-

hood estimates of 4 and O in every single case exarined.

Recognizing the limitations of simulation, no sweeping claim is here
made for proof that exponentisally smoothed MAD is an inefficient method
of accounting for demand variability. At the same time, one cannot ignore
the fact that present methods were uniformly inferior in the situations
examined.

In Section 5 recommendations for further study are made. Among thesze
is tha suggestion that real data be used from the histories available at
FMSO for compering the results in retrospect with what would have been the
case had maximum likelihood procedures been used. The writer wishes to
thank Lt, Ozden Orneck for his invaluable assistance in constructing and
running the computer programs as well as assistance in mathematical
derivations. Acknowledgement should also be given to Cdr. Jack E. White of
FMSO for his unfailing cooperation in defining the problem areas and supply-
ing parameter values that are realistic in terms of NavSup use. Credit
should also be given to Mr. James W. Prichard (SUP 04E) for his

continued endorsement and interest in this research area.

2. RATIOOF A TO ©

It will be helpful to review some parametric definitions and
establish a notation to be used here and in ensuing sections. Let X

2 (standard deviation

be a random variable with mean B and variance ©
0). The maan absolute deviation, MAD for shor. will be denoted A



and is defined as

(2.1 & = B(|x-w|)

As remarked in [1], it would be more rational to define MAD as E(Ix-m|)
where m 1is the median of X bYur 1t is (2.1) that is used by Brown [3]
and NavSup [4). Consequently the ssme definition is adopted in this
report.,

Now whe.. X 1is normally distributed, it is well known that the
ratio of 4 to 0 1is given by /% or, roughly 0.8, I° is somewhat
surprising that the ratio is approximately the same for certsin other
families of probability distributicns sich as the Exponential, Uniform
and Triangular, However, this result is not uriversally true and is
particularly a poor approximation for the Poisson fanily, a model often
used for the so-called slow mover type of inventory item. This fact
was demonstrated earlier in [1] by examwining the ratio for selected
values of the Poisson parameter, A. That ratio has now been determined
for all walues of A and it miy be instructive to see the behavior of
this ratio in a complete sense.

By (z], we shall mean the greatest integer in 3, that is, the
largest integer n such that n €z (and hence 2z < n+ 1), We
denote the Poisson ()N mass fun:tion by p so that,

p(x) = ¢ N %:: , w01 °°°
Then we have, recalling that p = 0% = A for this case,

» [XJ "

B =B(xs]) = ) JeMped = ) Oewdpa + ) (-Np(d
x=0 x=0 x=[ )]+l
z
But, letting F(z) 'XEOp(:x) define the Poisson distiibution function,



(A (A .
Zb (09 = A 7DD - ) () ~ AR+ &j xp(x) - A

x={ AJ+1
[ ] [
E] (x=Np(x) = x(x) - A+ AF([A])
x=_ A J+1 x={ ]+l
Adding these results, o

(2.2) A=2Ar([\]) -2)r+2 2j xp(x) .
x={ AJ+1

But, for x 2 1,
=M X -\ 1x=1
xP(x) Xe —x-! Ae -(Lx—-l—)-:- XP(X'I) .
Hence,

% xp(x) = A },] p(x-1) = ) % p(y) = A1-F([\]-1)).
x=[A]J+1 x={ \]J+1 y=L AJ

Substituting this result in (2.2),
A=22p([AD) -22+22-2rpr([7\-D)
= 2 MeLA-F([N-1))

= 2 X p([A))
Thus,

2.3 & zxe'“m : x>0
. D.]_E or any .

Since 0 = /X we have, (3]

= I

(2.4) Sea2/ie A

RVE

The graph of g as a function of A appears in Figure 1.



Q>

0.8 7 /\ e ™ oo

Figure 1. Graph of g

The analysis that validates the graph is the following.

-\
If n<A<n+1l then {A] =n and, g-%o ).nﬂe .

As a function, say fn, of A in this open interval, fn is

differentiable with,

2 - .

£ = 2, oA (e
n [ )

Hence, fl:(n>o 1f \<n+k and ft:(X) <0 if A>n+}

g0 that f, Possesses a relative maximm at A= n+ % with a

maximm value of fn(n+41)o for n=0,1,2,""".

With the formulas established for fn and fn+1 it is easy
A
to verify that 5 is continuous at each of the integers although

not differentiable there. In any case, it is shown in the appendix

[\
that the sequence of values of g at n,

oy -n

z. n e
Ne
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is monotone increasing. Using Stirlings approximation (7] to n!,

Ja2n nn".1 e B<n!</2m nm‘!‘i e-n(l-i'T)

we see that,

1
/Z ] < fn(nb < /2
12n-1

ne
to the factor 2

n
seen visuwlly in Figure 1, spproximating 54 by /:2-_ is particularly
n

and lim fn(n) = /Z « Thus the values of 4 converge in the limit
n o)

However, as previously remarked in [1] and as

bad when A< 1 which is precisely when the Poisson assumption is
of primary interast.

For intermediate movers, the negative binomial distribution ig
enployed as & model for demand. Specifically, from [4], such an
assumption is made whenever mean demand is between 2 and 20 units.

The negative binomial distribution is a family of probability
nwass functions having two parameters r- and »p -Lhcre r is a

nogsitive integer and 0 < p <1, For our purposes the general

formula for the mass function is defined by,
+x- -
P = (Y T, =012, (aslop)

The mean W and the variance 02 of a« random variable having this



mags function are given by,

H'E'q

S

p2

Proceeding as in the Poisgon case,

o [t&] ©
b = B(|x-u[) = Zblx-ulp(x) - Q(u-x)p(x) + (x4) p(x)
x x x=[{f]+1
But,
(] (]
L (x) (Dt = ppt Z(u-x)(”j‘; g
x=0 x=1
and,
- (w) (w]
2 (x) (DT m o ) (PR 4 ) (PR e
x=[p J+1 x«1 X x=0
Adding these results,
(] (]
@9 bn e ) B0 - },lxpml
x-

expressing A 1in terms of finite sums,

'/I-g , it is no problem to compute the ratio -3 for various

choices of r &and p on the computer.

Since 0 =

It is easy to choose values of r and p for which the ratio
is very different from 0.8. However, the interest would only be
academic for values of r and p such that p f [2,20]. For that
range of values, a total of 1,000 cases were congidered as follows.
Let 4 € [2,20] be selected and for each such p, r was allowed
to vary over the set {2,4,6,°**,20}. For each such choice, p 1is

5
then determined from the relation p = E and q 1is specified by

-8 -



A
q=1-p, Then A was computed using (2.5) and finally g vas
evaluated. In each such "group" of ten parameter pairs, it was
observed that g was invariably monotone increasing although there

was no monoticity from group to group. More significantly however,

it was observed that g varied always between a minimum value of

0.750 and a maximum value of 0.805., For example, 1f p = 0.893

and r = 20 whence B ™ 2.4, ve £ind that aA- = 0,805 although for
p=0.45 and r =2, resulting also in 4 = 2.4, 5 =0.770. On

the other hand, for p = 0,174 and r = 4, yielding u = 19,
g = 0,781 so0 that low values of g are not always associated with
low values of u.

In summary, then, we may say that for the negative binomial
case and the range of parameter values presently used by NavSup,

the approximation /;2; for bé appears to be a safe one.

3. ESTIMATI IABILITY WITH

Having established the value of 'oé for cases of particular
interest in the inventory models, it follows that ¢ =k A4 for
gome constant k. Consequently, if A 1s estimated directly from
the data to obtain an estimate Z , say, then O can be estimated
by applying the formula g=k4. In this way, one obtains a
measure of the variability of demand through estimates of 4 .
How good such a procedure might be clearly depends upon the

technique used to estimate A 1in the first place and what the

effect ig on scaling that estimate by the factor k to obtain g.

-9 .



There are of course many different ways to estimate 0 .

Pollowing Brown [3], NavSup uses a formula based upon exponentially
smoothing certain error forecasts defined as follows. Let xo,xl,---,xt
denote independent demands over discrete units of time up to and
including t. Suppose that it-l 1s a forecast of the demand at

time t, such forecast being made at time t-1. Then the difference
ok e £..1 » represents a forecast error that is dependent upon

the method of forecasting used. Again following Brown, suppose that

exponential smoothing is uged to forecast so that, using smoothing

congtant 4,
t-2

°’kzo”y\‘:-1-k + Bt-lxo

In this report we will only be considering the model where random
Cemand X 1is normal with constant mean j and variance az. With
this in mind we have, as previously reported in [1],

B (°t) =0 forallt

and the error terms have time-dependent variances given by,

9 O‘f'ZBZt -1
=y

o(t)-c +o( )

However, if we let t % ® , we obtain & limiting variance of

(3.1) ai-ﬁ;oz or o-'/z.—o

Now for each t, e being a linear combination of independent

normal random variables, is again normal and its mean absolute

deviation, A = ‘[-g A, as previously

o) 18 related to 9, by 9,

- 10 -



established, Consequently, from (3.1) we may write, asymptetically,

(3.2 o-@ B -

This formula relates demand variability to the mean absolute
deviatior el error forecasts.

The formula used in (3] and (4] to estimate &, and ultimately
0 1s based on an exponentially smoothed function of the error

forecasts. If
t-l
= ‘k
L '“Eﬂle-kl
t =0 t

then 0 1is estimated for demands xo,"'.xt, by

(3.3) o= '@23 Zt

As remarked in (1], the worth of this estimation procedure is
difficult to assess without some knowledge of the probability
distribtuion of Zt . Serious efforts notwithstanding, that
probability distribution has not been derived to date. The real
basic difficulty is that random variables €1:8y,° 18, which

compose 4, , while normally distributed, are not mutually

independent. Even the matter of finding the second moment of At
has been intractible thus far.

In an effort to discover some indication of the variability
involved, a simulation study was undertaken and resulted in mounting

evidence that there is reason to believe that the variance of Zt

1s bounded below by a positive quantity so that even in the limit

= 1 =



the actual estimates O based on this quantity will fluctuate
about the true value o,

In turn, this immediately suggests comparing this method of
estimation with the classical maximum likelihusd estimate @
glven by the formula,

. /E (x,-0?
(3.4) 0= |=
t
Now, properties of O are well known (see [5] for example), being

derived from the so-called Chi-distribution, In fact,

ry T T
x(c) /-:Eata vhere o, ® t-l I‘(—l) Z(t-l)

and,

a 2 1
V(o) = ETl Bﬁ 02 s where Bﬁ =] az b

From thesre formulas we see that
%iaLE(o) =g

(3.5) a
lim V(o) = 0
tho

Hence, if it is true that the variance of o is bounded away from
zero, then, even though unbiaged in the limit, the fact that 3 has
a vanishing variance would make it preferable as an estimating tool,
Our simulation results certainly seem to concur that this is the
case.

For simulation purposes, several members of the normal family

were selected so as to be representative of a wide class of fast

-12 -



moving inventory items. Using random generation samples of size
200 were drawn from these populations and a running account was
kept of the estimates ; and 0 of the true and known standard
deviation 0., This was done by computing the values of (3.3) and
(3.4) at each time period t.

Incidentally, it should be observed in this regard, that the
running computation of 5 involves no more time nor storage than
that of 3, a feature often cited as one compelling reason for
using exponential smoothing. It is true that 32 will have to be
stored and updated at the next time period and hence one extra
operation, that of taking the square root, will be involved. But
with modern computers, the time for this extra operation is

negligible.

The actual point by point results of the simulation are perhaps
not too enlightening. The program that was used has been preserved
and is available for further uge. Of more interest is a comparison
of the two procedures with regard to bias and vaiiance. These
have been estimated by computing the sample average and sample
standard deviation (S.D.) of sach of g and 3 for each parameter

choice. While many more cases were examined, the results for

parameter choices furnished by NavSup are summarized in Table 1.

“13 =



i

Parametear Averangerage'l!ias Bias | S.D.| 5.D. | M.S.R. | M.S.K.
Pairs =~ 2 = 2 2 p ;

Q?
Q

g o o g

(50,10) 10.27} 9.60 |0.27| -0.40 | 2.83| 1.33| 8.08 1.93
(100, 25) 25.67 | 23.9910.67 | -1,01 | 7.08| 3.31| 50.57| 11.98
(100,50) 51,351 47.98 | 1.33| -2,02 | 14.15| 6.63] 201.99| 48.04
(400,40) 41.071 38.39 | 1.07} -1.61 | L1.32] 5.30| 129.29{ 30.78
(500,50) 51,38 48,52 | 1.38| -1,48 | 14.15| 7.40| 202.13| 56.95
(600, 60) 61.60 | 57.58 | 1.60 | -2.42 | 16.98| 7.95| 290.88] 69.06
(700,70) 64,99 | 58,78 I-5.01-11.22 | 21.40 | 10,56 | 483.06| 237.40
(800, 80) 81,51 | 76.15| 1,51 -3.85 | 19.18| 5.85} 370.15] 49.04

(900, 90) 87.26| 86,21 |-2.74| =3.79 | 21.09| 5.01] 452.30| 39.46

(1,000,100)'101.89 95.18 | 1.89| -4.82 |23.97| 7.32]578.13] 76.81

e o

Table 1. Sample Characteristics

The table clearly brings out the inefficiency of the smoothing
technique compared with classical methods of estimation. Both proce=
dures are biased. The smocthing procedure tends to overestimate while
the maximum likelihood procedure more conservatively underestimates
0, a fact known from the theory of course. BRxcept for the one
extreme case (the pair (700,70) where the bias for 3 is numerically
as large as 11 for some reason that is not consistent with the
other results, the bias in both cases is of the same magnitude. There
is a marked difference in the variance estimat: of the two procedures,
however. The variance for o is significantly nigher than that for

a
0 in every case. Indeed, there wag never a single normal case

.14 -



studied in which this was not the case.

Since the bias is roughly the same for each procedure this means

that the mean squared error (M.S.E.) of each procedure will largely

be determined by its variances.

Recalling that M.S.B. is given by

the variance plus the square of the bias we use the averages and

standard deviations of Table 1 to compute estimates of M.S.E. which

are recorded in the last two columns.

Again the difference in the

two procedures are quite striking. The M.S.B. for o reaches as

high as 12 times that for G 1in one case and even in the pathological

cagse cited above (the pair (700,70)) where the bias of g is

unexplainably high, the M.S.R. of g is still twice that of 5.

In most of the cases, the ratio is about 4.

A similar analysis was undertaken for Poisson demand with results

that are not quite as striking.

three typical cases.

These are summarized in Table 2 for

{ Parameter | 0 [Average Averugeynias Bias | S.D.| S«D.|M:S.Bs| M.S.E.
o] g o c (o) c (o} J
001 0.1 001 006 "'309 "004 004 004 00097 00032
001 003 017 023 "013 '007 013 006 l0338 00085
1.0 1.0 .91 .95 -009 '005 ‘ 028 012 .0865 00169 |
Table 2., Poisson Demand
Again it should be observed that the M.S.E. for 0 is at least 3

times that for 5 in each instance examined.

- 15 -



4. S ON L S

Not satisfied to merely summarize the evidence obtained as in
the tables of the preceding section, it was deemed advisable to tast
the effects of the forecasting errors on their use in fixing reorder
levels. Again for reporting purposes, the main concentration was spent
on the normal case. If demand is normal with mean ¥ and standard
deviation 0, then the (theoretical) reorder level would be set at
b+ ko ';here k 1is chosen to satisfy a given rigsk p defined by

p=P(X>p + ko)

Thus, the risk, for present purposes, is the probability that demand
will exceed the reorder level causing a stockout. For given p (or k)
the parameter k (or p) can be determined from standard normal tables.

Of course | and O are unknown so that p can never be
satisfied exactly, If we were to use p' and g’ for the reorder
level and it should happen that u' + ko' > p + ko where k has
been chosen to satisfy a given risk requirement p, then the true
risk say p' = P(X > p.' + ko') would be something smaller. This
means that simultaneously overestimating @4 and O results in over-
stocking, that 1s, we could stock less to achieve the required risk
level. There may also be penalty costs in the way of storage costs
to consider for such a situation. On the other hand, if u' + ko' <
p + ko then, while we think we are stocking in such a way as to
achieve a given risk p, in fact the true risk p' would be greater.
The resulting shortage "cost" paid for such a position could be

disastrous. Since neither position is particularly favorable, and

- 16 -



the true parameter values are unknown, it is clear that the most
precise estimates of Wb and ¢ are desirable; precise in the sense
of minimum fluctuation about the true values,

Ttying to determine the true risk incurred when exponentially

smoothed estimates W and ; of b and O, respectively, are used
theoretically requires the joint probability distribution of X, ;
. 1f finding the distribution of O alone seems difficult, the
task of finding such a joint distribution looms formidable to say the
least. Fortunately, in a simulation approach the parsmeters, and
hence the true theoretical reorder level for a given risk p, is
known. For any procedure used to set actual reorder levels it is then
possible to observe the behavior of repeated applications of such a
procedure. There are many ways this might be done. One approach is
to observe the number of times a reorder level falls within so many
units of the theoreticel level. Or;, for a given percentage P we
might ask within how many units of the theoretical reorder levels
will P perzent of the actual recrder levels be found? We have
done a little of both and summarized the findings for various cases
in Table 3.

The table ls constru-ted #s follows. First a triple of parameters
(b, 9, p) 1s chosen where p 1s the desired risk. Fvom this k 1o
determined from tables and a theoretical reorder level computed. For
example, if W =400, 0 =40 and p = .01l then from .01 = P(X>»400+40k)
we determine k * 2.326 and theoretical reorder level is 493.04. Then,

for each psrameter triple Q; 1is the percentage (rounded) of 200

- 17 -



reorder levels found to be within 1 unit of the thsoretical reorder
level first for the level based on exponential smoothing ; + ko

and, second, for a level set using X + kg where g is the maximum
likelihood estimate of O and X 1is the average demand. Next, PSO
represents the number of units about the theoretical reorder level
within which 50% of the computed reorder levels were found. Again,
the first column under Pgy is for smoothed estimates and the second

for maximum likelihood estimates. The last column is & similar

computation for 957 of the reorder levels.

ﬁ;:::;::f | Psg Pgs
(100,25,.01) V! 15 2 B 13
(100,25, .11) 6 48 11 %6
(100,25, .50) 8 19 6 2 17 5
(400,40,.01) 9 B 22 % 2 57 2l
(400,40, .11) 5 38 18 2 8 9
(400,40, .50) 510 10 3 27 7
(600,60,.01) 1 15 74 85 3l
(600,60, .11) 5 2 %3 8 L
(600, €0,.50) 1 ¢ 15 4 w12
(800,80, .01) 21 35 5 103 46
(800,80, .11) 2 16 28 2 69 30
(800,80, .50) 2 2 2 2 56 23
(1000, 100, .01) 2 13 W 6 129 58
(1000, 100, .11} 1 12 35 4 85 37
(1000, 100, ,50) 2 e a3 70 30

Table 3. Percentiles for Recrder Levels

N8



Many more cases than those reported in the table were examined
but the results are omitted for the sake of brevity. The results in
thege other cases displayed precisely the same pattern however.
Indeed, the czonsistency of the various cases is somewhat startling.
Once again there is not one single choice of a mean, a standard
deviation or a rigk in which the smoothing procecure does not fall
significantly short of maximum likelihood techniques. This was to
be expected of course since the variance of the estimators involved
determine the amount of flucutation from sampie to semple.

One other interesting observation in Table 3 is the monotonic
nature of PSO and P95. Thus, while it always takes more units of
distance (roughly twice as many) to include 95% of the values using
smoothing versus maximum likelihood, the comparison at the 50% 1level
1s even more striking., In addition to requiring roughly ten times as
many units to cover 50 of the observations for smoothing, the
number of units for the same percentage using maximum likelihood is
comfortably small,

Another way to view the results is to try and estimate the true
risk incurred when a given procedure is followed. OCne way to do this
1g to imsgine that, after 200 observations, the estimates say u*
and o coinzide with the parameters and then compute P(x>u*+k0*)
as a measure of the true risk, With a sample size of 200, the
asymptotic result of supposing that estimates and parameters are the
same should be fairly sound. Of course the point is that how sound
such an estimate 15 depends upon the precision of the estimate once
again. 1In any event in practice this is essentially what is done and



200 is a figure quite a bit larger than *he typical number of periods
for which historical data are Taintained for making such estimates
within NavSup,

In Table 4 our results are sumrarized as follows. Again, certain
triples of parameters W, 0 and p are selected. This time, for
each pair (m, 0) down a column, five different risks are associated
across & row. For each such combination, an actual reorder level is
determined in two ways. First of all, k is determined and then
reorder levels fixed at ; + kz and X +l<g. After the 200th
observation p' = P(x>u*+kcf5 1s computed and entered in each cell
(suitably rounded), first for (u*yo*\ = (;ng) and second for
(u*,o*) - (i,é) For la:k of a better name, p'O 1s called the actual
risk. In this way, the actual risk incurred using smoothing may be
compared with maximum likelihood procedures.

(um 01 05 i .25 50

(100,25) |.01 .01(.05 .05].13 .11[.30 .25|.60 .52

(400,40) .01 .01].05 .O5(f.1l% ,11].30 .25(.60 .52
(500,50) [.01 .01}.05 .OS|.!3 .11}.30 .25(.60 .52
(600,60 |.01 .01f.05 .05].13 .11].30 .25(.60 .52
(800,80) .06 .01f.18 .05].31 .12].52 .26(.76 .52

(900,90) .12 .02(.20 .,07}.27 .13(.37 .,27]1.50 .51

' (1000,1003y .06 .01 .18 .05{ .31 .12(.52 .261.77 .52

Table &, Acrtueal Risks
The results are fairly self-explanatory. The results are even fairly

congistent in the sense that for most parameter choices the asymptotic



results are quite rhe same, For large means and varisnces more
variation begins to show up. We see that for small values of p, both
precedures are roughly equivalent. That is to say, after 200
predictions, the artual rigk is fairly close to the true risk. But
for large or even moderate values of p 1t appears that smoothing
consistently produres a larger actual rigk than maximum likelihood.
Both are larger than the true risk but the maximum likelihood

procedure is much closer to the true value and is far more consistent.

Risk | p+ka | B+ko §+k3!
.01 51 38 bs
.02 5 3o 43
.03 52 40 41
.04 53 39 40
.05 56 19 39
.06 52 18 37
.07 52 40 37
.08 52 40 3
.09 52 40 3
.10 51 41 14

Table 5, Percentage Ovarestimates

Finally, supposing thet i+ is far more sericus to overestimate
the reorder level f(resalting in excess s:ock for a given risk) than
to underestimate it, the deta were snalyzed to see the percentage of
time the reorder level was cversstirated in 200 trials., For this

1llustration only o.e distrib.*15n was used namely normal with

L9 .



mesn 50 and stendard deviation 10, Again, for various risks

(this time no more then 10%) zeovder levels ara set using ; + ko
and x + k0. This time we examined s third alternative, a mixture
of the two procedures, given by E + kg, The results are summarized
in Table 5 and the entries are the percentage of times that the given

method overestimates the theoretical reorder level.

It 1s by this {ime perhaps not surprising to note that smoothing
consistently overestimates the reorder level. Even the mixed procedure,
whereby smoothing is used to estimate the mean and O 1s estimated by
maximum likelihood,is an improvement over a MAD estimate of O,
Compared with straight maximum likelihood, it 1s better for small

values of p and then begins to tall off as p in:reases.

5. CONCLUSIONS AND RECOMMENDAT IONS

In drawing conclusions it would be well to reiterate the tentative
nature of simulation results. Without the exart probability distri-
bution for the exponentially smoothed estimators tresated in this
report=-particularly MAD—=no definize statement can be made about the
efficiency of this method ovar othe-c, Bu' the simulation results
display a certain consigtencv that <ertainly lends support to the
claim that maximum likelihcod wathods would be gupericr tcr those
purposes to which smoothing 1s presently voployed. Certainly the
evidence is sufficient t~ werrant f.rther exsuination and comparison
with alternatives. 1In spite of rhe difficulrties involved in the

derivation of the probability dis<ributions when exponential smoothing
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is employed as a forecasting tool. it ig our recommendation to continue
the theoretical search for those distributions or at least the moments
that are involved. In particular it would be helpful to establish

that the variance of 0 1s bounded below by a positive quantity as
seems to be indicated by the sim:latinas. If this were true then the
estimate will always fluctuate sboat che true ¢ regardless of how
many time periods are considered.

Another reason for continuing research in this ares is the fact
that even the simulation studies were only carried out for the normal
case (and the isolated Poisson csases) with .onstant mean and variance.
This is a strong assumption and entails supposing that no trend is
present. It is highly recommended that a similar anslysis in the
presence of trend be carried o0iit. The trend test and indicator
presently used by NavSup as outli:ed in 0y again employs exponential
smoothing as a basic tool for analyzing the data. If the lack of
efficiency indicated in this study zarries over to that case as well
then the consequenzes should be sven xore serious., Indeed. there is
reason to believe that with the methods presently emploved, there
can be a 50% chance ¢f rejecting an almost verciial trend, that is
a sudden jump in the demand patrarn. These matters acre certainly
topical candidates for further resesr.h.

In any or all of the above re:ommendations, it is suggested that
real data be used to analyze, 6 unfortunately perhaps in retrospect,
the reorder system had methods su.h as maxunum likelihood been used.
Large amounts of su h data ave suallabls for a wide variety of
inventory 1%ems and the prograns for proce,ging <ih data have been

praservad,



6. APPENDIX
This appendix is devoted to supplying the mathematical details

for the monotonic nature of g a: asserted in Section 3. It should

be recalled from that section that g . expressed as & function of

the Poisson parameter A is given by

(]
- R v
o 2l RYE

In particular, when A =n, g has a relative minimum with a value

u given by,

n
L L I
un = ) /E e -

It is conjectured that this sequence of values is monotone increasing.

To see this observe that

un n nﬁ
Un+1 o ('ﬁﬁ)
and
u 0 l
log — 2. = (n#k) log —= + 1 = =(n+X) log(l+=) + 1.
“n+1 n+l n

Recalling the Taylor expansion of leg (l+x) (see (6] for example),

we have, for n> 1,

1 1 ]
log (I47) == - "7} + =% - R
8 () =3 5147
where (}mh 1
R 8L o=
& 4n”

- 2% -



Then,

u R
log 2 SO T AV S SR I WL R VR

But R <0 for this case so that

2nt+? = 2n+2 !RI 1 1

R ol
: £ 4?8t
Hence,
u Z
1 1 1 I m ~2n-3)
log — ¢ " — - + + = Lo
n+l 12n E:j 2;3 ;;K 24n

Now for x 2 2, the polynomial 2? - - 1 is positive so that

u u
log —2_ < 0 and hence o< 1
Untl 041
In other words,
= | LM
which is what was to be verified.
From [ 7] (pags 64),
e
! RY afr *&i)

ol ‘ 2N o — Y
e (“+%)/§ﬁ (n+x§n+i KR ULE AP frak BT,



Since fn(n-hk) a ;2.- (nﬁ)nﬂ: em(nﬁ) we have
1
J2<f (nth) </2 e 26(mr+)
m n

Thus the sequence of relative maxims of é converges to /_Z supporting

=3

the claim on page 7 that g then converges to this limit.

d 96 -



(1]

(2]

(3]

(4)

(5]

(6]
(7]

BIBLIOGRAPHY

Zehna, Peter W., Some Remarks on Exponential Smoothing,

Naval Postgraduate School, Technical Report No. 72, December 1966,
Ashar, V.G. and T.D. Wallace, "A Sampling Study of Minimum

Absolute Deviation Estimators," Operations Research, Vol. 11,

No. 5, September-October 1963.

Brown, R.G., Smoothing, Forecasting and Prediction of Discrete

Time Series, Prentice-Hall, Inc., 1963.

PAR 1 - Application D, Operations 5, 6, Levels Computation for
Consumables and Repairables, FMSO, Mechanicsburg, Pennsylvania,
1964,

Hald, A., Statistical Theory with Engineering Applications,

John Wiley & Sons, 1952,

Taylor, Angus E., Advanced Calculus, Ginn and Company, 1955.

Feller, William, An Introduction to Probabflity Theory and its

Applications, Vol, 1, John Wiley & Sons, 1950,



Vitvaiw o Al ALV

Secunty Classification

DOCUMENT CONTROL DATA-R&D

Security «lassification of title, body of ebstract and indexing annotation must be entered when the overall report is classilied)
'V OHIGINATING ACTIVETY (Carporate author) 28. REFPORT SECURITY CLASSIFICATION
Naval Postgraduate School UNCLASSIFIED
2b. GROUP
Monterey, California °

i
3} REPORT TITLE

"FORECAST ING ERRORS USING MAD"

4 DESCRIPTIVE NOTES (Type of report and,inclusive dates)

Research Report

% AUTHORS) (First name, middle initial, lasi name)

Peter W. Zehna

6 REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1969 33 7
88 CONTRACT OR GRANT NO 94, ORIGINATOR'S REPORTYT NUMBERI(S)
NAVSUP RDT&E No. TF015-02-101 NPS 552e904i4

b. PROJECT NO

c. 9b. OTHER REPORT NOI(S) (Any other numbers that may be sesigned
this report)

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11 SUPPLEMENTA®RY NOTES 12. SPONSORING MILITARY ACTIVITY

Research and Development Division
Naval Supply Systems Command

|

A study of the effects of using mean absolute deviation (MAD)
to estimate variability in setting reorder levels for the inventory
of a stock item. The method presently employed by NavSup in setting
such reorder levels involves exponentially smoothed estimates of the
mean and variance of the demand process. Any error involved in setting
reorder levels results in a change in the underlying risk which in turn
can be translated into costs. Such errors for the method of estimation
presently employed are compared with standard maximum likelihood
procedures. By simulating several normal systems, the smoothing
technique is found to be inferior to classical methods with no reduction
in computational difficulties.

13 ABSTRACT

DD 3., 1473 (Proe 1) UNCLASS I IED
S/N 0101-807-6811 Security Classification

A-31408



A IEy L laNNILIY B Livnl

DD

AT LINK A Link B . MK C
' ROLF AT ROLF W O Lt wl
INVENTORY THEORY
EXPONENT IAL SMOOTHING
FORECAST ING
MEAN ABSOLUTE DEVIATION
REORDER LEVELS
1
1473 e UNCLASS IF 1ED

Secunty Clacsifioation




