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1. IHIRODUCIION AND SUMMARY 

In a previous report [1], the use of MAD (mean absolute deviation) 

In the analysis of demand variability as proposed by R. G. Brown [3] 

and presently used by NavSup [4] was discussed. In particular, the use 

of exponentially smoothed estimates of MAD MS criticized on theoretical 

grounds and a case was made for further scudy into the probability 

distributions of the various estimators presently in i.se. Of special 

importance, the use of MAD in setting safety levels was mentioned as a 

problem area in need of further investigation. 

The present report concerns itself with the extension of research 

investigations in the areas Just mentioned. Several attempts to derive 

the necessary probability distribution theory for MAD estimators 

resulted in disappointing futility for the most part. This was 

anticipated for, as previously mentioned in [l], absolute deviation as 

a measure of variability has been abandoned for years on theoretical 

grounds by Statisticians. 

Two minor results that were obtained concern the ratio of NAD, A, 

to standard deviation, a. The complete result of this ratio has been 

determined for the Foisson case. As alluded to in [1], the universal 

use of Jl   * 0.8 for this ratio is especially bad for low demand 

Poisson item. The same general criticism can be made in the negative 

binomial case. However, it was found that for the choice of parameters 

presently being used by NavSup, the apptoxlmation of this ratio by 

0.8, is a good one. 



Failing to obtain the required distribution theory to study the 

behavior of NAD estimates, siaulation was used to conpare saoothed 

estiaates of   0   to the usual aaxiaua likelihood estlmtes mostly lor 

the case of normal demand.   Parameter choices that reflect high demand 

items were selected in order to give HAD the best possible advantage in 

the comparison with alternate methods of estimation.   Such parameter 

choices were made after consultation with NavSup personnel in order to 

duplicate situations that actually exist; moreover, large amounts of real 

data are available for such cases.    In every single case studied, the 

sample variance of the smoothed estimate of HAD and consequent estimate 

of   9   was roughly twice that of the maximum likelihood estimates of   a. 

The same was true in a slow mover case or two that was examined.   This 

confins in a general way the observation made in a similar study carried 

out by Asher and Wallace [2] in which they found HAD to be significantly 

less efficient (about 201) compared to the classical minimum variance 

estimators under the Gauss-Harkov assumptions. 

Mot content merely to confirm this observation» however„ the estimates 

found were used further to see what the actual effects on reorder levels 

were*   This was approached in several wayn.   First, HAD and maximum 

likelihood were compared by computing the percentage of time the known 

theoretical reorder level was overestimated, thereby resulting in too 

much on hand stock.   Secondly„ the results were examined to see what 

percentage of the observations fell witlln   k   unit« of the theoretical 

order level for   k " 1,2,"*   and various fixed values of risk.   Finally, 

the two methods were compared by setting reorder levels and then computing 
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the actual risk attained by those levels where, fox each cast again, the 

theoretical or true risk Is knovm. As seen in Section 4, exponentially 

smoothed mean and MAD cam« off seiend best :ompared with maximum likeli- 

hood estimates of ^ end o    in every single case examined. 

Recognizing the limitations of simulation, no sweeping claim is here 

made for proof that exponentially smoothed MAD is an inefficient method 

of accounting for demand variability. At. the same time, one cannot ignore 

the fact that present methods were uniformly inferior in the situations 

examined. 

In Section 5 recommendations for further study are made. Among these 

is ths suggestion that real data be used from the histories available at 

FMSO for comparing the results In retrospect with what would have been the 

case had maximum likelihood procedures been used. The writer wishes to 

M 

thank Lt. Ozden Orneck for his invaluable assistance in constructing and 

running the computer programs as well as assistance in mathematical 

derivations.   Acknowledgement should also be given to Cdr. Jack E. White of 

FMSO for his unfailing cooperation in defining the problem areas and supply- 

ing parameter values that are realistic in terms of NavSup use.   Credit 

should also be given to Mx. James W. Prichard (SUP 04E)  for his 

continued endorsement and interest in this research area. 

2.    RATIO OF   A   TO   a 

It will be helpful to review some parametric definitions and 

establish a notation to be used here and in ensuing sections.    Let   X 

be a random variable with mean   ^   and variance   cr      (standard deviation 

O) .    The ro«an absolute deviation,, MAD for shoi*.   will be denoted    A 
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and is defined is 

(2.1) A   »   lC|lifc|) 

As renerked in [l]., it would be more rational to define MAD as   E(|XIB|) 

where   n   is the median of   X   hm. U is (1.1) that is used by Brown [3] 

and NavSup [4].   Consequently thct sane definition is adopted in this 

report. 

Now whe .   X   is normally distributed,, it is well known that the 

ratio of   A   to   9   is given by   /i   or,, rorighly   0.8.    It is somewhat 

surprising that the ratio is approximately the same for certain other 

families of probability distributions sieh as the Exponential» Uniform 

and Triangular.   However» th^s result is not universally true and is 

particularly a poor approximation for the Pciss^n fauAly, a model often 

used for the so-called slow mover type of inventory Item.   This fact 

was demonstrated earlier in [l] by exanlning the ratio for selected 

values of the Poisson parameter;,  X.   That ratio has now been determined 

for all values of   X   and It miy be instructive to see the behavior of 

this ratio in a complete sense. 

By   [z], we shall mean the greatest integer in   s, that is, the 

largest integer   n   such that   n ^ %   (and hence   t < n + i),   We 

denote the Poisson   (\)   mass function by   p   so that» 

p(x\    «   ft-A X   ^     x •C»,IlJß,••• 
x. 

Then we have, recalling that   n * afc ■ X   for this case.. 

[X] 

A-K(|Xü|)-   ilx-Xlpl»,) -   I   (X.x)p(x) +     )      (x"X)p(x) 
x-o xK) «»[jg+l 

z 
But,  letting   F(z) ■ £.p(x)    define the Poisson distiibution function, 

xK) 



[x] [_jg . 

I  (X-x)p(x) - XF(CX]) -   7 xp(x) - XP(CX] +    Y    xp(x) - X 

I    (x-X)p(x) -    V    xp(x) - X + X F(CX]) 
x-CXJ+l x-CX]+l 

Adding these results, „ 

(2.2) A - 2 X P(CX]) - 2 X + 2     A    xp(x)  . 
x-[X]+l 

But, for x 1 1, 
-X %x        -x .x-1 

xp(x) - xe     ^, - Xe     & - Xp(x-l)  . 
x. (x-i); 

Hence, 

." • • 

I    xp(x) - X    y    p(x-l) - X   I   p(y) - X(1-P(CX]-1)). 
x-CX]+l x-CX]+l y-LX] 

Substituting this result in (2.2), 

L •2 XF(CX]) - 2 X + 2 ) ̂ - 2 X F(CX]-1) 

- 2 X(FCX]-F(CXM)) 

- 2 X p(CX]) 

Thus, 

(2.3) A - 2 Xe'^ 
.[V] 

' *          for 
[X]! 

any x> 0. 

Since   a ■ 

(2.4) 

/I   we have, 

A 
c - 2 A e^ 

[X]I 

The graph of   -   as a function of   X   appears in Figure 1. o 



1 
0.8 

: /X 

0 12 3 
A 

Figure 1*   Graph of   - 

The «DAlysis that validates the graph is the following. 

If   n<X<n+l   then   [X] ■ n   and,   f -1« X      e   . 

As a function, say   f , of   X   in this open interval,   f     is n n 

differentiable with, 

f'W 'i e"X X11^ (n^-X) 
n n« 

Hence,    f'(X) > 0    if    X<n + %   and   f'(X) < 0    if   X>n + i n n 

so that   f     possesses a relative maximum at    X - n + i   with a 

maximum value of   f (IH404 for   n ■ O^^,***. 

With the formulas established for   f     and   f    ,    it is easy 
n n+1 

to verify that   ~   is continuous at each of the integers although 

not differentiable there.    In any case, it is shown in the appendix 
A 

that the sequence of values of   -   at   n. 

2     n+i   -n 
n' n      e n. 

- 6 



is monotone Increasing.   Using Stirlings «pproxlmetion [7] to   nl, 

M nn+1 e"n<a!</2n n^ e'^l+r-r) 

ve see thet, 

Jl T-   < f (n) < ^2 

I2n-1 

and lim £ (n) ■ /2 . Thus the values of - converge in the limit 

to the factor Jl  . However, as previously remarked in [l] and as 

seen visual^ in Figure 1, approximating r by /2 is particularly 
ff _ 

bad when    X < 1   which is precisely when the Foisson assumption is 

of primary interest. 

For intermediate movers, the negative binomial distribution is 

employed as a model for demand.    Specifically, from [4], such an 

assumption is made whenever mean demand is between   2   and    20    units. 

The negative binomial distribution is a family of probability 

mass functions having two parameters    r   and   p   where   r    is a 

"ositive integer and   0 < p < 1 .   For our purposes the general 

formula for the mass function is defined by, 

PU)  - (r^"1) pV ,      x - 0,1,2,-"      (q=l-p) 

The mean   li    and the variance   o^   of a random variable having this 
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mass function are given by, 

rq    2  rq 

v P 

Proceeding as in the Poiseon case, 

« [JA] • 
A - E(|x-tt|) -   V MP(X) -   V(ji-x)p(x) +      V    (xü)p(x) 

7^0 x^> x-M+1 

But, 

I'^-XX^'SPV - UP1 + Idi-xx^-bpV 
xH) x-1 

and, 

I    (x^X^-SpV - - Ix("*-W + ^ I (^ Vq* 
x-CJrj+i x-i    x xK)   x 

Adding these results, 

(2.5)       A - 2[|ipr + V. Vp(x) -   ixp<x)3 
iM x"i 

expressing   A   in terns of finite sums. 

Since   o m     g , it is no problem to compute the ratio  -   for various 

choices of   r   and   p   on the computer. 

It is easy to choose values of   r   and   p   for which the ratio 

is very different from   0*8.   However, the interest would only be 

academic for values of   r   and   p   such that   v> ji [2,20].   For that 

range of values, a total of 1,000 cases were considered as follows. 

Let   n 6 [2,20]   be selected and for each such   li,    r   was allowed 

to vary over the set   {2,4,6,***,20}«   For each such choice,    p   is 
r 

then determined from the relation   p ■ —   and   q   is specified by 
r-^ 
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A 
q ■ 1 • p. Then L   was computed using (2.5) and finally ~ was 

evaluated. In each such "group" of ten parameter pairs, it was 

observed that - was invariably monotone increasing although there 

was no monoticity from group to group. More significantly however, 

it was observed that ~   varied always between a minimum value of 

0.750 and a maximum value of 0.805. For example, if p " 0.893 

and r - 20 whence \i,  ■ 2.4, we find that - B 0,805 although for 

P ■ 0.455 and r - 2, resulting also in [i « 2.4, ^ - 0.770. On 

the other hand, for p ■ 0.174 and r ■ 4, yielding \i, • 19, 

^ • 0.781 so that low values of ^ are not always associated with 

low values of )*. 

In summary, then, we may say that for the negative binomial 

case and the range of parameter values presently used by NavSup, 

the approximation /l   for - appears to be a safe one. 

3. KSTIMKIMG VARUBILITY WITH MAD 

Having established the value of | for cases of particular 

interest in the Inventory models, it follows that a ■ k A for 

some constant k. Consequently, if A is estimated directly fron 

the data to obtain an estimate A , say, then a can be estimated 

by applying the formula a ■ k A . In this way, one obtains a 

measure of the variability of demand through estimates of A . 

How good such a procedure might be clearly depends upon the 

technique used to estimate A in the first place and what the 

effect is on scaling that estimate by the factor k to obtain a. 

- 9 - 



Thar« are of course many different ways to estiaate   a . 

Following Brown [3], NavSup uses a formula based upon exponentially 

smoothing certain error forecasts defined as follows.   Let   X^Xp"*,X 

denote independent demands over discrete units of time up to and 

Including   t*   Suppose that   I   ,    is a forecast of the demand at 

time   t, such forecast being made at time   t-1.   Then the difference 

«t " xt " ^t-1 ' rePre8ent8 * forecast error that is dependent upon 

the method of forecasting used.   Again following Brown, suppose that 

exponential smoothing is used to forecast so that, using smoothing 

constant   or, 
t-2 

£t-1" "lA-i-k+ *tm\ k-0 

In this report we will only be considering the model where random 

2 
demand X is normal with constant mean \t,   and variance o ,   With 

this in mind we have, as previously reported in [l], 

B (et) - 0  for all t 

and the error terms have time^dependent variances given by, 

However, if we let   t -• » , we obtain a limiting variance of 

(3.1) ^ ■•^-^2   or   a -^a e     2-or 2     e 

Now for each   t, et,   being a linear combination of Independent 

normal random variables,  is again normal and its mean absolute 

deviation,    &e,    is related to   a     by   ae ■ *- Ae   as previously 

- 10 - 



esttbllshed. Consequently, from (3.1) we may write, esymptetically, 

(3.2)        C^S-t,. 

This fonnule relates deoand variability to the mean absolute 

deviation of error forecasts. 

Thb formula used in [3] and [4] to estimate   A     and ultimately 

o   Is based on an exponentially smoothed function of the error 

forecasts.    If 
t-1 

it • "I>l«t-kl 
k-0 

then a is estimated for demands XQ,***,X , by 

(3.3) a - -Y"^ At 

As remarked in [l], the worth of this estimation procedure is 

difficult to assess without some knowledge of the probability 

distribtuion of A . Serious efforts notwithstanding, that 

probability distribution has not been derived to date. The real 

basic difficulty is that random variables ex*e2,***!iet w^c^ 

compose At , while normally distributed, are not mutually 
Mr 

independent. Bven the matter of finding the second moment of At 

has been intractible thus far. 

In an effort to discover some indication of the variability 

involved, a simulation study was undertaken and resulted in mounting 

evidence that there is reason to believe that the variance of A 

is bounded below by a positive quantity so that even in the limit 



the actual estimates o   based on this quantity will fluctuate 

about the true value a. 

In turn, this immediately suggests comparing this method of 

estimation with the classical maximum likellhu^d estimate o 

given by the formula, 

(3.4) 
ffi* 

t 

Now, properties of a are well known (see [5] for example), being 

derived from the so-called Chl-distrlbution. In fact, 

and. 

V(a) - T ß? a2 » where P* - 1 - a2 * —— t  ' t     t     2(t-l) 

From thewe formulas we see that 

&mm - a 

(3.5) 
lim V(a) -0 

Hence, if it is true that the variance of a Is bounded away from 

zero, then, even though unbiased in the limit, the fact that a has 

a vanishing variance would make it preferable as an estimating tool. 

Our simulation results certainly seem to concur that this is the 

case. 

For simulation purposes, several members of the normal family 

were selected so as to be representative of a wide class of fast 
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moving Inventory items. Using random generation samples of size 

200 were drawn from these populations and a running account was 

kept of the estimates a and a of the true and known standard 

deviation a. This was done by computing the values of (3*3) and 

(3*4) at each time period t. 

Incidentally, it should be observed in this regard, that the 

running computation of a involves no more time nor storage than 

that of o, a feature often cited as one compelling reason for 

*2 
using exponential smoothing. It is true that a     will have to be 

stored and updated at the next time period and hence one extra 

operation, that of taking the square root, will be involved. But 

with modern computers., the time fox this extra operation is 

negligible. 

The actual point by point results of the simulation are perhaps 

not too enlightening. The program that was used has been preserved 

and Is available for further use. Of more interest is a comparison 

of the two procedures wi.th regard to bias and vai lance. These 

have been estimated by computing the sample average and sample 

standard deviation (S.D.) of each of o and o    for each parameter 

choice. While many more cases were examined, the results for 

parameter choices furnished by MavSup are summarized in Table 1. 
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Paraaetir 
Pairs 

Averag« 
IMP 

a 
average 

et 

a 
Bias 

a 
Bias 

0 

S.D. 
MO 

a 
S.D. 

A 

a 
N.S.I. 

a 

N.S.&. 
A 

a 

(50,10) 10.27 9.60 0.27 -0.40 2.83 1.33 8.08 1.93 

(100,25) 25.67 23.99 0.67 -1.01 7.08 3.31 50.57 11.98 

(100,50) 51.33 47.98 1.33 -2.02 14.15 6.63 201.99 48.04 

(400,40) 41.07 38.39 1.07 -1,61 U.32 5.30 129.29 30.78 

(500,50) 51.38 48.52 1.38 -1.48 14.15 7.40 202.13 56.95 

(600,60) 61.60 57.58 1.60 -2.42 16.98 7.95 290.88 69.06 

(700,70) 64.99 58.78 •5.01 -11.22 21.40 10.56 483.06 237.40 

(800,80) 81.51 76.15 1.51 -3.85 19.18 5.85 370.15 49.04 

(900,90) 87.26 86.21 -2.74 -3.79 21.09 5.01 452.30 39.46 

(1,000,100) 101.89 95.18 1.89 -4.82 23.97 7.32 578.13 76.81 

Table 1. Saaple Characteristics 

The table clearly brings out the inefficiency of the smoothing 

technique compared with classical methods of estimation. Both proce- 

dures are biased. The smoothing procedure tends to overestimate while 

the maximum likelihood procedure more conservatively underestimates 

a, a fact known from the theory of course. Bxcept for the one 

extreme case (the pair (700,70) where the bias for a is numerically 

as large as U for some reason that is not consistent with the 

other results, the bias in both cases is of the same magnitude. There 

is a marked difference in the variance estimate of the two procedure?, 

however. The variance for a is significantly higher than that for 

A 

a in every case. Indeed} there was never a single normal case 
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studied In which this was not the case. 

Since the bias is roughly the sane for each procedure this means 

that the mean squared error (M.S.E.) of each procedure will largely 

be determined by its variances. Recalling that M.S.E. is given by 

the variance plus the jquare of the bias we use the averages and 

standard deviations of Table 1 to compute estimates of M.S.E. which 

are recorded in the last two columns. Again the difference in the 

tv/o procedures are quite striking. The M.S.E. for a reaches as 

A 

high as 12 times that for a in one case and even in the pathological 

A 

case cited above (the pair (700,70)) where the bias of a is 

M A 

unexplalnably high, the M.S.E. of a is still twice that of a. 

In most of the cases, the ratio is about 4. 

A similar analysis was undertaken for Poisson demand with results 

that are not quite as striking. These are summarized in Table 2 for 

three typical cases. 

i Parameter a Average 

a 
Average 

* 
a 

Bias 

a 
Bias 

A 

a 
S.D. 

a 
S.D. 

A 

a 
M«S*E« 

a 
HtS • fitl 

s          1 

J 

.01 0.1 .01 .06 -.09 -.04 .04 .04 .0097 .0032 

0.1 0.3 .17 .23 -.13 -.07 .13 .06 .0338 .0085 

1.0 1.0 .91 .95 -.09 -.05 .28 .12    .0865 .0169 : 

Table 2. Poisson Demand 

Again it should be observed that the M.S.E. for a is at least 3 

A 

times that for o    In each instance examined. 
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4. BFFKCTS OH RBORPgR LgVgLS 

Not satisfied to merely summarize the evidence obtained as in 

the tables of the preceding section, it was deemed advisable to test 

the effects of the forecasting errors on their use in fixing reorder 

levels. Again for reporting purposes, the main concentration was spent 

on the normal case. If demand is normal with mean |i and standard 

deviation a, then the (theoretical) reorder level would be set at 

|i -f ka where k is chosen to satisfy a given risk p defined by 

p ■ P(X > ^ + ka) 

Thus, the risk, for present purposes, is the probability that demand 

will exceed the reorder level causing a stockout. For given p (or k) 

the parameter k (or p) can be determined from standard normal tables. 

Of course n and a are unknown so that p can never be 

satisfied exactly. If we were to use |A  and a  for the reorder 

level and it should happen that |i + kcr > |i + ka where k has 

been chosen to satisfy a given risk requirement p, then the true 

risk say p ■ P(X > |A + ko ) would be something smaller. This 

means that simultaneously overestimating |A and a results in over- 

stocking, that is, we could stock less to achieve the required risk 

level. There may also be penalty costs in the way of storage costs 

to consider for such a situation. On the other hand, if M- + ka < 

H + ka then, while we think we are stocking in such a way as to 

achieve a given risk p. in fact the true risk p  would be greater. 

The resulting shortage "cost" paid for such a position could be 

disastrous. Since neither position is particularly favorable, and 
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the true parameter values are unknowiij,  it Is clear that the most 

precise estimates of   ^    and   a   are desirable; precise in the sense 

of minimum fluctuation about the true values. 

Trying to determine the true risk incurred when exponentially 

smoothed estimates   |A    and   a   of   ^   and   a, respectively, are used 

theoretically requires the joint probability distribution of   X,    ^ 

a.    If finding the distribution of   a    alone seems difficult,  the 

task of finding such a Joint distribution looms formidable to say the 

least.    Fortunatelyj,  in a simulation approach the parameters, and 

hence the true theoretical reorder level for a given risk   p,  is 

known.   For any procedure used to set actual reorder levels it is then 

possible to observe th« behavior of repeated applications of such a 

procedure.   There ar« many ways this might be done.    One approach is 

to observe the number of times a reorder level falls within so many 

units of the theoretical level.    Or,, for a given percentage   P   we 

might ask within how many units of the theoretical reorder levels 

will   P    perrent of the actual reorder levels be found?    We have 

done a little of both and summarized the findings for various cases 

in Table 3. 

The table is constructed is follows.    First a triple of parameters 

(jij, o,, p)  is chosen where   p    is the desired risk.   From this   k    io 

determined from tables and a theoretical reorder level computed.   For 

examplep  if   ^ » 400 .    a « 40   and    p « .01    then from    .01 » P(X>400H0k) 

we determine   k ■ 2.326   and theoretical reorder level is   493.04.    Then, 

for each parameter triple   Q|    is the percentage (rounded) of 200 

. 17 ^ 



reorder levels found to be within   1   unit of the theoretical reorder 

level first for the level based on exponential smoothing   ^ + ka 
A A 

and,, second, for a level set using X + k<7 where o    is the maximum 

likelihood estimate of o    md X Is the average demand. Next, P,0 

represents the number of units about the theoretical reorder level 

within which 50X of the computed reorder levels were found. Again, 

the first column under PCQ is for smoothed estimates and the second 

for maximum likelihood estimates. The last column is a similar 

computation for 951 of the reorder levels. 

Parameter 
|   Triples Ql ^50 

p95     1 

(100p258.01) 4 32 1.5 2 35   13   i 

(100,25,.11) 6 48 11 1 24    6 

(100s25,.50) 8 19 6 2 17    5 

(400,40,.01) 2 22 25 2 57   21 

(400,40,.11)   j 5 38 18 4> 38    9   1 

(400,40,.50) 5 10 10 3 27    7   j 

| (600,60s.01)   | 1 15 37 4 85   31 

(600,60p.ll) 5 2f 26 3 58   14   | 

| (600,60,.50) 3 e 15 4 40   12   1 

{ (800,80,.01)   | 2 is 35 5 103   46   | 

(800,80 ,.11) 2 16 28 3 69   30   | 

(800,80,.50)   1 2 2,3 21 2 56   23   I 

(1000,100,.01)  j 2 13 44 6 129   58   i 

(1000,100,. 11)  | 1 12 35 4 85   37   I 

(1000,100,.50) 2 18 2' } 70   30   1 

Table 3. Percentiles for Reorder Levels 
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Many mor« cases than those reported In the table were examined 

but the results are omitted for the sake of brevity. The results in 

these other cases displayed precisely the same pattern however. 

Indeed, the consistency of the various cases is somewhat startling. 

Once again there is not one single choice of a mean, a standard 

deviation or a risk in which the smoothing proceuure does not fall 

significantly short of maximum likelihood techniques. This was to 

be expected of course since th« variance of the estimators involved 

determine the amount of flututatlon from saa^ie to sample. 

One other Interesting observation in Table 3 is the monotonlc 

nature of PCQ and PQC. Thus, while it always takes more units of 

distance (roughly twice as many) to include 951 of the values using 

smoothing versus maximum likelihood,, the comparison at the 50% level 

is even more striking. In addition to requiring roughly ten times as 

many units to cover 501 of the observations for smoothing, the 

number of units for the same percentage using maximum likelihood is 

comfortably small. 

Another way to view the results is to try and estimate the true 

risk incurred when a given procedure is followed. One way to do this 

is to imagine that., aftez 200 observations, the estimates say |A 

and o     coincide with the parameters and then compute P(3^i +ka j 

as a measure of the true risk. With a sample size of 200, the 

asymptotic result of supposing that estimates and parameters are the 

same should be fairly sound. Of course the point is that how sound 

such an estimate is depends upon the precision of the estimate once 

again. In any event in practice this is essentially what is done and 
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200 is « figure quite a bit larger thin 'he typical number of periods 

for which historical data ate Taintained for making such estimates 

within NavSup. 

In Table 4 our results are sunnrarized as follows. Again, certain 

triples of parameters M-, ^ and p are selected. This time, for 

each pair (n, a) down a column five different risks are associated 

across a row. For each such combination an actual reorder level is 

determined in two ways. First of all, k is determined and then 

reorder levels fixed at ^ + ka and X + l<a. After the 200th 

observation p' - PCX^+ka*^ is computed and entered in each cell 

JL JL, i»*      ** 

(suitably rounded), first for    (p  :,a ) « (ma)    and second for 

(H ,0 ) " (X..^)     For lack of a better name»    p" Is called the actual 

risk.    In this way, the actual risk Incurred using smoothing may be 

compared with maximum likelihood procedures. 

1    0*>^J i 01 » 05       |       . 11 . 25 .50          | 

(100925) .01 .01 .05 .05 .1.3 .11 .30 .25 .60      .52 

(400,40) .01 .01 .05 .05 .Li .11 .30 .25 .60     .52 

(500,50) .01 .01 .05 .05 .13 .11 .30 .25 .60      .52 

(600,60) .01 .01 .05 .05 .13 .11 .30 .25 .60      .52 

(800,80) .06 .01 .18 .05 . 31 .12 .52 .26 ,76      .52 

(900,90) .12 .02 .20 .07 .27 .13 .37 .27 .50      .51    ! 

(1000,100) .06 .01 .18 .05 1 .31 .12 ,52 .26 1 .77      .52     | 

Table 4.   Acnal Risks 

The results are fairly self-explanatory.   The results are even fairly 

consistent in the sense that for most patameter choices the asymptotic 
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results «re quite the same. For large means and viriances more 

variation begins to show up. We see that for small values of p, both 

precedures are roughly equivalent. That is to say» after 200 

predictions, the actual risk is fairly close to the true risk. But 

for large or even moderate values of p it appears that smoothing 

consistently produces a larger arfual risk than maximum likelihood. 

Both are larger than the true risk but the mayimro likelihood 

procedure is much closer to the true value and is far more consistent. 

Risk i n + ka £ + ko jr + ka 

.01 51 38 4a 

.02 5? 3b 43 

.03 52 40 41 

.04 53 39 40  j 

.05 54 39 39  | 

.06 5? 38 37 

.07 52 40 37  j 

.08 52 40 34  j 

.09 52 40 35 

„10 51 4] 34 

fable 5. Percentage Ovetestlmatfts 

Finally., supposing th«t It is far more serious to overestimate 

the reorder level (resulting in oc.ess stock for a given risk) than 

to underestimate it;, the data were analyzed to see the. percentage of 

time the reorder level was cveiestürated in 200 trials. For this 

Illustration only c ,(? distilb-..* 1 Jn w^s used namelv normal with 

r. 



mean   50   and standard deviation   10.   Again,  for various risks 

(this tine no more than 107.) reorder  levels ar». set using   ^ + ka 

«nd   x + ka.    This time we •.Kimlned « third alternative,, a mixture 

of the two procedures3 given by   fi + ka.   The results are suranarized 

in Table 5 and the entries «re the percentage of times that the given 

method overestimates the theoretical reorder level. 

It is by this    Ime perhaps not: surprising to note that smoothing 

consistently overestimates the reorder level.    Even the mixed procedure, 

whereby smoothing is used to estimate the mean and   o    is estimated by 

maximum likelihood, is an improvement over a NAD estimate of   a. 

Compared with straight maximum likelihood, it is better for sirall 

values of   p   «nd then begins to tall off as   p    incretses. 

5.    CONCLUSIONS AND RECOMMEHDATTONS 

In drawing conclusions It would be wftll to reiterate the tentative 

nature of simulation results.   Without the exar.t probability distri- 

bution for the exponentially snoothed estimators treated in this 

report—particularly MAD—no definite statement can be made about the 

efficiency of this method over othe:?.    Bu- the simulation results 

display a certain conslstencv thAt 'ertainly lends support to the 

claim that maximum likelihood methods wcild be 8up»ri<:r tor  those 

purposes to which smoothing is presently employed.    Certainly the 

evidence is sufficient  to w«.rr«nt  t rther exoulnetlon and comparison 

with alternatives.    In spite of the difll.uUies  involved in the 

derivation of the probability dls'.rlb-jnons when exponential  smoothing 
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Is employed as a forecasting fool.   It  is our recommendation to continue 

the theoretical search for those distributions or at least the moments 

that are involved.    In particular It would be helpful to establish 

that the variance of   Q   is bounded below by a positive quantity as 

seems to be indicated by the simulations.    If this were true then the 

estimate will always fluctuate tbcit. the true   cr   regardless of how 

many time periods are considered. 

Another reason for continuing research in this are* is the fact 

that even the simulation studies were only carried ovt for the normal 

case (and the IsoUted Polsson oases) with :.ons^ant, ■mean and variance. 

This Is a strong assumption and entails supposing that no trend is 

present.     It  is hlglily recommended that  a similar ana^sis In the 

presence of trend be carried out.    The trend test and Indicator 

presently used by NavSup as Oütll:*ftd in [4] again employs exponential 

smoothing as a basic tool for analyzing the data.    If the lack of 

efficiency indicated in this st-dy carries over to that case as well 

then the consequences should be even SDOI* serious.    Indeed;  there is 

reason to believe that with the methods presently employed, there 

can be a    50%   chance of rejecting an almost vertical trend, that is 

a sudden Jump in the demand patMrn.    Ihese matters ice certainly 

topical candidates for further research. 

In any or all of the abov^, reccrafnendaUons. it  is suggested that 

real data be used to analyze,, unfortunately perhaps In Tetrospect, 

the reorder system had methods such as raaKlmura likelihood been used. 

Large amounts of su.h data ate available tor a wide vtriety of 

Inventory Items and the prograins  for   proceäsi'1^, srh data have been 

preserved. 



6.    APPENDIX 

This apptndix Is devoted to supplying the mathematical details 

for the monotonic nature of   s   a« asserted  in Section 3.    It should 

be recalled from that section that   | , fxpiessed as a function of 

the Poisson parameter    X   is given by 

In particular, when   X " n , ^   has « relative minimum with a value 

un   given by,, 

u   ^ 2 /n c     " 
n n! 

It is conjectured that this sequence of values is monotone increasing. 

To see this observe that 

u     ,    n+i 
n 

^+1 

and 

•c^; 

log -JL - (n-^f) log -77 + 1 - -(n-^O log(l-A + 1 . 
"n+l 

Recalling the Taylor expansion of log (l-hc) (see [6] for example), 

we have, for n > 1,, 

log (1+J) "n "^ ^"l ■ R n       n  2n  3n3 

where , 4 

R| i^-^-7 
L 4n^ 
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Then, 

108 ^ 

.[i + J. . J = J_ + * + i + i£ri R] +1 
2n     2r,     4n<     3n2     6n3 2 

1     _    I    _ 2n+l 

I2n2     6n3 2 
R 

But   R < 0    lor this case so that 

2n+.?        2n+2  ,   ,   ^   1 1 
„R,_r|R,.._+_- 

Hence, 

u i 
log -^ i^ -^ 

Un+1 I2n' 

I II 
"1 + "^3 +~5 
6n       4n       8n 

^n -2^3) 

24n 

Now for    x i 2,    the polynomial    2x*  " 2x - 3    is positive so that 

u u 
log —2- < 0    atui henc*   —S- < 1 

un+l %+! 

In other words. 

u   < ^ n '■■ ?„,' 
r\        n+l 

which is what was to be verified. 

From [7] (pag*. 64) f 

1 

"^/ti i^f* e?4(r,v- < .: < ^ (.4:^ . '(r^ 

.,; 



Sine«    f (nH)  - -T (n-HO^ «"^^    we have n n. 

1 

^<f(n^)<^e24(n^ 
TT        n TT 

Thus th« sequence of relative mexlm« of   ^   converges to   /l    supporting 
A ' n 

the claim on page 7 that   *   then converges to this limit. 
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