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A COMPARATIVE POWER STUDY OF THE BIVARIATE RANK SUM 

TEST AND   T2 

by 

G. K.  Bhattacharyya   ,   Richard A.  Johnson 

dud 

H.  R. Neave 

The small sample performance of the bivariate two-sample 

Wilcoxon type rank sum test W   is studied by Monte Carlo evaluation 

of power under shift alternatives in the bivariate normal distribution. 

Two types of alternatives are considered: (a) shift in only one 

coordinate and (b)  equal amounts of shifts in both coordinates. 

The estimated power of the W test is compared with the power 
2 

of Hotelling's   T     test.    Interestingly, it is found that the em- 
2 

pirical power of W   substantially exceeds the power of  T   for 

some normal shift alternatives although the latter is the uniformly 

most powerful invariant test for the problem. 

1.    INTRODUCTION 

The present work is devoted to an empirical study of the performance 

of a Wilcoxon type rank sum test, for bivariate shift, introduced by Chatterjee 

and Sen [4].   The main emphasis   is on the comparison of its power with that 
2 

of Hotelling's   T     test for bivariate normal shift alternatives.   Although the 

test is an extension of the univariate Wilcoxon test, its application involves 

a complex conditioning aspect which is absent in the univariate case and may 

have segregated it from the domain of applied statistics.    Therefore the test 

is described in Section 2 and its use illustrated. 
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Nothing whatever is known about the small sample power of the bivariate 

Wllcoxon test  W   (It is the test R of Chatterjee of Sen [4]).    The computation 

of exact power Is extremely difficult due to the involvement of the probabilltes 

of bivariate rank configurations.    Consequently we employ Monte Carlo 

simulation to estimate the power for several bivariate normal alternatives 
2 

and compare the results with the exact power of the T   test. 

The Pitman asymptotic relative efficiency (ARE) of  W with respect to 
2 

T    depends on the direction in which the shift occurs as well as on the 

correlation.    Bounds on the ARE  for normal and other bivariate distributions 

have been studied by Bickel [2] and Bhattacharyya and Johnson [ 1],   This 

large sample measure essentially reflects the relative performance of the tests 

under local alternatives and is not always a satisfactory guide to the compara- 

tive power In small or moderate samples.   The ARE values corresponding to 

the alternatives considered for empirical power are presented in Section 3 

for the purpose of shewing the manner in which the ARE reflects power. 

It is found that over most of the alternatives considered, the empirical 
2 

power of W does not lag appreciably behind the power of   T   test which is the 

uniformly most powerful Invariant test for the normal family.   What is more 
2 

interesting , the power of W   seems to exceed that of  T    for certain shift 

alternatives and certain correlations in the normal distribution.    It  is an 

unusual situation where a nonparametric test seems to perform better than the 

best known parametric test and certainly contrasts with the univariate case 

where the power of the Wilcoxon test always falls short of the t-test for 

normal alternatives since the latter is UMP  unbiased (for numerical values 

see  [5]).    This points to the need for further theoretical studies on the test W. 
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2.    THE BIVARIATE RANK SUM TEST W. 

Let (X., Y ), i = 1, 2,..., m and (X., Y ), j = m+l, ..., m+n be 

independent random samples from two bivariate populations with continuous   cdf's 

F(x,y) and G(x,y)  respectively.   Consider testing the null hypothesis   H   :F = G 

against the shift alternataves   G(x,y) = F( x-0,, y-e2) where (G.,02) ^ (0,0). 

The computation of the test statistic W consists in combining the two 

samples together and ranking the   N=m+n   x and y observations separately 

in increasing order of magnitude.   The combined sample  rank matrix thus 

obtained   is denoted by 

Rll R12 * * * Rlm 
(1) B. = 

U21 R22 •••R2m 

Rlm+1 * * '  R1N 

R2m+l•••  R2N 

where the dotted line represents a partitioning of the ranks according to the 

first and the second samples.   The test statistic is given by 

(2) W   =   (l-q2)     (W^- 2qW1W2+W2 ) 

where 
m 

W
tt
=  J Ki -   m(N+l)/2 ,     a = 1,2 

1=1   U1 

(3) .!   N 

q =    12(N3-N)'     V   R    [R       (N+l)/2] . 
i=l   U     ^l 

Note that W. and W2 are the Wilcoxon rank sums in terms of the X and Y 

marginals and q is Spearman's rank correlation calculated from the entire 

combined sample. 

The determination of the rejection region involves   partitioning the N 

columns of   J^, into two groups of  m     and   n   in all (      ) possible ways and 

■X~3^-~-" ■ :--«;-.-.:■--.■      ■■**.■*■..      ■ 
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recomputing (2) in each rase.    Let  W,'£ W'  < ...  < W'.,    be the ordered 

m 
values thus obtained.    The level a  rejection region of the permutation test 

consists of the k   largest values of W   If  k =a'(m)   Is an integer.   If   k   Is 

not an integer, we have to randomize on the boundary or slightly change a to 
N make   k  an integer.   In practice one need not always compute all the   (    ) values. 

It is often possible to recognize the column partitions which give the largest 

<*(    )  values of W  by inspection of  {$_ and only a few trial computations. 

W is well defined except for the case  q = +   1.    If q  happens to be   +1, 

we modify It to q' = 1-t   where   « Is a very small number (the value used here 

is « = . 001).   Similarly   If  q = -1, we replace  q   in (2) by  q' = -1 + c.    This 

in some sense preserves the continuity of W.   Unless the bivarlate distribution 

degenerates to a lower dimension, the occurrence of q = +   1  has very small 

probability and hence such modification is seldom needed. 

Example.     In reliability studies, It is often of Interest to  compare similar 

systems produced by two competing manufacturers.   Suppose a system consists 

of two dissimilar components arranged in parallel so that the system falls if and 

only If both the components fall.   Even though the arrangement is in parallel, 

the assumption of complete Independence of the functioning of the components is 

often unrealistic.   Thus we assume that the failure times (X,Y)  of the two 

components have the continuous bivarlate distribution  F(x,y) for one system 

and   G(x,y) for the other and consider testing of the hypothesis   H  : F   = G 

against G{x,y) = Flx-Gj, y-e2),  (0^62) ^(0,0).     Hotelling's   T2    test requires 

the assumption not only of bivarlate normality for  F   and   G   but also of equality 

for their covariance   matrices.    Such assumptions for life distributions are 
2 

hard to justify and hence the applicability of the T   test is dubious.   The  W 

test on the other hand requires no assumption on the forms   of  F  and   G 

or on their covariance matrices.   We illustrate   its application by considering 
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the following hypothetical failure data 

System I 

x        13.5        14.0       8.6 13.3 

y 3.5        18.7       4.6 18.3 

System II 

13.2       8.5       7.8        8.3 

17.8     16.6       5.7     10.8 

The combined sample rank, matrix becomes 

B. = 
7    8    4    6 

18     2    7 

5 3    12 

6 5    3    4 

Using (2) and (3), we have 

q = 15/42 = .35714 

Wj = 7,   W2 = 0 

V = (l-q2)W = 49 

8, The nonrandomized    significance level not exceeding . 05 is   a = 3/ ( 4) = . 04286 

and hence  k = 3.   Since  q  is constant for all partitions of  {$_ , the rejection 

region can be equivalently given in terms of V.   It would consist of the three 

largest values of  V   under all column partitions of ß_.   By inspection and 

a few trial computations,   we see that each of the following sets of four 

columns of  B_ yield   the largest value of V'{= 57. 1430): 

[(1)(2)(4)(5)], [(3),(6),(7),{8)], [(2),(4),(5),(6)], [(1), (3), (7), (8)]. 

The numbers within braces represent the column numbers of   J^ when   they 

are numbered serially from left to right.    The next lower value of V   is the 

observed value V = 49   and therefore   H     is accepted at   o = . 04286 or o 

even at   a =   4/(4) =   . 05714. 

«fa» 
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i.    EMPIRICAL POWER OP   W AND COMPARISON WITH T2 

In this section,  Monte Carlo simulation is employed to estimate 

the power of the  W   test for shifts in several blvarlate normal distributions 
2 

and the estimated power is then compared with the exact power of the T   test. 

computed from the tables of   Tang [6] and Tiku [7],   Since both the tests are 

invariant under scale changes in  x  and   y  coordinates, without loss of 

generality we take unit variances in all the normal distributions.   Four 

evenly spaced values   0, .3, .6 and . 9 were selected for the correlation 

parameter p. 

There are an enormous number of possible choices for the vector shift 

parameter  Q^ = (G1,02).   For simplicity in computation, we consider two types 

of shift:   (a)  a shift in only one coordinate, 0. = 0  and 0   = G >0  and   (b) 

equal amount   of shift in each coordinate,   0, = 0- = 0' > 0.   Four different values 

are chosen for the single shift parameter in each case.   Since our objective 

2 * 
is to compare W with   T , we choose the values of    8 and  6    so that there 

2 
is an even coverage of the range of power of  T    and also so that the power 

2 
T    can be read directly from the tables [6,7] without interpolation. 

More specifically, it is known that for the alternative 6^ in a blvarlate 
2 

normal distribution with correlation   p, the statistic   (N-3) T /2(N-2)  is 

distributed as a noncentral  F   with (2, N-3) degrees of freedom and 

noncentrallty parameter   \  where 

(4) \2 = (mn/N)(l-p2)   (02 - 2pe102+ 02)   . 

_ i 
The power is tabulated in [6,7]  for different   N   and certain values of <t) =\3~^. 

For each of the combined sample sizes   N =   8, 10 and 12, it is found that the 
2 

(^-values   1. 0, 1. 5, 2. 0 and 3. 0 cover evenly the range of power of the   T 

test.     Thus fixing the values of  <}>,   we determine the amounts of shift by 
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specializing (4)  to the cases   (a) and (b)  mentioned above.    That is, 

0 and 0    are determined from 

? i 
G =   4>[ W-p ) / mn] * 

9 = (K 3N (l+p)/2mn] 2   . 

A total of 1, 000 replications were made for each of the three sample 

sizes (m,n) = (4,4), (6,4) and (9, 3)  and for the different alternatives 

mentioned above.   The data were   generated by a uniform (0,1) generator 

combined with a certain transformation.   The uniform generator employed was 
- 7 6 

{2      v. }    where 
5 ZC 

vi+l= 5 vi<mod 2    > 

26 with an arbitrary odd starting value   v    between   0 and   2    .   If  U. and U- 

are independent uniform (0,1) random  variables  andX and Y are defined by 

X=   (-2£n Uj)2 sin (2TTU2)+P(1-P ) V^nUj)2 COS(2TTU2) 

(6) 
Y =   (-2ln Uj)2   cos (2u U2) , 

then (X,Y)  is bivariate normal  N(0, 0,1,1, p)(c.f. Box and Müller [3] ).   For 

a specific (m,n), N = m+n  pairs (x,y) were thus generated and the last  n  of 

them were shifted according to the two types (a) and (b).   The permutation test 

W was applied with the two nonrandomized significance levels a. and o- which 

envelope   a = . 05.   The rejection numbers corresponding to   a. and a     were 

determined from 1, 000 replications and the rejection number corresponding to 

o = . 05 was then interpolated.   The numbers entered in Tables 1-3, when 

divided by 1, 000, give the estimated powers of the W test at  a = . 05.   The 
2 

exact power of the T   test corresponding to specified values   of  <t>  are read 

■ ■^— - 
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diroctly from |6,7| and ontored in the second row of each table.   1'or the 

sample size (B,4), linear interpolation in the reciprocal of the  degrees of 

freedom as discussed by Tiku [7] was employed to interpolate power.   The 

rest of each table exhibits the estimated  power of the  W  test for the two 

types of shift and four values of p.   Thus each column of a table presents the 

empirical power of W  at different points on a constant power surface of the 

T2  test. 

As a check on the extent of internal scatter of the estimates of power, 

the 1, 000 replications in each case were run in four groups of 250 each.   It 

was found that the variation of the rejection numbers from group to group 

was quite small in most cases.   As is typical with the simulation study on 

a permutation test, tho most important contributing factor to the computer 

time was the generation cf C) column partitions of  £_, and recomputation of 

the values of W.   The time used for the present job was approximately five 

hours. 

2 
Table 1. Exact power of T   and the rejection numbers for W 

in 1, 000 replications for the two types of shift. 

Sample size:   m = 4, n = 4;   significance level a = . 05 

1 !          _   _._ *        ___ _        1 
1—*          .1   ■   . 

1. 0 
! 

1.5 2. 0 3. 0         1 
1   ■ ■— 

I 
I--- . 

If     T* . 197 . 588 .612 .915 

1 

"C 

1
    '     1 

) 225 458 642 878         ! 

1 0fo P=. 3 219 414 634 »65         i 
1 

0z>o P=. 6 i 210 375 547 826          ; 
P=. 9 ! 135 215 339 595 

P = 0 I 242 399 631 886 

e1=o2>o P=. 3 266 466 675 893 
P=. 6 282 491 696 894 

P=. 9 296 536 737 921 
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Table 2.    Exact power of T   and the rejection numbers for W 
in 1, 000 replications for the two types of shift. 

Sample size:   m = 6, n = 4,  Significance level  a=. 05 

4> 

1. o 1. 5 2. 0 3. 0 

223 .449 .^96 .963 

OpO 

e2>o 

p=  o 218. 5 449. 5 

P=. 3 213. 5 448. 5 

P=.6 185 399 

P=. 9 149 261 

696. 5 

699 

638 

418 

948 

945 

920 

745 

or02>o . 

p=   0 216. 5 417. 5 

p=. 3 24 0 461 

P=. 6 253 493 

P=. 9 263. 5 520. 5 

678. 5 

7 03 

732. «v 

777. 5 

937.5 

939 

962. 5 

964. 5 

2 
Table 3.    Exact power of T   and the rejection numbers for W in 

1, 000 replications for the two types of shift. 

Sample size:   m = 9, n = 3,  significance level o = . 05 

1. 1. 5 2. 0 3. 0 

9^0 

V0 

p=   0 

?41 

221 

. 487 74 3 

P=. 3 215 

P=. 6 216 

4 31 691 

4 31 666 

4 17 64 3 

(. = .9 189 

f.=   0 236 

344 

4 33 

521 

693 

978 

950 

947 

926 

838 

955 

P=. 3 ~       24T 4 56 701 954 

0^6 2>0 P=.6 24 5 458 700 963 

P=. 9 24 1 475 7 08 
t                                  ": 

951 

m .*_ 
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Consiuer also the ARC of  W with respect to   T    which for the 

blvariate normal family considered depends on the correlation p  and the 

two types of shift.   For shifts In the direction  Q^ =   (O^O^,   the  ARE   is 

given by (c.f.   Chatterjee and Sen [4]) 

(7) eytf.^VUP) = 
3   St^L   ^l-^oVz^) 
71  (i-pZ

o)   (e2- ZpQlQz + el ) 

where   p   = (6/IT) arc sin (p/2).   For   p = 0, the expression (7) reduces to 

S/ir which is the ARE   of the univarlate Wilcoxon test relative to  t-test. 

The lower and upper bounds of (7) for all Q^ J^ and all -1< p < 1  are . 87 

and ., 97 respectively [2] .    With a view to Investigating the extent to which 

the ARE reflects the comparative power in the present situation, we compute 

its numerical values for the two types of shift and four values of   p   and 

present these in Table 4. 

Table 4.   Values of  ew.T(g^p) 

i  p 51= (0,0) Q.= (o,o) 

0 .9549 .9549    ! 

. ^ .9473 . 9642 

.6 .9241 . 9658    i 

.9 .8837 . 9592    I 
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4. 0 L SIO S 

The scope of the present po er study is limited in tha t only three 

pairs of sample sizes for each of four iv r i t normal alternativ es are considered . 

£?ue to the permutational structure of theW test, a n elaboration of the ex

periment toward higher sa mple sizes nd non-normal bivariate alternatives 

would demand an exorbitant arnoun of co put r ime. However , within the 

domain of the present study, our g ner l observation is th at the power of W 

does not fall too far behind that of the :1est para metric te st r 2 
except for the 

type (a) shift occurring in the pres ence of higr. correlation. In all cases, the 

2 
power of W increases with increasing as do s the power of T . 

From Table 1, one observes that the estima ted powers of W are somewhat 

higher thCI'l the power of T
2 

for he ype a) shif occurring in the presence of 

small p. Also from Tables 1 and 2, it appear th t with increasing correlation, 

the power of W for type (b) shif s ends o appreciably ex ceed that of the TZ 

test. Although one cannot reach too definite conclusions from empirical 

studies, the strong indication th t W h s high r pow r than T
2 

in some 

cases emP,asizes the need for more heor tical s tudies on the W te st. 
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