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CHAPTER 11

THE DATA SETS

The methods developed in the previous chapters were applied to twelve differ-

ent sets of data. These will now be described.

11.1 Primary Mental Abilities

Thurstone and Thurstone (1941) administered 6o tests to 710 eighth grade

students. The intercorrelations analyzed were taken from nine of these tests.

The first three of these were verbal tests, the next three spatial, and the last

three numerical, as follows:

1. Sentences

. Vocabulary

3. Completion

4. Flags

5. Figures

6. Cards

7. Addition

8. Multiplication

9. Three higher

11.2 Twenty-Four Psychological Tests

This set of correlations comes from a battery of twenty-four psychological

tests given to 145 seventh and eighth grade school children in a suburb of Chicago.

The initial data were gathered by Holzinger and Swineford (1939). The data have

subsequently been analyzed by a number of investigators including Holzinger and

Harmon (1941), Kaiser (1958), Neuhaus and Wrigley (1954), Harmon (1967), and

others, so that the characteristics of the date have come to be well known. The

tests are identified as follows:
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1. Visual perception 13. Straight-curved capitals

2. Cubes 14. Word recognition

3. Paper form board 15. Number recognition

4. Flags 16. Figu . recognition

5. General information 17. Object-number

6. Paragraph comprehension 18. Number-figure

7. Sentence completion 19. Figure-word

8. Word classification 20. Deduction

9. Word meaning 21. Numerical puzzles

10. Addition 22. Problem reasoning

11. Code 23. Series completion

12. Counting 24. Arithmetic problems

11.3 Thirty-Three Variable Speed Study

These data are from a study by Lord (1956) designed to investigate the speed

factor. Tests were administered to 649 students in the entering class at the United

States Naval Academy at Annapolis. The tests were designed to measure verbal,

spatial, and arithmetic reasoning ability. In each area, seven tests were admin-

istered. One was the regular admissions examination denoted by (A). The remaining

six were short experimental tests parallel in content but different in degree of

speededness. Two designated (L) involved virtually no speed, one was moderately

speeded (M), and the remaining three (S) were highly speeded. Six reference facto-

tests designated by (R) were also included. In addition, grades in six areas

designated (G) were included as variables. The 33 variables are as follows:
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1. Word fluency (R) 18. Arithmetic reasoning (L)

2. Verbal (A) 19. Arithmetic reasoning (M)

3. Vocabulary (L) 20. Aithmetic reasoning (S)

4. Vocabulary (L) 21. Arithmetic reasoning (S)

5. Vocabulary (M) 22. Arithmetic reasoning (S)

6. Vocabulary (S) 23. Number speed (R)

7. Vocabulary (S) 24. Number speed (R)

8. Vocabulary (S) 25. Cancellatica (R)

9. Spatial relations (A) 26. Picture di3crimination (R)

10. Intersections (L) 27. Number checking (R)

11. Intersections (L) 28. English (G)

12. Intersections (M) 29. Foreign language (G)

13. Intersections (S) 30. Engineering drawing and
descriptive geometry (G)

14. Intersections (S)
33.. Chemistry (G)

15. Intersections (S)
32. Mathematics (G)

1.6. Mathematics (A)
33. Conduct

17. Arithmetic reasoning (L)

1.4 Thurstone Twenty-Variable Box Problem

These data are from the classical study by Thurstone (1947) designed to

illustrate the principle of simple structure. Measurements of a random collecti on

of thirty boxes were made. The three dimensions X, Y, and Z were recorded for

each box. A list of 26 arbitrary score functions was then prepared. Twenty of

these functions were included as variables in our analysis. These are as follows:
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1. X 11. y2Z

2. Y 12. YZ2

3. Z 13. 2X + 2Y

4. xy 14. 2X +2Z

5. XZ 15. 2Y + 2Z

6. Yz 16. VX2 +y2

7. x2Y 17. A 2 + e

8. X2 18. / 2

9. X2 Z 19. X-Z

10. x 2  20. IX2 +Y2 +ZI

11.5 Eight-Variable Body Typp Measures

These data are from a study of eight physical variables by Mullen (1939).

The data have been used for illustrative purposes by Harmon (1967) and by Kaiser

and Caffrey (1965). The variables are as follows:

1. Height 5. Weight

2. Arm span 6. Bitrochanteric diameter

3. Length of forearm 7. Chest girth

4. Length of lower leg 8. Chest width

11.6 Twelve-Variable Anthropometric Measures

These data are from a factor analysis by Hammond (1942) involving twelve body

measurements on adult men. Hammond attempted to interpret the resulting factor

matrix without rotation of axes. Later Thurstone (1946) reanalyzed the data

rotating to simple structure. The variables are as follows:

- 1
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1. Stature 7. Chest depth

2. Sitting height 8. Head length

3. Shoulder breadth 9. Head breadth

4. Hip breadth 10. Head height

5. Span 11. Hand length

. Chest reath 12. Hand breadth

1.7 Fifteen Variables from Hemmerle

These data are from a study by Hemmerle (1965) designed to illustrate a method

for obtaining maximum likelihood estimates of factor loadings and communalities

using an iterative computer procedure. Later the data were reanalyzed by methods

developed by Jreskog (1967) and by Horst (1968b). This data set was included

because of the divergent results obtained by the several investigators. Hemmerle

does not indicate the source of the data, the number of cases, nor the nature of

the variables.

11.8 Seventeen-Variable Data frcm Bechtold--Sample 1

These data are from a study by Bechtold (1961) designed to investigate the

factor analysis stability hypothesis. The data are a portion of tho . originally

collected by Thurstone and Thurstone (1941). The study included seventeen

variables from a sample of 212 cases. The first two variables were designed to

measure memory (M), the next three verbal ability (V), and successive sets of

three measure word fluency (W), spatial ability (S), number ability (N), and

reasoning ability (R). The seventeen variables were given designations as

follows:
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1. First names (M) 10. Figures (S)

2. Word-number (M) 11. Cards (S)

3. Sentences (V) 12. Addition (N)

4. Vocabulary (V) 13. Multiplication (N)

5. Completion (V) 14. Threc higher (11)

6. First letters (W) 15. Letter series (R)

7. Four-letter words (W) 16. Pedigrees (R)

8. Suffixes (W) 17. Letter groupings; (R)

9. Flags (S)

11.9 Seventeen-Variable Data from Bechtold--Sample 2

These data are from the same study by Bechtold (1961) as those in Section

11.8. The variables are the same as in that data set but the cases are a separate

sample of 213 cases. The two samples of cases were formed by assigning each of

425 cases alternately to one or the other of two groups after the cases were

thoroughly randomized.

11.10 Nine-Variable Synthetic Data

The correlation matrix for this data set was derived from a configuration vf

points constructed so as to provide a severe test for the simple structure trans-

formation procedure described in Chapter 9. A right spherical triangle was con-

structed on the surface of a sphere of unit radius. A point was located on each

side of the triangle midway between the two vertices, or 45 degrees from each of

the two vertices. Two more points were located on each side of the spherical

triangle, one each midway between a vertex and the mid point, or 22.5 degrees frrn

a vertex and the mid point. Thus the three points on the 90 degree arc of the

great circle cone't.tuting a side of the triangle divided the side into four eq.aZ'

arcs of 22.5 degrees each. The cosines of the angular distances bet%een all pairt

of the nine points were calculated to obtain a correlation matrix. 'hte ccsinet;
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of the angular distances of each of the nine points with each of the three vertices

of the right spherical triangle were also calculated. These values are the sinple

structure factor loadings of the variables (points). An adequate method of analysi'

of the correlation matrix including simple structure transformation should recover

the synthetically constructed simple structure factor icadings.

11.11 Reading Comprehension Factors

These data are from a study by Davis (1944) designed to investigate the prim-

ary factors of reading comprehension. Tests were designed to measure nine differen.

reading skills. The correlations are based on scores of 421 college freshman. T ,

tests were as follows:

1. Knowledge of word meaning

2. Ability to select the appropriate meaning for a word or phrase in

the light of its particular contextual setting

3. Ability to follow the organization of a passage and to identify ante-

cedents and references to it

4. Ability to select the main thought in a passage

5. Ability to answer questions that are specifically answered in a

6. Ability to answer questions that are answered in a passage but

not in words in which the question is asked

1. Ability to draw inferences from a passage about its contents

8. Ability to recognize the literary devices used in a passage and tr

determine its tone and mode

9. Ability to determine a writer's purpo: , Intent, and point of view,

I.e.,, to draw inferences about a writer.
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11.12 The Heywood Case

These data are from a five-variable synthetic example from Thomson (1950).

The correlation matrix was constructed so that every tetrad difference is exactly

zero, but the g factor saturation for one of the tests is greater than unity. How-

ever, the matrix is positive definite. This example was included to test the

behavior of various scaling and loss function parameters described in Chapter 8

for the Heywood case. The loadings of the variables for the g factor were chosen

as follows:

1. 1.05

2. .9

3. .8

4. .7

5. .6



CHAPTER 12

EXPERIMENTAL RESULTS

In this chapter we shall merely present the numerical results of the analyses

for the twelve data sets. In Chapter 13 we shal discuss some of the nirre interest-

ing of th-ese results. At the end of this chapter the results are presented succes-

sively for each of the twelve data. seta. For each data set six separate sets f

analyses are presented. For the first group of three of these analyses the loss

function parameter PW = 1 was used and for the second group of three this parameter

was PW = 0. Within each group, the fi.,zt se is for the scaling parameter p = 0,

the second for p = .5, and the third for p = 1.0. The format for all sets of data

is identical. It consists of a first line, a second line or sequence of lines, a

third block of lines, and a final line. These we rhall now interpret.

12.1 The First Line

The first line has three successive groups of numbers. The first group con-

sists o,' six integers. The second consists of three figures. The third group

has figures equal in number to the number of roots m of the correlation matrix

greater than unity.

The six integers in the first group are as follows:

(1) The first integer is simply the arbitrary serial order of the data set.

(2) The second integer is the order of the correlation matrix or the number

of variables n.

(3) The third integer is the number of factors solved for. This is the

number of roots of the 'torrelation matrix greater than unity. It is the same as

the number of figures In the last group of the first line.

(4) The fourth inte-er is a code for the loss function parameter PW. For

PW M 1 the integer is 1 and for PW M 0 the integer is 2. Thus th-, integer I neano

that the loss function includes only the residual covariance elements, while the

integer 2 means that it includes both the unit weighted residual variance and

... ...
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covariance elements. It is possible, of course, to have PW take any value between

unity and zero but only the two extremes were used for all twelve data sets.

(5) The fifth integer is a code for the scaling function parameter p. For

p = 0 the integer is 1, for p =.5 it is 2, and for p = 1.0 it is 3. Thus the

integer 1 means that the scaling function is the square root reciprocal of the

residual variance, the number 2 means that it is the square root residual of the

total variance, and the number 3 means that it is the square root residual of the

estimated or common variance. It is possible, of course, to let p take any value

between zero and unity but only the three values indicated above were used for the

twelve data sets.

(6) The sixth and final integer in this group is a code to indicate the row

scaling treatment of the factor loading matrix prior to the simple structure pro-

cedures of Chapter 9. The integer 1 indicates that the factor loading matrix was

normalized by rows prior to simple structure transformation; if it was not, the

integer 2 is used to so indicate. The computer program provides for both options

but in this study only the normalizing option was used for all sets of data. Hence

for each of the six analyses for all twelve data sets, the last integer in the

first group of six in the first row is always 1.

The three figures in the second group are as follows:

(1) The first figure in this group is the ratio of the sum of squares of the

first m roots of the matrix for specified scaling and loss function parameters to

the sum of squares of all the roots of this matrix. This is the criterion $

developed in Chapter 8 which it is desired to maximize. The maximum value it can

attain is unity.

(2) The second figure in this group is the number of iterations required to

reach the tolerance limits for the equality of two successive iterations for 0 or

the iteration limit, whichever is reached first.
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(3) This figure is the time in minutes taken for the required number of

iterations.

In the third group of m figures, m is the number of roots of the original

correlation matrix greater than unity. The m figures in this grcup are the m

largest roots of the matrix for the specified scaling and loss function parameters.

12.2 The Second Line or Sequence of Lines

The second line or sequence of lineb consists of four numbers to a line. The

numbers all have to do with the simple structure transformation described in

Chapter 9. Since data sets 11 and 12 have only a single factor, no transformations

were required, hence no lines of four numbers appear for these data sets. For

data sets 1 through 9, no more than one or two lines are given. For data set 10,

20 lines of four numbers each are given. The four numbers of each line have ti,

following interpretations:

(1) The first number is the quantity tr (DA) where D and A are defined in

Eqs. 9.21 and 9.34. This value is calculated at each iteration for the simple

structure transformation matrix. When these values for two successive iterations

are within the specified tolerance limit, the iterations cease. An iteration limit

is also specified in the computer program beyond which iterations cease even though

the tolerance limit is not yet reached.

(2) The second number is the simple structure criterion 7 given in Eq. 9.70.

The maximum value this criterion can attair is unity.

(3) The third number is the number of sets of iterations taken to calcula-.e

the simple structure factor loading matrix for a given positive integer W used to

calculate F in Eq. 9.58. This integer is 1 for the first set of iterations. If

the number of negative factor loadings in any column in less than the number of

factors, the cmputations cease. If not, the integer W is increased by 1 and a

second set of iterations for the simple structure factor loading matrix occurs.
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This procedure continues until at least one column of the simple structure factor

loading matrix has fewer negatives than the number of factors or columns in the

matrix. When this occurs, the simple structure matrix from'the preceding set of

iterations is taken as the final simple structure factor matrix, except for W = 1,

in which case the corresponding simple structure factor loading matrix is accepted.

A limit is put on the number of successive sets of iterations. If this limit is

reached before the number of negative values in any column of the simple structure

factor loading matrix is less than the number of factors, the successive sets of

iterations cease.

(4) This number is the integer W. It indicates the number of sets of itera-

tions calculated and is therefore the number of the line in the sequence of lines.

The integer W serves as the argument for the power function in the numerator terms

of the criterion function ? given by Eq. 9.70 and efined in more detail in preced-

ing parts of Chapter 9.

12.3 The Factor Loading Lines

A set of n lines, where n is the number of variables, is given for each of

the data sets. The columns in this set of lines are as follows:

(1) The first column gives simply the line numbers which indicate, of course,

also the arbitrary serial numbers of the variables or tests described in Chapter 12.

(2) The second column has a 1 if the variable retains its original sign and

-1 if its sign is reversed as discussed in Chapter 6, Section 4.

(3) The third column gives the communalities of the variables as calculated

from the factor loading matrix calculated by the methods of Chapter 8.

(4) The fourth column gives the specificities corresponding to the ccmun-

alities in the second column. The sum of corresponding elements of the two columns

is therefore unity.

r -- *1
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(5) The next block of m columns gives the factor loading matrix for m factors

calculated by the methods )f Chapter 8.

(6) The last block of m columns for data sets 1 through 10 gives the simple

structure factor loading matrix calculated by the methods of Chapter 9. For data

sets U1 and 12, this block of columns is omitted since only one factor loading'

vector was calculated for each set.

12.4 The Last Line

The last line for data sets 1 through 10 consists of m figures, where m is the

number of factors solved for. Each value is the corresponding element of the A

diagonal matrix defined in Eq. 9.34. These elements are the ratios whose average

is given by T in Eq. 9.70. It is the average of these ratios which is the second

number in the second row or sequence of rows described in Section 12.2 This is

the simple structure criterion we seek to maytmize. The maximum value any one of

these numbers can take is unity.

This final row of figures is not given for data sets 10 and 11, since only

one factor vector was calculated f-r each.

• m 0 w- - -r•
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CHAPTER 13

DISCUSSION AND CONCLUSIONS

13.1 The Six Special Cases

Before discussing the results of the analyses of the twelve data sets it may

be useful to relate the special cases of the loss and scaling function parameters

to traditional factor analysis techniques. For convenience, we shall construct

six five-letter acronyms. The first two letters will indicate the scaling parameter

dnd the last three the loss parameter.

If the scalirg parameter is p = 0, the scaling matrix involves only the

REsi, al variance and the first two letters of the acronym for this case will be

RE. If the scaling parameter is p = .5, the scaling matrix involves the sum of the

residual and estimated or common variances which is the TOtal variance, and the

first two letters of the acronym for this case will be TO. If the scaling parameter

is p = 1, the scaling matrix involves only the EStimated or common variances and the

first two letters of the acronym for this case will be ES.

If the loss parameter is PW = 1, the loss function involves only the residual

COVariances and the last three letters of the acronym for this case will be COV.

If the 'oss parameter is 'W = 0, then the loss function involves both residual

VAriances and Covariances, equally weighted, and the last three letters of the

acronym for this case will be VAC. Thus we shall have the following cases:

p =O, PW = 1 RECOV

P -. 5, 'Pw = 1. TOCOV

p 1l., PW = 1. ESCOV

p O, PW = 0 REVAC

P -. 5, PW = 0 TOVAC

p l., PW M 0 ESVAC

RECOV factor analysis i. closely associated with maximum likelihood factor

analysis developed by Lawley (1940) and with canonical factor analysis developed

* +~. ~%mom
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by Rao (1955). As a matter of fact, the equations to be satisfied by RECOV and

the latter two are equivalent. TOCOV factor analysis is closely associated with

minres factor analysis developed by Harmon (1967). ESCOV factor analysis is

similar to alpha factor analysis developed by Kaiser and Caffrey (.19.5). REVAc

factor analysis has been discussed by Anderson and Ruin (1956) who have pointed out

fundamental difficulties with the model. These we have met by the imposition of

somewhat unsophisticated ccoputatinal canitrkimts. TOVAC factor analysis is the

same as what many investigators call principal components analysis. Actually, any

of the methods of factor analysis which is a special case of the loss and scaling

parameters we have discussed may be regarded as a principal components analysis

of a real symmetric matrix, whether or not all its roots are non-negative. ESVAC

factor analysis, to our knowledge, has been previously discussed only by the author

(Horst, 1965).

13.2 Sumary of Results

We recall that m is the number of roots of the correlation matrix greater

than unity and that for each data set this was the number of factors solved for.

We recall also that the criterion $ is the ratio of the sum of squares of the m

largest roots of a matrix with specified lcss and scaling parmeters to tle bum

of squares of all of its roots. The iterations for 0 continued until th-, absci"Le

value of the difference between two successive O's was less than .,ICC I T - tr

upper limit of 100 iterations. The Y criterion of simple structure is defined in

Chapter 9. The tolerance limit for the simple structure criterion was approximately

the same as for $. The actual function used for the tolerance limit is discussed

in Chapter 12, Section 2. The iteration limit was 60. The limit on the number cf

sets of iterations was 20.

Table 1 sui-rizes results for the twelve dsta sets.

The first coltum gives simply the arbitrary sc-rial rumbers of the dta re+t.
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The second column gives abbreviated identification of the data sets. The third

column gives the number of factors solved for. The next column headed "Crit."

(Criterion) gives for each data set first the approximation criterion $ and below

it the simple structure criterion Y. To the right of each 0 are respectively the

number of iterations and the actual 0 value for the six combinations of loss and

scaling parameters. The first six columns following the column of criterion

symbols give the data for PW = 1 and the next six columns for PW = 0. Within

these sets of six columns, the first pair of columns gives the data for p = 0 and

the next two for p - .5 aud p = 1 respectively.

13.3 Rankings by Simple Structure Criterion

Perhaps one of the most important questions to be ansvered is which of the

six methods of analysis is the best as judged from the analysis of the twelve sets

of data. One overall standard might be based on the simple structure criterion Y.

Table 2 gives for each of the first nine data sets the rank order of the Y value

for each of the six combinations of loss &d scaling parameters. The first three

columns of rankings are for PW . 1 ard the last 3 for PW - 0. Within each set

of three coluz.s, the first gives the ranking for p w O, and the next two for

P - .5 and p 1 I. Rankings for only the first nine of the twelve data sets are

given, since the T's for data set 10 are all equal and no T's are given for data

sets 11 and 12.

The . row following tne row for data set ) gives tl sum of the rankings for

each pair of loss and scaling parazters. The next rov gives the rank order of

the sum of the rankings of these sums. !be next row H gives the numer of data

sets for which Y had the hig!nt ranking, and the last row L gives the number of

data sets for vhich Y had the lowest rank.

It is clear from the last three row of this table tha{ the best method accord-

ing to the siple structure criterion is ESCOV for p - 0 and PW 1 1. This is the

.t ,- -.-
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alpha factor analysis model of Kaiser and Caffrey (1965). The poorest method

is REVAC for p = 0 and PW = 0. This is the model discussed by Anderson and Rubin

(1956). In view of the problems encountered in this model, it is not surprising

that it is poorest according to the simple structure criterion.

For these nine data sets, RECOV with p = 0, PW = 1 is second poorest according

to rankings of the simple structure criterion. This is the method closely related

to the maximum likelihood and canonical models of Lawley (1940) and Rao (1955)

respect vely.

The methods in second and third place respectively are TOCOV with p = .5

and PW = 1, and TOVAC with p = .5 and PW = 0. These correspond respectively to the

minres model of Harmon (1967) and to the classical principal components model.

Obviously, of course, the procedure we have used for the comparative evalua-

tion of the six models is crude and is based on a very limited number of data sets.

Furthermore, the criterion for the number of factors is arbitrary and other criteria,

may yield different results. In any case, it is quite possible that for any

particular data set one may wish to determine the loss and scaling parameters

p and PW so as to maximize the criterion T. Such a procedure need not limit the

value of these parameters to those used in this analysis.

13.4 Ranks by Number of Iterations Required

A further procedure for a relative evaluation of the six models may be based

on the number of iterations required for 0 to stabilize to the specified tolerance

limit. Table 3 provides an analysis similar to that of Table 2. Here, however,

the rankings are for the number of iterations required for 0 given in Table 1 and

all 12 data sets are included. In this ranking we exclude the 2-2 colun since

this is the principal axis method and except for peculiarities of the computer

program, no iterations would be required. In any case, according to the last three

rows of Table 3, ESVAC with p 1, PW =0 is best andESCOV with p =1, P = is
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second best. This latter is the model which came out best in Table 2 based on

the simple structure criterion Y. The poorest is RECO , with p = 0 and PW = 1,

which came out second poorest in Table 2.

Again it is obvious that the rating procedure is crude and based on what some

may regard as a questionable criterion for the number of factors. However, a

cursory examination of Table 3 shows that in general the number of iterations

required for 0 to stabilize tends to be substantially greater for RECOV than for

the other models. It is believed that this tendency would persist even with other

defensible criteria for the number of factors.

In view of the marked increase in iterations required for this model over

those required for other models and at least some persuasive indications of poor

simple structure potentiality, one might question whether this model is to be

generally recommended. Since it is closely releted to the maximum likelihood and

canonical models, one might also question whether the great interest and effort

accorded these models in the past is completely justified.

13.5 The Simple Structure Factors

A more detailed eAAmination c: tne simple f factor n.tricer giveu, at

the right of the tables in Chapter 12 for data sets 1 through 10 might be of

interest. No simple structure matrices were calculated for data sets 11 and 12

since only one factor was obtained. The largest element in each row is underline.

for all the simple structure matrices in data sets 1 through 10. For each data

set there are six of these, one for each combination of the loss and scaling

parameters. (See Chapter 12 for detailed description.) For the first nine data

sets these simple structure matrices may be compared with those obtained by other

investigators referred to in Chapter 11. Brief comments on the data sets might be

of interest as follows:
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1. Primary Mental Abilities. For all six models, the simple structure

matrices are sharp and agree well with the results of Thurstone and Thurstone

(1941).

2. .venty-four psychological tests. According to the T criterion, ESCOV

with p = 1, PW = 1 gives the best simple structure. This model corresponds to

Kaiser's (1965) alpha model. A number of simple structure solutions are given by

Harmon (1967) for this data set. However, his various solutions involve only four

factors whereas ours has five. But all of his simple structure solutions give

results easily recognized as similar. Our simple structure for ESCOV gives results

similar to his for three of the factors. However, his solutions assign variables

14 through 19 essentially to a single factor, whereas ESCOV splits them into two

factors, the first three going to one and the last three to another as follows:

14. Word recognition 17. Object - number

15. Number recognition 18. Number - figure

16. Figure recognition 19. Figure - word

Without referring in detail to a description of the original tests, it is not

surzising .hat recognition of various types of visual stimuli should have a factor

in common, and ability to associate pairs involving two different types of stimuli

should have another factor in common. It is quite possible, of course, that if

Harmon had included a fifth factor in his analysis he also would have found the

same factor differentiation between these two triplets of tests. It is interesting

to note that our TOCOV solution which corresponds to Harmon's minres does not

appear to give as sharp a simple structure for five factors as his does for the

four factors on which he uses a direct oblimin solution.

3. Thirty-three variable speed study. Of the six models, ESCOV again gives

the highest simple structure criterion for the data from Lord (1956). Lord solved

for ten factors by a modification of the maximum likelihood method. Our criterion

T
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for the number of factors yielded only six factors. Lord's rotations were carried

out by subjective non-analytical procedures so that his simple structure matrix

is not comparable to our ESCOV with PW = 1 and p = 1. However, referring to

Section 11.3, the verbal, spatial, and number factors come out clearly as they do

in Lord's analysis. In addition, a factor common to the two number speed tests (23)

and (24) and Lord's reference tests for perceptual speed (25), (26), and (27)

appears in our analysis. It is also interesting that in our analysis college grades

tend to split, with rnglish (28) going to the verbal factor, Engineering Drawing

(30) to the spatial factor, and Foreign Language (29), Chemistry (31), and Mathe-

matics (32) predominately to a factor tha't we might characterize as a facility with

symbolic systems. A factor which Lcrd failed to find has only a single high load-

ing on Conduct (33) and small positive loadings for the five grade variables (29)

through (32' This may be a conformity factor considering the data are based on

students in a military academy.

4. Thurstone's twenty-variable box problem. From this classical set of data

there is little to choose among the simple structure factor matrices for the six

models. As woiild b- -%ec+-d three factors were rbtained. With the excert o, of

RECOV for p = 0, PW = 1, the T values do not differ by more thun .001. For RECOV

the value is only .003 less than the highest value of .646 for TOCOV, ESCOV, TOVAC,

and ESVAC. The simple structure is clear for all cases with the X, X, and Z

dimension variables coming out with only a single Large loading for a factor and

the functions of these variables indicated in Section 11.4 having the loadings

that would be expected.

5. Eight-variable body type measures. All six models for this data set,

yielding only two factors, give very clear simple structure as has been found by

other investigators.

I!
* aasusw in
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6. Twelve-variable anthropometric measures. In an early analysis of these

data, Thurstone (1946) found four simple structure factors by subjective graphical

methods whereas our criterion gave only three factors. For all models except

RECOV and REVAC whose loss parameter p is 0, the Y values are in the high .80's

with ESCOV again being highest with T = .880. The simple structures for all six

models are clear cut. Thurstone's B and D factors have both loadings of .45 or

more on the three variables stature (1), span (5), and hand length (11). In

addition, his factor B has high loadings on sitting height (2), and his factor D

has a high loading on hand breadth (12). Our first factor tends to collapse these

two factors, while our second and third-factors are easily recognized asThurston 'li

factors C and A respectively.

7. Fifteen variables from Hemmerle. Hemmerle (1965) does not give the source

of this matrix nor does he identify the variables. Since he was concerned primarily

with a computational procedure for the maximum likelihood factor model, he did not

attempt a simple structure transformation. He extracted eight factors but does not

state his criterion. Our criterion got only five factors. These data were included

in our study primarily because Jo'reskog (1967) as well as Horst (1968b) had also

worked extensively with them. Both of us had fow4" tLe data to behave peculiarly

and our earlier results for eight variables were markedly different for the maxi-

mum likelihood methods of Joreskog and our corresponding IMCOV model. Even in the

present study it is the only data set that has its highest T value (.596) for REVAC

which, from a theoretical point of view, is the poorest of the six models. Since

nothiag is known about the identity of the variables, nothing of substantive

interest can be said about their simple structure factor loadings.

8. Seventeen-variable data from Bechtold--Sample 1. For this data set our

criterion yielded only five factors whereas Bechtold (1961) had deliberately

attempted to represent six factors in his battery, as indicated in Section 11.8.
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In general, his V, W, S, and N factors come cut cleaily in all bix models. The

memory factor for variables 1 and 2 fails to come out clearly in FECOV which has

the highest T value, although the reasoning factor R for variables 15, 16, and 17

comes out clearly in this model. The only other model for which R comes out

clearly is the suspect REVAC which also fails on the M. It is quite probable that

our criterion for number of factors was too low for this data set.

9. Seventeen-variable data from Bechtold--Sample 2. Since the tests in this

data set were the same as for data set 8 and the sample was presumably comparable,

the results should be substantially the same for the s" nle structure matrices.

As in the previous set, the criterion yielded five factors. For all six models,

the V, W, S, and N factors are clearly defined. As in the previous set, the M

factor for variables 1 ai,% 2 appears in all models except RECOV a,1 EVAC but some-

what less clearly in TOCOV. The R factor for variables 15, 16, and 17 appears most

clearly as a distinct factor in RECOV and TXCOV. Here again, it is highly probable

that our criterion for number of factors was too restrictive.

10. Nine-variable synthetic data. The origin or source of this data set is

described in detail in Chapter ll, Section 10. The correlation matrix was con-

structed so that the simple structure factor loading matrix would have three

factors and, to three-decimal accuracy, this matrix would be as follows:

I II III

1 000 .383 .924

2 .000 .707 .707

3 .000 .924 .383

4 .383 924 .000

5 .707 .707 .000

6 .924 .383 .OCO

7 .9?. .000 .383

8 .707 .000 .707

9 •383 .000 .924



It can be shown that if one allocates three points on each of the arcs of a

right spherical triAngle as indicated in Chapter 11, Section 10, then to three

decimal places the cosines of the angles of eacti of these nine points with each of

the three vertices of the spherical triangle will be as shown in the matrix above.

For some decades we have been trying to find an analytical procedure for recovering

this matrix from the correlation matrix of these points. To our knowledge, none of

the analytical methods previously available will accomplish this recovery. Refer-

er.e to Chapter 12 for the results from this data set shows that the simple struc-

ture factor matrices for all six models differ at most from the above matrix by

.001. For all six models, the sets of simple structure iterations went to the

prespecified limit of twenty. For each model the number of iterations for the

first set went to the prespecified limit of sixty. Thereafter, however, the number

of iterations required for the successive sets diminished rapidly to two or three.

It is quite probable that if no limit were placed on the number of sets of itera-

tions, the original simple structure matrix could be recovered to any desired degr-

of accuracy.

13.6 Improper Solutions

A factor analysis model whose loss function involves only the residual covari-

ances may yield cmmunalities for some tests which exceed unity. Such a result ic

known as a Heywood case. These factor analysi models are our PECOV, TOCOV, and

ESCOV which correspond respectively to Laley's (1940) maximum likelihood, Harmon's

(1967) minres, and Kaiser's (1965) alpha. It is of interest to note that for none

of our data sets does our method of computation involving real data give commun-

alities as high as the constrained values of .9995 for any of these three cases.

This is not true for Harmon's (1967) minres on data set 2, where he obtains his

maximum constrained comunality of unity for variable 19.
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When an unconstrained solution yields ccamunalities greater than unity, this

is sometimes called an improper solution. In the case of maximum likelihood solu-

tions, Joreskog (1967) observes that, "Experience varifies that improper solutions

are found more often than is usually expected." Our RECOV comrutational algorithms

have been applied to some of the data sets on which J~reskog has applied his compu-

tatLonal algorithms for the corresponding maximum likelihood method. In general,

where we have used the same number of factors, neither of us has encountered an

unconstrained improper solution. However, for the case of data set 7 from Hemmerle

for eight factors, Jreskog's (1967) procedure found it necessary to constrain

variables 7 and 15 whereas our (Horst, 1968b) procedure up to 10,000 iterations

found no improper communalities. A highly accelerated modification of our pro-

cedure did not require the constraining supplements in the computational procedures.

Nevertheless, it is not improbable that for a completely adequate factor analysis

system, the occurrence of improper communalities would signal either the use of in-

appropriate loss or scaling parameters, an ipappropriate criterion for the number

of factors, or some combination of these

Ir
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TABLE 2

SIMPLE STRUCTUR CRITERION RANKS

Pw = I PW = 0

Data IEC'V TOCOV ESCOV REVAC TOVAC ESVAC
Sets 1-1 1-2 1-3 2-1 2-2 2-

1 3133j 5 1 6

3 24 6 5 3 1

4 1 4 - 2 4j

5 2 4 6 1 4 4

6 2 5 6 1 4

7 5 4 3 6 1 2

8 6 5 2 3 4 , 4

9 3 4 6 1 2

E 27 35 4 221 , j 271

Rank 2 5 6 1 4 3

i 1i

L 0 4 2

4
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TABLE 3

RANKINGS BY NMBER OF ITERATIONS REQUIRED

Data R EPCOV TOCOV ESCOV PEVAC TOVAC ESVAC
Setsi 1-1 1-2 1-3 1 2-1 2-2 2-3

i 6 4 3 5 1

6 5 2 4 1

21 4 -2

I 6 3 21 5 2

5 5 3 4 2

6 6 5 4 21 21

7 65 4 2 3

6 5 4 3 2

9 5 3 2 14

10 4 5 j 5 2 2 2

11 5 4 2 6 1 3

212 6 5 1 3

69 57 40 41J 13f 3Cz

Rank 1 4 3 65

H 11 0 0 1 0 0

L 0 0 12 0I- I-~ - _
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CCM4PJTE PROGRAMS

The Fortran IV computer programs for carrying out the analyses of the previous

chapters consist of a main program (mIN) and overlay subroutine subprograms called

by the main program. The overlay subroutines are called SYMI, JACS3, JACS, RARE,

SDIP; and VUPLI.

14.1 MAIN

The main program provides parameter values required for the computations, an

outer loop for the data sets, an intermediate loop for the loss parameter, an

inner loop for the scaling parameter, and a call to the output overlay subroutine

DUPLI.

The parameters. It is standard practice to read in parameters from cards alnng

with the data cards. Particularly is this true if the program deck is a binary

deck. It is our opinion that binary program decks are essentially obsolete, especi-

ally with the rapid compilers currently available. It is usually desirable to have

the source prcgram immediately available with the output of a given computer run,

tcgether with all the program parameters and option codes that were used in the

computer run. We have been repeatedly frustrated in attempting to assist laymen in

the interpretation of their computer output by the fact that they used binary pro-

gram decks and therefore could provide no information about +he program parameters,

option codes, and the computing algorithms utilized.

If a source program deck such as Fortran IV is used, it is possible to read

in program parameters and opticn code cards as data and these cards can be varied

to suit the requirements of the investigator and his data. However, it may be con-

venient in research with various data analysis models to provide some of this

information in program statements so that they may be readily found at the beginninir

of the program listing. Some of these values are given at the beginning of MAIN.

A number of them are repeated with different numberical values. The last time the
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replacement statement appears for a parameter variable is of course the value it

takes in the program. It has been found convenient for research purposes to pro-

vide a number of values which may be changed merely by changing the position of

the statement.

The parameters area as follows:

P tolerance limit

LIB beginning indexing parameter for loss parameter

LIE ending indexing parameter for loss parameter

LB beginning indexing parameter for scaling parameter

LE ending indexing paxmeter for scaling parameter

NL iteration limit for simple structure iterations

NF ending indexing parameter for row scaling option of factor matrix

KKL iteration limit for principal axis solution

EE Tolerance limit for specificity variance

The outer loop. This is the loop with the index LLL and the indexing para-

meters 1, NP. This locp controls the number of data sets processed in a given

run. The data for each set consists of the number of variables in the set, the

format of the correlation matrix, and the correlation matrix. itself. The loop

calls the sbroubtne SYMI which provides initial estimates of the residual variance:;

and JACS3 which datermines the number-of factors.
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The intermediate loop. This is the loop with the index LLI and indexing

parameters LIB, LIE. It calculates the loss parameter P W In this program the

calculation of only P W I and PW = 0 are provided for but any desired intermediateIw

values could be provided with slight modification.

The inner loop. This icop has the index LL and the indexing parameters LB,

LE. It "rites the parameters LLL, N, LI, LLI, LL, and NF1 on scratch tape. It

calculates functions of the scaling parameter p which are used in the calculation

of the scaling matrix. In this p.rogram only three loss function parameters are

provided for. These are p = 0, p = .5, and p = 1. However, as in the case of the

loss parameter, any desired intermediate values could be provided with slight modi-

fication.

This loop also calls JACS which calculates a first approximation to the basic

structure factor matrix and RARE which calculates iteratively the simple descaled

matrix from the basic structure factor loading matrix. If, as is usually the case,

the number of factors exceeds 1, this loop also calls SIMP which calculates the

simple structure factor loading matrix.

DUPLI. This subroutine is outside the outer loop of MAIN. It reads from

scratch tape the data that is to be printed and writes it on BCD tape in the forma

in which the data in Chapter 12 are given.

14.2 SYMI

This overlay subroutine reads in the data, calculates the inverse of the

correlation matrix, and then calculates the first approximation to the residual

variances.

Data input. A single card giving the number of variables N is read with format

(14Y. The program has been dimensioned for up to 80 variables. It could probably

be extended to 85 and, with some rewriting, to 90. An A-format card giving the

format of the correlation matrix is read. The correlation matrix is read. As tie

T . J I



program is written, each row of the correlation matrix must begin on a new card.

The program assumes that at least the infra-diagonal elements are given. The

supra-diagonal elements must either be given or treated as zero. In either case

the program then wr-tes the supra-diagonal elements ana enters unity in the

diagonals. Then the correlation matrix is stored on scratch tape.

Matrix inversion. The program calls a regular subroutine SYMIN to invert

the corre7 ation matrix. If SYMIN finds that the correlation matrix is not basic

or positive definite, it returns control to SYMI, the overlay subroutine, which

shrinks the offdiagonal elements by a factor of .9. This factor is arbitrary. It

can be shown that if the offdiagonal elements on any correlation matrix are multi-

plied by a positive value less than unity, the resulting matrix will be basic and

hence have a regular inverse. SYMIN is again called to invert the modified corre-

lation matrix.

Residual variance approximation. The reciprocals of the diagonal elements

of the inverse of the correlation matrix are calculated. These provide the first

approximation to the residual variances. They are written on scratch tape.

14.3 JACS3

This subroutine reads the correlation matrix from scratch tape on which it

was written by SYMI. It calculates, by an adaptation of the Jacobi method, all

the roots of the correlation matrix in order of magnitude which are greater than

unity. Tt transmits the number of these roots to common core storage as the number

of factors.

14.4 JACS

This overlay subroutine reads the necessary data from scratch tape. It then

calculates the first approximation to the modified correlation matrix with specifie)

loss and scaling parameters, and the first approximation to the basic structure

matrix.



The data. The correlation matrix is read from scratch tape on which it was

written. Without rewinding, the first approximation to the residual variance

vector is read from the same tape.

The scaling matrix. The communality variance is calculated. The scaling

matrix is calculated as a function of the communality and residual variance vectors

and the scaling parameter.

The modified correlation matrix. The correlation matrix is scaled by the

scaling matrix. The diagonals of the resulting matrix are adjusted according to

the current loss parameter.

The basic structure matrix. Subroutine JACSIM is called. This subroutine

calculates the first m principal component or basic structure vectors of the modi-

fied correlation matrix where m is the ramber of roots greater than unity found

in Section 14.3. This is the fist approximation to the principal axis matrix for

specified loss and scaling parameters. The principal axis matrix is written on

scratch tape.

14.5 RARE

This overlay subroutine calculates the descaled principal axis matrix for

ctrrent loss and scaling parameters. It reads the necessary data from s ratch

tape. It then calculates a first approximation to a descaled principal axis matx.::

and a eecond approximation to the sc&ling matrix. It calculates iteratively the

descaled principal axis matrix for predetermined loss and scaling parameters. IL

writes output data on scratch tape. Next it effects row sign reversals if need,.

Finally, it transfers da'.a to scratch tape.

Inut dEata. The correlation matrix is read from scratch tape. The first

approximation to the principal axis fpctor matrix is read fram another scratch tape.

First descaled princip axis matrix. The descaling matrix for the first ap-

proximation to the factor loading matrix is calculated. The first approximation

to the dai.caled factor loading matrix is calculated.
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The scaling matrix. Second approximations to the communality and residual

variance vectors are calculated. A second approximation to the scaling vector is

calculated from these two vectors and functions of the scaling parameter.

Successive descaled principal axis matrices. A loop with index KKK and index-.

ing parameters 1, KKL is set up to call iteratively subroutine RARED. This sub-

routine calculates successive approximations to the descaled principal axis matrix f

for the loss and scaling parameters determined within the inner loop of MAIN. The

computations are carried out by the algorithms indicated in Chapter 8. The sub-

routine includes a constraint to keep the residual var.ances positive. It also

calculates the criterion 0 of Chapter 12 and the difference between two successive

$ s as a convergence tolerance.

Output data. The final 0 value, the number of iterations taken, and the total

time in seconds are written on the scratch tape which will sr'bsequently be read

back for output. The first m roots of the final modified correlation matrix are

also written on this tape.

Sign reversals. The first element in each row of the final descaled principa.!.

axis matrix is checked for sign. Sign reversals by row are made where necessary.

Transfers of output data to IM. The final descaled principal axis matrix,

toGaeW with the sign vector and the final communality and residual variance

vectors, are written on the scratch tape for output data. The final descaled

principal axis matrix is also written on another scratch tape to be read subs-

sequently for further operations.

i4.6 sne

This overlay subroutine calculates the simple structure factor loading matrix

It provides parameter values and options of row scaling for the descaled principal

axis matrix. It has a major outer and an inner iteration loop for calculating the

simple structure matrix. It writes the output data on the output scratch tape.
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Parameter values. The parameter LLE gives the limit on the number of sets

of iterations. The parameter M is used in calculating the F value in Eq. 9.7.

Row scaling option. The program normalizes the principal axis matrix by rows

before beginning the simple structure iterations. The final simple structure

matrix is denormalized before being written on output tape. This solution is

given by using the parameter NFl = 1 in MAIN. This parameter serves as the end

indexing parameter in SIMP for the DO index LLL. If in addition to this solution

it is also desired to have a solution without first normalizing by rows, the

parameter NFl = 2 is used in MAIN. The program does not provide for just the non-

normalized solution but with slight modification it can be made to do so.

Outer iteration loop. The major outer iteration loop has the index LLL4 with

indexing parameters LLB, LLE. This loop 1 ,vides for successive sets of iterations

where the exponent F decreases with each succeeding set. The value F is calculated

as a function of the index LLL4 and the parameter ML. For each iteration set, this

loop also writes on the output scratch tape the tolerance criterion, the simple

structure criterion, the number of iterations, and the number of the iteration set.

For each set of iterations, this loop determines whether any vector of simple

structure factor loadings has less than m negative values. If so, no further set

of iterations is calculated.

Inner iteration loop. This loop has the index LL with the indexing parameter.-

1, NL. It calculates iteratively the transform- ion matrix and the simple structure

factor matrix by means of the algorithms given in Eqs. 9.57 through 9.71. For eaLh

iteration it calls the subroutine SYM3 which calculates the inverse of a positive

definite symmetric matrix. Within this loop also is calculated the criterion

value. If two successive values are within the tolerance limit, the iterations

are terminated.
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The final simple structure matrix. After the successive sets of iterations

are terminated, the program recognizes as the simple structure factor matrix the

one calculated in the next to last set of iterations, unless only one set was

calculated. In the latter case, the mat.Lix calculated in the single set of itera-

tions is recognized as the simple structure matrix. For the calculations beginning

with a row normalization of the principal axis factor matrix, the final simple

structure matrix is denormalized by rows. In either case, the final simple struc-

ture matrix is written on the output scratch tape. The vector of T criterion values

for each simple stricture factor vector is also written on the output scratch tape.

14.7 DUPLI

This overlay subroutine reads the data on the output scratch tape and writes

it on BCD output tape according to the format of the data in Chapter 12. The sub-

routine has an outer loop with index LS and indexing parameters 1, NS so that NS

copies of the output will be printed.



111-9
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Q D= I .- Pr)
PQ= I-'.*PP)*QD
pI)=Pr/PQ

CA*LL JACS
CALL RApr
WR I TF 1609q3

q93 FORMAT(///)

890 CONTIVJF
CALL SIMP
J I( L7 )=LL A

P91l CnNTTNF
Ft 8? CflNTINIJF

PA CP4 T!1N UF
REWIND

CALL nlJPL.I

rNo



$bRiGIN ALPHA
$IBFTC SYMYII

SUBROUTINE SYMI
DIMENSION R(80v80)tY(8O,80),A180)

*vDE(P80I
*tFM( 12)
COMMON PNLNNF, LKLKKLKK2L1 NAElEEtKK3L1HtKKK
*,NCFFI ,FF29LL 1
*, PD, (JD PW
*,NF 1
*,TIM

*LI ~tNP ,L IDL F ,LBLErpJI
REW!Nr) 2
REW (Nr) *4
RCWINO 4

REAC1t 5,9? IN
9Q2 FflRMAT(!4)

REAWS99,91 )(FM111,1=1912)
q491 FfRMAT(12A6)

')!1 512 t=1,N
RFADIf5,FMI(P(1v,J~l9NI

502 CI1MTINIOr
nnl 4 1=19N
9O 2 J-jIN
Qf I J h=RIJ, II

4 cONrINIJE

1? C-)NTINIJE

CALL SYPIN(HN#ISJ
1Ff IS 14-09h4960

60 (C')NTitVi#F
;tEwttnf 2

00 61 IzI.N
j 'XV 6? Jule,I

47 COnTINUEF

CALL SY"INfRI.IS)
64 CONr t I iIf

7) Sol 1819N

solcWNIN ?

RF TUAN
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SISFTZ SYMIT,

SUBROUTINE SYMIN (SNISP
DlIMENSION S(80,11
NI N-1
0(O 04 1 =29N

DOI 04 J = 1,11
04 S(1,J) = 000

C =1.0/SQRT(S(1,1))
Mill1 = 1.0

DO) 13 J1,qN
13 S(1,J) = S(1,JI C _

DO 21 K=29N
DO 17 J-11N
KI =K-1
on) 1? IhIK1

17 SIKJ) = SfKJ) -S(ItK) S(1,J)
IF(-S(KtKJ 160961,61

60 CONTINUE
C =1 O/SQRT( S (i,K)I)
flo 191 1=1,KI

191 Sf iK) = 0.0
S(KvKI 1.0
D00 21 J=l,N

?1 S (K 9J I = S(K,J) * C
90C 10 J=2,N
J1 z J-1
DO) 30 I=I,JI
DO l0 K=J,14

30 S(IPJ) = Slt !J) + S(K,1I S(KtJI
n0 15 J=1,NI
S(JtJ)I SIJJ) **2
J2 1 J41
00 35 !=J29N

it SIJ,JP SIJJl + SiIJJ**2
S i,N) S(NPNI**2
nfl 4? lu1,Nl
12 141~
On 42 J=129N

42 S(Jl1) zSUJ)l
GO TOl 62

61 CONTINJUE
TSUI

62 CONTINUF
PET UR~N
FND



$ORIGIN ALPHA
SJBFTC J~ACS2

SUBROUTINE JACS3
* -- DIMENSION R1166080t1801 - -

COMMON PNLNNFLtKLKKLtKK2LtNAtElfEKK3LHHKKKi
**NCtFFIYFF29LLI

._Lpn,,QD,PW - . - - - - - - --- *- .

*vNF1
*vTIM

*vLLA9NP9LIBvLIEtLBvLEtJt -

00 53 1=19N
READ (21HR1IJJ,J1,NI -. -

53 CONTINUE
REWIND 2

06 N1 = N+1
061 Nll=N-1
07 NZ2=N*?
08 O 10 =NI, N2
09 On 10 J = 1,N
10 R(IJ) =0.
11 00 12 I*N
Ill NI = N 41
12 RINI, I) 1.

Do 36) I INII
11 = 1+1

13 00 15 L19lNL

00 ?94 J=11,N
R[J=ABSIR( 19.J) I
AB=AMAXIIAbiRIJ)

11:( P-fl I J 140,4 2, 42
40 CONTINUE

LR 1
0R=R( I, I IpIJJ)
I)RR=r)R**?
AK=SW R T ( RP OR R + 4*R I I ,J 1 2)1
sn= S I NI I .,DR I
AxSQRTI (1 .+s*AKI/?.l

2? A = SQRT (I*-A**?)
221 C = SIGN (I .9RII,J1)

AC-A*C
RC=B*C

23 00 25? K = I,N2
U x R(K,I)*AC + R(K,J)*B
P(KJI = -R(Ktl)*BC + R(Kpjl*A

752 RIKof) = U
R(II 1)=R( tI1*AC+R(JtU*B
R(J,Jlu-P(ItJI*BC+R(JPJ)*A
R I 19I ao
R(JI 1z0.
00 283 KwlN
R fI tK IuR (K t I I
R IJ tK I RP(K tJ I

2A ticnNTI NU E(
42 CONTINUE



284 CONTINUE
IF P-AB 144943,43

44 CONTINUE
35 CONTINUF

43 CONTINUFIFlRIM-R(Iqtl)45t46v46

45 CONTINUE
LI=I

36 CONTINUE
46 CONTINUE

DO 332 1=1,LI
332 DiI) = RItII

RETURN
FND
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$0)R IG1N ALPHA
SIBFrC JACS1

SUBROUTINE JACS
DIMENSION Rtl6018019D(80),A(S0)

*,[lE(Roi,fA[80)
COMMON PtNLNNF,L ,KLKKLKK2L ,NAEIFEKK3LHH,KKK

*qNCqFFIvFF?vLLI

*, NFI
*,TIM

*vLLA#N~ p1IBL IF, IBIFJI
DO 504 !zl,N

READ(2)(R(I9J)vJ=1,N)
504 CONTINUE

RFAD(2)(0E(1),T=I,Nl
REWIND ?
PK=0.
30 61 I=19N
DA( [)=I.-OEi I
A(T I ./SQRT( PLI*OF( I+.QD*llI
f'K=AIFAXI(PK,PW*D)E(1I *A(1I)**21

61 Cr)NTINIJE
00l 61 T=1,N
Irl 67 J=1,N
P(bvJ)=AU)*RI,J*AIJ)

6? CONTINUE
Rt I,!11 .-PW*D)E( I )*A (JI**c2+PK

63 CnNT I UF
CALL JACSIM(RjflPtNNL,LI)
LzL I
D)O 507 J=1,L
Ot(J)=SQPT( D(J -PKj
on 505 1=11N
IN= r+N
R( IJ)=RI INJ *D(Jl

WRITE(4)(R( ItJbI=1,N I
S07 CONT INIJE

REWIND '
RETUR~N
c ND
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S!BFTC JACSII

SUBROUTINE JACS[M IROPNNLLI)
* DIMENSION R1160,801,D(BO)

06 NI1=N+1
061 N11=N-1
07 N2 zN*2
08 no 10 !=Nl, N2
09 n0 10 J = 19N
10 RtIjl = 0.
it 00 12 1=1,N
III NI! N + I
12 RINK,!)1 = 1.

DO 36 1 = ,NIl
11 1+1

13 nt0 35 L =19NL

DO 234 J=I1,N
RIJ=ABS(RI 1,J) I
AR= AM AX I( IA89iR LIJ
lF( P-RIJ 140,42,42

40 CONTINUE
LR=l
D)R=R( It T)-REJ,J I
DRRPnR**2
AK=SQRTIPRR/(iDRR+4.*R II Jh**? I
SD=SI GNf I1.tDR)
A=SQIRT( (1 4S0*AKI/2.)

22 = SQRT (I1.-A**21
221 C z SI5-N (1.,R(I,J))

AC=A*C
tBC=B*C

?3 DO 252 K = 19"2
U aRIKI)*AC + RIK,J)*B
RIKtJ) = -RIKII*BC +RIKtJ)*A

252 RIK,!) = U
R(Iq,! =P I!, I *AC+P U,! )*B

R( 1,J)=0.
RJ,! 1=0.
nn 283 K=1,N

P(J,K)=PIKvJl
243 CONTYNUF

42 CONTINUEF
?44 CONTINUE

IF( P-A13 144,439,43
44 CONTimUr

35~ CONTINUE
43 C(JNTINUr

fF(1 1-1 145,46t,45
45 CONTINUF
36 cnNTTNIJF
46 CONTINUE

n0 332 IwIrLf
332 fl(i) a P11911

REF.TUP N
END
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$ORIGIN ALPHA
SIBFTC RAREI

SUBROUTINE RARE
DIMENSION PR 80801,AM(80,3)tlk(80,30),WM(11O,301

*,l( 80),UI BC)
*vA( 150)
*,AA( 1503
*,DE( 80),fAf8O)
*,UE( 8O)
COMMON PNL,NNF, L,9KL, KKLvKK2LNAtEIEEKK3L#HHKKK

*PNCtFFI YFF29LL I

*vNFI
*, TIM

*tLLANPI. IBLIFtLBvLEJI

DO 701 Iz 19N
RFAOIf?URI TtJltJz1N)

701 CONTINUE
REWIND 2
t)0 702 J=IL
RFAD(4l(AM(1,JlI=ltNl

702 CONTINUJE
RFWINr) 4
10 63 1=10N

DO 61 J=1,L
nflE()=0EfI)+A411,Jl**2

61 cnNTINUEF
DI I)=1./SQRTIPElI)
DC0 62 J=1,L

6? CONTINUE
f)lI )=(D~lIi-1.3/DElI)
DEl I ~.-CAM
PIlI=P0*DE(Il)4Q0*DAtIl

63 CONTINUF
LN=L+N
DOf 347 KKKI,9K(L
CALL RARFIRP4,AM,WM,D,NLtLNU,KKKKKLtAL

*,UF
*tC2
*, ALM
*tPDPPWQD, CA,ncE)
AKKmKKK
AA(KKK I-AIM
A(KKK )=C2
1Ff P-AL 1347,34?t'471

347 CONTINUE
3471 CONTINUF

WR ITE (6 , QOB 3 AAI 1), 3, KKKl
WPITE1699921

992 FORMAT(//)
WRITFI6vQO8)(A( ), Iu1,KKKl

908 FORMATI 0Fe.'4)
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TIM2=TIME 12)
T IM=T IM2-TIMI
WRITE( 8)C2,AKKtTIM
WRITE(R)(W m(!, 13,1=1,11)
S 1=0.
Do 30 1=1,N
DI I)=SIG;N( 1.tAMII))
SI=SI+D(I)

30 CONTINUE
S!=,SIGNI 1.tSI)
1)0 34 T=1,N
D(1)=0( I )*SI
nfl 32 J=1,L
AM(1 I*J )=AMI ItJ )*SI

12 CONTINUE
WRITFEE )D( I) ,DAi) ,E I ) ,(AM(I JIJ=ltLI)

34 CONTINUE
DO 1111 J=1,L
WRITEI 3)(AM(IIJ),1lrN)

1111 CONTINUE
'EWIND 3
RETURN
EN C
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S f FFTC RARF DI

SUBROUTINE RARED(P ,UMptAMoM0tN 9L1LNUKKK9 KKL*AL

*1UF
*tc2
*, ALM
*,P0,PWQOCAq0E I

f1lMENS1OIN RU80,lIUMf8OIIlbAMt80,1) ,Wmltlo,1 ,Dt8O),ug801
*,fl)E1,0)tDA ( 80)
*IUEI 90)~

00 315 1=l1N
Pt1,v1 )1.-PW*0E( 1)
nn 315 J = rL

On 321 = I sN
IL =I + L
DOI 321 J=l,L

00 321 K=19N
'?I WM(IL,J) =WM~lt1J) + RIIK) *UMtK,J1

nnl jig I=1,L

WMII,J) = 0.0

VA. = + L
327 ,Mli 1,J) -Y WW ,J) + WM(K(I,) %~UM(KqJ1

3? ' ? 4,

? CONTPI~uE
nil 11 K =I, L
S = .')/SQPTtW41KvK1)

V4 1 WN11I1K) = WMI IK) *S

KI aK + I
I F (L -K 143 v 141o 134

314 -P) 4116 J rV ItL

J16 W W( ( ,J I V'Yt I ,J1 WM((,Ki WMIJ#KI

IL-Ir*L
00 701 J=1 PL

701 ,ON'T Ikit IF
I F( F-f- ( I I I P04, 7(70? 0

70? C"INT INUJ
,10x SV) Tt I l.-F F I I .- OF I) I I
l7 0"A J 1 9L

WM4( 1LoJ)-W'41L*JJ3*D0
71 CONTINUF

704 CON T I N1J
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UE(I II=DEf 1)
DI [k=PD*DEI!)4QD*DAI!I

705 CflNTINUE
AL=C?
HHmO*
Hl=Uit.-PW*DEIN)I/D(Nli**2
NI=N-1
DO 11 IulN1
HI=H1+( (1.-PW*DEI 1mtDE ) **2

DO 11 J=11N
HMRUJI

11 HH= H+H** 2/D I tD I I
HH-1-1+29*HH
C2=Cl/I*I
AL M=0.
nO 711 IzIN
IL=ItL
00f)O0 J-1,L
ALMzAM4AXl(ALM,ABS(AMEIJ-W'IILJ))h
AME !,J)=WMIIL9J)

710 cnNTINUF
711 CVNTINUE

AL=A8S( AL-C2 1
RE TU RN
FND
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$ORIGIN ALPHA
SIBFTr SIMPi

SUBROUTINE SIMP
DIMENSION Al80t3ObvAI(80,30),E(30j301

*,8( 80,30), St 33) ,H(30,30) D(80)
*to1(80)

19280)
*,D(t80)
*IAC( 80, 30)
*,G(80, 30)
*,DL (301
*,CB( 30)
*tDF4 30)
COMMOJN PNLNNFL ,KLKKLKK2LNAEIEEKK3LHHtKKK

*vNCoFFltF!F29LLl

*,P0,DP

*, TIM

*vLLAvIPvLIB#L IEPLBtLEtJl

FN 44

LL E=4
LLExA
LL 9--NL
LLERz1
Lt. F-1)

LIE a 9
LLc-20

NN .0
nn 4~1 LLLvlvNfl
007 Ju1,M

2 CfjNTINlJF
REWIND 3

00(11'0.
n~o 51 J'ot

51 Ct INT INUE
INE t I SQRT(Ofl( II I
DO S2 JI9P

510 CONTIflUE

511 r'1NTINUE

Si? CONIT INUF

S5A CINTINIJF



F 1=O.
00 4~2 LLL4-LLRLLF
ALL =1114
FhIULLL4*ML
Fz2o*FM/t 2.*FM-~1.1

FPIJ)FD(J

o 82 J=19M

00 82 1=19N

4? CONTINUF

Dr~) 20 LL21,NI
AL =LL
n1 4 J=19M

on i 11N
fLhfJ)-OIIJ).NR( jJ)**4
ft J )zf(J )*ABS( a311,J) )**FP1

3 CONTINUF
O(J)*IDhtJl/DIJ))..FFF

nnO 4 IulN

'cnNTINUE

fin 7 IzlN

6 CO'4TINUF
nn ? Jxlm
Al I .J)"I l *AIIjl

I CtINT IN UF
nol Q Il.M

Si iJIs'SII,J).A(Kit*AliIKjI

8 CONT!1UF

CALL SYMIt1S.wl

00 10 ja 1 *4
130 10Knit"

NII,J aNE IJI#S(IIKI.FIKjl
* 10 r.ONTIPIJF

cuos

DIJI8O.
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10f 23 !g=1 P4
owJ isnJ i+Ht i tj)**?

2? CINT I NtJF

f J xSORT D(J)

DO 24 I='1,M
Nt I,jl=H1 ,jl/DIJ)

24 cnNTINIJF

240 CnNTINUF

no ?6 Jjlg
on0 '5 1=191m

flO 251 K=lM

21)1 COJNTINUE
75 CrPNTPNIUE
'8 rC)%T IN'JF

tftp-SAPkSIEI-F21I?.552?, 5?O,5 2 8

s~qCON~TNUF

LLALLl
AR I TF 103 IC,9Cl ,AkL ,A1L

IVIP-I %PISI-F; l)*2.57C0,?tJAOS0

CR Jlao*
nnO 401 5t5,P4

411I CPNtNiJF

4#01 CON'lT. 14

40' i UNT INOU

42 C114T I 111J
&a Cfnh t iUjj

IF I At L -1* 70 s 706,970?

On ?04 is IO

(W) 704 !al9N

?7-4 C (N T INUF

Cn~irl'4



708 CONTINUE
iFNN ) 321. 320, 21

320.CONTINUE
DO 34 1 =1,P'
DO 34 J =ItM

34 CONTINUE
321 CONTINUE

DO 36 1 =19N
WRITEI8)tB( ItJ),J=1,LI)

16 CONTINUE
WRITF(8)( C(JbvJ=l,LI)
NN=1

41 CONTINUE
RETURN
FND
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SIBFTC SYI4I?

SUBROUTINF SYMI3 (SN1
r)TMFNSION S(30,30)

38 N1 = N-I
01 DO 04 1= ,
0? 11 = 1-1
03 DO 04 J = 101
04 SthJl =0.

10 C = l./SQRTISI Ill)
11 S(191) =1
12 DO 13 J=lN
13 Sf 1,JI = SfiJil *C
14 DOl 21 K=29N
15 DO 17 J=1,N
151 Kl = K-1
16 Dfl 17 I=1,KI
17 S(KJ) = S(K,J) -S(II,KI Sf1q31

19 C = 1./SQRT(SIK,KI)
19 on 191 1=1,1(1
191 SUI,K) =0.

19? S(K,K) 1.
20 0-1l 21 J=1,9N
21 SIKpJ) = S(K,J) *C
?5 DO 30 J=2,N
26 JI = J-1
?7 n0 30 I=1,jl
29 n0 30 K=JN
30 SilJ) = S(1WI SIK,[h S(KpJ)

*31 on 3S J=1,N1
32 SIJ,J) S(J,J) **?
33 J2 = J.1
34 no is I=j2,N

*35~ SIJtJ) = Sljtj)+ (t**
351 S(NN) (,J*
39 DO 42 11I,Nl
40 12 =1+'1

*4! DO 42 J= 12,
4? S(J,1) SITtJ)

RETURN
FND
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sIORIGIN ALPHA
SIBFTC OUPL II

SUBROUTINE fCUPL I
DIMFNSION A(80,30),D(80),flA(80),OE(80) 311(801

*301(80)
co4mflN PNLNNFL ,K11 KKLKK2L,11AElEEKK3LHHKKK
*tNCtrFF ,FF29LLI
*, PDQDPW
*,NFI4 *,TIM

*,LLAtNPvL IBLIEvLBLEJI
'IS=6

N Sc =

nO 26 LS=1.,NS

D0 24 LLL=1,NP
API TF( 6s 99)

O7Qq PnRMAT( l'-f)
30 ?2 LLI=L ISLIE
03J 20 LL=LgpI E
WR!TE( 6,996)

996 FOR'4ATI///

REAC(8)LLLvNvLILLhtLLNFl
QFAn( 8)C2,AKK,TIM

WITEE 6, 901)111 ,NLi 31 111 NFlC2, AKK , TMd([(h)Ih=1,Ii)

901 FORMAT( 614,3X ,3F7.3,3X,7F10.31I WRITE(6,997)
997 FORMATI1'1 I

on 2 I=lN
REAC(8)Oltif),OAII),DEII),(A(IJ),J-lLI

2 CONTINUE

9 CONT INUE
LLA=J (17)
flO 4 I=1,ILA
R EAW( 8 K tC 1,AL,9ALL
WRITF(6sQ02 )CClALA11

qo7 FrIRMAT f5F7 e3)
4 CONTINUF

WR ITE( 6,997)1
n0 14 Iz1,N
RFAnI 8 w fl(i Jx LJI1, I
WRITE(Aq905 )(D(J)tJ~lL1)

905 FOiRMAT(i.X,7F7.3)
WRITE(6,906,lt I IPtA(I ) ,fF(fi(,A( IJ) J=,LlI

906 FOIRMAT(IlH+,13,1x,1F4.0, IX,2F7.3,2X,7F 7.3)
14 CONTINUE

WR IY TF 6, 997)1

904 F0RMAT (2X 7F7 2 1
G11l Trl I p



15 CONTINUE
00 16 I-lN

903 FORMATU13,IX,1F4.o,1X,2F1.3,2X,14F1.31
16 CONTINUF
1S CONTINUE
20 CONTINUE
22 CONTINUE
24 CONTINUE

WRITE(69999
PEWIND 8

26 CONTINUE
RE TURN
;F D
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