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ABSTRACT

(1) (2)

Two previous papers have described the ccncept and some of
the applications of Narrowband Interferometry, using monostatic and
multistatic radars (at small bistatic angles) to obtain two and three
dimensional "images" of targets in terms of their scattering centers.
The method involves taking finite Fourier transforms of measured narrow-
band amplitude and phase data to resolve individual scattering centers
in "Doppler" at each radar site.

The present paper extends these methods in two directions. The
class of scattering centers considered is widened to include not only
isotropic point scatterers as before but also point dipoles, as
representatives of orientable scattering centers. The theory is
broadened to involve the Polarization Scattering Matrix, so that the

polarization behavior of the individual resolved scatterers can be

determined as aids to their recognition.
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SECTION I
INTRODUCTION

(1) (2)

Two previous papers have described the concept and some of
the applications of Narrowband Interferometry using monostatic and multi-
static radars (at small bistatic angles) to obtain two and three dimen-
sional "images' of targets in terms of their scattering centers. The
systems therein discussed did not use, nor did the theory refer to,
measurements made in more than one polarization. This was sufficient

for studying objects composed only of simple isotropic point scattering
centers. But real objects do not generally contain many such simple
scatterers, and those that do exist are of low cross section compared
with other types of scattering centers. In particular, realistic‘targets
are better described in terms of a model which allows for orientable
"scatterers', since such things as edges are usually pre-eminent in the
scattering-center description of a real object. But, in the case of
orientable scattering centers, valuable information is contained in the
terms of the complete Polarization Scattering Matrix, which information
will be lost if the Scattering Matrix is not utilized.

Now, under ARPA sponsorship, The MITRE Corporation has recently
developed and installed a radar system capable of measuring the full
scattering matrix on a pulse-by-pulse basis; this system has been inte-
grated into the MITRE-Lincoln Laboratory Tristatic Radar Interferometer.
Therefore, the present paper will be devoted to considering what informa-
tion is present in these scattering matrix measurements and in particular

how an appropriate Fourier Transformation of the terms of the scattering



matrix can help to identify the polarization properties of those indi-
vidual scattering centers which can be resolved in this manner. The
theory will be devoted primarily to two types of scattering centers:
isotropic point scatterers as simple representatives of non-orientable
scattering centers, and point dipole scatterers as simple representatives
of orientable scattering centers. Although these idealized scattering
centers‘are in some respects considerable abstractions from the more
complicated sorts of scatterers found on real targets, they have the
useful property and great advantage of illustrating most of the pertinent
geometric properties of the more complex scatterers without the latter's
attendent mathematical complexities which obfuscate without enlightening.
As a matter of fact, a recent study of the "Doppler Mapping' of an Edge(j)
using the methods of the present paper has clearly borne out the contention
that the point dipole is a good approximation to the more realistic edge
scatterer.

In connection with the term '"Doppler Mapping', given in quotation
marks in the previous paragraph, I feel that some comments are deserved.
The process of taking finite Fourier Transforms of amplitude and phase
data in the time domain has been called "Doppler Processing' or '"Doppler
Mapping" here at MITRE for a long time. The resulting "Doppler Maps'
are said to show scattering centers resolved '"in Doppler', by which is
meant resolution in the f (frequency) domain. But it will become quite
apparent, upon careful examinatiom of the analysis given in Section IIT,

that these terms are misnomers. Although the mathematical forms of the



functions obtained are identical to those which are characteristic of the
Doppler Effect, the fact is that the terms due to the true Doppler effect
are negligible compared to other terms, and drop out of all the equations

at an early stage. The effect responsible for the resolution of scatter-
ing centers in frequency is due to periodic changes in the phase differ-
ences between different scattering centers as these centers move with
respect to one another. Nevertheless, the erroneous terms ''Doppler Map'',
etc., have become standard through long usage here at MITRE, and they

will continue to be used in this paper, though with quotation marks wherever
I could remember to put them in. Whenever quotation marks do not appear

on these terms, the reader is asked please to imagine them.



SECTION II

THE POLARIZATION SCATTERING MATRIX

The received signal, in an arbitrary polarization, is related
to the transmitted signal, in an arbitrary polarization, through the
Polarization Scattering Matrix. The form of the matrix depends on the
modes of polarization being used and on the representation employed to
describe these modes. We will be concerned here with two different modes,
linear and circular. As for the representations, a glance at the litera-
ture will show that there is as yet no generally accepted convention,
but that the situation is in a state of great confusion. After reading
the interesting discussions of the Scattering Matrix to be found in
References 4, 5, 6, and 7, and giving great weight to the conventions
currently being employed by those directly involved in the ARPA Scattering
Matrix ﬁadar Program here at MITRE, and with due regard to the additional
requirement that the form of the scattering matrix for a bistatic situation
reduce to that for the monostatic case when the bistatic angle goes to
zero, I have chosen to define things in what I hope is a reasonable
manner. Any differences between the present representation and those
found in the above references (aside from those caused merely by the
choice of which polarizations are denoted 1 and 2) will be in the signs

of the phase factors and should not cause any significant problems.



1. Linear Polarization

Consider a bistatic situation in which a linearly polarized
wave is transmitted in direction k, strikes a target, 0, in the far-
field and is reflected toward a receiver in direction -k' relative to

the target; see Figure 1.

s>

Transwiiter
Receiver

Figure 1. The Bistatic Situation

The bistatic angle, B, is defined by

~

cos B =k - k' s
and unit vectors n and n' are normals to the earth's surface at the
transmitter and receiver respectively.
A plane normal to k (or ﬁ') is called the Transmitter (or Receiver)
Polarization plane. In the transmitter polarization plane we may define

a unit vector, e, , by the equation

>
=33
x
>

(2.1a)

®
-
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x
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This vector is clearly "horizontal" according to the usual meaning of the
term, and a datum line parallel to this vector in the transmitting antenna
plane may be maintained always horizontal however the antenna rotates, thus
providing a fixed datum for "horizontal polarization' in transmission.

We can now define another unit vector, ég » in the transmitter polarization

plane, such that (31, 52, ﬁ) form a right-handed ortho-normal triad:

& =k x & (2.1b)

A datum line parallel to this vector in the kransmitting antenna plane
is always normal to the "horizontal polarization" datum line and thus
provides a fixed datum for whaL is usually called 'vertical polarization'
in transmission, even though it is not usually a '"vertical" line in the
common meaning of that term.

Similarly, to represent the polarization vector of the received

signal we choose basis vectors &,' and &' in the receiver polarization

plane:
~y )
& = l“ Xk (2.2a)
n' x k'
&3 = k' x & - (2.2b)
2 1

Once again, the respective datum lineé in the receiving antenna plane
provide fixed lines for defining "horizontal" and "vertical" polarization
of the received signal. Moreover, the definitions above guarantee that,
since ﬂ' -k and i' = n as B~ 0, these two sets of bases vectors (and

lines) have the desired property of becoming identical as B = 0.



Now we must exert just a bit of care to define the Scattering
Matrix in a way that is valid for both the bistatic and monostatic cases.
Suppose the transmitting antenna sends out a unit signal with an arbitrary

linear polarization, represented naturally in the unprimed basis as

b

where (31)2 + (aa)2 = 1, After striking the target and starting toward
the receiver, the returning signal, now represented naturally in the primed

basis, may be written as

- é“ (A
CR =€e] +8&e7 = <6:> . (2.4)
We can now define the scattering Matrix S by requiring that
CR =S ET 5 (2.5)

This definition differs from the usual definition of the scattering matrix
in that it connects two polarization vectors expressed in different co-
ordinate systems; however, it reduces to the usual definition when B-0.

In order to measure the elements of S, we assume that the receiving

antenna is linearly polarized in some direction E_ which is represented

R

in the primed basis as



Bp = alé) + agd) = (

" ‘k) (2.6)

where (al')2 + (a3)® = 1. Then the signal which is actually received is
vV=E & =E - SE. . (2.7)

This tells us that in order to measure element Sij of the scattering matrix
we must transmit a unit signal with polarization éj and measure the received
signal with polarization éi » Whereupon the value of the received signal

is equivalent to the element S, ..

ij

2. Circular Polarization

It is with circular polarization that the confusion of represent-
ation referred to above enters to becloud the picture. We will have to
make several definite choices, which will be indicated as Qe go along.

One of these occurs in the definition of "Right Circular" and "Left
Circular" polarization. We will not sow confusion by describing the
conventions which will NOT be used, but rather willldeacribe only the
standard IEEE convention which WILL be dsed.(S) This convention defines
the "handedness" of the circular polarization in terms of the direction
of propagation of the signal: A right-circularly polarized wave is one
for which the E-vector rotates in the direction of a right-handed screw

as it advances, and conversely for a left-circularly polarized wave. To



put it more graphically, point the thumb in the direction of propagation

so that the fingers curl in the direction of rotation of the E-vector;
then the "handedness'" of the circular polarization is defined by the physical
hand which must be used to accomplish this.

Let us now define a basis for representing circular polérization.
The unit vectors é,, éz, k as defined above form a right-handed orthonormal
triad, and the same goes for their primed counterparts. Consider a plane
wave advancing along the positive k direction with polarization vector
given by él + ié; . Of course what we really mean by this is a real wave
of the form

-

E = Re {(§1+iéa)ei(k'r-um)} = Elcos(ﬁ';-wt) - éasin(z-;-wt).
Examining the angle 0 between the polarization vector and the e, axis

we see that

€ _ -sin(k-r-wt)

o = tan(wt-E'r)
e, cos(k*r-wt)

whence

9(;,t) = um-ﬁ-? :

this shows that as a function of t the polarization vector is advancing

and turning in the same way as a right-handed screw.



Next let us consider a plane wave advancing along the (-k) direction
with the same polarization vector €, + ié; . In this case what is meant
is a real wave of the form
-y -~ N 1 X UJt —_ A g o o it
E = Re {(e1+1e2)e } = é,cos(k-rtuwt) - eysin(k-rt+uwt) ,
whereupon the angle 8 between the polarization vector and the e, axis

becomes
6(_1: ,t) = -wt-f&?

Since the wave is propagating in the direction (-ﬁ), this shows that as
a function of t the polarization vector is again advancing and turning
in the same way as a right-handed screw.

Thus we have seen that the complex polarization vector é1+iée
always represents a right-circularly polarized wave, both in transmission
and reflection. Similarly, we could show that the complex polarization
vector e,-ié, always represents a left-circularly polarized wave. There-
fore we define, as basis vectors for representing circular polarization,
the complex vectors 61 and Co which in the linear basis have the

representations

~ : . 1
JE—Cl =e +ie; = | R.H.C. (2.8a)
R
\/562 = ¢, - iep = _1 ¢ L.H.C: (2.8b)



A similiar basis is defined for the primed coordinate system.

A word about normalization may be in order here. Because they

are complex, the vectors C, cannot be normalized in the usual dot product

3

sense. Instead we must use the Hermitian scalar product of the form

- - - = %
<u,v>=u-v ’
whereupon we see that
<h ~
Ci’ Cj> = 61j

But actually it will not be necessary to use this form of normalization
in the analyses to follow; in use the éj always appear multiplying a

" "
phase factor' of the form ei(i';.i wt)

with the Real Part of the product being understood to be taken. When
this has been done, the resulting vectors will be found to be properly
normalized in the ordinary sense, so no more need be thought about it.
Let us now proceed to transform the scattering matrix from its
representation in the linear bases, S, to its representation in the
circular bases, which we will denote by C . Let‘l\ be the matrix that
transforms a vector from the circular basis to the linear one; using

eqns. (2.8) it is easily seen that

= wlold [1 1]
V2 1 s (2.9)



Now we rewrite eq. (2.7) in the form

V = ER(e') S Ep(e), (2.10)

where the argument e' or e refers to the primed or unprimed linear

basis and the tilda (~) indicates the transpose of a vector or matrix .

In an obvious notation,

ER(e') = A.ER(c') and ET(e) = A‘ET(C) s

so eq. (2.10) becomes
V= ER(C')X SAEj(c) . (2.11)

But the scattering matrix C 1is defined, analogously to the definition

of S, by the identity

<
]

= B (c") C ET ) , (2.12)

whereupon we see that

(@]
]
g
wn
>

(2.13)

12



A little matrix multiplication now yields the elements of C:

2C,, = (S,,- 8§

1 117 Sp2) + 1(55* Syp)

2C,, = (Sll+ S

12 - 1(8),- 8

22) 21)

(2.14)

2C,, = (Sll+ 822) + 1(812- 821)

21

2C = (S

22 s

11" 8320 - 1(8y;t 8y

We should also consider the effect of Faraday rotation, which
takes a simple form in the circular representation. Faraday rotation
is due to an anisotropy of the ionosphere which causes the propagation
constant for an electromagnetic wave to be slightly different according
to the sense of circular polarization of the wave traversing the medium.(A)
The result is that one component gains in phase proportional to the distance
traversed, and the other component loses an equal amount of phase. The
discussion of this subject in Reference 4 is very clear and need not

be repeated here; the net result is that the scattering matrix C has

additional phase factors in the off-diagonal terms, Viz:

+12y
i C11 ClZe
c = (2.15)
-i2y
€ Cy2

where § , the amount of one-way Faraday rotation, is proportional to the

distance between the radar and the target. Although it varies with time

13



of day, the sunspot cycle, etc., the value of | for a traversal of the
entire ionosphere has not exceeded 30° in measurements made at MITRE(IO);

it is generally a rather slowly varying function of distance and time.

14



SECTION III

THE SCATTERING CENTER MODEL

In this paper we adopt the model whereby the scattering from an
object is presumed to be explained in terms of a relatively small number
of isolated scattering centers of various sorts; the description of the
object then consists of determining the locations and properties of its
constituant scattering centers. Some of these scattering centers (e.g.
point scatterers) are assumed to be rigidly attached to the center of
rotation of the object, so that a study of the motions of these scatterers
enables one to determine the gross body motion of the object itself.
Others (e.g. edges) are only in part rigidly connected to the objeét
center, being capable of 'sliding' along a space curve as the object
rotates; such scatterers are rather more difficult to deal with, and pro-

(3)

vide less direct information about the gross body motion. Yet another
type of scattering ''center'", the specular, is slippery in two dimensions,
being capable of 'sliding' along a surface in space as the object rotates;
this type partakes so6 little of the characteristic of localizability that
perhaps it ought to be excluded from the class of 'scattering centers"
altogether.

The scattering center model of an object has been in use for quite
some time, and it has been employed in numerous problems. It appears to
be the only convenient way to deal with the subject of the present paper,
and it will be used herein. But, though this is not the time or place

for a critical review of the concept, a serious caveat is definitely called-

for. The model must be understood in its context as a high frequency
15



approximation, that is, that the object being studied and in fact the
individual scattering centers themselves are large compared with the
wave-length. In this context it makes little sense to speak of small

"point" scatterers: ‘the nearest thing to a true rigidly-attached

isotropic
point scatterer is a tip, which is approximately isotropic but is very

low in reflecting power; on the other hand, the only sizeable truely iso-
tropic scattering center is a specular, which also most resembles a "point"
but is far from being rigidly attached. All the other types of scattering
centers are also more or less idealizations of the true situation. The

most realistic is the edge, which also probably makes up the class of
scatterers most prevalent in objects other than smooth ellipsoids.:

What is one to infer from all this? We must deal with a mathemati-
cally tractable model, or else the complexities of the solution will obscure
the simple physical realities which are being presented. So we will use
isotropic point scatterers, and we will represent orientable scatterers
(such as edges) primarily by the fiction of point dipoles, and we will
touch on real edges only a slight bit (though in fact their properties
seem to be well represented in terms of point dipoles that can '"slip"),
but we will also keep in mind that these are models, whose only true test
of validity is this: does it help to explain the experimental observations?
To the extent that it does, the model (however unrealistic) is justified;
to the extent that it does not, we must seek for a more reasonable mode’.

With this understanding, then, let us describe the scattering center

model and its felationship with the radar system, and consider carefully



what happens as a transmitted radar signal strikes the target and returns
to the receiving antenna. We assume that the target is composed of a finite
(and relatively small) number of scattering centers of various kinds, all
connected in some way to a center of mass O which is being translated
with velocity V(t) . The target is supposed to be rotating about 0
as a rigid body with angular velocity w(t) . Some of the scattering centers
(such as the idealized isotropic point scatterers and point dipoles) are
assumed to be rigidly connected to the center of mass and therefore par-
take fully of the rigid rotation E . Others (such as edges and speculars)
must be visualized as slipping along a space curve or a surface and hence
partake only in part of the rigid-body rotation. But all of them, whether
slippery or npot, may be assumed to be located at a particular point at
each instant of time, given by ¥n(t) with respect to O.

This target is being tracked by a radar interferometer consisting
of a narrowband transmitter-receiver located at A and remote receivers
located at B and C; the angle subtended at the target by the interfero-
meter is assumed to be small. It is further assumed that the transmitter
is capable of transmitting and each receiver is capable of receiving
signals of two orthogonal polarizations, and each receiver can measure
hoth amplitude and phase in each polarization channel. The radar operates
at frequency fo and transmits pulses of length A seconds, where for
concreteness in visualization we may use values like those of the present

MITRE-Lincoln Laboratory Interferometer, i.e.,

17



fo a 103 MHz and A =1 ms

Referring to Figure 2, the line-of-sight vectors from radars A, B,
C, to target center 0 are respectively RA’ EB’ EC' For all reasonable
satellite objects and passes the following set of conditions will easily
obtain:
1. The target is very small compared with its distance from the
radars; in fact
max {l?n- T } -4

|
D & 110
min {R}

2., The target is very small compared with the length of the radar

pulse in space; in fact

max {|T - T _|]

-4
c A :

< 10

3. The bistatic angle at the target between any pair of radars

is small; in fact

B ~ D/R < 10-'1 radians.

8



Scatterer n

A h’ Transmit
Receive

Figure 2.

Receive

o]}

Geometry for a Two-Site Interferometer
(not to scale).
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Now assume that at time to antenna A transmits a pulse, of
polarization ET’ toward the target. Conditions 1 and 2 above allow
us to make the far field approximation whereby the transmitted pulse as

it approaches scattering center n may be considered to be of the form,

T~ o i¢o fn 5 .2 - - 1
E ~Epe exp{2mi_ " [(RA + R, rn) c(t to)]J , (3.1
RA c

where

£ =f[1-3+V8 -
n (o] C

" 3.2}

0|
>
el
>
=l
—J

represents the Doppler-shifted frequency of the incoming wave relative to
the scatterer; here En is the effective angular velocity of the scatterer
taking into account any slipperiness: for rigidly attached isotropic points
and point dipoles EL = B. In writing eq. (3.1) we have ignored a term of
order rn/RA in the denominator and also ignored a difference in angle

of the order of rn/RA in the polarization vector at the location of
scatterer n relative to ﬁT(incident at 0); both of these approximations
are of course well justified by condition 1. The use of a monochromatic

spherical wave for the incident pulse near the target is justified by

condition 2.

20



Notice that the incident wave front reaches each scatterer n at
X

; _ - _ _n
location . R.A + RA r at time t, to + C whereupon eq. (3.1)

tells us that
E ET e 1 /R!

at each scattering center at the instant it begins to be excited by the
incident pulse. The effect of the scattering center on the incident
pulse will be symbolically represented by the operator O , so that the
wave which the scattering center begins to re-radiate has the form
cﬁ,rej‘¢°/RA at the instant when re-radiation begins. The form of .the
operator O will of course depend on the nature of the scattering center

involved. 1In re-radiation two cases must now be distinguished.

CASE I. RE-RADIATION BACK IN THE DIRECTION OF TRANSMITTER A.

The wave re-radiated by scattering center n goes in the direction

-ﬁA . The Doppler shift causes an additional change of frequency such that

the new frequency is

N

TV Ry

A= -

oln

R w xr ]. (3.3)

Now as it approaches the receiver at A the re-radiated signal wave front

has the form

21



- N ~ i¢0 i A _ A . - ~
K~ e B, e 0 exp {2mi £ (- R,- R« r + c(t tn)]}
RA ‘z

Here t is the nominal time of arrival of the re-radiated wave front from
the center of the target at 0, given by t = to+ ZRA/c; we use this nominal
time so that we can later sum the contributions from all the scattering
centers at the same instant of reception. With this.value of t the

received signal from scatterer n appears as

~ 3 A ~
EA ~ lg oE e1¢° exp [-4wifn (R, r )] (3.4)
n RA g ;T- A n

Using eq. (3.3) the bracketed phase factor in eq. (3.4) can be

written as

— 2 = A 2 ~ - —_
¢ Ao RA ]:n[1 s > 4l c A% T u)n:|

But for reasonable objects and passes rn< 10m. , w, < 1 rad/sec, and

V ~ 10*m/sec, whereupon

2 3.3 <
| < V-R,| <10
and
ERXT -3 | <107
c A n n

22



. B ke s
This means that even when multiplying the factor 7F RA- rn these two

terms contribute no more than about 3° to the phase ,and we shall neglect
them in comparison with the first term. Then we may write the received

signal from scattering center n as

ig .
=2A e 0 2 =4mi 5 2
~=— 0E_, exp [ -r ] .
n RA T )b A Q
- ’ ¥ " . ; ~A ~A 5
If the receiving antenna is polarized in direction ER [where ER. RA = 0]
then the received signal from scatterer n has the form
ig
A e 70 ~A o 4 .5
E ~ Ri Ep © 0 Eqexp C 7; iR, rn] . (3.5)

There is nothing unexpected about this result, but in the first place it
demonstrates that there is no direct effect from the Doppler shift on the
phase of the signal received, and in the second place it shows how to

proceed in the less obvious bistatic case to be considered next.

CASE II. RE-RADIATION IN THE DIRECTION OF REMOTE RECEIVER B.
The wave re-radiated by scattering center n goes in the direction

-RB . The Doppler shift causes an additional change of frequency such

that the new frequency is



Now we define
= e— (3.6)

and

cos B = RA‘ RB s (3.7)
whereupon it is easily seen that
2 B
RA+ RB = ZRAB cos (2) ) (3.8)
and the Doppler-shifted frequency is

2 VeRypeos &) - 2R T xT cos &) .

B::- -—
fn fo[1 c AB AB

However, just as in Case I we may drop the last two terms in the bracket

as being quite negligible in comparison with the first term, leaving

simply

Proceeding further as in Case I we find the signal re-radiated by

scatterer n to be, in the far field near receiver B,
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igo

=B , 4 e f S e "
E ~0' Eg exp {2mi o [- Rp- Ryt + c(t tn)]},

RA ¢

with t being the nominal time of arrival of the re-radiated wave front

1]

from 0: ¢t to + % (R.A + RB)' Here o' is the operator, corresponding
to O in Case I, representing symbolically the effect of the scattering
center on the incident pulse for re-radiation in the primed direction;
o' may or may not be the same as U, depending on the nature of the

scattering center involved. Using eq. (3.8) amd the value of t given

above, the received signal B  becomes
B e S 4m .

E RE o' E, exp C o iR "t cos (2)].

If the receiving antenna is polarized in direction ﬁg [where ég'ﬁ3= 0]
then the received signal from scatterer n has the form
B ei¢° ~B .

~ . ' = _ZEI " . po E
E_ RE Ep © 0' Eg exp [ R iR p* T cos (2)] (3.9)

A similar analysis can of course be done for remote receiver C also;
the result is like eq. (3.9) with B everywhere replaced by C and with
cos B = RA’ RC .

After reception the return signals are compared with a reference
signal for phase, which has the effect of eliminating the phase factor

¢o but inserting a ''range-phase' factor which has the form AﬂRAéko
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in the monostatic case and 2ﬂ(RA+ RB)/)\_o in the bistatic case. During
the course of the data processing, however, very accurate determinations
of range are made, which allow the range-phase factor to be removed and
also permit the recorded signal amplitudes to be compensated for the
1/Ri or 1/R.ARB dependence thereby transforming the results into absolute
units. In the remaining sections of this paper it will be taken for

granted that both of these processing steps have been done.
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SECTION IV

ISOTROPIC POINT SCATTERERS

The term "isotropic point scatterer' will be used here to refer to
any scattering center, whatever its nature, which satisfies the following
criteria.

1. The scattering center can be represented as a point rigidly
attached, by a vector ?n(t), to the object's center of mass, 0, and
rigidly rotating about O with the object's angular velocity w(t). The
magnitude, s of the vector ;n is a constant, independent of t.

2. 1In the linear polarization, the scattered wave has the same
polarization as the incident wave; i.e., there is no depolarization.

This is assumed to be true both for the monostatic case (back-scattering)
and for the bistatic case for at least the small bistatic angles considered
here.

3. The scattering is characterized by a complex number, the
scattering coefficient, of the form Hneﬂln , where Hn gives the relative
strength of the re-radiated signal and Yn gives the phase change (if
any) upon re-radiation. The numbers Hn and Yn may differ from one
scattering center to another, but they are constant in time and angle.

Suppose now that a unit signal is transmitted with linear polari-
zation ET = éj . By our assumptions above, the effect of scatterer n
on this signal will be represented (in either the monostatic or the

bistatic case) by
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OE. = 0'E. = é.H e (4.1)

Thus, distinguishing between the monostatic and the bistatic cases, if

the receiving antenna has linear polarization given by

(monostatic): ER =e
(bistatic) : g2 =g (4.2)
- R i s .
then the received signal is characterized by
éA R iYn
(monostatic): R UET =e; - ej Hne (4.3a)
~B R iYn
. . ! - et « 2
(bistatic) : ER ag ET e/ eane (4.3b)

Making use now of Eq. (3.5), the comment at the end of section III,
the definition of Scattering Matrix, and the fact that éi' éj = éij’ we

see that in the linear basis and for the monostatic case the scattering

th
matrix for the n scatterer has the elements

iy r
n n .2
(monostatic): Sij Gijﬂne exp[-4mi ™ R, rn]. (4.5)
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For the bistatic case the situation is made somewhat more complicated

by the presence of the matrix éi . éj which is not simply equal to 6ij'

However, for small bistatic angles it can be shown (see Appendix A) that

~
. e =

1 Ay

m>

- By
where the matrix K has elements of order unity. Therefore if we make

use of Eq. (3.9) and ignore terms of order 652, we see that in the linear
basis and for the bistatic case the scattering matrix for the nth scatterer

has the elements

1¥ r
1 1 . e n o ——n B « £ é
(bistatic): Sij 6ij Hne exp[-4mi X, R.AB r cos (2)] . (4.6)

Here we have retained the factor cos (g) in the exponent, even though
it is approximately equal to 1 - %Cg)a, because it appears multiplied
by what may be a large number (i.e. 4T rn/Ao) and phase factors are always
taken modulo 21 so this may make a significant difference.
Transforming into the circular basis by means of Eq. (2.14), we
find that the scattering matrix for the nth scattering center has the

elements

iy r

) H e " expl[-4mi xi ﬁA. r ], (4.7)

(monostatic): Cij= (1 - 61 "

3

iy

r ~
(bistatic): €= (1 -8, JHe " exp[-4ri X‘—; Ry f'ncos(g)]. 4.8)

]
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These values of the scattering matrix elements are for one pulse
only. It will now be necessary to find expressions for the time-depend-
ence of the Cij . Since, by the defining properties stated previously,
the quantities Hn’ Yn, and r are constants, the only functions which

~

can contain the time dependence of C are RA' fn in Eq. (4.7) and

~

gAB- En cos (g) in Eq. (4.8). Let us examine them further in this
regard.

We will eventually need to take the finite Fourier Transform of
the elements Cij(t)’ integrating over a time interval of length T
centered on some time to: to-'g sts< to+ % . Usually T will be

"small," the precise meaning of which will become clear as we proceed.

Therefore we will expand all time-dependent functions in Taylor series

*
about to and keep only first-order terms in small quantities.
dr
For fn(t) we note that —E% = w(t) X fn(t), whereupon the Taylor
Series gives
~ 2-1\ i A Iz
rn(t) rn(to) + (t to) w(to) X rn(to) + 0 (w 2) . (4.9)

In order for this linearization to be valid, it is necessary that
(w%)a << 1 hold true. To be concrete, suppose we require that
w T/2 < 0.1 . Then writing w = 21/T, where T is the period of the

object's rotation, this condition becomes approximately

*
For certain purposes it may be useful to retain the second-order terms

also, but this will not be considered in the present paper.
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T£003 7 . (4.10)

This may be regarded physically as a limitation on the length of the
integration interval T in comparison with the body rotation period T,
such that the Fourier Transform not be 'smeared-out" by rotation through
too large an aspect angle during the integration. If amplitude weighting
is used during integration to reduce the contributions of data points
near the ends of the interval (,t-to|~'%) in comparison with data points
near the center, then presumably this condition may be relaxed a bit.
How much, depends on the form of weighting used; perhaps T < 0.05 7
would be alright.

The function ﬁA(t) varies quite slowly under most conditions; if

we write

d ~ o - ~
T RA- wA(t) X RA(t),

then QA < 10‘-2 rad/sec except near zero-Doppler of very close passes.

-

Furthermore, wA itself changes quite slowly, so that it is reasonable

to assume that 4. E ~ 0 for t - % Sstst + ks even if T 1is not
dt A o 2 o) 2

absolutely small. Therefore we can approximate ﬁA(t) by the first

two terms of its Taylor Series expansion:

ﬁA(c) ~ ﬁA(co) + (et ) I»'A(to) X sz(co) + 0w, %)2 . (4.11)
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For the bistatic case, if we write

4 [R,cos (g)] = Byp () X Rp(0)

~

and make use of Eq. (3.8) to express RAB cos (g) in terms of RA and

RB, then it turns out that the difference between QAB and G& is of

second order in small quantities. Therefore we can ﬁrite, analogously

to Eq. (4.11),
~ . ~ N - e z 2
RAB(t) RAB(to) + (t to) wA(to) X RAB(t) + o(u)A 2) . (4.12)

Substituting Eqn.s (4.9) and (4.11) into (4.7) leads to the
following expressions for the time dependence of the scattering matrix

th
elements for the n scattering center in the monostatic case:

iy T . 2 .
c’:j(:) = (1-6,)) He T exp{-4mi i[RA(to)' £ ()= (-t IR, (e ) x £ (£ )-T(e )]},

(4.13)

where the superscript '"M" reminds us that it is for the monostatic case,

the exponential has been linearized in terms of small quantities, and

fe) = w(e) - EA(c) . (4.14)
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Similarly for the bistatic case (with superscript "B" as indicator):

1Y

r -
C?j (t) = (1 - 6i )Hne nexp{-4ni Xﬁ cos (g)[RAB(tO)' rn(to)

3

- (t-to)ﬁAB(to) x £ (c) - a (c)]) (4.15)

Suppose now that the target object is made up'of N such isotropic
point scatterers, and that as ideal points they never block or shadow
one another. Then the total scattering matrix for the entire object is
found by letting each element be the sum of N terms of the form (4.13)
or (4.15). Or alternatively the total scattering matrix may be thought
of as the sum of N scattering matrices, each with elements of the form
(4.13) or (4.15). These two pictures are mathematically equivalent,
and represent in terms of this simple scattering center model what one
should expect to measure as the scattering matrix over the time interval
from to- % to t0+ % .

For the measured scattering matrix we attempt to resolve the
individual scattering centers in "Doppler" by performing a finite Fourier
Transform of the matrix elements. ‘Let's see what this corresponds to

in terms of the model. The finite Fourier Transform of a function S(t)

on the interval to- % StsS to+ % is defined to be
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S(f) = / S(t) e-znif(t-to)

Operating thus on the sum of terms of the form (4.13) we find that

N A
ig
E’i‘j(f) ~(1-3,) T Z He °3 [mrce-e], .
n=1
where
A rn =
g =¥ - lmx; RA(to) . f-n(to) 5 (4.
2r
. 0= A &
fﬁ . Ry(c ) x £ (c) * W), .

and jo(x) is the Spherical Bessel Function of order zero, given by

o
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dt . (4

j (x) = Si: % = sinc (x/nj . (4.

16)

17)

18)

19)

20)



The equivalent expression in the bistatic case is

N B
ig
~B - n B
Cij(f) (1-6ij) TE H e jO[n T(f-fn)] ; (4.21)
n=1
where
B “noa 2 B
¢, =¥ - 4m Rp(t) "t (t) cos & (4.22)
o
and
B g 2 A = B8 |
fn = Z-X; RAB(to) X rn(to) * Q (to) cos (2). (4.23)

The Fourier Transformed scattering matrix elements Eij(f) corres-
pond to the results of the "Doppler mapping" process. They will be dis-
cussed in some detail in a later section, but at the present time, we
wish to comment on just one thing: the fact that each term of the sums
in (4.17) and (4.21) contains a function of the form Fn(f)E THnjo[ﬂT(f-fn)].
This function has a strong main peﬁk at f-fn and lesser subsidiary peaks
in the sidelobes; the amplitude of the main peak is given by THn and
its width is proportional to (m T)-l. This behavior is the explanation

for the fact that the modulus of the '"Doppler maps' contains sharp peaks
P

at values of the frequency corresponding to individual resolved scattering

centers.
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A bit of further realism can be added to this model if we allow
for the possibility of shadowing. In a real object, made up of non-
ideal scatterers, there is a good chance that during the time of integra-
tion ]t-tol < % some of the scattering centers will not be seen at all
(being "in shadow'" the whole time) and others will be seen only part of
the time (entering or emerging from the shadow at some points in the
integration interval). The completely shadowed point is easy to treat:
it simply makes no contribution at all to the scattering matrix. What
about the other case? Suppose a point "{'" is visible from t=t - t; until
t=to+ t2’ where - % s - t1 < t2 < % , and is invisible during the rest
of the interval. In this case a straightforward integration shows ,that
the transformed scattering matrix has the form

F ig
C; ()= (1-6,) x, THje Lexp[-in(ta-tl)(f-fL)]jOEnxL T(f-£,) ], (4.24)

where X = (t,+ t3) /T represents the fraction of the total integration

A B
@ oF %

n

interval for which the scatterer is visible, and where ¢L
and f& = fi or fi depending on whether the situation is monostatic or
bistatic.
Clearly, then, the effect of the partial shadowing is (a) to decrease
the amplitude and increase the width of the corresponding peak of the
Doppler map modulus in proportion to the fraction of the integration time
spent in shadow, and (b) to insert a phase change proportional to (t2-t1)\f-f&),

so that there is no phase change if the visible "window'" is evenly centered
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in the integration interval, and in any case there is no phase change
at f=fL: the center of the peak.

Further comments concerning these scattering matrix elements will

be reserved for a later section.
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SECTION V

FIXED POINT DIPOLE SCATTERERS

The simplest model of a scattering center which depolarizes and
has "orientability" is the fixed point dipole, by which we mean a point
dipole of dipole moment ;n(t) rigidly connected, by a vector ;n(t), to
the object's center of mass, 0, and rigidly rotating about O with the

-
object's angular velocity w(t). The magnitudes r and p, are constant,

-

independent of t. When we say that the vector Py is rigidly connected

-

- —
by r to 0, we mean that P, transforms in the same way as r under

rotation about 0, i.e.

T Py = WO X B (0. 5.1

This may either be regarded as a definition of '"fixed point dipole", or
may be shown to follow necessarily from a mathematical formulation of
what one might intuitively mean by the statement that ;n is "rigidly"

connected by ;n to 0: See Appendix B.

~

Suppose now that a unit signal with linear polarization E.= éj

is transmitted by antenna A toward the target. The excitation of dipole

~

n by this signal will be proportional to E The dipole then begins

T' Pp-
to radiate, and the appropriate formula for the far-field radiation of an

oscillating electric dipole tells us that as it approaches the receivers

the reradiated signal is proportional to the excitation and to
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ﬁA X (;n X ﬁA) in the monostatic case
and to
ﬁB X (p. X RB) in the bistatic case.
n

Therefore, in the notation of Section III,

~

OE, = (ej' pn)[RA x (p, X R,)] (5.2a)

and
'A — ~ . ~ ~ x - x ~
o'Ep = (e, P IRy X (p X Rp)] (5.2b)
If the receiving antenna has linear polarization given by
(monostatic): E; =e,
(bistatic) E = &! (5.3)
R i ’

~ ° "~ E A' . & E .
and we recall that e, R.A 0 and e, RB 0 tben the received

signal is characterized by

(monostatic): ﬁg . OﬁT B pn(éj' ﬁn)(éi‘ ﬁn) (5.4a)
(bistatic) ﬁi C o'y = e 6y BOG - B (5.4b)
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Making use now of eq. (3.5), the comment at the end of Section III,
and the definition of Scattering Matrix, we see that in the linear
th

basis and for the monostatic case the scattering matrix for the n

dipole has the elements

r

M_ A A AL A B ._n,\.,\
Sij pn(ei pn)(ej Pn) exp [-4mi X, RA rn]. (5.5)

For the bistatic case the scattering matrix elements are

B r

= h'- g 2y . 2 - 1 ﬁn B s 2 g '
Sij pn(ei pn)(ej pn) exp [-4mi Xo R.AB r cos (2)]. (5.6)
2 . , B _ M . et | -
Notice that, as required, Lim S,, = S, , since e! = e, and
8-0 ij ij i i

R,_—~R s - 0.
BapT Xy a8 P
Now we must make the transformation into the circular basis. We

define

5

1]
Fas
3

>15H

RA' r (5.7)

o)

and use eqns (2.14) to find the scattering matrix elements in the monostatic

case:
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M

cli=dpe " LGE BT - Gy M 21 PG, $)T (5.8a)
M
Cla = Cpy =t " [Gr 5% + Gy 5% (5.8b)
1M
Cpp = e " LGt % Gy B 208 PG, B (5.80)

The bistatic case is somewhat more complicated: because of the

presence of the primes in eq. (5.6) the expressions found upon using eqns.(2.1%)

B
21 *

bistatic angles these difficulties can be removed. Suppose we define basis

do not simplify very much since, for example, S?z # S But for small

vectors 8; in a plane normal to ﬁAB in analogy to the definitions of

; in a plane normal to ﬁA' Then it can be shown [see Appendix A] that

2
to order O(g) the elements of the scattering matrix in the circular basis

-~
e

and the bistatic case can be found from those in the monostatic case by

simply replacing e, by e! and §M by B, where
i i n

r

gw ung® Ryt Eocos &) . (5.9)
o

This statement may be considered to be the form of the monostatic-bistatic
equivalence theorem for a point dipole scatterer. It should be carefully

4]



noted that this equivalence does not hold true for the scattering matrix
in the linear basis.

Hereafter we shall consider only the monostatic case, the bistatic
one being deriveable from it by the above transformations.

The scattering matrix elements can be expressed in a simple way in
terms of meaningful geometrical quantities. The plane defined by él
and 32 is often called the radar polarization plane. The projection of
the vector ﬁn onto this plane makes an angle en with the El-axis, and
this angle is often called the Polarization Angle of the dipole. Similarly,

the projection of ﬁn onto the vectot ﬁA (normal to the Polarization Plane)

defines the Aspect Angle, :n’ of the dipole. See Figure 3 below:

Figure 3. Decomposition of the Vector ﬁn .
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Notice that

R.A p, = cos Cn

-~ ® ~ =

e, " P, sin Cn cos Gn

A = 2 .

e, 6n sin Cn sin On : (5.10)

If we substitute eqns (5.10) into (5.8) we easily find the scattering matrix

elements

C11 = %pn sin2 gne-(gn- 2%9
€y = Gy = P, sin'C, -
022 = %pn sin2 gne-i(€n+ Zen) . (5.11)
These can all be stated in one equation:
C.. =%p sin2 C exp{-i[E + 26..('1)j 6 1} . (5.12)
ij n n n ij n
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The next step is to find the time dependence of these matrix elements.
Now, the time dependence of §n has already been discussed in Section IV
(see eqns (4.13) and (4.15)]. The factor sin2¢;(t) can be expanded in
Taylor series, making use of eqns (5.10), (4.10), and (5.1) along the
way, and linearized in terms of small quantities as has been done before;

the result is
2 2 ~ ~
- = X v
sin¢ (t) = sin“{ (t ) +2(t-t ) cos{ (t ) R, (t)) x p (t)) Gce). (5.13)
and finally we may write for en(t) the expression

8 (t) = 8 (t ) + (t-t ) én(co). (5.14)

That the linearization here is legitimate may be shown by expressing

én in terms of more fundamental quantities; it turns out to be of first
order in small quantities like ® and E&, with higher derivitives
being of higher order. The complete expression for én is not simple,
but it may be important in later stages of analysis to know its form,

so it is derived and discussed in Appendix C.

Now the linearized time dependence of Ci can be written down.

h|
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Let

| o

n - A =
E 9wt X .
fn 2 )\0 RA(to) rn(to) Q(to), (5.15)
Q(t i = R X p -0
g, () sin L (r ) =R, (t) X p (t) - Q(t)), (5.16)
and
r'n A~ ~ g
¢n = 4m X; RA(to) . rn(to) cos (2) (5:17)
where RAh RAB in the bistatic case
and B =0 in the monostatic case.
Then

Cij(t) -~ Lﬂansmgn(to)[sincn(:;o) +2(t-t g (t ) cosf (t )]

expl-1lg,+ 28, (-0 (£ )1} explomiCe-t )l - + 6, 6 (e )T . (5.18)

Suppose now that the target is made up of M such point dipole scatterers,
and that as ideal points they never block or shadow one another. Then the
totalscattering matrix for the entire object is found by letting each
element be the sum of M terms of the form (5.18). In terms of our simple

scattering center model this represents what one should expect to measure
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T
as the scattering matrix over the time interval lt-tols 3

Applying the finite Fourier transform (4.16) to this sum of terms

we find that

~ m
Cij(f) E Gm(f) e (5.19)

m=1

where
*
G (£) =%Tp sing (t ) {sing (t ) j [rT(£-£)]
- iTgu(t ) cos ¢ (t )3, [M(£-£)1], (5.20)
with
=g 425 (-1)
B =0y *+ 26,17 B (e ), (5.21)
£ =f-26 (13§ () (5.22)
m m T ij m' o”’ :
and jl(x) is the Spherical Bessel Function of order one, given by
3, ) E% (51%5 - cos Xx). (5.23)

These Fourier-Transformed scattering matrix elements E;j(f) should

correspond to the results of the Doppler mapping process. They will be

discussed in some detail in a later section, but at the present time we
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wish merely to point out that the modulus of Gm(f) usually has a peak at
f=f:, though both the magnitude and the width of this peak vary strongly
with the aspect angle Qm(to) and for sufficiently small values of (m
it may be so small and broad as to escape notice. The rather complicated
function Gm(f) will be examined more fully later.

Notice that when a recognizable peak does occur at f=f; for a
particular scatterer, it does not appear in the same place in each of
the four Doppler maps. Its location will be the same for the two off-
diagonal elements, and it will appear in the diagonal elements shifted
by equal amounts in opposite directions. This shift may make the process
of associating corresponding peaks more difficult, but on the other hand

if the association can be made then the shift provides useful information

about the dipole involved:

- . =2 ¢
Afm B f22 f11 m em(to)°

Similarly the shift in the phases corresponding to these two diagonal

peaks, if it can be determined, yields the polarization angle directly:

Ay = 8pm 9117 48, (8, -

m

As in the case of isotropic point scatterers, further realism can be
added to the model by allowing for the possibility of shadowing. Once
again, as at the end of Section IV, we consider a scattering center '"4"

T
1 = - = - — < - <
which is visible from ¢t t t1 till ¢t t0+ t2, where 2 t1 t2 <

47
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and t1+ t2 = XLT’ Then the transformed scattering matrix for this
scatterer takes the form

ig

€,y = by Toystn Cy(ede  expl-in(t,- t)(£-£))] ([sin ¢ (e.)

+ (ty- t)) 8y Ot ) cos C,(t )] jo[ﬂxLT(f-fz)]
- ix,Tg, At ) cos C,(t ) 3, [mT(e-£)1) . (5.24)

The same comments which were made (at the end of Section IV) about the
results of shadowing for isotropic point scatterers, Eq. (4.24), also
hold true about the above results of shadowing for point dipole scatterers.
The modulus peaks are reduced in magnitude and increased in width, and
a phase term is inserted which vanishes when f=f: and which is pro-

portional to the 'asymmetry of the shadowing': t)- -
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SECTION VI

SOME REMARKS CONCERNING THE DOPPLER MAP FUNCTIONS

Consider now a complex target composed of N scatterers, some

being isotropic points as described in Section IV and the others being

point dipoles as described in Section V. The transformed scattering matrix

or '"Doppler Map Function' for this target may be written in the form

= N
Cyy (E) = DM (15,6) exp | 1A (13, £)

(6.1)
n=1

where the functions M_ and An depend in form on whether scatterer n

is an isotropic point or a point dipole, and where the bistatic cases are

referred back to the appropriate monostatic situations by invoking the

monostatic-bistatic equivalence theorem. Allowing for the effects of

shadowing, these functions are:

(1) for isotropic point scatterers, using eq. (4.24):

M (ij,f) = (l-éij) Xy THy 3, [ﬂan(f-fn)] (6.2)

A_(i3,6) = ¢ - T(t,-t)) (£-£)), (6.3)

with

St R ) KT ke - TKe ), (6.4)
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;
0 ¥y 4T Ry ¢ By cos ), (6.5)

n
where ﬁA = RAB in the bistatic case and 8 = 0 in the monostatic case;
(2) for point dipole scatterers, using eq. (5.24):

M (i3,£) = % x Tp sin ( (t)) [G (ij,f)| (6.6)

A 5,0 = ¢ (19) - Meyme)[E-£1 ()] + v (13,9, (6.7)

|6,(13,6) 1% = [stn ¢ (e )) + (£p=t)) 8. QCe) cos C (¢ )13 [mx TCe-£7(13))1)2

+ [xTe, OCe ) cos ¢ (t Y133 [mx T(e-£(15)) 1}%, (6.8)

*
bl e o Q(t )cos C (t ) JlﬂanT(f'fgf?j))]
ntoe? sin C (t) + (t,-t;)g O(t ) cos ¢ (t) Jj [m T(£-£7(i1))]’

X Tg

(6.9)

X oo 1, o f
£G4 =£ -1 6,¢DI 6 (), (6.10)
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#*(ig) = 4rB R () * £ (t) cos®)- 25, (1o (¢)
n A" o n o 2 ij n' o’

A

o}

where

g0t ) sin ¢ (c) =R (r) xp () « (),

ﬁA - RAB in the bistatic case,

and
B =0 in the monostatic case.

(6.11)

(6.12)

Equation (6.12) defines the quantity 8, whose absolute value is less

than unity.

It has been found most convenient to display experimentally-

determined "Doppler Maps" in the form of modulus and argument of the

complex function plotted against frequency f. So for comparison with

experiment we express eq. (6.1) in the form

'Ei (£) > M, (f) exp {1a, n1},

3 h| 3

where it is not difficult to see that

=

N N :
206 = D) MA1,D M (1,0 coslA (13,0 - 4,(1,0],

n=1 m=1
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(6.14)



and

M_(ij,f)sin A (1],£)

tan Aij(f) = (6.15)

n-
Z M_(1j,f)cos A_(i,f)

n=1

The behavior of My (f) and A, (f) as functions of f depend

3 ]
primarily on thé form of the functions Mn(ij,f). Qualitatively, as
has already been remarked, these functions usually (though not always:
see below) are more or less sharply peaked at f=fn and relatively
small elsewhere; i.e., they are rough approximations to é(f-fn). Even
if for certain types of scattering centers the functions Mn(ij,f)
do not have the precise forms shown in Equations (6.2) or (6.6), it is
reasonable to assume that in most cases they will have the same
qualitative properties, so that the argument below is still applicable.
Now if Mn(ij,f) were indeed very close to a true delta function
(which would be the ideal situation), what should we expect to happen?
Well, equations (6.14) and (6.15) would then be effectively 'decoupled",
in the sense that we would have

Mn(ij,fn) at f'fn for any n

Mij(f) »

~ 0 at f # fn for any n
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An(ij,fn) at f=fn for any n

random at f#fn for any n .

Thereupon by observing the locations of the peaks in the modulus of the
Doppler Map function we could easily find the true values of fn and .,
(mod 21) and be well on the way towards solving for the locations, motions,
and orientations (if applicable) of all the scatterers. [If scatterer

n is a dipole, substitute f: and ¢: for fn and ¢n everywhere in

this paragraph. ]

But if Mn(ij,f) is not very close to a perfect delta function,
but rather has signifiqant gidelobes, then the different terms of
equations (6.14) and (6.15) become seriously cross-coupled. This inter-
modulation, as it may be called, has three deleterious effects, all of
which have been easily observed in simulated data made up to satisfy
Eq. (6.2). These are:

1. Spurious peaks may appear in the modulus function at values
of f not corresponding to any true scatterer.

2. The values of f at which genuine peaks appear in the modulus
function are somewhat displaced from the correct values fn or f:

3. The values of the argument corresponding to peaks in the

*
modulus function are somewhat displaced from the correct values ¢n or ¢ .
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These problems can, if sufficiently severe, make correct inter-
pretation of the data rather difficult. Therefore it is important to try
to ensure that the functions Mn(ij,f) are reasonably good approximations
to delta functions. Naturally, we can't change the data as the target
presents them to us. But it may be possible to take steps during the
Fourier integration procedure to enable the functions Mn to have peaks
as narrow and sidelobes as low as the natures of the individual scattering
centers allow. Amplitude weighting, for example, can considerably
reduce the sidelobes, although at the cost of some broadening of the peaks.
Increasing the integration time T with the help of previously estimated
body motion constraints might go a long way toward alleviating this
problem, if it can be done.

After the above discussign involving the general porperties of the
functions Mn(ij,f), this seems a good place to illustrate the specific
forms of the moduli [M | for certain typical cases.

First of all, for isotropic point scatterers Eq. (6.2) shows
that an(ij,f)IE 0 for ij=11 or 22, and that IMn(ij,f)|- TXanthﬂ5<n(f-fn)]
for ij = 12 or 21. Figure 4 shows a graph of Ijo(x)| and Ijl(x)|: it
is easy to see that the maximum value of IMnl is given by Tann and

occurs at f-fn. The first sidelobe maximum occurs at f == fnj 2.30 5

Y

n
and its value is approximately given by 0.22 TXan, down only 6.6 db

from the peak. The 3 db width of the main peak is Af = 3.8/1'l'l‘xn. of
course appropriate weighting reduces the sidelobe level considerably

whilst increasing the width of the peak, so there isn't really much
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Figure 4. ABSOLUTE VALUES OF THE FIRST TWO SPHERICAL
BESSEL FUNCTIONS
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point in using the exact values just quoted above except as indications
of how the moduli IMnI behave as functions of the parameters T’Xn and
H .
n
For point dipole scatterers the situation is considerably more
complicated and is made even more so when weighting is used. To get
at least some feel for the behavior of ,Mn(ij,f)| under several different

sets of parameters, consider Figures 5 through 9. The functions plotted

here are
[M(x)| = |sin g|[sin2gj§(x) + ezcoszgji(x)]% (6.16)

for various values of the parameters ( and ¢, using the same relative
scale of units for all five graphs. Referring to Eqns.(6.6) and (6.8),
it is clear that these functions represent |Mn| for fixed values of

P> T, and Xp? plotted against the independent variable

*
X = nan(f-fn),
with tlE t2 and ¢ = XnTgnQ. Under ordinary conditions the parameter
€ will have absolute value less than unity, so this is the range of values
used in Figures 5-9; the values of aspect angle ( used in the figures
(o) o o) 0 o
are a representative sample: 107, 307, 457, 60", and 80 . Based on
these figures several observations should be made.

(1) Except for the smallest aspect angles, the functions all

behave qualitatively like ljo(x)l in that they have a main peak at x=0
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and smaller sidelobe peaks at or beyond x=4.5. For small aspect angles
(e.g. ¢ = 100) the main peak may, if € is large enough, occur at a value
of x greater than O,

(2) The maximum value of the main peak increases rapidly with
increasing aspect angle (. Therefore in practice the anomalisfic peaks
which for small ( occur at x»0 will not be very observable in comparison
with the much larger and more "normal" peaks representing dipoles with
larger values of (.

(3) For a given value of aspect angle ( the width of the main
peak increases with increasing ¢, but the difference becomes smaller

as ( becomes larger, so that when ( = 80° the function M| is almost

independent of €.
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APPENDIX A

THE MONOSTATIC-BISTATIC EQUIVALENCE THEOREMS

Referring back to Figure 1, we begin by defining two new unit

vectors, S and t :

~ N '
s = —=tk
|k + k']
(A-1)
~ _ '
ez L=k ,
|k - k'
from which it is not hard to see that
k + k' = 2S cos (%)
. R . g (A-2)
and k - k' = 2t sin (59

~

Notice that S is a unit vector in the direction of the bisector of

the bistatic angle, equivalent to RAB of Eq.(3.6) and others, and

~ ~

t is a unit vector normal to S. The line-of-sight vectors k and

-~ ~

k' can be expressed in terms of S and t :

=
mn
wm>

cos (%) + E sin (%ﬂ
(A-3)

rt

k'= é cos (g) - t sin (g)
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We shall also assume that the bistatic angle is '"small,'" meaning that
we can neglect all but the lowest powers of B/2 , and that n=n'
to sufficient accuracy.
Now after a great deal of inelegant and messy vector manipulations,
starting with the definitions of ey and ei , 1t turns out to be possible

to write

mon L, T B 8,2
e" 4+ U 2 + 0(2)

"y - " - B B. 2
e1 e1 U 2 + 0(2
(A-4)
~ ~ 2
T 8 8
" - "0 _TB 8. z

~
"

where the vectors ei are defined relative to S 1in complete analogy

to the definitions of e, relative to k , and

where

A - A.A A.A All
net & (n*S)(n-t) e)

|nxs| |axs |2

>
U

(A-5)

V= txe" - @E + ;'é ,;‘;' ;;
1 |nxs|? |nxs |2
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From this result, it is obvious that

-~ ~ ~ B 2
'l — — e —
ey ej Gij (2) Kij s (A-6)
where the matrix Kij is given by
vz 0V |
B ) 3 (A-7)
u-v v?

this result is given in the text as Eq.(4.5), where it constitutes the
form of the monostatic-bistatic equivalence theorem for an isotropic
point scatterer.

For a point dipole scatterer the situation is slightly more compli-
cated. If we try to use Eqns.(A-4) in Eq.(5.6) to express s ina

ij
form similar to STJ except that e'" replaces e; » we find that it
cannot be done: terms of order 6/2i remain in the expressions and make
the equivalence impossible. This means that, in general, the monostatic-
bistatic equivalence theorem does not hold true for orientable scatterers

in the linear basis. But if we then use Eqns.(2.14) to transform to the

circular basis, these inconvenient linear terms drop out of all the

expressions, leaving the equivalent form with e; replacing e, and

)
5: replacing E: , good up to a term of order (%ﬁ . Thus, the monostatic-
bistatic equivalence theorem does indeed hold true for orientable scatterers

in the circular basis.
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APPENDIX B

DEFINITION OF RIGIDLY CONNECTED POINT DIPOLE

Consider vector ; rigidly connected to the end of vector T s
both vectors having constant magnitude, and vector T rotating about

the origin with angular velocity ® . We know that
d; - -
dc CWwxr . (B-1)

When we say that vector ; is rigidly connected to vector T 3
we intuitively mean that the relationship between ; and ; must
remain invariant as the vectors change direction with time., This
means, in the first place, that the angle between the two vectors must

not change, i.e.
r(t) * p(t) = constant . (B-2)

And in the second place it means that the vector ; must not "twist"
around vector r as they change with time: the plane defined by r
and ; should not rotate around r . This condition is a little more
difficult to express mathematically, but we shall do so in a moment,
The condition ; . ; = constant leads directly to the requirement

-

that ; . %E = 0 , which means that %E can always be written in the

form
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Py xp (B-3)

2
for some vector wp . Now the '"mo twist" condition stated above can be

put mathematically by saying that Jp shall have no component along

-

r, i.e.

W -r=0 (B-4)

By differentiating Eq. (B-2) and making use of Eq. (B-1) we find

that
- d—’ - —
P (2-FxFy=0,
which implies that
EBE-' e 4 — — _
qt - W X P +Qxr (B-5)

for some vector o as yet unknown., Taking the dot product with ;

—

and recalling that ; # %% = 0 we see that

- - -
a*rxp=0 ,

which says that 3 lies in the plane of T and ; , i.e,
& = a; - b;

for some numbers a and b ., Substituting this form of & into
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Eq. (B-5) we get

-

22= - - -
at (w+br)xp .

which, with definition (B-3), indicates that

el
1
El
+
o
"l

When this form is tested according to condition (B-4) it becomes

necessary to set b = 0 , whence

=
Ml
€l

or

(-6)

alg,
]
€]
x
ol

This is the desired result,

68



APPENDIX C

THE FUNCTION en

In this appendix we shall derive and briefly discuss an expression
for the form of the function én in terms of other dynamical variables.
To simplify the notation, explicit mention of the subscript n will be
suppressed in the intermediate steps., The starting'point for this

derivation is with the second and third of equations (5.10):

A A
e, * p=sin ( cos 8
(c-1)
A A -
e, " p= sin ¢ sin 6 ,
whence we find at once that
A A
e,(t) - p(t)
tan B(t) = . (C-2)

A A
e, (t) * B(E)

Differentiating this expression with respect to time and rearranging

terms leads to

I : : : :
A NN \
£ - 259%§§5 [(e1"P) (€, B) = (€,B)(E;"D) + (6,-P) (e, D) - (e,P) (e -P)] .
1

(C-3)
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ANEAY
But cosze/(el-p)2 = coseczg , and the use of several vector identities

shows that

A -
(e "DV (€,)P) - (6,2 (e, D) = (@ x &) - Bx P =k @ ,

A A A - A
where we have also used the facts that e X e, = s, P=w Xp, and
N e
k - w, = 0 . Therefore
ds

EEE = coseczgn(ﬁ-a) + coseczgn[(él-gn)(é2°gn) - (QZ'Sn)(Ql'Qn)] . (C-4)
This division of én into two terms is a natural one, The first

term represents the contribution to én of the motion of the target and

the orientation of the individual dipole; this may be thought of as

being a 'dynamical' term. The second term represents the contribution

to én of the change in the coordinate system with respect to which

en is measured, due to the motion of the polarization plane itself as

ﬁ moves; this may be thought of as being a '"coordinate transformation'

term, Unfortunately the second term, which cannot be simplified to any

significant degree, is quadratic in one of the unknowns: Qn . Therefore

it seems very probable that the information about the target motion and

about the scatterer orientation which is contained in equation (C-4)

cannot be disentangled and extracted from the equation. Thus the

knowledge of én which can be found by comparing frequency shifts of

the diagonal terms of the transformed scattering matrix will have to

suffice in itself and not as a prelude to more useful information about

the target,
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