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ON THE CALCULATION OF MUTUAL INFORMATION

Tyrone E. Duncan*

1. Introduction

Calculating the amount of information about a random function con-

tained in another random function has important uses in commtinication

theory. An expression for the mutual information for continuous time

random processes has been given by Gelfand ani Yaglom [I1, Chiang [2]

and Perez [3] by generalizing Shannon's result [4] in a natural way.

Under a condition of absolute continuity of measures the continuous time

expression has the same form as Shannon's result. For two Gaussian
processes Gelfand and Yaglom express the mutual information in terms of

a mean square estimation error. We generalize this result to diffusion

processes and express the solution in a different form which is more
naturally related to a corresponding filtering problem. We also use these

results to calculate some information rates.

2. Problem Statement "

We shall consider two random processes which are the solutions of

the following stochastic differential equations

dXt =a(t, Xt) dt + b(t,, Xt)dBt (1) 1

S= c(t, Xt)dt + h(t)dB (2)d t

where the solution is obtained for the interval [0, 1] and (for notational

simplicity) X0 = 0 and Y0 = 0. The processes {Xt} and {Y } are n and m

dimensional respectively and the processes {Bt} and f ý{Bt} are n and m di-

mensional standard Brownian motions. The elements of the vectors a and

c and the matrices b and h are continuous in t and globally Lipschitz. con-

tinuous in X . The inverse of the matrix h(t), hI (t), exists and is continu-

ous for all t E [0, 1]. We wish to calculate the amount of information in the
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process {Y t} about the process {X ti•

3. Preliminaries

In order to calculate the mutual information we must determine

some appropriate Radon-Nikodym derivatives. We shall use the following

result due to Girsanov [5).

Theorem 1 : Suppose that

dXt a(t, Xt)dt + b(t, Xt)dBt

dYt (a(t, Yt) + b(t, Yt )h(t, Y t))dt + b(t, Y t)dBt

where

i) t E [S, I], X(s) = Y(s)

ii) a and h are n vectors and b is an n X n matrix

iii) a(., .),b(., -) and h(-, .) are measurable in both variables.

In particular a and b are continuous in their first variable and

globally Lipschitz continuous in their second variable.

iv)

1 h(t, Xt) 12dt < o a. s.
s

v) lh(t, Xt)I < ho(suppXtt)

where h0 is a nondecreasing function of a real variable.

Then the measures ýtX and ILY induced on Cn[s, 1] (the space of all con-

tinuous functions with values in g n) by {X } and {Y } respectively, are

mutually absolutely continuous.

The Radon-Nikodym derivative djiy/dItx is given by

dVy =exp [hT(u, Xu)dB .04 1,h(u, Xu)[ duj (3)

s s

We shall also use a result of Duncan [ 6) giving the expression for

the likelihood function of a related detection problem.
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Theorem 2: Consider the following detection problem

dYt - c(t, Xt)dt + h(t)dBt for signal present
(4)

- h(t)dB for signal not present
t

where X is the solution of (I) with the assumptions indicated there

Then the Radon-Nikodym derivative, At, for this detection problem

is given by
t t

A = E fx T(upX U)h dBu 4cT u c(u, Xu} )du
X 0 L0

A t t
-•t = exp c Xu)h ' dBu - 4 T ux)gXu )XdU (5)

0 0

where E corresponds to integration with respect to the measure ýX
gX

generated by the solution of (1), ý(t, Xt) = E[c(t, Xt )Y , 0 - u - t] (the con-tt u

ditional expectation of c(t, Xt) given the augmented Borel field generated

by{Y_, 0 -5 u 5 t}, andg =h h.

Generdlizations of Shannon's mutual information have been dis-

cussed by Gelfnd and Ig , Chiang [2] and Perez [3] They obtain

the following result as the natural extension of Shannon'rs mutual informa-

tion.

Theorem 3: Let • and il be two random vectors. The mutual information

J(t, 1 ) is given by

J(, a(x, y)loga(x, y)dPt(x)dP (y) (6)

where

a(x, dP(x y)
dP t(x)dP (y)
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4. Main Result

We have now established sufficient preliminaries to obtnin the

main result of this paper

Theorem 4: Consider the processes {Xt} and {Yt} obtained as solutions
L t

of (1) and (2). The mtual information contained in {JY , 0 5 a -5 1 } about

{Xu, 0 -5 u -< 1} is given by the following expression

1T

7(~Y CA1CX (uriuJ(X, Y) =E [c(u, Xu u)] g u)-(U, Xu)]du (7)
0

where • is defined in Theorem 2.

Proof: Tc calculate the mutual information we must compute an appro-

priate Radon-Nikodym derivative. Let

where 4XY is the product measure generated by (1) and (2) and IX and

Ily are the marginals. By a simple calculation, essentially using only

the absolute continuity results of Theorems 1 and 2 we have

dPLXY 
t

where ýt = E [t I is given in Theorem (2) for the detection problem.

Thus

J(X, Y) = Yolog~dý,xd•Y

logo = H[c(t,Xt) -t C(t, Xt) gtI dYt

-- Y[cT(t, Xt)g-' c(t, Xt) - AT(t, Xt)g-I ý(t, Xtfdt

Substituting dYt c(t, Xt)dt + h(t)dBt and using the fact that the integral

with respect to Bt is a martingal- we have
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J(X Y) = {~ ' t, c AT~ X t) gtc(t. X t) dt

-4ScT(t, Xt)g- 1c(t, X) -T(t, Xt) g -'A(~XtI

AT- A
,Eý(c c) g (c- C) dt

Remark 1. This result is in a different form from that obtained by Gel-

fand and Yaglom for Gaussian processes but by using some resolvent

identities obtained by Siegert [7] we can show the equivalence of the two

results and the relation of Siegert's work to the recursive linear filter-

ing of Kalman and Bucy (8].

Remark 2. Some obvious simple extensions of the above result are, for

example, letting c(t, Xt) be a function of Y actually c can be a functional

of the past of both the processes {Xt} and {Y } with a suitable function
t t

A
space Lipschitz assumption (cf K. Ito and Nisio [9]).

Rcir--rk 3. If we let c(t, X X and consider the process {Y I as obser-
} t t

vations of the process {X I in noise, then twice the mutual information ist
merely the integral of the trace of the optimal mean square filtering error

for estimating {X ti from IYt . in the one dimensional case the "new

data" (dBt) is weighted according to the additional amount of conditional

mutual information it possesses (cf Kushner [10] or Duncan [11]).

5. An Application lo Information Rate

We siall consider a Gaussian problem in more detail and obtain

some results for information rate. These results extend and simplify

scme results of Gelfand and Yaglom [1] and indicate rates of convergence

for some of their approximations. The methods used here require only

Itime-domain techniques which indicate more clearly the necessary pro-

perties for the existence of the information rates.

First, though, we give the definition that we shall use for
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I
information rate (cf Gelfand and Yaglom [1] or Pinsker [12]).

Definition: The rate of generation of information about a process 71 by a

proc2ss t is

- irn 1 T TT-.oo fJe¥ ': 8

T T
where to and ,io denote the processes on the interval [0, T] and I is only

defined when the limit exists.

We shall obtain a result for the exist- ce of information rate in

terms of some system theory results. This result will indicate some

useful bounds on approximations that one obtains by using finite time cal-

culations for information rate.

We shall calculate the rate of generation of information about a

Gaussian process {Xt} by another Gaussian process {Yt}.., Specifically

we have the following equations

dXt = a(t)X tdt + b(t)dBt (9)

dYt = f(t)Xtdt + dBt (10)

where {B } and {Bt} are independent n and m dimensional Brownian mo-

tions respectively., We shall assume also that the matrices a, b, and f

have elements which are continuous functions of t. The interval of solu-

tion is the half line [0, oo). The initial conditions are X0 = a, a zero mean

Gaussian random vector, and Y0 = 0.

We shall also consider the case where the coefficients of the sto-

chastic differential equations (9) and (10) are not functions of time. In

this case we shall use the same symbols for the coeffilzients deleting the

variable t, i.e.,

dXt = aXtdt + bdBt (11)

dYt = fXtdt + dB (12)
t t

6



where the appropriate assumptions for (9) and (10) are still in effect.

Whenever the process {Y I is a process of observations from which
t

we wish to obtain a best mean square estimate of the process {X t, then

we have a well known filtering problem. In fact, by Theorem 4 the mutual

information for (9) and (10) (or (11) and (12)) is obtained from the integral

of the trace of the error covariance matrix for this filtering problem.

What we intend to show is that this mean square error converges to a

steady-state solution which will then give us the appropriate information

rate.

In the subsequent discussion we shall use the following definitions

[8,131.

Definition: The system (9) and (10) is uniformly completely observable

if there exist fixed positive constants o-, a and P such that

0 <AI < M(t -ot) - 131

for all t where

tzM~tI t 2 = TttfTtft(ttzd(13)

For symmetric matrices A < B(A -5 B) implies that A - B is positive defi-

nite (non-negative definite). The matrix P is the transition matrix for the

ordinary differential equation

dX
t- a(t)X

Definition: The system (9) and (10) is uniformly completely controllable

if there exist fixed positive constants a-, a, 1 such that

0 < aI-<5 W(t - a-,t) -< PI1

where
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tz

W(t 1 , tz) = '(tz, t)b(t) bT(t) T(tz, t)dt (14)

ti

Definition: The system (11) and (12) is completely observable if the matrix

M(tj, t2 ) (ef eq. (13)) is positive definite.

Definition: The system (11) and (12) is completely controllable if the matrix

W(tj, tz) (cf eq. (14)) is positive definite.

Assuming that the system (9) and (10) is uniformly completely con-

trollable and uniformly completely observable, Kalman and Bucy [8] and

Kalman [13] have shown that with an arbitrary initial covariance for X0

the conditional error covariance for the filtering problem (9) and (1 0) is

bounded and converges uniformly and exponentially to a unique solution.

For the system (11) and (12), assuming complete controllability and

complete observability, the conditional error covariance converges uni-

formly to a constant matrix which is the unique positive definite equilib-

rium state of

dP =aP+PaT - pfTfp +bbT (15)
dt

which is the optimal matrix mean square error for the Wiener-Kolmogorov

solution to the filtering problem (11) and (12) given the infinite past

{Yu' --o < u -5 t}. With these results it is easy to obtain the following:

Proposition: Given that the system (9) and (10) is uniformly completely

controllable and uniformly completely observable then the rate of genera

tion of information about the process {X } by the process {Y } exists and
t t

is one half the trace of the steady-state covariance error for the filtering

problem for (9) and (10).

Corollary: Given that the system (11) and (12) is completely controllable

and completely observable then the rate of generation of information about

the process {X t} by the process {Yt} exists .nd is one half the trace of the
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optimal matrix mean square error for the Wiener-Kolm ogorov solution to

the filtering problem (11) and (12).

Remark 1. We can also calculate mutual information and information rate

twhen thasoe processes {Bt} and {Bl are correlated and with appropri-

ateabslut cotinityconditions we can make calculations for "smooth"
noise processes.

Remark 2. From the convergence properties for the conditional error

covariance, rates of convergence can be given for some problems that

Gelfand and Yaglom [I] consider of information and information rate about

a stationary process over a finite interval, contained in a sum of this pro-

cess and white noise when the interval is allowed to become unbounded.

9i
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