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ON THE CALCULATION OF MUTUAL INFORMATION
Tyrone E. Duncan*
1. Introduction

Calculating the amount of information about a random function con-
tained in another random function has important uses in communication
theory. An expression for the mutual information for continuous time
random processes has been given by Gelfand and Yaglom [1], Chiang [2]
and Perez [3] by generalizing Sharnon's result [4] in a natural way.
Under a condition of absolute continuity of measures the continuous time
expression has the same form as Shannon's result. For two Gaussian
processes Gelfand and Yaglom express the mutual information in terms of
a mean square estimation error. We generalize this result to diffusion
processes and express the solution in a different form which is more
naturally related to a corresponding filtering problem. We also use these

results to calculate some information rates.

2. Problem Statement

We shall consider two random processes which are the solutions of

the following stochastic differential equations

dX t

dYt

a(t, Xt)dt + b(t, Xt)dBt (1)

olt, X )at + h(t)dTat (2)

where the solution is obtained for the interval [0, 1] and (for notational
simplicity) Xo = 0 and Yo = 0. The processes {Xt} and {Yt} are n and m
dimensional respectively and the processes {Bt} and {ﬁt} are n and m di-
mensional standard Brownian motions. The elements of the vectors a and
¢ and the matrices b and h are continuous in t and globally Lipschitz con-
tinuous in Xt' The inverse of the matrix h(t), h-l(t), exists and is continu-

ous for all t € [0, 1]. We wish to calculate the amount of information in the
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process {Yt} about the process {Xt} -

3. Preliminaries

In order to calculate the mutual information we must determine
some appropriate Radon-Nikodym derivatives. We shall use the following

result due to Girsanov [5] .
Theorem 1: Suppose that
dXt = a(t, Xt)dt + b(t, )st)dBt
dy, = (a(t, Y) +b(t, Y )h(t, Y ))dt + b(t, Y )dB,

where

i)y te[s,1], X(s) = Y(s)

ii) a and h are n vectors and b is an n X n matrix

iii) a(-, <), b(-, ) and h(-, -) are measurable in both variables.

In particular a and b are continuous in their first variable and

globally Lipschitz continuous in their second variable.

iv)
1
Slh(t, Xt)lzdt <o a.s.
]

v bt X)| < holsyplX, |)

where hy is a nondecreasing function of a real variable.

Then the measures ks and by induced on Cn[s, 1] (the space of all con-

tinuous functions with values in ﬂn) by {Xt} and {Yt} respectively, are

mutually absolutely continuous.

The Radon-Nikodym derivative de/de is given by

du 1T o ,
= exp[S‘h (0, X )dB - 7 S lh(u,Xu)l du (3)
S

o

D

duy

We shall also use a result of Duncan [ 6] giving the expression for

the likelihood function of a related detection problem.
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Theorem 2: Consider the following detection problem

n

dY

¢ c(t, Xt)dt + h(t)d'l§t for signal present

~ (4)
= h(t)dBt for signal not present

where Xt is the solution of (1) with the assumptions indicated there

Then the Radon-Nikodym derivative, At’ for this detection problem

is given by
t t
A=E T(Xh"‘T<:|§-‘§T(X’1 X )du|
;  exp uc u, u) a g ZT)e (uw u)gu c(u, 3 u) u }
) 0

t t

= = . -
A expl_S\c (u, Xu)hu dBu 75‘0 (u, Xu)gu c(u,Xu)duJ (5)
0

where E corresponds to integration with respect to the measure M
M
X
generated by the solution of (1), 'c\(t, Xt) = E[c(t, Xt)lYu, 0 = u <t} {(the con-

ditional expectation of c(t, Xt) given the augmented Borel field generated

by {¥ . 0sus=th, andg=h'h.

Generealizations of Shannon's mutual information have been dis-
cussed by Gelfand and Yagiom {1]. Chiang [2] and Perez [3] They obtain
the following result as the natural extension of Shannon's mutual informa-

tion.

Theorem 3: Let § and n be two random vectors. Tae mutual information

J(€.m) is given by

J(E,n) = Sa(x,,y)IOga(x, y)dPg(X)dP (y) (6)
T\
ﬂ_here
dP, (x,y)
- En
alx,y) = =
dPg(x)dPn(y)
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4. Main Result

We have now established sufficient preliminaries to obtnain the

main result of this paper

Theorem 4: Consider the processes {Xt} and {Yt} obtained as solutions

of (1) and (2). The m.tual information contained in {Yu, 0susl } g_b_o_ut

{Xu, O<sus 1} is given by the following expression

1
T _
JDLY)=%ESkhLXJ-3hLXJ]glhnkhbXJ~3hLXJhu (7)
0

where € is defined in Theorem 2.

Proof: Tc calculate the mutual information we must compute an appro-

priate Radon-Nikodym derivative. Let

_Oexy
Apydpy

where sy is the product measure generated by (1) and (2) and M and
py are the marginals. By a simple calculation, essentially using only

the absolute continuity results of Theorems 1 and 2 we have

digy by

- N
dedp.Y Ut

where Jt = E*L [4;t] is given in Theorem (2) for the detection problem.

Thus X

J(X,Y) = S@logcbdpxde
X A T -1
logd = S[c(t, .xt) - (t, Xt)] g, dv,
! T -1 AT Y
1§[C (t, X,)e, clt. X)) - ¢ (t,Xt)gt c(t,Xt)]dt

Substituting dYt = ¢(t, Xt)dt + h(t)d'}§t and using the fact that the integral

with respect to %t is a martingale we have

ERREPPAPER PP S TR RS S0l




et sl e
- -

e {

JX,Y) = E{ ﬁcT(t, Xt)gt" o(t, X)) - 8T, Xt)gt"c(t, X ]at
-_;S‘[CT(t, X ), ot X)) - 876X g, A, Xt)]dt}

- _;ES(C -8 g e - at |

Remark 1. This result is in a different form from that obtained by Gel-
fand and Yaglom for Gaussian processes but by using some resolvent

identities obtained by Siegert [7] we can show the equivalence of the two
results and the relation of Siegert's work to the recursive linear filter-

ing of Kalman and Bucy [8].

Remark 2. Some obvious simple extensions of the above result are, for
example, letting c(t, Xt) be a function of Yt - actually ¢ can be a functional
of the past of both the processes {Xt} and {Yt} with a suitable function

space Lipschitz assumption (c¢f K. It and Nisio [9]).

Remnrk 3. If we let c(t, Xt) = Xt and consider the process {Yt} as obser-
vations of the process {Xt} in noise, then twice the mutual information is
merely the integral of the trace of the optimal mean square filtering error
for estimating {Xt} from {Yt}. In the one dimensional case the '"'new
dzta" (dBt) isweighted according to the additional amount of conditional

mutual information it possesses (cf Kushner [10] or Duncan [11]).

5. An Application {o Information Rate

We suall consider a Gaussian probiem in more detail and obtain
some results for information rate. These results extend and simplify
scme results of Gelfand and Yaglom (1] and indicate rates of convergence
for some of their approximations. The methods used here require only
time-domain techniques which indicate more clearly the necessary pro-

perties for the existence of the information rates.

First. though, we give the definition that we shall use for
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information rate (cf Gelfand and Yaglom 1] or Pinsker [12]).

Definition: The rate of generation of information about a process n by a

proczss § is
- . 1 T T
I{E, = lim = J(q, - 8
(€m) = lim  Jig, n:) (8)

where g;r and n;r denote the processes on the interval [0, T] and 1 is only

defined when the limit exists.

We shall obtain a result for the exists ce of information rate in
terms of some system theory results. This result will indicate some
useful bounds on approximations that one obtains by using finite time cal-

culations for information rate.

We shall calculate the rate of generation of information about a
Gaussian process {Xt} by another Gaussian process {Yt} . Specifically

we have the following equations

dX ¢

dYt

a(t)Xtdt + b(t)dBt (9)

)X, dt + dﬁt (10)

where {Bt} and {Et} are independent n and m dimensional Brownian mo-
tions respectively. We shall assume also that the matrices a, b, and f
have elements which are continuous functions of t. The interval of solu-
tion is the half line [0, ). The initial conditions are Xq = @, a zero mean

Gaussian random vector, and Yy = 0.

We shall also consider the case where the coefficients of the sto-
chastic differential equations (9) and (10} are not functions of time. In
this case we shall use the same symbols for the coefficients deleting the

variable t, i.e.,

dX aXtdt + det (11)

dy thdt + dBt (12)
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where the appropriate assumptions for (9) and (10) are still in effect.

Whenever the process {Yt} is a process of observations from which

we wish to obtain a best mean square estimate of the process {Xt}, then
we have a well known filtering problem. In fact, by Theorem 4 the mutual
information for (9) and (10) (or (11) ard (12)) is obtained from the integral
of the trace of the error covariance matrix for this filtering problem.
What we intend to show is that this mean square error converges to a
steady-state solution which will then give us the appropriate information

rate.

In the subsequent discussion we shall use the following definitions
[8,13].

Definition: The system (9) and (10) is uniformly completely observable

if there exist fixed positive constants ¢, o and B such that
0<al =M(t -o,t) = pI

for all t where
t2

Mty , ty) = §¢T(t, £,)F L(OE(HB(L, t;)dt (13)
t

For symmetric rmatrices A < B(A = B) implies that A - B is positive defi-
nite (non-negative definite). The matrix & is the transition matrix for the

ordinary differential equation

dX
Ht— = a(t)X

Definition: The system (9) and (10) is uniformly completely controllable

if there exist fixed positive constants ¢, «, $ such that

0<al SW(t-o,t) s pl

where
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t;

Wity, tz) = gﬂtz, )b b ()@ 1(t,, t)dt (14
t

Definition: The system (11) and (12) is completely observable if the matrix

M(t, . t;) (cf eq. (13)) is positive definite.

Definition: The system (11) and (12) is compietely controllable if the matrix

W(t;, t;) (cf eq. (14)) is positive definite.

Assuming that the system (9) and (10) is uniformly completely con-
trollable and uniformly completely observable, Kalman and Bucy [8] and
Kalman [13] have shown that with an arbitrary initial covariance for X,
the conditional error covariance for the filtering problem (9) and (10) is

bounded and converges uniformly and exponentially to a unique solution.

For the system (11) and (12), assuming complete controllability and
complete observability, the conditional error covariance converges uni-
formly to a constant matrix which is the unique positive definite equilib-

rium state of

STP =aP +Pal - PILfP + bb Y (15)

which is the optimal matrix mean square error for the Wiener-Kolmogorov

solution to the filtering problem (11) and (12) given the infinite past

{Yu’ —o < u $ t}. With these results it is easy to obtain the following:

Proposition: Given that the system (9) and (10) is uniformly completely

controllable and uniformly completely observable then the rate of genera

tion of information about the process {Xt} by the process {Yt} exists and

is one half the trace of the steady-state covariance error for the filtering

problem for (9) and (10).

Corollary: Given that the system (11) and (12) is completely controllable

and completely observable then the rate of generation of information about

the process {Xt} by the process {Yt} exists 2nd is one half the trace of the
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optimal matrix mean square error for the Wiener-Kolmogorov solution tc

the filtering problem (11) and (12).

Remark 1. We can also calculate mutual information and information rate
when the noise processes {Bt} and {'ﬁ} are correlated and with appropri-

ate absolute continuity conditions we can make calculations for ''smooth”

noise processes.

Remark 2. From the convergence properties for the conditional error
covariance, rates of convergence can be given for some problems that
Gelfand and Yaglom [1] consider of information and information rate about
a stationary process over a finite interval, contained in a sum of this pro-

cess and white noise when the interval is allowed to become unbounded.
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