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CHAPTER 1

THE DATA MATRIX

The problem of approximating a data matrix with one of lower rank is funda-

mental to all scientific investigation. This problhm is embedded in most

traditional data analysis techniques, such as multiple regression analysis .2n lYsis

of varienc bnd coverie nca, configurnl anelysis, pattorn recogniiicn; discriminart

function analysis, factor analysis, etc. In all of these procedures we begin

with an experimental data matrix. Transformations on the elements of the data

matrix may then be carried out. A matrix which approximates in some sense the

original or transformed data matrix is solved for. A residual matmix whose

elements are the differences between the elements of the data matrix and those of

the approximation matrix is calculated.

1.1 The Experimental Data

The experimental data matrix in its simplest form consists of rows which with-

out loss of generality we may take to represent entities, observations, or cases,

and columns which represent attributes, characteristics, or variables. These latter

are also called variates. One may also have occasions and other categories, such

as sets, instruments, conditions, and treatments, thus yielding multidimensional or

multicategory data matrices. These extensions have been considered by Cattell

(1957), Tucker (1963), and Horst (1965). In general it is possible, as shown by

Horst (1965), to reduce multimode data matrices to two-mode data matrices in a

number of ways. Tucker (1963) has presented the most sophisticated analytical pro-

cedures to Je for analyzing multimode data matrices. In this report, however,

we restrict Ourselves to the two-mode data matrix, and for convenience we shall

take rows as Sntities and columns as attributes, although this orientation is not

necessakry

-ti
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1.2 Transformation of the Data

A topic -hich has not been sufficiently considered in the past is that of

mathematical transformations of experimental data before the more detailed analyses

take place. The failure to recognize the importance of this topic has resulted in

confusion between the disciplines of factor analysis and multidimensional scaling

techniques, Much of the the work in multidimensional scaling can be regarded as

special cases of factor analytic techniques. The generalized distance models in

scaling theory reduce to the more conventional factor analysis models after appro-

priate transformations of the observed data have been made. It is not the purpose

of this monograph to explore the general notion of transformations of the original

data on the basis of theoretical formulations, or to relate the multidimensional

scaling techniques to the more traditional factor analytic techniques. Ross and

Cliff (1964) have suggested this relationship. However, they did not point out

explicitly that their approach consists essentially of making a transformation of

the original observations consistent with the distance hypothesis, and then treat-

ing the data by the more conventional factor analytic procedures. Coombs and Kao

(1960) were among the first to suggest the relationship between the multidimensional

scaling techniques and the conventional factor analytic techniques. It remained,

however, for Ross and Cliff to indicate the explicit relationship between the two

general approaches by showing that transformations of the original data consistent

with the distance concept provide the basis for the more conventional fac+or

analytic or lower rank data matrix approximation analyses.

In this section we shall consider four kinds of transformations. These are

linear transformations, nonlinear transformat.Lons, single element tfansformations,

and transformations involving combinations of variables.
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In a linear transformation we have a scaling or multiplying constant and a

location or additive constant. The variable to be transformed is expressed in the

general form of

Y =A + BX

where the original variable is X, the transformed variable is Y, the location

constant is A, and the scaling constant is B. We may have the special case where

the additive constant A is zero and therefore the transformation consists simply of

a change of scale. On the other hand, we may have the case where B is unity. In

this case, we imply add a constant to the observed value. The transfr'-mation of

raw data to deviation measures is a special case of a linear transformation where

the additive constant is simply the negative of the mean of the variable, and the

multiplying constant is unity. In standardized measures, the deviation measure is

divided by the standard deviation of the Eample so that the multiplying constant

is the reciprocal of the standard deviation. Linear transformations of this sort

are introduced early in introductory courses in statistics. However, the signific-

ance of transformation of this kind for factor analytic and data matrix approximate, n

techniques are not so well recognized. It is ore of the major objectives of this

monograph to discuss in more detail the importance and implications of linear trans-

formations of experimental data.

We haVe already considered the subject of multidimensional scaling and how

these techniques involve the concept of data transformation. More specifically,

the kinds of transformations involved in relating the multidimensional scaling

techniques to the factor analytic techniques involve nonlinear transformations of

the data. The types of transformations involved here are trigonometric. Nonlinear

transformations may reflect the role of theory in data analysis. For example, it

is in the distance theory of multidimensional scaling that the mathematical trans-

formations of the data are suggested vhich convert distance models to factor
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analytic models. Much of the mathematical models work in learning theory results

in nonlinear transformations of data based on rational theories. It is quite

probable that an explicit recognition of the role of nonlinear transformations of

experimental data based on rational theories of learning could lead to a fruitful

integration of mathematical models and factor analytic approaches in psychology.

It is also probable that quantitative theory in other social science disciplines

could lead to a better integration of methodologies, theories, and data analysis

prrcedures.

In the preceding discussions of linear and nonlinear transformations, it was

assumed that the transformations are on single variables. The same mathematical

transformation applies to all elements of a single attribute vector. It is

possible, however, to have transformations which involve several or more variables.

An example of such a combination of variables is the image analysis model of

Guttman (1953). An important case of combinations of variables consists of pro-

cedures where nonlinear combinations of variables are introduced. Perhaps by far

the most common example of such nonlinear combinations is provided in the tech-

niques of configural analysis or pattern recognition. These techniques involve

multivariate polynomial transformations of the data in which new variables are

generated that are products of subsets of the original data. We have discussed

this approach elsewhere (Horst, 1968c). The generation of new variables that are

product functions of the original variables may well contribute information not

included in simple linear combinations of the data. Guttman (1955b) has recognized

the importance of configural analysis. His concepts of the simplex, the radex,

and: the circumplex imply nonlinear combinations of the original variables.

Much remains, however, to be done to relate the configural analysis procedures

to the more conventional data matrix approximation techniques. One of the un-

solved problems in this approach is that of the disparate distribution phenomenon
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which introduces artifactual dimensions into a data matrix. But the subject of

nonlinear combinations of data, important as it is, will not be considered in

detail in this monograph since it leads into problems which have not yet been

adequately solved.

1.3 The Approximation Matrix

Assume now that we begin with either the original data matrix or a matrix

in which the elements have been transformed, as indicated in the preceding dis-

cussion. We then wish to consider a matrix which approximates the original or

transformed matrix but which in some sense is more simple than the original matrix.

The subject of data matrix approximation has been extensively ccnsidered by many

writers and has received detailed treatment by the author (Horst, 1963, 1965).

The approximation matrix is of lower rank than the data matrix or some trans-

formation of it. It is the product of a factor score matrix by the transpose of

a factor loading matrix. The number of columns in the factor score matrix is

equal to the rank of the approximation matrix. This rank is the number of factors

assumed or solved for. The factor score matrix is called basic because its rank

is equal to its width or smaller dimension.

The factor loading matrix has as many columns as the number of factors and as

many rows as the number of attributes in the data matrix. It is also basic so

that its rank is equal to the number of factors or numb .- of columns. Therefore

both the factor loading matrix and the factor score matrix are basic matrices

which cannot be expressed as the product of matrices whose common order is less

than the number of factors or the rank of the approximation matrix. This implies,

of course, that the number of factors is smaller than either the number of entities

or the number of attributes, whichever is smaller. A more complete discussion of

the factor loading matrix and the factor score matrix is provided elae.hci , by

the author (Horst.. 1965).
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We have defined the approximation matrix as the product of the factor score

matrix postmultiplied by the transpose of the factor loading matrix. It can

readily be shown (Horst, 1963, 1965) that a product of two matrices can be expressed

as the product of an infinite number of different pairs of matrix factors. As a

special case, we may consider the postmultiplication of the prefactor by any

conformable square orthonormal matrix and the premultiplication of the postfactor

by the transpose of this orthonormal matrix. The major product of these two

matrices is tb- 1q- Pq the major product of the criginal matrices since the prod-

uct of the orthnormal matrix by its transpose is the identity matrix. It is also

obvious that if the prefactor is postmultiplied by any nonvertical basic matrix,

and the postfactor is premultiplied by the general inverse of this nonvertical

matrix, then the major product of the two resulting matrices will be the same as

for the original matrices. This nonuniqueness in the matrix factors of a product

is ccnsidered in more detail in Chapter 9. That chapter develcps a new mcdel for

a unique determination of the factor score and the factor loading matrices.

1.4 The Residual Matrix

The residual matrix is simply one whose elements are the difference between

the corresponding elements of the data matrix and the approximation o, product

matrix. So far, we do not specify any constraints on the approximation matrix

aside from those considered in the ;ravious sebticns. N.ost factor aneytic model#.

as veil as the general multiple regression models, place certain constraints on

the residual matrix as a basis for determining the factor loading and factor

score matrices.

Most multlvariate analysis procedures, including multiple regression, multiple

discriminant function analysis, the multidimensional scaling techniques, and all

af the varieties of factor analytic techniquesj are concerned in sm way with

specifying properties of the residual matrix that are to be satisfied. We may
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consider either the residual matrix itself or the covariance matrix which may be

calculated from it. It is more convenient to begin with the residual covariance

matrix than with the residual matrix itself. Two aspects of the residual covari-

ance matrix may be considered in determining the factors in the product approxima-

tion matrix. The first of these concerns the elements of the covariance matrix to

be included in any procedures of optimization. This matrix consists of the diagon-al

elements or residual variances and the offdiagcnal elements or residual covariances.

How we combine these will determine the solution for the factors in the approxima-

tion matrix. The second aspect of the residual covariance matrix concerns what

particular function of the elements or cobinations of elements is to be optimized

by the solution for the factors of the approximation matrix. What combination of

elements is included and what function of these elements is optimized is the sub-

ject of later chapters.
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ORIGIN TRANSFORMATION

In this monograph we shall restrict our discussion of the role of transforma-

tions of the elements in the data matrix to linear transformations involving only

additive and scaling constants. Although in later chapters we shall. restrict the

transformations even further to those involving primarily scaling transformations,

it is of interest to consider the subject of origin transformations or additive

constants since these are also important for matrix approximation procedures. In

data matrix transformation procedures, a major consideration is the determination

of the transformation functions and Parameters so as to optimize prespecified

functions of the residual matrix. This monograph deals with determinations of

scaling constants which with sj,,Pcified restrictions optimize prespecified, functions

of the residual matrix or its covariance matrix. Little has been doe In the way

of solving for origin or additive transformations that optimize such functions of

the residual matrix. However, we have elbewhere considere-d (Horst,, 1965) the

effect of Prespecified origin transformations on the basic structure of a matrix.

In this chapter we shall review breifly the subject of origin transformations. We

shall consider transformatious by attributes, by entities, by entities and attri-

butes, and then present briefl1y the current status if origin transormation

techniques.

2.1 Origin Transformations by Attributes

By far the most, comm form of origin transformation is transformation by

attributes. Marn the constant, positive or negative, is added to each elemient of

an attribute coluou. The constant may, wad generally does, vary from one attri-

but, to another.

The most common type or attribute tascmmation consists of subtracting tie

mean of a colo of attribute swasures frost each of the elmeuts or measures.* This,

of course# results in the familiar d"oviation soone atrix in 'ihich the stm of
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column elements of the transformed matrix are all zero. The main reason for dis-

cussing this familiar origin transformation procedure is to emphasize that it is

arbitrary and may not be appropriate for many kinds of analyses. There may well be

better or more appropriate criteria for determining origin attribute transformations

than the zero sum criterion. While the conventional multiple regression techniquee

give results invariant with respect to origin transformations, including the attri-

bute centering transformations, such invariance does not hold in general for factor

analytic techniques.

The attribute centering origin transformation is a special case of the more

general attribute origin transformation. Another special case occurs when the

additive constant is zero or when *he raw data are not transformed by attribute

origin. Tucker (1958) has considered cases where the raw measures may appropriate<,

enter into factor analytic computations. However, the general case where the

observed measures may be origin transformed by attributes has received little

theoretical, empirical, or experimental consideration. If the raw measures may be

regarded as in some sense absolute and the origins comparable from one attribute to

another, then 'e zero origin transformation may be justified. But further rational

or optimizing procedures are required for the general case of differential origin

transformation for a set of attributes.
2.2 Origin Transformation by Entities
Just as origin transformations may be made by attributes, so also they may be

made by entities, although this procedure is by no means as common as the attribute

transformation. We can also have the two types of transformations by entities,

namely, centering by entities and the more general origin transformation of which

centering is a special case.

When the origin transformation is such as to center by entities, a constant i3

subtracted from attribute measures for each entity, such that the sum of the elements

of each row is equal to zero. A special case of such centering occurs with ipsati7-!d
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variables, as in the case of forced choice personality instruments. It can be

shown that such centering by entities also serves to center by attributes or

columns. The subject of entity centering has not been considered extensively from

a theoretical point of view and does not appear to have much justification, parti-

cularly since it can readily be shown tha. important information might be lost in

such centering. For example, it is clear that if one has a data matrix of measures

on a number of persL is, when one centers by rows one obviously eliminates normative

information from the data matrix. An extensive treatment of the subject of center-

ing by rows has been given by Clemans (1966) in a discussion of normative and

ipsative variables.

There may be more justification for a rational and more general transformation

of origin by rows than for a mere centering transformation. Particularly in the

case of ipsatively measured variables such as one finds in forced choice instru-

ments, it may be desirable to change the origin by entities in order to satisfy

optimizing functions in factor analytic or general matrix approximation techniques.

2.3 Transformation of Origin by Both Entities and Attributes

It is possible, and in some cases may be appropriate, to transform origins of

a data matrix both by entities and by attributes. This can be done as a special

case by a doubly centered, or right and left, centering operation. Here we may

also have the general case, as in the centering or origin transformations by either

attributes or entities.

In the doubly centered origin transformation, the elements in each row and in

each column add up to zero in the transformed matrix. This procedure is follcwed

when a two-way analysis of variance is applied to a matrix of observations and the

effect of both row and column means is removed. Such an operation in the conven.;.

tional two-way analysis of variance is not usually recognized explicitly as a doubly

centering operation.
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Ps in the case of the general origin transformation by either attributes or

entities, we may transform the origin of both entities and attributes on the basic

of any rationale ,h~cih my be availablei

2.4 Current Status of Origin Transformations

The basic structure of the data matrix or its covarianee or correlation matrix

is altered by origin transformations. While very little has been done in the way

of developing general rationales for determining origin transformations, whether by

entities or by attributes or both, considerable work has been done on the effect of

any arbitrary origin transformation operations on the basic structure or latent

roots and vectors of the covarianice matrix. This work is presented in Chapter 13

of "Factor Analysis of Data Matrices" (Horst, 1965). It is shown that a root of a

covariance matrix altered by an origin transformation must lie between adjacent

roots of the original matrix. Procedures for solving for the latent roots and

vectors of an origin-transformed matrix in terms of the original roots and vectors

or basio orthonormals are presented in this reference, together with computational

Fortran programs for effecting the transformations. These procedures indicate how

one may pass from one origin transformation to another in terms of a solution of

the roots of one as a function of the roots of the other. As one would guess,

these are not closed solutions but require iterating computations. Usually, how-

ever, the solutions converge rapidly.

IAP



CHAPTER 3

Scale Transformation

In the previous chapter we have considered various methods by which one may

transform a data matrix with reference to origin. In this chapter we consider the

transformation of the matrix by a multiplying or scaling constant. It is possible,

of course, to apply both origin and scaling constants but it is more convenient to

consider 'the two separately. As we have seen in Chapter 2, the problems involved

in transformation of origin have not been extensively considered in'terms of-miat1ix

approximation, or in terms of optimal properties of the residual matrix. Only the

effect of such transformations on the basic structure of the Matrix has been con-

sidered in some detail (Horst 1965). The problems of scale transformation includ-

ing rationales and procedures have been more extensively investigated, particularly

in the area of factor analysis which of course is a special case of matrix approxi-

mation. We shall in this chapter consider briefly the scaling of attributes, the

scaling of entities, and the scaling of both entities and attributes.

3.1 Scaling by Attributes

Here again, as in the case of transformation of origin, the scaling trans-

formation has been much more extensively applied to attributes than to entities.

The most obvious case of scaling by attributes is the transformation t standard

measures, so that the standard deviations of all variables or attributes are unity.

Such scaling is the most common among scaling procedures for factor analytic tech-

niques. In scaling by attributes, we simply multiply the natural order of a data

matrix on the right by a diagonal scaling matrix. In the case of the standardized

data matrix, this waling or diagonal matrix has the reciprocals of the standard

deviations of the variables in the diagonal position.

One may also have other rationales for scaling a data matrix or making a

scale transformation, but usually a decision must be made about scaling the attri-

butes unless there is good evidence for assuming that all of the variables are

measured in comparable units.
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In general one would not consider scaling only one of the attributes in a data

matrix, but this special case is of interest because it has interesting mathematical

properties. One can readily relate the latent roots and vectors of a covariance

matrix to another covariance matrix which has one of the elements rescaled. Form-

ally, the mathematics is similar to the transformation of origin by attributes.

However, mathematically it is just as simple to calculate new latent roots and

vectors from the original ones when the origins for all of the variables are trans-

formed as it is to calculate these when only a single variable is rescaled. To our

knowledge, the mathematics substantiating this statement has not been previously

presented in published .works but it can readily be demonstrated.

Rationales for scaling all the variables in a data matrix could readily be

found. A simple case is when all the variances are required to be equal or to be

unity. However, the relationship between the latent roots and vectors of a covari-

ance matrix and a generalized rescaling of the variables in tle covariance matrix

as functions of the new scaling parameters is extremely complicates and no simrle

relationships exist between the two. Even in the case of a rescaling of only two

variables, the mathematics for expressing the relationships between the new and the

old eigenvalues and eigenvFtors is complicated. One can, of course, always deter-

mine the new ones empkrically.

It is true that some types of multivariate analysis are independent of scale

transformation by attributes. For example, in the case of multiple regression

analysis, a simple relationship exists between scale transformations of tie dependent

and independent variables by attributes and the factor loading matrix. In this

special case, the factor loading matrix can be shown to be (Horst, 1965) merely a

supermatrixo the first matrix element of which is the identity matrix, and the

* " second the matrix of regression coefficients. A rescaling of the submatrix of

independent variables results simply in a reciprocal rescaling of the matrix of

*1
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regression coefficients. In the case of canonical correlation, it is also true

that the solutions are independent of the scaling of the subsets of variables.

Simple relationships exist between the scaling of the data submatrices by attri-

butes and the scaling for the corresponding regression matrices.

3.2 Scaling by Entities

A procedure much less common than that of scaling by attributes is scaling

by entities. Such data matrix transformations have rarely been used in practice

and the conditions under which one is Justified in using them do not appear to have

been extensively considered. One Justification for scale transformations of the

data matrix by entities might be the assumption that some of the entities are more

important than others in determining a solution for the approximation data matrix.

Such assumptions of differential importance of the entities in determining a

solution based on some prespecified criteria or rationale have not been generally

utilized. In the theory of least squares, as applied to multiple regression

analysis, some of the early theory utilizes the weighting of observations. If the

loss function for matrix approximation has been adequately formulated in mathe-

matical terms, then it should be possible to apply weighting functions to the

entities to satisfy this loss function. Rationales of this type, however, mut

obviously place adequate restrictions on the entity scaling matrix. For example,

the elements of the scaling matrix should probably all be positive and finite, and

perhaps some function of the weights should be a constant.

It Is clear that In the multiple regression model, if all of the entity scaling

weights were taken as zero except an subset equal in natber to the number of Inde-

pendent variables, then the least squares loss function would be at its optlam or

zero. This Is equivalent to choosing a subset, in sie equal to the number of

independent variables, on the basis of which to determine the regression vector.

Such a solution vould of course always yield a regression vector vhich would

r.



exactly reproduce the elements of the dependent variable in the sample. One might

impose further restrictions on the scaling matrix such that the moments of the

distributions of the estimated and actual dependent variables in the sample sat-

isfy certain conditions. For example, one could specify that the weighting vector

should be such as to yield a best approximation to a normal distribution for each

of the independent variables and also for the estimates of these independent

variables. To our knowledge, such rationales and mathematical formulations have

not been experimented with.

Perhaps the most important distinction between entity and attribute scaling

is evident in the multiple regression and canonical correlation approaches. We

have seen that for these models the scaling of attributes is reflected in a simple

manner in the multiple regression or weighting matrices. Obviously, this simple

relationship cannot hold in the case of entity scaling since the data matrix and

the regression matrix are not even conformable with respect to the entity order.

It is possible that for some arbitrary scaling an interesting relationship might be

found to relate the ectimated dependent variables to those estimated without scaling

as some simple function of the entity scaling matrix. However, these relationships

may be of no more than academic interest.

What we have said about the effebt of scaling on the basic structure of a

matrix with reference to attributes applies also in the case of entities. The

scaling or rescaling of a single entity results in a modification of all of the

latent roots and vectors of the original data matrix. The relationship between

the original eigenvectors and those resulting from the scaling of a single entity

can be expressed in terms of upper and lover bounds. Hoever, it Is difficult to

see of what practical importance such a single entity scaling would be. In general.

one would not expect a practical problem to be concerned with the rescaling simply

of a single entity selected arbitrarily, or even presumbly an the basis of sow

rationale, frm all of the entities in the sample.
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For the scaling of several entitics, the mathematics which indicate the

relationship between the original and the final or rescaled eigenvalues is much

more complicated than for a single entity. For more than one entity, therefore,

it does not seem practical to consider the mathematical relationships between the

matrices of the scaled and unscaled entities in terms of the eigenvalues and vectors

of their covariance or correlation matrices.

As we shall see in Chapter 8, it is possible to set up scaling procedures so

that the solution for the approximation matrix is independent of the original

scaling of the data matrices. This is true for either entity or attribute scaling

or both.

3.3 Scaling by Entities and Attributes

Just as we can have origin transformations by both entities and attributes

for the data matrix, so also can we have scaling by both entities and attributes

for any arbitrarily scaled or quantified matrix of observations. What we have

said about the rationale for entity and attribute scaling applies equally well to

any simultaneous scaling of both dimensions of the data matrix. Presumably any

complete theory of scaling transformations shculd provide for both entity and

attribute scaling. It should be possible to develop a rationale of scaling that

takes into account both sides of the matrix. This would be an important contri.

bution to the problem of metric in factor analysis specifically and in the analyses

of data matrices in general. It is, hovever, beyond the scope of this report to

consider in detail such dual scaling rationales.



CHAPTER 4

THE LOSS FUNCTION

Let us assume we have a data matrix which may have undergone some transforma-

tion, linear or nonlinear, by rows or columns or both, that we wish to approximate*

by the major product of two basic matrices with comon order less than the smaller

order of the data matrix. We indicate the deviated data matrix by Z, the factor

score matrix by X, the factor loading matrix by A, and the residual matrix by e.

We can then write

e = Z - XA' (4.1)

The problem is to determine X and A so that some function of the elements of e

will be optimized. Instead of considering the elements of e directly, we may

consider the covariance matrix E given by

E -e'e (4.2)

4.1 The Elements in the Loss Function

Without loss of generality ve may assume the scaling of Z in Eq. 4.1 to have

been such that ve need not divide the right side of Eq. 4.2 by N, the number of

entities. Ce of the simplest loss functions that has been commonly used, parti-

cularly in factor analytic work, utilizes only the diagonal elements of " in Eq.

4.2. Obviously, these elements are proportional to the variances of the residual

column elements in e of Eq. 4.1. The functicn of these elements most comonly used

in the loss function is simply their sum. This sum is simply the sum of squares

of the residual elements in e. It can be shown that traditional multiple regres-

sion analysis with one or more independent variables is a special case of Eq. 4.1

in vhich the solution for A and X is constrained so that the elements vanish in th,

colums of e corresponding to the independent variables. Consequently, the eorrv-

sponding diagonal eleaents of 9 in Eq. 4.2 are also zero. The X and A matrices are

deternined so that the sum of the diagonal elements in B is minimized. This formu-

lation of the multiple regression model does not appear to have been generally

obvious.
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In the case of one type of factor analysis, which some call principal com-

ponent analysis, only the diagonal elements in E are considered and A and X are

determined so that the sum of these diagonal elements is minimized. Here again,

we have simply the sum of squares of the elements in e. But in this case no con-

straints are put on any of the columns of e.

One may wish to utilize the offdiagonal elements of E or the covariances of e

in some function in determining X and A so as to optimize that function. In this

case we can write

6 =E - (4.3)

where DE is the diagonal of E, and hence the diagonal of e is zero. We may, for

example, wish to determine A and X so as to optimize sce function of the elements

of C. In particular, we might wish to minimize the sums of squares of the elements

of C. This means that we wish to minimize only the sums of squares of residual

covsriances.

More generally, we may write

- E - (4.4)

where P may be some value betveen zero and one. It has been customary in selectir.g

a loss function to take P as either zero cr 1, but there appears to be no ccpellir;

reason to restrict it to these two values.

In the maximum likelihood method of Lawley (1910), the canonical method of

Io '195.5), the minres method of harmon (1967), and the alpha method of Kaiser and

Camfrey (1965), P In Eq. !4.4 is taken as 1. As a matter of fact,, ma investigators

insist that only covariance matrix facto.ring procedures using P - 1 my be called

factor an4als. This convention has the sanction of usage but Aether it is

important or even Justifiable Is debatable. These Investigators call factoring

procedures which take P as zero "principal compoent analysis."
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4.2 The Loss Function

It is clear from the previous section that the mathematical function of the

residual matrix we wish to optimize depends on whether we consider the elements of

the residual matrix itself or the covariance matrix derived from it. We have sten

also that the sum of squares of the elements of the residual matrix is the sum of

the diagonal elements of the residual covariance matrix.

It will doubtless be simpler and more useful to discuss the loss function in

terms of €, given by Eq. 4.4, whose offdiagonal elements are the covariances of

the residual matrix and whose diagonal elements are proportional to but not greater

than the residual variances. We therefore restrict our consideration of the ele-

ments entering into the loss function to the elements of the cvariance matrix of

the residual matrix e, where the diagonal variances have been reduced by the pro-

portionality constant P.

In Chapter 8 we show that X in Eq. 4.1 can be determined so that

e • - C - A° (4.5)

where

c - zz (4.6)

From Eqs. 4.2 thro. -. 5 we have

C -P%3 a Ai +. a (4.7)

&*Pose now we writ ESq. T T in basic structure fora as

C - P mQS 6- % +Q0 6• Q % Y" - Q Q (ta.8)

wbare

min (ak) -i (a)) (> lax

A a 4.1
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Therefore from Eqs. 4.7, 4.8, and 4.11

C =Q Q6 Y Q (4.12)

If P in Eq. 4.4 is zero, then 6 in Eq. 4.12 will also be zero, as can be seen

from the developments in Chapter 8. If P = 1, then according to the definition

of e the diagonal of e will be zero. Therefore we can show from Eq. 4.12

tr 6 tr 3Y (4.13)

Perhaps the most obvious function of e in Eq. 4.12 to minimize is

= tr ,2 (4.14)

From Eqs. 4.12 and 4.14 we can show that

t 2 = r&D2 + r62 (4.15)trt t6 t6

However, the criterion of approximation should probably not be a function

alone of the residual matrix but also of the total variance. Therefore we choose

as a more rutional criterion

tr (6 2 + 6~2

- , 6 (2.16)tr (6 M2 + 6 032 + 6 ly2

But from Eqs. 4.7, 4a8, and 4.16 ve get

tr 6 2

tr (C - YE

As a matter of fact, $ as Liven by Eq. 4.17 to the loss function we seek to maxi.

size in Chapter 8. As is pointed out there# this function has the useful prqperty

that its dma value is unity.

4.3 The Loss Function in the MwxihLi kellhood Method of Nta.r Analysis

The type f loss function vhich is optimized in the mxlmium likelihood umthtd

of factar snalysis is kh %r caolicated tian the function given in Eq. 4.17,

althogh the procedure is believed by sem to provide useful criteria for indicating



the number of factors to be solved for. We shall indicate how we may express the

function of the e matrix in Eq. 4.12 which is maximized. If we let 6 be the

i'th element of 6 and 6 the i'th element of 6Y then the function maximized in

maxim'm likelihood factor analysis can be shown to be

=n(l + 0 ) Tr (1 ) (4.18)

where the continued products include all the elements of 6 and 6 y. Because of

the particular scaling which, as indicated in Chapter 5, is utilized by maximum

likelihood analysis, the number 1 occurs within the inside parentheses of Eq. 4.18.

4.4 The Maximum Likelihood Equations and the Loss Nincticn

We shall here consider a discussion by Joreskog (1967) which appears to be of

particular importance in considering possible loss functions. Using Joreskog's

notation we let

' 1 s" DAA (4.19)

(fTST2y' ff A = y'fA (I + A'y'IA) (4.20)

Equations 4.19 and 4.20 correspond to Joreskog's (1967) equations 24 and 14 respec-

tively. He states that the maximum likelihood estimates of A and 7 are defined

as the matrices satisfying Eqs. 4.19 and 4.20 or some equivalent ones. From Eq.

4.20 we get

(T' S " - I) ' A = ' 2A (A T-A) (4.21)

Premultiplying Eq. 4.21 by A'f 2 we get

- I)' 'A = (A"flA)2  (4.22)

From Eqs. 4.21 and 4.22

- I)T' A(A'Ti' S'V - I)T'A) " Yi A (4.23)
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Except for notation and a square orthonormai transformation h, this equaticni is

identical to our equation 8.67 in Chapter 8.

But note that Eq. 4.20 can be obtained very simply without 
the use of the

calculus. We write

S i = E (4.24)

We let

= Diag (E) (4.25)

From Eq. 4.24 we get
1 '1 1 1

y'2(s - AA)1* 1 (4.26)

Let

i = (4.27)

From Eqs. 4.25 and 4.27

Diag (e) = I (4.28)

From Eqs. 4.26 and 4.27

-
(4.29)

Let us require that A be determined so that

-I)f-TA = 0 (4.30)

From Eqs. 4.29 and 4.30

(S- Ali I)'2A = (431)

From Eq. 4.31
1/

__ 4 - = A (I + '-"l A)  (4.32)(fT'ST ) T A =AY-1)

which is the same as Eq. 4.20. If it is true that the maximum likelihood estimates

of A and T are defined as the equations which satisfy Eqs. 4.19 and 4.20, 
or
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Joeskog's (1967) equaW;ons 14 and 24, then they can also be defined as the esti-

mates which satisfy our Eq. 4.30-

Let us now write in basic structure form

' sy" - I) = QM8MQ M ' + Q 808 QO1 - Q y - q Io q (4.33)

where 6 are the m largest roots of 8'ST"  - I, 6 are the next 0 lgest,

and - 6 are the Y negative roots. If we let

= 6 (4.34)

then

tr A'Ty'(l'Sy-y - I)f' A = tr 6 (4.35)m

and

tr (Yisy-j I)2 = tr (6 2 +8 2+ 6, 2 (4.36)

and the solution 4.23 minimizes

tr ( Sfe  I) 2

This is equivalent to our equation 4.17 for the particular scaling of Eq. 4.19.

If, as Jireskog (1967) maintains, Eqs. 4.37 and 4.18 are not simultaneously mini-

mized, then Eqs. 4.19 and 4.20 may be regarded only as necessary but not sufficient

conditions to satisfy the maximum likelihood criterion. It could therefore not be

said that all estimates of A and T which satisfy Eqs. 4.19 and 4.20 are maximum

likelihood estimates of these matrices even if the inequalities of Eqs. 4.9 and

4.10 are satisfied.

II



CHAPTER 5

.SCALE FREE SCALING

5.1 Introduction

We have considered in Chapter 3 the case of scaling by entities or by attri-

butes or both prior to matrix approximation procedures. We shall see in Chapter

8 that certain factor analysis procedures have an important invariance property

with reference to the original scaling of the variables. These are called scale

free methc1s. Actually the methods are n±t scale free because they involve or

imply specific scaling procedures. But without loss of generality it is shown in

Chapter 8 that for these methods we may begin with a data matrix of standardized

scores or any other scaling. We have seen that the general matrix approximation

equation is of the form

Z - XA' = e (5.1)

where Z is the data matrix, X is the factor score matrix, A is the factor loading

matrix, and e is the residual matrix. We have already considered the residual co-

variance matrix E which we may write

E = ee (5.2)

From Eqs. 5.1 and 5.2 we get

E = z . - Z XA" - AX Z + AX " (5.3)

In Chapter 8 we show how X may be solved for so that for some determination

of A we have

Z 'XA + AX'Z - AX#XA" AA (5.4)

Therefore we may have from Eqs. 5.3 and 5.4

E z'z - "AA (5.5)

If we let

C = Z'Z (5.6)

W - AA (5-T)
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we have from Eqs. 5.5, 5.6, and 5.7

C - W - E = 0 (5.8)

We may now designate the three terms in Eq. 5.8 as follows: We may call C the

total covariance matrix, W the estimated covariance matrix, and E the residual

covariance matrix. The data matrix X may be scaled in any way we please, including,

of course, the original or arbitrary units of measurement yielded by the experi-

mental procedures. For each of the covariance matrices in Eq. 5.8, we may consider

the corresponding diagonal matrices DC, DW, and DE, constructed from the diagonal

elements of the covariance matrices. The general problem is to determine the A

matrix so as to satisfy some constraint on some function of the elements of E.

But since the scaling of the original variables has been arbitrary, we may insist

that the determination of W be based on some rescaling of the variables. Any re-

sealing of the variables will of course affect the variances in the diagonals of

the variance matrices in Eq. 5.8. Let us now consider a scaling matrix D and write

from Eq. 5.8

D (C - w - E) D =0 (5.9)

Let

Y a DCD (5.10)

W = DWD (5.11)

C = DD (5.12)

From Eqs. 5.9 through 5.12 e have

Y - W -, = o (5.13)
Now for the dirgonal matrice.s cOr'V'skjondin% to th2 rscele cov trijnc. met;.ic:s

gevan b t er ttms of Eq. 5.13, e hava D, D !,nrd D . The.se uxi.c m. , c On-

sistof the rescaled variances of the total, the estimated, and the residual vari-

ances respectively. Let us consider now some interesting possibilities for the

selection of the scaling matrix D.

~44
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5.2 Total Variance Scaling

We may determine D so that the variances of the total covariance matrix Y are

all unity. If C has been calculated from the deviation data matrix X, its off

diagonal elements are the covariances among the original variables and the diagonal

elements are the variances. Therefore, if we wish to have

DY =1 (5.P)

it is obvious that we must have

D= D C (5.15)

Therefore we have from Eqs. 5.10, 5.11, 5.12, and 5.15

y D CD 2 (5.16)

1 1
W =DC-2 WD -2  (5.17)

. 1
SDC 2ED -2 (5.18)

It is clear, therefore, that Y is simply the familiar matrix of correlation co-

efficients. This is of course the matrix from which traditionally moot factor

analyses have proceeded. It is the basis of most of the classical principal com-

ponent analyses and more recently the minres analysis of Harmon (1967).

5.3 Estimated Variance Scaling

There is no compelling reason, however, for choosing the total variance scalin-.

We may wish to choose D so that the variances of the estimated covariance matrix W

are all unity. This means that the oft diagonal elements of the rescaled estimated

covariance matrix w are correlation coefficients. If we wish to have

DW  i (5.19)

we must have

D D 4 (5.20)
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and vc have fron Eqs. 5.10, 5.31, 5.12, and 5.20

YDW-7CW (5.21)

W = Dw " -lw (5.22)

6 - DW-kED (5.23)

If we substitute frcm Eq. 5.7 into Eq. 5.22 we have

U) = D; AA 'DV7 (5.24t)

We m let

a- =Dw'A (5.25)

Now a is the factor loading matrix corresponding to the estimated variance scaling.

It has the interesting property that the sum of squares of the factor loadings for

each variable is unity. This scaling is used in the alpha factor analysis of Kaiser

and Caffrey (1965) and in the caunlity scaling which e have discussed elsewhere

(Horst, 1965).

5.4 Msifual Variance Scaling

Instead of choosing D so that the total or the estimated variances are all

unity, we yW vish to choose it so that the residual variances are all unity. In

this case, the rescaled residual covariance matrix would have correlations for

offCUiagnsl elemnts. Here we select D so that

D m I (5.26)

Thereft" we anwt have

D aR (5.2T)

and e have froi qs. 5.10, 5.11, 5.12, and 5.27

Y DX -C%~ (5.28)
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W = %kME-i(5.29)

,--DE 2E • (5.30)

This scaling is used in the maximum likelihood factor analysis procedures of

Lawley (1940) and the canonical factor analysis procedures of Rao (1955).

5.5 The Generalized Scale Free Method

We have seen that as special cases we may scale the data matrix so that the

total, the estimated, or the residual covariance matrix is a correlation matrix.

For each case we may begin with an arbitrary scaling. Therefore the three methods

are called scale free. It is clear, however, from Eq. 5.8 that the total covari-

ance matrix C is by definition the sum of the estimated and the residual covariance

matrices. Therefore the total variance diagonal matrix is simply the sum of the

estimated and the residual variance diagonal matrices. We may therefore consider

a more general case of scaling in which the scaling matrix D is the reciprocal

square root of a weighted sum of the estimated and the residual variance matrices.

We may let

D- Pw DW + PE DE)(5.)

where PW and P are weighting scalars. Suppose we let p be a value such that

0 Z P Z (5.32)

and

q - -p (.3

We now let

Srk (534)
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If we take p = .5 and substitute in Eqs. 5.34 and 5.35 respectively, we get

Pw = 1 (5.36)

PE -31 (5.37)

From Eq. 5.8 we have

Dc - DW + D (5.38)

From Eqs. 5.36, 5-37, and 5.38 in Eq. 5.31 we get

D = D (5.39)

which is the same as Eq.. 5.15.

If we take p = 1., we get from Eqs. 5.31, 5.33, 5.34, and 5.35

D D w4  (5.o)

which is the same as Eq. 5.20.

If we take p - 0, we get from Eqs. 5.31, 5.33, 5.34, and 5.35

D a(D- 0-41)

which is the sme as Eq. 5.27.

Wb see therefore that by taking the special cases for p = .5, 1, and 0 the

scaling matrix given by Eq. 5.31 gives the scaling procedure utilized in various

factor analytic ratiimales considered by previous investigators. However, we may

let p take any value in the range indicated by Eq. 5.32 and the use of the scalig

atrix D can still be regarded an a scale free procedure. This 8eperliztic:. of

the scaling matrix vill be dveloped mr full y in Chapter 8..



cnAm 6

SIP LE STRUCTUE

6.1 Criteria of Simple Structure

We have seen in Chapter 5 that we may write the matrix approximation equation

in the form

Z-XA' -e =0 (6.1)

where Z is the data matrix, X is the factor score matrix, A is the factor loading

matrix, and e is the residual matrix. We have also specified that X and A are

basic and their common order is less than, either order of Z. We have said that

for any given A we shall define X so that the residual covariance matrix e 'e = E

is given by

C- AA = E (6.2)

where

C Z'Z (6.3)

In Chapter 9 we show that the number of pairs of factors yielding the product

XA' is infinite. le wish to put some restriction on A so that the solution becomes

unique. We may consider some specified solution to X and A that optimi=es a speci-

fied loss function, as discussed iL. Chapter 4. Further then, we may consider a

square basic transformation X of A such that

B -Ah (6.)

We may now require that h be uniquely determined so that the elements of B will

satisfy some predetermined set of criteria. This general problem as first con-

sidered ;jy Thurstone (1947). He specified that the structure of the matrix B should

be as simple as possible. He llsted what he regarded as the criteria of simplicity.

This concept he called simple structure. His criteria of simple structure ware:

1. Each row of the factor matrix B should have at least on zero.

i. Each coli of B should have at least a zero factor loadings, where a is

the m ber of factors.
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3. For every pair of columns of B there should be several tests whose entries

vanish in one column but not the other.

4. For every pair of columns of B a large proportion of the tests should have

zero entries in both cclumis.

5. For every pair of columns there should preferaLly be only a smail number

of tests with nonvanishing entries i.a both columns.

One of the difficulties with these criteria is that they are not stated in

precise mathematical terms. Such statements would be necesseay in order that

mathematical functions could be optimized. However, it is possible to formulate

mathematical functions of the elements of B such that, given A, the matrix h can

be solved for which optimizes these functions. As indicated in Chapter 9, many

attempts have been made to incorporate the consequences of at least scme of

Thurstone's criteria into mathematical functions which can be optimized by suitable

determinations of the elements of h in Eq. 6.4. In addition to those that have beei,

proposed by others, we present an analytical procedure in Chapter 9 that appears to

have same advanta6es over others previously available. The chief advantage of the

vethod is that it appears to work with a great variety of correlation matrices ant'

factor analytic procedures.

6.2 Scaling of the Arbitrary Factor Matrix

Several problem arise in the transformation of an arbitrary factor matrix A

to a simple structure zatrix B. irxespective of Vhat method of solution for A has

been used and vhat rationale w determining the transformation matrix h to adopted.

One of these concerns the scaling of the factor loading matrix A prior to trans-

formation. Suppuse we have a factor loadine utrix A deterained in soe manner.

May methods are nov available. A number of these we have considered in Utail

elewhere (Horst, 1965). In Chapter 8 we discuss a gemeral approach. Six specific

cses of the general approach are identical or slailar to methods that have



previously been proposed by others. In any case, with the great variety of methods

available it is to be expected that the resulting A matrices could differ greatly

for the same data. In particular, we may consider the diagonal matrix

DA, = Diag (AA') (6.5)

Equation 6.5 may e regarded as the diagonal matrix of the estimated variances.

In some contexts its elements are called the comunalities. Now these communalities

may vary greatly not only from one method of analysis to another but also from one

element to another for any given method of analysis. It is to be expected that in

the solution of B in Et.. 6.4 the variables witn the smallest comounalities will have

the least influence in the determination of h and hence the elements of D. The

weight that a variable can have in the determination of h is then a function of

its ccamality. It has been argued therefore that, for any function purporting

to optimize simple structure criteria, the arbitrary matrix A should be rescaled

by rows prior to the application of the analytical simple structure procedures.

We may therefore write

a= DA (6.6)

and let

D a h (6.T)

The simle structure criteria are now sought for 3 instead of B In Er. 6.4. A

reaonable rationale which has been rather genorally adopted is that in simple

structure solutions each variable should be elven equal weight. This means that

we should have

Frca S. 6.6 ad 6S therefore ve have

D AA "IA (6.9)



This simply means that the arbitrary facto- matrix i. is normalized by rows prior to

transformation.

The usual procedure after the matrix nas been solved for is to descale the

metrix back to the B matrix by the equation

B = (6.10)

However, one of the chief arguments Tn favor of the simple structure concept has

been that not only does it provide a unique solution for the factor loading matrix

but it also facilitates interj.-et&tion of the tests and the factors. This latter

claim appears to have been well substantiated over the yeara, giving considerable

Justification for the taxonomic objectives or factor analysis. For purposes of

interpretation it is still possible that the matrix rather than the B matrix is

generally more usef-vi. However, complications arise when one attempts to use the

8 matrix in the solution of tha factor score matrix. This topic is considered in

Chapters 7 and 10.

It iu of interest to note that the estimated variance scaling discussed in

Chapter 5 can yield directly an A matrix whose rows are by definition normal vectors,

i.e.

D , = (6.1i)

6.3 The Transformation Matrix

There has been considerable disagreement sbout constraints on the h matrix to be

imposed in the simple structure solution. In general, most investigators agree that

the matrix should be normal by columns so that.

Dhh - =1 (6.12)

Some investigators require further that h be orthonormal so that

h'h = I (6.13)

This issue has been considered at length by Harmon (1967) and Horst (1965). One

advantage of the orthonormal constraint is that, for some types of solutions, un-

correlated or orthonormal factor scores will results. Another is that we have the

equality

BB" a AA' (6.14)

so that Eq. 6.2 can be written
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C - B" = E (6.15)

Perhaps the chief advantage of relaxing the orthogonality constraint an h is

that a more clearcut simple structure results in the B matrix and that the factors

become more readily interpretable. This implies that the taxonomic objectives of

factor analysis are more readily achieved by the oblique or nonorthogonal trans-

formation than vhen orthogonality is imposed.

A disadvantage of the oblique procedures is that in general they have been

much less satisfactory frm a computational point of viev. By far the best known

and most used OrthogonO.l procedure is the varimax method of Kaiser (1958) or vari-

ants of it (Horst, 1965).

Another disadvantage of the oblique procedures is that frequently it is

difficult to keep one or more of the factors from collapsing into other factors.

Nevertheless, it is probable that the constraint of orthonormality on the trans-

formation matrix h is undesirably restrictive. Chapter 9 presents a method that

does not impose this constraint and appears to work vell with different types of

data.

6.4 The Problem of Signs

Ce of the problems encountered in simple structure transformation procedures

has to do with sign changes. Unfortunately, the importance of this problem has no,

been 3enerally recognized. The sign problem has two distinct aspects. Suppose we

have given a simple structure matrix B as in Eq. 6.4p obtained by one of the analy-

tical methods available. Most of these methods optimize some function of the

squares of the elements of B. Such a matrix of squared elements we may indicate by

b = B(2) (6.16)

where the supersctipt (2) means that each of the elements in B has been squared.

Suppose now we let

i L B iR (6.17)
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where i L and iR are sign matrices. It is clear that whatever the i matrices we

will have

b = (6.18)

(2)= B(2) (6.19)

Therefore for those methods of transformation which optimize a function of

the elements of b, the corresponding matrix B may still require a pre- and post-

multiplication by optimal sign matrices iL and iR respectively to give meaningful

and interpretable simple structure factor loadings.

We indicated at the beginning of this chapter that the sign problem has two

aspects. We may see now that one of these is the postmultiplier and one the pre-

multiplier. Many investigators have found that in using an available transforma-

tion procedure some variables that should obviously have high positive loadings

actually have high negative loadings and vice versa. It has been proposed that in

such cases one merely reverses the sign of the loadings for all elements in the

factor vector where the loadings of wrong signs occur. Certainly one may reverse

signs of all elements in a given column of a matrix without affecting in any way

the major product moment of the matrix. This would appear to be obvious but it is

frequently overlooked. One is therefore at liberty to reverse signs by columns in

either the arbitrary factor matrix A or the simple structure matrix B. But in many

cases one cannot get rid of all high negative values in a column of B by reversing

the signs of all elements in it, for the simple reason that the column may have

both high positive and negative values in it.

This brings us then to a consideration of the left sign matrix i L  Thurstone

(1947) has emphasized that the simple structure concept and the positive mifni-old

concept are independent. He defines the positive manifold simple sIructure factor

matrix as one which has all positive elements or one in which thl Uegative elements
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are small in absolute magnitude. It is, however, possible in most cases to approxi-

mate the positive manifold for the simple structure factor matrix by appropriate

pre- and postmultiplications by sign matrices. The interpretation of the left

sign matrix may now be clarified. We have seen that the major product moment of

the factor loading matrix is invariant with respect to postmultiplication of the

factor loading matrix by a sign matrix. Suppose now in Eq. 6.1 we postmultiply

by the sign matrix i. This gives

ziL - XA i ei = 0 (6.20)
L L L

From Eqs. 6.2 and 6.3 we can also write

iLzizL - iL Ai L i LEiL (6.21)

Also from Eqs. 6.3 and 6.15 we may write

iLZ "Zi L - iLBB 'i L = iEi L  (6.22)

Now it can be shown that any of the loss i'unctions we have considered in

Chapter 4 are invariant with respect to a pre- and postmultiplication of the

residual variance matrix E by a sign matrix. We see further also from the first

term on the left of Eqs. 6.20, 6.21, and 6.22 that premultiplication of either the

A or B matrix by iL implies postmultiplication of the data matrix by the same sign

matrix. Suppose then we find an aL aandan iR matrix in Eq. 6.17 which according

to some acceptable criterion gives a best approximation to a positive manifold. We

may then interpret iL as a matrix that indicates by the position of its negative

elements the columns in the data matrix Z whose elements should have their signs

reversed. Such situations are encountered in the factor analysis of personality

test items and other variables where the direction of the scale is not clear and

has been arbitrarily specified by the scoring procedure.

There is, however, still some ambiguA4Ay in the determination of the i L and i R

matrices. Assume that the i matrices have been determined to give a satisfacto-'.,



positive manifold for 0 in Eq. 6.17. We can write Eq. 6.17

0 = (-i L) B (-iR) (6.23)

The question then arises as to whether we should use the i matrices as given by

some optimizing procedure or reverse the signs for both i matrices. The interpre-

tation of the factors is usually based on an inspection of the variables having

hig loadings in them. It is immaterial whether for the right multiplier we use

i R or -i . For the left multiplier we must then decide whether interpretation

will be simpler by reversing the scoring as indicated by i L or -i L  If one has

some good a priori basis for deciding which is the "low" and which the "high" end

of the scale for each variable and has provided scoring procedures accordingly,

then presumably there should be very few negatives in i L . In general, for lack of

a better criterion, one would choose that iL or -iL which has the fewest negatives

in it and then choose the corresponding iR or AiR .

In any case, one may not willy-nilly change the signs of individual factor

loadings to suit his fancy or preconceived notions. This procedure is not uncommon

and is completely invalid. If the factor loading matrix is small and the simple

structure clearcut, it is frequently possible to determine by inspection the

optimal i matrices for approximating the positive manifold. However, for large

numbers of variables and factors, inspectional procedures are impractical and

objective mathematical and computational procedures are needed. Two of these we

have given elsewhere (Horst 1965, 19 6 Bal, and the method of Chapter 9 attempts to

take care of the sign problem.
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'M { FACTOR SCORE MATRIX

7.1 The Role of Factor Scores

We have seen in previous chapters that the data matrix may be approximated by

a lower rank matrix which is the major product of two basic matrices, one of which

may be regarded as the factor score matrix and the other the factor loading matrix.

We express this relationship by

Z-XA-' e =o (7.1)

where as in previous chapters Z is the data matrix, X the factor score matrix, A

the factor loading matrix, and e the residual matrix. The number of columns in

X and A are presumed to be much less than in Z. Traditionally, there has been

much greater interest in the determinaV',in of A or some transformation of it, B,

as discussed in Chapters 6, 8, and 9, than in the matrix X. A study of the matrix

B has been thought to yield interesting and useful information about the fundamental

or "primary" variables of a scientific discirline. Equation 7.1 implies that the

data matrix for a group of persons with respect to observed attributes can be

approximated by appropriate linear combinaticis of a much smaller number of attri-

butes. We have seen in Chapter 6 that the matrix A is usually transformed into a

simple structure matrix B by some tzansformat.on matrix h so that

B = Ah(7.2)

Now for Eq. 7.1 to hold identically when A is replaced by B, we first write

Z - X h' e - =0 (7.3)

If we let

Y = X " l (7.4)

and use Eqs. 7.2 and 7.4 in Eq. 7.3, we get

Z-YB -e 0. 5)

It is clear then that

" XA (7.6)



7-2

A more general treatmant is given in Chapter 9. But in any case, we may now

regard Y in Eq. 7.5 as the simple structure factor score matrix. If h is a square

orthonormal matrix as a special case, such as in the Kaiser (1958) varimax, then

e have simply

Y = Xh (7.7)

Although the major interest has traditionally been in the simple structure

factor loading matrix B, in recent years much interest in the Y matrix of simple

structure factor scores has also been growing. This is true not only in psychology

where the factor techniques had their origin and greatest development but also in

other scientific disciplines concerned about the basic or primary attributes of

particulai, sets of entities under study, such as geographical units, educational

institutions. members of governmental bodies, and so on. It seems reasonable that

if one can discover or define adequately a relatively small number of primary

variables of a discipline, then it could be useful to estimate the values of these

variables from a much larger number of observed and arbitrarily defined variables.

Such a procedure could yield a much more parsimonious characterization of the

entities under study almost as completely as a much larger number of observed

variables.

Furthermore, these primary variables could characterize the entities in terms

that are objectively established by the techniques. This can make for a more

objective, parsimonions, and unambiguous taxonomy as a basis for characterization

and classification of entities or individuals within areas of human interest or

activity.

But aide from the use of factor scores as a basis for parsimonious and un-

ambiguous characterization of entities, these scores can also be utilized for

Increasing the accuracy of statistical prediction in a wide variety of situations

and settings. The use of factor measures in prediction techniques hbs been con-

sidered by Horst (1941, 1965), Lelman (1951), and Burkt-t (1964).

4-1
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7.2 Estimation of Factor Scores

In Chapter 10 we shall consider in some detail the technical problems involved

and procedures for estimating factor scores from the data matrix and the simple

structure factor loading matrix. Rationales and computational procedures for

calculating the simple structure factor loading matrix are presented in Chapters

8 and 9. Here we shall indicate some of the conditions that might be satisfied

by the factor score matrix. Most of the work done in this area has been ccicerned

with the X factor score matrix in Eq. *7.1 rather than the simple structure factor

score matrix Y in Eq. 7.5. This work has been reviewed and amplified by Harris

(1967) and by McDonald and Burr (1967). The treatment in both of these presenta-

tions has considered methods of approximating the X fPctor score matrix in Eq.

7.1 rather than the Y simple structure factor score matrix in Eq. 7.5. But it can

readily be seen that if we have solved for the X factor score matrix and the simple

structure factor loading matrix transformation h, we can solve for the simple

structure factor score matrix by means of Eq. 7.4. We shall therefore consider

the principles that appear relevant in determining the factor score matrix X. In

the methods discussed by Harris and by McDonald and Burr, there is a confounding of

estimation methods and scaling method. It is important that these be kept clear 7

separate. Harris lists five methods that bave been proposed. Recalling that

is the diagonal matrix of residual variances, these methods are

X 'RA (7.8)

X2 * 'hE 1AA *D 1A 1(T.9)

X3  zA (A A) (l.10)

X Z, (7.U)

1



Suppose now in Eq. 7.1 we assume that

Z'Z = R (7.13)

where R is a correlation matrix. Let us then consider a postmultiplication of

Eq. 7.1 by some scaling matrix D, thus:

(z - XA" - e) D = 0 (7.14)

from Eq. 7.14 we have

ZD - XA D - eD =0 (0.15)

Let

ZD = U (7.16)

DA = of (7.17)

eD = I (7.18)

From Eqs. 7.16, 7.17, and 7.18 in Eq. 7.15 we have

U - x&" - e = 0 (7.19)

First we note that Eqs. 7.9 and 7.10 are not essentially different, for it can

be readily shown that Eq. 7.10 minimizes tr C& for D = I and Eq. 7.9 minimizes

this trace for D a DE. This property of minimizing the sum of squares of residuals

(or weighted residuals) has been regarded as a desirable property of the factor

score matrix.

Next we note that Eq. 7.8 is independent of any scaling matrix D.

we let

X - U (U)'-lot (7.20)

Irm Rqs. 7.13, 7.16, and 7.17 In Eq. 7.20, we have

X - ZD(DRD) DA (7.21)

which becomes

X - ZR 1A (7.)

and this Is the same as Eq. 7.8. This property of independence of scale of a

factor score matrix imy also be regarded as desirable.

V
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Harris (1967) regards Eq. 7.11 as a sort of "quick and dirty" method of

estimating the factor score matrix. Be that as it may, this method may be general-.

ized to a scaled data matrix by

X = ZDA (7.23)
-1

In particular, we may have D = DE  so that Eq. 7.23 becomes

X=ZDE'1 A (7.24)

The forms 7.11 and 7.23 appear to have little to recommend them. However, we shall

see presently what happens when we consider another property of the factor score

matrix which has been regarded as desirable. This is that X shall be orthonormal

or

X'X = 1 (7.25)

First, let us rewrite Eqs. 7.8, 7.10, and 7.11 in more general scaled form as

the three equations

x = ZR 1A (7.26)

Y2 =Z A (A'A) "1  (7.2T)

X- = ZD (7.28)

remembering that X is independent of scale. Suppose now we try to find the best

approximations to these three factor score matrices in the least square sense %i ch

satisfy Eq. 7.25. It is well known that these orthonormal apprrximatior matrices

are of the form

X - X(x'x) "  (T.29)

We my therefore write tM three orthonormal approximations to Eqs. 7.26, 7.27, an.I

7.28 respectively -.

SZR 1A(A #'1A)' (7.30)
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x5 = zA(A DA)41((A IDA)-'A 'DM(A °DAm l) (7.31)

X6 - ZDA(A#DRDA)"  (7.32)

It Is interesting that Eq. 7.32 becomes identical to Eq. 7.12, which was given by

-lAnderson and Rubin (1956), when D is taken as DE . Hence it appears that the

"quick and dirty" method may be made sophisticated by mans of residual variance

scaling and least square crthonozialization.

The forms 7.30 and 7.31 have not to our knowledge been previoualy presented

and these properties have not been investigated. It can, however, be shown that

a square orthonormal matrix q exists such that

XP X (7.33)

and that h Is given by

h - ((A*A) (A MMe) (A IDA)' )i A(A1 ) (7.34)

It should now be clear that the estimates X, and X4 of Eqs. 7.26 and 7.30

respectively are independent of scale, and the estimates of X2P, .X3 , mX5 rd "of

Eqs. 7.27, 7.28, 7.31, and 7.32 respectively depend on the scaling matrix D. In

Chapter 5 we have cmaidered the gsenerazed scale free scaling matrix which is the

basis of the scale free methods discussed in Chapter 8. The matrix D In these

latter fer estimates et X y be tan as the matrix of Sq. 5.31 of ClApter 5

whre the parameter p takes any value between 0 and 1. In particular, we can have

o of the thre scalings

D a c'4

uIdLh ae discussed In Chapter 5.
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7.3 Other Desirable Properties of the Factor Score Matrix

We have already suggested that one desirable property of thf _'actor score

matrix X is that it be scale free. Another property we have considered is that

the sum of squares (or weighted sums of squares) of the residual matrix elements

be minimized. This property implies that the residual matrix is orthogonal to the

factor loading matrix, that is,

eDA = 0 (7.35)

where D may be the identity.

3owever, this condition is not consistent with the variable loss function

where P in Eq. 4.4 af Chapter 4 is other than zero. Therefore it is of question-

able value except for this special case which yields the so-called principal com-

ponents factor loading matrix. That the factor score matrix X should be orthonormal

seems desirable but perhaps not at the cost of other properties.

Perhaps the most important property of the matrix X is that for a given A

the covariance matrix of the residual matrix be given by

C-AA" - e - (7.36)

This is txe solution proposed in Chapter 5, and the solution for the matrix that

satisfies this condition is given in Chapter 8 and c~msidered further in Chapter

10.

In addition to the condition implied in Eq. T.36, it is also desirable that

the factor core matrix be orthgonal to the residual matrix e. If this cmdition

is satisfied, then we have from Eq. 7.1

X'(Z - XA) - X'e - 0 (,.37)

If we have also tht X is orthonormal indicated in Eq. 7.25, then we have from

Eq. 7.3T
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X Z A (7.38)

If Z is such that Eq. 7.13 holds, then the left side of Eq. 7.38 is a matrix

of correlations of the factor scoree with the test scores or observed variables

and the factor loading matrix A can be interpreted directly as a matrix of these

correlations. There has been much wringing of hands over the decades that factor

scores cannot be calculated but only estimated. More recently, Guttman (1955b),

Harris (1967), and others have recognized that the "true" factor scores cannot be

uniquely calculated. Presumably "true" scores are those which satisfy Eqs. 7.37

and 7.38. It is surprising that the problem of uniqueness has been so frightening

when vc many have so courageously and ingeniously and profitably attacked the

nonuniqueness problem for tl-= Oactor loading matrix by the various simple structure

transformation approaches. In Chapter 10, we suggest an approach to the uniqueness

problem for "true scores."

A topic of considerable interest concerns covariance matrices involving the

various proposed estimation methods. Those involving the X matrices in Eqs. 7.8

through 7.12 have been presented by Harris (1967) and by McDonald and Burr (1967).

We shall not review them here. However, in Chapter 10 the covariance relationships

involving the factor score matrices considered there will be presented.

We also leave to Chapter 10 a discussion of the covariance properties of the

simple Stiuc.tu1e factor score matrices derived from the two types of factor score

rnutrices ,aerived an that chapter.



cHAPTE 8

G T.TRAIZE SCALMI AIMl LOSS PUIETION

8.1 The Residual Matrix

Suppose we let Z be an N x n basic vertical data matrix. We need make no

assumptions about transformations applied to the raw data matrix which have yielded

Z'*but it will be convenient to assume that transformations have been made such

that

R =z'z (8.1)

where R is the correlation matrix. We now consider an N x m basic matrix X where

m < n, and an n x m basic matrix A. We indicate the vertical major product of

these two matrices by U so that

U = XA **(8.2)

Then U is of the same order as Z. Since A and X are both basic and their common

order is m, U is of rank m, and therefore nonbasic. Let us assume now that A

and X are to be determined so that U is in some sense, to be subsequently specified,

an approximation to Z. We -then write the residual matrix e as

e = Z -U (8.3)

We shall determine X and A so as to optimize some function of the elements of e

in Eq. 8.3. More specifically, we shall begin by considering the covariance matrix

E of e which is given by

From Eqs. 8.3 and 8.4

E = Z'Z - Z u - U *z + U "U (8.5)

From Eq. 8.1, 8., and 8.5

E = R - Z XA# AX AZ + AX 'XA (8.6)

Without at once specifying the solution for A, we shall require that the solution

for X shall be some function of Z and A such that

AA' Z 'XA* +AX Z - AX *XA, (8.7)
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We have then from Eqs. 8.6 and 8.7

E = R - AA' (8.8)

8.2 The Factor Score Matrix

Next we shall consider the solution for X which satisfies Eq. 8.7.

We let

A "RIA (8.9)

We indicate the basic structure of a by

Qr da Q2 G (8.1o)

and let

( (2 ( d ) - (8.11)

Then the solution for X which satisfies Eq. 8.7 is

r AQoZ- A Q (8.12)

To show that the solution 8.12 for X does satisfy Eq. 8.7 we have from Eqs. 8.2

and 8.12

Z'X = A AQ (8.3)

From Eqs. 8.2, 8.9, and 8.12 we have

0A
X"X = Q a A Q" o Q o A Q C, (8.14)I

From Eqs. 8.10 and 8.14 we have

x'x % d 2 Cy (8.15)

From Eq. 8.11

2 2)12 -2
d, =(I-(I-d )) 2 do "

0  (8.16)

But

(I - (I -da)) = 2(1 -(1 -d 2a' -d G (8-170,

From Eqs. 8.11, 8.16, and 8.17 (8.18)
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d y 2  -(2A 1) (8.18)

From Eqs. 8.15 and 8.18
x'x = 2C A -a  I (8.19)

Substituting Eqs. 8.13 and 8.19 into Eq. 87 gives the identity. Hence the solu-

tion 8.12 for X satisfies Eq. 8.7 and therefore also Eq. 8.8.

We have now to show that the solution 8.11 for A is real and finite. To do

this, we must show that the largest element of d 2 is less than or equal to 1 and

that the smallest element is greater than zero. From Eq. 8.8

R L - - R-1 AA'R-l (8.20)

From Eq. 8.20

A 'ER- A = R'A - A R'AA "R 'A (8.21)

Let

F = eR'1A (8.22)

From Eqs. 8.3, 8.9, 8.21, and 8.22

F F = C - (8.23)

F-om Eqs. 8.10 r'nd 8.23

(QU F') (Fq) = d Y _ a4 (8.24)

The left side of Eq. 8.24 is Grammian since it is a product moment matrix and

diagonal. Hence for all dI we must have

d, 2 (1 -d 2 ) o (8.25)

therefore

d 2 (.26)

T s h w t t l d i 2 "- A
To show that all d are positive, we need only show that A'R A is basic. By

definition, R is basic. A general theorem for the rank of the product of



matrices states that the rank of a product of two matrices cannot be less than

the sum of their ranks less their common order. If we let

.1
y = R-2A (8.27)

then the rank of Y must be equal to the rank of A which is basic. We have from

Eq. 8.27

yY = A'R'A (8.28)

But the product moments of a matrix have the same rank as the matrix, hence the
2

rank of Eq. 8.28 is its order and therefore for all da. we have

d1i2 > 0 (8.29)

8.3 The Factor Loading Matrix

Let us now return to a solution for the matrix A. We seek a solution which

will be scale free and which will have a variable loss function in the sense that

it will allow for differential weighting of the variance and covariance elements in

the covariance matrix E. We let

DR = Diag (R)

Ri

DA = Diag (AA')

DE = Diag (E)

From Eq. 8.8 ve write

E -Pw DE R PW DE AA (8.30)

where

0 P Pw z 1 (8.31)

Let

0 Zp P 1 (8.32)
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q =1-p (8.33)

i A = p/(l - 2pq) (8.34)

PE = q/(l - 2pq) (8.35)

D' = (PA DA + P, D ) (8.36)

From Eq. 8.30 we may write

D (E - PW I) D = D (R P DE -A D (8.37)

We may now regard the matrix D in Eq. 8.36 as a generalized scaling matrix

which may vary as the value p goes from 0 to 1. The parameters PA and PE in Eqs.

8.34 and 8.35 respectively have been constructed so that when p = 1, D A = A '

when p = 0, D2 =D.'l; when p = .5, D = DR. We may refer to DA2 as a diagonal
E R A

matrix of estimated variances, DE2 as a diagonal matrix of residual variances, and
2

DR  as a diagonal matrix of total variances. It is seen therefore that the inverse

of the matrix D2 In Eq. 8.36 is a linear combination of the estimated and the

residual variances. The special case for p = 0 may be recognized as the scaling

function adopted in what have come to be called maximum likelihood and canonical

factor analysis. The special case of p = .5 is the scaling function adopted in

what some refer to as principal component analysis, although this designation could

apply equally well to other scalings. This case is also the scaling functicn

adopted in what has been designated by Harmon (1967) as minres factor analysis.

The special case of p = 1 is the scaling function used in Kaiser's (1965) alpha

factor analyses.

Let us now consider the generalized loss matrix on the left of Eq. 8.30 or

its generalized scaled form on the left of Fq. 8.37. When the parameter PW in the

loss matrix is unity, the loss matrix is the one used in what have somewlat arbi-

trarily come to be called factor analysis models. When PW takes the value :%ero,

the loss matrix is the one used in what has equally arbitrarily come to be called
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the principal components model. It is seen then that the two special cases of
the general loss function parameter PW determine whether the analysis is called

factor analysis or principal component analysis. And the three special cases of

the generalized scaling parameter p determine what the corresponding factor analy-

sis, technique is called.

Suppose now we let

e = D (E - Pw DE) D (8.38)

We shall refer to e as the generalized loss matrix since it involves both the

scaling parameter p and the loss parameter PW" We shall also let

S = R - Pw DE (8.39)

G = DSD (8.J:o)

Q! = DA (8.41)

We may from Eq. 8.38 through Eq. 8.41 write

* =0-. " (8.42)

To solve for A we require that d be orthogonal to the generalized loss matrix 6.

that is,

S0 (8.43)

From Eqs. 8.42 and 8.43

Gt- = a - 0 (8.44

From Eq. 8.44

(oGQ4' = ci*t(8.45)

From Eq. 8.44 aaid 8.45

i = GY(O'"Got) (8.46)

i But from Eq. 8.42 we see that C is independent of any square orthonormal trans-

formation of y. We may therefore write Eq. 8.46 as
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O= Ga (a G01)~ (8.47.)

where h is any conformable square orthonormal matrix. In particular, we let

__tt" = (a '-a) (8.48)

and choose : so that

=1(aG) h (8.419)

Therefore without loss of generality we may write

-- = Got'*- (8.50)

8.4 The Loss Function

We shall see presently that Eq. 8.50 provides the basis for an iterative pro-

cedli'e for solving for O and hence also A. First, however, let us examine in more

detail the generalized loss matrix I and the determination of A which will opti-

mize some specified function of it. First we write the matrix G given by Eq. 8.40

in basic structure form as

G = Qm *m m + G YQ QY Q y (8.51)

where 8 matrices are of order indicated by their subscripts. If PW in Eq. 8.39 is

zero, then obviously y is zero and m + 0 = n, although this is not a necessary

condition for y to be zero. Suppose now we let

; = 8 1 (8.52)

From Eqs. 8.42 and 8.52

= Q6 6Y " " Q, 6y Q y (8.53)

Equations 8.51 and 8.53 are still perfectly general both with respect to the

scaling parameter p and the loss parameter Pw" The loss function involving the

loss matrix e may be chosen in a number of ways. In the case of the scaling param-

eter p = 0 and the loss parameter P W -, we have from Eqs. 8.39 and 8.40, and

Eqs. 8.33, 8.35 and 8.36
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Also by definition

o = 0 (8.55'

From Eqs. 8.52 through 8.54 1

DE2RL27' ,- I - = C (8.56)

From Eq. 8.56

DE ' RD _7 - i (8--7)

Now. from Eqs. 8.53 and 8.57 we may write

Q 0 QO " Q Y 6 Q = (QOP Qy, q. )  0B  Q

0 -6v Ol Q7 (8.58)

0 0 01<q"
where q is orthonormal and orthogonal to Q and Q and 0 + Y + m n.

From Eq. 8.58

I + , q ) I + 6 0 0

0 1 - 0 (8.59)

0 0

Now it can be proved that no element of 6 can .e greater than 1 because R is

Grammian and hence also ' R- ]' . From Eqs. 8.55 and 8.59

tr (I + €) = tr (Ip 4 6 ) + tr (I 6 ) +m (8.6o)

From Eq. 8.6o
tr 6 0 - tr 6V (B6



;Bui, is known (Bergmann, 1963) that the maximum likelihood solution for factor

analysis maximizes the determinant of I + e. It i ilo known that the value of a

determinant is equal to the jproduct of' its characLeristic roots or the basic diagonal

elements of the determinant of the metrix. Therefore the determinant of I + e is

given by

Y
Ii + eI = rr (l + 6 ) rr (1 - 6) (8.62)

With the constraints on 6 and 6Y Eq. 8.62 evidently increases as their elements

approach zero. In any case, Eq. 8.62 gives the loss function to be optimized in

the case of so-called maximum likelihood factor analysis. As JZreskog (1967) has

pointed out, "The maximum likelihood estimates are obtained when the n - mmallest

!oots are rs equal to one as possible in n approximate least squaresenSe.'"; Jis is

tantamount to sa,ing that the sum of the squares of the deviations of the roots of

I + 9 from unity shall be a minimum. But since the roots of I + 6 are those of

c increased by one, J6"reskog's statement implies that tr (6 + 62 ) shall be a

minimum. But from Eq. 8.53

tr 2 = tr 8 D +tr 6y2 (8.63)

The foregoing discussion is based on the choice of the scaling and loss func-

tion parameters of p = 0 end P W = 1 respectively, which are the ones adopted in

the so-called ma):imum likelihood method of factor analysis. We may, however,

regard Eq. 8.63 as a more generalized loss function appropriate for any and all

values of the scaling and loss parameters p and P W However, it is important to

22
note that tr €2 may be small in absolute value but could h't large compared to tr

G . Coputationally, a better function to optimize is

S-tr- 62 (8.64)
tr 0

But from Eqs. 8.51, 8.52, and 8.64

!!-Sao 2 (8.65)
tr 0
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From Eqs. 8.45 and 8.65

tr a Gcv (8.66)

tr G
2

We shall then take $ in Eq. 8.66 as the generalized loss function for any specified
value of m, the rank of the approximation matrix. We therefore seek to determine

a and hence A so that $ will be maxiL4 zed. The maximum value i can take is of

course 1, in which case tr *2 vanishes.

8.4 The Computations for the Factor Loading Matrix

To solve for A, we return to Eq. 8.47. Substituting from Eqs. 8.39, 8.40, and

8.41 we have

DA = [D (R -PW DE) D3 DA [A'D (D (R - PW DE) D) DA)'4 h (8.67)

From Eq. 8.67

A = (R - PW DE) D2A [A D2(R - PW DE) D2A] h (8.68)

Equation 8.68 suggests a convenient iterative set of algorithms for solving .

We begin with some approximation to A, say 0A. We then calculate a first approxi-

mation IDA to DA by

lDA DOAOA (8.69)

Next 'e let

DE = D - lD (.70)

For some prespecified values of p between 0 and 1, we calculate PA ad PE from

Eqs. 8.34 and 8.35. We then calcu.ate

I D2 (PA iDA IY -I  (e.7)

We let

Ur D; ,A (8.72)



is = R - PW lD E (8.73)

where PW is some prespecified value between 0 and 1. Then

iw = is iu  (8.74)

We then calculate 1
U "W and set up the supermatrix i IW1

A partial triangular factoring of this matrix gives

Fi (8.75)

We calculate the criterion

tr )40 tr (Du  S w) (8.76)

In general ve have

cDA  D A, (8.rr)

klD (rA kDA 
"

.

ku . kO~4 (A -7)

kU k kWA (.a90)

ks&R -PV kDE (.i

kWk(kS k)
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tr ( u'w)
k-lk (8.83)

tr (k D kS kD)

kt  kt kU" kW

Ak
(8.84 )

kk k

We repeat Eqs. 8.77 through 8.84 until Ok and $kl are sufficiently close.

8.6 Alfernative Ccmputatonal Procedures

Obviously, many alternative solutions for A may be available for special

values of the scaling and loss function parameters p and PW respectively. For the

case of p = 0 and PW = 1, computational procedures have recently been presented by

Jireskog (1967) and also by Horst (1968b). Previously, other methods have been

presented by Lawley (1940), Rao (1955), and Hemmerle (1965). There has been some

debate as to the difference of the procedures among maximum likelihood, canonical

correlation, and least square methods which utilize these scaling and loss function

parameters but we shall not elaborate these issues.

For the case of p = .5 and PW = 1, various computational procedures have been

presented, among which is one by Comrey (1962) and more recently the minres method

of Harmon (1967). For the case of p = 1. and PW = 1, Kaiser and Caffrey (1965) in

their alpha factor analysis have suggested a computational algorithm. For the most

familiar case of all when p = .5 and PW = 0, we have the principal axis or princi-

pal components method for which many computational methods too numerous to mention

are available.

Browne (1967) has discussed several variations of the scaling and loss function

parameters as well as variations of the loss function itself, and reports the

development of computational algorithms and computer programs for these variations.

However, to our knowledge, none of the previously available computing algorithms



or computer programs are readily adaptible for variable scaling and loss parameters.

The computing algorithms given in Eqs. 8.77 through 8.84 are obviously readily

generalizable, as can be seen from Eq. 8.79 whici involves the PA and PE functions

of the scaling parameter p and Eq. 8.81 which invclves the loss parameter P "

8.7 Special Problems

However, several important questions remain to be considered about the compu-

tational procedure. The first of these has to do with the loss function i given

by Eqs. 8.66 and 8.83. Obviously, both the numerator and denominator of this

ratio are extremely complicated functions of A and it is probable that many

stationary points or local optima may exist. Whether and under what conditions

the solution indicated gives in the limit the absolute maximum is a most pertinent

question. Certainly for the case of p = -5 and PW = 0, the well known principal

axis case, we have shown (Horst, 1965) that the solution converges to an absolute

maximum. For the case of p = 0 and PW = 0, Anderson and Rubin (1956) have shown

that, unless constrained, th solution for A which maximizes $ is not unique.
Aside from the question of uniqueness of the solution or the attainment of

the absolute maximum, we must also be concerned with the questions of whether the

solution converges, how rapidly it ,nverges, whether the residual variances given

by DE are positive, what will constitute a suitable first approximation for the A

matrix, and the number of factors to be solved for. None of these questions has

been completely adequately answered. However, for a number of different types of

data that have been analyzed, the solution presented in this chapter appears to be

reasonably satisfactory with respect to each of these questions.

As a first approximation to the number of factors, we have adopted the rule

of Kaiser (1958) that the number of factors so~ved for shall be equal to the number

of roots of the correlation matrix greater than unity. With some of the data which

we have analyzed, this num' r appears to give one or several factors too few, while



with others it appears to give one or several too many. Therefore, it is probablo

that, lacking an adequate absolute criterion for the number of factors, the Kaiser

rule may be taken as a first approximation. If some adjustment of the loss function

is available that takes account of the number of factors m, one can then calculate

these adjusted functions for each of some specified range of m which includes tIe

Kaiser value. For example, one could calculate the function for the integers lying

between mk - pmk and mk + pm k where 1 > p > 0. Specifically, p might be .2 or .3.

J~reskog (1967) has suggested a method similar to this for the case of the scaling

parameter p = 0 and the loss parameter P = 1. His loss function, however, is not

identical with ours.

8.8 First Approximation to the Factor Loading Matrix

As a first approximation to the A matrix we could take the first m principal

axis factors of the correlation matrix. This is the case of the scaling parameter

P = .5 and the loss parameter PW = 0. This procedure, however, has not yielded

satisfactory results with some data. It can lead to a local maximum for -the loss

function rather than the absolute maximum. We have presented elsewhere (Horst,

1968b) a better first approximation.

We let

DR. =Diag (R- ) (8.85)

D= 1 (8.86)

oDA I - oDE (8.87)

0 D
2  (P A 0DA + PE 0DE) -l (8.88)

Pk - (Pw oD2 ODE) (8.89)

oG oD (R - Pw DF,) oD (8.90)



Let the basic structure of 0G + Pk I be

qm dm qm + qs ds qs = 0G + P k I (8.91)

Then the initial approximation to A is

1 1
0 =nD-qm(d - P k 1)2 (8.92)

Equations 8.69 through 8.84 indicate the successive approximations to A.

8.9 The Problem of Improper Solutions

The question of positive DE values is important for the case PA = 0. If it

is not positive, -en the scaling matrix D whose square is given by Eq. 8.36 may

have imaginary or infinite elements. The conditions under which elements of D

may become infinite or imaginary have not been adequately investigated. The

methods of J~reskog (1967) for the parameters p = 0, PW I. prevent such cases, as

does the minres method of Harmon for the parameters p = .5 and PW = 1. In our own

computing procedure, if any element of a D approximation is 1 or greater, the

corresponding vector for that approximation of the A matrix is arbitrarily re-

scaled to yield a DE element less than 1 by some specified small number such as

.0005. In the final. approximation for A one can identify such variables by the

,c' that 6ieir DE value is equal to this value. So far, n cases of real data

have been encountered where any of the final DE elements are at the constrained

minimum with the exception of the solutions having the parameters p = 0, PW = 0.

For this case, one or more of the DE values is always at the constrained minimum.

This is to be expected as showm by the work of Rubin and Anderson (1956). An

interesting and unanswered question is how for this case the variables reaching

the minimumD E values will vary according to the method of solution. Also of

interest is how the DE values uif variables may approach the constrained minimum

for p = 0 as PW goes from 1 to 0.



No mathematical proof of the convergence of the loss function or the solution

for A for the method here presented has been found. However, for all sets of data

on which the method has been tried, satisfactory convergence does occur. It has

been proved (Horst, 1965) that the method converges for the case of p = .5 and

PW = 0. This is of course the traditional principal axis solution for the corre-

lation matrix with unity in the diagonals.

The rate of convergence for the sets of data subjectcd to the procedure varies

and further evidence is given in Chapter 13. In general, the loss function at

first rapidly approaches an asymptote and later the approach is much slower. For

the case of p = 0 and PW - 1, acceleration procedures have been introduced which

greatly increase the rate of convergence (see Horst, 1968b).

8.9 Proof of Sce.le Free Property..

We shall now prove that the generalized scaling and loss function procedure is

independent of any scaling of the data matmix by attributes and hence also of any

scaling of its covariance matrix. This proof supports the assertion that without

loss of generality we can begin with the correlation matrix. To demonstrate this

independence we let A be an arbitra y positive definite diagonal matrix. From Eq.

8.68 we can write

-1 2 1- -1 2 -1 A-1 2 -1 2AA = A(R - PWDE) A(A D A-).tA[ (A' DA )A(R - PA- ))A(& D t'l)IA) 2h (8.3)

Let

C = A (8.94)

a = bA (8.95)

F = C - aa (8.96)

d2  r (AD 'a + PE DF)'l (8.9T)

From Eq. 8.95

D a, A 2ODA (8.98)

Ai
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From Eqs. 8.95 and 8.96

DF = A2(DR - DA) (8.99)

From Eq. 8.8

DE D D A (8.1oo)

From Eq. 8.99 and 8.100

D, =L DE (8.1oi)

From Eq. 8.97, 8.98, and 8.100

2 2812
d (PA DA PE DE)) (8.102)

From Eqs. 8.36 and 8.102

22C 2
A- D = d (8.103)

Substituting Eqs. 8.94, 8.95, 8.101, and 8.103 in Eq. 8.93

a = (C - PI DF) d2a (a'd2 (C - PW DF) d 2a)2h (8.104)

But Eq. 8.104 is the same form as Eq. 8.68. Hence we may start with any covariance

matrix C whose correlation matrix is R, and the solution of a satisfied by Eq.

8.104 will be related to the solution A obtained from the correlation matrix by

the relation

A = A-1 a (8.105)

or by definiti.

A =DC ' (8.1o6)

where DC is a diagonal matrix of variances of the arbitrarily scaled variables.



CHAPTER 9

THE SIMPLE STRUCTURE TRANSFORMATION

9.1 The Simple Structure Problem

We shall now return to Eq. 8.2:

U = XA" (9.1)

The matrix U is the approximation to the data matrix Z and a generalized solution

for it has been considered at length in the previous chapter. However, the solu-

tion is not unique as we can readily show. Suppose we let

B = Ah' (9.2)

Y = x (h~h)lhI (9.3)

where h is any nonhorizontal basic matrix. It ctn readily be shown from Eqs.

9.1, 9.2, and 9.3 that

u = mA (9.4)

The prcblem of finding an h matrix which yields a B matrix in Eq. 9.2 which

in some sense optimizes certain prespecified criteria was first considered by

Thurstone (1947) and called by him the problem of achieving simple structure.

Traditionally, the matrix .h has been taken as square so that the number of columns

m in B is the same as in A. The criteria stated by Thurstone (1947), as given in

Chapter 6, may be restated brLifly:

1. There should be at least m elements in each column of B which in absolute

value are very small or near zero.

2. There should be at least one very small or near-zero e~lement in each row

of B.

3. For every pair of columns there should be several or more rows in which

both values are very small.

4. For every pair of columns there shculd be very few rows in which both

values are large.

These criteria are not stated, of course, in analytical terms. Thurstone and

many since then have attempted to formulate rmore objective analytical criteria whic!



would tend to satisfy the descriptive criteria. Among the best known of these

are the varimax criterion and procedures developed by Kaiser (1958).

Two general types of h matrices have been considered. One of these is the

square orthonormal matrix used in the varimax procedures. The other type of

methods utilizes a square basic transformation restricted only in that its columns

are normalized. This type has been called an oblique transformation. For each

type of transformation the h matrix should yield a B matrix such that some specified

function of its elements will be optimized. The proponents of oblique transforma-

tions believe that these yield better simple structure than do orthonosmal -

formations. Many analytical methods for achieving simple structure B matrices have

been presented and discussed by Horst (1965) and by Harmon (1967). In spite of

the variety of methods now available, none of them has been consistently satis-

factory for all types of data.

The generalized method of factor analysis which we have developed includes the

special cases that we have already discussed. Some prefer one of these special

cases and some another. It is probable that an adequate set of criteria for simple

structure and methods for optimizing 'tab], functions would provide a more objec-

.Ave and useful basis for evaluating the various special cases than are provided

by the suojective rationalizations of the numerous investigators. We shall present

a transformation rationale and procedures baseoorn certtcx'crteri 0 M&S.ve some

promise for achieving this objective. It also gives promise of yielding more

satisfactory results for a wider variety of data than methods currently available.

9.2 The Rationale of the Criterion

We let A be an n x m arbitrary factor loading matrix. In particular, it my

be a matrix solved for by the methods of Chapter 8. We let h be an m x a basic

matrix and define the matrix B by

B - Ah (9.5)



It will be convenient to regard h as normal by columns so that

Dh = 1 (9.6)

We now define an exponent by

F (9.7)F 2W-1

where W is a positive integer. We note then that any number raised to the F

power is a positive value and any number raised to the F + 1 power retains the

original sign.

It will also be convenient to define a matrix Y such that Yii is +i if 1i

is positive and -. if Bij is negative. We indicate the elemental product of two

matrices by placing a dot between them, and the elemental power of a matrix by

enclosing its exronent in parentheses. It is seen then that because of Eq. 9.7

the signs of the elements of .B(F)wsre the same as those of the corresponding

elements of B.

Now instead of determining h so as to optimize some function of the elements

of B, we shall consider a preliminary scaling of the columns of B by a diagoi d1

matrix D and let

b = B (9.te)

We wish to determine D so that for each column of b the sum of the absolute values

of the F + 1 powers of its elements is equal to the sum of the fourth powers of the

elements. We let

d "b-b(3) (9.9)

d" 0 Db'(y.b(F)) (9.10)

We wish now to determine D in Eq. 9.8 so that

o (9.11)



To determine D which satisfies Eq. 9.11 we let

DG =DB B(3) (9.2)

DF = D B (F))  (9.13)

Considering the subscript on the right of Eq. 9.13, we note that although elemental

multiplication as such is conu, utativc, distributive, and associative, it does not

have these properties in combination with standard matrix multiplication. In

particular, the elemental products must be taken before the matrix products. It

can now be proved that the D which satisfies Eq. 9.9 is given by

D = (% DF') -3 (9.14)

To show this we have from Eq. 9.8 and from Eqs. 9.9 and 9.10 respectively

S = DB( 3)D3  (9.15)

D (F= D (9.16)

From Eqs. 9.12 and 9.15 we have

d o D D G (9.17)

From Eqs. 9.13 and 9.16

F - D(F+I)DF (9.-18)

From Eqs. 9.11, 9.17, and 9.18
D.Do - D(F+ )DF (9.19)

rom Eq. 9.19

D DF (F-3) (9.20)

From Eq. 9.20



D = (DG DF -1) F-3 (9.21)

which is the same as Eq. 9.14.

We next define the two diagonal matrices

Df = D b F() (9.22)

Dg = DbDbb b (9.23)

We note th:at Df in Eq. 9.22 is the same as d. in Eq. 9.10, except that the ele-
fe

mental factor y has been omitted. We now let

8f dF - Df (9.24)

8 =D -d G  (9.25)g g G

Now the minimum that the set of values 6f in Eq. 9.24 can take is given by 6f = 0.

This occurs when all elements in y are +1, in which case dF = Df. This is of

course the case when all b.. are non negative.

We have therefore

6f 5 o (9.26)

To determine lower bounds for the elements of 6 in Eq. 9.25 we note firstg
m 2
E D (9.27)Dbb =1 b.

Therefore the k'th element of D in Eq. 9.23 can be written asg

A, m 2 2,

D b ( D - Db bk (9.28)g .k b .k .k k .j .k

But the k'th element of d. in Eq. 9.9 oan be written

dG b b.k (9.29)G b. k "Db.k. k

Then from Eqs. 9.25, 9.28, A.d 9.29, the k'th element of 6 in Eq. 9.25 can be

g
written
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8 b b(2) (2).b (2)) (9.30)
S k i=l .j

From Eq. 9.30 it is clear that only when a b (2) is orthogonal to the sum f the
remaining b. (2)can the 6 be zero. Otherwise it must be greater than zero. We

cn gk

have therefore that

6 5 0 (9.31)g

We may now recognize that the nearer 6f in Eq. 9.24 is to zero the closer the

positive manifold criterion of Thurstone (1947) is satisfied. Also in the limiting

case, when no two columns in B have nonvanishing elements in any row for either

column, the 6 will be zero.g

9.3 Development of the Equations

We shall now make use of the two facts in the paragraph above in developing a

criterion which will be optimized in our solution for h. We begin by writing from

Eq. 9.24

Df = % - If (9.32)

From Eq. 9.11 and 9.25

Dg = dF + 
6g (9.33)

We let

=Df D 1  (9.34)fg

1Y = tr A (9.35)

Fcm Eqs. 9.32 through 9.35

=tr ((% - 6f) (d+ 6 ) (9.36)

From Eq. 9.36 we see that T increases as the elements of 8f and 8 decrease. Asfg

these approach zero, T approaches m., the number of factors. T is a function of h.

If we differentiate 1 with respect to h and eqate, the derivative to 0, .we should



obtain an expression for h which gives an optimum solution for T. We begin by

taking the differential of Y. From Eqs. 9.34 and 9.35 we have

dY = tr (d (Df) D .d (D ) Df D 2) (9.37)

From Eqs. 9.34 and 9.37

dY tr (d (Dr) - d (D ) A) D-Ig  (9.38)

From Eq. 9.38

by -( A) D (9.39)

The differentiation of Df and D with respect to h is extremely complicated. We

shall not attempt this differentiation directly but shall proceed somewhat more

simply. First we write from Eq. 9.22

Df=Db ,(b (F-1).b) (9.40)

From Eqs. 9.5, 9.8, and 9.40

Df = D2 D (9.41)

From Eqs. 9.5, 9,8, and 9.23

D8 = DDh PA "Dbb ,Ah (9.42)

Suppose we have some approximate solution for h satisfying Eq. 9.6 and we

arrive at scme fixed approximate solutions to D, b (F-I), and Dbb, by means of

equations already presented. We substitute these fixed approximations in Eqs. 9.41

and 9.42. Then it can be shown that

(Df)
- ) 2D2A'(b(').(Ah)) (9.43)

() - 2DaA' Ah (9.44)

d -h Dbb A
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We now let

a = 0 (9.45)

From Eqs. 9.39, 9.43, 9.44, and 9.45

AA(b(F l) . (Ah)) - A'Dbb, AhA = 0 (9.46)

9.4 The Computational Procedure

To set up an iterative set of algorithms to solve for h, we substitute for

the unknown h in the first term of the left hand side of Eq. 9.46 the approximation

to h by means of which we solved for the fixed matrix b. We have from Eqs. 9.1c

and 9.8

Ah = bD l  

(9.47)

From Eqs. 9,.46 and 9.47

A b(F) - A'D hbb, = 0 (9.48)

We let

E = A b(F) (9.49)

S = ADDbb, A (9.50)

From Eqs. 9.48, 9.49, and 9.50

S-E = hM (9.51)

Let

= S1 E (9.52)

From Eqs. 9.51 and 9.52

H'H = Ah'hD A (9.53)

From Eqs. 9.6 and 9.53

1 =DH "If D(9.54)
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From Eqs. 9.6, 9.51, and 9.52
1

h = DH  
-  (9,55)

We are now ready to consider the iterative computational sequence for h and

B. We begin with some ':pproxivtion to h which satisfies the relation

Dh h = L (9.56)

Then we calculate

B = Ah (9.57)

We let

2W

F 2W----1 (9.58)

where W is a positive integer to be discussed later.

We calculate

D =D = (0.59)

DF = D (F+1) (9.60)

where IBI means the matrix of absolute values of the elements of B.

Next we calculate

D = (DG DF "I ) F3 (9.61)

b - BD (9.62)

D= D (2), (9.63)

S -A#D1 A (9.64)

E =A b(F) (9.65)

H s E (9.66)

D2 - D oH(2) (9.67)
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h = H 2  (9.68)

_-D2 D-  (9 9)

Y = (tr A)/m (9.70)

B = Ah (9.71)

For any g~ven value of W in Eq. 9.58, the calculation- 9.59 through 9.71 may

be repeated until two successive values of T in Eq. 9.70 are sufficiently close.

..5 Special Problems

The rationale and. procedures we have considered in this chapter make some

assumptions about the solution for the A matrix. The research so far conducted

with the method on experimental data has begun with A matrices calculated by the

methods of Chapter 8. The computational al~crithms calculate an c' matrix which

is actually a principal components or basic structure solution of a scaled corre-

lation matrix with adjusted diagonal elements. In any case then, the a matrix is

orthogonal. The A matrix, which is in effect a descaling of the (Y matrix, is not

in general orthpgonal. Hawever, the solution for the A matrix is such that the

first vector has all positive elements. Implicit in the transformation solution of

this chapter is the assumption that the flrit principal axis of the a matrix has

all positive elements. This amounts to the pre- and postmultiplication of a

scaled symmetric matrix by a sign matrix such that its first basic orthonormal

vector has all positive elements.

The A matrix may be operated upon directly or it may first be ncrmalized by

rows before the simple structure computations begin. The question of iihether to

normalize rows of the arbitrary factor matrix before app!,'ing simple structure

procedures has arisen with other methods of transformation and was discussed in

Chapter 6. Kaiser (1958) has recmended such a row scaling before the application

of the v 'imetxprocndures, followed by a derc.ling of the simp1 structure matrix.
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In the computer programs provided in this report, the option of either normalized

or original scaling is available.

Beginning with an A matrix, either normally scaled by rows or not, we start

with some approximation to the h matrix. The simplest procedure is to begin with

h as the identity matrix. This in general is a very poor approximation if we have

a principal axis or basic structure type solution for A. However, it is the on-

we use in the accompanying computer programs and it has appeared to give good

results with data f'or which the simple structure factors have been rather well

established.

We have attempted no proof that the method doas converge. Intuitively it

appears that it should. For data on which it has been tried, it appears to con-

verge satisfactorily. Whether the convergence can be to a local maximum has not

been proved and may well not be capable of proof. Again, however, the empirical

results with data whose simple structure has been well established would indicate

that the solutions are in general close to the absolute maximums for the 7 values.

9.6 The Exponential Parameter

The determination of the integer W in the calculation of F in Eq. 9.58 leaves

much to be desired from a theoretical point of view but empirically determined

procedures appear reasonably adequate. The question may well be raised as to why

F is not simply taken as 3, so that F + 1 would be 4, and thus bring the method

into line with those of Kaiser (1958), Neuhaus and Wrigley (1954), Saunders (1953),

and Carroll (1953) whose methods have emphasized 4th power terms. The answer is

that variations of their methods, as well as the use of F - 3, have not given

consistently good results for a wide variety of data type . Largeiy as a result

of extensive empirical experimentation, we begin with W = 2 which gives F a 4/3.

Iterations proceed with this value until the solution stabilizes. The integer is

increased for subsequent solutions until the following condition obtains: One
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or more columns of the stabilized B matrix has less than m negative values. Since

the negative values are typically small, they are regarded as the near-zero values.

When this condition is reached, the B value for the previous W value is taken as

the final B matrix. The program always retains in storage this one previous

matrix. In some cases, even the B matrix for W = 2 dces not have at least m nega-

tive values in eachcolumn. But typically, each column does have a number of small

positive values so that even for W = 2 the number of negatives and near zeros in

each column tends to exceed m. A limit is put on the value of W, such as 20, in

case the criterion of negatives less than m is not reached sooner. Such cases are

rare but one example is given by data set 10 in Chapter 12.



CHAPTER 10

SIMPLE STRUCTURE FACTOR SCORES

10.1 The Traditional Arbitrary Factor Score Matrices

In Chapter 7 we considered five of the methods that have been used for esti-

mating the factor score matrix. We saw that only one of these was scale free and

that two of them were identical except for a scaling matrix. Only one of the

methods gave an oIthooimalfactor score matrix and this was shown to be the least

square orthogonalization of a residual variance scaling for what Harris (1967)

quite properly regards as a method that is "Vrong most of the time." We showed

that by generalizing the scaling of the variables and introducing orthgonalizations

of the resulting estimates we have actually six methods. None of these, however,

satisfies the desirable relationship that the residual covariance matrix is the

difference between the original covariance matrix and the major product moment of

the factor loading matrix. None of the methods presented in Chapter 7 yields

matrices that are orthogonial to the residual data matrix.

10.2 The Exact Residual Covariance Solution

In Chapter 8 we presented a factor score matrix which does satisfy the condi-

tion that the residual covariance matrix be the difference between the total and

the estimated covariance matrix, as discussed in Chapter 5. Since this matrix is

the basis of the simple structure factor score matrix we shall develop I'er In

this chapter, we shall consider it further at this time. Using a slightly differ-

ent form than in Chapter 8 we let

aA C 1 A ("C.1)

and indicate the basic structure of Eq. 10.1 as

Qo d0 2 %' =# (X0.2)

W let

A - (I - (I - da)2)d;" (in.3)
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Then the factor score matrix is given by

X = zCl AQ A QUA (1o.4)

In the above, we use the covariance matrix C instead of the correlation matrix used

in Chapter 8 to show that the estimate of X is scale free. We define Z so that

Z'z- c (10.5)

Suppose now we return to the fundamental matrix approximation equation

Z-XA ' -e =0 (10.6)

Indicating the approximation matrix by U, we have

Z - U - e r- 0 (10.7)

From Eq. 10.7 we have

0 =z'z - z'U - ze*

- U'z + Uu - U'e (10.8)

- e'Z - e'U + e'e

Now from Eqs. 10.1 through 1o.4 it can be shown that the covariance matrix

for X is

x "x = a(2A - I)Q% "  (10.9)

The covariance matrices in Eq. 10.8 can readily be derived. The matrix C is of

course by definition ZZ. The others are:

Z "U - A Q a 'A' (10.10)

zPe C - A -' A 6a 'A (10. 1)

U *U A Q A d034 -*A' (10.12)

U, ' A Q0 A (I - da2 )'A (10.13)

e e - c - AA' (10.1.)

It is obvious from Eq. 10.9 that X Is not In general orthonormal but only when

A - I. But from Eq. 10.3, A cannot be the Mientity unless d 2 is also the dentity.

From Eqs. 10.1 and 10. this can K.;.j be the case if I. !s scoe subsct of the column
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vectors in QA where Q& Q is the basic structure of C. In particular, the case

of PW = 0 in Chapter 8 gives one of these solutions, namely for the so-called

"principal component" solution.

For the matrices of covariances of Z and e with X, we have

Z X= A QG A QA (10.15)

and

e'X = A Q(I- A) QC (10.16)

In Eq. 10.15 we see that Z "X is equa. to the factor loading matrix A only if I =

, which would be the case if A were a "principal component" factor loading matrix.

It is also clear from Eq. 1O.16 that only if I = t is the factor score matrix

orthogonal to the residual matrix. However, from Eq. 10.14 we see that the factor

matrix given by Eq. 10.4 does give the total covariance matrix as the sum of the

estimated and the residual covariance matrices, as discussed in Chapter 5.

10.3 The True Factor Score Matrix

We shall now define a true factor score matrix X as one that is orthQao=.n1

and is orthogonal to the residual data matrix. These conditions are:

XX .1 (10.17)

Xe - 0 (o.18)

Fran Eqs. 10.6, 10.17, and 10.18 we have also

ZX - A' (10.19)

and

C - AA* - e e' (10.20)

Conditions 10.19 and 10.20 are those we have previourly -iicated as drsirable rand

the latter e have seen is satisfied in the previous sectn.

S&pos now v- let

V - ZR".A (10.21)
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We recognize the right side of Eq. 10.21 as the scale free estimate of X discussed

in Chapter 7. However, it does not satisfy the conditions given in Eqs. 10.17

through 10.20. As a matter of fact, there is no right hand transformation of Z

which in general does satisfy these conditions. Other investigators have pointed

out that to find a matrix to satisfy these conditions we must go "into the people

space as distinguished frao the test space," and that can be done in a multiply

infinite number of ways. Let us see what this somewhat mystic complaint means in

terms of simple algebra.

Suppose we let

X = V - P (I - VV), (10.22)

where P is restricted by

PP = 1 (10.23)

and

P'z = 0 (1o.24

From Eqs. 10.22, 10.23, and 10.24, it can be shown that Eqs. 10.17 through 10.20

are satisfied. For Eq. 10.24 to be satisfied we must have (Horst, 1963)

N 5(n + m) (10.25)

where N is the number of entities, n the number of attributes, and m the number of

factors. If the N is equal to the riGht of Eq. 10.25, then there are an infinite

number of P matrices differing only by a square orthonormal transfortion on the

left which satisfies Eqs. 10.23 and .10.24. However, if N is rreater than n + i,

then the indeterminacy increases. In this case, an orthoormal matrix P of width

N - n exists which satisfies Eq. 10.24, and an. square r' v :.

on the right of w" atrix subset of vectors from P or vi&ch m will satisfy Eq.

10.4. This is the indeterminacy prclem which Guttman (1955b) first discussed

and which has cast a pall over attempts to calculate factor score matrices. Row-

ever, the situation doubtless does not call for so much pessiri.s*. Since we have
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sue n overwhelming e mberre.smnt.of riches from whihh' to choose P to satlisfy Eqs.

10.23 and 10.24, why not consider some simple function of the elements of P mid

the time-honored though sometimes distrusted scale free estimate of X given by

Eq. 10.21. For example, we may consider optimizing the function

= tr (P V(k)) (10.26)

where the supersctipt in parentheses is a positive integer and means elemental

exponentiation. We now set up the function

- P'Zx - I P'Py (10.21)

where X and y are matrices of Lagrangian multipliers. Because of Eq. 10.23,

it can be shown that

y = y (Io.28)

Differentiating Eq. 10.27 symbolically with respect to P and equating to zero we

have

v - v(k) -za T " ) " . py o (1.0.29)

From Eqs. 10.5, 10.24, a7-1 10.29, we have

z v(k)- ZzX 0= (10.30)

X= R-z v (10.31)

From Eqs. 10.29 and 10.31

(I - ZC'Z')v(k) Y1 -P = 0 (10.32)

Let
w = (I - zcl'z )v(k) (10.33)

It can be shown that the only y which satisfies both Eq. 10.28 and 1 0 .K3 is

(w'w)= y (10.34)

From Eq%. 10.32) 10.33, and 10.34 we have

w(w w)I= P (10.35)
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From Eq. 1C.35 we have

v(k)P w(wW) "  V! )P (10.36)

But frem Eq. 1.0.33

W " W (1o 37)

From Eqs. 10.26, 10.36, and 10.7

tr(W-;) (10-38)

The question of appropriate rationales for the selection of the exponent k in

Eq. 10.26 has not been investigated. As a matter of fact, more complicated func-

tions of the V matrix than the elemental positive integral power functions- might

be investigated. In any case, it is probable that the function $ in Eq. 0.26

shonld be held to linear functions of the elements of P to avoid iterative type

solutions. No attempts have been made to apply the proposed solution to oxperi-

mental data.

10.4 The Simple Structiure Factor Score Matrix

In Chapter T and in the previous sections of this chapter, we have considered

mainly the factor score matrix corresponding to the factor loading matrix A which

has not yet been transformed to a simple structure matrix. We have, however, in

Chapters 7 and 9 indicated that if the factor loading matrix is transformed to a

simple structure factor loading matrix B by a simple structure transformation

matrix h, then the factor score matrix X must be transformed into the simple struc-

ture factor score matrix Y by the transformation h ,- Thus, if

B Ah (10.39)

' =Xh "  (10.40)

These relations we have seen enable us to write

Z-B" -e= 0 (lo.41)

[ _____
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without altering the residual matrix e in Eq. i0.6. No matter how A has been

determined, the covariance matrices involving the simple structure factor score

matrix must be transformed accordingly. The covariance matrix of the simple

structure foactor score matrix is given by

y -i -X -1 xs (lO.42)

in terms of the simple structure factor loading matrix, the residual covariance

matrix zst now be written

C - WB"= e e (io.43)

where

S - (h h) (1o.44)

This can readily be verified by writing from Eq. 10.39

A = Bh 1  (10.45)

Substituting Eq. 10.45 in' Eq. 10.14

e J e= C - Bh" " B (10.46)

or

e e = C - B(h h)-B (10.47)

The matrix h -h and the matrix S in Eq. 10.44 have been extensively discussed by

Thurstone (1947), Tho..aon (1950), Harmon (1967), and others.

10.5 Compting the Simple Structure Factor Score Matrix

We shall assume that the factor loading matrix A has been computed by the

methods of Chapter 8 and that a simple structure transformation matrix h has been

computed by the methods of Chapter 9. Assuming that this matrix gives B as

indicated in Eq. 10.39, we still have the problem of signb to consider, discussed

in Chapter 6 Section 4. Suppose we have determined the right and left sign matrix

multipliers i and i so that from Eq. 10.39 we get
R L

ia (lO.48)
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From Eqs. 10.39 and 10.48

0 = i AhiR  (10.49)

Actually, in the methods described in Chapter 9 the solution is such that iR is

the identity but, as indicated in Chapter 6, this is not the case for some of the

transformation procedures. However, the computer programs in Chapter 14 do solve

for an iL matrix during the computations for the matrix A by the methods of Chapter

8. Therefore it is necessary to incorporate this matrix in the calculation of the

simple structure factor score matrix.

To date no computer programs for computin- this simple structure factor score

matrix have been written. However, the procedure can be outlined. We do not

actually use the basic structure factor loading matrix by

a = iL A (10.50)
LL

Presumably, the inverse of the correlation matrix R-1 is available since it has

been calculated in Chapter 8 to get a first approximation to the residual variances.

We next calculate

a = a*R' a (10.51)

The basic structure factors of a, indicated by

QG d 2 Q = a (10.52)

and then computed.

Next we calculate the diagonal matrix 6 from the basic diagonal in Eq. 10.52 by

A (I - (I - d 2) )d-2 (10.-53)

Using A from Eq. 10.53 and the basic a.- .hanormc Is of Eq. 10.52, ae calculate

P (10. 54)

We now need the transpose of the inverse of the simple structure transformation

matrix h. It could be calculated directly but usually its minor r ,oduct moment is
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desired to calculate the correlations or covariances among the "true" or ideal

simple structure factor scores discussed in Section 10.3. This matrix of covari-

ances is given by

s = (h h)-1  (10. 55)

After the minor product moment of h and its inverse S are computed, we calculate

A-1h = hS (10.56)

Using Eqs. 10.54 and 10.56, we then calculate

G = ph' (10.57)

From Eqs. 10.50 and 10.57 we calculate

b = aG (10.58)

Then we get

F = R (10.59)

Since we have assumed throughout that the diagonals of Z "Z are unity, it is

usually desirable in actual practice to express F as

F = F(1- ) (1o.6o)

If the correlation matrix has been calculated from the raw score matrix, we

may calculate X from the raw score matrix as follows:

Let

Z be the raw score matrix

M be the vector of means from Z

Da be the diagonal matrix of standard deviations

Calculate

V DW' (10.61)

v"- ' (3.o. 62)
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Then the X matrix is given by

x = (z, 1) f
L-V J (io. 63)

That Eqs. 10.61 and 10.63 do give the same results may readily be verified.
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