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CHAPTER 1
THE DATA MATRIX

The problem of approximating a data matrix with one of lower rank is funda-
mental to all scientific 1ﬁvestigation. This problen is embedded in most
traditional data analysis techniques, such as multiple regression analysis .’n lysis
of variencz snd covarieﬁce, cohfigurel analysis, pattern recogniticn; discriminant
function analysis, factor analysis, etc. In all of these procedures we begin
with an experimental data matrix. Transformations on the elements of the data
matrix may then be carried out. A matrix_which approximates in some sense the
original or transformed data matrix is solved for. A residual matmix whose
elements are the differences between the elements of the data matrix and those of
the approximation matrix is calculated.

1.1 The Experimental Dats

The experimental dats matrix in its simplest form consists of rows which with-
out loss of generality we may take to represent entities, obsefvations, or cases,
and columns which represent attribuﬁes, characteristics, or variables. These latter
are also called variates. One may also have occasions and other categories, such
as sets, instruments, conditions, and treatments, thus yielding multidimensional or
multicategory date matrices. These extensions have been considered by Cattell
(1957), Tucker (1963), and Horst (1965). In general it is poséibie, as shown by
Horst (1965), to reduce multimode date matrices to two-mode date matrices in a
number of ways. Tucker (1963) has presented the most sophisticated analytical pro-
cedures to Jdets for analyzing multimode date matrices. In this report, however,
we restrict Oursalves to the two-mode data matrix, and for convenience we shall
take rows as *ntities and columns as attributes, although this orientation is not

necessary.




1-2

152; Transformation of the Data

A’topic—ihich has not been sufficiently considered in the past is that of
nathenatical transformations of experimental data before the more detailed analyses
takeiplace. Tﬁe fallure to recognize the importance of this topic has resulted in
confusion beiween the disciplines of factor analysis and multidimensional scaling
techniques. Mﬁch of the the work in multidimensional scaling can be regarded as
special qéses;of factor analytic techniques. The geaqralizedkdistance models in
scaling,fheory réduce to the more conventional factor analysis models after appro-
priate transformations of the observed data have been made. It is not the purpose
of this monogrqph to explore the general notion of transformations of the origiqgl
deta on the basis of theoretical formulations, or to relate the multidimeﬁsio@al
scaling techniques to the more traditional factor analytic techniques. Ross aﬁd
Cliff (1964) have suggested this relationship. However, they did not point out
explicitly that their approach consists essentiaily of making a transformation of
the original’obﬁervations consistent with the distance hypothesis,‘and then treat-
ing the data by the more conventional factor analytic procedures. Coombs and Kao
(1960) were among the first to suggest the relationship between the multidimensional

scaling techniques and the convéntional factor analytic technigues. It remained,

- however, for Ross and Cliff to indicate the explicit relationship between the two

general approaéﬁéd-by showing that transformations of the original data consistent
with}the distance c§ncept provide the basis for the more conventional factor
analytic or lowerﬁfank data matrix approximation analyses.

In this sgctidn_wg,shgll consider four kinds of transformations. These are
linear transformations,,nbhlinear transformations, single element transformations,

and transformations 1nv51ving corbinations of variables.
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In a linear transformation we have a scaling or multiplying constant and a
location or additive constant. The variable to be transformed is expressed in the
general form of

Y =A +BX
where the original variable is X, the transformed variable is Y, the location
constant is A, and the scaling constant is B. We may have the special case where
the additive constant A is zero and therefore the transformation consists simply of
a change of scale. On the other hand, we may have the case where B is unity. In
this case, we simply add a constant to the obseirved value. The transf- mation of
ravw date to deviation measures is s special case of a linear transformation where
the additive constant is simply the negative of the mean of the variable, and the
multiplying constant is unity. In standardized measures, the deviation measure is
divided by the standard deviation of the tample so that the multiplying constant
is the reciprocal of the standard deviation. ILinear transformations of this sort
are introduced early in introductory courses in statistics. However, the signific-
ance of transformation of this kind for factor analytic and data matrix approximati-a
techniques are not so well recognized. It is ore of the major objectives of this
. monograph to discuss in more detail the importance and implications of linear trans-
formations of experimental data.

We have already considered the subject of multidimensional scaling and how
these techniques involve the concept of data transformation. More specifically,
the kinds of transformations involved in relating the multidimensional scaling
techniques to the factor analytic techniques involve nonlinear transformations of
the data. The types of transformations involved here are trigonometric. Nonlinear
transformations may reflect the role of theory in data analysis. For example, it
is in the distance theory of multidimensional scaling that the mathematical trans-

formations of the date are suggested which convert distance models to factor
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analytic models. Much of the mathematical models work in learning theory results
in nonlinear transformations of data based on rational theories. It is quite
probable that an explicit recognition of the role of nonlinear transformations of
experimental data based on rational theories of learning could lead to a fruitful
integration of mathematical models and factor analytic approaches in psychology.
It is also probable that quantitative theory in other social science disciplines
could lead to a better integration of methodologies, theories, and data analysis
procedures.

In the preceding discussions of linear and nonlinear transformations, it was
assumed that the transformations are on single variables. The same mathematical
transformation applies to all elements of a single attribute vector. It is
possible, however, to have transformations which involve several or more variables.
An example of such a combination of variables is the image analysis model of
Guttman (1953). An important case of combinations of variables consists of pro-
cedures where nonlinear combinations of variables are introduced. Perhaps by far
the most common example of such nonlinear combinations is provided in the tech-
niques of configural snalysis or pattern recognition. These techniques involve
multivariate polynomial transformations of the date in which new variables are
generated that are products of subsets of the original data. We have discussed
this approach elsevhere (Horst, 1968c). The generation of new variables that are
product functions of the original variables may well contribute information not
included in simple linear combinations of the data. Guttman (1955b) has recognized
the importance of configural analysis. His concepts of the simplex, the radex,
and the circumplex imply nonlinear combinations of the original variables.

Much remains, however, to be done to relate the configural analysis procedures
to the more conventional data matrix approximation techniques. One of the un-

solved problems in this approach is that of the disparate distribution phenomenon
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vhich introduces artifactual dimensions into a data matrix. But the subject of
nonlinear combinations of data, important as it is, will not be considered in
detail in this monograph since it leads'into problems which have not yet been
adequately solved. |

1.3 The Approximation Matrix

Assume now that we begin with either the original data matrix or a matrix
in which the elements have been transformed, as indicated in the preceding dis-
cussion. We then wish to consider a matrix which approximates the criginal or
transformed matrix but which in some sense is more simple than the original matrix.
The subject of data matrix approximation has been extensively ccnsidered by.many
vriters and has received detailed treatment by the author (Horst, 1963, 1965).

The approximation matrix is of lower rank than the data matrix or some trans-
formation of it.v‘It is the product of a factor score matrix by the transpose of
a factor loading matrix. The number of columns in the factor score matrix is
equal to the rank of the approximation matrix. This rank is the number of factors
assumed or solved for. The factor score matrix is called basic because its rank
is equal to its width or smaller dimension.

The factor loading matrix has as many columns as the number of factors and as
many rows as the number of attributes in the data matrix. It is also basic so
that its rank is equal to the number of factors or numt . of columns. Therefore
both the factor loading matrix and the factor score matrix are basic matrices
vhich cannot be expressed as the product of matrices whose common order is less
than the number of factors or the rank of the approximation matrix. This implies,
of course, that the number of factors is smaller than either the number of entities
or the number of attributes, whichever is smaller. A more complete discussion of
the factor loading matrix end the factor score matrix is provided elscihera by
the author (Horst, 1965).
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We have defined the approximation matrix as the product of the factor score
matrix postmultiplied by the transpose of the factor loading matrix. It cen
readily be shown (Horst, 1963, 1965) that a product of two matrices can be expressed

as the product of an infinite number of different pairs of matrix factors. As a

special case, we may consider the postmultiplication of the prefactor by any
conformable square orthonormal matrix and the premultiplication of the postfactor
by the transpose of this orthonormal matrix. The major product of these two
matrices is the same as the major precduct of the original matrices since the prod-
uct of the orthnormal matrix by its transpose is the identity matrix. It is also ?
obvious that if the prefactor is postmultiplied by any nonvertical basic matrix, |
and the postfactor is premultiplied by the general inverse of this nonvertical
matrix, then the major product of the two resulting matrices will be the same &s
for the original matrices. This nonunigueness in the matrix factors of a product
is ccnsideréd in more detall in Chapter 9. Trat cha;ter develcps a new medel for
a unique determination of the factor score and the factor loading matrices.

1.4 The Residual Matrix

The residuel matrix is simply one whose elements are the differernce between
the corresponding elements of the data matrix and the approximation o+ product
matrix. So far, we do not specify any constraints cn the approximation matrix
aside frcm those considercd in the rrevious setticns. Mest factor analytic models.
as well as the general multiple regression models, place certain constraints on
the residual matrix as a basis for determining the factor loading and factor
score matrices.

Most multivariate analysis procedures, including multiple regression, multiple
discriminant function analysis, the multidimensional scaling techniques, and all
of the varieties of factor amalytic techniques, are concerned in some way vith
specifying properties of the residual matrix that are to be satisfied. We may
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consider either the residual matrix itself or the covariance matrix which may be
calculated from it. It is more convenient to begin with the residual covariance
matrix than with the residual matrix itself. Two aspects of the residual covari-
ance matrix may be considered in determining the factors in the product approxima-
tion matrix. The first of these concerns the elements of the covariance matrix to
be included in any procedures of optimization. This matrix consists of the diagona).
elements or residual variances and the offdiagonal elements or residual covariances.
How we combine these will determine the solution for the factors in the approxima-
tion matrix. The second aspect of the residual covariance matrix concerns what
particular function of the elements or cémbinations of elements is to be optimized
by the solution for the factors of the approximation matrix. What combination of
elements is included and what function of these elements is optimized is the sub-
Ject of later chapters.




CHAPTER 2
ORIGIN TRANSFORMATION

In this monograph we shall restrict our discussion of the role of transforma-
tions of the elements in the data matrix to linear transformations involving only
additive and scaling constants. Although in later chapters we shall restrict the
transformations even further to those involving primarily scaling transformations,
it is of interest to consider the subject of origin transformations or additive
constants since these are also important for matrix approximation procedures. In
data matrix transformation procedures, a major consideration is the determination
of the transformation functions and parameters so as to optimize prespecified
functions of the residual matrix. This monograph deals with determinations of
scaling constants which with specified restrictions optimize prespecified functions
of the residual matrix or its covariance matrix. Little has been dcne in the vay
of solving for origin or additive transformations that optimize such functions of
the residual matrix. However, we have elsewhere considersd (Horst, 1965) the
effect of prespecified origin transformations on the basic structure of a matrix.
In this chapter we shall review breifly the subject of origin transformations. We
shall consider transformatious by attributes, by entities, bty entities and attri-
butes, and then present briefly the current status 2f origin trensformation
techniques.,

2.1 Crigin Transformations by Attributes

By far the most common form of origin transformation is transformation by
attributes. lere the constant, positive or negative, is added to each element of
an attridbute column. The constant may, and generally does, vary from one attri-
bute to another.

The most common type of sttribute transformation consists of subtracting the
mean of a colum of attribute measures from each of the elements or measures. This,

of course, results in the familiar deviation score matrix in vhich the sums of
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column elements of the transformed matrix are all zero. The main reason for dis-
cussing this familiar origin transformetion procedure is to emphasize that it is
arbitrary and may not be appropriate for meny kinds of analyses. There may well be
better or more appropriate criteria for determining origin attribute transformations
than the zero sum criterion. While the conventional multiple regression techniques
give results invariant with respect to origin transformations, including the attri-
bute centering transformations;,; such invariance does not hold in general for factor
analytic techniques.

The attribute centering origin transformation is a special case of the more
general attribute origin transformation. Another special case occurs when the
additive constant is zero or when the raw data are not transformed by attribute
origin. Tucker (1958) has considered cases where the raw measures may appropriate.y
enter into factor analytic computations. However, the general case where the
observed measures may be origin transformed by attributes has received little
theoretical, empirical, or experimental consideration. If the raw measures mey be
regarded as in some sense absolute and the origins comparable from one attribute to
another, then ‘e zero origin transformation may be justified. But further rational
or optimizing procedures are required for the general case of differential origin
transformation for a set of attributes.

2.2 Origin Transformation by Entities

Just as origin transformations may be made by attributes, so also they may be
mede by entities, although this procedure is by no means as common as the attribute
transformation. We can alsc have the two types of transformations by entities,
namely, centering by entities and the more general origin transformation of which
centering is a special case.

When the origin transformation is such as to center by entities, a constant is
subtracted from attribute measures for each entity, such that the sum of the elements

ol each row is equal to zero. A special case of such centering occurs with ipsatirzed




2-3

varjavles, as in the case of forced choice personality instruments. It can be
shown that such centering by entities also serves to center by attributes or
columns. The subject of entity centering has not been considered extensively from
& theoreticel peint of view and does not appesr to have much Justification, parti-
cularly since it can readily be shown tha: important information might be lost in
such centering. For example, it is clear that if one has a data matrix of measures
on a number of persc s, when one centers by rows one obviously eliminates normative
information from the data matrix. An extensive treatment of the subject of center-
ing by rows has been given by Clemans (1966) in a discussion of normative and
ipsative varisbles,

There may be more justification for a retional and more general transformation
of origin by rows than for a mere centering transformation. Particularly in the
case of ipsatively measured variables such as one finds in forced choice instru-
ments, it may be desirable to change the origin by entities in order to sstisfy
optimizing functions in factor enalytic or general matrix approximation techniques.

2.3 Trensformation of Origin by Both Entities and Attributes

It is possible, and in some cases may be appropriate, to transform origins of
& data matrix both by entities end by attributes. This can be done as a special
case by a doubly cantered, or right and left, centering operation. Here we may
also have the general case, as in the centering or origin transformatious by either
attributes or entities.

In the doubly centered origin transformation, the elements in each row and in
each column add up to zero in the transformed matrix. This procedure is follcwed
when a two-vay analysis of variance is applied to & matrix of observations and the
effect of both row and column means is removed. Such an operation in the conven...
tional two-way analysis of variance is not usually recognized explicitly as a doubly

centering operation.
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£s in the case of the general origin transformation by either attributes or
entities, we may transfonh the origin of both entities and attributes on the basic
of any rationalg~uh;ch'§gy be available!

2.4 Current Status of Origin Transformations

The basic structure of the data matrix or its covariance or correlation matrix
is altered by origin transformations. While very little has bheen done in the way
of developing general rationales for determining origin trénsformations, vhether by
entities or by attributes or both, considerable:ﬁork has been done con the effect of
any arbltrary origin transformation operationsbon the basic structure or latent
roots and vectors Of the covariaance matrix. This work is presented in Chapter 13
of "Factor Analysis of Data Matrlces" (Horst, 1965). It is shown that a root of a
covariance metrix altered by an origin transformation must lie between zdjscent
roots of the original matrix. Procedures for solving for the latent roots and
vectors of an origin-transformed matrix in terms of the original roots and vectors
or basic orthonormals are presented in this reference, together with computational
Fortran programs for effecting the transformetions. These procedures indicate how
one may pass from one origin transformation to another in terms of a solution of
the roots of one as a function of the roots of the other. As one would guess,
these are not closed solutions but require iterating computations. Usually, how-

ever, the solutions converge rapidly.




CHAPTER 3

Scale Transformation

In the previous chapter we have considered various methods by which one may
transform a data matrix with reference to origin. In this chapter we consider the
transformation of the matrix by & multiplying or scaling constant. It is possible,
of‘cdurse, tc apply both origin and scaling constants but it is more convenient to
consider ‘the two separately. As we have seen in Chapter 2, the problems involved
in transformation of origin have not been extensively considered in terms of-mabrix
'approximation, or in terms of optimal properties of the residual matrix. Only the
effect of such transformations on the basic structure of the wetrix has been con-
sidered in some detail (Horst 1965). The problems of scale transformation includ-
ing rationales and procedures have been more extensively investigated, particularly
in the area of factor analysis which of course is a special case of matrix approxi-
mation. We shall in this chapter consider briefly the scaling of attributes, the
scaling of entities, and the scaling of both entities and attributes.

3.1 Scaling by Attributes

Here again, as in the case of transformation of erigin, the scaling trans-
formation has been much more extensively applied to attributes than to entities.
The most obvious case of scaling by attributes is the transformation t standard
measures, so that the standard deviations of all variables or attributes are unity.
Such scaling is the most common among scaling procedures for factor analytic tech-
niques. 1In scaling by attributes, we simply multiply the natural order of a data
matrix on the right by a diagonal scaling matrix. In the case of the standardized
dats matrix, this scaling or diagonal matrix has the reciprocals of the standard
deviations of the variables in the diagonal position.

Cne may also have other rationales for scaling a data matrix or making a
scale transformation, but usually a decision must be made about scaling the attri.
butes unless there is good evidence for assuming that all of the variables are

measured in comparable units.
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In general one would not consider scaling only one of the attributes in a data
matrix, but this special case is of interest because it has interesting mathematical
properties. One can readily relate the latent roots and vectors of a covariance
matrix to another covariance metrix which has one of the elements rescaled. Form-
ally, the mathematics is similar to the transformation of origin by attributes.
However, mathematically it is just as simple to calculate new latent roots and
vectors from the original ones when the origins for all of the variebles are trans-
formed as it is to calculate these when only a single variable is rescaled. To our
knowledge, the mathematics substantiating this statement has not been previously
presented in published works but it can readily be demonstrated.

Rationales for scaling all the variebles in a data matrix could readily be
found., A simple case is when all the variances are required to be equal or to be
unity. However, the relationship between the latent roots and vectors of a covari-
ance matrix and a generalized rescaling of the variables in the covariance matrix
as functions of the new scaling parameters is extremely complicatea and no simple
relationships exist between the two. Even in the case of a rescaling of only two
variables, the mathematics for expressing the relationships between the new and the
o0ld eigenvalues and eigenvectors is complicated. One can, of course, always deter-
mine the new ones emp.rically.

It is true that some types of multivariate anslysis are independent of scale
transformation by attributes. For example, in the case of multiple regression
analysis, a simple relationship exists between scale transformations of tle dependent
and independent variahles by attributes arnd the factor loading watrix. In this
special case, the factor loading matrix can be shown to be (Horst, 1965) merely a
supermatrix, the first matrix element of which is the identity matrix, and the
second the matrix of regression coefficients. A rescaling of the submatrix ot

independent variables results simply in a reciprocal rescaling of the matrix of
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regression coefficients. In the case of canonical correlation, it is also true
that the solutions are independent of the scaling of the subsets of variables.
Simple relationships exist between the scaling of the data submatrices by attri-
butes and the scaling for the corresponding regression matrices.

3.2 Scaling by Entities

A procedure much less common than that of scaling by attributes is scaling
by entities. Such data matrix transformations have rarely been used in practice
and the conditions under which one is justified in using them do not appear to have
been extensively considered. One Jjustification for scale transformations of the
data wmatrix by entities might be the assumption that scme of the entities are more
important than others in determining a solution for the approximation data matrix.
Such assumptions of differential importance of the entities in determining a
solution based on some prespecified criteria or rationale have not been generally
utilized. In the theory of least squares, as applied to multiple regression
analysis, some of the early theory utilizes the weighting of observations. If the
loss function for matrix approximation has been adequately formulated in mathe-
matical terms, then it should be possible to apply weighting functions to the
entities to satisfy this loss function. Rationales of this type, however, must
obviously place adequate restrictions on the entity scaling matrix. For example,
the elements of the scaling matrix should probably all be positive and finite, and
perhaps,some function of the weights should be a constant.

It is clear that in the multiple regression model, if all of the entity scaling
veights were taken as szero except any subset equal in number to the number of inde-
pendent variables, then the least squares loss function would be at its optimm or
gero. This is equivalent to choosing a subset, in size equal to the number of
indspendent variables, on ths basis of vhich to determine the regression vector.
Such a solution would of course alwvays yield a regression vector vhich would
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exactly reproduce the elements of the dependent variable in the sample. One might
impose further restrictions on the scaling matrix such that the moments of the
distributions of the estimated and actual dependent variables in the sample sat-
isfy certain conditions. For example, one could specify that the weighting vector
should be such as to yield a best approximation to a normal distribution for each
of the independent variables and also for the estimates of these independent
variables. To our knowledge, such rationales and mathematical formulations have
not been experimented with.

Perhaps the most important distinction between entity and attribute scaling
is evident in the multiple regression and canonical correlation approaches. We
have seen that for these models the scaling of attributes is reflected in a simple
manner in the multiple regression or weighting matrices. Obviously, this simple
relationship cannot hold in the case of entity scaling since the date matrix and
the regression matrix are not even conformable with respect to the entity order.
It'is possible that for some arbitrary scaling an interesting relationship might be
found to relate the ectimated depencdent variables to those estimated without scaling
as some simple function of the entity scaling matrix. However, these relationships
may be of no more than academic interest.

What we have said about the effedt of scaling on the basic structure of a
matrix with reference to attributes applies also in the case of entities. The
scaling or rescaling of a cingle entity results in a modification of all of the
latent roots and vectars of the original dats matrix. The relationship between
the original eigenvectors and those resulting from the scaling of a single entity
can be expressed in terms of upper and lower bounds. However, it is difficult to
see of what practical importance such a single entity scaling would be. In general.
ocne would not expect a practical problem to be concerned with the rescaling simply
of a single entity selected arbitrarily, or even presumably on the basis of scue
rationale, from all of the entities in the sample.
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For the scaling of several entities, the mathematics which indicate the
relationship between the original and the final or rescaled eigenvalues is much
more complicated than for a single entity. For more than one entity, therefore,
it does not seem practical to consider the mathematical relationships between the
matrices of the scaled and unscaled entities in terms of the eigenvalues and vectors
of their covariance or correlation matrices.

As we shall see in Chapter 8, it is possible to set up scaling procedures so
that the solution for the approximation matrix is independent of the original
scaling of the data matrices. This is true for either entity or attribute scaling
or both.

3.3 Scaling by Entities and Attributes

Just as we can have origin transformations by both entities and attributes
for the data matrix, so also can we have scaling by both entities and attributes
for any arbitrarily scaled or quantified matrix of observations. What we have
said about the rationale for entity and attribute scaling applies equally well to
any simultaneous scaling of both dimensions of the data matrix. Presumably any
complete theory of scaling transformations shculd provide for both entity and
attribute scaling. It should be possible to develop a rationale of scaling that
takes into account both sides of the matrix. This would be an important contri-
bution to the problem of metric in factor analysis specifically and in the analyses
of data matrices in general. It is, however, beyond the scope of this report to
consider in detail such dual scaling rationales.




CHAPTER 4

THE LOSS FUKRCTION

Let us assume vwe have a data matrix which may have undergone some transforms-
tion, linear or nonlinear, by rows or columns or both, that we wish to approximate’
by the major product of two basic matrices with common order less than the smaller
order of the data matrix. We indicate the deviated data matrix by Z, the factor
score matrix by X, the factor lcading matrix by A, and the residual matrix by e.

We can then write

e=2-XA° (4.1)
The problem is to determine X and A so that some function of the elements of e
will be optimized. Instead of considering the elements of e directly, we may
consider the covariance matrix E given by

E=e'e (4.2)

4.1 The Elements in the Loss Function

Without loss of generality we may assume the scaling of 2 in Eq. 4.1 to have
been such that we need not divide the right side of Eq. 4.2 by N, the number of
entities. One of the simplest loss functions that has been commonly used, parti-
cularly in factor analytic work, utilizes only the diagonal elements of " in Eq.
4.2, Obviously, these elements are proportional to the variances of the residual
column elements in e of Eq. 4.1. The functicn of these elements most commonly use.l
in the losa function is simply their sum. This sum is simply the sum of squares
of the residual elements in e, It can be shown that traditional multiple regres-
sion analysis with one or more independent variables is a special case of Eq. k.l
in vhich the solution for A and X is constrained so that the elements vanish in th.
columns of s corresponding to the independent variables. Congequently, the corre-
sponding diagonal elements of E in EqQ. 4.2 are also zero. The X and A matrices are
deternined so that the sum of the diagonal elements in E is minimized. This formu-
lation of the multiple regression model does not appear to have been generally
obvious.
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In the case of one type of factor analysis, which some call principal com-

ponent analysis, only the diagonal elements in E are considered and A and X are

determined so that the sum of these diagonal elements is minimized. Here again,

wve have simply the sum of squares of the elements in e. But in this case no con-

straints are put on any of the columns of e.

One may wish to utilize the offdiagonal elements of E or the covariances of e

in some function in determining X and A so as to optimize that function. 1In this

case we can write

€=E-D (4.3)

wvhere DE is the diagonal of E, and hence the disgonal of € is zero. We may, for

example, wish to determine A and X so as to optimize some function of the elements

of ¢. In rarticular, we might wish to minimize the sums of squares of the elements

of €. This means that we wish to minimize only the sums of squares of residual

covariances.

More generally, we may write

¢===E--PDB

where P may be some value betveon zero and one.

(4.4)

It has been customary in selecting

a loss function to take P as either zero or 1, but there appears to be no compellir;

reason to restrict it to these two values.
In the maximum likelihood method of Lawley (1940), the canonical method of

Rao '1955), the minres method of Harmon (1967), and the alpha method of Kaiser and
Caffrey (1965), P in Eq. 4.4 1is taken as 1.

As a matter of fact, many investigators

insist that only covariance matrix factoring procedures using P = 1 may be called
factor analysis.
important or even Jjustifiadble is debatable.

This convention has the sanction of usage but vhether it is

These investigators call factoring

procedures vhich take P as zero "principal component analysis."
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4.2 The Loss Function

It is clear from the previous section that the mathematical function of the
residual matrix we wish to optimize depends on whether we comsider the elements of
the residual matrix iteelf or the covariance matrix derived from it. We have seen
also that the sum of squares of the elements of the residual matrix is the sum of
the diagonal elements of the residual covariance matrix.

It will doubtless be simpler and more useful to discuss the loss function in
terms of ¢, given by Eq. 4.4, whose offdiagonal elements are the covariances of
the residual matrix and vhose diagonal elements are proportional to but not greater
than the residual variances. We therefore restrict our consideration of the ele-
ments entering into the loss function to the elements of the covariance matrix of
the residual matrix e, vhere the diagonal variances have been reduced by the pro-
portionality constant P.

In Chapter 8 we show that X in Eq. 4.1 can be determined so that

ee=C-MA° (k.5)
vhere

C =272 (4.6)
From Eqs. 4.2 throva.. 4.5 ve have

c-rns-u‘n (4.7)
Suppose now ve write Bq. 4.7 in basic structure form as

N R Y AL NN (4.8)
vhere

min (8) > max (8g) (k.9)

min (8)) > weax (8,) (h.10)
W let

A= Q- 5.4 (4.22)




Therefore from Eqs. 4.7, 4.8, and 4.11

©=% %% - Y (h12)

If P in Bq. 4.4 is zero, then 6Y in Eq. 4.12 will also be zero, as can be seen
from the developments in Chapter 8. If P = 1, then according to the definition

of ¢ the diagonal of ¢ will be zero. Therefore we can show frcm Eq. 4.12

Y 6 = ho
tro by = tr SY (4.13)
Perhaps the most obvious function of ¢ in Eq. 4.12 to minimize is
g =tr & (4.1%)
From Eqs. 4.12 and 4.14 we can show that
tr ¢ = tr 602 +tr 6Y2 (.15)

However, the criterion of approximation should probably not be a function
alone of the residual matrix but also of the total variance. Therefore we choose
as a more rational criterion

2 2
tr (68 + GY )

2
8

But fronm Eqs. 4.7, 4.8, and L.16 ve get

¢=1.-

53. ' (L.16)

tr(62+6 + 8
n Y

tr 562

¢ - W (‘NLT)

As a matter of fact. J as given by Eq. 4.17 is the loss functiva ve seek to maxi-
mize in Chapter 8. As is pointed out there, this function has the useful property
that its saximum value is unity.

k.3 The Loss Function in the Maximum Likelihood Method of Muctor Analysis

The type of loss function which is optimized in the maximum likelihovod method
of factor analysis is much wore complicated than the functiom given in Bq. k.17,
although the procedure is believed by some to provide useful criteria for indicatins
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the number of factors to be solved for. We shall indicate how we may express the

function of the ¢ matrix in Eq. 4.12 which is maximized. If we let 6, be the

B

1'th element of 6, and 6Y the 1'th element of 6\(‘ then the function raximized in

B
i
maximam likelihood factor anslysis can be shown to be

g=m(r+d,)m(L-s (4.18)
i

Yi)

vhere the continued products include all the elements of 6, and 6Y- Because of

B
the particular scaling which, as indicated in Chapter 5, is utilized by maximum
likelihood analysis, the number 1 occurs within the inside parentheses of Eq. 4.18.
L,4 The Maximum Likelihood Equations and the Loss Edncticn
We shall here consider & discussion by Joreskog (1967) which appears to be cf
particular importance in considering possible loss functions. Using Joreskog's

notation we let
Y = DS - DM' (h019)
1 1 . Y-
(Y7 °sy 2}y %A =Y %A (T +A%Y lA) (k.20)
Equations 4.19 and 4.20 correspond to Joreskog's (1967) equations 24 and 1% respec-

tively. He states that the maximum likelihood estimates of A and Y are defined

a8 the matrices satisfying EqQs. 4.19 and 4.20 or some equivalent ones. From Eq.

4.20 ve get

(\r'%sv‘% -I) Y'%A = Y'%A (A"y'lA) (k.21)
Premultiplying Eq. %.21 by A"i"% ve get

A'Y'%(Y'%S‘Y'% . £5Y"%A = (A‘w‘lA)2 ’ (&.22)
From Eqs. 4.21 and 4.22

(\v'%sw‘% - I)\y‘%A(A'w”:’sv'% - I)\l’"%.'\) -4 = Y'%A (k.23)
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Except for notation and a square orthonormal transformation h, this equatica 1s

identical to our equation 8.67 in Chapter 8.

But note that Eq. 14.20 can be obtained very simply without the use of the

calculus. We write

§-M"=E i (k.24)
We let
¥ = Diag (E) (4.25)

From Eq. 4.2k we get
__L , __1_ _1 _l
Y72(s - M")Y2 = ¥2Ry 2 (4.26)
Let
1 ) :
¢ = Y°EY 2 (k.27)
From Eqs. %.25 and k.27

Diag (e) =1 (4.28)

From Eqs. 4.26 and .27

- "o -E

¥v3(s-MYy™ 1= e -1 (4.29)
Let us require that A be determined so that

1

(e - I)¥2A =0 (4.30)

From Eqs. 4.29 and 4.30
1 .4 1

(¢73(s - M)¥2 - 1)¥Y2A =0 (4.31)

From Eq. %.31
1 1
(v‘%sv‘%) Y72\ = ¥72A (I + A"Y'lA) (4.32)

which is the came as Eq. L.20. If it is true that the maximum likelihood estimates

of A and Y are defined as the equations which satisfy Eqs. 4,19 and 4.20, or
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Joreskog's (1967) equa“ions 14 and 24, then they can also be defined as the esti-
mates which satisfy our Eq. 4.30.

Let us now write in basic structure form

-% .-% - . ’ ’ ,
(Y% -1) =Q 8, Q " +Qy85Q,°-Q,8,Q " -aIq (4.33)
vhere 6m are the m largest roots of Y'%SY'% -1, GB are the next B largest,
and - GY are the Y negative roots. If we let
3 3
Y oA = Qm ém (4.34)
then
11 ) 1
tr A'YT2(y725Y72 L I)YTRA = tr 5m2 (4.35)
and
- _— 2 2 2 2
tr (Y28Y°2 - I)° =tr (6. ° +6, +8)) (4.36)
m B Y
and the solution 4.23 minimizes
2
1. tr (e-; IZ% . = ¢ ()_‘,.37)
tr (Y"2s5¥°2 . 1)

This is equivalent to our equation 4.17 for the particular scaling of Eq. 4.19.

If, as Joreskog (1967) maintains, Egs. 4.37 and 4.18 are not simultaneously mini-
mized, then Eqs. 4.19 and 4.20 may be regarded only as necessary but not sufficient
conditions to satisfy the maximum likelihood criterion. It could therefore not be
said that all estimates of A and ¥ which satisfy Eqs. 4.19 and 4.20 are maximum
likelihood estimates of these matrices even if the inequalities of Egs. 4.9 and
4,10 are satisfied.




CHAPTER 5
SCALE FREE SCALING

5.1 Introduction

We have considered in Chapter 3 the case of scaling by entities or by attri-
butes or both prior to matrix approximation procedures. We shall see in Chapter
& that certain factor analysis procedures have an important invariance property
with reference to the original scaling of the variables. These are called scale
free metheds. Actually the methods are nat scale free because they involve or
imply specific scaling procedures. But without loss of generality it is shown in
Chapter 8 that for these methods we may begin with a data matrix of standardized
scores or any other scaling. We have seen that the general matrix approximation
equation is of the form

L4

Z-XA" =e (5.1)

where Z is the date matrix, X is the factor score matrix, A 1s the factor loading
matrix, and e is the residual matrix. We have already considered the residual co-
variance matrix E which we may write

E=e'e (5.2)
From Eqs. 5.1 and 5.2 we get

E=2% -2XA" -« AXZ + AX"XA’ (5.3)

L]

In Chapter 8 we show how X may be solved for so that for some determination
of A we have
ZXA® +AXZ - AXXA" = AA° (5.4)
Therefore we may have from Eqs. 5.3 and 5.4
E=22-A° (5.5)
If we let
C =22 (5.6)
W= (5.7)
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ve have from Eqs. 5.5, 5.6, and 5.7

C-W-E=0 (5.8)
We may now designate the three terms in Eq. 5.8 as follows: We may call C the
total covarlance matrix, W the estimated covariance matrix, end E the residual
covariance matrix. The data matrix X may be scaled in any way we please, including,
of course, the original or arbitrary units of measurement yielded by the experi-
mental procedures. For each of the covariance matrices in Eq. 5.8, we may consider
the corresponding diagonal matrices DC’ Dw, and DE’ constructed from the diagonal
elements of the covariance matrices. The general problem is to determine the A
matrix so as to satisfy some constraint on some function of the elements of E.
But since the scaling of the original variables has been arbitrary, we may insist
that the determination of W be based on some rescaling of the variables. Any re-
scaling of the variables will of course affect the variances in the diagonals of

the variance matrices in Eq. 5.8. Let us now consider a scaling matrix D and write

from Eq. 5.8
D(C-W-E)D=0 (5.9)
Let
Y = DCD (5.10)
® = DWD (5.11)
¢ = DED (5.12)

From E¢s. 5.9 through 5.12 we have
Y-w-.¢=0 (5.13)

Now for she dirwonal matric:s corrasyonding 1o th: resceled covericnes moliic s
givan by “hs terms of "Eq. .13, .e hava D\-{, Dw’ *nd De' These uirglnsl m tiaces cone
sist:of the rescaled variances of the total, the estimated, and the residual vari-
ances respectively. Let us consider now some interesting poesibilities for the
selection of the scaling matrix D.




r-—'w-—vw—-—--—v — -

5-3

5.2 Total Variance Scaling
We may determine D so that the variances of the total covariance matrix Y are
all unity. If C has been calculated from the deviation data matrix X, its off
diagonal elements are the covariasnces among the original variables and the diagonal
elements are the variances. Therefare, if we wish to have
D, =1 (5.1k)

Y
it is obvious that we must have

[V

D = D, (5.15)

Therefore we have from EqQs. 5.10, 5.11, 5.12, and 5.15

¢ c ’
1 1
® = Dy WD, * (5.17)
1o
¢ = D, ZEDC 2 (5.18)

It is clear, therefore, that Y is simply the familiar matrix of correlation co-
efficients. This is of course the matrix from which traditionally most factor
analyses have proceeded. It is the basis of most of the classical principal com-
ponent analyses and mare recently the minres analysis of Harmon (1967).

5.3 Estimated Variance Scaling

There is no compelling reason, however, for choosing the total variance scalin:.
We may wish to choose D so that the variances of the estimated covariance matrix W
are all unity. This means that the off diagonal elements of the rescaled estimated
covariance matrix W are correlation coefficients. If we wish to have

Dw - I (5'19)

we must have

p-n* (5.20)




and vw¢ have from Egs. 5.10, 5.11, 5.12, and 5.20

- Y= DW-%CDW-% (5.21)
w = Dw'%wbw'% (5.22)
¢ = D,,'J“ED‘,‘% (5.23)
If we substitute from Eq. 5.7 into EqQ. 5.22 we have
w = Dw'%AA 'Dw'% (5.24)
We may let
a = Dw'iA (5.25)

Now a is the factor loading matrix corresponding to the estimated variance scaling.
It has the interesting property that the sum of squares of the factor loadings for
i | each variable 1s unity. This scaling is used in the alpha factor analysis of Kaiser
and Caffrey (1965) and in the commnality scaling which we have discussed elsewhere
S (Horst, 1965).

5.4 Resigual Variance Scaling

Instead of choosing D so that the total or the estimated variances are all
unity, we w wigh to choose it so that the residual variances are all unity. In
this case, the rescaled resiidual covariance matrix would have correlations for
offdiagonal elements. Here we select D so that

Dg=1 (5.26)

Therefore wve must have

D= Dx'* (5.27)
and we have fron Eqs. 5.10, 50]—1, 5.12, and 5.27

Y= 1>,"’(!1>3“é (5.28)

b coive § .
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5=5

@ = p,Hm, (5.29)
¢ = DE'%EDE'% (5.30)
This scaling i3 used in the maximum likelihood factor analysis procedures of
Lawley (1940) and the canonical factor analysis procedures of Rao (1955).
5.5 The Generalized Scale Free Method
We have seen that as special cases we may scale the data matrix so that the
total, the estimated, or the residual covariance matrix is a correlation matrix.
For each case we may begin with an arbitrary scaling. Therefore the three methods
are called scale free. It is clear, however, from Eq. 5.8 that the total covari-
ance matrix C is by definition the sum of the estimated and the residual covariance -
matrices. Therefore the total variance diagonal matrix is simply the sum of the
estimated and the residual variance diagonal matrices. We may therefore consider
& nore general case of scaling in which the scaling matrix D is the reciprocal
square root of a weighted sum of the estimated and the residual variance matrices.
We may let
D=PB,D, +F nE)"% (5.31)

vhere Pw and PE are weighting scalars. Suppose we let p be a value such that

0%p (5.32)
and

q=1=p (5.33)
We nov let

Pw - epa (5.34)

PB - = dﬁ (5'35)
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If wve take p = .5 and substitute in Egs. 5.34 and 5.35 respectively, we get
P, =1 (5.36)
Pp =1 (5.37)

From Eq. 5.8 we have

Dg =Dy, * 1D (5.38)
From Egs. 5.36, 5.37, and 5.38 in Eq. 5.31 we get
D = Dc'% (5.39)

vhich is the same as Eq. 5.15,

If we take p = 1, we get from Eqs. 5.31, 5.33, S5.34, and 5.35
D= Dw‘ilt (5.40)

vhich is the same as Eq. 5.20.
If we take p = 0, we get from Egs. 5.31, 5.33, 5.34, and 5.35

D = DE-% (5.41)

vhich is the same as Eq. 5.27,

We see therefore that by taking the special cases for p = .5, 1, and O the
scaling matrix given by EQ. 5.31 gives the scaling procedure utilized in various
factor analytic rationales considered by previous investigators. However, we may
let p take any value in the range indicated by Eq. 5.32 and the use of the scaling
matrix D can still be regarded as a scale free procedure. This genernlizatic: of
the scaling matrix will be dsveloped more fully in Chapter 8..




CHAPTER 6
SIMPLE STRUCTURE

6.1 Criteria of Simple Structure
We have seen in Chapter 5 that we may write the matrix approximation equation
in the form
Z-XA -e=0 (6.1)
vwhere Z is the data matrix, X is the factor score matrix, A is the factor loading
matrix, and e is the residual matrix. We have also specified that X and A are
basic and their common order is less than either order of Z. We have said that
for any given A we shall define X so that the residual covariance matrix e’e = E
is given by
C-A"=E (6.2)
C=27 (5.3)
In Chapter 9 we show that the number of pairs of factors yielding the product
YA® is infinite. Ve wish to put some restriction on A so that the solution beccmes
unique. We may consider some specified solution to X and A that optimizes a speci-
fied loss function, as discussed i, Chapter 4., Further then, we may consider a

square basic transformation X of A such that

B = Ah (6.4)

We may nov require that h be uniquely determined so that the elements of B will
satisfy some predetermined set of criteria. This general problem was first con-
sidered Ly Thurstone (1947). He specified that the structure of the matrix B should
be as simple as possible. He listed vhat he regarded as the criteria of simplicity.
This concept he called simple structure. His criteria of simple structure were:

1. Each rov of the factor matrix B should have at least oue ero.

Z. Each colusn of B should have at least n zero factor loadings, where m is

the number of factors.
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3. For every pair of columns of B there should be several tests whose entries

vanish in one column but not the other.

L, For every pair of columns of B a large proportion of the tests should have

zero entries in both cclumms.

5. For every pair of columns there should preferatly be only a smail number

of tests with nonvanishing entries ia both columns.

One of the difficulties with these criteria is that they are not stated in
precise mathematical terms. Such statements would be necessary in order that
mathematical functions could be -ptimized. However, it is possible to formulate
mathematical functions of the elements of B such that, given A, the matrix h can
be solved for which optimizes these functicns. As indicated in Chapter 9, many
attempts have been made to incorporate the consequences of at least scme of
Thurstone's criteria into mathematical functions which can be optimized by suitable
determinations of the elements of h in Eq. 6.4. In addition to those that have beeu
proposed by others, we present an analytical procedure in Chapter 9 that appears to
have some advantages over others previously available. The chief advantage of the
method is that it esprears to work with a great variety of correlation matrices anc
factor analytic procedures.

6.2 Scaling of the Arbitrary Factor Matrix

Several problems arige in the transformation of an arbitrary factor matrix A
to a simple structure matrix B, irrespective of what method of soluiion for A has
been used and vhat rationale for Zstermining the transformation matrix h is adopted.
One of these concerns the scaling of the factor loading matrix A prior to truns-
formation. Suppuse we have & factor lcading matrix A determined ir scme wanner.
Many methods are nov available. A number of these we have considered in cetail
elsevhere (Horst, 1965). In Chapter § ve discuss a general approach. Six specific
cases of the general approach are identical or similar to methods that have
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previously been proposed by others. In any case, with the great variety of methods
available it is to be expected that the resulting A matrices could differ greatly

for the same data. In particular, we may consider the diagonal matrix

Dy, + = Diag (AL) (6.5)
Equation 6.5 may e regarded as the diagonal matrix of the estimated variances.
In some contexts its elements are called the comunalities. Now these communalitiex
ray vary greatly not only from one method of analysis to another btut also from one
element to another for any given methcd of analysis. It is to be expected that in
the sclution of B in Eq. 6.4 the variables witn the smallest communalities will have
the least influence in the determination of h and hence ihz elements of . The
weight that a varizble can have in the determination of h is then a function of
its cormurality. It has been argued therefore that, for any function purporting
to optimize simple structure criteria, the arbitrary matrix A should be rescaled
by rows prior to the application of the analytical simple structure procedures.
We may therefore write

@ = DA {6.6)
and let

8 =ah (6.7)
The simple structure criteria are now sought for J instead of B in Ec. G.h. A
reasonable rationale vhich has been rather gensrally adopted is that in simple
structure solutions eacn variable should be given equal weight. Thic means that
we should have

Dmo =X ‘ (6.8)
From 5q9s. 6.6 and 6.8 therefore ve have

Y : , "
a = DM "QA » . (6'9)
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This simply means that the arbitrary factor matrix » is noimelized by rows grior o

transformation.
The usuel procedure after the [; matrix nas been solved for is to descalc the

B wetrix back to the B matrix by the eyuastion

B=D,.% (6.10)

flowever, one of the chief arguments ir favor of the simple structure concept has
been that not only does it provide a unigue solution for the factor loading watrix
but it also facilitates intery-etsiion of the tests and the factors. This latter
claiw appears to have bz2en well substantiated over the years, giving considerable
justification for the taxenomic objectives oi factor analysis. For purposes of
irterpretation it is still possible that the § matrix rather than the B matrix is
generally more usefvi. However, -complications arise when one attempts to use tha
g matrix in the solution of the factor score matrix. This topic is considered in
Chapters 7 and 10.

‘It iy of interest to note that the estimeted variance scaling discussed in
Chapter 5 can yield directly an A matrix whose rows are by definition normal vectoers,
i.e.

Diae ° (6.11)

6.3 The Transformation Matrix

There hes been considerable dissgreement ebout constraints on the h matrix to be
imposed in the simple structure solution. In general, most investigators agree that
the matrix should be normal by columns so that

Dhlh = I (bole)

Some investigators require further that h be orthonormal so that

h"h =1 ‘ (6.13)
This issue has been considered at length by Harmon (1957) and Horst (1965). One
advantege of the orthonormel constraint is that, for some types of solutions, un-
correlated or orthonormal factor scores will resulis. Another is that we have the
equality

BB‘ = AA' ‘ (601“)

s0 that Eq. 5.2 can be written
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C-B"=E (6.15)

Perhaps the chief edvantage of relaxing the orthogonality constraint on h is
that a more clearcut simple structure results in the B matrix and that the factcrs
become more readily interpretable. This implies that the taxonomic objectives of
factor analysis are more readily achieved:» by the oblique or nonorthogonal trans-
fomation than when orthogonality is imposed.

A disadvantage of the oblique procedures is that in general they have been
much less satisfactory fram a computational point of view. By far the best known
and most used orthogonal procedure is the varima.x method of Kaiser (1958) or vari-
ants of it (Horst, 1965).

Arother disadvantage of the oblique procedures is that frequently it is
difficult to keep one or more of the factors from collapsing into other factors.
Nevertheless, it 1s probable that the constraint of orthonormality on the trans-
formation metrix h is undesirably restrictive. Chapter 9 presents a method that
does noct impose this constraint and appears to work well with different types of
data.

6.4 The Problem of Signs

Cne of the problems encountered in simple structure transformation procedures
'has to do with sign changes. Unfortunately, the importance of this problem has no.
been generally recognized. The sign proolem has two distinct aspects. Suppose we
have given s simpie structure \matrix B as in Eq. 6.4, obtained by one of the analy-
ticel methods available. Most of these methods optimize some function of the

squares of the elements of B. Such a matrix of squared elements we may indicate by

b =53 (6.16)
vhere the supersc¥ipt (2) means that each of the elements in B has been squared.

Suppose now we let
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where iL and iR are sign matrices. It is clear that vhatever the i matrices we

will have

p = pl3) (6.18)

a(2) _ 5(2) (6.19)

Therefore for those methods of transformation which optimize a function of
the elements of b, the corresponding matrix B may still require a pre- and post-
multiplication by optimal sign matrices iL and iR respectively to give meaningful
and interpretable simple structure factor loadings.

We indicated at the beginning of this chapter that the sign problem has two
aspects. We may see now that one of these is the postmultiplier and one the pre-
multiplier. Many investigators have found that in using an available transforma-
tion procedure some variables that should obviously have high positive loadings
actually have high negative loadings and vice versa. It has been proposed that in
such cases one merely reverses the sign of the loadings for all elements in the
factor vector vhere the loadings of wrong signs occur. Certainly one may reverse
signs of all elements in a given column of a matrix without affecting in any way
the major product moment of the matrix. This would appear to be obvious but it is
frequently overlooked. One is therefore at liberty to reverse signs by columns in
either the arbitrary factor matrix A or the simple structure matrix B. But in many
cases one cannot get rid of all high negative values in a column of B by reversing
the signs of all elements in it, for the simple reason that the column may have
both high positive and negative values in it.

This brings us then to a consideration of the left sign matrix i Thurstone

L.
(1947) has emphasized that the simple structure concept and the positive manifold
concept are independent. He defines the positive manifold simple structure factor

matrix as one which has all positive elements or one in which thle vegative elementy
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are small in absolute magnitude. It is, however, possible in most cases to approxi-
mate the positive manifold for the simple structure factor matrix by appropriate
pre- and postmultiplications by sign matrices. The interpretation of the left

sign matrix may now be clarified. We have seen that the major product moment of

the factor loading matrix is invariant with respect to postmultiplication of the
factor loading matrix by & sign matrix. Suppose now in Eq. 6.1 we postmultiply

by the sign matrix i This gives

L.
Ziy - XA4; - el =0 (6.20)

From Eqs. 6.2 and 6.3 we can also write

1.2 Zi, - LAY = 1Bl (6.21)

Also from Egs. 6.3 and 6.15 we may write

1,221, -1 BB, = 1Bl (6.22)

Now it can be shown that any of the loss iunctions we have considered in
Chapter 4 are invariant with respect to a pre- and postmultiplication of the
residual variance matrix E by a sign matrix. We see further also from the first
term on the left of Eqs. 6.20, 6.21, and 6.22 that premultiplication of either the
A or B matrix by iL implies postmultiplication of the data matrix by the same sign
matrix. Suppose then we find anfiL aﬁdién iR matrix in Eq. 6.17 which according
to some acceptable criterion gives a best approximation to a positive manifold. We
mey then interpret iL as & matrix that indicates by the position of its negative
elements the columns in the data matrix Z whose elements should have thelr signs
reversed. Such situations are encountered in the factor analysis of personality
test items and other variables where the direction of the scale is not clear and
has been arbitrarily specified by the scoring procedure.

There is, however, still some ambigyity in the determinaticn of the iL and. iR
matrices. Assume that the 1 matrices have been determined to give a satisfactory
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positive manifold for P in Eq. 6.17. We can write Eq. 6.17

B = (1) B (-1p) (6.23)

The question then arises as to whether we should use the 1 matrices as given by
some optimizing procedure or reverse the signs for both i matrices. The interpre-
tation of the factors is usually based on an inspection of the variables having
high loadings in them. It is immaterial whether for the right multiplier we use
iR or -iR. For the left multiplier we must then decide whether interpretation
will be simpler by reversing the scoring as indicated by iL or -iL. If one has
some good a priori basis for deciding which is the "low" and which the "high" end
of the scale for each variable and has provided scoring procedures accordingly,

then presumably there should be very few negatives in i In general, for lack of

Ll

a better criterion, one would choose that iL or -i_ which has the fewest negatives

L
in it and then choose the corresponding i_ or -i_.

R R

In any case, one may not willy-nilly change the signs of individual factor
loadings to suit his fancy or preconceived notions. This procedure is not uncommon
and 1s completely invalid. If the factor loading matrix is small and the simple
structure clearcut, it is frequently possible to determine by inspection the
optimal i matrices for approximating the positive manifold. However, for large
numbers of variables and factors, inspectional procedures ére impractical and
obJjective mathematiéal and computational procedures are needed. Two of these we

have given elsewhere (Horst 1965, 1968a), and the method of Chapter 9 attempts to

take care of the sign problem.




CHAPIER 7

''HE FACTOR SCORE MATRIX

T.1 The Role of Factor Scores

We have seen in previous chapters that the data matrix may be approximated by
a lower rank matrix which is the major prodﬁct of two basic matrices, one of which
may be regarded as the factor score matrix and the other the factor loading matrix.
We express this relationship by

I

Z-¥A"-e=0 | (7.1)
vhere as in previous chapters Z is the data matrix, X the factor score matrix, A
the factor loading matrix, and e the residual matrix. The number of columns in
X and A are presumed to be much less than in Z. Traditionally, there has been
much greater interest in the determinai’'on of A or some transformation of it, B,
as discussed in Chapters 6, 8, and G, than in the matrix X. A study of the matrix
B has been thought to yleld interesting and us2ful information about the fundamental
or "primary" variables of a scientific discirline. Equation 7.l implies that the
data matrix for a group of persons with respeét to observed attributes can be
approximatedbby appropriate linear combinaticis of a much smaller number of attri-
butes. We have seen in Chapter 6 that the matrix A is usually transformed into a

simple structure matrix B by some transformation matrix h so that

B = Ah (1.2)
Now for Eq. T.l to Lold identically when A is replaced by B, we first write

2 - A’ -e=0 (7.3)
If we let

Y =xmt (7.4)

and use Eqs. 7.2 and 7.4 in Eq. T.3, we get
Z-YB -e=0 (7.5)
It is clear then that

YBoana (7.6)
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A more general treatmsnt is given in Chapter 9. But in any case, we may now
regard ¥ in Eq. 7.5 as the simple structure factor score matrix. If h is a square
orthonormal matrix as a special case, such as in the Kaiser (1958) varimax, then
we have simply

Y = Xh (7.1

Although the major interest has traditionally been in the simple structure
factor loading matrix B, in recent years much interest in the Y matrix of simple
structure factor scores has also been growing. This is true not only in psychology
vhere the factor techniques had their origin and greatest development but also in
other scientific disciplines concerned about the basic or primary attributes of
particular sets of entities under study, such as geographical units, educational
institutions, members of governmental bodies, and so on. It seems reascnable that

if one can discover or define adequately a relatively small number of primary

L variables of a discipline, then it could be useful to estimate the values of these
variables from a much larger number of observed and arbitrarily defined variables.
Such a procedure could yield a much more parsimonious characterization of the
entities under study almost as completely as a much larger number of observed
variables.

Furthermore, these primary variables could characterize the entities in terms
that are objectively established by the techniques. This can make for a more
objective, parsimonicus, and unambiguous taxonomy as a basis for characterization
and classification of entities or individuals within areas of human interest or
activity,

But aside from the use of factor scores as a basis for parsimonious and un-
ambigucus characterization of entities, these scores can also be utilized for
increasing the accuracy of statistical prediction in a wide variety of situations
and settings. The use of factor measures in prediction techniques has been con-
sidered by Horst (1941, 1965), Leiman (1951), and Burket (1964).




T.2 Estimation of Factor Scores

In Chapter 10 we shall consider in some detail the technical problems involved
and procedures for estimating factor scores from the data matrix and the simple
structure factor loading matrix. Rationales and computational procedures for
calculating the simple structure factor loading matrix are presented in Chapters
8 and 9. Here we shall indicate some of the conditions that might be satisfied
by the factor score matrix. Most of the work done in this area has been coucerned
with the X factor score matrix in Eq. 7.1 rather than the simple structure factor
score matrix Y in Eq. 7.5. This work has been reviewed and amplified by Harris
(1967) and by McDonald and Burr {1967). The treatment in both of these presenta-
tions has considered methods of approximating the X factor score matrix in Eq.
T.1 rather than the Y simple structure facter score matrix in Eq. 7.5. But it can
readily be seen that if we have solved for the X factor score matrix and the simple
structure factor loading matrix transformation h, we can solve for the simple
structure factor score matrix by means of Eq. 7.4. We shall therefore consider
the principles that aprear relevant in determining the factor score matrix X. In
the methods discussed by Harris and by McDonald and Burr, there is a confounding of
estimation methods and scaling method. It is important that these be kept clear’
separate. Harris lists five methods that Lave been proposed. Recalling that QB

is the diagonal matrix of residual variances, these methods are

X, = ZRA (1.8)
X, =20, M (a'p. M)t (1.9)
X = Za(A’A)* (7.10)
X, = 2A (7.12)
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Suppose now in Eq. T.1l we assume that
22 =R (1.13)
where R is a correlation matrix. Let us then consider a postmultiplication of
Eq. 7.l by some scaling matrix D, thus:
(z-xA"-e)D=0 (7.1L)
From Eq. T.l4 we have

ZD - XAD - eD =0 (7.15)
Let

ZD = U (7.16)

DA =« (7.17)

eD = & - (7.18)

From Eas. 7.16, 7.17, and T7.18 in E3. T7.15 we have

U-Xe"-e=0 (7.19)
First we note that Eqs. 7.9 and T7.1C are not essentially different, for it can
be readily shown that Eq. 7.10 minimizes tr ¢°¢ for D = I and EQ. 7.9 minimizes

this trace for D = DE' This property of minimizing the sum of squares of residuals

(or weighted residuals) has been regarded as & desirable property of the factor

score matrix.

Next we note that Eq. 7.8 is independent of any scaling matrix D.

W let
X=U (Ut (7.20)
From Egs. 7.13, 7.16, and T.17 in Eq. 7.20, we have
X = ZD(DRD) ‘DA (7.21)
vhich becomes
x = 28"1A (1.22)
r ‘ and this is the same as EqQ. 7.8. This property of independence of scale of a

factor score matrix may also be regarded as desirable.




Harris (1967) regards Eq. 7.1l as a sort of "quick and dirty" method of
estimating the factor score matrix. Be that as it may, this method may be general-

ized to a scaled data matrix by

X = ZDA (7.23)

In particular, we may have U = QE'I so that Eq. 7.23 becomes
-1 L
X =2Dp A (7.2h)

The forms 7.1l and 7.23 appear to have little to recommend them. However, we shall
see presently what happens when we consider another property of the factor score
matrix which has been regarded as desirable. This is that X shall be orthonormal
or
XX =1 (1.25)
First, let us rewrite Egs. 7.5, 7.10, and T.ll in more generzl scaled form as

the three equations

x, = a8 (7.26)
X, = ZA(A'R) (7.27)
X, = 2ZMA (7.28)

3
remembering that xl is independent of scale. Suppose now we try to find the best
approximations to these three factor score matrices in the least sQuare sense iich
satisfy Eq. 7.25. It is well known that these orthonormal apprerimatior matrices

are of the fom

oy ok
X = x(xx)™ (7.29)
We may therefore write ths three orthonormal aupproximations to Eys. 7.26, 7.27, and

7.28 respectively -3

X, * ZR'lA(A R™A4) -4 (7.30)
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-l .

X. = ZDA(A DA) "S((A ‘D) A ‘DRDA(A D) 1) 3 (7.31)

>
Xg = zm(n'mm)"} (1.32)

It is interesting that Eq. 7.32 becomes identical to Eg. 7.12, which was given by
Anderson and Rubin (1956), when D is taken as DE'J‘. Hence it appears that the
"quick and dirty" method may be made sophisticated by means of residual variance
scaling and least square érthonormliza.tim.

The forms 7.30 and 7.31 have not to our knowledge been previously presented
and these properties have not been investigated. It can, however, be shown that

a square orthonormal matrix q exists such that

and that h is given by
n = ((A°DA)"2(A ‘Ron) (A ‘DA) 1) 2ADA(A “DEDA)? (7.34)

It should nov be clear that the estimates X, and X, of Eqs. 7.26 and 7.30
respectively are independent of scale, and the estimates of Xs- x3..x5, -and x6'df
Bqs. T.27, 7.28, 7.31, and T.32 respectively depend on the scaling matrix D. In
Chapter 5 we have considered the gensralized scale free acaling matrix which is the
basis of the scale free methods discussed in Chapter 8. The matrix D in these
latter four estimates of X may be taken as the matrix of BEq. 5.31 of Clapter 5
wvhere the parameter p takes any value between O and 1. In particular, ve can have

one of the thres scalings
n-%é
D-b{*
n-&*

vhich are discussed in Chapter 5.
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7.3 Other Desirable Properties of the Factor Score Matrix

We have already suggested that one desirable property of the .actor score
matrix X is that it be scale free. Another property we have considered is that
the sum of squares (or weighted sums of squares) of the residual wmatrix elements
be minimized. This property implies that the residual matrix is orthogonal to the

factor loading matrix, that is,

eDA = 0 (7.35}

vhere D may be the identity.

dowever, this conditicn is not consistent with the variable loss function
where P in Eq. 4.4 of Chapter 4 is other than zero. Therefore it is of question.
able value except for this special case which yields the so-czlled principel com-
ponents factor loading matrix. That the factor score matrix X should be orthonormal
seens desirable but perhaps not at the cost of cther properties.

Perhaps the most inmportant property of the matrix X is that for a given A

the covariance matrix of the residual matrix be given by

C-A"-e’e=0 (7.36)
This is tne solution proposed in Chapter 5, and the solution for the matrix that
satisfies this condition is given in Chapter 8 and cunsidered further in Chapter
10.
In addition to the condition implied ir Eq. 7.36, it is valso desirable that
the factor score matrix be orthgonal to the residual matrix e. If this condition
is satisfied, then ve have fron Eg. 7.1

X(2 - ZA*) -Xe~0 (1-37)
If w have also that X ia orthonormal as inaicated 4in Bq. 7.25, then we have from
BEq. T.37
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X2 =A (7.38)

If Z is such that Eq. 7.13 holds, then the left side of Eq. 7.38 is & matrix
of cbrrelaticns of the factor scorec with the test scores or observed variables
and the factor loading matrix A can be interpreted directly as a matrix of these
correlations. There has been much wringing of hands over the decades that factor
scores cannot be calculated but only estimated. More recently, Guttman (1955b),
Harris (1967), and others have reccgnized that the "true" factor scores cannot be
uniquely calculated. Presumably "true" scores are those which satisfy Egqs. T.37
and 7.38. It is surprising that the problem of uniqueness has been so frightening
vhen ¢¢ many have so courageously and ingeniously and profitably attacked the
nonuniqueness problem for tr= “actor loading matrix by the various simple structure
transformation approaches. In Chapter 10, we suggest an approach to the unigueness
problem for "true scores."

A topic of considerable interest concerns covariance matrices involving the
various proposed estimation methods. Those involving the X matrices in Egs. 7.8
through 7.12 have been presented by Harris (1967) and by McDonald and Burr (1967).
We shall not review them here. However, in Chapter 10 the covariance relationships
involving the factor score matrices considered there will be presented.

Ve also leave to Chapter 10 a discussion of the covariance properties of the

simple Stiucture factor score matrices derived from the two types of factor score

metrices derived in thet chapter.




CHAPTER 8
GENERALIZED SCALING AND LOSS FUNCTION
8.1 The Residual Matrix

Suppose we let Z be an N x n basic vertical data matrix. We need make no

assumptions about transformations applied to the raw dats matrix which have yielded

7’ but it will be convenient to assume that transformations have been made such
that

»

R=272 (8.1)

where R is the correlation matrix.

We now consider an N x m basic matrix X where

m<n, and an n x m hasic matrix A. We indicate the vertical major product of

these two matrices by U so that

U=XA" (8.2)

Since A and X are both basic and their commen

Then U is of the same order as Z.

order is m, U is of rank m and therefore nonbasic. Let us assume now that A

and X are to be determined so that U is in some sense, to be subsequently specified,

an approximation to Z. We then write the residual matrix e as
e=2-U (8.3)

We shall determine X and A so as to optimize some function of the elements of e

in Eq. 8.3. More specifically, we shall begin by considering the covariance matrix

E of e which is given by

E=e'e

(8.4)
From Eqs. 8.3 and 8.4

E=22-2U-U%Z+U7v (8.5)

From Eg. 8.1, 8.2, and 8.5

E=R-2%" -Ax"Z + AXXA (8.6)
Without at once specifying the solution for A, we shall require that the solution

for X shall be some function of Z and A such that

AN =2°%A° +AX%Z - Axxa’ (8.7)
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We have then from Eqs. 8.6 and 8.7
E=R-a"’ (8.8)
8.2 The Factor Score Matrix
Next we shall consider the solution for X which satisfies Eq. 8.7.
We let
o=l
6 =AR™A (8.9)

We indicate the basic structure of O by

Q. 4°Q " =0 (8.10)
and let

A=(I-(T-a2)3?) a2 (8.11)
] o] *
Then the solution for X which satisfies Eq. 8.7 is
o Zﬁ'lAQ A Q s (8 12)
H c c .

To show that the solution 8.12 for X does satisfy Eq. 8.7 we have from Egs. 8.2

and 8.12

ZX == AQO A Qc (8.13)

From Egs. 8.2, 8.9, and 8.12 we have
XK =Q,4Q,°0Q 4@ (8.14)

From Egs. 8.10 and 8.14 we have

. 2 2. . e
XX =Q d;° & Q (8.15)

From Eq. 8.11
2,2 _ 2\3,2 . -2 .
d, & -(I-(I-dc)) dg (8.16)

But

2\3,2 2\% 2 A
(I -(1-8;)3)° =2(1 - (1-4;7)° -4, (8.17)

From Egs. 8.11, 8.16, and 8.17 (8.18)
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do2 £ = (28 - 1) (8.18)
From Egs. 8.15 and 8.18

XX = R, A Qo' -1 (8.19)

Substituting Egs. 8.13 and 8.19 into Eq. 8.7 gives the identity. Hence the solu-
tion 8.12 for X satisfies Eq. 8.7 and therefore also Eq. 8.8.

Ve have now to show that the solution 8.11 for A is real and finite. To do
this, we must show that the largest element of do? is less than or equal to 1 and

that the smallest element is greater than zero. From Eq. 8.8

kiRt =gt - r it (8.20)
From Eq. 8.20

ARYERA =a®ta - At a (8.21)
Let

F = eR™A (8.22)

From Egs. 8.3, 8.9, 8.21, and 8.22
FF=0-0 (8.23)

T-om E@s. 8.10 =nd 8.23

L

(Qd’ ¥) (FQO) = d02 - 45 (8.2k)

The left side of Eq. B.24 is Grammian since it is a product moment matrix and

diagonal. Hence for sll dO we must have

i
2 2y =
dg (1 - dg Y S0 (8.25)
i i
therefore
154q, ° (8.26)
i
To show that all do 2 are positive, we need only show that A'R'lA is basic. By

i
definition, R'l is basic. A general theoren for the rank of the product of
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matrices states that the rank of a product of two matrices cannot be less than

the sum of their ranks less their common order. If we let
1
Y=R4 (8.27)

then the rank of ¥ must be equal to the rank of A which is bagic. We have from

Eq. 8.27

vy = AR A (8.28)

But the product moments of a matrix have the same rank as the matrix, hence the
rank of Eq. 8.28 is its order and therefore for all d& 2 ve have
i
2
a.“>o0 (8.29)
%

8.3 The Factor Loading Matrix

Let us now return to a solution for the matrix A. We seek a solution which
will be scele free and which will have a variable loss function in the sense that
it will allow for differential weighting of the variance and covariance elements in

the covariance matrix E. We let

Dy = Diag (R)
D, = Disg (AA7)
Dy = Diag (E)

From EqQ. 8.8 we write

L

- =R - - ( \
E-P Dy =R-P D -A4 (8.30)
vhere

o< P, <1 (8.31)
Let

03p<1 (8.32)
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qQ=1-p (8.33)

P, = /(1 - 2pq) (8-31*)
Py = /(1 - 2pa) (8.35)
P = (B, D, + Py DE)'1 (8.36)

From Eq. 8.30 we may write

D(E-PWDE)D=D(R-P,.7DE-AA')D (8.37)

We may now regard the matrix D in Eq. 8.36 as a generalized scaling matrix

which may vary as the value p goes from O to 1. The parameters P, and P, in Egs.

A E
8.34 and 8.35 respectively have been constructed so that when p = 1, D2 =D L

A H
2 -1 -1 2
vhenp =0, D™ = DE ; whenp = .5, D = DR +« We may refer to D, as a diagonal

A
matrix of estimated variances, DE2 as a diagonal matrix of residual variances, and

DR2 as a diagonal matrix of total variances. It is seen therefore that the inverse

of the matrix D2 in Eq. 8.36 is a linear combination of the estimated and the

residual variances. The special case for p = O may be recognized as the scaling

function adopted in what have come to be called maximum likelihood and canonical

factor analysis. The special case of p = .5 is the scaling function adopted in

vhat some refer to as principal component analysis, although this designation could

apply equally well to other scalings. This case 1s also the scaling functicn

adopted in what has been designated by Harmon (1967) as minres factor analysis.

The special case of p = 1 is the scaling function used in Xaiser's (1965) alpha -

factor analyses.

Let us now consider the generalized loss matrix on the left of Eq. 8.30 or

its generalized scaled form on the left of Fq. £.37. When the parameter Pw in the

loss matrix is unity, the loss matrix is the one used in what have somewhat arbi-

trarily come to be called factor analysis mcdels. When Pw takes the value :ero,

the loss matrix 1s the one used in what has equally arbitrarily come to b2 called




856

the principal components model. It is seen then that the two special cases of

. the general loss functicn parameter Pw determine whether the analysis is called
factor analysis or principal component analysis. And the three special cases of
the generalized scaling parameter p determine what the corresponding factor analy-
sis technique is celled.

Suppose now we let
e=D(E - P, DE) D (8.38)

We shall refer to e as the generalized loss matrix since it involves both the

sceling parameter p and the loss parameter PW. We shall also let

S =R -PWDE (8.39)
G = DSD | (8.10)
o = DA {8.41)

€= - on’ ,. (8.12)

To solve for A We require that ¢ be orthogonal to the generalized loss matrix 6,

that is,

& =0 (8.43)

From Eqs. 8.42 and 8.43

Gar - @’ = 0 (8.L4)
From Eq. 8.4k
(a'Ga)% = o’ (8.45)
From Eq. 8.44 and 8.45 ~
o = cala'Ge) (8.16)
) But from Eq. 8.42 we see that € is independent of any square orthonormel trans-

formation of @ We may tnerefore write Eq. 8.4G as
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o =gy (& Ga)'%h (8.47)
vhere h is any conformable square orthonormel matrix. In particular, we let
tt* = (a’Ge) (8.48)

and choose ! so that

1
£l = (¢’60) "% (8.49)
Therefore without loss of generality we may write

o = Gat'-l (8.50)

8.4 The Loss Function

We shall see presently that Eq. 8.50 provides the basis for an iterative pro-
cedure for solving for o and hence also A. First, however, let us examine in more
detail the generalized loss matrix € and the determination of A which will.opti-
mize some specified function of it. First we write the matrix G given by Eq. 8.40

in basic structure form as

v 3y 9y (8.51)

=Q & ‘ 5 ‘.

G Qmem +QB BQB Q

where § matrices are of order indicated by their subscripts. If Pw in Eq. 8.39 is
zero, then obviously Y is zero and m + B = n, although this is not a necessary

condition for Yy to be zero., Suppose now we let

@=Q am% (8.52)
From Fqs. 8.42 and 8.52
€ =Qq &g Q" -y 6 Q (8.53)

Equations 8.51 and 8.53 are still perfectly general both with respect to the
scaling parameter p and the loss parameter Pw. The loss function involving the
loss matrix e may be chosen in a number of ways. In the case of the scaling param-
eter p = 0 and the loss parameter P, =1, ve have from Eqs. 8.39 and 8.40, and

Eqs. 8.33, 8.35 and 8.36
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G = DE-% RDE'% -1 (8.54)

Also by definition

De =0 (8.55°

From Eqs. 8.52 through 8.5k

1 11
DE‘Z R‘%-..Z - I - Qu' = € (8'56)
From Eq. 8.56
1 1
DE.? RDE'E e’ =1 + ' (8.57)
Now.. from Eys. 8.53 and 8.57 we may write
, ’ » Y A e
P 8" - 9y 8y 9" = Qg Qs ) S 9 9 %

0 -8, O] 18y | (8.58)

0 0 o |y
vhere q is orthonormal and orthogonal to QB and QY and B +Y +m = n.
From Eq. 8.58

~ m -~ -
I + &= (QB’ Q.Y) qm) Iﬁ + 60 0 O QB‘
°0 I, -8 0O Qy‘ (8.59)
8 0 0 I,nL Li’“ |

Now it can be proved that no element of §_ can Le greater than 1 because R is

Y
Grammian and hence also DE'éR DE'% From Eqs. 8.55 and 8.59

tr (I +6) =tr (Iﬂ + 63) +tr (IY ~ 5Y) +m (8.60)
From Eq. 8.60
tr b = tr 5, (8.61)
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io.Buty it 1s known (Bergmann, 1363) thet the maximum likelihood solution for factor

analysis maximizes the determinent of I + e. It is clso known that the value of a
determinant is equal to the product of its characteristic roots or the basic diagonal

elements of the determinant of the metrix. Ther=fore the determinant of I + ¢ 1is
given by

8 Y
I +e|l =1 (L+dg)m (1-8,) (8.62)
i=1 i i=1 i

With the constraints on 65 and 6Y’ Eq. 8.62 evidently increases as their elements
approach zero. In any case, Eq. 8.62 gives the loss function to be optimized in

the case of so-called maximum likelihood factor analysls. As Joreskog (1967) has
pointed out, "The maximum likelihood estimates are obtained when the n - masmallest
roots ere os equel to one as pessible in on approximete least square” sense.'S Bhis is
tantamount to saying that the sum of the squares of the deviations of the roots of

I + ¢ from unity shall be a minimum. But since the roots of I + € are those of

¢ increased by one, Joreskog's statement implies that tr (692 + 6Y2) shall be a
minimum. But from Eq. 8.53

2

tr € =tr 6

g+ tr oy (8.63)

The foregoing discussion is based on the chocice of the scaling and loss func-
tion parameters of p = 0 md Pw = 1 respectively, which are the ones adopted in
the go-called maximum likelihood method of factor analysis. We may, however,
regard Eq. 8.63 as a more generalized loss function appropriate for any and all
values of the scaling and loss parameters p and P,.. However, it is important to

W
note that tr 02 may be srall in absolute value but could he ]Jarge compared to tr

)

G”. Computationally, a better function to optimize is

¢ =1 - tr 32 (8-6&)
tr G ;
But from Egs. 8.51, 8.52, and 8.6% é
"2
¢ = A (8.65)

it

tr ¢
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From Eqs. 8.45 and 8.65

4 = tr « Gg (8.66)
tr G

We shall then take ¢ in Eq. 8.66 as the generalized loss function for any specified

value of m, the rank of the approximation matrix. We therefore seek to determine

o and hence A so that ¢ will be maximized. The maximum value ¢ can take is of

course 1, in which case tr ¢2 vanishes.

8.4 The Computations for the Factor Loading Matrix

To solve for A, we return to Eq. 8.47. Substituting from Eqs. 8.39, 8.40, and

8.41 ve have

oA =[D(R-P, Dp) D) ba [A'D (D (R - P, Dg) D) DA}'%h (8.67)
From Eq. 8.67

A= (R-P,D) DA [A'DE(R - P, Dp) DEAT%h (8.83)

Equation 8.68 suggests a convenient iterative set of algorithms for solving -or &,
We begin with some approximation to A, say OA. We then calculate a first approxi-

mation D, to D, by

1°A A
D, =D .
1°A ~ “HAA (8.99)
Next we let
. )
1% *Og - 104 (8.70)
For some prespecified values of p between O and 1, we calculate Pk ard PE from
Eqs. 8.34 and 8.35. We then calculate
2 -1
= (
10" = (Py 1Dy * PpyBp) (€.7)

We let

2
NUEIN (8.72)
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1S =R-P, D (8.73)

vhere PW is some prespecified value between O and 1. Then

=8 U (8.74)
-~ -
We then calculate lU’ ,W and set up the supermatrix lU' Y
v

A partial triangular factoring of this matrix gives

Y

‘lAi w

A’ =~

We calculate the critericn

(8.75)

-
[
[
-
-t
b
oy

tr ( U' W) .
4 = (8.76) | :
tr (|D 1s o ) 5
In general we have ’%
D, =D . {8.77)
KA .1A.‘-1A ‘
x5 "%k " xPa (6.78) :
= (Fp Da * g (Dg) (8.79) 2
U = Dz A 80)
K k* ke
S R-Py D (8.21)




(8.84)

~EéJ L_kw _

We repeat Egs. 8.77 through 8.8l until dk and ¢k+1 are sufficiently close.

8.6 Alternative Ccmputatjiocnal Procedures

Obviously, many alternative solutions for A may be available for special

values of the scaling and loss function parameters p and P

respectively. For the

W
case of p = 0 and Pw =1, computaticnal procedures have recently been presented by

Joreskog (1967) and also by Horst (1968b). Previously, other methods have been

presented by Lawley (1940), Rao (1955), and Hemmerle (1965). There has been some
debate as to the difference of the procedures among maximum likelihood, canonical
correlation, and least square methods which utilize these scaling and loss function

parameters but we shall not elaborate these issues.

For the case of p = .5 and Pw = 1, various computational procedures have been
presented, among which is one by Comrey (1962) and more recently the minres method
of Harmon (1967). For the case of p = 1. and P, =1, Kaiser and Caffrey (1965) in
their alpha factor analysis have suggested a computational algorithm. For the most
familiar case of all when p = .5 &and Pw = 0, we have the principal axis or princi-
pal components method for which many computational methods too numercus to mention
are available.
Browne (1967) has discussed several variations of the scaling and loss function
parameters as well as variations of the loss function itself, and reports the
development of computational algorithms and computer programs for these variations.

However, to our knowledge, none of the previocusly available computing algorithms
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or computer programs are readily adaptible for variable scaling and loss parameters.
The computing algorithms given in Egs. 8.77 through 8.84 are obviously readily

generalizable, as can be seen from Eq. 8.79 whicl involves the PA and PE functions

of the scaling parameter p and Eq. 8.8l which invclves the loss parameter P, .

W

8.7 Special Problems

However, several important questions remain to be considered about the compu-
tational procedure. The first of these has to do with the loss function ¢ given
by Egs. 8.66 and 8.83. (bviously, both the numerator and denominator of this
ratio are extremely complicated functions of A and it is probable that many
stationary points or local optims mey exist. Whether and under what conditions
the solution indicated gives in the 1limit the absolute maximum is a most pertinent
question. Certainly for the case of p = .5 and Pw = 0, the well known principal
axis case, we have shown (Horst, 1965) that the solution converges to an absolute
maximum. For the case of p = 0 and P, =0, Anderson and Rubin (1956) have shown
that, unless constrained, thz= solution for A which maximizes ¢ is not unique.

Aside from the question of uniqueness of the solution or the attainment of
the absolute maximum, we must also be concerned with the questions of whether the
solution converges, how rapidly it ~eonverges, whether the residual variances given
by Dj are positive, what will constitute a suitable first approximation for the A
matrix, and the number of factors to be solved for. None of these questions has
been completely adequately answered. However, for a number of different tyves of
data that have been analyzed, the solution presented in this chapter appears to be
reasonably satisfactory with respect to each of these questions.

As a first approximation to the number of factors, we have adopted the rule
of Kaiser (1958) that the number of factors solved for shall be equal to the number
of roots of the correlation matrix greater than unity. With some of the data which

we have analyzed, this num 'r appears to give one or several factors too few, while
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wvith others it appears to give one or several too many. Therefore, it is probable
that, lacking an adequate absolute criterion for the number of factors, the Kaiser
rule may be taken as a first approximation. If some adjustment of the loss function
is available that takes account of the number of factors m, one can then calculate
these adjusted functions for each of some specified range of m which inciudes tie
Kaiser value. For example, one could calculate the function for the integers lying
between m, - Pm and m + pm, where 1 > p > 0. Specifically, p might be .2 or .3.
Joreskog (1967) has suggested & method similar to this for the case of the scaling
parameter p = O and the loss parameter Pw =1, His loss function, however, is not
identical with ours.

8.8 First Approximation to the Factor Loading Matrix

As a first approximation to the A matrix we could take the first m principal
axis factors of the correlation matrix. This is the case of the scaling parameter
P = .5 and the loss parameter PW = 0. This procedure, however, has not yielded
satisfactory results with some data. It can lead to a local maximum for-the loss
function rather than the absolute maximum. We have presented elsevwhere (Horst,

1968b) a better first approximation.

We let

Dp.p = Diag (R'l) (8.85)
-pt (8.86)

o’ = PR ‘

oPa =T - o0y (8.87)

2 -1

o = (PA oPa * P ODE) (8.88)

P, = (P D2D) (8.89)

k W0~ OE '

& =P (R - P, DE) o? (8.90)
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Let the basic structure of OG + Pk I be

e dm 4 4 ds 9 = OG * Pk I (€.91)

Then the initial approximation to A 1s

N

o = Da(a - B 1) (8.92)

Equations 8.69 through 8.84 indicate the successive approximations to A.

8.9 The Problem of Improper Solutions

The question of positive DE values is important for the case PA = 0. If it
is not positive, . .ien the scaling matrix D whose square is given by Eq. 8.36 may
have imaginary or infinite elements. The conditions under which elements of D
may become infinite or imaginary have not been adequately invesiigated. The
methods of Joreskog (1967) for the parameters p = O, P, = 1 prevent such cases, as
does the minres method of Hermon for the parameters p = .5 and Pw = 1. In our own
computing procedure, if any element of a rh approximation is 1 or greater, the
corresponding vector for that approximation of the A matrix is arbitrarily re-
scaled to yield a DE element less than 1 by some specified small number such as
.0005. 1In the final approximetion for A one can identify such variables by the
T.ct that tueir DE value is equal to this value. So far, n cases of real data
have been encountered where any of the final DE elements are at the constrained
minimum with the exception of the solutions having the paraxeters p = 0, PW = Q.
For this case, one or more of the D, values is always at the constrained minimum.

E
This is to be expected as shown by the work of Rubin and Anderson (1956). An
interesting and unanswvered question is how for this case the variables reaching
the minimum DE values will vary according to the methed of solution. Also of

interest is how the DE velues Lf variables may approach the constrained minimum

for p = 0 as Pw goes from 1 to C.
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No mathematical proof of the convergence of the loss function or the solution
for A for the method here presented hac been found. However, for all sets of data
on wvhich the method has been tried, satisfactory convergence does occur. It has
been proved (Horst, 1965) that the method converges for the case of p = .5 and
Pw = 0. This is of course the traditional principal axis solution for the corrc-
lation matrix with unity in the diagonals.

The rate of convergence for the sets of data subjectcd to the procedure varies
and further evidence is given in Chapter 13. 1In general, the loss function at
first rapidly approaches an asymptote and later the approach is much slower. For
the case of p = ¢ and PW = 1, acceleration procedures have been introduced which
greatly increase the rate of convergence (see Horst, 1968b).

8.9 Proof of Sceie Free Property. ...

We shall now prove that the generalized scaling and loss function procedure is
independent of any scaling of the data matzix by attributes and hence also of any
scaling of its covariance matrix. This proof supports the assertion that without
loss of generality we can begin with the correlation matrix. To demonstrate this
independence we let A be an arbitralyy positive definite diagonal matrix. From Eq.

8.68 we can write

1

M = (R - PD) A AP Aty min APy AR - R0 A A tPa Yy mIE (8.93) !
Let

C = ARA (8.94)

a = M (8.95)

F=0C- s’ (8.96)

2 1

d = (P, D+ *+ Py Dp) (8.97)

From Eq. 8.95

2
Dyas = AD, (8.98)
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From Eqs. 8.95 and 8.96

2

Pp = 8°(Dg - D) (8.99)
From Eq. 8.8

Dy =Dy =D, (8.100)

From Eq. 8.99 and 8.100

2
DF = A DE (8.101)

From Eq. 8.97, 8.98, and 8.100

2 2 -1
a~ = (& (PA D, +Pp DE)) (8.102)

From Egs. 8.36 and 8.102

ATD =4 (8.103)

Substituting Egs. 8.9%, 8.95, 8.101, and 8.103 in Eq. $.93

e =(C-P D) d% (a’d® (C - P, D) a%)2h (8.104)
W°F W'F *

But Eq. 8.104 is the same form as Eq. 8.68. Hence we may start with any covariance
matrix C whose correlation matrix is R, and the solution of a satisfied by Eq.
8.104 will be related to the solution A obtained from the correlation matrix by

the relation

A=ata (8.105)
or by definity »
_l
A =D, 2y (8.106)

vhere DC is a diagonal matrix of variances of the arbitrarily scaled variables.




CHAPTER 9
THE SIMPLE STRUCTURE TRANSFORMATION
9.1 The Simple Structure Problem
We shall now return to Eq. 8.2:
U=xa" (9.1)
The matrix U is the approximation to the data matrix Z and a generalized solution
for it has been considered at length in the previous chapter. However, the solu-
tion is not unique as we can readily show. Suppose we let
B =Ah” (9.2)
Y=X({mnh (9.3)
where h is any nonhorizontal basic matrix. It cun readily be shown from Egs.
9.1, 9.2, and 9.3 that
U=YB" (9.4)
The prcblem of finding an h matrix which yields a B matrix in Eq. 9.2 which
in some sense optimizes certain prespecified criteria was first considered by
Thurstone (1947) and called by him the problem of achieving simple structure.
Traeditionally, the matrix .h has been taken as square so that the number of columns
m in B is the same as in A. The criteria stated by Thurstone (1947), as given in
Chapter 6, may be restated brdefly:
1. There should be at least m elements in each colwmn of B which in absolute
value are very small or near zero.
2. There should be at least one very small or near-zero «lement in each row
of B.
3. For every pair of columns there should be several or more rows in which
both values are very small.
k., For every pair of columns there shculd be very few rows in which both
values are large.
These criteria are not stated, of course, in analytical terms. Thurstone and

many since then have attempted to formulate riore objective analytical criteria whici
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would tend to satisfy the descriptive criteria. Among the best known of these
are the varimax criterion and procedures developed by Kaiser (1958).

Two general types of h matrices have been considered. One of these is the
square orthonormal matrix used in the varimax procedures. The other type of
methods utilizes a square basic transformation restricted only in that its columns
are normelized. This type has been called an oblique transformation. For each
typre of transformation the h matrix should yield a B matrix such that some specified
function of its elements will be optimized. The proponents of oblique transforma-
tions believe that these yield better simple structure than do orthonormal ¢xans-
formations. Many analytical methods for achieving simple structure B matrices have
been presented and discussed by Horst (1965) and by Harmon (1967). In spite of
the variety of methods now available, none of them has been consistently satis-
factory for all types of data.

The generalized method of factor analysis which we have developed includes the
special cases that we have already discussed. Some prefer one of these special
cases and some another. It is probable that an adequate set of criteria for simple
structure and methods for optimizing 'table functions would provide a more objec-
vave and useful basis for evaluating the various special cases than are provided
by the suobjective rationalizations of the numerous investigators. We shall present
a transformation rationale and procedures bassg on certdin'eriterie .adtich @ive some
promise for achieving this objective. It also gives promise of yielding more
satisfactory results for a wider variety of data than methods currently available.

9.2 The Rationale of the Criterion |

We let A be an n x m arbitrary factor lcading matrix. In particular, it may
be a matrix solved for by the methods of Chapter 8. We let h be an m x m basic
matrix and define the matrix B by

B = Ah (9.5)




It will be convenient to regard h as normal by columns so that
Dy =1 (9.6)
We now define an exponent by

2w
F = oW - 1. (9'7)

where ﬁ is a positive integer. We note then that any number raised to the F
power 1s a positive value and any number raised to the F + 1 power retains the
original sign.

It will also be convenient to define a matrix Y such that Yij is 1 if 8

i)

is positive and -1 if Bi is negative. We indicate the elemental product of two

J
matrices by placing a dot between them, and the elemental power of a matrix by
enclosing its exvwonent in parentheses. It is seen then that because of Eq. 9.7
the signs of the elements of Y.B(F)aare the same as those of the corresponding
elements of B.

Now instead of determining h so as to optimize some function of the elements
of B, we shall consider a preliminary scaling of the cclumns of B by a diagor al
matrix D and let

b = BD (3.8)
We wish to dutermine D so that for each column of b the sum of the absolute values
of the F + 1 powers of its elements is equal to the sum of the fourth powers cf thle

elements. We let

dg * By~ (3) (9.9)
9 = Dy 2y.p(F)) (9.10)

We wish nov to determine D in Eq. 9.2 so that

dg = 4y (9.11)
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To determine D which satisfies Eq. 9.11 we let
D, =D . (9.12)
6 = Py4(3)
D

D
F B'(Y.B(F))
Considering the subscript on the right of Eq. 9.13, we note that although elemental

(9.13)

multiplication as such is commutative, distributive, and associative, it does not
have these properties in combination with standard matrix multiplication. In
perticular, the elemental products must be taken tefore the matrix products. It

can novw be proved that the D which satisfies Eq. 3.5 is given by
1
- -1y F3 4
D (nG D ) I (9.14)

To show this we have from EQ. $.8 and from Eqs. 9.9 and 9.10 respectively

dG ) DDB '3(3)])3

(9.15)

- DDB'(V.B(F))DF (9-26)
From Eqs. 9.12 and 9.15 we have

dy = p* Dg (9.17)
From Bqs. 9.13 and 9.16

. n(F1)

d.F D DF {9.18)
From Eqs. 9.11, 9.17, and 9.18

b o(F4)

D'Dg =D Dp (9.19)
From EQ. 9.19

-1 _ . (F-3)
DO DF " D (9‘20)

From Eq. 9.20




D = (DG D, {9.21)
which is the same as Eq. 9.1k.
We next define the two diagonal matrices
D, =D
f b,.D(F) (9.22)
D =D . .2
e " n, b (9-23)

We note that Df in Eq. 9.22 is the same as dF in Eq. 9.10, except that the ele-

mental factor Y has been omitted. We now let
b = dp - Dg (9.24)

6 =D -d 02

g =D 4 (9.25)
Now the minimum that the set of values Gf in Eq. 9.2k can take is given by Gf = 0.
This occurs when all elements in Y are +l, in which case dF = Df. This is of

course the case when all bij are non negsative.

We have therefore

e 5 0 | (9-26)
To determine lowe» bounds for the elements of 6g in Eq. 9.25 we note first
m ]
Dy’ = = D (9.27)
3=l ".J

Theretfore the k'th element of Dg in Eq. 9.23 can be written as

L4 2 e n 2 2 ( )
D =b D b, + b (% -D ) b 9.28
N e T S Db.j b’ .k
But the k'th element of dG in Eq. 9.9 can be written
d, =b,.'D, b (9.29)
G, kK b, .k

Theu from Eqs. 9.25, 9.28, a.d 9.29, the k'th element of 6g in Eq. 9.25 can be

written
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- (2) % (2) (2)
58;; "k (f=1b°~‘ "tk ) (9.30)

Frem Eq. 9.30 it is clear that only when a b k(2) is orthogonal to the sum of the

remaining b 5(2) can the 6g be zero. Othervise it must be greater than zero. We
) k
have therefore that
5§ >0 (9.31)

e
We may now recognize that the nearer 6f in Eq. 9.24 is to zero the closer the
positive manifold criterion of Thurstone (1947) is satisfied. Also in the limiting
case, when no twc columns in B have nonvanishing elements in any row for either
column, the 6g will be zero.
9.3 Development of the Equations
Ve shall now make use of the two facts in the paragraph above in developing a
criterion which will be optimized in our solution for h. We begin by writing from
Eq. 9.24
Dy =dp - 8, (9.32)

From Eq. 9.11 and 9.25

Dy = *+ 8 (9.33)
We let
-1
A =D, D (9.34)
¥ =tr A (9.35)

From Egs. 9.32 through 9.35

v otr ((dp - 8) (g +8)™) (9.36)

From Eq. 9.36 we see that Y increeses as the elements of Gf and 58 decrease. As
these approach zero, Y approaches m, the number of factors. VY is a function of h.

If we differentiate Y with respect to h and cquaté- the derivative to 0,.we should"
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obtain an expression for h which gives an optimum solution for ¥. We begin by
taking the differential of Y. From Egs. 9.3%4 and 9.35 we have

{ 1 2)

ay = tr (a (D) Dg' - a (Dg) D, Dg" (9.37)
From Eqs. 9.3%4 and 9.37

Y = tr {a (D) - 4 (Dg) A) D;I (9.38)
From Eq. 9.38

9(Dp,) 9o(p)
N & 4 p,* (
;s = — - 9.39)
E—H a h' a ha g

The differentiation of Df and Dg with respect to h is extremely complicated. We
shall not attempt this differentiation directly but shall proceed somewhat rore

simply. First we write from Eq. 9.22

Dy = Db (o(F1) ) (9.L0)

From Eg8. 9.5, 9.8, and 9.40

2
Do =D D (9.41)
£ 54 (6(F1) (an))
From Egs. 9.5, 9,8, and 9.23
D = DED ’, o
g hA’D,, Ab (9.42)

Suppose we have some approximate soclution for h satisfying Eq. 9.6 and we

arrive at scme fixed approximate solutions to D, b(F'l)

, and Dbb' by means of
equations already presented. We substitute these fixed approximations in Eqs. 9.41

and 9.42. Then it can be shown that

3 (D)

5 = 2. () (9.13)
° (5g) 20%A "D, . » Ah (9. 4k)
A Doy 2




We now let

~s =0 (9-45)
From Egs. 9.39, 9.43, 9.4k, and 9.45

A'(b(F‘l). (Ah)) - A 'Dbb » AhA =0 (9.46)

9.4 The Computational Procedure
To set up an iterative set of algorithms to solve for h, we substitute for
the unknown h in the first term of the left hand side of Eq. G.46 the approximation

to h by means of vhich we solved for the fixed matrix b. We have from Egs. 9.5

and 9.8
-1
Ah = bD (9.47)
From Eqs. 9.46 and 9.47
A'b(F) AD . +AMND =0 (9.48)
T pp :
We let
g = 4% (9.49)
S =AD, -A (9.50)
From Egs. 9.48, 9.49, and 9.50
5% = hip (9.51)
Let
-1
H=S"E (9.52)
From BEqs. 9.51 and 9.52
HH = ADh’hDA (9.53)

From Eqs. 9.6 and 9.53

4=l
A= DH '}{%D (9.54)




From Egs. 9.6, 9.51, and 9.52

gy

h = HDy

9-9

(9.55)

We are now ready to consider the iterative computational sequence for h and

B. We begin with some upproximetion <to h which satisfies the relation

Dy = -
Then we calculate
B =Ah
We let
2w
F=sgoT

vhere W is a positive integer to be discussed later.

We calculate
D, =D
G 1 ,B(u)

D, =D
] +
Fo7y lBl(F 1)
where |B| means the matrix of absolute values of the elements of B.

Next we calculate
1

_ -1y T3
D = (1)G D )

(9.56)

(9.57)

(9.58)

(9.61)
(9.62)
(9.63)
(9.6k)
(9.65)
(9.66)

(9.67)
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h = HD,~ (9.68)
s = D,2p% (2.%)
¥ = (tr 4)/m (9.70)
B = Ah (9.71)

For any given vaelue of W in Eq. 9.58, the calculation- 9.59 through 9.7l may
be repeated until two successive values of ¥ in Eq. 9.70 are sufficiently close.

2.5 .Special Problems .

The rationale and procedures we have considered in this chapter make some
assumptions about the solution for the A matrix. The research so far conducted
with the method on experimental data hes begun with A matrices calculated by the
methods of Chapter 8. The computational algcrithms caleculate an ¢ matrix which
is actually a principal components or basic structure solution of a scaled corre-
lation matrix with adjusted diagonal elements. In any case then, the o matrix is
orthogonal. The A matrix, which is in effect a descaling of the « matrix, is not
in general orthpgonal. MHcwever, the solution for the A matrix is such that the
first vector has all positive elements. Implicit in the transformation solution of
this chapter is the assumption that the first principal axis of the @ matrix has
all positive elements. This amounts to the pre- and postmultiplication of a
scaled symmetric matrix by & sign matrix such that its first basic orthonormal
R vector has all positive elements.

The A matrix may be operated upon directly or it may first be n<irmalized by
rows before the simple structure computations begin. The question of whether to
normalize rows of the arbitrary factor matrix before app. ing simple structure
procedures has arisen with other methods of transformation and was discussed in
Chapter 6. Kaiser (1958) has recommended such & row scaling before the application

of the v:rimesprocadures, followed by a derculing of the simpl: structure matrix.
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In the computer programs provided in this report, the option of either normalized
or original scaling is available.

Beginning with an A matrix, either normally scaled by rows or not, we start
with some approximation to the h matrix. The simplest procedure is to begin with
h as the identity matrix. This in general is a very poor approximetion if we have
a principal axis or basic structure type solution for A. However, it is the on-
we use in the accompanying computer programs and it has appeared to give good
results with data fP; which the simple structure factors have been rather well
established.

We have attempted no proof that the method does converge. Intuitively it
appears that it should. For data on which it has been tried, it appears to con-
verge satisfactorily. Whether the convergence can be to a local maximum has not
been proved and may well not be capable of proof. Again, however, the empirical
results with data whose simple structure has been well established would indicate
that the solutions are in general close to the absolute maximums for the Y values.

9.6 The Exponential Parameter

The determination of the integer W in the calculation of F in Eq. 9.58 leaves
much to be desired from a theoretical point of view but empirically determined
procedures appear reasonably adequate. The question may well be raised as to why
F is not simply taken as 3, so that F + 1 would be 4, and thus bring the method
into line with those of Kaiser (1958), Neuhaus and Wrigley (1954), Saunders (1953),
and Carroll (1953) whose methods have emphasized Uth power terms. The answer is
that variations of their methods, as well as the use of F = 3, have not given
consistently good results for a wide variety of data type.. Largcly as a result
of extensive empirical experimentation, we begin with W = 2 which gives I = 4/3.
Iterations proceed with this value until the solution stabilizes. The integer is

increased for subsequent soclutions until the following condition obtains: One ..
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or more columns of the stabilized B matrix has less than m negative values. Since
the negative values are typically small, they are regarded as the near-zero values.
When this condition is reached, the B value for the previous W value is taken as
the final B matrix. The program always retains in storage this one previous ...
matrix. In some cases, even the B matrix for W = 2 dces not have at least m nega-
tive values in eachcolumn. But typically, each cclumn does have a number of small
positive values so that even for W = 2 the number of negatives and near zeros in
each column tends to exceed m. A limit is put on the value of W, such as 20, in
case the criterion of negatives less than m is not reached sooner. Such cases are

rare but one example is given by data set 10 in Chapter 12.




CHAPTER 10

SIMPLE STRUCTURE FACTOR SCORES

10.1 The Traditional Arbitrary Factor Score latrices

In Chapter 7 we considered five of the methods that have been used for esti-
mating the factor score matrix. We saw that only one of these was scale free and
that two of them were identical except for a scaling matrix. Only one of the
methods gave an o;}honormdlfactor score matrix and this was shown to be the least
square orthogonalization of a residual variance scaling for what Harris (1967)
quite properly regards as a method that is "wrong most of the time." We showed
that by generalizing the scaling of the variables and introducing orthgonalizations
of the resulting estimatqs we have actually six methods. None of these, however,
satisfies the desirable relationship that the residual covariance matrix is the
difference between the original covariance matrix and the major product moment of
the factor loading matrix. None of the methods presented in Chapter T yields
matrices that are orthogonal to the residual data metrix.

10.2 The Exact Residual Covariance Solution

In Chapter 8 we presented a factor score matrix which does satisfy the condi-
tion that the residual covariance matrix be the difference between the total and
the estimated covariance matrix, as discussed in Chapter 5. Since this matrix is
the basis of the simple structure factor score matrix we shall develop l-*er in
this chapter, we shall consider it further at this time. Using a slightly differ-
ent form than in Chapter € we let

o =ACA (1c.1)
and indicate the basic structure of Eq. 10.1 as

2 »
Qy;d,°Q, =0 (10.2)

a=(1-(I- a(f)!f)dc,'2 (20.3)
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Then the factor score matrix is given by
x=2ct_aq (10.4)
g o} *

In the above, we use the covariance matrix C instead of the correlation matrix used
in Chapter 8 to show that the estimate of X is scale free. We define Z so that

22 =¢C (10.5)

Suppose now we return to the fundamental matrix approximation equation

Z-XA -e=0 (10.6)
Indicating the approximation matrix by U, we have

Z-U-e = (10.7)
From Eq. 10.T we have

0=22-27U-2"%.

i

UZ +UU -U'e (10.8)
-e2 -eU +e’e
Now from Eqs. 10.1 through 10.4 it can be shown that the covariance matrix
for X is
XX = Q28 - 1)0,° (10.9)
The covariance matrices in Eq. 10.8 can readily be derived. The matrix C is of

course by definition Z 2. The others are:

2 =AQ; AQ A7 (10.10)
Ze =C - AQy 8, 0, A’ (20.12)
U =AQ; ad R A (20.12)
U'e =AQ, & (1 -a2)R,%" (10.13)
ee xC - A’ (10.14)

It is obvious from Eq. 10.9 that X is not in general orthonormal but only wvhen
A =1, But from Eq. 10.3, A cannot be the jAentity unless doe is also the identity.

From Eqs. 10.1 and 10.C this can oy be the case if /. {8 scme subscy of the column
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vectors in QA where QA%Q' is the basic structure of C. In rarticular, the case
of Pw = 0 in Chapter 8 gives one of these solutions, namely for the so-called
"principal component” solution.

For the matrices of covariances of Z and e with X, we have

2°X = AQy b Q,’ (10.15)
and

eX =A QG(I - 4) Q,

(10.16)
In Eq. 10.15 we see that Z°X is equal to the factor loading matrix A only if I =
4, which would be the case if A were a "principal component" factor loading matrix.
It is also clear from Eq. 10.16 that oaly if I = A is the factor score matrix
orthogonal to the residual matrix. However, from Fa. 10.14 we see that the factor
matrix given by Eq. 10.4 does give the total covariance matrix as the sum of the
estimated and the residual covariance matrices, as discussed in Chapter 5.
10.3 The True Factor Score Matrix
We shall now define a true factor score matrix X as one that is orthenorTal
and is orthogomal to the residual data matrix. ‘fhese conditions are:
XA =1 (20.17)
X‘e =0 (10.18)
From EqQs. 10.6, 10.17, and 10.18 we have also
2% = A’ (10.19)
and
C-AM"=e'e (10.20)
Conditions 10.19 and 10.20 are those we have previously i~iicated as desirsble and
the latter ve have seen is satisfied in the previous sect: m.
Suppose nov ue let

V=ZR a (20.21)
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le recognize the right side of Eq. 10.21 as the scele free estimate of X discussed
in Chapter 7. However, it does not satisfy the conditions given in Eqs. 10.17
through 10.20. As a matter of fact, there is no right hand transformation of Z
vhich in general does satisfy these conditions. Other investigators have pointed
out that to find a matrix to satisfy these conditions we must go "into the people
space as distinguished fram the test space," and that can be done in a multiply
infinite number of ways. Let us see what this somewhat mystic complaint means in
terms of simple algebra.

Suppose we let

X=V-P(I- v‘v)% (10.22)
where P is restricted by

PP =1 (10.23)
and

PZ =0 10.24)
From Eqs. 10.22, 10.23, and 10.24, it can be shown that Egs. 10.17 through 10.20
are satisfied. For Eq. 10.24 to be satisfied we must have (Horst, 1963)

N 3n +m) (10.25)
vhere N is the number of entities, n the nuamber of attributes, and m the number of
factors. If the N is equal to the right of Eq. 10.25, then there are an infinite
number of P matrices differing only by a square orthonormal transformation on the
left vhich satisfies Eqs. 10.23 and 10.2k. Howvever, if N is greater than n + m,
then the indeterminacy increases. In this case, an orthonormal matrix ? of width
N - n exists vhich satisfies Eq. 10.2k, and any square i »nemo 1 o o:saav;ation
on the right of any matrix subset of vectors from F of wicch m will satisfy Eq.
10.2%. This is the indeterninacy prcolem vhich Guttman {1955b) rirst discussed
and vhich has cast a pall over attempts to calculate factor score matrices. How-

ever, ‘Le situation doubtless does not call for so much pessimis: . Since we have
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su¢ 1 overwhelming cubsrressment.cf riches {rom which to choose P to satisfy Egs.
10.23 and 10.24k, vwhy not consider some simple function of the elements of P end
the time-honored though sometimes distrusted scale free estimate of X given dy

Eg. 10.21. ¥For example, we may consider optimizing the function

¢ = tr (pv(E) {10.26)
where the superscript in parentheses is a positive integer and means elemental

exponentiation. We now set up the function

¥Y=¢-PZ\ - 1PPy (20.27)
where A and Y are matrices of Lagrangian multipiiers. Because of Eg. 10.23,
it can be shown that

Y=y {10.28)

Differentiating Eq. 10.27 symbolicelly with respect to P and eguating to zero we

have
dY [k " )
ﬁ;"" LA ) -ZA =Py =0 - | _ . (19.29)
From Egs. 10.5, 10.2k, a1 10.29, we have
z’v<k) -22\ =0 | SR 7 (10.30)
A = rlg vl (10.31)

¥rom Eqs. 10.29 and 10.31

(1 -z yw(®y 1 p oo (10.32)
Let |

W= (1 - 20tz () \ (10.33)
I+ can be shown that the only Y which satisfies both Eq. 10.28 and 10.c3 is

Wt =y (10.34)

From Eqs. 10.32, 19.33, and 10.34 we have

Mw%ﬁ=P | (10.35)
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From Eq. 1C.35 we have

L g

yix)- Www) 2 = vi¥p (10.36)
But from Eq. 10.33

SRRt (20.37)

From Egs. 10.26, 10.36, and 10.37

= tr(W'W)% . ; (10.38)
The question of appropriste rationales for the selection of the gxpanexit K tn
Eq. 10.26 has not been investigated. As a‘matter of fact ,k more complicated" func~ ‘ :
tions of the V matrix than the elemental positive integral power runé;;ions! might
: §e‘1nvesfcigated. In any case, it is probable that the function ¢ in EB_. 10;26 o
. should be held to linear functions of the elements of P to avoid i.tefative ﬁype - |
solutions. No attempts have been mede to apply the proposed solution to e:igperi—b
mental dat. | | RS

10.4 The Simple Structure Factor Score Matrix
In Chapter 7 and in the previous sections of this chapter, we have considered

mainly the factér score matrix corresponding to the factor loadiug matrix A which
has not ipet been transformed to & simple struéture matrix. Wer have, however, in
Chapters 7 and 9 indicated that if the factor loading matrix is transformed to a
x'srimple structure factor loading matrix B by a simple structure transformetion
'mg.tr,ix h, then the factor score matrix X must be transformed into the simple struc-
v ture factor score matrix Y by the trensformation B, fhus , if
| B =hn , | " (10.39)

Y =xmt | (10.40)
These relations we have seen eneble us to write
’

2 .Y’ -e=0 | | (10.41)
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without altering the residual matrix e in Eg. 10.6. No matter how A has been
determined, the covariance matrices involving the simple structure factor score
matr@x must be transformed accordingly. The covariance matrix of the simple
structure factor score matrix is given by |

vr-nkwt 0 o)
initer@s of the simple structure factor ioading mﬁtri*, the residusl covariance
mafrix rust now be written “ : |

C-BSB =e’ ' (10.43)

- vhere

s=Mmn? o | | | (10.44)
This can readily be verified by writing from Eq. 10.39

-1

A=m | © (10.45)
Substituting Eq. 10.45 in’ Eq. 10.1k o
ee =C - Bh g’ - (10.46)
or
ee =C - B(h"h)‘la" | (10.47)

The matrix h’h and the matrix S in Eq. 10.4l4 have been extensively discussed by
Thurstone (1947), Thamson (1950), Harmon (1967), and others.

10.5 Computing the Simple Stiucture Factor Score Matrix

We shall assume that the factor loading matrix A has been computed by the

methods of Chapter 8 and that a simple structure transformation matrix h has been

- computed by the methods of Chapter 9. Assuming that this matrix gives B as

indicated in Eq. 10.39, we still have the problem of signs to consider, discussed

in Chapter 6 Section 4. Suppose we have determined the right and left sign matrix

multipliers 1R and iL so that from £4. 10.39 we get

Bl

B =1i/Blg (10.48)
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From Egs. 10.39 and 10.48

B =1 A (10.49)

Actually, in the methods described in Chapter 9 the solution is such that iR is
the identity but, as indicated in Chapter 6, this is not the case for some of the
transformation procedures. However, the computer programs in Chapter 14 do solve
for an iL matrix during the computations for the matrix A by the methods of Chapter
8. Therefore it is necessary to incorporate this matrix in the calculation of the
simple structure factor score matrix.

To date no computer programs for computin~ this simple structure factor score
matrix have been written. However, the procedure can be outlined. We do not

actually use the basic structure factor loading matrix by
a =i A (10.50)

Presumably, the inverse of the correlation matrix R'l is available since it has

been calculated in Chapter 8 to get a first approximation to the residual variances.

We next calculate

l-’

o =aR™"a (10.51)

The basic structure factors of ¢, indicated by
Q dy Qy =0 (10.52)
and then computed.

Next we calculate the diagonal matrix A from the basic dlagonal in Eq. 10.52 by
b (1- (- a2 2 (20.53)

Using A from Eq. 10.53 and the basic ¢.thonormels of EQ. 10.52, we calculate
p=Qq,484Q, (10.54)

We now need the transpose of the inverse of the simple structure transformation

matrix h. It could be calculated directly but usually its minor r ‘oduct moment is
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desired to calculate the correlations or covariances among the "true" or ideal
simple structure factor scores discussed in Section 10.3. This matrix of covari-

ances is given by

o =1
S = (h'h) (20.55)
After the minor product moment of h and its inverse S are computed, we calculate

h’t - s (10.56)

Using Eds. 10.54 and 10.56, we then calculate
G =pnt (10.57)

From Egqs. 10.50 and 10.57 we calculate

b = &G (10.58)
Then we get
F=R% (10.59)

Since we have assumed throughout that the diagonals of Z’Z are unity, it is

usually desirable in actual practice to express F as

F =F) (10.60)
If the correlation matrix has been calculated from the raw score matrix, we

may calculate X from the raw score matrix as follows:

Let
Z Ve the raw score matrix
M be the vector of means from Z
Do be the diagonal matrix of standard deviations
Calculate
£ =D ¥ (20.61)
Vi =K't (20.62)
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Then the X matrix is given by

x = l)[-\fr' -:‘ (10.63)

That Eqs. 10.61 and 10.63 do give the same results may readily be verified.
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