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PARTICLE MOTIONS IN A MAGNETIC FIELD

Introduction
The motion of a charged particle In the;eaffh's*magnéﬁié‘fi@ld

has long been of interest to matnematiciéps énd p¢ys£éié£§iiﬁ3COh-‘
nection with the study of the pr ar auroré and'éosmié rays;‘EThé\ 
nathematical formulation of this problem was given\b}f?sﬂ'afgier”é,s
early as 1907, it is often referred to';s Stgimer’éiproblem.“?
Recently, this problem received reneﬁeqjsignifiqance with the dis-
covery of the Van Allen radiation b‘élt;*f V(Sée Dragt [6 ). This is
a region in space that consists:of électrically charged particles,
which are assumed to be trapped By the earth's magnetic field,
Scme of these particles were obsérved to h#ﬁe & lifetime of éeVéfél‘ 
jears. The purpose of this paper is to rigorously establish the
theory of almost periodic motions for tne Stormer problem, exhibit-
ing thereby the trapping of charged particlés,as cvserved in‘the‘

| Van Allen belt. An additional featuré_ofAthe theory we sﬁallidevelop
is that it can eosily be generalized to any rotationally éymméﬁric
"mirror field", . ' -

" The trajectory of a particié in‘a;magngﬁic.field is geuerally
very domplicated and must be obtaiﬁéd by nﬁ&grical integration of
the differential equations of motion, "In vhe special case of a
unirform static magnetic field B, the trajectories can be obtained

explicitly. -As is well known, Ll rarticles yvrate in a helix




about the magnetic field lines (see Figure 1),

Filgure 1, Particle motions in a constant magnetic field,

If m denotes the mass of the particle, q its charge, V.L the

velocity perpendicular to the magnetic field, and B the magnitude

of the magnetic field, then the quantities,

1 o8,
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are constant along any orbit, M is called the magnetic moment of
the particle, and "a" its radius of gyration,

Many mathematicians have concerned themselves with the motion
of a charged paxrticle in a slowly varying magnetic field, A slowly

varying magnetic field is a field which varies slowly in space and




time - that is, slowly compared with the gyration radius and period,
Essentially this means that in the course .of one gyration about a
rmagnetic field line, the particle sees an approximately constant
r'ield, In a slowly varying field the particle moves approximately
in a c¢irecle whose center drifts slowly across the lines of force
and moves rapidly along the lines, This is the so-called "guiding
center” or "adiabatic" approximation, It was shown by Alfvén [1]
that the magnetic moment is an adiabatic invariant in a slowly vary-
ing t'ieldy that is to say, it is constant to first order in the
radius of gyrqtion. This result is of extreme importance in plasma
vhyrics, where one is interested in confining charged particles in
@ bounded region, Suppose, for example, that the magnetic field is
a convex function along the lines of force. A particle moving a-

longm o Line of rorce will be "reflected" backwards at the point Po

det'ined by
s-ld(PC) = B

where E  is the energy o1 the varticle. Thus, to first order, the
wulding center of a particle cscillates reriedically along a line
ot terce, between twe "mirror” point:, In this case it has been

shown (Northrer [121) that the quantity

J = fP,,ds



T

is also an adiabatic invariant, where P, is the guiding center
momentum parallel to the lines of force, and the integral is taken
over a complete oscillation from one mirror point to the other and
back again, J 1s usually referred to as the longitudinal adiabatic
invariant.

However, for virtually every prospective device for the pro-
duction of useful energy from controlled thermonuclear fission, it
was seen that the requirement that the particle remain confined for
veriods of time encompassing many millions of gyrations could gen-
erally be met only if the magnetic moment were constant to a much
higher order. In 1955, Hellwig [9] proved the constancy ot the
magnetic moment to second order in the radius of gyration, and in
1957, Kruskal [10) proved the constancy to all orders. Finally,
Gardner [7] showed the constancy of the longitudinal adiabatic in-
variant to all orders. Moreover, Gardner presented a general method
tc obtain formal asymptotic expansions for all the adiabatic in.
variants, The main idea of this paper is to show that the phase
space of a particle moving under the influence of the earth's
magnetic field contains a region where series, .alogous to the
formal expansions of Gardner, are actually convergent expunsions,
This will be accomplished by using a theorem of J, Meser which
ruarantees the existence of almost periodic solutions of the differ-

ential equations of motion.* In this manner we will show that

T ;
Gardner [8]), in 1962, announced a result like ours for rarticle

trajectories in a "mirror" field, To the author's knowledge, a
proof of this result was never published by Gardner,




particles which are adiabatically trapped are, in fact, rigorously
trapped for all time, This possibility was first pointed out by
Arnold [2].

The author wishes to express his deepest gratitude to his thesis
advisor, Professor Jﬂrgen K. Moser, for his many helpful hints and
suggestions and above all for his patience and understanding while

this paper was being written.

1, The Stormer Problem

The earth's magnetic field is assumed here to be equivalent to
the field produced by a magnetic dipole situated at the center of
the earth. Such a field can be described in cylindrical coordinates

P,2,¢ by the equations

B = curl A
A
R = !ig¢ (l.l)
r
B=|B| = Mo(143 sina)\)lle

2

e

(see Figure 2), where M is the moment of the magnetic dipole,
A
which points in the negative z direction, and ¢ is a unit

vector in the ¢ direction, The plane A= C is the equatorial

plane, and the magnetic lines of force are given by
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Figure 2.

From the previcus discussion one would intuitively expect that
the particles with small energy will gyrate about the guiding field

line with the (so-called cyclotron) frequency

where | and m Jdenote the charge and mass of the prarticle, More-
over, since the field B3 1is a convex function along a line of force,
we wold expeet that the particie, as it moves into regions of
stronger leld at higher iatitudes, will be reflected back towari

the equator by converging lines of forcec. To what extent this is




truc will be discussed in the following sections,
To write the differential equations of motion for the Stormer
problem, it is most convenient to employ a canonical formulation

described by the Hamiltonian

b
1 2 2 (1) 2
H= E[Pp +p, (? - qA)" ] (1.3)
where

= m.
Pp 0
pz = Mg

20

p¢ = mp ¢ + qu.

Since H 1is inderendent of time, the energy

is a constant ot the metion, A second intepral of the motion is
cbtalned by noting that Y s inderendent of the angle ¢@. Hence

the cancnical angular momentum

Py = I, (1)

vhere T ¢ Jdefined by this equaticn, is a constant of the mction,

(The inteyration constant I has the limensicns of a reciprecal




length,) The three dimensicnal problem is now reduced to the
simpler problem of finding the two-dimensional motion of a particle

in the p - z plane under the influence of the potential

V(e,2) = oL 8%, (1.5)
by

Once p(t) and =2(t) have been found, ¢(t) is then Getermined by

integrating the equation

¢ = -H
o
which yields
t .
o(t) = ¢(0) + = | (@ . Fhyaer, (1.6)
) = 6(0) + & f ¥y )

The sign of T' plays a crucial role in determining the general

properties of trajectories, The radial derivative of V 1is given

by
22
-Q N 2
r OV = .%L.g. - 23) (%‘ . _g) , (1.7)
r r

which is strictly less than zerc for ' negativc. A negative

radial derivative for the potential corresponds to a repulsive




radial force, since .r. V is the compcnent of the force in the
radial direction. Hence all trajectories characteriged by a
negative I’ must extend tn infinity and cannot be trapped. In
addition the particle is restricted to lie in the region V(p,2) s

E. This region is indicated in Figure 3.

Figure 3, The region V £ E for I <O,
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Note also that no orbits extend into the dipole (r = 0) for T
negative,
The situation is very similar when I'= O, For ¢ unequal

to zero the radial derivative of V is again negative. However,

p =0 1is a solution of the equations of motion, Hence the tra-

jectory i

z(t)=v2mEt+z°,zo<O

runs into the dipole from below the equator, and

z(t) = -v2mE t + Z,5 %, >0

is a trajectory running into the dipole from above the equator,
All orbits starting in the shaded region of Figure 4 must extend

to infinity,

[ ———
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Figure 4, The region V sE for T = 0,

For the study of bounded trajectories, therefore, we restrict
ourselves to the case T'> 0, It is convenient at this point to

introduce the dimensionless variables

2' =Tz ‘\

p' =Tp

¢ =49 (1.8)
o o D

=)




A
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It is easily seen that the equations of motion for these dimension-

less variables are derived from the new Hamiltonian

H = é(pi + pi) + %% - 53)2 (1.9)

where we have omitted the primes for convenience, In this system

of units the particle has the dimensionless velocity

where

L
7 = @t (L.9)"

The dimensionless constant 7 is that used by Stormer [14].

Note that the angular momentum I’ is now normalized to one,

The potential

V(R,z) = %(-]{5 - -93)2 (1,10)
r

vanishes along the curve r = cosa7\, and is positive elsewhere,
(The line of force r = c0527\ corresponds in our old coordinates
to the line of force r = P'lcosak.) Since the Hamiltonian H of

(1.9) is a constant of the motion, the particle is restricted to
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lie in the region O s V s H, This region assumes three different
forms derending on whether H 1s less than, equal to, or greater

than 1/32.

Figure 5. Allowed region V(e,2) SH for H< ;5L§ .

Figure 6, Allowed region V(p,2) > 1/32,
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Figure 7. Allowed region V(Pf,2) SH for H = %E .

From Figure 2 we see that any trajectory starting in the oval
like region surrounding the curve V=0 (r = coszk), with initial
energy less than 1/32 can never leave this region for otherwise
it would encounter larger values of V., The almost periodic
motions we shall find will all lie in this oval like region, where
the value of H will be very small. These solutions will gyrate
about the line of force r = cosek and oscillate back and forth
across the equator, Furthermore, we shall show that these motions
can penetrate arbitrarily close to the dipole, a result which was
somewhat unexpected,

One cannot expect to trap particles with H > 1/32, since the

U,

Mﬂuyx: gL
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region V S H extends continuously to infinity. However, for just
this reason these solutions are important. Namely, a trajectory
cannot extend into the dipole from infinity unless H > 1/32, Such
trajectories play a role in the theory of the polar aurora (Stgrmer
[14]).

Unfortunately, there are no further known constants of the
motion, so that the system of equations derived from the Hamiltonian
(1.9) is as simple a system as one can achieve, In general, it has
no known explicit solutions. The equations can, however, be solved

in terms of elliptic functions for the special initial conditions

in which case the orbit is confined to the equatorial plane (since
the magnetic field is perpendicular to the equatorial plane, and
the force qV x B is perpendicular to B). The general properties
of all equatcrial orbits can be obtained by considering the integral

curves

02

E= é{p + ( )2

ol

1
-] (1.11)
p
in the p - d plane (Figure 8), As is to be expected, the shape of
the trajectory depends on whether E is less than, equal to, or

greater than 1/32,
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Figure 8, Integrals curves in the p - § plane for
equatorial orbits,

For E > 1/32 all trajectories run off to infinity, and no
periodic solutions exist, For E = 1/32, the circle p=2 is
a periodic orbit (in the x - y plane), Moreover, one trajectory
spirals into this circle from within and one from without (Figure 9),
For E < 1/32 there exist two distinct tyres of orbits, For

P, < P< 2, the orbits are all periodic, and for p > 2, the or-

bits run off to infinity,
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Figure 9, Orbits in the x - y plane spiraling into a
periodic orbit, for E = 1/32,

Stormer has done extensive work in calculating other families
of periodic solutions [l4], A general method to obtain all these
periodic motions was prescnted by De Vogelaere [4], We shall ob-
tain, as a corollary to our result un the existence of almost
periodic solutions, infinitely many periodic solutions, which like-
wise will lie in the oval like region of Figure 9,

The behavior of the equatorial orbits for small excursions out
of the equatorial plane may be examined by perturbation methods,
Expanding V as a power ascries in s and applying Hamilton's
equations, one obtains
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! D.l = 0 25 L4
R 1_56.1 2=0+ O2) (1.12)
B+ §5(p.1)(a-p) =0+ 8. (1.13)

If the terms of second and higher order in £ are neglected, the
solutions to equation (1,13) are the equatorial orbits, and are
therefore known periodic functions of time (for p <2, E < 1/32).
Equation (1,12) then becomes Hill's equation. Its solution can be

written in the form
2 = CeTy(t) + DeTby(-t) (1.14)

where C and D are arbitrary constants and ¥t) is periodic in
time vwith the same period as po(t). The constant Q, the character.
istic Poincaré exponent determines the stability of the orbit, It
can be only real or purely imaginary, If 0 is real and ¢ O,

the motion in the g-direction grows (within the approximatiocn made)
without bound. If 0 1is purely imaginary the motion is bounded
(for time intervals in which the neglected terms have negligible
effect) and is therefore stable, The behavior of O as a func-
tion of " has been studied by De Vogelaere [5] who finds that

all orbits are stable for 7, > L3137,

In Section ), we shall show the existence of a lsaily of two
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dimensional invariant tori in the four dimensional phase space of

a particle, Any trajectory starting between two such tori can
never escape, snd will remain trapped between these two tori &:{-
ever, This is a much stronger result than De Vogelaere's, However,

our result is only valid for valu- s of 7 much greater than 1,3137,

2. Almost Periodic Motions, Moser's Theorem

(a) We will be concerned in this paper with Hamiltonian systems
of two degrees of freedom, and, in particular, with proving the ex-
istence of quasi.periodic solutions for systems close to integrable
onu s.? To this end we turn now to the discussion of two geo.
metrical theorems which will be basic for the following, These
statements refer to area preserving mappings defined in an annulus
in the plane. How the reduction of the differential ~quations to
a mapping can be carried out we will see later on.

To describe an annulus in the plane we use polar coordinates

N

and the polar angle. 6. The annulus is given by
LiR« 2

and the area element by

*Mere is a theoram by Kolmogorov and Arnold [2) gusrantesing the
continuation of quasi.periodic motions under small perturdations
of the Hamiltonian. However, thig theorem idoes not quite apply
to ocur case since the second frequency Wy will be small, For

this singular case we resort to Moser's theorem,




dxdy = %;dr\de.

At first we consider a simple type of mapping which we shall call

a "twist maoping" MO:

6, =8+ 7(R)

which clearly preserves the area element as well as concentric
¢ir-les R = constant, Each of these circles is rotated by an
angle 7(R), which, in general, depends on the radius. It will be
a basic assumption for the following that ¥Y(R) is not a constant,

or, more precisely, that
dy ; <
ﬁ * 0 in 1 sR <=2, (2.1)

The properties of this mapping are easily understood, Each circle
R = constant for which 7/2T = p/Q is rational consists of fixed
points of Mg. Fach circle for which 7 and 27T are incommen-
surable is densely covered by the images of the iterates Mg(q =
1,2,,..) of any point on this circle,

Our main objective will be to discuss a mapping M which is

c. ose to the twist mapping Mo. Therefore, we consider a mapping Me




R =R+ ef(R,0,€)

(2.2)
6, =6+ 7(R) + €g(R,8,¢€)

where f,g are assumed to have the period 2r in 6, This mapping
is defined in the annulus 1 £ R £ 2 but need not map this annulus

into itself.

Theorem (Poincaré-Birkhoff). Let 7'(R) # O and let M_ be area

preserving for all € in the sense that

for any closed curve C. Given any rational number p/q between
2ry(l) and 2my(2) there exist 29 fixed points of M satis-

fying

provided e is sufficiently small,

This theorem is actually a very simple version of the celebrated

fFor simplicity we write M in place of Me'
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and much deeper fixed point theorem by Poincaré and Birkhoff in
which no smallness assumption is required, The preseat theorem
is a consequence of the implicit function theorem. One sees

th

immediatsly that the q iterate of M has the form

R, =R+ O(e)

eq = 0+ qy(R) + &)
and -- by the implicit function theorem -- there is a unique R =

F(6,¢) satisfying
6 = 0+ 271p
q

for sufficiently small e, This solution R = F(6,e) represents
a starlike curve C which is mapped "radially" by Mq, since Bq
and @ differ by an integral multiple of 27, Since the mapping

M and nence Mq preserves the area [ Rd® it follows that C
' C

and the image curve M3c intersect in at least two points, These
points are clearly the desired fixed points, If P is one fixed
point, MP,...,Mq'lP provide q - 1 further fixed points and the
theorem is proven,

It is important to observe that we hail a continuum of fixed
points of T for € =0 while for € >0 we predict only a
finite number of fixed points. In fact, it can be shown by exemples

that in general the curve of fixed points breaks up into a finite set
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of fixed points,

Now we turn to the question of what happens under perturbation
to those circles R = constant for which ¥(R)/2T is irrational,
This is the content of the following theorem which will not be

proven here,

Theorem (Moser [11]), Let » (R) # O and let any curve C sur-

rounding R =1 and its image curve MC intersect each other,
The function f,g are assumed to be sufficiently often differ-
entiable, Then, for sufficiently small e there exists an
invariant curve T' surrounding R = 1, More precisely, given
any number @ between (1) and 7(2) incommensurable with 2T,
and satisfying the inequalities

- 2
& - & = clql™

for all integers p,q, and some constant ¢ > 0, there exists a

differentiable closed curve

"o e (2.3)
0= ¢+ Gy '6)

with F,G of period 27 in @, which is invariant under the
mepping Me -- proviled ¢ is sufficiently small, The Image

point of a point on the curve (2,3) is obtained by replacing




¢ by ¢ + w.

In actual fact this theorem provides not only one but infinitely
many invariant curves, We observe that the intersection property
for curves mentioned in the above theorems is certainly satisfied if
the area [ RA6 1is preserved., Namely, if C is any curve surround-
ing R = lC so will the image curve surround R = 1. If the curves

C and MC would not intersect each other one of them would lie in-

side the other and the areas [ Ri6 and [ Rd@ could not agree.
C MC

For later applications we need an extension of the previous

theorem. If the mapping (2.2) is replaced by

)
R, =R+ ¢ £(R,6,¢)
1 Vs (2.&)

6, =6+a+ epy(R) + eog(R,e,e)

where O = p< g, then the conclusions of the previous theorems re-
main true, The essential point is that the perturbation term is
small compared to the "twist" e°7(R).

To apply Moser's theorem to prove the existence of invariant
tori for a Hamiltonian system of two degrees of freedom, we first
approximate the Hamiltonian H, (if possible) by an integrable

Hamiltonian H,, di.e. we write

H = B (R),Ryy6) + €M (R,6,,R,,0,,¢€) (2.5)




vwhere o = aHo/aH_ is of order one, and the frequency ratio
u;a/wl varies over a region of order e with k< bay, = &Io/ 312).

On the energy surface H = ¢ we solve for
(2.6)

Using el as independent variable instead of t and setting

R, = R, 6, = 6, we find from Hamilton's equations that

ds

-H
dR 0
= emvem— * = (2.7)
) "R, * B

s o

One verifies easily that on H = ¢ these equations take the form

dR de
Oms— M o 2 - 2. *
b, - % s a6, *r 2.7

where ¢ 1is defined in (2.6).

The system (2.7) is again Hamiltonian, of one degree of freedom,
but non-autonomous., To eliminate the independent variable we fol.
low the solutions from el = 0 to the next intersection with 61 =
2T, This defines a mapping which -- by Liocuville's Theorem --

preserves the area [ Rd6. This mapping will have the form

R(2r) = R(0) + O(eb)
(2.8)
6(2r) = 68(0) + a + y(R) + Oet)




with 7' (R) # O. Note that the condition 9%'(R) # O means that
the frequency ratio “)2/‘”1 _vir_ff_s_ on the energy surface H = c.
The important point is that the frequency ratio varies over a
region which is large compared to e", i,e. the twist eky(R) is
small compared to the neglected terms. Moser's Theorem guarantees
infinitely wmany invariant curves of the mapping (2,8), for
sufficiently small €, Any curve invariant under this mapping
generates an invariant torus if we take all solutions which issue
forth from the invariant curve, and on these tori, the motion is
quasi-periodic with two frequencies,

In this case a quasi.periodic motion will densely cover a two
dimensional invariant torus in the four dimensional phase space of
the particle, Any trajectory starting beiween two such tori must
always remain between these two tori. (Warning: This is not true
for n > 2,) This provides a powerful tool for proving the sta-
bility of periodic orbits. In the following section we shall show
the existence of quasi.periodic motions in the earth's magnetic
field which lie near the equator, All trajectories near the
equator which are caught between two such tori must remain near
the equator forever, This is the stability result for “"near
equatorial” orbits which we mentioned in the preceding section,

(v) We would now like to show how one goes about approximating
H to higher and higher order by an integrable Hamiltonian. The

method we shall present is known as the Lindstedt method [13].
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For simplicity we shall restrict ourselves to systems with two
degrees of freedom,

Consider a Hamiltonian H of the form
Hl = @)X, + wxX, + eHl(xl,xz,yl,ye) + e%{a + eee (2.9)

where xi is conjugate to yi and H has period 27 in yl

and y2’ i.e.

H(x,y+ar) = H(x,y,).

We would like to find new canonical variables xi

will be independent of the angular varisbles y'l,yé through terms

‘,y'i so that H

of order n, To this end we consider a generating function of the

form

S=yX|+yx,+ esl(xi,x'a,yl,ye) + £282 + oee (2.10)

% '%. Vi'%o (2.10)

If we dencte the Ham'ltonian H expressed in terms of the primed

variables by




H(x',y') = ®X] + WXL, + eﬂl(x'l,x:?) + eaﬁe + oee (2.11)
then from (2.10)
e et i (2.12)
H(x! + + eeey XL 4+ + eee, ¥y,y.) =N, .
(%} “F, - R N » Y1992

Equating terms of order ¢ in (2.12) we see that

B
®) _5’_11_ M-k 7 R, (x},xp) = Hy(x},%5¥1,¥ )

(2.13)

In order for S8, to be periodic in yl and y2 we must require 4

1
that the right hand side of (2.13) have mean value zero, Hence

or or
l L} L]
ﬂl(xiﬁ};\) - W f \/‘ Hl(xl,xa,yl,y Q)d‘vldya' (2.14)
o o

i,e. N 1is the mean value of H,» We still cannot solve ror S,

1
since a Fourier series expansion will contain the small divisors

J 1% + Jz(%. We therefore require that the frequencies satisty

the {nfinitely many inequalities

|G, 2 AT | (2.19) I

[

for all integers J,,J, wvith [J] = |J1| + Ijal > 0, and with some
constantz y and T> 1, If the right hand side of (2.13) has

the Fourier expansion

§ ot Semamey [ S
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. Z‘ [ i(k,y)
k&oak(x Je

then Sl is given by

g = ¥ ak(x') ei(k,Y)
1 kio W

To determine Sk we note that equeting terms of order k in

(2.12) yields

® >
k “
+w = + - (2.16)
et AR 7 B+ G - %y
where G, devends only on S,H, 0> i%k-1l. Tus R is

determined by setting the mean value ot' the right hand side of

(2.1t) equal te serc, ani then S is Jetermined. Tc eliminate

3
the y Jependence of H through order n, we simply truncate the
series 'or § after e“sn.

The above methad may be extended to the case where the lowest

order tem Ho of H is given by
Hy = H (X ,X,).

We simply choose x' = x°  so that

o o Holx)
17
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are rationally independent numbers satisfying (2.15), and then re-

strict the variables x' +to a small neighborhood
1
|xx°| = O™

Finally, if the frequency w, is zero to lowest order, we

2
first eliminate the Y, dependence of H through order n. Then,
if we can find new variables so that 'ﬁl is also independent of

Yoo we may eliminate the ya dependence through order n,

3. Main Result. Existence of Quasi-Periodic Motions

(a) In this section we will prove the existence of quasi-
periodic solutions of the Stormer problem. These motions will all
lie in the oval like region of Figure 5 and will satisfy H << 1/32,
Moreover, these motions may penetrate arbitrarily close to the
dipole,

(b) Dipolar coordinates, Since our intuitive idea of the
motion is a gyration about a line of force and an oscillation a-
long the line of force, it is natural to introduce new "orthogonal"
ccordinates a(p,z), b(p,2) such that the curve a{p,z) = const,
defines a magnetic line of fzrce, The magnetic field lines are

given by the equation

e :o-:? » (a = const.), (3.1)




3l
From the equation
FEEE- 3.2)
we find that
b(p,z) = %22‘- . (3.3)

(Any function of b together with a provide an orthogonal co-
ordinate system.) The new canonical variables may be obtained

from the generating function
F(p,z,PeR,) = a(p,2)p, + b(p,2)p (3.4)

by employing the standard relations

SF SRUCAE 15 1R8I
(3.5)

F & ®

" ® =

b= % = b{p,z), P, =

In terms of these new variables the Hamiltonian H of (1.9) takoes

the form



2 2 2

H(a,p_,b,D, ) fa, pb (a-1)
B PaPy) = 3=+ =) ¢ —Ftp
}a hb 2a cos A

2 COS6X 2 a6coslek

h = = . (3-7)
3 1+3sin ; ’ hb 1+3sin ;

It is understood that sin A and cos A are to be exrressed in
terms of a and b,

We now wish to restrict ourselves to a region in phase space
where the energy H will be small, This is to conform with our
notion that in the course of one gyration abcut its guiding field
line, the particle should see an approximately constant magnetic

field, Thus we consider the change of variables

where ¢ is a small parasmeter. The condition a - 1 = ezb means
that we require the particle to remain near the guiding field line

r o= cosek. Our system will remain Hamiltonian if we take

H(a,B,pO?pB) = H/eu. (3.9)

Our next step is to try and approximete H by an integrable
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Hamiltonian, To this end we first show that A(a,b) is an
analytic function of a and b for b small, Squaring equation

(3.1) and multiplying by (3.3) yields

sin A
aab = . (5. lo)
(l-sing)2
The derivative of the right hand side of equation (3.10) with re-
spect to A is one at A = O. Therefore, we are guaranteed that
Aa,b) is an analytic function of z = 2% for |z| small,

Hence, we may write

sina)\ = (-:282 + heh(oﬁz-ﬁh) + Gl(a,B, €)
X X (3.11)
cos'67\ =1+ 3e2B2 + b¢ (aaﬁa.s ) + G2(O£,B,€)

where G, can be written in the form 666_‘ (a,B,€) with 3’1
analytic in the variables o,B,e. These expansions are trivially

derived from the relation

b o sina)\

b = . (3.12
: (Lsinz;)lz (3.12)

The Hamiltonian (3.9) may now be written in the form

H=H +Hy+H +He (3.13)




3h

where
aa+ 2
H = ‘o
o 2
52 22,3 2322
H, = S(670 ko spr 38 0)
s pa_ ko 2,22 4 2k
H, = —2-(2'4043 v~ pa-dapB+3f5 pﬁ+2a -20P )
and
6
He = € H6(a,B,pa,pa,e)

with ﬁ6 analytic in all its variables.
We shall now show that Ho + H2 + Hh can be transformed into
an integrable Hamiltonian, modulo terms of order 66. Firstly,

define new coordinates R,6 via the formula
o= \/EE sing, v, = V2R cose. (3.14)

From their definition, R and 6 are canonical coordinates. The
magnetic moment M of the particle will be proportional to ehR
(to be shown in Section 4)., Note also that H, = R, and R is
constant to order 52. Next, we employ Lindstedt's method to
average out the 6 dependence of H to order e6, i.e, we define

new variables R',G',B',pé so that H is independent of &'




through order eh. The frequency w, Of (2.9) is zero, while

W = 1. In the novation of Section 2,

2r 2
- 2 2
= .lﬁ(f) H30 = Sp[9R' (B')" + (e4)"]

The generating function §, = Sz(R',e,B,pé) is given by

3/2

S, = - g sin 2 - 4(R1)P Z(ccos 0 + 25 9)1 (3.27)

Performing the integration in (3.16) we find that the Hemiltonian

(3.13) may be written in the form

=H0+H2+Hh+H6




(we have suppresses the primes for convenience), and Hg
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65,

For fixed R the curves

are ellips

9RB2 + pg = const.

es in the B, p, plane, These curves may be transformed

B

into circles (with the same area) by the generating function

Setting

F(G,B,Rl,Pé) = (9Rl)l/haps'+ GRl . (3.19)
B! = \/2&2 sin 6, pé = \/2R2 cos 6, (3. 20)

we see that H, 1is independent of 92. Hence, we may employ the

Lindstedt

order 66.

call R,,6

2
method to average out the 92 dependence of H to
In terms of new canonical variables which we again
1’R2’92' the Hamiltonian H now assumes the form

M, 13
H=R) + BGERasfgl + ..2.(-21Rl + .?r_) + Hg (3.21)

where Hg = €6ﬁ6(R1,R ) 62,e), with Hg analytic in all its

variables,

271
Thus, we have succeeded in approximating H by an

-t

EEg ..
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integrable Hamiltonian

F=H-H6

to order e6. We now apply Moser's Theorem to prove the continua-
tion of quasi-periodic motions under the perturbation H6‘ As

described in Section 2, we solve for R, = ¢(R2,el,92,e) on the

1

energy surface H = ¢, and take 6 instead of %t as independent

1

variable, We then follow the solutions from 91 = 0 to their

next intersection with el = 2. This defines an area preserving

mapping which we denote by M. Since

de

mom ot VR - Rt r e A (3.22) .

47

and

12 _ 1/2 36%‘2 . d(el‘)

R - — (3.22)*
the mapping M has the form, in the coordinates R = Ra, €= 92,
~ 6
R = R(2r) = R + € £(R,0,¢)
M (3.23)

§=0(2r) =0+ 3€2cl/2 - %3 ehR + e6g(R,9,e)
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where R = R(0), 8 = 6(0) and f,g are analytic in the variables

R,0,€. This mapping is of the form (2,4) with p = L, ¢ =6, and

y® = -240.

Hence, Mcser's Theorem applies,

Thus, we have established the existence of quasi-periodic “
motions with two frequencies for sufficiently small e. Since we
restricted b to be small, all these motions must lie near the
equatorial plane., Moreover, these motions gyrate tightly about
the guiding field line r = cosak (or r= P'lcosak in our old

coordinates)., A typical motion is illustrated in Figure 10,

Figure 10. A quasi-periodic motion in the p - z plane, | .




These orbits all cross the magnetic field line at an anjle near
90o since the velocity of the particle parallel to the magnetic
field is much smaller than the total velocity., This follows from

the fact that Py, = e3pB is of third order small while pa =

€2pa is only of second order.

(¢) Quasi-periodic motions which penetrate arbitrarily close
to the dipole,

Our goal now is to prove the existence of quasi.periodic
motions which need not lie near the equatorial plane, To this end

we consider, instead of (3.8) the change of coordinates

.b-:eB
By = €Pp
where again ¢ denotes a small parameter, Let M and N be two
fixed constants, with N very large, We then consider all vari.

ables to be complex, and restrict ourselves to the region T

defined by

lal + |p,| + Ips| 54
|Re b| s N

|Im b] 5 B(M,N,€)




Lo
where 8 depends on M,N, and € and will be chosen so that the
Hamiltonian (3.6) is analytic in the variables a,b,pa,p,:J in the

region T, for e sufficiently small. To find the singularities

of H in the camplex U-space we consider again the equation (3,10)

aab = -————Esm A .
(l-sinzi\)

With z = a% end Y = sin A(a,b), we observe that

dz l+3y2 .
= = (3.26)
& (1-¥%)

Hence the only singular points are y =31, y=? = « It is
3

clear that for fixed M and N, & may be chosen so that sin A 4

1L for |Imbj 55 and € sufficiently small, The points y =

* 1/4/3 correspond to the points

z-aeb-tizrﬂ.

2
letting a = a ¢+ 102, be bl + 1b2' we see that

2 = b, - 32b2 + :l(albanabl). (3.27)
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For fixed ' and N, we now restrict & and € still further

so that

3
|alb2+a2bl| s =
thus excluding the points z = 1% }_3_\1{_3- . The new Hamiltonian

2
1 1 pa pB a
H(a, 0 ,B,D.,€) = == H(a,b,p ,p ) = Z(=g + =) + (3. 28)
A S :2 ?7 e’ E}?a ?xs 2(l+ea)hcos6)\

is now analytic in all variables in the region T. Note that al-
though N is fixed, it may be chosen as large as desired, The
points (a =1+ €y, b= N) all lie very close to the dipole, and
approach the dipole as N — =,

(d) Our next task is to approximate the Hamiltonian by an in.
tegrable one, We cannot expand H in powers of ex and ¢f as
we did previcusly, since now : ~ l'c, Instead we expand H in
rowers of (a-1) = ¢x only, Cince sin A and c:onl"1 are analytic

in T we may write

L+ 3 stk = K (b) + F,(a,b)
(3.29)
cos A = cl(b) + Fa(a,b)




L2

where Fi(a,b) = @((a-1)). (C?((a-l)k) denotes an analytic
function which vanishes, together with its first k - 1 derivatives
with respect to a, at a = 1,) The Hamiltonian (3.28) may thus

be written in the form

H=H + H (3.30)
where
2
c K,C
2
H = -zl-(Klpima) + _12_1' Pg (3.30)

and H, = e, (o, 8,0 a,pﬂ,e), vith H analytic in all its variables.

The arguments of the functions cl and Kl are b = ¢S,

(¢) The next logical ster is to transform the Hamiltonian H
into an integrable one, modulo terms of order ¢, We start by
¢inding new varisbles o', p, 80 that H_ is a function of (o’ ) +
)2

(p:) alone. These varisbles may be obtained from the generatiag

function

o,
Floy8,5,0L) = K' ogy + =2 (3.31)

where the arguments of the functions Kl and f are e. 1t

would suffice (for the purpose stated above) to take f = €8, How-

ever, a judicious choice of f will enable us to express H
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explicitly, and thereby simplify most of the later calculations,
The new canonical variables a',p&,ﬁ',pé are determined from the

relations

a - 'l/ [ [ - i = -

p _-a_ ’ B _E'—_ P
. & ~1/h . B &‘ (l) , €. -1’4 (l) ,
O'?’K] a:pg" =1 pB- 1 Kl apa

vwhere Kil) ani f(l) ienote the derivatives of the functicns Kl
and f with respect to *» = ef.

A peint in the p - z piane is determined from the courdinates
a',e' in the following manner; Given o' and B', the point lies

on the magnetic field lire r = a cosel, where
qn
a1+ oarle3(er)S) (3.33)

The coordinate b on this angnetic field line is then found from

the relation

t(v) = r(ef) = €', (3.34)

We cannot solve (3.34) exactly for b, However, for the f we
shall determine it will be seen that as ¢f' increases (decreases)

to +1(-1), b increases (decreases) to +w(.w); and that the




Ly
latitude A, for a = 1, is precisely

sin™(ep').

Thus, Bt (t) essentially describes the motion along a line of
force, for the coordinate a near one, In terms of the primed

variables the Hamiltonian (3.30) assumes the form

A

H=
2

2 2 2 2
(@) + () + cpVE () m) ) + 1y, (3.35)
with H = O(e).

(f) We shall now show that the Hamiltonian H  1is an in-
tegrable Hamiltonian, i.e. we shall find new canonical coordinates
R,0,J,% so that H = H (R,J). To this end we define canonical

coordinates R,6 1in place of o'y Py by the relations
a = \/Eﬁ sing, p& = \/25 coso, (3.36)

Ho is now independent of 6, Hence the cocrdinate R, which we

shall later show (see Section 4) is proportionai to M/ee, is a

constant of the motion to lowest order in e., To lowest order, 6

is given by the equation

9 = (L)l = Cl@ 0 (5-57)
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But the quantity on the right hand side of (3.37) is the magnitude
of the magnetic field along the line of force r = coszx (see (1.1),
(1.2) and (3.29)). Thus, we have confirmed our intuitive notion
that to lcwest order the particle gyrates about its guiding field
line with the cyclotron frequency Wy e

It is converient at this point to introduce a new time scale T

so that the frequency becaomes one, i.e. the particle gyrates

s |
about its guiding field line in the new time scale with constant

frequency, This is easily accomplished by setting
t= mldt. (3.38)
Qur trajectories are now the zero energy sclutions of the Hamiltonian
F= }—(H-h\. =F +F (3.39)
w
where h is the constant value of the Hemiltonien (3,35) and

F,= R+ -Et—l(wf(f' )g(pé)2 - &)

(3.39)"

Thus, to lowest order we have decoupled the motion in a',p& and in
B',pé. This puts into evidence the integrability of the truncated

system,
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In this approximation the motion in the 8! ,pé plane is

described by the Hamiltonian

h

3.ko
Y (3.%0)

o = 3o, (£ 2 -

which we now calculate, For this purpdse we observe that u)l =
cl\/l{l and f' all are expressed in terms of f(b) = f(ep) = &b’

if we define f(b) by

f

b = . 3.4
—'g-g(l-f ) (3.41)

Therefore, ¢ can be expressed in explicit algebraic form, To

show this write

sin A= £,(0) + B((a-1))

in A
where we have f, = f (see aab = S )e Then compute
1 (1--sin ;)

= with Y= ep!

and

1431° 1+37d w].\/l+37
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Hence
2 2
(pt) 23 ()
1 (1-7) B
¢ = g[m—io - 2] = [(—E— - 2], (3.42)
aDl l+37 2 +37¢.Ll+372

The motion in the B',pé plane derived from the Hamiltonian

™

Fo is qualitatively determined by considering the level curves

(see Figure 11)

- -h(1-72)3 1 (18’ )2 343
BT T >

in the B',pé plane, For ¢ > 0 these curves are not closed and
asymptotically approach the lines % = *1l, The curves corresponding

to ¢ = 0 are hyperbolas defined by

%(pé)e - 3h72 = h, (30’4‘,4)
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[Ty

Figure 11, Level curves in the 7, pé plane of ¢ = const.
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For c¢ < 0, the components of these curves in 7] <1 are all
. . s = + \
closed, and lie inside the domain bounded by 7 = tl and the hyper-

bole, with the point s in Figure 11 determined from the equation

( 2,1/2

h (14+3s
-E = —-——%T [} (30)4‘5)

(1-s7)

The quasi-periodic orbits obtained previously correspond tc small
oscillations in the B',pé plane about the equilibrium correspond-
ing to equatcrial orbits. Since we are only considering the zero
energy solutions of F, the constant c¢ is essentially -R. Hence
B' (1) and pé(r) will be periodic functions of T if we neglect
the term F; in (3.39). Thus we have justified our intuitive idea
that the guiding center of a particle oscillates along a line of
force between two mirror points., Tnis motion is indicated sche-
matically in Figure 12, To lowest order, the particle mirrors at

& latitude ) = sin"ts where

h _ (l+352 1/2

. (3.46)
(1-57)
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Figure 12, Schematic description of guiding center motion,

Thus, the smaller R, the closer the particle approaches the
dipole. It is also clear from Figure 11 and the discussion con-
cerning the coordinates o',B' that there exist orbits of the
unperturbed system F_ in the region |b| = N which achieve
|o] > 3n/4,

Finally, since the curves (3.43) are closed for ¢ < 0, we may
introduce the familiar action.angle variables J,¢ in place of

B',Pé, vhere the action J is given by

2.3/2
J= “_;/_5 fs{h(l+3x2) + oLt / }1/ “ax. (3.47)
o (1-x")

ooy

. _

D 1
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(7 is simply the area of the closed curves (3.43) in the B',pé

plane.) 1In terms of the variables R,6,J,® the Hamiltonian F

takes the form

F,=R+ c(ed). (3.48)

Thus, we have succeeded in showing that the Hamiltonian Fo is

integrable. The two frequencies of motion determined by Fo are

(3.49)

where c¢' denotes the derivative of ¢ with respect to «J. In-
cidentally, the fact that @y 1s proportional to e is in
agreement with our notion that the particle oscillates slowly a.
long a line of force, while gyrating rapidly about it. Note also
that the action J, w'.ich is the longitudinal adiabatic invariant
divided by 62, is constant to lowest crder,

We now apply Moser's Theorem tc prove the existence of quasi-

periodic motions for the full Hamiltonian
F=R+c(el) + eFl(R,eJ,O,®,e) (3.50)

where FL is analytic in all its variable, On the energy surface




52

F=0 we solve for R = 0(eJ,0,%,€) and take 6 instea. of t
as independent variable, We then follow the solutions from 6 = 0
to their next intersection with 6 = 2r. This defines a mapping

M, which in the cocrdinates r = €J,® 1is given by

r, = r(2[r) =1+ eaf(r,¢,e)

Me 2 (3.51)
o, = 0(21) = ¢ + ec'(r) + €g(r,0,¢€)

with f,g analytic in all its arguments, The intersection property
of a curve with its image curve still holds, trivially, Hence, the

above mapping M is of the form (2,4) with p= 1, ¢ = 2 and

7(r) = e’ (r). (3.52)

To apply Moser's Theorem now, we need only verify the condition

7' (r) =c"(r) 0 (3.53)

i.e. 7(r) should be a monotonic function of r, Unforturately,
we cannot calculate y(r) explicitly and must be content with
numerical calculations, Figure 13 below shows the graph of y(r)
versus ¢, It is clear that y(r) has a single stationary point
at ¢ = -,70, At this point the non.degeneracy condition (3,53)

is violated,




-
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Figure 13, Graph of y(r) versus c.

Thug, with the exception of one point, Moser's Theorem guarantees
the existence of quasi-periodic motions, close to the unperturbed
motion defined by the Hamiltonian Fo, for sufficiently small e,
Since some of the unperturbed motions achieved |b] > 3N’L, then for
sufficiently small ¢ there will exist quasi-periodic motions for the

full Hamiltonian which achieve |b| > N/2, By choosing N aritrarily
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large these quasi-periodic motions can penetrate arbitrarily close
to the dipole, Of course, the larger we choose N, the smaller we
must take ¢, i,e., the tighter the particle gyrates about its
guiding field line,

We now wish to schematically describe these quasi-periodic
motions in coordinate space, rather than phase space, In the p -
z plane, the particle is confined to the oval like region in
Figure 5, with V very small, and it rotates slowly around the

z-axis in accordance with the equation
o(t) = [ (ik- P )dt' + const, (3.54)
I \g ;3

It will be shown in the following section that the quantity
ps/hs in (3.6) is vf , where v, 1is the velocity of the part.
icle parallel to the magnetic field, To lowest order in ¢ we

then have

2

N e R (3.55)

v R rn3te)d

i

For R small, the particle crosses the equatorial plane (f' = 0)
at an angle near 90°, As ei' increases to its maximum value s,
the quantity vfftf decreases monctonically to zero, When the
rarticle crosses the field line r = cosaA, = 0, and hence the

velocity vector lies in the meridian (o - 2) plane. Thus, the
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particle crosses the guiding field line in a sequence of angles

which monotonically approach 900. This situation is illustrated

Py

in Figure 1k,

U ——

»igure 14,

As the particle moves tack toward ihLe equator, the crossing angles
t:gin to decrease monotunically, until the particle is moving nearly
parallel to the field at the equator, licte that as the particle
moves into regions of high la.itude, it begins to gyrate rapidly,
since the cyciotron frequency becames large,

(g) As a ccrollary to the above result on the existence of quasi.

periocdic motions, we are automatically guaranteed infinitely many
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periodic sclutions. We cutline the proof briefly, Each quasi-
veriodic motion densely covers a two dimensional invariant torus
in the four dimensional phase space of the particle, Moreover,
this torus must lie on the energy surface H = const. We now cut
the torus with a surface of section §, and consider the mapping
P »M(PF) induced on S by the differential equations; i.e. M(P)
is the point where the trajectory beginning at P returns to S.
From the form of the Hamiltonian F of (3,53), it is possible to
introduce coordinates R,6 on S so that the mapping M has the

form

jes]
I

=R+ e2f(R,e,e)
Me

[s»]
]

6 + ey(R) + eeg(r,e,e).

A mapping M of this form is referred to as a "twist" mapping, and
the Poincaré-Birkhoff fixed point theorem (Birkhoff [3]) guarantees
the existence of at least two fixed pcints, Since each fixed point
represents a pericdic solution, we have established the existence of
infinitely many periodic solutions to the Stgrmer problem (which al-

so lie in the oval-like region 5, with H very small),

4, Quasi-Periodic Motions in a Rotationally Symmetric Magnetic
"Mirror" Field,

(a) We consider now a rotationally symmetric magnetic field

B, i.e. a field which is independent of the azimuthal angle ¢,
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The motion of a charged particle in such a field can be described

by a Hamiltonian of the form
1,2 2 ir 2

H(D,Z,PD,PZ) = E(Pp + pZ) + E(s = A(D’Z)) » (h'l)
where we have normalized the mass and charge to be one, and T
is the constant electromagnetic angular momentum of the particle,
The magnetic field ﬁ) may be determined from the equation
=V X X (’"’02)
with

A= A( p,z)$.

The components of ﬁ) in the p and z directions are then

Lo 2}
e
\ (4. 3)
1
B, =5 E(QA).

We make the following assumptions on the magnetic field B!

(1) The field strength is a convex function along & segment

S of a magnetic field line &,
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(ii) The potential A(p,z) is an analytic function of p
and 2z in a neighborhood T of 8.

(iii) The magnetic field is unequal to zero on S.

Under the assumptions (i-iii) we shall prove the existence of
quasi-periodic motions in T.

(b) The main step in our proof is to transform the Hamiltonian
(4.1) into a Hamiltonian of the same form as (3,6). This is

accomplished with the aid of the following Lemmsa.

Lemma; The magnetic lines of force are given by the equations

PA(p,z) = ¢ = const. (4.4)
Proof, The vector
o= (-c.g-r %)3+%'z\ (4,5)
0

is perpendicular to the curve

A(p,2) - %= 0. (4, 6)

rrom (4,3) we may write

13

D a- %3 N %%(QA)E. (4 7)




59

Hence,

R G DD dr DI G-HS
p

which vanishes along the curve A(P,z) = ¢, Thus, 0 73 = 0, and
the curves (4.4) coincide with the magnetic field lines,

Since by (iii) the magnetic field does not vanish in a neighbor-
tood of 8, we may introduce orthogonal coordinates a(e,z), b(eP,z)
such that the curves a(p,z) = const, define a magnetic line of

force. By the preceding lemma we may take
a(p,z) = pA(p,2). (4.8)
The coordinate b(P,z) is then determined from the equation
22-22-c ®
To effect a canonical transformation we use the generating function
F(a,b,p,,p,) = a(p,2)p, + v(p,2)p, , (4.10)
and the Hamiltonian (4,1) assumes the form

2
H(a,b,p,,B,) = 5(hov + hoed) + 3 {L=8) (k. 11)
D




00

where

W= ()% (D7 (.
(L, 11"
}2

X, 2
L = (25)

v (P2

and the coordinates p,z are assumed to be expressed in terms of

a and b, As mentioned in the previous section, the quantity

2.2 | 2
hbpb is v, . To prove this, note that

VE 0Pt 1 m. e
Vo = = 13 . B-(— Ep*- BBZ)
('%}L\)+$sz)
2 ‘ !
" (P
by virtue ot (4,3) and (4.8). BRut '
RN SR "
T TN TITIT TI N
Hence
> o) 2 v 2 2 1
—— T SO
&\\ an ) ¢
(35 + (?E)
add h DX )
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2
pb &23}2 &2&2
= s - [035) (?EJ + (?E) 635) +

(%%) + (3)
2 2 2 2
@D D@
- 1P% s @O

(¢) The Hamiltonian (4,11) is now very similar to (3.6)
and we proceed in the same manner as in Section 3. Our first step
is to consider only those particles with angular momentum I for

which the magnetic line of force

a(p,2) = PA(P,2) = T

coincides with the rield line &, (Of course, if the magnetic
tield is convex along every tield line, then no restrictions rre
placed on IY,) As in the previous section we consider only those
trajectories which stay near the puiding field line a(p,z) =T,

and which have small energy. Thus, we take

a-I= e

> = €p
Pa la
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with |qf, |pa|, IPB' bounded and € sufficiently small so that

2

hi, hf, and P~ are analytic functions of a and b, The new

Hamiltonian has the form

2
2 2
) = 1y Y0352 55+
€

. (4,12)
2p

To approximate H by an integrable Hamiltonian we write

hy = 2,(b) + O((a-1))

= b (b) + &(a-1)) (4.13)

oo

= oy (b) + Bl(a-1)).

D'JI—‘

The Hamiltonian (4,12) may then be written in the form

e H +H (b, 14)

1

where

a8 ¢ b
1,2 1 2 1 2
HO = 'z-(pa + ‘-"‘l o} ) + 12- pe (h.l&)'

and H, = eﬂl(a,ee,pa,pe,e), with Hl analytic in all its vari-

ables, The arguments of a,,b, and ¢, are b= ¢,

[ ) m— — -
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Cur next step is to introduce new variables a',p('} in place

of ap, 8O that H_ is a function of (a')2+ (p&)a alone,

This is accomplished by taking the generating function

F(oyB,pp05) = Kjop! + Ppy

where Kl = cl/al. In terms of the new variables Ho assumes the

form

@)%@)% v,
H = Vac, [—— 1+ 5. (k.15)

Setting ' = VR sin 6, P, = VR cos 9, we note that to

first order in ¢, R 1is constant and

6 - .L = \’Qlcl . (hol6)

The quantity ¢R 15 the magnetic moment M, and o, is the cy-
clotron frequency B evaluated along the magnetic fieid line 4.
To prove this recall that

2 2
a3+ D

a="T1

¢

DN‘H

l-l".




Hence

wla_ =8¢ = 11(%)2 + .1.'.2(% 2
P p

2 2
@ + &+ D

= B2.

Since eablpg = v? to lowest order, it now follcws immediately
that

22
R= —t
8

to lowest order,
Again we change the time scale so that the frequency @y ve-
comes 1l; our trajectories are then the zero energy solutions of

the Hamiltonian

Fua(H - h) (4,17)
w,
1
where h is the constant value of the Hamiltonian H., The lowes:

order term Fo of F is now given by

2
b (p!
r.a*..l...‘f_.--h-, (L,18)
- 0 2 wl
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where the arguments of bl and w, are ef',

1

To determine the motion in the 6',pé

i.e, to determine the motion along the guiding fleld line £, we

plane to lowest order,

consider the level curves

h
- = C (24.19)
2y el

in the B',pé plane. Under the assumption that wy =B is a

convex function, these curves will be closed for

: . h _E
Bmin‘ TN ° Brax (4. 20)
where Bhin and anx are defined in Figure 15 below, and E

is the energy of the particle, To show this simply write the

surves (4,19) ia the form
2 2 3
(1) = -g—{hwmi). {a,10)*
kS l -

tience the motlien along 3 will bte reriodic for c¢,h satisfying
{4,20), 1he region ocutside {4,20) is usually referred tc as the
"lesa cone” of the particle, since cne cannot hore to trap

vurticles in that region.




e il

R 2

(o)
[o2Y

Figure 15.

Finally, we introduce action angle variables J,¢ in place
of B',pé (for ¢ satisfying (4.20)). The Hamiltonian F now

may be written in the form
F=R+ c(ed) + eFl(R,eJ,e,Q,e) (4, 21)
where Fl is analytic in all its variables, This is exactly the

situation we encountered for the dipole field, It remains to

check the unon-degeneracy condition

—-.—-*w




e"(x) £ 0

with r = eJ. This is something which must be checked for each
magnetic field, Moser's Theorem will then guarantee quasi-
periodic motions in the region c"(r) # 0. These motions densely
cover twe dimensional invariant tori in the four dimensional phase
space of the particle., Moreover, any trajectory starting between
two such tori can never escape. Hence all particles which are
adiabatically trapped are, in fact, rigorously trapped for all
time. HNote also that the argument in the preceding section con-
cerning the existence of infinitely many periodic sclutions is
carried over exactly to the more general case,

(d) To conclude this section, we would like to show the
impossibility of trapping charged particles in a "planar" magnetic
field, i.e. a field whose magnitude and direction do not depend
on the coordinate 2z, A particle moving in such a field can be
described by the Hamiltonian

H(X,Y,Z,px,py,pz) = é[pf : P5 + (p, - A(X,Y))Q]- (. 23)
The quantity P, is a constant of the motion since aﬁ/éz = 0.
We may now apply our method to get quasi-periodic motions in the
X -y plane, The motion in the z-direction is then found by

integrating the equation




e

oy
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t=p_ - A(x(t),¥(t)). (b, 24)

However, cven if x(t) and y(t) are quasi-periodic functions,
we cannot expect 2z(t) to be quasi.periodic, In fact, the mean
value of A(x{t),y(t)) need not be P, in which case the motion

in the z-direction will definitely be unbounded,
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