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PARTICLE MOTIONS IN A MAGNETIC FIELD

Introduction

The motion of a charged particle in the -earth's magnetic field

has long been of interest to matnematicians and pihysicists in con-

nection with the study of the pc ar aurora and cosmic rays. The

mathematical formulation of this problem was given, by lStormer as

early as 1907; it is often referred to as Stormer', problem.

Recently, this problem received renewed significance with the dis-

covery of the Van Allen radiation belt.j (see Dragt [61). This is

a region in space that consists -of electrically charged particles,

which are assumed to be trapped by the earth's magnetic field.

Some of these particles were observed to have a lifetime of several

years. The purpose of this paper is to rigorously establish the

theory of almost periodic motions for ihe Stormer problem, exhibit-

ing thereby the trapping of charged particles as observed in the

Van Allen belt. An additional feature of the theory we shall develop

is that it can easily be generalized to any rotationally symmetric

"mirror field".

The trajectory of a particle in a magnetic •field is geuerally

very complicated and must be obtained by numerical integration of

the differential equations of motion. In the special case of a

'niform static magnetic field B, the trajectories can be obtained

explicitly. -As is well knownU l particles gyrate in a helix
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about the magnetic field lines (see Figure 1).

Figure 1. Particle motions in a constant magnetic field.

If m denotes the mass of the particle, q its charge, v1  the

velocity perpendicular to the magnetic field, and B the magnitude

of the magnetic field, then tho quantities,

2
mv

M=

are constant along any orbit. M is called the magnetic moment of

the particle, and "a" its radius of gyration.

Many mathematicians have concerned themselves with the motion

of a charged particle in a slowly varying magnetic field. A slowly

varying magnetic field is a field which varies slowly in space and

I
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time - that is, slowly compared with the gyration radius and period.

Essentially this means that in the course .of one gyration about'a

manetic field line, the particle sees an approximately constant

ficid. In a slowly varying field the particle moves approximately

in a circle whose center drifts slowly across the lines of force

-ud moves rapidly along the lines. This is the so-called "guiding

center" or "adiabatic" approximation. It was shown by Alfven [11

that the magnetic moment is an adiabatic invariant in a slowly vary-

in field; that is to say, it is constant to first order in the

radiis of gyration. This result is of extreme importance in plasma

ph::y.- s, where one is interested in confining charged particles in

a, bouncd reg~ion. Suppose, for example, that the magnetic field is

a onvex £frntion along the lines of force. A particle moving a-

lon,: Line of force will be "reflected" backwards at the point P
0

de tined by

where E is the energy, )i'" the -M'uicie. Ths, to first order, the

<'idtin! center" C', % particl'e oscillates reriodically along a line

,' U'rce, between two "mirror" pojint:. In this case it has been

shown (Northror r12]) that the quiantity

J d=
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is also an adiabatic invariant, where P,, is the guiding center
momentum parallel to the lines of force. and the integral is taken

over a complete oscillation from one mirror point to the other and

back again. J is usually referred to as the longitudinal adiabatic

invariant.

However, for virtually every prospective device for the pro-

duction of useful energy from controlled thermonuclear fission, it

was seen that the requirement that the particle remain confined for

periods of time encompassing many millions of gyrations could gen-

erally be met only if the magnetic moment were constant to a much

higher order. In 1935, Hellwig [9] proved the constancy of the

magnetic moment to second order in the radius of gyration, and in

1957, Kruskal [lOJ proved the constancy to all orders. Finally,

Gardner [7] showed the constancy of the longitudinal adiabatic in-

variant to all orders. Moreover, Gardner presented a general method

to obtain formal asymptotic expansions for all the adiabatic in-

variants. The main idea of this paper is to show that the phase

space of a particle moving under the influence of the earth's

magnetic field contains a region where series, ialogous to the

formal expansions of Gardner, are actually convergent expansions.

This will be accomplished by using a theorem of J. Moser which

tuarantees the existence of almost periodic solutions of the differ-

ential equations of motion. In this manner we will show that

TGardner (81, in l962, announced a result like ours for particle
trajectories in a "mirror" field. To the author's knowledge, a
proof of this result was never published by Gardner. j

I



particles which are adiabatically trapped are, in fact, rigorously

trapped for all time. This possibility was first pointed out by

Arnold [2].

The author wishes to express his deepest gratitude to his thesis

advisor, Professor Jurgen K. Moser, for his many helpful hints and

suggestions and above all for his patience and understanding while

thi6 piptu wtts being written.

i. The St'rmer Problem

The earth's magnetic field is assumed here to be equivalent to

the field produced by a magnetic dipole situated at the center of

the earth. Such a field can be described in cylindrical coordinates

p,zo by the equations

B = curl

A(1.1)
r

B J BI = M 13sn2W12

(see Figure 2), where M ie the mment of the magnetic dipole,

which points in the negative z direction, and * is a unit

vector in the * direction. ,1e Plane X u 0 is the equatorial

plane, and the mar-etic lines o" force are given by
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Figure 2.

From the previous discussion one would intuitively expect that

the pa rticles with small energy will gyrate about the guiding field

line with the (so-called cyclotron) frequency

qB

whore q and m denote the charge and mazz of the particle. More-

over, since '.he field B is a convex function along; a line of force,

we wo.id exveot that the particie, as it moves into regions of

atrneer field at higher iatituSez, will be reflected back tovari

the equator by converging lines or force. To what extent this is

I
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true will be discussed in the following sections.

To write the differential equations of motion for the St'6mer

problem, it is most convenient to employ a canonical formulation

described by the Hamiltonian

H = [p + p + (4 - qA) ]  (.3)

where

po M

Pz =m

p m p qpA.

Since H is indc:'cndent ef time, the energy

1 2I ;- -Mv =z E

is a constant of the mction. A se,,rnd intet raJ of the motion is

,btiined by notlin- thit !I is Indc;enJent of the angle #. Hence

the c.uvoni-'Lt anil.ar mmcn*mntu=m

where r ; .IzefineJ by this eqiution, is a constant or the metion.

(The In tet:ration constant r ha, the Jimensions of a reciprocal

II
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length.) The three dimensional problem is now reduced to the

simpler problem of finding the two-dimensional motion of a particle

in the p - z plane under the influence of the potential

V(P)) . (1.)

Once P(t) and z(t) have been found, 0(t) is then determined by

integrating the equation

= -Hp

which yields

t

0(t) = *(o) + rf ' )dtI* (1.6)
o

0 P r

The sign of r plays a crucial role in determining the general

properties of trajectories. The radial derivative of V is giver

by

r. 2 M= "'2 r (r_ 2p-r -- V (" 7)( -7), (1.7)
m P rp

which is strictly less than zero for r negativ. A negative

radial derivative for the potential corresponds to a repulsive
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radial force, since -r. V is the component of the force in the

radial direction. Hence all trajectories characterized by a

negative r must extend to infinity and cannot be trapped. In

addition the particle is restricted to lie in the region V(Pz) _

E. This region is indicated in Figure 5.

Figure 3. The region V E for r < o.
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Note also that no orbits extend into the dipole (r = 0) for I

negative.

The situation is very similar when r' = o. For p unequal

to zero the radial derivative of V is again negative. Hoever,

P - 0 is a solution of the equations of motion. Hence the tra-

jectory

z(t) = t + zo , z0 < 0

runs into the dipole from below the equator, and

z(t) =- t+ zo o z o > 0

is a trajectory running into the dipole from above the equator.

All orbits starting in the shaded region of Figure 4 must extend

to Infinity.

iA
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It is easily seen that the equations of motion for these dimension-

less variables are derived from the new Hamiltonian

1 2 2) i P2H -(P P + PZ ) + ( )(1.9)

where we have omitted the primes for convenience. In this system

of units the particle has the dimensionless velocity

0[
w 47,1

where

4 1 qM2 4

The dimensionless constant 71 is that used by St'rmer [14].

Note that the angular momentum IP is now normalized to one.

The potential

v(P,,) - 1(- 1 ) (1.10)
r

vanishes along the curve r = cos 2, and is positive elsewhere.

(The line of force r = cos2*A corresponds in our old coordinates

to the line of force r = r coos2 .) Since the Hamiltonian H of

(1.9) is a constant of the motion, the particle is restricted to

i Ii



lie in the region 0 V 9 H. This region assumes three different

forms depending on whether H is less than, equal to, or greater

than 1/32.

.1

Figure 5. Allowed region V(P~z) H for H <3

Figure 6. Allowed region V(P,Z) > 1/32.
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Figure 7. Allowed region V(P.z) H H for H =

From Figure 5 we see that any trajectory starting in the oval

like region surrounding the curve V = 0 (r = cos 2), with initial

energy less than 1/32 can never leave this region for otherwise

it would encounter larger values of V. The almost periodic

motions we shall find will all lie in this oval like region, where

the value of H will be very small. These solutions will gyrate

about the line of force r = cos2X and oscillate back and forth

across the equator. Furthermore, we shall show that these motions

can penetrate arbitrarily close to the dipole, a result which was

somewhat unexpected.

One cannot expect to trap particles with H > 1/32, since the
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region V - H extends continuously to infinity. However, for just

this reason these solutions are important. Namely, a trajectory

cannot extend into the dipole from infinity unless H > 1/32. Such

trajectories play a role in the theory of the polar aurora (Stormer

[14]).

j Unfortunately, there are no further known constants of the

motion, so that the system of equations derived from the Hamiltonian

j (1.9) is as simple a system as one can achieve. In general, it has

no known explicit solutions. The equations can, however, be solved

in terms of elliptic functions for the special initial conditions

I
z= 0

in which case the orbit is confined to the equatorial plane (since

the magnetic field is perpendicular to the equatorial plane, and

the force qv x 9 is perpendicular to B). The general properties

of all equatorial orbits can be obtained by considering the integral

curves

1 .2 1 12

in the P - plane (Fig-ure 8). As is to be expected, the shape of

l the trajectory depends on whether E is less than, equal to, or

Creater th& 1/3I2.

I

Ln
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I

Figure 8. Integrals curves in the p - ? plane for
equatorial orbits.

For E > 1/32 all trajectories run off to infinity, and no

periodic solutions exist. For E - 1/32, the circle P S 2 is

a periodic orbit (in the x - y plane). Moreover, one trajectory

spirals into this circle from within and one from without (Figure 9).

For E < 1/32 there exist two distinct types of orbits. For

0o < P  2, the orbits are all periodic, and for > 2, the or-

bits ru off to infinity.
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Figure 9. Orbits in the x - y plane spiraling into a
periodic orbit, for E = 1/32.

Stormer has done extensive work in calculating other families

of periodic solutions (14 1. A general method to obtain all these

periodic motions was presented by De Vogelaere [4 . We shall ob-

tait, as a corollary to our result on the existence of almost

periodic solutions, infinitely many periodic solutiolns, which like-

wise wilt lie in the oval like region of Figure .

IThe behavior of the equatorial orbits for =ll excursions out

of the equatorial plane mey be exained by perturbation methods.

jExpanding V as a power series in z and applying Hamilton, s

equations, one obtains

II
% I|
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+ (P-.1) z = 0 + &(,3)  (1.12)

;+ 1(P-1)(2-P) = o + &(2

If the terms of second and higher order in z are neglected, the

solutions to equation (1.13) are the equatorial orbits, and are

therefore known periodic functions of time (for p < 2, E < 1/32).

Equation (1.12) then becomes Hill's equation. Its solution can be

written in the form

z a Ce n *(t) + De- *(-t) (1.14)

where C and D are arbitrary constants and *(t) is periodic in

time with the same period as pt). The constant fl, the character-

istic Poincare exponent determines the stability of the orbit. It

can be only real or purely imaginary. If & is real and 4 0,

the motion in the a-direction grows (within the approximation mie)

without bound. If 0 is purely imaginary the motion is bounded

(for time intervals In which the neglected terms have negligible

effect) and is therefore stable. The behavior of A as a func-

tion or 71 has been studied by De Vegelaere r5) who finds that

all orbits are stable for 71 > 1.3137.

In Section 3, we shall show the existence of a fraily of two J
In Sectio

!
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dimensional invariant tori in the four dimensional phase space of

a particle. Any trajectory starting between two such tori can

Inever escape, and will remain trapped between these two tori for-

ever. This is a much stronger result than De Vogelaere's. However,

our result is only valid for valu, s of 7, much greater than 1.3137.

2. Almost Periodic Motions, Moser' a Theorem

j(a) We will be concerned in this paper with Hamiltonian systems

of two degrees of freedomz, and, in particular, with proving the ex-

Iistence of quasi-periodic solutions for systems close to integrable

onts. To this end we turn now to the discussion of two geo-

metrical theorems which will be basic for the following. These

statements refer to area preserving mappings defined in an annulus

in the plane. How the reduction of the differential -quations to

a mapping can be carried out we will see later on.

To describe an annulus in the plane we use polar coordinates

R x 2 + y2 and the polar ingle 0. The anulus is given by

and the area element by

111e Is a theorem by Kolmogorov and Arnold (21 guaranteving the
contlnuatio& of quasi-periodic motions under small perturbations
of the eamiltonian. However, this theorem does not quite applyJto our case since the second frequency w2 viii be small. For
this singular case we resort to moser' s theorem.

I
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dxdy = de.

At first we consider a simple type of mapping which we shall call

a "twist mapping" M :0

R R

e1 = e + '(R)

which clearly preserves the area element as well as concentric

cir-les R = constant. Each of these circles is rotated by an

angle y(R), which, in general, depends on the radius. It will be

a basic assumption for the following that 7(R) is not a constant,

or. more precisely, that

'Y in 19R 2. (2.1)

The properties of this mapping are easily understood. Each circle

R = constant for which 7/2Tr = p/q is rational consists of fixed

points of M . Each circle for which Y and 2r are incoren-

surable is densely covered by the images of the iterates Mq(q

1,2,...) of any point on this circle.

Our main objective will be to discuss a mapping M which is

c. se to the twist mapping Mo. Therefore, we consider a mapping M

E!

I
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S1 = R + f(R,0,e)

(2.2)
el = e + (R eg(R9,e)

I where f,g are assumed to have the period 2rr in 0. This mapping

is defined in the annulus i _ R - 2 but need not map this annulus

into itself.

Theorem (Poincare-Birkhoff). Let 7' (R) J 0 and let M be area

preserving for all e in the sense that

f Rd= f RdOt

C MCI
for any closed curve C. Given any rational number p/q between

27r7(l) and 2m-7(2) there exist 2q fixed points of Mq  satis-

fying

I Rq= R

e q= + 2np

provided e is sufficiently small.

This theorem is actually a very simple version of the celebrated

tFor simplicity we write M in place of M

I

Illl
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and much deeper fixed point theorem by Poincare and Birkhoff in

which no smallness assumption is required. The present theorem

is a consequence of the implicit fanction theorem: One sees

th
immiediately that the q iterate of M has the form

R = R + 69q

e q= E + q7(R) +

and -- by the implicit function theorem -- there is a unique R =

F(e,e) satisfying

e = e+ 27rpq

for sufficiently small e. This solution R = F(e,e) represents

a starlike curve C which is mapped "radially" by Mq , since q

and 0 differ by an integral multiple of 27. Since the mapping

M and hence 0 preserves the area f Rde it follows that C
C

and the image curve MqC intersect in at least two points. These

points are clearly the desired fixed points. If P is one fixed

point, MP,...OM qlp provide q - 1 further fixed points and the

theorem is proven.

It is important to observe that we had a 2ontinuum of fixed

points of M1 for e z 0 while for e > 0 we predict only a

finite number of fixed points. In fact, it can be shown by examples

that in general the curve of fixed points breaks up into a finite set
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[ of fixed points.

Now we turn to the question of what happens under perturbation

to those circles R = constant for which y(R)/27 is irrational.

This is the content of the following theorem which will not be

proven here.

Theorem (Moser [I1]). Let r (R) j 0 and let any curve C sur-

rounding R = 1 and its image curve MC intersect each other.

The function fg are assumed to be sufficiently often differ-

entiable. Then, for sufficiently small e there exists an

invariant curve r surrounding R = 1. More precisely, given

any number c between y(l) and 7(2) incommensurable with 27r

an d satisfying the inequalities

I - - l

for all integers pq, and some constant c > 0, there exists a

differentiable closed curve

R F(P) (2.5)

e= 0+ U. ,E)

with F,G of period 27r in 6, which is invariant under the

mapping M -- proviled e is sufficiently small. The image

point of a point on the curve (2.3) is obtained by replacing

I '

I /
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0 by 0 + D.

In actual fact this theorem provides not only one but infinitely

many invariant curves. We observe that the intersection property j
for curves mentioned in the above theorems is certainly satisfied if

the area f Rde is preserved. Namely, if C is any curve surround-
C

ing R = 1 so will the image curve surround R = 1. If the curves

C and MC would not intersect each other one of them would lie in-

side the other and the areas f Rde and f Rde could not agree.
C MC

For later applications we need an extension of the previous

theorem: If the mapping (2.2) is replaced by

R = R + eaf(RAe) (2.4)

el = e + ot + P ,(R) + e C(R,O,e)

where 0 - p < a. then the conclusions of the previous theorems re-

main true. The essential point is that the perturbation term is

small compared to the "twist" EPy(R).

To apply Moser's theorem to prove the existence of invariant

tori for a Hamiltonian system of two degrees of freedom, we first

approximate the Hamiltonian H, (if possible) by an integrable

Hamiltonian Ho; i.e. we write

H = Ho(RlR 2 ,c) + e'H,(R 1 1 , ,,e, 20 ) (2.5)

11
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f where cl = a%/Rl is of order one, and the frequency ratio

2/w 1 varies over a region of order k with k < J(a = o/c ) "

On the energy surface H = c we solve for

R -(R 2 e, e2). (2.6)I
Using e as independent variable instead of t and setting

IP 2 = R, e2 = e, we find from Hamilton's equations that

dR ."He. dO H R
Tr R 6* (2.7)

IR
j One verifies easily that on H = c these equations take the form

dR de
TO- , d6"= (2.7)'

I
where 0 is defined in (2.6).

The vystem (2.7) is again Hamiltonian, of one degree of freedm,

but non-autonomous. To eliminate the independent variable we fol-

low the solutions from 81 - 0 to the next intersection with 01 -

2r. This defines a mapping which -- by Liouville's Theorem --

preserves the area f RdO. This mapping will have the form

I
R(2r) - R(o) + &(e

0 k (2.8)e(ar). e(o).+c, +6x(R) + e(c,)

Ii

'IL
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with 7' (R) # 0. Note that the condition 7' (R) 4 0 means that

the frequency ratio w2 / varies on the energy surface H = c.

The important point is that the frequency ratio varies over a

A kregion which is large compared to C i.e. the twist e y(R) is

small compared to the neglected terms. Moser's Theorem guarantees

infinitely many invariant curves of the mapping (2.8), for

sufficiently small e. Any curve invariant under this mapping

generates an invariant torus if we take all solutions which issue

forth from the invariant curve, and on these tori, the motion is

quasi-periodic with two frequencies.

In this case a quasi-periodic motion will densely cover a two

dimensional invariant torus in the four dimensional phase space of

the particle. Any trajectory starting between two such tori must

always remain between these two tori. (Warning: This is not true

for n > 2.) This provides a powerful tool for proving the sta-

bility of periodic orbits. In the following section we shall show

the existence of quasi-periodic motions in the earth's magnetic

field which lie near the equator. All trajectories near the

equator which are caught between two such tori must remain near

the equator forever. This is the stability result for "near

equatorial" orbits which we mentioned in the preceding section.

(b) We would now like to show how one goes about approximating

H to higher and higher order by an integrable Hamiltonian. The

method we shall present is known as the Lindstedt method [131.

I
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For simplicity we shall restrict ourselves to systems with two

degrees of freedom.

IConsider a Hamiltonian H of the form

HI = l I + '1 2 + eHI(Xjtx 2PYIY 2) + E2 + go* (2.9)

I
where x. is conjugate to y. and H has period 2w in y

and y2, i.e.

H(x,Yi+21r) = H(x,Yi).I
We would like to find new canonical variables xisy i so that H

will be independent of the angular variables yltyi through terms

of order n. To this end we consider a generating function of the

form

S yl~xl' + Y + ESl(xix ,yly 2' + 2S2 + (2.10)

with

I ! y (2.10),

If we Aenute the Ha', Itonian H expressed in terms of the primed

variables by

I
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I
Ti~',') +C1~X~+ Ge(x,YQ~ + C% + (2.11)1

then from (2.10) I
H(x+l + *"' x+ 1 + , .+., I, + -2 ) . (2.12)

Equating terms of order c in (2.12) we see that J

1s + S .,=R 1(x~l,x ) - H1(xix PYly 2). (2.13)

In order for S. to be periodic in y and Y2 we must require I
that the right hand side of (2.13) have mean value zero. Hence

0 0

i.e. ~IT is the mean value of H1. We still cannot solve for SI I
since a Fourier series expansion will contain the small divisors

Jlh + J20 We therefore require that the frequencies satisfy

the infinitely many inequalities I
I(,) d TIl' (2.1.5) 1

for all integers Jl J2  with IJI a IJ11 + IJ21 > Op an with same

constantst r ani - > 1. If the right hand side of (2.5) has j
the ftrier expansion

I
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~ak (x ) e i(

I
then SI  is given by

= a(x,) i(ky)SSl i (ko0T)e

I k

To determine Sk  we note that equeting terms of order k in

j (2.12) yields

'L'I x + 02 'k + -k -H k(2.16)

where G eend only on Si Hi, 0 - i "i k - 1. Thus is

determined by setting the mean val.e of the right hand side of

1 (2.1t) equal to zero, an4 then Sk is determined. T eliminate

the y Aependence of H throuh order n. we simply truncate the

series for S aftcr c Sn .

j The above method may be extended to the case where the lowest

order term H. of H Is etven by

"o 0 o"1

We Simply chose x' x so that

ale o
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are rationally independent numbers satisfying (2.15), and then re-

strict the variables x' to a small neighborhood

sx'-X 01 = m&ll n 
i

Finally, if the frequency w2 is zero to lowest orderl we

first eliminate the y1 dependence of H through order n. Then,

if we can find new variables so that 11 is also independent of

y2 we may eliminate the y2 dependence through order n.

3. Main Result. Existence of Quasi-Periodic Motions

(a) In this section we will prove the existence of quasi-

periodic solutions of the Stt'rmer problem. These motions will all

lie in the oval like region of Figure 5 and will satisfy H << 1/32.

Moreover, these motions may penetrate arbitrarily close to the

dipole.

(b) Dipolar coordinates. Since our intuitive idea of the

motion is a gyration about a line of force and an oscillation a-

long the line of force, it is natural to introduce new "orthogonal"

coordinates a(0,z), bVpz) such that the curve a(p,z) u const.

defines a magnetic lihe of 1orce. The magnetic field lines are

given by the equation

r (a conat.). (J.3)



f From the equation

J 0 (3.2)

we find that

b b(p,z) si 2= (3.3)

(Any function of b together with a provide an orthogonal co-

ordinate system.) The new canonical variables may be obtained

from the generating function

F(PZIPpaPPb) = a(PZ)Pa + b(ppz)pb (3.4)

by employing the standard relations

aFa

In terms of these new variables the Hmi-2.w~iian, H of (1.9) tkos

thIfr
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H(a,Pa,b, Pb) a + (3.6)

where

2 cos6 ' 2 a6cos12Xh a= N+,n = l+si- (3.7)

It is understood that sin 7 and cos ? are to be expressed in

terms of a and b.

We now wish to restrict ourselves to a region in phase space

where the energy H will be small. This is to conform with our

notion that in the course of one gyration about its guiding field

line, the particle should see an approximately constant magnetic

field. Thus we consider the change of variables

2
a-l=eG b=

2 3 '(38)
Pa =  a Pb = ' PB

where e is a small parameter. The condition a - 2 a means

that we require the particle to remain near the guiding field line

r = cos2. Our system will remain H-amiltonian if we take

H(axPP = H/e. (3.9)

Our next step is to try and approximate H by an integrable

!
I
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JHamiltonian. To this end we first show that N(a,b) is an

analytic function of a and b for b small. Squaring equation

1 (3.1) and multiplying by (3.3) yields

a (.in • (3.10)

The derivative of the right hand side of equation (3.10) with re-

I spect to A is one at X = 0. Therefore, we are guaranteed that

A(ab) is an analytic function of z = a2 b for Izi small.

Hence, we may write

sinl 4e + -0 + G (aP,e)

(3.11)
cos 6  - i + 3e 2 2 + 6e (a-P + G2

where G. can be written in the form= e G,(, ,e) with 7.

analytic in the variables a,3,e. These expansions are trivially

derived from the relation

I a4b2 sin 2? (3.12)(1-sin2 4•(.2

I The Hamiltonian (3.9) may now be written in the form

I
H=H+H2 +H 4 +H 6  (3.13).1

I
!
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where

2 2
a +p,

E 2 2 3 2 22
H2 = -- (6p pc-ha +p +'O a )

3e4 ,.. 22.4.2 2. 2 2 4. 2 4

and

6-
H6 = e HH6 (a,,Pa,P , )

with R6 analytic in all its variables.

We shall now show that H0 + H2 + H4 can be transformed into
6

an integrable Hamiltonian, modulo terms of order e . Firstly,

define new coordinates Re via the formula

a = %/2 sinO, Pa = N cose. (3.14)

From their definition, R and e are canonical coordinates. The

magnetic moment M of the particle will be proportional to 4 R

(to be shown in Section 4). Note also that Ho = R, and R is
2

constant to order e . Next, we employ Lindstedt's method to

6
average out the e dependence of H to order C . i.e. we define

new variables R', ',,,pl so that H is independent of A'
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through order e . The frequency co2  of (2.9) is zero, while

= . In the notation of Section 2,

1 27r 2 e) 2
2 = rf H2de =6 9R (P I p) + (P3.15)I 0

I and

I r

- 1 2 2 E2+ 2 K2 as 2 2 C2 as2I0

I The generating function S2 = S2 (R',0,3,P) is given by

I 3 ,os
S2  3 3/ sin 2 - 4( )31/2 (-cos e + e)]. (3.17)l2

Performing the integration in (3.16) we find that the Hamiltonian

(3.13) may be written in the form

H=H 0 + H2 + H4 + H6  (3.18)

I
whereI

H2
0 e 2, 2 2

H H2 =7-9-p43 +pP)

H 4  9p.2 2 , 2 R(2 69R 4
H4 pp- -
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(we have suppresses the primes for convenience), and H &(6

For fixed R the curves

9R + PO = const.

are ellipses in the 0, p plane. These curves may be transformed

into circles (with the same area) by the generating function

F(e6,R , P) = (9R1) /4p+ oR • (3.19)

Setting

' = " sin e2, pf = v 2 cos e2 (3.20)

we see that H2  is independent of e2. Hence, we may employ the

Lindstedt method to average out the e2 dependence of H to

order e . In terms of new canonical variables which we again

call RlelR2 1 e 2 the Hamiltonian H now assumes the form

4 2 13R2

HMR 1 + N R1  + 2-- ) + (3.21)

where H6 = Eh 6 (R1 ,R 2 ,e 1,1 2 ,e), with R6 analytic in all its

variables. Thus, we have succeeded in approximating H by an
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integrable Hamiltonian

F=H H6

6
to order e . We now apply Moser's Theorem to prove the continua-

tion of quasi-periodic motions under the perturbation H6 . As

described in Section 2, we solve for R = O(R2 ,e 1, e2 ) on the

energy surface H = c, and take 81 instead of t as independent

variable. We then follow the solutions from e1 = 0 to their

next intersection with eI = 2w. This defines an area preserving

mapping which we denote by M. Since

de 2  HR 2 2 (_-23 4 6
1 - - T R+ (e) (3.22).

and

R 1/2 --- 1/ 3e R 2, (3. 22),
2 +

the mapping M has the form, in the coordinates R R 2. e = e2

R= R(2rr) = R + E f(RPPe)

M: (3.23)
ft (2r) 3 2c 1 / 2 .. 5 9 4 6e = +R + c g(R,e,)

4- () ,2 I 2 9
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where R = R(O), 0 = e(o) and fg are analytic in the variables

R,e,e. This mapping is of the form (2.4) with p = 4, a = 6, and

v (R) L- 89 o.8

Hence, Moser's Theorem applies.

Thus, we have established the existence of quasi-periodic

motions with two frequencies for sufficiently small E. Since we

restricted b to be small, all these motions must lie near the

equatorial plane. Moreover, these motions gyrate tightly about

the guiding field line r = cos2 (or r = F'icos2 in our old

coordinates). A typical motion is illustrated in Figure 10.

Figure 10. A quasi-periodic motion in the p - z plane.

1
I
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j These orbits all cross the magnetic field line at an arele near

900 since the velocity of the particle parallel to the magnetic

I field is much smaller than the total velocity. This follows from

the fact that b =3P is of third order small while pa
2

C o is only of second order.

j (c) Quasi-periodic motions which penetrate arbitrarily close

to the dipole.

Our goal now is to prove the existence of quasi-periodic

motions which need not lie near the equatorial plane. To this end

we consider, instead of (3.8) the change of coordinates

a- 1 = e; b= 

(3.24)
Pa = EP=

where again e denotes a small parameter. Let M and N be two

fixed constants, with N very large. We then consider all vari-

ables to be complex, and restrict ourselves to the region T

defined by

IRe bj N (3.2)

I
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where 5 depends on MN, and e and will be chosen so that the

Hamiltonian (3.6) is analytic in the variables ab, Pa'b in the

region T, for e sufficiently small. To find the singularities I
of H in the couplex 4-space we consider again the equation (3.10)

a2b si I
(1-s ins)

With z = a2b and y 2 sin M(a,b), we observe that

dz. +3y 2 (3.26)
d (1y2  •

!
Hence the only singular points are y =ti.1 y= + . It is

clear that for fixed M and N, 5 may be chosen so that sin X 4

±1 for Im bj 1 5, and e sufficiently small. The points y= I

V -/3 correspond to the points

Al,. ,,b .. i I
Letting a 2  ai + is, b b + ib 2 , we see that

I
a. alb -asb 2 + i(a b ab). g

I



For fixed and N. we now restrict 5 and e still further

so that

I alb2 +a b1 -3

thus excluding the points z = + . The new Hamiltonian

p2 p2a2

H (c Pe ) p e) H (a, b,Pb p C1 p2 4 (32)
E ha h 2(l+ea) cos6

is now analytic in all variables in the region T. Note that al-

though N is fixed, it may be chosen as large as desired. The

points (a = I + e, b = N) all lie very close to the dipole, and

approach the dipole as N -. u.

(d) Owr next task is to approximate the Hamiltonian by an in-

tegrable one. We cannot expand H in powers of to and eP as

we did previously, since now , - l'e. Instead we expand H in

.owere of (a-l) w en onkv. Zince sin W and coo-  are analytic

in T we may write

1 + 3sin X U KI(b) * F1(a,b)

COS' X- CI (b) + 2(1 b)

.I
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where Fl(a,b) k ((a-l)). (O((a-1) ) denotes an analytic

function which vanishes, together with its first k - 1 derivatives

with respect to a, at a = 1.) The HImiltonian (3.28) may thus

be written in the form

H = Ho + H, (3.30)

where

C K 2
C1  2 2 1C1 2

Ho . .(Klp +a ) po P (3.30)'

and H - £HI(c0P601 POe), with analytic in all its variables.

The arguments of the functions C1 and K1 are b-= .

(e) The next logical ster is to transform the Hamiltonian Ho

into an integrable one, fodulo terms of order e. We start by

2
finding now variables a,, p' so that H0 is a function of (C) +

W)2 alone. These variables may be obtained fro the generati4

function

where the argumenta of the functions K1 and f are tS. It

would suffice (for the purpose stated above) to take f . t. How-

ever, a judicious ohoice of f will enable us to express Ho I
I
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explicitly, and thereby simplify most of the later calculations.

The new canonical variables x' P ' ,p are determined from the

relations

ac K'-1l4 *, = f

(3.32)

al C K-*1/4f(l) -e -1/4 (1)

a

where K1 and f(1) lenote the derivatives of the functions K1

and f with respect to e af3.

A point in the p - z p.Lne is determined from the coordinates

C' ,' in the following manner: Given or' and 0', the point lies

on the magn-tic field line r = a cos , where

2 1/4a 1+ t.,rl3(, ) 3 d (3.33)

The coordinate b on this :zinetic field line is then found from

the relation

1(b).- C'(t). ep,. .)

We cannot solve (3.34) exactly for b. However, for the f we

shall determine it will be seen that as uf' increases (decreases)

to +1(-1), b increases (decreases) to .. (-.); and that the

I
I
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latitude -, for a = 1, is precisely J

-l1sin (').

I.

Thus, 0' (t) essentially describes the motion along a line of

force, for the coordinate a near one. In terms of the primed

variables the Hamiltonian (3.30) assumes the form

2 2 2 + 2
H= - [(') + (p') + CVKl (f + H (335)

wLth H1 =

(f) We shall now show that the Hamiltonian H is an in-

tegrable Hamiltonian, i.e. we shall find new canonical coordinates

R,e,J, so that H = H0 (RJ). To this end we define canonical

coordinates R, e in place of cy',p' by the relations

a' = V sine, p V= cose. (3.36)

H is now independent of e. Hence the coordinate R, which we

shall later show (see Section 4) is proportional to M/e2, is a

constant of the motion to lowest order in e. To lowest order,

is given by the equation

0 "l = cl'2 • (3.37)
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But the quantity on the right hand side of (3.37) is the magnitude

of the magnetic field along the line of force r = cos2A (see (1.1),

(1.2) and (3.29)). Thus, we havie confirmed our intuitive notion

that to lowest order the particle gyrates about its guiding field

line with the cyclotron frequency w1 .

It is convenient at this point to introduce a new time scale T

so that the frequency 0I becomes one, i.e. the particle gyrates

about its guiding field line in the new time scale with constant

frequency. This is easily accomplished by setting

_f dt. (3.38)
1.

Our trajectories are now the zero energy solutions of the Hamiltonian

F = (H-h = F + F (3.39)
r 0 - N

where h is the constant value of the Hamiltonian (3.35) and

1 - -F =+ (2 (f ) 2 _2
(Fo

H1  
(3.39)'

Thus, to lowest order we have decoupled the motion in g',p and in

Pl',p . This puts into evidence the integrability of the truncated

system.

i

.1
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In this approximation the motion in the ',p plane is

described by the Hamiltonian

= f,)2(p )2 _ (3.4o)

which we now calculate. For this purpose we observe that =

CIV/ I and f' all are expressed in terms of f(b) = f(ep) = EPI

if we define f(b) by

b - f (3.41)
(1f2)

Therefore, 0 can be expressed in explicit algebraic form. To

show this write

sin N = fl(b) + &((a-1))

where we have fl = f  (see a = sin -A ). hncopt

(.sin2 ?)7
wher we ave (=f.see lb=) Then compute

v 7 with 7= cB'
(1-7

and

ft (1-f , = (1-7=? =
1+3f 1+37 -w]
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Hence

2 h a. (3.42)
a2--l+73 1437T

The motion in the 0',p plane derived from the Hamiltonian

P is qualitatively determined by considering the level curves

(see Figure 11)

c:-h(Z'L 3 YIL (1"-y13, Y 12 (3.43)(1+3y')! + = (1+37 2) X2

in the ',P plane. For c > 0 these curves are not closed and

asymptotically approach the lines y = +l. The curves corresponding

to c = 0 are hyperbolas defined by

1 - 3h7 2 = h. (3.44)

i)
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Figure 11, Level curves in the 7', p; plane of (P= const.
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For c < 0, the components of these curves in 171 < 1 are all

coe and lie inside the domain bounded by Y = + and the hyper-

bole, with the point s in Figure 11 determined from the equation

- h~~2 /2
i....h - (1+3s )1 /5 (3.45)

c (~1-s 2)

The quasi-periodic orbits obtained previously correspond to small

oscillations in the P',p plane about the equilibrium correspond-

ing to equatorial orbits. Since we are only considering the zero

energy solutions of F, the constant c is essentially -R. Hence

' ( ) and p'(T) will be periodic functions of r if we neglect

the term F1 in (3.39). Thus we have justified our intuitive idea

that the guiding center of a particle oscillates along a line of

force between two mirror points. This motion is indicated sche-

matically in Figure 12. To lowest order, the particle mirrors at

a latitude ? = sinl s where

h_ (i+3s) (3. 6)

(13.s6)

IA
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I

I
I
I
I

Figure 12. Schematic description of guiding center motion.

Thus, the smaller R, the closer the particle approaches the j
dipole. It is also clear from Figure 11 and the discussion con-

cerning the coordinates a',0' that there exist orbits of the

unperturbed system F in the region Ib N which achieve

Ibi > 3N/4.

Finally., since the curves (3.43) are closed for c < 0, we may

introduce the familiar action-angle variables J,O in place of

P , where the action J is given by I
j %/2 . s h(l+3x ) + ( d3x (3.17)

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



].

(J is simply the area of the closed curves (3.43) in the 0',P

plane.) in terms of the variables RO,J,0 the Hamiltonian F

takes the form

I
F = R + c(cJ). (3.48)

Thus, we have succeeded in showing that the Hamiltonian F is

integrable. The two frequencies of motion determined by F are

~(3.49)

where c' denotes the derivative of c with respect to cJ. In-
cidentally the fact that ', is proportional to e is in

agreement with our notion that the particle oscillates slowly a-
I

long a line of force, while gyrating rapidly about it. Note also

tat the action J. w', '1h is the longitudinal adiabatic invariant

divided by c 2 is constant to lowest erder.

We now apply Moser's Theorem to prove the existence of quasi-

periodic motions for the full lamiltonian

* F = R + c(eJ) + eF IR, ,(£4 r)Y ) (3.50)

where F is analytic in all its variable. On the energy surfaceII
I
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F = 0 we solve for R = O(eJ,e,Ye) and take e instes of t J
as independent variable. We then follow the solutions from e = 0

to their next intersection with e = 2u. This defines a mapping

M, which in the cocrdinates r = eJ,0 is given by

r r(2ir) = r + e f(r,0, e)

01 = (2mi) = P + ec I (r) + 6 g (r. ,C)

with fg analytic in all its arguments. The intersection property

of a curve with its image curve still holds, trivially. Hence, the

above mapping M is of the form (2.4) with p = 1, a = 2 and

y(r) - c'(r). (3.52)

To apply Moser's Theorem now, we need only verify the condition

y" (r) - c" (r) 4 0 (3.53)

i.e. y(r) should be a monotonic function of r. Unforturately,

we cannot calculate y(r) explicitly and must be content with

numerical calculations. Figure 13 below shows the graph of y(r)

versus c. It is clear that 7(r) has a single stationary point

at c = -.70. At this point the non-degeneracy condition (3.53)

is violated.

iI
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Figure 13. Graph of y(r) versus c.

Thus, with the exception of one point, Moser's Theorem guarantees

the existence of quasi-periodic motions, close to the unperturbed

motion defined by the Hamiltonian Fo, for sufficiently small c.

Since some of the unperturbed motions achieved ibi > 3N14, then for

sufficiently small e there will exist quasi-periodic motions for the

full Hamiltonian which achieve tbi > N/2. By choosing N aritrarily

I.!
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large these quasi-periodic motions can penetrate arbitrarily close

to the dipole. Of course, the larger we choose N, the smaller we

must take e, i.e. the tighter the particle gyrates about its

guiding field line.

We now wish to schematically describe these quasi-periodic

motions in coordinate space, rather than phase space. In the p -

z plane, the particle is confined to the oval like region in

Figure 5, with V very small, and it rotates slowly around the

z-axis in accordance with the equation

0(t) =f - .dt' + conat. (3. 54)
r

It will be shown in the following section that the quantity

21 2 i(36 is 2
Pb hb i(36 isv1, , where v, is the velocity of the part-

icle parallel to the magnetic field. To lowest order in e we

then have

2

vs. 3 '- ,,2
2l+ 3 (32.5) 2

For R small, the particle crosses the equatorial plane (e' = 0)

t n angle near 90° . As e' increases to its maximum value a.

2 v2
the quantity v. Vi decreases monotonically to zero. When the

particle crosses the field line r a cos2 ,  a 0, and hence the

velocity vector lies in the meridian (o - z) plane. Thus, the



I

particle crosses the guiding field line in a sequence of angles

0
which monotonically approach 90°. This situation is illustrated

in Figure 14.

~iure 14.

As the particle moves tack toward the equator, the crossing angles

t-gin to decrease monotonically, until the particle is moving nearly

parallel to the field at the equator, Note that as the particle

moves into regions of high la.itudep it begins to gyrnte rapidly,

since the cyclotron frequency becomes large.

(g) As a corollary to the above result on the existence of quasi-

periodic notions, we are automatically guaranteed infinitely many

i'
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; eriodic solutions. We outline the proof briefly. Each quasi-

eriodic motion densely covers a two dimensional invariant torus

in the four dimensional phase space of the particle. Moreover,

this torus must lie on the energy surface H = const. We now cut

the torus with a surface of section S, and consider the mapping

P -+M(P) induced on S by the differential equations; i.e. M(P)

is the point where the trajectory beginning at P returns to S.

From the form of the Hamiltonian F of (3.53), it is possible to

introduce coordinates R,e on S so that the mapping M has the

folm

R= R + E2f(R.eP)
M:

e 1 + Ey(R) + e g(r,e,C).

A mapping M of this form is referred to as a "twist" mapping, and

the Poincare-Birkhoff fixed point theorem (Birkhoff [31) guarantees

the existence of at least two fixed points. Since each fixed point

represents a periodic solution, we have established the existence of

infinitely many periodic solutions to the Stormer problem (which al-

so lie in the oval-like region 5, with H very small).

4. Quasi-Periodic Motions in a Rotationally Symmetric Magnetic

"Mirror" Field.

(a) We consider now a rotationally symmetric magnetic field

B, i.e. a field which is independent of the azimuthal angle 0.
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The motion of a charged particle in such a field can be described

by a Hamiltonian of the form

H(pzp,P)= 1(P' + p') + l(E - 2(4.1)

z 2 2 Z AP) 41

where we have normalized the mass and charge to be one, and r

is the constant electromagnetic angular momentum of the particle.

The magnetic field B may be determined from the equation

=V x(4.2)

with

A A(p.,z)¢F.

The components of' in the p and z directions are then

B

(4.3)
B = 7Tp)Bz=

We make the following assumptions on the magnetic field B:

(i) The field strength is a convex function along a segment

S of a magnetic field line A.
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(ii) The potential A(p,z) is an analytic function of p

and z in a neighborhood T of S.

(iii) The magnetic field is unequal to zero on S.

Under the assumptions (i-iii) we shall prove the existence of

quasi-periodic motions in T.

(b) The main step in our proof is to transform the Hamiltonian

(4.1) into a Hamiltonian of the same form as (3.6). This is

accomplished with the aid of the following Lemma.

Lemma: The magnetic lines of force are given by the equations

pA(p,z) = c = const. (4.4)

Proof: The vector

n ^r + ^p +7(4.5)

is perpendicular to the curve

A(P,z) - c = O. (4.6)
P

From (4.3) we may write

&P +^ 7(pA ^ (4.7)



I

Hence,

-4-4 A CA A kc c A 2AC

p p

which vanishes along the curve A(P,z) = c. Thus, . O, and

the curves (4.4) coincide with the magnetic field lines.

Since by (iii) the magnetic field does not vanish in a neighbor-

lood of S, we may introduce orthogonal coordinates a(P,z), b(Pz)

such that the curves a(P,z) = const. define a magnetic line of

force. By the preceding lemma we may take

a(p,z) = pA(p,z). (4.8)

The coordinate b(P,z) is then determined from the equation

0. (4.9)

To effect a canonical transformation we use the generating function

I F(a,b,Pa,pb) = a(P,z)pa + b(P, z)pb , (4.10)

J and the Hamiltonian (4.1) assumes the form

1 i 2 2 2 2 1 (r-a) 2
H(a, b, Pa, pb) h (hap a + h pl) + = ( (4.11)I



where

(4.u),
2 = - 2 ( )2

and the coordinates pz are -ssumed to be expressed in terms of

a and b. As mentioned in the previous section, the quantity

'b is vt2 To prove this, note that

p (P + 1)

B B

(-~ +- z

+ (.PY +

by virtue of ( n) nd (4. ). But

4

Ilenee I
1)2 2

2 2

I
Vit r
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22 2

. T) 2 g

2 2) 2 + 2p, C

6a) a
++

3b ab-2 2

22= hb Pb •

(e) The Hamiltonial 4.11) is now very similar to (3.6)

and we proceed in the same manner as in Section 3. Our first step

is to consider only those particles with angular momentum r for

which the magnetic line of force

a(p,z) = pA(p,z) = r

coincides with the field line .e, (Of course, if the magnetic

field is convex along every field line, then no restrictions ,'er

,,taced on r.) As in the previous section we consider only those

trajectories which stay near the guiding field line a(Pz) = I',

and which have small enert,. ['bus, we take

a - =a

Ib Cf

PICP
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with jal, 'p,,l1 IPy 1 bounded and e sufficiently small so that I
a' NY and P are analytic functions of a and b. The new

Hamiltonian has the form

=1 1 2 2 2 2 C1
HH = (hP + h H ( . (4.12)

e 2p I
To approximate H by an integrable Hamiltonian we write

h= a I(b) + &((a-l))

2- b1 (b) + &((a-i)) (4.15) 1

~~- c(b) + O((a-i)).
p

I
The Hamiltonian (4.12) may then be written in the form

I
A H0 + H1  (4.1h)

where

a81.2 2l b 1 2
Ho  + + +) 3. (4.14),

and H, with Tr analytic in all its vari,-

ables. The arguments of al. bl, and c1  are b - . I

! I
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Our next step is to introduce new variables a',p' in place

of a,Pa so that H is a function of (W) 2 + (p) 2  alone.

This is accomplished by taking the generating function

F~a,~p~I) = K apt +p?

where K = c 1 /a I. In terms of the new variables H assumes the

form

2 2
(a') +(P b 2

H° V [ 2 1+ (p . (4.15)

Setting a' N sin 9, p = / cos 9, we note that to

first order in e, R is constant and

e- =. 2. (4.16)

The quantity E2R is the magnetic moment M, and w1 is the cy-

clotron frequency B evaluated along the magnetic field line 1.

To prove this recall that

221

D a--P
a+ 5 aC I a l a



Hence

22 2
1 CL2

p p
2 2

CA +A + c

B2.

Since c = v,, to lowest order, it now follcws immediately

that

22

R - 2B

to lowest order. 

Again we change the time scale so that the frequency w1 be-

comes 1; our trajectories are then the zero energy solutions of

the Hamiltonian

F a o - h) (4.17

where h is the constant value or the Hwailtonian H. The lowet I
order ter F of F is now given by

o0



65

where the arguments of b and co are e'.

To determine the motion in the P',pl plane to lowest order,

i.e. to determine the motion along the guiding field line 1, we

consider the level curves

b N)t~3. the h

in the plane. Under the assumption that wl B is a

convex function, these curves will be closed for

a h < B (.)
mi c M max

where Bmin and BMx  are defined in Figure 15 below, and E

is the ener.y of the particle. To show this simply write the

zurves (4.ts) in the form

Hence the motion along . will be periodic for ch satisfying

i4.2D). The vecion outside (4.4)) Is usually referred to as the

"lces cone" or the part.1cle, ,inie on e wot hW-e to trip

r: _____les I__ that region.



I

66 |

I
1
i
i
I
1
I

Figure 15.

Finally, we introduce action angle variables 
J,0 in place

of 6',P (for c satisfying (4.20)). The Hamiltonian F now

may be written in the form

F = R + c(eJ) + eF1 (R, eJ,6,4,C) (4.21)

where F1  is analytic in all its variables. This is exactly the

situation we encountered for the dipole field. It remains to

check the non-degeneracy condition
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c" (r) J 0

with r = cJ. This is something which must be checked for each

magnetic field. Moser's Theorem will then guarantee quasi-

periodic motions in the region c"(r) 4 0. These motions densely

cover two dimensional invariant tori in the four dimensional phase

space of the particle. Moreover, any trajectory starting between

two such tori can never escape. Hence all particles which are

adiabatically trapped are, in fact, rigorously trapped for all

time. Note also that the argument in the preceding section con-

cerning the existence of infinitely many periodic solutions is

carried over exactly to the more general case.

(d) To conclude this section, we would like to show the

impossibility of trapping charged particles in a "planar" magnetic

field, i.e. a field whose magnitude and direction do not depend

on the coordinate z. A particle moving in such a field can be

described by the Hamiltonian

1 2 2 2H(x'YZPxPyPz) = .[Px p y + (pz - A(xy))2]" (4.23)

The quantity pz is a constant of the motion since A/tz 0.

We may now apply our method to get quasi-periodic motions in the

x - y plane. The motion in the z-direction is then found by

integrating the equation
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z z- A(X(t),Y(t)). (4.,")I

However, -oven if x(t) and y(t) are quasi-periodic functions,,

we cannot expect z(t) to be quasi-periodic. In fact, the meanI

value of A(xft),y(t)) need not be p, in which case the motionI

in the z-direction will definitely be unbounded.
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