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Ici régnait aussi cet amour qui ne
s'exprime plus parce qu'il ne participe
pas a 1la vie de ce monde, Il ne
supporterait peut-etre aucune épreuve,
i1 semble a chaque instant trahi, et
la moindre amitié ordinaire a 1'air
de la vaincre, et cependant sa vie est
plus profonde que nous-mémes et
peut-@tre ne nous semble-t-1l
indifférent que parce qu'il se sait
réservé pour des temps plus longs
et plus sﬁrs.

M. Maeterlinck
“Les Avertis" du "Trésor des Humbles"

PREFACE

The nine chapters which follow represent the set of lectures given as a
final year one semester course at L'Université Catholique de Louvain for
the first semester of the 1967-68 school year., Because of the presence
of two national languages with the lectures given in a ihird it was
decided to record the material as covered for student assistance and
availability for future studies, Also the material often records in

a consistent whole unavailable research results, and puts on further
record the nature of joint cooperation between our associated rese;rch
groups at Stanford and Louvain,

In the field of electrical engineering the theory of state~variables
has raised some rather paradoxical situations, On the one hand it is
often claimed that nothing can be achieved with state-variables that can
not be done with more classicel methods, This point is most frequently
raised by those who wish to construct working circuits, On the other
hand the mathemutiically inclined have a tendency to develop rather minute
points or to get involved in the elegence of the theory with an attendant
sacrifice of the practically important aspects, As a consequence the
two natures of theory and practice tend to become further separated when
state-variables are involved, Here we would at least make an attempt

to resolve tais paradoxical situation; that 1s, we would try to bring
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theory closer to practice and vice versa, This is done by presenting a
coherent whole with emphasis upon thos. aspects of the theory for which
use can almost immediately be secn or which have proven themselves in
practice, Actually the subject was suggested by the Université; as we
felt that some value cculd result in the intended types of treatment we
have enjoyed the challenge and hope that the venture has proven profitable
for all concerned,

It should be remembered that the material represents lectures and
not a polished book, even though it has somewhat the form of a book for
convenience of the user, As a consequence of its lecture form as well
as the circumstances of its construction, there is much omitted which
could profitably be contained. For example, there are points of
derivations which could profitably be put into notes for completeness
but which have been omitted in order to cover the material desired in
the allotted time, Of equal importance is the scarcity of references;
generally only a single reference available to the author's students
at the time is given while multiple referenciug would be much preferable.
Likewise there are some topics, as topological and nonlinear synthesis,
which have been almost entirely omitted but which should properly not be
for completeness, Among works which we would have l1iked to add, perhaps
to be saved for a revised edition, are those of J, Hiller (active theory),
P. Wang (infinite dimensional theory), H. Watanabe (nonlinear theory),

R. Yarlagada (topological synthesis), and D, Youla (lumped-distributed
synthesis), A 1ist of symbols and an index is appended for convenience,

In conjunction with our belief that life should be constrictive
and associated with a masculine spirit of verse which enhances 1its
poetry, we incorporate some nontrivial concepts of the Flemish writer

in French, M, Maeterlinck,

R. Newcomb
Louvain, January 1968
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Om dat die leeke van allen zaken
Rime ende dichte willen maken
Gheijc clerken, dat wonder es,
So hebbic mi bewonden des

Pat ic nu wil bringhen voort
Wat enen dichter toe behoort,
Die te rechte sal dichten wel;
Want dichten en is gheen spel.
Men sal ooc voren versinnen,
Hoemen dat dicht zal beghinnen,
Middelen ende daer toe enden,

Jan Boendale
"De Leke Spieghel, IIT"
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In the words of M. Maeterlinck [''Les Avertis" du "Tresor des Humbhlcs"]

L'on sent que c'est 1'heure enfin
d'affirmer une chose plus grave, plus humaine,
plus réelle et plus profonde que 1'amitié,
la pitié ou 1l'amour; une chose qui bat
mortellement de 1'aile tout au fond dz la
gorge, et qu'on ignore, et qu'on n'a
Jamais dite, et qu'il n'est plus possible
de dire, car tant de vies se passent
4 se taire! ... Et le temps presse.

for

M. A, Gillett
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Souvent, nous n'avons pas le temps de
les apercevoir; 1ls s'en vont sans rien
dire et ceux-14 nous demeurent a jamais
inconnus,
M. Maeterlinck
"Les Avertis" du "Tresor des Humbles"

CHAPTER 1

INTRODUCTION - THE STATE

A, Summary

Here we briefly review the philosophical nature of the state giving
a more or less precise mathematical fornulation in terms of system
transiormations and network relationships, An example concerning the
Brune siructure is given to illustrate various points of the theory to

be counsidered.

B. The State - Intuitively

Intuitively an object can be described at a given instant by a
certain set of conditions which in fact are specified by the object be-
ing described; these conditions are often referred to as the state of
the object, However, in scientific discussions the state 1s usually
taken to mean that set of conditions which when specified at a given
instant of initiation of an excitation lead to a predicted response over
the period of excitation, Thus the concept 1s generally applied to
causal (that 1s, nonanticipatory or equivalently antecedal) systems whcre
it 1s possible to predict the output to a given input. A specification
of the necessary conditions to allow determination of the output, that
is an assignment of initial conditions, 1s essentially a specification
of the state, The state then is that entity, described through a set
of parameters (perhaps uncountably infinite in number), which when pre-
scribed initially aliows a unique motion of the entity under determinate

excltations. We shall soon make the concept precise mathematically at
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which time we will see that a slight modification is of interest for

treating networks,

C. The State - Uses

Although of the most recent development, our primary interest will
be the use of the state for design o synthesis, For synthesis we need
to develop a formulation which 18 convenient for decomposition and
construction., In obtaining a suitable development we shall investigate
analysis methods from which we will see that by isolating a set of
state variables a convenient anelysis method is obtained. The method
is especially convenlent for digital computer formulation, and thus, we
will obtain several methods for digital computer analysis for circuits,
The results are further useful for investigation of the transient and
frequency responses of networks as well as for the determination of
natural frequencies, Similarly a useful technique for investigating
gsensitivity 1s h»Htained, Of particular importance is also the means of
determining "all" possible equivalents. By reversing the analysis
process one 1s led to severai design formulations, For example, given
a transfer function one can algebraically set up a canonical set of
state variable equations, by a means suitable for digital computer
programming., From the canonical equations one can revert to an analog
computer realization, the result being of considerable use for integrated
circuit design using operational amplifiers. By another interpretation
of the canonical equations one can obtain an alternate minimal capacitor
synthesis by loading a gyrator-resistor network. By proper generaliza-
tion of multivariable functions we can also develop a synthesis for
lumped-distributed circuits,

Although it can be claimed that the state variables are nothing more
than an appropriate cholce of variables for ini iial conditions, such an
cutlook 1s rather narrow, 1In fact previous results obtained from an
"initial condition" outlook are rather weak and shallow when compared
to what has been achleved by the state variauble outlook., From the
previous paragraph we can summarize the results of state variable theory

to be discussed in *he sequael by the following topics:
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A Digital Computer Analysis
a, Formulation of canonical equations
(1) Topolog.ical means
(2) Reactive extractions
b. Transient analysis
c. Frequency response
2. Analong Simulation
a, Integrated circuits
b. Filter design
3. Equivalence
a. Minimal realization transformations
b. Nonminimai (encirclements)
4, Sensitivity
5. Finite Synthesis
a. Minimal realizations
b. Loaded n-port theory
c. Lossless synthesis (hybrid)
6. Multivariable Realizations
a, Minimal realizations, ctc,
b. Lumped-disctributed synthesis
c. Noncommensurate line synthesis
7. Distributional Generalizations
a. Representations
b. Time-variable circuits

8. Inifinite-Dimensional Extensiong

D. The State - Mathematical

Let us consider as given a system designed to map inputs u into
outputs ‘z. If we know all inputs applied to the system from its time
of construction to the time of observation, t, then y(t) is "uniquely"
known and is determined through a knowledge of the syst:; transformation,
However, it is more frequent that we have on hand a given system which we
will begin to use at time to' generally without a knowledge of the in-

puts applied before to. We will assume that there is a set of parameters
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a(to) which we can measure, or somchow determine, such that if the
input a(t) is known for t > to then also for t> to the output
y(t) 1is uniquely determined [upon a specification of the stute |2(to)]'
- —

Since the output is uniquely determined, there exists a transformation

E[”'] such that

= I[}-”S(to)]’ t> t) (1-1)
Since t_ = can vary, the state g is also a "function" of time as is
of course reasonable on intuitive grounds. We point out that in general
z, u, and particularly 8, are mul tidimensional quantities; we will
take u as an m-vector, J as an n-vector, and S asa k-vector [for
example, k will often be the number of capacitors and inductors in a

circuit], Pictorially Eq. (I-1) is represented as in Fig. I-1,

transformation

i
nput (with state s) Quitput
u ¥ o= Tlus(e )]
o 1
t>t
- o0

Fig. I-1., SYSTEMS REPRESENTATION,

A system which can be represented by a transformation of the form

of Eq. (I-1) is conveniently called a state determined system, One can

in fact make a detailed study of the general types of state determined
gystems [1, p, 67] but it seems more important for our purposes to proceced
to other studies, However, we define a few useful concepts, First is

that of the zero state g, defined through

90 = I[g,g(to)], t> t (1-2)

In other words a zero state is any state which gives a zero output for
a zero input, As an example of a nonzero zecro state consider the balanced

bridge circuit of Fig. I-2 where the capacitor voltage serves as the
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state, s(t) = [vc(t)}, and we take the applied voltage as input with
the source current as output. When the applied voltage is zero no in-
put current flows as is seen by the redrawing shown 'n the (b) portion

of the figure; thus, @ = {zc(t)}. We observe that in this system all

I

Fig. I-2. NONZERO ZEiiN-STATE EXAMPLE.

states are the zero state, but in general such will not be he case,

For example if we had taken 1 as the output, the output would only

1
have been zero if LA 0, that is for this new system, with u = v,

y 11 the state 8= [vc(t)} is only the zero state when it is zero;
9 = (0},

-
With the concept of the zero state on hand we can consider the

definition of a linear system, A system is called linear (with respect

to inputs) 1f for all ccnstants k, all initial states 'a(to), all

zero states vg(to), and all 1nput's _131 and My
Tkl -2p),0 )] = KIlm) 8t HMITu, (2] (1-9)

We observe that because of the need to consider the state there is a
difference between a linear system (in its mathematical representation)
and a linear transformation, An immediate consequence of this definition

of linearity is the fuadamental decomposition obtained by taking k =1,

Y= By =0
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Tlu,s(t D] = T00,8(t)] + T[u,8(t)] (1-4)

That is, for a lincar system the total response can be broken into the

sum of two parts, one of which is the zero input response and the other

of which is the zero state response,
with respect to inputs, as Eq, (I-3) shows, but also with respect to

tne response from initial conditions,

R, C,K£0
real constants

) +

Y. .= ¥

. o
vo = I(\..':l f—o-

Fig. I-3. INTEGRATOR.

As an example of the decomposition let us consider the integrator

of Fig. I~3. The describing equations can be taken as

o . . Cd[vo/K - "oJ
= K2 = dt

which upon simple substitution of the first into the second yields the

following.differential cquaticn completely in terms of input and output

variables,
dv v
RC(1-K) o o
__T— Et_. + T = v:l (I_Sa)

To obtain the transformation napping the input into the output this

differential cquation must be solved,

(Laplace transtorms, for example)

SEL-67-110 6
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t .
v (t) = v(t) exp[- ﬁ:‘(ﬁ (t-to)] . ]t {exp [ ﬁ(ﬁ (t-T)] [ﬁ({_ﬂ v,(1)]
N m——— | —— ° e e T ——————

= TlQ,s(t)] ¢ T[u,8(t )] (1-5b)

We see that Eq. (I-4) is satisfied and that s(t) = {vo(t)} = {y(t))}
is a suitable choice for the state, Since vc = lig'vo we also see
that an appropriate (alternate) choice for the state is g(t) = {vc(t)}.
Perhaps much more should be said about the domains of definition
of the various quantities but such discussions can also get lengthy.
We merely mention thet for a given system there is usually some restric-
tion on the type of inputs allowed as well as the range of outputs for
which the mathematical transformation E[-,-] is valid., In our study
we will most often assume that the input and output are zero before
t = to and that they, along with the state, are real valued.
For linear systems it will often be possible to fiad a description

in <he form

LU L AW + BOXD (1-6a)
Yy = c(t)s(t) + DO + E(t) ‘—’%{—t) (I-6b)

If such can be found, these equations are called a canonical representa-

tion and the set

is called a realization. For such a system having the dimension, Kk,

of the state finite, we ascribe the name finite or differential system,

Likewise, if the cocificient matrices, éﬁt), ...y are constant then

the system is called time-invariant (actually this time-invariance is a

special case of a more general definition applicable to any state
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determined system [2, p. ]). In most situations of interest the useful

information about the system is contained in the matrices A, 2, and

2, so we will often assume that either E = 2 or D=E =0, Thus,
(L] -y - L]

most of our concern will be with the canonical set of equations

- (
romad ¥ R 1-7a)
=Cs +D (1-7p)
.¥| P4 E - 2 4
and the realization
R = (,A.tEtEtB] (1-70)

It is possible to interrelate the canonical equations with the zero
state response, :L[g,g(to)], in the time-invariant case (a similar
development holds for time-varying systems). When the realization R
is constant, Eqs. (1-6) yield a continuous transformation, in the sense
of distribution theory, mapping inputs into outputs (in the zero state).

Consequently, there exists a matrix g(t) such that [3, p. 23]

2ly.g(t )]

h *
L]

ic

o0

h(t-1) u(t) dt (1-8)

1
3

where * denotes convolution, that is, the integration exhibited (recall
that 'H(T) is zero for T < to). The n X m matrix h consists of

dlstributions~(functions, impulses, etc.) and is called a distributional

kernel; physically it represents a matrix of impulse responses. For

Fig. 1-2 we have, for example,

h(t) = 5(t) (1-9a)

-
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while for Fig. I-3 we have

h(t) = Ea(%m exp [- m%:fy] l(t) (I-Qb)

where 1(t) is the unit step function and 5(t) = dl(t)/dt is the unit
impulse. By taking Laplace transforms, denoted by £[ ], we have from
Eq. (1-8)

£l1ln,9]] = H(p) £lul (1-10a)

H(p) = £[n] (1-101)

where ‘g(p), P =g+ jw, is called the transfer function matrix (it is

nXm also). By taking Laplace transforms in Eq. (I-6) we can obtain,
by straightforward substitution, an alternate expression for the transfer

function matrix
-1
Hp) =pE+R+glL -4)" B (1-10c)

where 2* is the k X k identity matrix. One of the problems of the

theory is then to find a realization R = (A,B,C,D,E} given a transfer
function g(p) since then the canonical equations are on hand. A similar
problem is to obtain the canonical equations from a given physical struc-
ture. We comment that Eq. (I-lOc) shows that the transfer functions re-
sulting from the canonical equations are always rational, when k is
finite, and possess at most a simple pole at infinity; in the more commonly

treated case where E = 0 E(p) aas no pole at infinity.

na?
We will illustrate some of the above points, while exhibiting a set
of canonical equations, in the following example of a Brune section. How-
ever, first we comment that we have considered a given construct as a sys-
tem by "orienting" its variables, that is, by specifying inputs u»nd outputs.
Thus, as we already saw in Fig., I-2, a given construct can yield several
different systems by having different inputs and outputs assigned. Never-
theless, the state will generally remain invariant; that is, given a con-

struct, there is an associated state which in fact can be used with all

9 SEL-67-110




svstems obtained irom the construct. Further, a network has been de-
fined by the set of all pairs [x,l] of voltages y and currents ol
allowed at its ports {4, p. 7]. We could procccd from this definition
of a network to introducc the state as a set of parameters needed at
time to to specify allowed pairs [X'il for t > to. But for our
purposes it is sufficient to orient variables at the network ports and
work with inputs and outputs, as for example through the admittance or
scattering matrices. We note, though, that in any cheracterization
there is a minimum value for the size, k, of the state. This minimum
size is often referred to as the degree b of the system; through

Eq. (1-10c) we sec that O 1is characterized through H; thus we can

write 5[H(p)] or (precisely only when E = 0)
™ (] -y

b

min k = 5[ﬂ(p)] = system degree

We will later see how to calculate ® directly from ﬂ‘p) but for now
we merely comment that © physically represents the minimum number of
integrators necessary for an analog simulation of the system described
by the canonical equations (1—7). We do mention that it is sometimes
of interest to have more than the minimum number of components of the
state present, especially for the determination of equivalent realiza-
tions to satisfy some specified constraints (as for example the desire
to incorporate only a certain type of transistor in a design). Fig-
ure 1-2 has already illustrated an example of a nonminimalr realization,

where we define a minimal realization as one where the A\ matrix is

b x B, that is, has its order equal to the degree of ﬁ(p). In this
case ﬂ(p) =1/r, 5&1] = 0, and we see that the system of Fig., I-2 is
equivalent to a resistor, the situation being as shown in Fig. I-4,

where Fig. I-2a has been redrawn in the (b) portion,

E. The State - Brune Section Example

At this point let us sc¢t up the canonical equations for the non-

reciprocal Brune scction of Fig. I-5 [5, p. ], where we make the

SEL-67-110 10




g

u=v-ﬁ) r

v =0,v +0,v
[

i =0,v + L v
c r

(a) (b)

Fig. I-4. ZERO AND ONE-DIMENSION REALIZATIONS OF H(p) = 1/r.

1 2 1 3
o—r i .t +0— —
8 % B ) DL e
v " - v =
1 2 =
"o g ﬁ 2 o % e
a +
€11 1, 4 7
— b B
v o r b—*-( 2/}
-0
(a) (b)

Fig. I-5, NONRECIPROCAL BRUNE SECTION (a) WITH CAPACITOR EXTRACTION (b).

particular choice of input and output (of later use for modeling of

filters for integrated circuit realization).

u = L (1-9a)

In order to analyze the Brune section to obtain the canonical state
variable equations we first separate the dynamical elements by removing

the capacitors as a load on a purely resistive 4-port, as shown in

11 SEL-67-110




Fig. I-5b. We also take as a convention for the gyrators the symbolism
of Fig, I-6.

i g i
1-—> L e 2
+ 0 0 +
Y g
Y1 D ( Vo = Y=
-g 0
-0 —0 -

Fig. I-6. GYRATOR CONVENTIONS.

By summing currents at the nodes marked a, b, ¢ (in Fig. I-5) and

summing voltages around the loop d, respectively, we obtain

0 0 O gl‘ ”'vl- —1 0 1 0 —1;

0 0 0 -gf|v, 0 1 -1 of]4,

€ € 0 O vy = 1o o o 1 1, (1-9b)
-1o1 1 0 v, [0 0 0 o],

A suitable choice for the state is generally the set of capacitor voltages

or charges and inductor currents or flux, thus we let

“1'3
S = (1—90)
2%
for which it follows, from Fig. I-5b, that
B
5=~ (1-9d)

We can therefore rewrite Eq, (I-9b) to specifically exhibit the quantities

of interest by rearranging the columns.

SEL-67-110 12




(1-9¢)

If we add the second row to the first and -8, times the last row to the
third, we can isolate y from 8 to get
~A -
p— 1 —— p— u—
| 0 1 0 —l-w 0 (gl-gz)/céw 0
0 . 0 = =
1 o o | . g,/c, 1 .
u y + S s =0
g, 01" o o |T [|-g/c 0 " 1o e T
€278 €2/
| -1 0 |1 0 | 1/e, o | | 0 0]
(1-91)
Using the third row multiplied by -1 and the second row gives
0 -cz/c2 o 1
é‘ = s + u (I'gg)
Bx/ %) 0 € 7€ 0

while the fourth (by -1) row and then the first give the desired output
equation

-1/c1 ] 1 o
(1-9n)

z:

+
ic

0 (gl-gz)/c2 o 1

These last two equations are the canonical equations for the Brune

section,

13 SEL-57-110




Using H(p)

-1
=D +C (p.}.2 - A} B we can find the transfer function.

-1
_
- 0
1 0 1/c1 P g2/02 0 1
H(p) = +
o 1 0 (,-8,)/c,| | -85/, P €,-8, O
- T —-1 - — — -
1 0 N P p -g2/02 0
1 '
- R
0o 1 2/"1%2 o (g,-g,) | |&,/c, P €,°€,
. L 2 JL JdL £
2 BB -]
P ¥ c.C -C_.
] 1 12 1
= ——————2 2, (1-91)
P +g,/c,c o )2 -
2/m172 (g, g,) 2 By%
C p + c.cC
L 2 1%2_|

We comment that one of the alternrate choices available for the state is

;m>
]

and that for this, or any other choice for the state, we obtain the same
transfer function. In fact we observe that there is a nonsingular trans-

| formation mapping one choice for the state into another, that is,

(1-10)

n
{7

SEL-67-110
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As we will later see, any minimal realization is related to any other
through a nonsingular transformation on che state as in Eq. (1-10). In

this case b6[H] = 2, and thus the realization

o -8 0 1 =L ) Ml o
c. ©1
R = g 2 ( )
-2 0 , €. - € 0 0 #1752 o 1
< 1 2 ' P .
2

is minimal.

F. Discussion

By way of introduction (or review, depending upon previous back-
ground), we have considered the meaning of the state and given the
primary equations related to our further studies. For differential

systems the equations of most interest are the canonical ones.

S=As+Buy (1-11a)
y=Cs+Du (I-11b)

with the associated transfer function yielding the output y in terms
-an
of the input u, when initially in the zero state &(to) = gﬂto),

through

(1-11¢)

given by

e(h] = #(p) =p+ g (p1, -4) B (1-114)

We observe that in this differential system case the state is that set

of parameters for which a matrix set of first order differential equations
can be set up in terms of the transfer function and its realization., The

matrix h is the impulse response matrix with its Laplace transform

£[h] bveing the transfer function. From the expression for H(p) in
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terms of the realization R = {g.g.g,g) matrices, it is clear that the
poles of g(p) are zerous of the determinant of le - ﬂ, that is, the
natural frequencies of the system are eigenvalues of the matrix .ﬂ.

We also observe that if we have two realizations R = [ﬁ.g.g.g.}

and R = [K,ﬁ,é B} related through
P4

-7 1a T, B= T_IB,
LY - -

o) =

(1-11e)

1o
1o
I
=)

i»>

=CT,
- -~

with _E nonsingular, then the two transfer functions are identical,

Thus we have

~ A A T -1 -1 -1_-1
Hpp) =D+C(pl, -A) " B=D+¢cI (WL L-L AL T B

"
jo
+
(o)
~—~
o]
—

]
>
w
1]
=]
o~
il
S’

consequently we can investigate equivalent systems by manipulating the
state variable e ;:ations through methods associated with the transforma-
tion of Eq. (I-lle), which in fact can be interpreted in terms of the
state as a basis change in the state space through s = 3‘5; We are then
led to observ: that there is a k-dimensional space, the state space, in
which we have introduced (Cartesian) coordinates against which the com-
ponents of & for the canonical equations are measured. The actual

state, for a given input g(t) and an initial state g&tﬁ), traverses

the state space on 2 trajectory 'g(t), this trajectory giving the "motion"

or behavior of the system, as verified by Eq. (I-lla,b).

Our primary interest will be with linear networks considered as
systems through the transformation formulation so far discussed. One
couid consider the more general nonlinear case described by the matrix

differential equations
5=4(s u @) (1-12a)
$ =g (s, u, 0) (1-12p)
o~ sty ~ -~ o

However, very little is available in the way of synthesis for such
equations, so we have chosen to concentrate on the linear case, We also

choose to devote efforts primarily to the conltinuous-time case since it

SEL-67-110 i6




is of most interest for network studies. But because our treatment will
generally be of an algebraic nature, the results are almost all valid for
discrete~time systems, which in fact have considerable practical impor-
tance, for example, through the theory of automata.

In our treatment we have not proceeded in the most rigorous manner
possible since we wish to bring out only the basic and most important
points for nur later use. Once the concepts we have treated are grasped
in principle, the more detailed works are available to those interested
[1],[6]. However we have not wished to sacrifice completely the rigor of
the theory so have proceeded in a rather precise manner for the detail
given, Although most of our emphasis will be upon networks, we have
given a somewhat general systems formulation in order not to overly limit
the treatment. As a consequence we will most frequently work with a net-
work in an input-output situation, as for example through the admittance
matrix where the input 3 is the set of port voltages Y. and the
out put -l the port currents &. (1n which case m = n). Since such a
(port) description tells very little about the internal structure we will
use the state to discuss internal operation and construction of the
network., A network is a system with electrical inputs and outputs,

T

e Y | . | PR
It ig of interest to know m f gbtainin e Candiilcal eguations

RS TPRTY

et

8
80 we rext turn to a discussion of the setting up of state variable equ-

atious.
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H. Exercises

I 3 Set up the canonical equations for the Hazony section of Fig.
EI-1. Do this for the input-output variables of Eq. (I-9a) as
well as for the admittance and impedance matrices as transfer
functions,

C
=]k
v

o -£ o

Fig. EI-1. HAZONY SECTION.

o O

*2, Given the canonical equations for the admittance matrix (as the
transfer function) and those for the impedance matrix, find the
relations between the two realization set matrices. Repeat for
the scattering matrix and the admittance matrix given,

3. A given network has the canonical equations

0 -I 1
$ + u (E1-1a)

1}

[ Da-Le bt

a, Find the transfer function.

!
1}

b. Find the zero input response for g(to) = [1] Plot the
trajectory 3(t) in state space, >
*q, Discuss a formuiation for "transfer functions" in terms of the
realization matrices for time-variable networks,

St As we have mentioned, the state applies to much more than sci-
entific or physical systems. Investigate the concept in terms
of, for example, language formation or motion picture production.

6. Consider any network of interest and set up the appropriate state
space equations, From these, investigate the minimality of the
realization as well as other sets of canonical equations yielding

the desired transfer function,
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Mais d'autres s'attardent un peu, nous
regardent en souriant attentivement,
semblant sur le point d'avouer qu'ils ont
tout conmpris.

M. Maeterlinck
"Les Avertis" du "Trésor des Humbles"

CHAPTER 11

FORMULATION OF CANONICAL ®QUATIONS

A. Summary

; the usa of appropriate replacements and capacitor extractions a

133
e

simple method of equation formulation suitable for digital computer use
is presented; the method is described in terms of the admittance descrip-
tion but can be used in other sifuations. This method is follcwed by

the outline of a topological one which exhibits a more general set of

equations.

B. Capacitor Extractions

Let us consider as given a finite circuit, that is, a connection of
a finite number of resistors, capacitors, induc'.ors, transformers, gyra-
tors, and devices, such as transistors, which c:n be modeled by the
above elements, (We assume linear but perhaps Lime -variable and active
elements at this point; that is, negative as well as positive element
values which may vary with time are allowed.) To illustrate the method,
we search for the canonical state variable equ:ations for the admittance
matrix as transfer function [1]. To concentra:e on fundamental concepts,
we replace all inductors by the capacitor-loaded gyrator equivalent
shown in Fig. II-1.

After making such a replacement we extract all capacitors into a
separate network which loads a multiport described completely by alge-
braic constraints. If the admittance matrix is n X n and if there are
¢ capacitors extracted, the situation is shown in Fig. II-2, where

the "resistive" (n + c)-port is loaded by a capacitive c-port.
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, _af L1
T dt g

(v)
Fig. 1I-1., INDUCTOR EQUIVALENT.

~~
Tt

i
- P ‘-—-2
O—— resistive )
i n+c)-port B
algebraic ——
A 4 constraints) ¢ &2 & — £
SR -

Fig. II-2, CAPACITOR EXTRACTION,

Our reason, of course, for isolating the capacitors is that their
charges, or voltages, can serve as state variables. We can obtain a
general description, that is, an Q v =2 & characterization, for the
resistive (n + c)-port, but let us assume that this (n + c)-port
also possesses an admittance description zc, where since we are allow-
ing the presence of time-variable circuit elements, we have that xc =
&c(t) In order to be able to apply the load constraints to obtain the

state-variable description, we can partition anc according to the ports,

4 &% PAR AT o

(11-1)

Y
NE

| I
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We point out that the existence of x& is an assumption of the theory,
and one which places a vestriction (which is often not too severe) on
the class of circuits considered.

At this point it is convenient to rewrite the above equations in a

partitioned form more useful for finding the canonical equations. Thus,

N[nE J[] ] (B [ B[
11-2a
1 L 21 doz 9~J

Next we observe that we should be able to choose the capacitor charge as

the state, in which case we define

5=CY, (11-2b)
while from the load constraint we observe
d Ccv
" o - - - ~)
‘%2 = - ‘s‘ = - _—dt (IL—Z.J_I

Here we have taken the matrix _  as the ¢ x ¢ diagonal matrix of
capacitance values; any capacitive coupling we assume to have been taken
into account through transformers absorbed into the resistive (n + C)-

port. We also assume (t) to be nonsingular. (Any singularity can

C
L]
actually be accounted for again by a change in the (n + c)-port, but

we omit discussion of this rather tricky point in order to clearly pro-
ceed.) Substituting the (b) and (c) portions of Eq. (II-2) into the (a)

one yielhs

n I:'L] e [:3] R SE [*‘-’«] i P [3:]=

-1
e A2 22

=}

(11-3)
A

ic
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The second set of (c) equations gives the derivative portion of the
canonical equations, while the first set of n equations gives the

output portion. Thus,

3= Yo .&;_1 3-Jdg X (11-4a)
L=d128 &*¥y % (11-4b)

We have obtained the realization
R = {'-2’.22 .?-.—1' J21' d12 9-1- ..3.’11} (11-4c)

in a simple manner, It is worth mentioning that if time-variable elements
are present the realization matrices are functions of time, in which case
we have succeeded in setting up the canonical state-variable equations for
time-variable circuits, In the time-invariant situation we observe that
the method proceeds only when there is no pole in the (n-pnrt) admittance
matrix at infinity; we will later (Sec. C) obtain a graph theory con-
dition for no pole at infinity such that a test can be directly made on
the rircuit graph. In any case, time-variable or not, the method proceeds
if and only if the coupling admittance matrix 3; exists; the existence
of zc is equivalent to the existence of the inverse of the ﬁ‘ matrix in
the general description, Q\& = §‘£, for the (n + c)-port coupling network,
As an example, let us consider the 2-port of Fig, II-3, which is a
subportion of the nonreciprocal Brune section, useful for its own sake

(since it is equivalent to a series inductor in cascade with a trans-

former). il
11 gl
— Afm—— prana
b1 £2 o a/t
b — V+ D v =
@ q €2 @ 5 0
o— 0 i, g, /
— —
+ O
Y2
&

(a) (b)

Fig, II-3. SHUNT-CAPACITOR LOADED-GYRATOR CASCADE,
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By extracting the capacitor as shown in the (b) portion of the figure,
we can obtain the appropriate cquations., First we write the general
description for the 3-port coupling structure (by respectivelyv summing
currents at node a and then writing i and i in terms of v

1 2 3
through the gyrator relationships).

% 8, o [v,T [eo o 1| [ s

1
0 0 e flvaf =1 0 o i, (11-5a)
= 0
-‘0 0 gq- LV3_. _0 1 4l _13—

The coefficient matrix of the currents is nonsingular, being a permuta-
tion matrix, and thus on premultiplying Eq. (II—Sa) by its inverse we
find

- I 0 0
0 0 — -

where we have made the partition appropriate to Eq. (II-l). Note that

- tri ==Y h - -
3; is skew-symmetric, Xc X, (w ere mecans transpose), as ex
pected, since it is constructed solely from gyrators,

Equation (II—3) is directly

1 0 L 0 [s] o 0 O—I vil - gl/c2 [s] = |0

0 1 i2 E o o v, gz/c2 0

0 o 1 €, &, 0 0
(11-5¢)

where we have partitioned the last ¢ =1 equations to be split off.

Thus we have, by such a split, the canonical equations directly as

35=0.s + [g1 -gzl (11-54d)
Vo
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i 0

i gl/c2 Ot v
- s + (11-5¢)

i, g,/<, o o]lv

We comment that, since the nonreciprocal Brune section itself has a pole
at infinity, no 3; exists for it, However, on removal of the pole at
infinity, Egs. (II-5) result; hence the canonical equations for the
admittance description of the Brune section are merely obtained from

Eqs. (II-5d,e) by adding

[
-
[

]
0
[
0
[
<o
N

to the right of Eq. (11-58). Note also that the canonical equations
previously found for the Brune section were for a different set of input-
output variables (that is, a different system). Still the same method
was applied at that point.

We also comment that, upon adding suitable ports and ignoring vari-
ables of no interest, we can use the same method to find almost any
iput-cutput canonical sel ui siaie-variablie equations, perhaps also after
simple transformations on the variables. This result is directly seen by
setting up equations in hybrid form.

Since the steps carried out are easily programmed, the procedure is
a very convenient one for use in setting up canonical equations on a
digital computer. For such purposes one needs a method for obtaining
the eoupling admittance 3; on the computer., Perhaps the most co e-
ntent method is to reduce the indefinite admittance matrix (2, p. 3]
for the resistive coupling network to obtain &k; several programs are
available for finding the indefinite admittance matrix, but a program is
also very easily written from scratch. An alternate and almost equally

useful method is to use the topological methods which we now discuss,
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C.

Topological Formulation

Let us again consider a finite ¢ircuit for which thc equivalence of

Fig. II-1 is used to replace inductors; again this replacement is not

necessary but is convenicnt for simplification of already complicated

expressions.

Also we will assume that the admittance description is

desired for which voltage sources have been placed at the ports.

By replacing each circuit element branch by a line segment, with an

arbitrarily assigned orientation, as shown in Fig., II-4, we obtain an

oriented graph to represent the circuit, the branches of which we can

—0 ——o0 —o o- o
+
(:) - ’ ?E — y T - ) ( —>
0 —oO —0O0 o O
Fig. I1-4. EXAMPLE GRAPH REPLACEMENTS.

number in some useful manner.

A graph associated with a network or

circuit structure will be called a network graph.

In order to proceed we introduce the following somewhat standard

nomenclature associated with a network graph:

node=vertex

branch

path

connected graph

separate part

tree

forest

colree

link

a dot on the graph (= a terminal of a circuit
element branch)

a line connecting two nodes (: a circuit element
branch)

a sequence of branches and associated nodes

a network graph in which every node is connected
to every other node by a path

a maximally connected subgraph (that is, a sub-
graph for which all branches are connected to all
other branches in the subgraph and to no others)

a maximally connected subgraph of a separate part
which contains no closed path

a collection of trees of a graph, one for eac.
separatc part

the sct of branches (in a separate part) which
remain when a (fixed) trce is deleted

a branch of a (fixed) cotree
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Although these definitions are not completely rigorous (for example
"connected" and "closed path” are not made precise), they should be in-
tuitively clear, perhaps after an example, and are sufficient for our

purposes. To further proceed we introduce the following symbols:

b = total number of branches

£ = total number of links (cotree branches)
s = number of separate parts

t = total number of tree branches

v = totel number of nodes

Here £ and t are formed by summing over all «rees in a forest. For
each separate part the number of tree branches is oc.ie less than the
aumber of nodes while it is also clear that b = £ + t. Thus we can
directly predict the number of tree branches and links, without express-

ly exhibiting a tree, through
t=v-s, £=b -v +s (11-6)

As an example, let us consider the 2-port of Fig. II-5 which has
been closed, as mentioned above, on voltage sources (as will be appro-
priate to setting up the canonical equations; note that this network is
identical in port behavior .o the nonreciprocal Brune section of Fig.
I-5). A possible network graph is shown in the (b) portion, with other
graphs resulting by different choices of branch orientation and number-
ing. Note that by simple count b =8, s =2, v =5, and thus, by
Eq. (II-G), t =3 and L = 5; these numbers are checked from the graph
where a possible choice for a tree is shown in boldface (note that there
are other choices for a tree, but tha:t in a given analysis only onc at a

time is need).

&)

bﬂ’q

Y

(a)
Fig. II-5 EXAMPLE GRAPH FROM CIRCUIT STRUCTURE,
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Since we will wish 1o sum currents at the nodes, we have atso labeied
them., We observe that for a node analiysais we wish to ehoose tree branch
voltages as independent variables while for a loop analysis we wish to
choose link currents, In setting up the state-variable equations we
actually will work with both types of variables.

Next we introduce the following (column) vector variables:

= vector of branch currents (b x 1)

= vector of branch voltages (b X 1)

= vector of link currents (i X 1)

= vector of tree branch voltages (t x 1)

= vector of port (source) voltages (n x 1)

IH- 3< A< el\:-" é.< U"H‘

= vector of port currents (n X 1)

Along with these variables we assume the polarity of a given branch's

variables in conjunction with the given branch orientation as shown in
Fig. 1I-6.
\1

- Fig. 11-6. POLARITY OF VARIABLES.

+*

Now we introduce the cut set and tie set matrices from which the
analysis can truly begin. For a given circuit we pick a fixed forest.
The cut set matrix ¢ 1is defined by considering the tree branches in
numerical order; for each tree branch a circle (or similar curve) is
drawn such that of all the tree branches only the prescribed one is cut
by the circle. The (oriented) set of branches cut by any one circle is
called a cut set. For any one cut set all the currents entering the
circle on the cut set branches must sum to zero by Kirchhoff's current

law; considering all t cut sets we obtain

. : 14 -
8= ik {11-1)

where ¢ is the t X b cut set matrix (consisting of 0 or % 1's).

As an example, Fig. II-7 shows the cuts for the particular graph. The
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resulting cut set matrix is given as

equation
cut I i d (1] 1
cut II -~ (1] = (1]
cut III ~» 0 0
III
cut set
cut set
cut set

II

Fig., II-7,

The tie set matrix
wa

a forest is chosen. On removing all

is defined in a somewhat dual manner.

the coefficient matrix in the

1
1 1l (1] i
2
-1 0 -1} (11-8)
3
14
I = branch 1
II = branch 2 (out) and branch
3 (out)
III = branch 2 (in) and branch
4 (in)

EXAMPLE CUTS FOR c.

Again

links a particular link is rein-

serted; the (oriented) branches forming a closed path under this rein-

sertion are the associated tie set,

the numerical order of the links defines,

Ordering all tie sets according to

through Kirchhoff's voltage law

(applied tr«» each loop of Lie set branches),

—-— g -—
Q-J.xb (II 9)
where -l is the f§ X b tie set matrix (again consisting of 0 or
*+ 1's)., For example, Fig, II-8 has

SEL-67-110
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tie set 1 branch 2 (+) and branch 1 (+)

branch 3 (+), branch 1 (+)
and branch 4 (-)

tie set I1

I

I11-8, EXAMPLE TIES FOR 1.

We also claim that it is possible to write (recall that = =

transpose)

Y =Sy, (11-11a)
Ay = a4y (11-111b)

For the plausibility of Eq. (II-1la), say, let us argue as follows. By
Kirchhoff's voltage law it should be clear that the tree branch voltages
determine #il link voltages; hence there is a linear transformation to
give xb = Axt, where A 1is some b X t matrix in fact consisting of
zeros and (+ or -) ones, If we consider the graph as a closed system
Ehen the total input power is zero, pin = “\‘Zb ‘&b = 0. Thus "Zb }‘b =
Y A ‘i‘b = 0. Since the tree branch voltages can be arbitrarily assigned
(when the graph is considered as an abstract object), we must require
A & = Q. In other words if we choose Eq. (II-1la), then Eq. (II-7)
follows as a possibility, [Of course, a proof requires that we argue in
reverse, but this can be done by beginning with Egs. (II-ll) at first.]
For convenience of notation we next choose a numbering of branches

such that all the branches occur first; thus

i i,

Y C , L, = (11-11¢)
v, i
wf ey
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in which case Egs. (Il-lla,b) show that the cut set and tic set matrices
can be partitioned as

e=0 1g¢l, 3=

‘ -
b ! .}EJ (11-114)

T
T

where ¢ and T are, respectively t x £ and £ x t matrices; -}t is,

of course, the t X t 1identity. We observe that

c=-i (11-11e€)
since again
T
Xbib =0 =-St[£t g] ) }g = Xt[I - S]}Z =0
-1

and and '$E can be arbitrarily assigned.

v
-t
Our next step is to place all voltage sources in tree branches.

(We remark that we are only considering the presence of voltage sources;
if current sources are present, only simple modifications are necessary,

or one can use the equivalence of Fig., II-3.) Next we place as many

1

Oy ——

+

D O'v-1

tf

o—
Fig. II-9. CURRENT SOURCE EQUIVALENT.

as possible of the capacitors in tree branches--any left over are some-
how "excess'"; but the need for considering these excess capacitors is in
fact the reason for our treating this topological method., It follows
that if there is a capacitor link then the path formed by the associated
tie set branches consists entirely of voltage sources and capacitors--
such gives rise to a pole at infinity, for example, in the admittance
matrix, Let us now further fix our numbering of branches such that

v and v take the form
wt )
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(11-12)

where the subscripts ¢ and r refer to capacitor and resistor portions
of the graph.

At this point we can begin the real procedure for setting up the
state-variable equations [3]. If we partition the matrix ‘I, of Eq.
(11-11d), using € = -, we find for Eq. (II-9), @ =Jy, and for

v ‘b'
. -7 0 =20
Bq. (11-7), Q=24
v
e
]
k> TQ PRSP IR P S S N | | A
- :
: =rt
[]
rh> |Q oy dap oz i & 3y Y. (11-13a)
e
Srd)
Pi -
s
source > | 9 Lo e g, Tl
1
. "~
ct> 12l =12 et 95'212 “Laz2||4re (i fab)
[}
re> 10 |& 2 Lyt Q-Tyfldc
| 4r4]
In these equations 2h3 ='2 since if there is a capacitor in a link then

there is no resistor in the tree branches of the associated tie set. We
also write i for the source current and note i = -i, where i 1is
s g - L]

the port current.
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The circuit element constraints are next assumed to be of the

form
- - »
o | et /ot
Ao | |9/
- (11-14a)
&rt Etxrt
i o
"wri Q v
i i i ferf i

In actual fact this form places some restrictions on the types of cir-
cuits allowed since no coupling between tree branch and iink resistive
(gyrator) elements is allowed; for example, the circuit of Fig. II-10

is ruled out. Of course a more general treatment is possible by using

i G v
ot S St -rt
= (11-140)
Arz | [See S | [Sr2
but as we will see, the result is already complicated ernnuygh in notation,

_ f_]Q“‘W 6
= )q P = 5

note: 1 and 6 are required tree branches

Fig. II-10. EXAMPLE OF RESISTIVE COUPLING BETWEEN
TREE BRANCHES.

Our next job is to make appropriate substitutions, ete, Through
the various equations indexed as shown we can write the right side of

Fq, (1I-14a) as
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tdentity » [oc v  /at] r o 9 [') 1., R
dc ac,T g;l
-; f=1 2 -1
differentiste cl > ldC,y ,/dt AT = 7T 1) P 9
identity » 8 ¥t 9 9 £} 9 L
rl+»| ¢ -G,T = T 0 o
L Solrt | | “Selan G105, 2 2 28238
- . (11-15a)
et
x
dy/dt
9o/t
L L9 i
while the left side can be expressed as
et
> [ T 0 0] ~eb| T T .G (11-15b)
ct Lt F12 = = = Jazdrg = 22280 1=
mrt
531

Substituting Eqs. (II-15a,b) into (II-14a) yields desirable equations

with 'Y*cﬂ eliminated; but the presence of ‘xrt and xrﬂ is unwanted

so we proceed to eliminate them also. We have

v
[

-> = - =

rf ~rl [321 L22 'T"23] XctJ (11-15¢)

v
=rt
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and

by = Bstes = Baslieg = Gk (11-150)

Combining these last two gives

8.4
v = 6 YT ¢ T T T. ] |v
mrt Tt =230 #2] w22 w23 [mct
wrt
which on solution for v gives
wrt
v
an
“l~ 1 1~ -1
pe =7 Qe 8 Tpa8pTan) G 1538 Tp)  TpoS, ) (11-15€)
Stdet
Equation (II-lSc) then gives
I -1~ W) [
Seg = [eg * Tpallpe + 8 12380%03) G Jpa8,]
v (11-15¢)
_1 =
[221 -Izz-qt]
C v
Ktmct
Now let us finally substitute Eqgs. (II-lSa,b) into (II—I49) to get
Vv
[0
~ -1x -1 -1 -1
< { B €
3@22}2[ 10t Zoaldee * St L2a%0%es) S ToaS0 )z oo ] -
wiwct
R -
LY
-1 Cv
~ 984 ~  %Glioh ~ 14| et
={T —r —==— T ¢, 1 +% ¢ ¢
wl2dt w11 wl2 dt m1200MI1 st | e 2% [m] 2Rt dy/dt
et/
(11-15¢)
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Equat 1on (_[l--lS;z) is the same as

(11-16a)

ic.

S=AsS+Bu+rF
where we have

{1i-16n)

S
[}

C

2177t 5 B\alzht
2mt w-l2

>
1
~—
At—l
[ d
+
-
]
[ %)
%9
=
(=1

~ —1~ —1
E 3229-13['51-2 * Tpalee* e Izsme-zs) S 239-2] =225t
-1

~ -1 »~ ~£
;2805 2% ] }irlz 3t w11

i
"
—
AH
[ d
+

- s -1 1
+ X225 [.l.rﬂ Toallee + S I238sTa3) S¢ 1239.2] 221£
=1

= -1 (11-160 "
(Lo * FioSRa | TuoSifun

F
[ =Y

For the output equations we can use the source portion of Eq. (11-13b)

to get

-i =T (11-17)

e u-ll'{cﬂ +':‘-1‘21'%‘1'2
But, irom Eq. (II-14a), ";cﬂ = dgﬂcﬂ/dt and “}rﬂ =-9-B"Lr2; the -i~cE
part can be evaluated from Eq. (II-lSa), and the niq-ﬂ part from Eq. (II-
15f). Thus we find

y=Cs+Du+En (11-18a)
with
r=4 (11-180)
-1
dc,T. .C
= ¥ ] 2wt o~ -1 o~
S=dn Tae *ansgfiobe & - 1Sy

-l £
>, -
["]irﬂ + Tpalley + ¢ T23~ZT23} Et «23~£] 2S¢
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aC, * 51
D=L a Iu1 v 30a8elia8 B - ISy

=] =1~
S [ WIS AE W Y A o 97

= . -1
=SSt 58l 08 £ (11-18¢)

fm

Thus we observe that the equations obtained are not the canonical

set but the pair [4]

S=As+Bu+Fu (11-16a)
y=Cs+Du+EQ (11-18a)
(Y [V S Y [ " m wm

Nevertheless if C, =0 then F =0 and E = 0, and thus, when thcre
mﬂ v [ [

-
are no cepacitor-source tie sets, we obtain the canonical equations. It
should be observed that the results are valid for time-variable elements
and that the only real restriction on the result is the requirement that
there be no resistive coupling between tree branches and links, that is,
zero Qtﬂ and gﬂt in Eq. (II-14b).

Even in the time-invariant case where there are no capacitor-source
tie sets, where considerable simplification occurs, the equations still
remain rather messy. Thus we observe that, although the formulation is
important for illustrating the general nature of network state-space-
like equations, the approach is not the most useful to be taken for
normal analysis or synthesis,

As an example, let us reconsider the nonreciprocal Brune section of

Fig, I-5, This is redrawn in Fig, II-11, where the appropriate tree is

shown with the numbering requested by the theory.

1

e = ]
S ¥ e ¥ B KR N

(a) (v)

Fig. II-11. NONRECIPROCAL BRUNE SECTION GRAPH,

T o
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The tie

Next we

set and cut set matrices are found as

[ "1 ]
Vo
-+ [0] -1 1y 0}1 0o o o 4]]_°
[]
' Va
> |o -1 o0 oio]l1 o o o
g O d O @ e
E Vg
»>fjol =f{o o|-110]l0 1 o0 o (11-19a)
e I I
' Ve
=+ |0 0O 0}-1{0]0 o0 1 O
f i
: v
>{o] Lo -1l oiolo o o 1| €
o
[ Vg |
F isl-l
152
- [0 "1 0] 0; 1}1 o o on1|°"""
' i
' 3
]
[T N L
' i
J 4
>jol=]o0 1 0!-1 |0 0 0 1 |f----- (11-19D)
]
! 15
[]
]
i i
-> |0 | 0 0 1010 1 1 ol
1,
=3
have the element value constraints
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e ——— T

13 [ dczvs/dt
14 dclv4/dt
- - - 1
15 0 gl 0 0-} v
L (11-19¢)
i = 0 v
s &) g Y6
i7 0o 0 0 g, Vg
0 - )
g L™ @ & Y J Vsl |
Then
I,,6,T
A= - 22522 _
2
B=-19T, = & -g]
Ek=1[0o o]
T 22184507 ~ 1/%
= o 'gz/cz
1 -1
B =% * 3180 = 6 LR
. 1 -1
E=T,.¢,T =c
- T w1111 1

In this case the resulting equations are canonical and take the form

5=05+ g g} (11-194)
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N .;l/c2 1 -1 v 1 -1 v

= s + ¢ + C (II—lQe)

i -g, /c2 -1 1 v -1 1 v

The result is checked by calculating the transfer function matrix in the

time-invariant cas?.

D. Transformation to Canonical Form

Because of the presence of 'E in the resultant topological equations,
it is of interest to find a transformation to eliminate the derivative of
the input in the differential equation for the state. Fo= this let us

assume that we have on hand a set of equations

X=AX+Bu+Fu (11-20a)
A

y=Cx+Du+Eu (11-20D)
- - LY L )

The transformation
x=s5+Fu (11-20c¢)
A - - e

leads to the canonical set
S=As+ (E +F -E‘)g (11-204)
y=Cs+(D+Flu+EQ (11-20e)

Ve ovserve that such a transformation, for which the input becomes part

of the state, lcaves the 'é, C, and E matrices unchangdd,
.y %

E. Combination of Methods

If one applies the topological method to & purely resistive structure,
the results are considerably simplified, In the cases where there is no
coupling betveen tree branches and links, one merely has that the admit-

tence is given by D of Eq. (II-ch). We poin. out that the operations
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to obtain D are in this resistive case relatively easy to set up on a
computer. Hence if capacitor extractions are first made and then a
topological analysis carried out on the resulting resistive structure, a
very convenient method of setting up state-variable equations via the
computer results, The method is also quite easily extended to cover
those cases where there is resistive coupling between links and tree
branches.

By first setting up the graph of the circuit, the topological ap-
proach <~an be used to check the circuit for capacitor-source tie sets to
establish the existence of the li matrix. If there are such tie sets,
the topological formulation to calculate |§ can actually be carried out--
the last of Eq. (II-ch)--since this calculation in itself is not too

difficult,

F. Discussion

Because we feel it important to understand somewhat more fully how
state-variable equations can arise, as well as more of their meaning, we
have presented two convenient methods of setting up the canonical equa-
tions, Although both methods cover most situations of inte- st and have
been presented for the time-varying case, neither one is in itself com-
pletely general. The capacitor extraction method is lacking in that
there can be no capacitor-source tie sets in the circuit., while the
topological method needs to be extended to cover the case where non-
dynamical (that is, resistive) portions have coupling between the tree
branches and the links., The capacitor extraction method has the advan-
tage of simplicity while the topological method has the advantage of
proceeding directly from the circuit structure. When the two methods
are combined by applying the topological techniques to the nondynamic
portions resulting from the capacitor extractions, an excellent method
appropriate for computer analysis of networks results,

To this point we have not commented upon the existence of various
inverses needed in the topological approach. To investigate these would
cause an inappropriate diversion so we merely mention that in the case of
passive time-invariant circuit elements all inverses are known to exisl

{3, p. 511].
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In many applications, especially for integrated circuits, one meets
voltage-controlled voltage sources. By changing somewhat the theory,
these can be handled directly, but for our purposes it is worth observing
that the topological theory presented applies if one is willing to use
the equivalence of Fig. II-12, for which each of the cascade portions

posseses a conductance matrix.

;1 CBﬁv2=kv1 =1 g til=k"1 P( )q kv,

Fig. II-12, CONTROLLED SOURCE EQUIVALENT.

Since the topological method is in itself a bit complicated in end
results, it is of interest to note that the results are almost identical
to those obtained by Bryant (4] by very similar means.

Our next step will be to reverse the procedure and set up a physical

realization from a siate-variable realization.
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H.

gzercises
1. Set up canonical state-variables equations for the filter
circuit of Fig. EII-1.
r
| By €y €3
m—— p— e d
—-—JVNNF”—- ¥

ViC)

D | D( D( "e:o=y

qu c _

11
LA

N

2.

Fig. EII-1. DEGREE TWO FILTER.

Set up the canonical state-variable equations for the classical

degree two feedback section of Fig. EII-2,

i)

d b
| =

1. - +N

S AN T e T

*3,

*5,

Fig. EII-2., DEGREE TWO FEEDBACK SECTION,

Develop a method for the analysis by topological means of the
general resistive structure coming from the capacitor extrac-
tion method such has been proposed by E, Bailey [5].

Set up the canonical state-variatle equations for the inte-
grated circuit integrator of Fig. III-4b and investigate var-
icus transformations on the resultant equations,

Investigate the existence of the inverses needed to form ét,
B, E of Eq. (II-ch). From such an investigation, exhibit an
example of a circuit with no canunical set of state-variable
equations, Further, investigate the set of equations needed
to be discussed such that all circuits, active or passive but
with differential equation descriptions, are covered.

Set up the canonical equations by the topological method with-
out using gyrator replacements when only inductors and

capacitors (as well as sources) are present,
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A la hite, sagement et minutieusement,
ils se préparent a vivre.

Et puis, vers la vingtieme année,
s'eloignent a la hite, en étouffant leurs
pas, comme s'ils venaient de découvrir
qu'ils s'étaient trompés de demeure et
qu'ils allaient passer leur vie parmi des
hommes qu'ils ne connaiczaient pas.

M, Maeterlinck
"Les Avertis" du '"Trésor des Humbles"

CHAPTER III

INTEGRATED AND ANALOG CIRCUIT CONFIGURAT IONS

A. Summary

The canonical equations are convenient for system simuletion, espe-
cially through the use of integrated circuits. Here we discuss the con-
cepts of interest in terms of appropriate integrated circuit configurations.
In the development special operational amplifier circuits are considered
to illustrate some of the points associated with integrated circuit struc-

tures.

B. Canonical Equation Simulation - Block Diagram

Let us consider the canonical equations of the form

=As+dy (1-7a)

[0

Y=Cs+Du (1-7v)
", LaliR o
where the dot has been used to denote time differentiation. If we integrate

these canonical equations while denoting the (zero state) integral operstor

as 1/p, that is,

l:j [ ) ax (111-1a)
P 1
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then we arrive at the useful equations for analog simulation

s =(%_1‘k) [As+Bul (111-1b)
y=Cs+Du (111-1c)

where, as before, ik is the k x k identity, the state & Dbeing a
¢ veclor. For any input 4 the system can be simulated from a given
realization R = {A,Q,Q,g}, such that the output X is determined
vy the block diagram of Fig. III-1. Note that since the various sub-
systems are multidimensional, the separate blocks have, in general,

multiple inputs and outputs.

D
-
+ S + 4
4o B = Bt T E F=O=oL
4

Fig. III-1. BLOCK DIAGRAM FOR CANONICAL EQUATIONS,.

Several things can be noted concerning Fig. II1I-1:

1. Positive feedback is used and hence for (asymptotic) stability
we require ,ﬁ to have all of its eigenvalues negative.

2. Except for the integrators, all blocks consist simply of gain
elements. Such multidimensional gain blocks can be constructed
by interconnecting one-dimensional gain blocks, as shown for
example in Fig. III-2 for the 2-input, 3-output case. We shall
later see a method of summing, with gain, many inputs using a
single amplifier, but at this point remark that the gain blo-ks
as well as summers need consist only of operational amplifiers
and resistors.

3. All integrators are uncoupled and of unity gain. In practice,
and especially with integrated circuits, nonunity gain integra-
tors must be used, necessitating a scale change. Since it is
most convenient to construct all components identical with in-
tegrated circuits, it is practically more useful to simulnte tis
system through the equations
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. (% Ak)l% 5+ % g] (111-2a)

Cs+Duy (111-2D)

"

<

where A 1is an appropriate gain constant. A simulation of
these latter equations is just as for the previous ones except
that the integrator and A, B blocks are scaled in gain.

4. For most practical simulations it is customary to use voltages
as varistrles, in which case all gains are for voltage transfer
elements.

5. Time-variable realizations R are allowed, in which case it is
of interest to observe that our use of p 18 as a differential
operator and not as the Laplace transform variable.

1 12| &
81 P22
vy %32

Fig. 111-2. THE 2-INPUT, 3-OUTPUT GAIN BLOCK.

C. Integrators and Summers

In order to simulate the canonical equations we see that it is of
interest to have gain blocks, integrators, and summers. A glance at
Fig. 111-2, as well as the manner in which summation occurs in Fig. 1I1-},
shows that the gain portions can be incorporated in the summers. Con-
sequently, we concentrate upon one-dimensional integrators and multiple-
input, single-output summers with emphasis upon structures suitable for
integrated circuits.

The basic building block is the operational amplifier. For inte-
grated circuits one likes to use symmetrical structures with equal resis-

tors, with quant:ties of interest determined by ratios of resistors in
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place of absolute values, where possible. Likewise one generally avoids
pnp transistors where possible because of procesiing problems associated
with making both npn and pnp transistors simultaneously. One is
therefore led to consider the basic operational amplifier structure of
Fig. 111-3, on which many refinements are made to obtain various types

of improvements, as higher gain by cascading of input amplifiers. For
reasonable values of R, 1larger than the T2 emitter-base resistance

(say R =~ 3 ki), the gain of the device is roughly [1, p. |

. - -
K~a2 Yy [= 10 v, at room temperature ] (111-3)

where q = electron charge, k = Boltzmann's constant, T = absolute tempera-
ture. We observe that a differential amplifier is obtained, this being
convenient for summers which both add and subtract. On the circuit
diag..am some of the dc voltages have been indicated for convenience with
the input voltages Ve and v_ assumed held at zero volts dc by exter-

nal circuitry under the application of no signal. The zener diode is

inserted in order to allow proper bhias of T
? V =V +Vv /2
a z b

2°

Sy

—— T ——— .
differential emitter follower
input (gain) ( output)

(a) (b)
Fig. 11I-3. BASIC DIFFERENTIAL OPERATIONAL AMPLIFIER,

One can, of course, use the standard capacitor feedback structure
for integration, 2s shown in Fig, I11-4a, but if a completely integrated

device is desired, which includes integrated capacitors, then it is most
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N v

(a) (b)

Fig. III-4. POSSIBLE INTEGRATORS.

convenient to use the integrator of Fig. III-4b, which in fact gives a

3lightly larger gain constant also. Note that as with most su.;h opera-
tional amplifier circuits we desire infinite gain, K = o, in the basic
amplifier itself, in which case the grounded amplifier configuration gives

v = =—=—y (111-4)

Concerning summation, the diagram of Fig. II1I-5 yields a convenient
circuit for integration which has, for K = o, the input-output relation-

ship (1, p. ]

m, _ m_
5 e 2 B G = z RG v, (111-5a)
(o] ¢t JJ Jd

j=1 J=1

Through this relationship any values of the coefficients can be obtained
through a solution of simultaneous equations since, for the resistance

R+ and RS we have the necessary conductances defined as

J

m, m_
+ + = = + 1 = 1
G = G, , G = 3 = = = —- -
Z 3 Z G, G = G, b (111-5b)
J=0 J:O J J
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v, o— W
!, R
v, 'o— A
- ¥
+ - m
v +
m O——AAA——
* +
nf]i h ‘r)
— —0
_ ~ R Fig. 111-5. SUMMER.
_ R, WV
s O—’\N\:ﬂ—:
“o—AMN-2
V2 b _
‘R
— Ld m-

However, it should be observed that inconvenient values for construction
through the use of integrated circuits can occur and thus a cascade of

components may sometimes be necessary.

D. Scalar Degree Two Realizations

The most practically met situations are those of scalar transfer
functions. In such cases the transfer function can be written as the
product of aeg.'ee one and two factors, having real coefficients if we
assume that the original transfer function is rational with real coeffi-
cients. For sensitivity reasons it is most useful to construct the trans-
fer function through its factors instead of in one complete form. Thus
we exhibit a structure for the transfer function

c + c
T(p) = d + 5 2" L 5 (111-6a)
p + zl:wnp o

where we assume for stability reasens that the undamped natural frequency
wn and the damping ratio { are nonnegative. We "emavk that the quality

factor Q can be defined by

Q =-3 (111-6b)
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and that degree one transfer functions are simply realized (and hence
l2ft as an exercise).
We claim that a realization of the general degree two transfer func-

tion is given by [application of Eq. (1-10c) gives Eq. (III-6a)l

0 1 ] 0
’ E‘= ’ S\:[C c

w -ZanJ 1!}

4

[

(111-6¢)

Assuming nonnegative cr

tion would be as shown in Fig. III-6 where the values of resistance can

27 d, a circuit diagram suitable for integra-

be adjusted for available capacitance ranges. The presence of feedback
loops can readily be seen, as well as an appreciation gained for the
complications attendant on going to the complete simulation of higher
degree transfer functions (without the initial factorization). We observe
that the minimum number of capacitors, two, is used for Fig. III-6.

Fig. IT1-6, POSSIBLE DEGREE TWO SCALAR SIMULATION.
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E. Canonical Equation Simulation - Admittances

In Section II-b we saw that the state-variabie equations could be
set up for admittance "transfer" function (matrices) by extracting
capacitors. Here we can reverse the procedure. Thus consider the resis-

tive (n+c)-port, assumed time-invariant, described by
s (111-7a)

and loaded in its final c-ports by c¢ unit capacitors, as shown in

Fig. 11I-7. We calc late for the input admittance

-1 .
Lin - J11 'llz(p%c + Yo da (111-7b)

If we compare the result with that of the tiansier Ifunction

-1
T(p) =n +glpL, - A) B (1-10¢)
we see thal ithe identification
[p <
(2 <
i = (111-7¢)
le -

is possible, with the dimension of the state chosen as the number of

capacitors, k = c. Consequently, given a8 minimal (or even nonminimal)

° jl:
resistive
‘zm n coupling c f:}c
(n+c)-port
L

Fig. III-7. CAPACITOR LOADED STRJCTURE.
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realizativ~ R = (A,Q,Q,Q], we can construct a circuit, when the trans-
fer function is an admittance matrix, by synthesizing xc of Eq. {(III-7.
and loading in k = ¢ unit capacitors. But ‘xc being a constant matrix
is realized through the vse of (positlve and negative) resistors and
gyrators. Later we wili show how xc can be transformed to become posi-
tive-real, if the original transfer function admittance, -xin' is positive
real but such requires the development of more theory. We can rcmark, how:
ever, that if the state-variable equations have a term ‘E 2 added to the
output equations, this term can be synthesized by a transformer network
(constructed from gyrators if desired) loaded in unit capacitors with the
result connected in parallel with that of Fig. III-7.

To synthesize xc itself, we can proceed by decomposing 1t into it:

symmetric and skew-symmetric parts,

'xc xc sy + xc sk (III-Ha?
where

2y =Y +Y , 2y =y -Y (131-8b)
™c sy ™c me ™c sk =c o
and again, the super tilde ™ denotes transposition. The skew-symmetric
part is immediately constructed from gyrators, one for each nonzero entrv

for example. The symmetric part can be further decomposed as

X oy = E[lr+ + ('7}-:- )]g (I11-8¢;

where + denotes the direct sum of two matrices. The right side of
Eq. (III—8c) can be synthesized by loading a gyrator coupling netwovk i

admittance matrix

| o]
| o]

Y = (ITT 8

PEL-AT-110




——

in r, unit positive resistors and r_ unit negative resistors, as
shown in Fig. I1I-8 [recall that a formula similar to Eq. (III-7b)
appliur:]. The coupling structure itself results as a parallel connection

of the circuits for the symmetric and skew-symmetric parts of Xc'

(]

- + 1

o- =+

Yo sy=" ( |
o- E’ P .Ell }‘ 1.

Y I

g

Fig. 111-8, CONFIGURATION FOR SYMMFT..." PART OF Yc.

As an example of the method, let us concider the degree two lowpass

admittance

(P) = —E———-l—‘——- (111-9a)
p + 2Cp +1

We observe that this admittance is not positive real (as l/yi“ has a
double pole at infinity) in which case active devices must be incorporated.

Combining the realization of Eqs (III-6c) with ~3§ of Eq. (II1-7c)

yields
0 -1 0
X =0 0 -1 (111-9b)
1 1 26

which has the symmetric and skew-symmetric parts

o -1/2 1/2 o ~-1/2 -1/2
Yo sy = -if2 o o], L = 1/2 o -1 (111-9c¢)
1/2 o 2 1/2 1 0
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To diagonalize 1he symmetric part we can add —1/4ﬁ times the last row
to the first a:'d then add -4/ times the first row tv the second. In

terms of elementary matrices this gives

On multiplying out the inverses of the transformation matrices (which

are easily found by changing sign on the off-diagonal terms), we arrive

at
1 0 1/40] [F1/8¢ 0o o0 1 4 o
= 2, O 0o 1 0
T oy 4L 1 0 0 £
0 0 1 0 0 2 1/4f o 1

(111-94)

We observe that the diagonal matrix is not quite in the form used in

Eq. (III-Sc), but this is not crucial since we merely use nonunit resis-
tors with the negative one placed first (the other form can easily be
obtained by using some additional steps). We then wish to load a gyra-

tor 6-port described by

o 0 0 1 o 1/at]
0 0 0 a8 1 0
0 0 0 0 0 1
r o= (111-96)
€ 11 -4& o 0 0 0
o -1 0 0 0 0
L:1/4C 0 1 0 0 o |
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in one negative and two positive resistors to obtain IXC ay’ The result

is shown in Fig, 111-9a.

1.
-~

Port 1 > b

O

z__’}- 141
3
14__ Port 1:: L P

%

¢
-

}

_9
] _oport 2

(s - O— 1
Port 2 = I ,4 %2—!’, Q
&
}l D Port 3
{
Port 3 O_—T_ 1
o {1 " T3xn
(a) (b)
Fig. 111-9. CIRCUITS FOR ,gc - (a) AND gc -~ (b).

The circuit for xc = is similarly obtained and is shown in the
(b) pcrtion of Fig. I1I-9, The two portions of this figure are connected
in parallel with the final two ports loaded in unit capacitors to obtain

the desired inpuit admittance at port 1.

F. Discussion

Using the canonical state-~variable equations, analog configurations
can easily be set up using a block disgram representation of the equa-
tions; the resulting components are realized through summe.s and inte-
grators, the latter being obtained througi: the use of operational amplifier
circuits. Since integrated operational amplifiers have proven extremely
practical and since the only other elements needed are resistors and ca-
pacitors, both of which can be integrated, the method is quite useful
for integrated circuit designs.

It is of interest to observe that exactly as many capacitors are
used as there are state variables, and in fact no fewer can ever be used.
Since, of tl:e components required here, capacitors are the most difficult
elements to make in integrated circuits, the method is about as conve-
nient as could ever be hoped for. As a consequence we have introduced

some basic configurations particularly suited for integration.
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It should be mentioned that in integrated circuits the ratios of
resistors are rather accurately obtained, wh:rcas absolute values are
extremely hurd to fix accurately. If we obusrve the coefficients for the
summer multipliers, Eq. (111-53), we see that indeed these coefficients
depend only upon ratios of resistances. The situation is somewhat dif-
ferent for the integrator where both resistance and capacitance are
involved. In fact, since RC products only quite far away from unity are
available in integrated circuit form, it is important to introduce an
integrating scale constant in the state-variable equations, the A of
Eq. (III-2b).

We observe that although the equations allow time-variable coeffi-
cients and, in fact, the circuit representations hold for such coeffi-
cients, it is practically quite difficult to perform time variations on
the operational amplifier structures.

Although we have not discussed the possibility, it is actually more
convenient to perform time variations by use of the capa.itance extrac-
tion method. But we have discussed 1ow the previous analysis method,
through capacitor extraction, can be carried over to synthesis to create
a resistive coupling structure by specifying the admittance coupling
matrix ‘xc in terms of the reslization R = (A,B,G,R}. In conjunction
with this we have given one method of synthesis of z& in terms of gyra-
tors, which can be integrated [2], and positive and negative resistors,
Since the negative resistors cause some concern for practical integration,
it is of perhaps more practical interest to point out that xc can be
obtained as 2n interconnection of voltage-controlled current sources and
that such sources are relatively easy to 1htegrate [1, p. }.

Of the two methods presentéd, the first probably has the advantage
in scalar situations of allowing for smaller sensitivities. To obtain
these sensitivities of small size it is important to decompose the trans-
fer function into degree one or two portions and cascade the resulting
sections. However it is worth mentioning that a good sensitivity analysis
of the second (capacitor extraction) method has as yet not been made.

Here we really only treated the synthesis of vcltage transfer func-

tions (by the operational amplifier techniques) or of admittance matrices
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(by the capacitor extraction methods). However, by the use of voltage-

to-current or current converters, other specifications can equally well

be realized.
G. References
1. Newcomb, R. W., "Active Integrated Circuit Synthesis,"™ Prentice-

Hall, Englewood Cliffs, N.J., 1968,

2, Chua, H, T., and R. W, Newcomb, "Integrated Direct-Coupled

Gyrator," Electronic Letters, vol. 3, no. 5, May 1967, po. 182-184,
H, Exercises

1. Set up the state-variable configuration using integrated opera-
tional amplifiers for the degree one transfer function. Compare
with results obtainable with simple RC circuits.

‘ 2. Discuss modifications needed in the theories if terms of the
form ‘g 2 are present. Explain why these are avoided, where
: possible, in the operational amplifier techniques.

3. Complete the example of Section E by drawing the final overall
circuit. Compare with alternate methods and discuss advantages
and disadvantages of the method.

4, Synthesize

| —
yin(p) p2 + 2fp+1

5. Discusa circuits fc: obtaining the gyrators and negative resis-
tors needed in Fig. I11I-9,

' 6. Investigate methods of obtaining practical realizations for the
! case of time-variable structures.
|
!
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Ils sont étranges. Il1s semblent plus
pres de la que les autres et ne rien
soupgonner, et cependant leurs yeux ont
une certitude si profonde qu'il faut qu'ils
sachent tout et qu'lls aient eu plus d'un
sci> le temps de se dire leur secret.

M. Maeterlinck
"Les Avertis" du "Trésor des Humbles"

IV. MINIMAL REALIZATION CREATION

A, Sunuarx

By conversion of a high order differential equation to a set of first
degree ones a miniiaal realization is relatively easily obtained in the
scalar case. For matrix transfer functions the algebraic methed of Ho

is presented for obtaining minimal realizations,

B. Scalar Minimal Realizations

Previously we have seen how a given circuit can be analyzed to ob-
tain an appropriate set of canonical equations. Likewise we have seen how
a circuit can be obtained when a realization is on hand, that is when the
canonical equations are on hand, Here we complete the picture for time-
invariant structures by giving an algebraic procedure for finding a min-
imal realization from a given transfer function., We begin with the scalar
case for which the result can be easily given,

We therefore first begin by assuming as given the scalar transfer

function

dp6 + df)p&—1 + ..o +dyp o+ d)
T(p) = B 5-1 (YV-].)
P +8pP +...+ap+a

of degree . If we treat p as the differential operator d/dt this

transfer function defines the differential equation
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o) 5-1 O 5-1
[p * agp LEPPRER RPN A a1]y = [dp + d5 P & Een) T d2p + dlju
(1v-2a)
We can now introduce some changes of variables beginning ‘vith
y = s, + du (1v-2p)

which results in

35-1 o=-2 A=l
[p + agp ...+ az]ps1 +as = [(db-asd)p Foae. (dl-ald)]u

Next letting
Ps, =8, + (ds-asd) (1v-2c)
results in

6-3

[p8-2 +a.p + + 8 ]ps + 8.8 +a,8, =
o) e 3 2 22 11

5-2
[de-l-as-ld) - as(ds-asd)}p e 4 {(dl-ald) - az(db-asd»]\x
Continuing by letting
ps, = 85, + {(d6_1-a5_1d) - as(ds-asd)} (1v-24)

etc., results in the final equation

PSy + agSg +

555 + + a8 + a8, = b.u (1v-2e)

85-1%5-1 * rc0 By ¥ 815 = By

where b5 is a combination of the a1 and d1 coefficients., We have

then obtained the canonical equations which can be summarized as
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& -0 1 0 0 o s 7 “d. - a.d]

1 1 k) o)

3 0 0 0

92 0 1 52

i} 0
83 0 0 0 33
= 4+ u

: 0

35_1 0 0 0 1 88_1
B A S e T Pee1 % Jl% ) L P

y =0t o o o ... o o] + du (1v-3)

We observe that the realization is minimal since & is & ~ b and
T(p) has degree ©&. Also, the same procedure holds for the time-varying
case with these however being additional derivatives of coefficients in
the B matrix.

k)

From Eq. (IV-3) many other (in fact all) minimal realizations can be
obtained by use of nonsingular transformations on the state, that is by

introducing

in
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C. Matrix Minimal Realizations

The matrix case is much more difficult to pursue. We follow the
algebraic procedure of Ho [1] by first introducing a nonminimal realiza-
tion which is reduced to be minimal.

We begin by observing the form of the transfer function matrix in
terms of the realization matrices. Assuming the realization to be min-
imal, that is the state of minimal aimension 5, k = 5, we obtain on

expanding the inverse of p} -A about p = «,

b

-1

2(p) =2+ g (plg-a) g

32‘, Y
"
=D+ c B . (1v-4a)

i
where ’é is the 1th power of .ﬂ- By making a direct expansion of

z(p) itself about p = « yields the coefficients Ai for the series

. A

)
) =4, + 12; T (1v-4b)

Since ;g(p) is rational we can equate term by term in the last two ex-

pressions to obtain that R = [&,E,Q,Q] is a realization if and only if

D=1, = I (1v-4c)
-’-‘1=§ﬁ12 ! Lo 1, 4. (1v-4d)

Our job is to hunt for an A4, B,.C which satisfy, Fq. (IV-4d); we com-
ment that this last eqﬁation holds no matter if the realization is
minimal or not, but that we are actually searching for a minimal one.
Since T(p) 1is rational there is a relationship among the A of
Eq. (IV-4b). To obtain this relationship we can find the least common

denominator polynomial

g(p) = p’ o+ arpr-l * ety (1v-5a)
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o——r

of S(P) which next allows us to write the transfer function as a matrix

polynomial divided by g(p). Thus

r r-1
(o) _‘_"'EHI +p B o+ ...+ PB, +’§1 (1v-58)
pr+arp- + ... tay

As a consequence the product g(p)x(p) is polynomial and on using the
expansion of Eq. (IV-4b) we have

r+l 0 r+l

J-1 k+l) . i-1
E:EJ E:ﬁk/p 'E:nnip
j=1 =-1 i=1

Equating those coefficients, ﬁ EJALJ-Z , of p-E to zero we Iind
J:

B = = a8k reg-1 = (1v-5¢)

As we saw in Eq. (IV-3) the A matrix was the companion matrix
determined solely by g(p). As a consequence we introduce its general-
ization, for which we recall that T(p) 1s an n X m matrix., Thus, the

generalized (rn X rn) companion matrix for g(p) 1s defined by

9, 3 2 =
1 0
2 = ,9' 9' "
-n .
0
W
0 1
) -pn
-a - - -
L 10 2okn 23, tr ar!"'n___ (1v-6a)

where, as before, }vn "is the n * n identity matrix, To accompany this

companion matrix we need the generalized {(rr. - rm) Haonkel matrix.
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ES : Arr’]
A AZ ot A
__-‘-\r-l LS = AZr-Z_j (1v-6b)

From Eq. (IV-Sc) we observe that S‘n acts to shift rows, or columns, of

"§r when the two are multiplied, that is

Ik N
-1 éz s "A'!'
A A .o
Qs =549 = ~2 3 r+l
“*n~-r “r-m
L%r L 41 (1v-6c)

where the superscript tilde denotes matrix transposition. As a conse-

quence premultiplication of ‘§r by .__Q; brings _{\i to the (1,1) positicn

of the result., In order to isolate this position we define the p X7

matrix

(1v-6d)

‘lp.7=['!p ' 'pr7'f-‘]

for which the first p columns are the identity matrix with the remain-

ing columns zero. Then

i -4 \
& = 'ln.rn (Qn-s'r) }m,rm (1v-6e)

A possible realization is

(1v-7)
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for note that Eq. (IV-6e) is just Ai =C j_\ig which is as required by
Eq. (IV-4d). This realization however is not generally minimal, having
k = rn which is generally larger than the minimum size, &, required;
as we will see, Eq. (IV-13), this latter is given by & = rank §r' As

a consequence let
& = rank §_ (1v-8a)

in which case one can readily find nonsingular matrices _l:i and N to

bring -§r to diagonal form

Ms N=1 (1v-8b)

r d,rn }5,1‘111

In terms of the matrices defined to this point we can now exhibit a min-

imal realization. Our result is: a rational n X m transfer function

matrix 2(1)), finite at infinity, has a minimal realization given by

A=_16'”""11'9“'sr‘y"la.!‘m ' '§=36.rny—sr-}m.rm
= T D = r
< ":‘ln.l‘n ‘s!‘y"lﬁ,rm ! I E(w) (1v-9)

To s<ce that Egs. (IV-9) do define a minimal realization we can pro-

ceed as follows. First we observe that

#

~'sr =“l‘-"'lb,rm }G,rnM (1v-10a)
acts as a pseudo-inverse for S since direct calculation gives
# # _ o #
S =8 = -
§,=8.8.5 . 5 ~-8s85 (1v-10b)

Next consider the following sequence of operations which begins from

Eq. (IV-6e).
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A, =1 ls) i Spl s s s
-1 -n,rn wn=-r° -m,rm «n,rn-n-<r-r - r>-m,rm
=1 S 1s#si‘ =1 ss#s .”is#si
~n,rn *r ~m =r =r *m,rm  ~n,rn=r ~r~r m ~r -r ~@m,rm
-~ ~f ~ ~
- -ln,rn Sy -y-l&,rm)(-l-B,rn _QI_Sr 2n i -16,rm)(—16 rn !§r -}m,rm)
- i i
= Uy ¥8, 5, 80 ) BocAB

Here the next to the lsst step is justified by iteration of the resutt

-2 o~ # - -
MS Q =
Jﬁ,rn ~-—r—-m-y-16,rm —lb,rn-l-ﬂ- Qn‘§r -§r—sr -Qm-y-lb,rm
_lﬁ.rn L ‘Sr'ygb.rm*lb,rn!'—gn §r-N-}6,rm

As a consequence a realization has been obtained and it only remains to
show that it is minimal.
For this latter demonstration let .us introduce the ordinary observa-

bility and controllability matrices

r-1

P =c, Q=1[B,AB, ..., A "B] . (1v-11)

3

€ ..., A "¢

i
Then for any realization, since _I}i =CAB, we find from direct multi-

plication that

b,

ads Q (1v-12)

Now suppose that there exists a realization having A of size k X k

with k < & = rank -§r' We have a contradiction since
rank § = min [renk P, rank Q) s k < & = renk S, (1v-13)

where the middle inequality follows from 2 and Q being of sizes
k X rm. We conclude that the realization is the smallest possible with

® being what we have previously called the degree.
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D. lxlmgles

Consider the transfer function

5T
I(p) = (Iv-14a)

1

1p+1$!p+25

One procedure would be to connect a degree one realization between the
input. and first output and a degree two realization between the input and

seco i outpu! . However the final re.ult wouid have a 3-dimensional state,

which would not be minimal since, as we next show, two dimensions suffice.
Hence we proceed to apply the theory of the previous section,

The least common denominator is
2 2
g(p) =p +3p +2=p + a,p + a, (IV-14b)
Thus we have
m=1 , n=2, r=2 (1v-14c)

and for S = we mus! calculate the expansion of I(P) about infinity up

to ,ﬁz. We find by simply dividing the denominators into the numerators
beginning with the highest powers of p
1|t 1 |7t 1 |1
T(p) = ~ + = + - Ty rem
- p 2 3
0 p 1 P L-3
1 1 1
a5_1+;,ﬁo+?5’1+?52+... (1v-14d)

A A, [1 1
1] [—3] (1v-14e)
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and one finds by the use of elementary operations that

MS N=[1
» om] o
0
1
-1

We also have

1 =
&,rn 0

N o

0 0
1 0
0 1
0 0
0 0

-1 ]
1 3
! J-S,rm =

The final matrix necessary for Eqs. (IV-9) is the

ciated with g\p) .

We can then calculate the minimal

A=[1 o
0 1
B=[1 o
0 1
C =11 0
0 1
SEL-67-110
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0

0

oll 1

ofl o

1

-1

o}f 1

ol o

1

-1
ol

ol o

%

1

0 0
1 0
0 1
2 0
0 0
1 0
0 1
2 ¢

-1 1
1 0
1

-3

0 1 0
0 0 1
0 -3 0
-2 0 -3

S
1 -3
111 o] = [1
1{]o 1 0
<4 L -

66

-1

0

L

c C© <

(1v-14-1)

(1v-14-g)

companion matrix asso-

(1v-14h)

(1v-151)

(1v-15¢




One can easily check that I(p) results from this realization
calculation of D + C(p 1, - A)-lg,

(1v-15d)

through the

By physically constructing, as in Chapter III, the canonical state

variable equations

(8, -1 0][s, ]

. = 3 + u
_82 | 1 2‘ _82_ 0

v, ) 1 O s,
by2 5 0 1_ b32_

(1v-15¢€)

(1v-15£)

one can obtain a device with the given transfer function and which uses

the minimum number of dynamical elements (capacitors, say, for integrated

circuits),

Next let us consider the minimal realization of the general degree

two scalar

c.p+c
T(p)=d+ 2 2

2 2

P + 2§u%p + uh

which was previously considered (Fig. I11-6). We have
m=n=1 |, r=%5=2

and Egs. (IV-7) already give 2 minimal realization, as do Eqs
well as Eqs. (III-6c). For Eqs. (IV-7) we have

& =
) -Zgah

which follows on identification of terms from
2 2 2
glp) = P+ 2C¢hp +W =p +ap +oa

67

(111-6a)

(1v-16a)

. (1v-3) as

(1v-16b)

(1v-16¢)
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Likewi se

%4
“o Cp T B
s =
~ ‘ o “
-2l ¢ 200 ¢ - Ay e ,
) lnt'z éhhtl el ! nl2 (IV-lhd)

which follows from the cxpansion of T(p) about infinity

2 2
: eI 200, ¢ - (1+4L°%) 0
T( ) . ig_ (l B n(2 , ntl (1"'_) nCZ .
p) = d+ b ! ) 3 .
p p
(1v-16e¢)
Equations (IV-7) give
0 v
A= = . 3} = 8§ 1 =
& T 3 w T <=r en,rmn
q - 4 - 2l
= 26 n “ 5 n'2
's:- 1nln tl i DaE
' (1v-161)

We observe that LLe ealculations for Eq. (IV-9) are somelimes unneces-
sarily burdensome, as for example, in this case M and N are not even
needed. Also from the simplicity of Eq. (III-6e) which has € = lcl, czj
we sce that poerhaps there is a wmore convenient mr thod (as yvet undiscovcrcd)

for finding minimal realizations,

E. Discussion

Using a basic equation, (IV-GC), for a decomposition of the matrices
-éi obtained by expanding the transfer funetion I(p) about infinity a
generally nonminimal realization, Eq. (IV-7), is casily found from which
simple but ingenious manipulations lcad to a minimal realization, Eq.
(1v-9Y, The matrix case is seon to be somewhat a generalization of the
seualar situation wheve o mintmal realizatron is relatively cusily obltained
by converting o higher orvder diftferential equation to a set of first order

ones, Becausce the method proceeds in an algebraic manner directly f{rom
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the transfer function it is quite suitable for computer synthesis of
systems, although as yet we are unaware of such a program being carried
out, In fact it appears that it is worthwhile looking for improved meth-
ods, since, as the last example has shown, there are sometimes situations
when easier calculations than those called for by the general thecry can
be used.

There are of course other methods of obtaining minimal realizations.
One such is to augment T such that m = n, make appropriate frequency
shifts and constant additions such that it is positive or bounded-real,
and then give a minimal reactive synthesis of the result (2}. Other
methods exist which work in the time domain from impulse response ma-
trices [3][4]. But for the time-invariant case the procedure of Ho,
given here, presents the most promising because of its possibilities for
computer synthesis of systems. Nevertheless we will later, Chapter IX,
briefly look at the time-domain for time-variable synthesis procedures.

At this point we have on hand the basic portions of the important
theories. We have seen how to set up the canonical equations from a
circuit, and now from a transfer function, and we have shown how to ob-
tain a circuit from the canonical equations and thus from a transfer
function. As a consequence our remaining topics are all associated with
improvements and extensions of the basic results. We first look into meth-
ods of finding equivalents, which require morz knowledge of the concepts

of observability and controllability.
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Prescribed Weighting Patterns,” SIAM Journal, Vol. 14, No. 3,
May 1966, pp. 527-549,

4, Desoer, C. A., and P. P. Varaiya, "The Minimal Realization of
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Vol. 15, No. 3, May 1967, pp. 754-764,
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G. Exerci

(=3

*6,

SEL-67-.10

Find B in compact form for Eq. (1v-3).

For the general dcgree two scalar transfer function, exhibit
completely Eq. (IV-3) and compare with the several other
results available.

Insert the modifications required for Eg. (IV-3) to hold for
time-variable circuits.

Find a realization for

v 1 1
I(p, - [p +1 ' ip+15‘p+25]

and compare with the results of Eq. (IV-15).

Find a realization for

p-1
p+1

(p) =P 7
2
P + a

for an arbitrary. What is the nature of the result when
a=17?

Investigate the realization of I(p) by factorization into
degree one or two parts and the realization in minimal form of
each part.

For Eq. (IV-15d) find M and N and determine a minimal
realization using the general theory associated with this M
and ,§- Compare with the realization of Egq. (IV-le).

Find a realization for T(p) = 1/(p+l) and one for T(p) =
1/(p +1)(p+2) and "connect" the two to obtain a realization
for the text example of Eq. (IV-14a). Compare the result with
that of the text and discuss with specific reference to

minimality.
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I1 passe, entre duex etres que se rencontrent
pour la premiére fois, d'étranges secrets
de vie et de mort; et bien d'autres secrets
qui n'ont pas encore de nom, mais qui
s'emparent immédiatement de notre
attitude, de nos regards et de notre
visage.
M. Maeterlinck
"Les Avertis" du "Tresor des Humbles"

CHAPTER V

EQUIVALENCE

A, Summary

Through the use of various transformations on the canonical state-
variable equations one can generally find all canonical equation
representations for a given transfer function, When the realizations
are minimal this occurs through nonsingular transformations on the
state, When it is a question of nonminimal equivalents, decompositions
involving the "encirclement" of controllable and observable portions

result,

B. Minimal Equivalents

Given a transfer function matrix z(p) which is rational and huving
E(w) well defined we have seen in the last chapter how to obtain a

canonical set of state variable equations

8 = ég + Eg (I-11a)
y = Cs + Du (I-11b)
such that the state has minimal dimension, ©, and with
-1
(P = D +C(ple-A) °B (1-11d)
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One problem of cquivalence, and that which we treat here, is that of

finding other realizations R = ('I}, B, G, 2], perhaps nonminimal, for

-
which the above equutions arce Lruc, Here in fact we will find all such
realizations. Howcever we iirst show how to find all minimal realizations.
Let us cousider as on hand two minimal realizations R = [ﬁ, B, G D}
and R = [5, ‘l}, S, DI ol a given transfer function nym matrix  T(p).

We define the observability, P and P, matrices and controllability,
-~ L)

(¢ and 6. matrices as before, Fq, (IV-11); then we find
A )

¢
>

Sr = .?3 = (v-1a)

H
3

We also recall that ‘1: and Q have ¢ rows and arc of rank b, in
L)

which case QE;, Pf-‘, and the same expressions in terms of ‘g and §,
~ o -

are OUxov nonsingular mairices, If we premultiply -§r by 2 we obtain

Q = [P = 18 (V-1b)

A

which serves to define the transformation matrix I = (Pf)-lpﬁ which

is nonsingular by the fact that

>
>

S = PT
w I -

3>
i

3

3

has rank % and ;I_‘ is oxo, Postmultiplying both sides of this latter
by the transposc of gives, on cancellation of the nonsingular matrix

3

10>

>,

= PT (V-1c¢)

Since the first m columns in g are Q we conclude from Eq, (V-1b) that
B = T§. Likewisce since the first n rows of I’ are S we- have from
- - Laaad

Eq. (V-1c) that ,§\= C'I'“ The canonical state variable equations arce then
-

. N /.\ AN

S=Nda &= e By (v-14)
fa) —] AN

y = CT "s + Du y = Cs + Du (v-1c¢)

e - e = - " TN -
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v

It is then reasonable that the identification

(V-11£)

w>

= T

S
[ ~

3

should be made, in which case T-{érg = ﬂg. As any initial state is

A -
allowed we can cancel the 3 to conclude that any two minimal resliza-
tions are related through a nonsingular transformation by the relation-

ships

>

= 1 lar, 8 = T B, ¢ = cr (v-2a)
[N w WA

In nther words, any two minimal realizations are given one in terms of

the other through Eqs, (V-2a) where in fact

-1

$9>.

I = (@D (V-2b)

By letting 3“ run through all nonsingu'lar Oxd matrices we obtain all
minimal realizations from a given one,
We comment that previously we checked, at Eq, (I-1lle), that this

transformation, Eq. (V-2a), does leave the transfer function invariant,

As an example let us reconsider the Brune section of Chapter I for

which
0 -gz/ c, 138 + 1 ‘g (I-9g)
[ B¢ 0 ] [ B1782 o]

[-1/c1 0 8+ [1 0 ] u (1-9h)
0 (gl-gz)/ch o 1

If it is desired to have a skew-symmetric A matrix we can set

fw.
1]

2%
"

T={t t and examine the set of (nonlinear in ti ) entries in

- 11 12

tar  ta

J
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T AT such that the resull is skew-symmetric, We find a suitable T
W A on

N VR cv-a
Ve, Ve
Thus, we tind
b X I
= 2 A -
A = T AT = ~ o -1}, B = T ]~ = % 1 2 _%1
~~ mm o L
\/( (‘2 \"/(-.I(l \/(l
I 0
o
Joe, Ve
- _J
C = O = —1/\/61 ]/\/cl (V-3b)
(g,-8)4/e, (8-8,)4]c,

which we know yiclds an cquivalent structurc to the original Brune

section,

C. Controllability and Obscrvability

In order to procced to nonminimal cequivalents it is necessary lo
introduce the concepts of controllability and ohservability which we
have alrecady seen enter into the theory of cquivalence through the
matrices P and Q.

L) aa

To he somewhat precise we say that an initial state El(to) is
controllable if there exists a finite time t]
to < t < tl’ such that s](l) =0 for >t

and an input E(t)’
1 that is, such that
the state can be brought to zero (which is also the origin of the state
spacc) ., By beginning on a trajectory of a controllable state starting
at to we see that later values of time yield controllable initial
states and hence we can work with controllable states i(l) in which

casc we can decomposce the state space into the scet of controllable states
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and those which arc not, the uncontrollable states (this requires also
letting t1 tend to infinity).

On the other hand an initial state *s-l(to) is observable if there
exists a finite time t1 and a Zero input output z(t), t0 S t S tl,
such that a knowledge of z(t) determines gl(to). Again we extend
the concept to all times and hence can decompose the set of states into
those which are observable and nonobservable,

Unfortunately the background concepts neecded to derive useful
results from these definitions are rather complicated so we will state

ome of the results omitting to some extent noncrucial proofs, As back-
ground we recall that a vector x is in the nullspace of a matrix M
if ‘L'{.)‘g = 2 Considering the time-invariant case, a state f.(to) is

controllable if it is not in the null-space of [1, p, 409]

tl )
o = t-t
Wit ,t) = feﬁ(to pged(tto) ¢ (V-4a)
m 0’1 -~
t
o

Likewise a state is observable if it is not in the null-space of
t1 i
Mt ) = feﬁ(t{t):‘.’g‘-‘&(t'%)dt (V-4b)
t
o

One can see the validity of this latter, for example, by noting that

the zero input-output is

y(t) = Eeﬁ(t-to)i(to)

I1f we multiply by exp[é(to-t)]é and integrate we have
tl )
A(t.-t)
-0 =
fe .CX(”‘“ - g(to’tl)g(to)
t
o

from which *s'\(to) can be determined if it is not in the null-space of
M\(to’tl)'
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From the similarity in form and associated statements of W and M
" [

we scee that the controllability and obscervability propertics of

5 = As ¢ Bu (I-11a)
A\ = Cs 1 Du (I—]]b)
- el Yt

are respectively the obsgervability and controllability propertics oi the

transposcd system

X = Ax + Cu (V-51)
ey [V me i

- Bx 4 T m
g = g Q=8

This result is customarily relerred to as the principle of systoem

duality and essentiallvy means that = pecd to consider ondy one of e

two concepts (controllability or obscrvability) as independent,

Actually thc matrices '.}‘I\ and W oare rather difficult to work with
and have been only intvoduced to obtain the principle of duality which
links the concepts, Equivalent results arce cexpressced in terms of the
observabiizty and controllability matvices

k-1

S k-
P = l-C, AC, K] ~\ l
~ " -~ w

ci, Q = [B, AB, ..., A" B] (V-6)
where k 1is the orvdey of _} Thus the setr of controllable (initial)
states is the space sparned by the colums of 8 while the sct of non-
obscrvable states is poervpendicular to the space spanned by the columms
of 2 (2, pp. 500, 5047, These eriterion arve coasicr to apply, as com-
parcd to thosc for l\'l and W, We note that if }: and  Q  have rank
k then all states are controlliable and obscevable; in this situation
it is actually truc that the realization is minimal, Kk = o (as E‘_

of Eq. (IV=12) has rank k),

. Nonminimal Equivalents

AN this point we can turn (o the general result,  From two scetions

previous we know how to find all minimal cquivalentls so we are interested
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in the cases where the dimension k of the state is larger than the
minimum size ¢, Such can occur when therc are either uncontrollable or
nonobservable states present, or both, Consecquently it is convenient to

partition the state vector s into vr ~ious canonical components, as

[ écn , §.CO §Un SJ.IO ] (V-6)

&5 ° ol 2 b Bl

c

where the superscript indices have the following meaning:

c: controllable

. o: observable

u: uncontrollable

n: nonobservable
Thus, for example, Euo is thc set of uncontrollable but observable
states,

To accompany the partition of the states we can partition a given

realization to obtain the canonical equations in the form

]
=
Q
=

w | T 212 &3 ZarR AR LR
A7 Bap Aoz Boyf]2 3,
5" A A A B B
231 fA32 M3z U342 ]
10 A A A A s'° B
g 41 =42 23 Ragd L2 =4
y = [c,c c ¢clrs"q+Du (V-7b)
- ~] w2 *3 ~4 oy -
co
S
un
S
[y
uo
g

In order to have the state s partitioned in thec form given by
Eq. (V-6) generally requires that a transformation be performed upon
the state, But once such a partition has been performed we sec from
the physical meaning of controllability and observability that gs, 24,
91’ 93 are zero, Also since there should be no way for the input to
couple to thc uncontrollable states, 331, 532, A41
zero, Since also the nonobservablc states should not be seen at the out-

and A42 arec also

put even after coupling through observablc statcs we find A and

2]’ aﬁzs
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A, arve also zero, Thus we can obltaln the decomposition

‘.-/1.’
<N i cn
I I [ VR PRRRU R VY B N B T W
» CO v
0 0 !
Tll" 9 i}dz = 224 §Ull 92
l.s: AR WAVl § Pl I
uo uo
2 4 9 g 4] LE g
cn
y o= 100 e [0 (v-t)
= Co
5
un
&
.o
2

Faunations (V=-8) oive o caponload dorm for pealizations of o ogreen mapsiery
function E(p) when the state has nonminimal size,  They can be obtnaved
from any other realizatior by o pvimslermation _!( applied to the state
s d,p, 172

-

s = T & (V-8¢)
-~ w (e
To actually lind T thare are fixed procedurv<. hut we remark that the
-

dimensions of the lour subcomponents of s( can be determined from P
L& -

and Q in which casc one can solve Tor Tc by hunting for a canonical

— we
realization R - {A , B . C , D}, that is, onc of ‘he [orm ol Kgs.
(@ S SRE=Y CREESY e

(V-8a,b), in terms of a given one R = {A, B, C, DI by applying thc

- - - -

result

T A = AT , T B = B, C - Cr (V--8d)
" CmC e - - - Cee
which holds since Lqg., (V-8¢) is valid,
The important point lto observe is that only the matrices of a

minimal realization l{m = |\ .l)I oenter into ;l_‘(p). that is

sincc

T(p) = D +§(|)]l.—:}\_l!} NS
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the other nonzero entries of Rc are com; letely arbitrary., Thus, given
any minimal realization we can find all other realizations, nonminimal

or not, by "encircling” the minimal one arbitrarilv but as required by
Eqs, (V~8a,b) and then transforming by arbitrary (nonsingular) zc as
required by Eq, (V-8d). This being the case we can derive any realization
f from any other R ac shown in Fig, V-1 [4].

R —3»— R, —>— R > ﬁm > ﬁc —>— R
busis minimal basis basis
rhange extraction change encirclement change
-c ‘E -C

Equivalence for Two Realizations R and f

Figure V-1

Of most practical interest to us is the derivation of nonminimal
realizations from minimal ones, Since we can readily find a @minimal
realization the procedure of encirclement is convenient for taking a
given transfer function z(p) and finding all realizations, Note that
Eq. (V-9) shows that minimal realizations have all state components
controllable and observable,

As an example, the circuit of Fig, V-2 has

S = =8S+u (V-10a)

y = 8 (V-10b)

If for some reason one were to want a configuration using two capacitors,
perhaps to be used jointly for some other purpose, but with only observable

portions one could proceed from

é°°] = [-1 d][s®]+[1]u (V-10c)
i o pjls"®) |o
y = [ ] [ °°] (V-10d)
SUO
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One can caslily check that these two gsets of canonical cquations viold
the same transfer function, To obtain the most weneral vealtzat o o

the type required one next can apply the transtormation ot kg, (V-0

e —.

Example Circuit
Figure V-2

In Eqs, (V-10) we comment that «, 4, y are arbitrary constants,

uo

However, 1 ¢y = 0 then s is not observable so that there is some

tfurther constrainl.placed on the arbitrariness of the matrix SJ; this
constraint we belleve remains to be determined but should he cxpressable
in terms of the obscrvability matrix £.

From Section III-d) we know that for u = v and y =1 the
equations of Eq, (V-10) can be physically realized by loading a circuit

rcalization of the coupling admittance matrix

Y =[O0 -1 -y (V-10e)
- C

1 1

0o o0 -B

in two unit capacitors. To obtain the output as a voltage one can then

insert a resistor and its negative in scries with the source to convert

y=1 to y= vz, as shown in Fig, V-3, Such gives an alternate but
not too practical realization scheme,

i

—>

+
Vy 2l -ch > Ec
-1
- +
v

Augmentation to Convert to Voltage Output

Figure V-3
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E. Discussion

Given one set of canonical state variable equations we have shown
in this chapter how to find all others possessing the same transfer
function, Since we have previously seen how to find one realizacion, in
fact minimal, from a transfer function, we are now in a position to
find all state variable realizations from a given transfer function.

In some sense then we have found all equivalents,

However in another sense we have not completed the picture since
we have not shown how to find all physical circuits yielding a given set
of canonical equations, To be sure there are several since, for example,
we can give an analog simulaticn or we can synthesize a resistive coupl-
ing network to load in capacitors and indeed these two methods yield
different structures, However, one can apply the standard theory of
Howitt [5] to generally find all physical resistive coupling circuits,
the ones containing operational amplifiers usually being included in
the result,

The theory has been given for time-invariant systems. The primary
recson for excluding time-variable ones at this point is that one can
not generally expect the decomposition of the state into the components

.CO Jin .uo
S ]

S

g ’ g to hold for all time unless there is some
-~ b L)

§ - [éfn
restriction placed upon the system, Of course time-invariance is a
sufficient restriction in which case a constant transformation cxists to
bring the realization into canonical form, Nevertheless much can be

said about the time-variable case where the use of proper transformations,
which may be time-variable even in the time-invariant case, yilelds a
different canonical form [6]. Perhaps the flow pattern of Fig. V-4 is of
interest in depicting the structure of the actual decomposition.

The somewhat complete nature of the equ{valence results, which have
not been obtained by other means, should give sufficient justification
for the existence and study of state variable theory. Neverthcless the
concepts of controllability and observability can be expressed in terms
of cancellations in [p%k-é]-lg‘ and g[plk-ﬂ]-l, respectively [1,
pp. 389, 408], Likewise, 1f internal variables are considered in an
gx = @l description the concepts can be expressed in terms of the $L

and 8 matrices [7],
i
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f33

Flow Pattern for Canonical Realization

Figure V-4

In summary, using the dual concepts of controllability and
observability we have been able to obtain a feeling for the internal
structure of time-invariant systems through the form of canonical
realizations, Using the results we have also heen able to obtain all
canonical state variable equations, thus allowing a designer maximum

freedom of choice to obtain a desired circuit configuration,
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Exercises

Complete two syntkeses of the canonical equations of Eq, (V-10),
Compare the results and discuss relationships between them,

Find all canonical equations using two state parameters for
equivalents to the circuit of Fig. V-2, What chang?s if an arbitrary
number of capacitors are allowed?

Suppose that it 1s possible to find a time-variable transformation
zc(t) to bring the state to the canonical form of Eq. (V-6),
Discuss the changes in Eqs, (V-8) and Fig, V-1,

Discuss why the basis change 2& for Fig, V-1 could actually be
omitted from the figure.

Show how Ic can be created, at least to a great extent, directly
from P and Q [4, p. 374].

Find all equivalents for the integrator of Fig., III-4a) and discuss

factors influencing the choice of one over another,
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Rein u'est visible et cependant nous
voyon- tout, ils ont peur de nous, parce
que nous les avertissons sans cesse et
malgré nous; et a peine les avons-nous
abordés qu'ils sentent que nous
réagissons contre leur avenir,

M. Maeterlinck
"Les Avertis" du "Tresor des Humbles'

CHAPTER VI

SENSITIVITY AND TRANSITION MATRICES

A, Summary

Using the canonical equations transfer function sensitivity can be
conveniently expressed, this being done here for scalar transfer func-
tions. Time domain calculations can also be made in which case conve-

nient methods of computation for fundamental matrices are also presented,

B, Scalar Transfer Function Sensitivity

In torms of precent changes it is of interest¢ io know how much a
transfer function changes with a given change in some parameter, Thus,
for transistor circuits it is of interest often to know th= effects of
replacing one transistor by another one having the same cha.-rcteristics
except for a different current gain, £, Or alternatively with integrated
circuits one would desire to know how the overall performance is affected
by a change in temperature, To study such, the sensitivity of a (scalar)

transfer function T(p) to a parameter x has been defined as [1]

T(p) x  OT(p)
Sx = TP) T (Vi-1)

Note that in this definition the sensitivity is a complex valued fun~tion
of a complex variable p., In most cases of interest one really desires
1-» know the behavior of the magnitude of the transfer function for

sinusoidal signals, that is the actually desired quantity is SlT(j“D'.
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However this latter is analytically difficult to work witli and one does
have the relationships

T _ SIT®] , 23 T(®)
Sx = Sx »—-T— (VI-ZB.)

and

T(p) T(p)
TP 5 |slT@]

(VI-2b)
both of which are relatively easy to check,

The sensitivity can be evaluated in terms of a statce space realiz-

tion through wifferentiation of

T(» = D+ COL-M B (VI-3a)

If for any matrix G we realize that

F
-1
% - g (V=sw
then we obtain
g% - 3“ T(pl -0 4+ ‘c_(p_l_k-,l_’\.)-1 %é(l’l -7

(VI-4)
419
+ oL - 2

We observe that, except for the derivations, the only operations inveolved
are those already used in forming the transfer function from the realiza-
tion, Consequently, this method of determining the sensitivity is quite
applicable to computer analysis of circuits where we have previously

seen that there are convenient methods of obtaining the realization

R = [é, B, g, D} from the circuit diagram, We observe, for example,
that if the realization is set up in the special form of Eq., (IV-3)

where C =[1, 0, ..., 0], then &C/0x = 0 while MA/0x also takes a

simple form (having only nonzero entries in the last row),
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A= un ciample lot us consider the sensitivity to the damping factor

r  of

1
T(p) = (Vi-5a)
& + 20 2
p apP o+
From Egq, (IV-15f) we have
0 1 0
é = 2 ‘ ’ 2 = ’ E‘ = [1, o], D = 0 (VI-5b)
—th -2);” i
Then we have
p+20y 1 ~ 0 0
-1 n &
Gl = e R (VI-5¢)
~Ug, p 2 0 -2
in which case Eq, (VI-4) gives
T 4 i -1
= - -A = =2y -5
sp = 2oL, B, Lo PT()  (VI-50)
If the sensitivi ; is desired at p = ju, we find ISE(J“h)I =
3 | 1 >
1> IS!T(J“n)!! in which case a 1Y change in [ causes no more than
a 19 change in 'T(j“h)!' Note also that the sensitivity is zero at

both zero and infinity frequencices, Of course we could have obtained
the same results by differentiating T(p) with respect tc { directly,
But if T(p) 1is available in terms »f the canbnical equations and
calculated in terms of a digital computer, this direct method of calcu-
lating the sensitivity generally calls for added routines over that us-

ing Eq, (VI-4).

C. Polce Position Sensitivitices

A useful set of design parameters is the set of pole position

sensitivities defined through

ﬁpk
s = —— (VI—G)
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where pk is a pole of the tiansfer function T(p), 1In generzal the
poles of T(p) arc cigenvaluces of é' or, what is the same, zceros of

the determinant  (p)  of plk—\. If we assume that p is a simple

k
. s p

cigenvalue of A ihen we can evaluate the pole sensitivity s kK for
- 3

p with respect to x  as ftollows, We have, which serves to define

k
the polynomial K(p),

Ap) - (p—nk)K(p), K(pk) £ 0 (Vi-7a)

on differentiation

Ap) . “K(p) _ ;;5 B
= (p pk)—ﬁ;—— ~= K(p) (VI-7b)

Solving for Fpk/lx on letting p = pk gives, on noting that K(pk)
= A(p)/p evaluated at p = Py

P p S
k k A(p)/ x
b = —— = - _—'—_— v'[_7c)
°x 5 (0)/ P J
p = Pk
where
A(p) = det(plk—é) (VI-7d)

As a conscquence the pole position sensitivity is relatively casily
evaluated in terms of the é matrix and with the usce of a computer | 2],
To illustirate the situation let us again consider the transfer

function of Eq, (VI-52a), we have
2 2

4 -4 = F 4 —8
d(f(p}'2 2) o} +4¢np + " (VI-8a)

[}

\(p)

and thus

N(p)/. * 2ﬁnD, Ap)Y/ P o= 2p 4 Zﬁsn (VI-&D)

There are two poles of  T(p), 1lct us consider
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P, = -an[c +VtT-1] (VI-8c)

Then Eq. (VI-7c) gives
P e
S = {4 e ——————
£ n )
V-1

(VI-8d)

D, Time-Domain Variations

In many situations the quantity of most importance is the actuval
output change as a function of time due to a parameter change, In such

situations the canonical state variable equations

s = As + Bu (VI-9a)
wy - ™9
y

= Ci + Du (VI-9Db)

can advantageously be used,

Again let us consider a parameter x, as well as constant (in
time) realization matrices é, E, C, D, the last one being a scalar by
virtue of our treatment of single input single output systems, Then we

find on differentiation with respect to x

d s o8 A &

6B = AcD s+ ) (VI-10a)
D dg. > )
%% = 265;) + %§§ + %;u (VI-10b)

To determine ody/dx we can first solve Eq, (VI-9a) for S and then

Eq. (VI-1l0a) for ag/hx. The important thing to observe is that the
same matrix é occurs in the two situations, only the forcing functions
differ being Bu in the first case and (Nﬂ/-x)i + (Tg/hx)u in the
second,

The problem in this case is one of solving the differential equation

1

= ég + E‘ with f known, Such solutions are obtained in a straight-
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forward manner, and are in fact conveniently obtained on a digital
computer, as discussed in the next section, Consequuntly, the variations
in the output, =y/3x, as a function of time are conveniently obtainud,
0f course they can also be normalized, as for the transfer function, to

give percent changes If so desired,

E. Transition Matrix Evaluation

Theoretically it is a relatively simple matter to solve the
differential equation

[ J5 10

= ei + £ (vi-11a)
where £ is a known forcing function independent of X and 3 is a
square kxk matrix, also independent of X but perhaps not of time,
To solve Eq., (VI-1la), which is the type of equation appearing in Eqs,
(VI-9a, 10a), we first solve the equation

Z = Az, E(to) = 1. (VI-11b)
which is the original onec with the k-vector X replaced by the kvk
matrix Z, without the forcing function and with the identity matrix for

initial conditions. The solution to the latter equation can bc dennted

by 2(t’t0) and is called the transition matrix for the system., In the
case where é is constant in time this transition matrix can he explic-
itly evaluated as

A1)

Q(t,to) s constant A (Vi-12a)

where the exponential of a matrix is defined precisely by

2 i
2
eét = 1.+ At + A gT Fhadlt Ai ET 2 (VI-12b)

In fact one can directly check that the exponential transition matrix of

Fq. (VI-12a) does solve the unforced differential cquation of (VI-11h),
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As an example, if as in Eq., (V-3b) we have

i\' = ajo -1 (VI-13a)
1 0

then

in which case Eq. (VI-12b) gives

-
2 44 3.3 5.5
At _l1-a t2/2!+a t/4l+,.. -at+a t /3l-a t /51+...

3 5 4 4
| at-a®t3/314a%t%/504...  1-a%tPr2i4a’tY/are .,
(VI-13c)
=[cos jat -j sin jat

| J sin jat cos jat

In the case of the zero input situation with k-vector 2z we simpiy

multiply Z(t ) by z(t ) to get
w0 -0
z(t)y = g(t,to)gjto) (vi-14)

which yields the zero input response, If £ ~ 2, then by treating z
as the output we can apply the fundamental decomposition of Eq, (I-4).
In the time-~invariant case we then wish to convolute the impulse response
L(t,n)l(t) with i(t), where 1(t) 1is the unit-step function, Thus
the general solution of interest to Eq, (V-1lla) is

t
zt) + [ Vgmar, >t (vi-15)

t

o
One can check that this latter is a solution by direct substitution in

Eﬁt) e&(t-to)

the original differential equation.
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Several points of observation are worth observing, We see that in
the time-invariant case the transition matrix is found by summing an
infinite series., Since the series is always uniformly convergent one
can use the series summation as a method for finding the transition
matrix on a digital computer, Such a method involves only summation
and matrix multiplication and the error after a finite number of terms
are considered is relatively easily determined [3]., Alternate methods
result from noting that exp ét is the inverse Laplace transform of
(Rzkié)—l as Eq, (VI-11b) shows. Consequently, all entries in exp At
are exponentianls or time multiplied exponentials; these can be determined
from a partial fraction expansion of (g}k—é)—l where in fact iterative
methods can be used to replace evaluation of “his inverse by simple
matrix multiplications [4] [5]. If also I has a rational Laplace
transform the final E(t) for Eq, (VI-15) can bhe relatively simply
found by inversion of Laplace transforms, Alternatively the needed
convolution can be carried out directly, though less conveniently, on
the computer,

F. Discussion
et tod sl A

In terms of the realization matrices several types of sensitivity
have been discussed and evaluated, 211 for scalar transfer functions of
time-invariant networks, Both transfer function and pole position
sensitivity are relatively easily evaluated while time domain variations
require a solution of the canonical equations to find the transition
matrix exp At.

Actually to determine the variations in the output y(t) due to x
parameter changes, oy/cx, requires two solutions of the equations
z =Az +f, first with f = Bu, with g(to) =S f(to)’ and then with

,
£ (aé/ax)ﬁ + (ag/ax)u subject to Bg(to)/ax =.E(to)’ this latter

L)
often being taken as zero, Typical results in the somewhat unrealistic

are plotted in [2, p. 341],

situations where x = all
Because changes in responses due to circuit element variations can
be disturbing it is often desirable to try to find circuitry which

minimizes such variations, One can sce from the formula T(p) = D +
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Efg}k—f)_lg that if the entire transfer function is obtained by a single
realizarion then the fecdback supplied by the configuration will generally
mean that cach circuit elcment can possibly strongly interact with all
other components resulting in relatively high sensitivity, On the other
hand if the transfer function Is broken into degree one or two factors

th,
as T(p) = [ d 4 ____1];{[’D
1 .

+ C.(pl,—A,)-]B_l then those circuilt elements
i p+a1 j ] —2-*_]

-1

J
occurring in a given portion only relatively strongly interact with fhosv
components associated with the aporopriate degree one or twe realization,
Consequently there is practical value in desivns based upon the factor-
ization of transfer functions into small degree sub-portions,

Finally we mention that, as with most uvihor stace-variable techniques,
the thecory of sensitivity is made practical {or the use of digital com-

puters through the techniques discussed,
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H. Exercises

1, Exhibit a formula for . y/>x in terms of the realization matrices
and the initial state and input,
2, Show [ 4] that
k-1
(p..lk'.ﬁ)—l = NI

7= d(n\igi

k-i-1
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where
k k-1
dP) = p +dp " +...+d P +d
and
1 B, = Ip B, = BA+dly ...

Be-n = B oA+l 9 = B A+ dqL,

3. Find the sensitivity of the Brune section, Fig. I-5, to varlations
in the two gyrators, From this determine which gyrator should be

most stably constructed,
4, Discuss the actual programming involved in setting up Eq. (VI-15).
Give a flow chart for a program to determine Jy/dx on a digital

computer,
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11 se peut qu'il n'y 1it aucune arriére -
pensée entre deux hommes. mais il y
a des choses plus impérieuses et
plus profondes que la pensée, J'ai
été plusieurs fois témoin de ces
choses, et un jour je les al wvues de
si prés que je ne savais plus s'il
s’'agissait d'un autre ou de moi-meme ...

M, Maeterlinck
"Les Avertis" du "Tresor des Humbles"

CHAPTER VII

POSITIVE-REAL ADMITTANCE SYNTHESIS

A, Summary

The results of the Positive-Real Lemma, whose proof is merely outlined,
are applied to obtain a transformation which ylelds a positive-real coupl-
ing admittance to load in capacitors such that a passive circult synthesises

a positive-real admittance Y(p).

B. Introductory Remarks

Previously, Section III D); we saw that 1f an admittance matrix
X(p) has a state-variable realization R = [é, B, E,'Q] then a physical
structure yielding z(p) as the input n-port admittance results from
loading a resistive coupling (n+k)-port structure described by the

admittance

X, = [_1_) -g] (111-72)

B -A

in k unit capacitors, Here z(p) is an nxn matrix while k 1is
the size of the state; convenlently k 1s taken as the minimal value
&, this being the degree of Y(p). The structure is as in Fig, VII-1

which is Fig, I1I1-7 repeated for convenience,
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_— |
resistive |
coupling 5

!(p) > n (n+d)-port <

A

-

Realization Structure

5 = 5[¥(p)] for Minimal

Figure VII-1

However, even when x(p) can be obtained through the use of only passive
circuit elements, this method may require other than passive elements
since zc may n.t be obtainable without the use of active eiements,
Consequently we recall that all minimal equivalents can be cbtained by
transformations performed urcon Zﬁ; this all minimai capacitor structures

result by allowing 2 tc vary in

I, = B -C1 (VII-1)

[T-léi -z’lﬂj
Our interest here is to search for a proper choice of the transformation
Z such that the new coupling admittance matrix ‘gc cen be realized by
passive resistors (and gyrators, recall Fig, III-8),

We recall that the condition for a given rational nxn matrix 'X(p)
to be the admittance matrix of a passive n-port constructed of cnly
passive circuit elements is that X(p) is positive-real [1, r., 240].

By definition a matrix Y(p) 1is positive-real if
a) x(p) is holomorphic in Re p> C
B) Y(* =Y'(® in Re p> 0
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¢) The Hermitian part xn(p), zzn(p) =_¥_(p) +2*(p), is
nonnegative definite in Re p > 0,
where the superscript asterisk denotes complex conjugation, 1If _¥(p)
is positive-real and rational we will call it PR for convenience.

Since it is known that any rational positive-real matrix has a
passive synthesgsis in the form of Fig, VII-1, it is then a matter of
searching for a suitable transformation I to make gc positive-real
when X(p) is, The purpose of the next sections is to obtain the desired
Ty

C. The PR Lemma

First we recall that any PR matrix .Y’(p) can be decomposed into

the sum of two matrices

Y = ¥, (p) + ¥ (P) (VII-?)

where XL’ the lossless part has all its poles on the jw axis [and
satisfies ‘Y_L(p) = -XL(-p)] while -!o(p) has poles onlv in the open
left half plane; both XL and zo are PR while the decr=mnosition can
be obtained through a partial fraction expansion, Since the poles of

=],
"added" to a minimal realization for Y, to obtain one for Y., As a
L™ .

Y and Xo can act coincide,a minimal realization for XL can be

consequence we will first obtain properties of these separate realizations
and then show how to combine them to give the prcper meaning to the word
"added," For convenience we assume x(w) = xo(w).

The basic result in the theory 18 as follows [2].
The PR Lemma: Let X(p) be an nxn rational matrix with real co--

efficients and with no poles in Re p> 0, and let R = (é, B, C, D}
be a minimal realization, Then 'Y_(p) is PR 1if and only if there

exist matrices ¥ , L, and a (unique) positive definite (symmetric)

2 satisfying

PA + AP = -LL (VII-3a)

PB = C-L
v -y -~

(VII-3b)
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WW = Da4D (V1I-i¢)

Outline of Demonstyatlon:  As the steps in tie proof are dotailed and
involved 2 we mevely ontline the main ideas with emphasis upon thosc
points of interest for actual calculations,

To sce that if Fgs, (VII-3) holed then Y(p) is PR is straight-
forward fram the following colenlations, since 2’_(1)) t st hasYo-

morphic in Re p.- 0 and has real coefficients,

I o 1. i
21'“(11) = !(p ) )_’(p) = l)+_l_) + Ii(p .]-.‘ —..}) ](‘ ("(pl',-_\) l
- W B (p*1. -7 P + P(pl, -0 B
- WN, v B (L -A) P+ P(pl-1) B

- -1 - -1
+ B(p'L-A) LW+ ¥ L(pl -V B

~—

. . -1 . -1
= WW_ o+ BO'L -5 [P )ALI], - 1

. , ~1- - =i
T U PR Vi SR O R !

an #00
= % -1~ -1
= 0B DT LI L - Bl

. R -1 R
+ B(p‘_},—ﬁ\_) 1[ (p+p¥)Pl(p-]_,-;\) B (VII-D)

This 1ast shows that I"(|)) is positive semidefinite for all p with

p+p O,  Lhat is in the right half plane, since E can also be

1,2 .1/2
/ZE/

factored into P = P with the square roots olso symmetric,

-

To show that Y(p) is PR only if Egs., (VII-3) hold is move

difficult, We first find o _\!(p) satisfying
Y(P) + Y(p) = W(-p)W(p) (VI1-5a)

whiiecre fuvther W(p) 1= holomorphic. togerher with fte right apverse

W . I the rivht half plone,  Suehr WY can be found convengontiy,
.ll' Ll

i the catenlations can becowme involvod |70 Fhe use of this ot ular
WM 1S vsed o cuaoealee tne minemalrty o ob 0 W(p) o o alten sanp e

factorizat iong as the one ol (‘.:prT. R Zandy e v e oo tagre,
o7 el .
1 PP . [
. i . .tj.t.f.\.r-,_/ e S e s Sed b

’

a7 B =671 10




One can then show that E(p) has the minimal realization R =
{#) 38, L, ¥} which serves tc define L; note that the matrices A
end B are identical for Y(p) and W(p). We then transform the
minimal realization

T = [ 1, © ] (VII-5¢)
el 1g -

to get the equivalent realization for ZI(-p)_V!(p)

Ry { { A 9], [ B ] e R, m} (VI1-50)
o -i) ! pB+iw |
- [y Yy an w00

Here P is the unique positive definite solution oI the equation

PA + AP - -IL {(VII-3a)

- - L

Next we note that a realization for Y(p)+¥(-p) is

F], [C, -B), D+D (V1i-5e)
¢l

Or. noting the conditions for equivalence and identification of reslizations
we cobtain R2 = R3 and the PR Lemma follows, Q.E,D,

Cr noting that almost ail of the previous holds except that _\:l =_9,-
and hence L = 0, when Y 1s lossless and zero &t infinity, we
conclude that in the lcssless case there exists a positive definite
{symmetric) _131 such that
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BA B = 0 (vi1-6a)
PB = G (VII-6b)

where [AL, EL’ QL’ 0} 1is a minimal realization of the lossless PR
admittance which is zerpat infinity, As a consequence we can replace
the conditions of the PR Lemma to allow simple poles on the jw axis,

none though at infinity, if we use

2 £ 2L+¢l-:o’ é = & +oéo

B = [-L]: € =0, 8)h L = [2 ] (VII-7)

where the subscript zeros refer to the realization of Xc’ that portion
of x(p) with only open left half plane poles, Note, however, that now
2 is no longer unique by virtue of the presence of l&f
In conclusion, 1if x(p) is PR with no pole at infinity then
Eqs, (VII-3) hold with the various matrices obtained using Eq, (VII-7)
upon decomposing x(p) into the sum of a lossless part _XL(p) and a
nonlossless part Xo(p). The calculations are theoretically very
straightforward but the computation for ﬁ(p) with the proper holomorphic
inverse gives considerable difficulty in practice, However once such a
E(p) is found Eqs, (VII-3a) can be solved for '20 in a very straight-
forward manner as a set of linear algebraic equations subject to the
positive definite constraints, As it stands the method does not allow
the direct treatment of poles at infinity and these must therefore be

extracted separately as an added term pC,, for the right side of Eq,
(V11-2), to be independently considered for synthesis purposes,

D. PR Admittance Synthesis

We assume as given an nxn PR admittance matrix which we can, as a

consequence, decompose into
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Y = Y (p) +Y, (P +pC, (VII-8)

where Xo(p) is holomorphic in Re p> 0, =all the poles of _gL(p) are
on the jw axis and simple with none at infinity, and all three terms on
the right of Eq. (VI-8) are separately PR. The term p_(_:w is separately
synthesized, using for example only capacitors loading transformers
[1, p. 204]}; the resulting network for p(!m is connected i parallel
with one of zo + XL.

To synthesize XO + zL we find any minimal realization
R = {tél..;ﬂo]’ [EL]’ [QL,QO], D} and then determine a desired P =

o

Pngo as for Eq, (VII-7). Since P 18 positive definite we find its
& 1/2

(unique) positive definite square root 2 . Thus
2
p = /%Y (VI1-9a)

In actual fuct, since P 18 in direct sum form we can also write 21/2

in direct sum form as

pl/2 _ pl/2 | pl/2 (VII-9b)
- ~L “~0
Next we apply the theory of equivalence of Chapter V, choosing
T = 2 (VII-9c)
where _13-1/2 is the inverse of _131/2 [note that the P of Eq. (V-2b)

has a different meaning than the _1_9 of Eq, (VII-9c) whereas the ;l_"s
are the same], We then have a realization R = {31/252-1/2, 21/22,
92-1/2, D} derived from the original R having its entries as given by
Eqs. (VII-7). As a conseyuence, by our introductory comments and Eq,

(VII-1) we can form

2
@ D ~cp"/ (VII-10a)

P25 gt %p /2
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_ N . B -1/2 . -1/2 )
= [Y ) + Y () (el + pt% (VI1-10b)
1/2._1/2 1/2 1/2 1/2- - /2
el m - e
~0

By our previous reasoning !(p)-pgm results from loading the resistive
coupling network having the admittance matrix fc in b unit capacitors,
where b 1s the degree of X(p)-pgw. Our claim is now that gc is PR
it !(p) is, such that a circuit structure irom 2 need use only

T =.?-1/2 has

allowed a completely passive synthesis of a PR admittance matrix,

gyrators and positive resistors., That is, thc chol

To see that gc is PR we merely need to check to see if it has

a positive semidefinite Hermitian part, Thus we form

§ +9 = [D +D -cp'l/2 §p/ 2 ](VII-lla)
wC «C - Lol L
59/22 _ §-1/2§ _Pl/%ég-l/Z _ E-I/ZKEI/Z
- a ;p'l/z)[ﬁ —C + ﬁp]u P Y%y (vii-11b)
(3] W 00 w00 - - -n
PB-C -PA- AP
1/2 -1/2 ~ =172, <1/2
= (1 +_l_>L 0 ) }_Vm!m 9 '.-ml.‘.o (lntl:L +_1_>o (Vii-1llc)
0 0 2
-l"o\m 9- -I'J -0
5 2
where we have used the fact that Pl/2 is symmetric, '21/2 = 28/ , as

well as Eqs, (VII-3) in thelr extended form valid for the inclusion of

lossless parts, Eq, (VII-7). That is, & is that W(«j which corre-
sponds to go(p) while é =[0, go]' if W  has rank r, that is if
r 1s the rank of go(p) +-go(p), then we can rewrite Eq, (VII-1llc) as

' 9 W -1/2

3c +.?c . [_w’ 9, -1'020 d (VII-114d)
2
B3
-0 [o]
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As shown by Section III D), Xc can now be synthesized by gyrators and
r positive resistors., For instance Fig., 11I-8 applies to synthesize

the symmetric part, which is one-half of Eq, (ViiI-1id), with r unit
resistors and a gyrator coupling network described by the gyrator conduc-

tance matrix

¢ = 12“,& (VII-1le)
| o
[ ~1/2;
=0 =0

We comment that zeros in Q which designate rows and columns of
zeros in the symmeiric part of zc are as expected since they are
associated with the lossless part XL(p) for which no resistors are

necessary, In fact since
r = rank[!(p){g(-p)} (VII-11f%)

and since this rank corresponds to the minimum number of resistors pos-
sible in a synthesis, we see that besides using a minimum number of
capacitors this method uses the minimum number of resistors. In fact in
the case where the original X(p) is lossless, 4] of Eq. (VII-1lle)
reduces compietely to zero. Of course the vanishing of the P

=L
portions of Eq, (VII-11ld) does not mean that P, never enters into
consideration; Ifor example 2& occurs in the skew-symmetric portion
which acts through gyrators to couple the capacitors to the input ports

in a lossless manner.

E, Example

Let us apply the method to the PR scaiar

3 2
4p + 2p + 18
yp = b

2
P +2p + 4p + 8

(VII-12e)
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(VII-12b)

The latter split gives the decomposition into lossless and nonlossless

2
parts; thus vy (p) = 2p/(p +1), yo(p) = 4dp/(p+2).

For _vx and Sy appropriate realizations

ed from Eq. (1V-3) as

R and R are obtain-
L o

R o={[ © 1], |2} {1, 0], [0] | (VII-12c)
e of Lo i
R, = ({-2], [-8]. i (VII-12d)
For Y, ¥e have
b’nz 2 "5) 2 /E
. -8 RARS vV 2p
= e L ) -
v () +y (-p) _pz ~ s ) ( —c (VII-12e)

We observe that W(p) 1is unique to wiihin a minus sign; we choose

w(p)

for which a realization following Eq. (IV-3) is

2 \/E};

p+2

(ViI-12f)

(r-21, {-4/21, [1],

[2,/2]). We thus desire to choose a transtormation T = 1/,/2 to bring

this B of -4./2 to 1B = -8B, Thus we have as the appropriate

realization Rw for W

L= (r-2], (-8, Ll'/\/_E.l, lz\/r':’.]1 (Vii-12g)

We have at this point L0 =1//2 and v,

Po is found from

PA +AP = =4p =
0o 0 0o 0 (o]
or
2
p = 1/8, 1/
(o] (o}
103
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= -1/2 (VII-12h)

1/2V/§ (VII-121)
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To find I‘L we observe that yL(p) + yL(—p) = 0 1in which case
l"L = 0 and we simply solve for a positive definite PL satisfying

PLéL +-§L£L = 22, that is
[pn p12 ][ 0 1]4»[0 -4][p11 plz] = [0 O} (VII-123)
Pig  Pppli-t O 1 0]lpyp Py o ¢

The (1,1) end (2,2) entries require = 0 while the (1,2)

p
12
entry gives pn = 4p22 as does the (2,1) term, Positive definiteness

> 0 while P,B = 1, Thus

merely requires Pag BB = éL

requires 8p22

- 1/2 -
P = luz 0 ], P = [1/\/—2 0 ] (VII-12k)
8

0 i 0 1/2J2_

Now the original coupling admittance, before the appiication of

P]'/2 is

Y = 4 1-1 o | -1 (VII-121)
2 0 -1 0
0 4 o0 0
-8 0 0 2

which is not PR as can be seen by the principal middle submatrix -QL

We then form

] (VII-12m)
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-2 o 0 2

Finally we have for § = ¢ + ¥
WC  mC 8y =

(o) ~ —
$., =[ 4 00 22 |=[ 2 (200 /2]
0 0 o 0 0
0 0 o 0 0
22 00 2 ] (7
gc sk ) 0 W/E- o0 )

Note that gc = takes the form predicted by Eq. (VI1-11d), The final
circuit diagram is shown in Fig, VII-2,

In the figure we observe that YL and y, are separately realized
and then connected in parallel, 1In all situations 20 &) will be
associated only with yo(p) but in this case the skew symmetric part
has only occurred while synthesizing yL(p). Note that even though a
minimum number of capacitors and resistors have been used an excess

number of gyrators occurs, By shifting elements through the gyrators

105 SEL~67-110




IS

y(p) —

e ) v (p) through
.9‘ A
# q ]-l zc sk

Sl
’_}’ i . T y_(p) through

) A

Y
w=C By

o
p

Firal Example Configuration

Figure VII-2

we can easlly obtain Fig, VII-3a) from Fig. VII-2, or by direct synthesis,
Decomposing this latter circuit yields ihe resistive circuit of Fig,
VII-3b), loaded in capacitors. We obsecrve however that this latter
configuration possesses no admittance coupling matrix, uJu - conclusion

is that always our synthesis of PR admittances will worn but that in
some instances more than the minimua number of gyiators will be used,
though never more than the minimum number of capacitors and resistors

is needed,

1/2

ol =
>

I"\r
|
i

S
2
< 1 e
T3 R
WVIH- ’—I
1/4
a) b)

Minimal Gyrator Realization

Figure VII-3
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F. Discussion

In this chapter we have presented a mcthod of synthesis of positive-
real rational admittance matrices, and by duality impedance matrices,
The method is based upon only algebraic operations and thus is readily
programmed on & coumputer., The key point of the theory is the proper
application of the PR Lemma to obtain the appropriate transformation.
However it is in the application of this Lcmma wheire the greatest
difficulty occurs since a rather complicoted ‘actovization of the para-
Hermitian va:t of x(p) sometimes must be 'mderiaiken in order to obtain
¥(p). For nonpositive-real matrices oy positive-real patrices of infinite
dimension similar steps apnear to bHe possible but as ve: have not been
extensively studied.

The ideas of the method can be applicd '¢ o hvbrid coupling matrix
in such a manncr that some promise holds for minimis gyrator synthesis
[4). That is, XC can he interpretced as o hyhrid matrix if some ports
are loaded in inductors in place of cipacitors:; in such a case one 8till
desires Xc PR  when X(p) is, Allernately, by using the hybrid
interpretation one can give a synthesis in terms of the cut set and tie
set matrices previously studied, at least in the lossless (and gyrator-
less) case [5]. However, as witih the minimal! gvrator situation improved
conditions are still needed to complete the theory, ~Nevertheless the
nonlinear theory has been interestingly investigated (67,

Beéausc of the situation illustrated in ¥ig, VII-3, where no coupl-
ing admittance matrix exists, it seems important to cxtend the method to
scattering matrices where partial resuits ol the PR Lemma type are
available [7]. The work of Youla and Tissi vepresents a step in this
direction [8].

Since it was possible to find onc transtormation T taking any
minimal realization into & passive one it is of intery<t to find all
such 2. As yeur iittle solid theory is availabi+ in this direction but

the theory of continuous transformation groups scems applicable,
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Exercises

Synthesize the PR impedance malrix

[
o]
i
3%

—

A
- p +2 1 4p

by converting to (he admitiance matlrix and applying the methods of

this chapter,
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10,

Fill in the steps of the PR Lemma proof,

Discuss a positive-real lemma for nonrational matrices and how
this might be used for synthesis,

Investigate possible methods of determining W(p), (3], [1, p. 168,
and discuss the simplest for machine calculation.

Show that the synthesis of the text uses both the minimum number
of resistors and capacitors,

For the example of the text:

a) find al) minimal realizations and isolate those for which

gc is PR.

L) investigate possible ways of accounting for Fig, VII-3,

c) {find all minimal realizations on a scattering matrix basis,
Discuss the various methods of calculating the matrix P [9].
Investigate methods of synthesizing bounded-real rational matrices
by the techniques of the text [7].

Show how the same techniques can be extended to cover nonminimal
synthesis of PR matrices and discuss how such may be of importance
for minimal gyrator synthesis,

Apply the PR Lemma to show how to synthesize through the equations
(10]

. 1 ~ 1 ~ ¥
2 - pRari-mla
£ = B

1
i* = — 1Ls

subject to 1 = 'X*' In particular show that a network reaiization

occurs by terminating the gyrator network

o
]
1o
]

3
(¢}
| §

1o
1 {io
>l

= J@b

in unit resistors and unit capacitors. Show that the minimum number

iw

of resistors and capacitors are used,
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Ils semblaient par moments nous
regarder du haut d'une tour, 11 est
vral que rien n'est caché; et vous
tous qul me rencentrez, vous savez
ce que j'ai fait et ce que je ferai,
vous savez ce que je pense et ce
que j'ai pensé,

M. Maeterlinck

"Les Avertis" du "Tresor les Humbles"

CHAPTER VIIl

LUMPED-DISTRIBUTED LCSSLESS SYNTHESIS

A. Summary

Here we briefly summarize the application of the previously discussed
techriques to the synthesis of networks constructed of iossless lumped
circuit elements and LC transmission iines. The theory is based upon
the use of frequency transformations to obtain lossless but r- onal 2-

variable matrices,

B, Introductory Material

We first review somc properties of LC transmission lines as wejl as
a method of treating circuits constructed from lumped circuit elements
in conjunction with the LC lines, This will lead vs to positive-real
and rational 2-varliable matrices and their synthesis., As we will see
the admittance description, which we adhereto, is not rational in the
true frequency variable, and as a consequence we introduce a second
frequency variable to obtain rationality,

Let us first consider a lossless transmission line of length £
and inductance 1. and capacitance ¢ per unit length, As shown in
Fig, VIII-1 this line can be treated as a 2-port having the admittance
matrix [1, p. 66!
' ctnh yp  -csch Yp'] Y :\/ibmk

{VIIi-lia)

\_f‘(p) =i

-csch yp c:anh rp_J ¥ = /671-
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Lossless Transmission Line

Figure VIII-1

We observe that the admittance matrix &(p) is not rational in p but

that *he positive-real frequency transformation
A = ctnh (yp/2) (VI1II-1Db)

yields a rational positive-real admittance description

1+)\2 l—kz
2) 2n
@(A) = ¥ =y, (VIII-1c)
- 1-22 142
2% 2X

In fact we observe that any transmission linec which has its y an
integer multiple of this basic 1ine also has an admittance matrix which
is rational in X, Since given a set of transmission lines for which
the y's are rationally related there always exists a smallest y for
which the admittance description is Eq. (VIII-1c), we will assume that
all lines under consideration arec rationally related, that is have
rationally related y's,

If next we assume the presence of lumped capacitors, inductors and
gyrators, as well as the rationally related LC lincs considered in the

A planc, o node analysis yields branch admittances of the form

y1J Cin + (l/Lijp) + Cijx + (l/ﬂijk) + g1J (VIII-22a)

<
i}

| o -1
Cijp + (I/Lijp) + Cijx + (I/Lijl) gij (VIII-2bH)
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Such a network we will call lumped distributed. We note that for passive
elements a lumped distributed network has an admittance matrix y(p,\)
[ o

at any ports which is positive-real in both variables and satisfies the

lossless constraint

y(p,2) = -y(-p,-1) (VI1I-2¢)
- 1)

In actual fact y(p,}) satisfies the 2-variable positive-real constraints.
"

Th«t 1s, by definition a matrix is 2-variable positive-real if [2, p. 252

a) z(p,X) is holomorphic in Re p > 0, Re X > O.

b) y(p,\) 1is real for p and X rcal in Re p > 0,
;e A >0,

¢) the Hermitian part of la(p,l) is positive semi-

definite in Re p -~ 0, Re X . 0,

A rational 2-variable positive-real matrix will also be called PR,
A property of interest for synthesis is that the poles on the

imaginary axes can be separately extracted to yield [3, p. 34]

y(p,N) = y_(p) +y . (N) +y (p,) (VIII-3)
~ wl n2 -0
where y , y., and y are all separately positive-real and rational
w0’ vl v
when y 1is rational; here yo has only poles which explicitly depend
-t L

upon both p and X, Of primary interesc is the fact that yo(p,X)
-
has no poles at infinity in either variable,
To head tnward synthesis it is of importance to note that those

lines which have lengths one-half the basic length, called unit-elements,

are described by

A -\/qul
@ue()‘) = Y. = v, - (VITI-4)
VA A

Although such a description is not rational we observe that when loaded

in a short circuit the unit-clement appears as a capacitor of capacitance
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v, in the A-planc when obscrved at the inpat, Similarly loading in an
open circuit yields a A-plane inductor at the input, Thesce relation-

ships can be Jdepicted as shown in Fig, VII1-2.

/2 0—of o
|<r_ /2 —» I unit-
— element
Yo S v
I | o— o —o
p-plane ‘=plane
a)
le i/72 - |

—€) D mas
— L.

Lo

le 272 o)
Yo

H

l/y0

&-.
o——.
p-plane r=-planc
b)
p vs. A-Plane Elecments

Figure VIII-2

With this last observation we see that a synthesis method could

possibly arise by loading a p-plane (n+c)-port described by

‘Xn(p) ,3'12(")
= -5
}’m(p) (VIII-5a)
3.'21(") \Z22(p)

by a set of ¢ wunit A-plane capacitors (which are p-planc shorted unit-

elements), as shown in Fig., VIII-3, If such occurs then one obtains

-1
z(DJ\.) = ‘le(p) -zlz(p)[l}_ct}",dz(p)l 22](;)) (VIII-5hH)
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Y, S——
y(D,)\) ﬁ n c 1 1
-

Y (p) = yz()\) = llc

Possible Configuration

Figure VIII-3

We obscrve the following. In the gencral expansion of a 2-variable
PR matrix, Eq. (VIII-2), the matrix |z2(l) can not be absorbed in Eq,
(VIII-5b) while zl(p) can. However, both ,¥1 and ¥ can be synthe-
sized by standard methods with the resulting networks being placed in
parallel with that for Jo Hence we really need only consider Eq.
(VIII-5b) for -Zo(p,l). Now Eq., (VIII-3b) is in the form of previous
results cxcept that the realization matrices vary with p. Thus we are
after a realization R(p) = {A(p), B(p), C(P), D(P)} = [1X22’.X12’ 1X21’.!11]
in which case the previous theory should hold, In fact we can use the
methods of Chapter IV to create a minimal realization R(p). However, the
transformation to bring zc(p) to be PR though obtainable in theory is
not known in c¢xplicite form., Thus we proceed by directly finding a PR

coupling admittance, this being possible because of the lossless nature

imposed,

C. Minimal Rcalization Creation

To obtain a realization R(p) for an n¥n PR i.Xo(p,)\), for which
Xc(p) is also PR we will simply modify the previous recalization theory,
presenting the method of Rao [4], in some places omitting the details of
proof which can be rather lengthy for their content,

As before we write

N

i r-1
21.4_1(13) + X 21‘(]3) AEEE 1\_22(])) + Bl(p)

y (PN =
— g ar(p))\r 1, s A ()
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[+

~ A (p)

_ N\~ p

= A_l(p) s it (VIII-6a)
i=0 *

where the latter is the expansion about ) = »,  The 1ny¥rn  companion

matrix is derined as

W (p) = 0 1 0 . . (VIII-6b)
-n “n -1 ~n . .
{; 1 0
[l t] Y ~n P
<i
= =] -n Ly
‘ al(p)ln 2(p)ln e r'o)ln

and a modificd Hankel matrix defincd by

= ‘ \ ) ] o
Ir(p) = éo(p) A0 cee A (VI1I-6¢)
A L m AL
A (3
LM A A )
D7 o e AL L
e S RS Y ZppgtP

Because of the lossless nature of y . T (p) 15 - gual to T f-p)
-0’ ey ¥

[the para-Hermitian property] and it is nonnegative semidefinite for

p = jw. Conscquently Ir(p) can be factored, in fact hy the method

used at Eq, (VIII-5a), to obLtain

-

IY(D) = U(PU-p) (VIII-6d)

where U(p) as well as its left inverse Ejl(p) A3ye holomorpnic in
Re p > 0; this factorization prescrves the real-iational natuvc of Er’
that is, E(p) is also rational with real convificients, TFurther the
matrix E can hce taken of size nis where F io the rank of ;Er(p)

X )
and then partitioned into n>6k blocks to define the o tries in
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Up) = U (@, U, ..oy U (] (VIII-6e)

Noting that ﬁo(p) = 1112(p1121(p) = Ho(p{go(p)(-p) we see that as we

desire yzl(p) = —912(-p) because of the lossless constrain, we are
wa -

led to define

(p) (-p) = yo(p) (VIII-7a)

J12 Va1
Noting further the previous method of defining ﬁ by Eq, (IV-9) some-

what justifies the definition

-1
!22(1)) = yﬁ (p)_f}n(p)yo(p) (VIII-7b)

0f course we also define

!11(") = zo(p,m) (VIII-7¢)

With these the coupling admittance matrix of Eq. (VIII-5a) is completely

specified, 1In fact Yc(p) is PR and satis{ies the lossless condition
L]

xc(p) = -fc(—p) though both these properties, c¢specially the PR one,

are rather delicate to prove; the intercsted reader is referred to [4].

Further, the degrec of Xc(p) is the minimum possible and cqual to the

p degree of y”(p,X) defined as = max L[yo(p,KO1. The number of
w \ -
1‘.0
A-plane capacitors is equal to <, where in fact o = max ofy (p ,\} =
X A p we O (o] g
o

rank Ir(p), We comment thatl the whole process could have been undertaken
by making p-plane capacitor extractions from which wc conclude that
represents the minimum possible number of p-plane reactive elements,
while bx gives the minimum number of A-plane reactive clements,

In summary, loading the PR (n+bk)x(n+bk) matrix

xc(p) = _):o(p,w) _lgo(p) (VIII-7d)

~ -1
U, -p) U, 8 -p)U (p)
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rcalization in il unit }-plane capacitors (which are shorted unii-
elements) yields zo(p,)) =‘Zo(p’ ctnh[yp/2]) at the n input ports, A
synthesis of the lossless coupling admittance xc(p) by a minimum number
of reactive p-plane reactive elements, which is readily possible [1,

Chap 8], yields a network possessing a minimum number of lumped reactive

elements as well as (p-plane) transmission lincs,

D. Examples

Let us synthesize the function

(p/2) + 1

y(p,) = 5 (VITI-8a)
Lo+ ([24p7]/2p)
We have
1 p2 1 p 1 I
)
= = B oo i S L -8
T, 5 " 3 [(\/§+2)J[ (\/5 5) 1 (V111-8b)
with
1 -1 -2 24p
e 2 = — Ly = = — -8
U, (p) 2(p+\/_), v, —yy ”, 5, (VIII-8¢)
1)r whica
Y (;m = ] P 1= /2 (VI1I-Ha)
wC 2 >
= 2
_p+\/2 P+ -;1
Using a short circuited transmission lin¢ for the '-plane capacitor

yields the circuit of Fig. VI1I-4,

1/2
o——-j\L/n_ 1872 5
- ) ¥o=1)
v(p, > = . = i
D
A i

Example Synthesis
Figure VIII-4
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To illustrate the difficulties of the more general situations

consider the lossless PR

-
A p+2)
y(p,\) = ____2p+ (VI1I-9a)

A +pr+2

The cxpansion about A = @ gives

2 3 4 2
(2-p) _(p-9p)  (-p +6p -4)

y(p,\) = p + % 5 + 3 + ... (VIII-9b)
A A
Thus
2 3
T, = 2-p p -4p (VIII-9c)
w2

3 4
-p +4p -p +6p2—4

Onc then nceds to factor this as discussed at Eq., (VIII-6d), which is no
simple task, Hence we drop this example at this point with the comment
that a simple factorization to produce the holomorphic factor would be

most welcome,

E. Symmetrization

As we saw in the last figurc the method may use gyrators where
actually none arg apparently reguired, Herc we show how these gyrators
can be avoided by the procedurc of Koga [2, p. 44].

Given the PR admittance xc(p), of Eq. (VIII-7d) for example, if

it is not alrcady symmetric wec form the following coupling admittance

matrix
Js®Pr =l yy3 Yias  Fioa (VIII-10a)
Ji12s  J22s Youa
L Ji2a Jooa Yoos
where
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Fias = D12 Yz Y194 = Y12~ Ja; (VIII-10b)
Wazs = Y22 *Xa2 e T J22 22 (¥TT1-10¢2)

with the subscript S and A standing for the symmetric and (skew)
antisymmetric parts, The matrix ‘xs(p) is PR and lossless with
Xc(p), and lxo(p,k) results at the first n ports of a circuit
realization by loading the final 26x ports in unit A-plane capacitors,
as we will discuss below, If next we extract a (cascade) gyrator from
each of the final Sx ports, as shown in Fig. VIII-5a), we obtain a

symmetric coupling admittance matrix XC; for example, when (as is the

normal situation) y is nonsingular
J22g
Y .(p) = + Tt + o =1
ac'P) =l Y11 12a8228Y12a  J12st¥12a¥22s¥22a  Yi2a22s | (viti-10d)
- -1 . . -1
Y125t 20a¥22s¥12a  J225%Y 22422522  Y22a¥22s
1 e -1 . -1
J22s¥124 J 2258224 Y22y

The extracted gyrators can be combined with the loading capacitors to
yield s-plane inductors while _!C(p) can be synthesized by a reciprocal,
passive, lossliss p-plane configuration, The overall structure is then

reciprocal with yo(p,X) and as shown in Fig, VIII-5b),

" — reciprocal |—®—— 1
0 e I -
0 5 - . P-plane [T e
n A ¢
_) =]
o <"1;5f\ = _y;?p,h) —o—
N L. = 0— N 1
e *C & Yok ~C =0\
° A b‘ 0T =B O
N s-plane
-5
a) b)

Procedure for Reciprocal Synthesis

of a Symmetric y (p,)\)
wa Q)

Figure VIII-S5
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To sce why the method works 1ot us reason as follows, Since

y (p,») 1is assumed symmetric we can write
-}

1 ‘ 1 -1
Ry TR - - ={v s B ’ b -
Yo T3 = 0P gl Y 2L 1y, () (VITI-1a)

i - -1
t Yo (MY (M9l iy, ()

for which a realization is secn to come from the coupling admittance

matrix
Y () = ] 1 y 1 vV ] (VIiI-11Db)
: -1 221

Yo
=

|
|4

v

to
-

12

- Sl
Pt
)
foed
Yo
™
X}
H =)

That is, a circuit rcalization for Yl yiclds vy at the input when
- -}

terminated by 2&  untt ‘-planc copacitors, Neat we Lind an cquivalent
3

realization using b, (V-20) waiih the onvthorong ] rrvianag amation

|
T — 11 -1 (VIII-11¢)
= /2 -~ -
v
v-]‘(,\ L W
Thus we obtain
Yooy - 11Ty (il e (VITI-11d)

whiteh gives bogo (VTIT-1100 0 T PR property o< w0110 - toasleusnoese e

presevved throneh these operations,  Finally we comment thot 31 v o
. V.00

is not nonsincutey tea kgl (VITT=10d) 1t ean he omado so byoan orthogonal

tranalarmytdon e g b v o 0Ny 0,9 Ho : TR RN IR
Z ok -t D3 - - o
I, u [N
Toe mroviots cxample ol Toa, (VTIV-8d)Y s o v i furne g s

Weo hav

RN

"NOT REPaU. . o

UL SEE=6T7-0 )0




1
m =3[ -p J2 (VIII-12a)
2
- + - 0
p p P
2
-/2 0 + -
V2 P+3
Extraction of the gyrator at port three yields
Y () = 5[ b+ PV B (VIII-12b)
~C 2 2
p +2 p +2
2
= + - 0
p p P
;ggp p
0
_p2+2 p2+2 J

Synthesis of xc(p), which is symmetric, yields yo(p,l) at the input
when the second port is loaded in a unit capacitor and the third port in
a unit inductor, the latter two being p-plane short and open circuited
LC transmission lines, Note however that four p-plane (lumped) reactive
elements must be used to synthesize xc(p),

at Fig., VI1I-4,

in contrast to the two used

F. Discussion

Given a nonrational admittance matrix in p, z(p), if there exists

a 71 such that X(p) = y(p,\) 1is rational, PR, and lossless in the
(]

two variables

p and X\ = ctanh(yp/2),

then the procedures of "his

chapter can be used to obtain a synthesis,
uses both lumped and distributed LC

all types when gyrators are also allowed.

In particular the synthesis

components, a minimum number of

If the original matrix is

symmetric then also a series of operations can be used to eliminate the
gyrators, but an excess number of reactive elements is needed for the
given procedure, though it seems that other methods should be availabie
to reduce this number,

In the treatment given we have extracted A-plane elements as the
load to obtain realization matrices which depend upon the other variable

p, R(p) = {é(p), E(p), c(p), R(p)]. Of course we could have reversed
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B e e

the role of » and p since in 'X(p,k) there is no real preference,
The only diffcrence ocecurs in the synthesis where the extracticn of the
lumped p-plane clementis means that the A-plane counling network needs to
be synthesized in terms of distributed elements, This latter though can
be convceiicntly carried out in terms of cascade synthesis methods using
the unit-clements [1, Chap. 7] and is, thus, in some ways superior,

The same methods can be used for the synthesis of lumped-distributed
RC nectworks of considerable interest to the theory of integrated cirervits,
For such onc introducecs a different variable s:=¢ﬁi T-:n a given admit-

tance x(p) can be synthesized by a synthesis of the lossless admittance

(5]

y(s,\) = 1—Y(p) (VIII-13)
P -

/e
Such a synthesis can follow that of the text with the s-planc clements
replaced by resisters {for the induetors) and capacitors while the A~
plane eclements are rcplaced by RC 1lines to obtain the original p-plane
Y(p).

In the ease where there are nonrationally related lines the methods
discussed can be extended by considering v-variable matrieces, with v > 2,
Although minimal realizations canr relatively casily be given, as yet it
has not becn possible to obtain a PR coupling admittance in terms of

v-1 of the variables,
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Exercises

Synthesize the lossless PR

2

27\ (2 1
a) y(p,\) = _L(_p_;)
4).p+2p +1

2
b) y(p,\) = .14_).‘BIEE_+_1.
2)x(2p~+1)

Prove that xc(p) of Eq. (VIII-7d) is PR and lossless,

Carry out the steps for p-plane, instead of A-plane, extractions,

Show that the gyrator extraction of Fig, VIII-5a) yields xc(p) of
Eq. (VIII-10d)., Carry out the details when Yaog is singular,

Obtain a realization for zo(p’)‘) using the method of Chapter 1V

and show how to obtain the realization of this chapter from the other,
Analyze any 2-port lossless lumped-distributed circuit and from the
resulting z(p,l) synthesize the network by the methods of this
chapter, Compare the final circuit with the original and discuss

the problems raised,
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I1 y a ainsi une part de la vie, -- et
c'est la meilleure, la plus pure et la
plus grande, -- qui ne se méle pas
d la vie ordinaire, et les yeux des
amants eux-mémes ne percent
presque jamais cette digue de
silence et d'amour,

M. Maeterlinck

"Les Avertis" du "Trésor des Humbles"

CHAPTER IX

TIME-VARIABLE SYNTHESIS

A, Summary

Using similar but generally somewhat different techniques than for

time-invariant structures, realizations for impulse responses can be

nbtained and manipulated to yleld synthesis results. Of primary interest

is that discussed for transfer voltage functions and that for special

types of admittances,

B. Properties of Impulse Response Matrices

If we are given the state-variable equations with time variable

coefficients

B(t) = A(DB(t) + B(t)u(t)

y(® C(t)g(t) + D(t)u(t)

we can find the zero state output through

3O = [IROBE-DE®, DE™ Ju(Ddr

where g(t,T) is the state transition matrix satisfying

124

(1X-1a)

(I1X-1b)

(IX-1c)
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9%?_'2 = ADL,D, t> 1 (1X-14)

: 2(1,1) =

Lo g(t,T) == 0 t< 1 (IX-le}

wk
In actual fact since 2 satisfies the differential equation of Eq.
(IX-1d) it can be shown [1, p.S530] to be the product of two matrices,

one in t and one in 17

o(t,7) = E(A(NI(t-1) (IX-1£)

where 1(t-t1) 1is the unit step function., Further the number of rows in
A(t) can be assumed reduced to its minimal size b, this size being
independent of 1 for reasonably behaved A(t) [1, p.330]

As a consequence, we can associate with the state-varieile equations

an impulse response matrix [here ©&(t) is the unit impulse]

T(t,7) = D(OB(t-T)+C(DE(ADIB(TI1(t-1) (IX-2a)
such that
y = [ 1t,numd (1x-2b)
-0

This latter can be conveniently denoted as

y = Iou (IX-2¢c)

- €

Since I contains impulses it is often referred to as a distributional

kernel defining the mapping of u into y, vy =:Eou. If we have two
- o Cd

such mappings defined by kernels 21 and ‘22 we can apply one after

another, as might occur in a cascade of voltage transfer functions, This

leads to the definition of the composition 3‘02 through

1 =2

y = 210[2203] = [21022]02 (IX-2d)
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As an integral this conposition takes the form

o

T,0T,(t,1) = [Il(t,';.)gz(x,ndx (IX-2¢)

w0

Through the concept of composition the inverse of a kxk Kkernel can be
defined by

1 = Tl = B(t-D1 (1x-21)

Consequently T can be given the representation alternate to Eq, (IX-2a)

as
T = DoH(CB)o[B'1 -AB] o (BE) (1X-3a)

Since [6'(t—r)]-1 = 1(t-1) we see by comparison with this last expression

that 1f we are given

I(t,T) = E(t)ﬁ(t—r)+!(t)§(r)1(t—T) (IX-3b)
then a possible realization is

A=0 B=8 C=Y D=F (1X-3¢)

This is minimal if the number cf rows in Q‘ has bcen minimized,.

If we make a transformation on the state
Bt = I(tyscw) (1X-4a)
then, since the transforming matrix must now be differentiated we have

-1 @ "
E = JAT 1+£T2P1, E = j‘B“,

" -

fo
1}
(@]
ZES

(IX-4b)

Consequzntly, the freedom of using time-variable transformations allows
one to change the structure of the A matrix, resulting in some rather

interesting phenomena,
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C. Passive Voltage Transfer Function Synthesis

Let us consider the problem of synthesis of kernels mapping voltages
into voltages; the material follows tc a large extent the ideas of
S8ilvermar. (2],

As a preliminary, let us first observe that if we define, for a
given éﬁt) and a fixed to’

t
Y0 = foenicod, > b (1X-58)
t

o
(which is positive definite) then the choice

RY%:
T = (V) (IX-5b)
[ 3 ™
yields on using Eqs. (IX-1d, 4b).
~ ~ -]
A+A = =V (I1X-5c¢)
e Y -

As a consequence, from what we previousiy learned at Eq. (VII-11) we
should be able to use this transformation for a passive synthesis., We
comment, however, that V(t) varies with time even in the time-invariant
case so that slightly different procedures are preferable when .ﬁ, _B, E
are constant,

As the next preliminary let us synthesize a voltage to current

transfer function (kernel) T, 1, = Tev where i) and v, are

2 wowl’ &-2 wl
measured at different ports, Given any realization, say the one of

Eq. (IX-3c) let us perform .he transformation of Eq, (IX-5b) to obtain

"N ol
3o- ety (rx-s0
' o -
i, = o] + Dy, (IX-6b)

Let us next introduce another set of variables, the current il

associated with tne first ports and zé the voltage associated with the

final ports to write
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5 = M+ (8,8 (1X-6¢)

wl
]
22
41 = g]g +[Q -_1_5] '3 (I1X-6d)
1 ¢ [ 9)|x
Note that if we st fé = 0 and ignor? the input port currente ‘31

then the origir:1 description is returned, However, as in the time-
invariant case, Eqs. (IX-6c,d) definc a coupling (time-variable) resistive

network through

Y (6,0 =10 -D(t)  -B(t) 78(t-1) (IX-6e)
D) g -C(t)
B & -Am
Note that, by virtue of Eq. (IX-5c)
Yy +¥ = 0%vimsc-o (1X-6£)

in which case Xc can be synthesized by time-variable gyrators and
resistors both of which are passive, Termination of the resultant net-
work in unit capacitors yields Eq. (IX-6c,d). At the final ports we
can next insert unit gyrators to obtain

v, = 1} i = (IX-7a)

t
Vo 22 23 Ja

Setting yé = 2 results in an opein circuit load while 35 =V, yields

= Tev (IX-7b)

As a conscquence the procedure results, for t> to’ in a passive
realization of any I(t,T) of the form of Eq. (IX-3b). Since practically
such constructs are only used after a finite time, the t > to restriction

is of no practical restriction; but in some cases to = - can be used
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in which case the theory of Silverman results when 2 = 9. The synthesis

is summarized in Fig. IX-1.

11 X
3 DR I
+ % T
I ET
&, 14 }x,rv.l? (o
—2 e ° -
w2 { +xé D

L |

Transfer Voltage Realization

Figure IX-1

As an example to illustrate the various points let us synthesize

the time-invariant transfer function

V.
2 3p -6
We have
T(t,7) = 3b(t-1) + (-6e 2%)(e2%)1(t-1) (1X-8b)
For a realization we can take
-2
A=20, B=et, c=6e2+ p=3 (1X-8¢)
Then, for any fixed to,
t
V(t) = f dt = t-to, t> to (1X-8d)
to

which is positive definite for ¢t > to as expected; we have for Eq,
(IX-5b)
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4 (t)

From the transformed realization e

2t
A 0 ! - A
A =ag-loz1/2 B ===

‘/t~to, t-t

Thus Y takes the form
-C

-

1

t-t
o

quations we find

, C=-6/t-t e
[o]

(o]

-2t

(IX-8e)

D=3 (IX-8f)

2t
Xc(t,1)= 0 -3 -c /,/t-to 6(t-1) (IX-8g)
3 0 BT o ot
o]
2t
e -6 /ict e-2t 1/2

\/t-to ° i t-t

The structure of the circuit realization is shown in Fig. IX-2, It

should be observed that a) the elements are all passive, (b) the elements

ezt/ t-t
" « o
+ hdl v
e
IR I
6yt-t e
* P i D
Vo ¢ [ D ¢

Circuit for V2 = (3D/[p+2])V1

Figurce I1X-2

are time-variable cven though the overall network is time-invariant, c)
the elements brcome unbounded for t approaching to. If we would have
chosen A = -2 and to = - this latter (unboundedness) could have
been avoided while a slightly different approach (sce the Exercises)
would allcw a time-invariant synthesis,
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D. Passive Adm'ttance Synthesis

Following the previous ideas we can form the ccupling admittance

matrix

-1

gc(t,r) = | bD(t) -C(t) I (t) B(t-1) (IX-9a)
=1 -1

J(t)B(t) -j(t)g(t)g(t)-j(t)j(t)

We then wish for a passive synthesis to be able to choose g such that
the symmetric part of Xc is positive semidefinite, On evaluating tnis

symmetric part we have, assuming a symmetric 9,
3

v
%
n

D+ [85%-c197? 5 (1X-9b)
= -1,.2 ~2 o -
Fr SO I O b
[ 4 b ~
where we have also used 52 = ;I:H;Ig‘. In the case where D+D, which is

twice the symmetric part of D, 1is positive definite and f’ B, C have
bounded entries the (Riccatl) equation

2 2f+~ 2032 = -[3 2§-§] [Q+§]'1[§§2-g] (1X-9c¢)

- (™Y

is known [3] to have a solution for a nonsingular symmetric §, Con-

sequently,
~ ~ 1/2 ~1/2
1A = [ @b e L[t 1) (@D o
o 7 5%-op+d "V 2|1 o (o+0) Y *(pg%-0r3 72
Ll -~ Modm g En W (o1} - " " Y ) 1Y

(IX~-9d)
which siiows that Xc can be synthesized by n constant resistors
loading time-variable gyrators (for the symmetric part) and time-variable
gyrators (for the skew-symmetric part); here n 1is the number of terminal
ports,

We conclude that if a given nxn admittance kernel

Z(t’T) = 2(t)6(t—1) +S(t)£('r)1(t—'r) (IX-10)
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has the symmectric part of D positive definite (as well as bounded
minimal S and B matrices) then a passive synthesis can be given,

Such results by solving the nonlincar Riccati equation, (IX-9c), for
E(t), and forming Xc which then yields z(t,r) by loading of the
passive coupling structure in unit capacitors. Scveral observations are
worth noting. First 3 is very difficult to obtain, if not impossible
practically, since a nonlincar variable coefficient differential equation
must be solved, Sccond, Eq, (IX-9d) shows wherc difficulty arises 1if

the symmetric part of 2 is singular; hence the mcthod seems hard to
extend to cover more general cases., Third, the presence of terms
E(£)b'(t-1) is handled by writing E(t)&'(t-1) =§(t‘.)£(1)f)'(t-'r) -
g(t)é(t)b(t—r); if B is known to come from a passive network this
decomposition is always possible since 'E is then positive semidefinite,
Fourth, although the passivity conditions on D (and E) arc known,

those on E and E_ are not, cxcept in the lossless casc where ‘E =] é

is possible and an altcrnate synthesis applies to cover all cases [4]
{2\: L holds to yicld a skew-symmetric Xc].

An alternatc and intcresting method results from the following

manipulation [5], Lect

[ ]
A = YAT 1-+31 1 (IX-11a)
-1
8 = 4B, € = cu (IX-11b)
[ L - oy
then {rom Eq. (IX-9c)
A A -1, 2 =1 ,
Add = -y [ 7B-C][ D+D] s E]‘l (IX-11c)
= 2Ll
where § is defincd as
~ ~1/2. . 2 -1
1 =-\71—_ (D+D) / [By"-CTu (1X-11d)
e 2 L al X Lo e

If further we defline

132 SEL~6% -110




~ 1/2 -
_ D+D = Z (1X-11e)
z = (®5®) -

where the positive definite symmetric square root is again meant, we

obtain
g - %(§-§)£+(§+f.z)v-iv* (IX-122)
o —
i = B1z)s+zv* (IX-12b)
i* = -X* = -ts—zv (IX-12c)

Here direct substitution of the last constraint upon noticing that

271, = ¢-B ylelds the original set of equations
LY J - .

s = As+Bv, i= es+[-'2§2]v (1X-12d)
- - A~ - - LR -

The constraint i¥ = -v* corresponds to resistive loads at the v* 4%
- - L. ’ L ol

ports, As a consequence we consider the coupling admittance matrix

?c 3 0 z -§+z£ (IX-13)
-7 0 i
LY L s
AR A 1,7 A
Bl SE( i)

which is skew-symmetric and hence realizable by gyrators, When loaded
at the final ports by unit resistors and at the next to final ports by
unit capacitors, the input admittance z(t,T) occurs at the input ports,
In this manner an alternate synthesis results when B+§‘ is nonsingular,
for a passive z(t,r). It should be observed that this method requires
that the skew-symmetric part of D must be extracted before Eqs, (IX-12)
are considered, as secen from Eq, (IX-12d), Of course the skew-symmetric
part of 2 is obtained by gyrators connccted in parallel with the input
ports., Note that this again shows that all time-variations for time-

variable circuits can be placed in the gyrators,
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E. Discussion

Because the state-variable equations are expressed in the time
domain they are primarily suited for obtaining syntheses of time-variable
networks, Here we have investigated two types of synthesis, one for
voltage transfer and the other for n-port admittance impulse responses,

Emphacis has been placed upon passive structure3 but it is clear
that ithe same ideas can be applied to synthesis using active elements,
perhaps in an even simpler manner, The transfer function synthesis
contains relatively simple calculations while the solution of a nonlinear
differential equation makes the admittance syntheses extremely difficult
to carry out, Consequently one would hLope for a simpler admittance
synthesis and in fact one which relaxes the unnecessary constraint of a
nonsingular symmetric part for 2.

In the time~invariant case the methods yield, in general, circuits
with time-variable components, In some instances these can be combined
to obtain time-invariant components but the result does show that perhaps
some other synthesis methods exist which reduce to the known time-
invariant technigues perviously discussed., It is worth observing though
that many of the previous concepts discussed only for time-invariant
structures do extend to the time-variable situation. For example it
seems relatively simple to set up a theory of equivalence for time-
variable structures from the discussions in Chapter V,

Although the n-port synthesis techniques have been given in terms
of admittances the classical synthesis methods in terms of scattering
matrices can also be extended [6] [7] [8] though as yet these latter
time-variable methods have not really applied the concepts of state-
variable theory for their success.

As 4 point of philosophical interest we point out th:it the passive
synthesis of Section C can be applied to non-stable network functions,
such as T = 1/(p-1). Consequently one can relatively easily construct
passive unstable networks, a rather paradoxical situation when 1t is
realized that many intuitive deductions concerning nassive networks have

rested 1pon the 'stability" of passive structures.

134 SEL-67-110




T TN T

= = T T o o e G e i et o+ et — e bt e

References

Youl~, D. C,, "The Synthesis of Linecar Dynamical Srstems from
Prescribed Weighting Patterns,” Journal of SIAM, Vol. 14, May 1366,
pp. 527-549.

Silverman, L, M., '"'Synthesis of Impulsc Response Matrices by Internally

Stable and Passive Realizations," submitted for publication,

Moore, J. B. and B. D. O. Anderson, "Extensions of Quadratic Minimi-
zation Theory Using a Covariance Condition," Technical Report No.
EE-6704, Department of Electrical Engineering, University of
Newcastle, Australia, July 1967,

Newcomb, R, W., "A Quasilossl: ss Time-Variable Synthesis Suitable

for Integrated Circuits,'" Microelecctronics and Reliability, Vol, 7,

1968, to appear,
Anderson, B. D, 0,, "Synthesis of Passive Timc-Variable Impedance

Matrices,"

submitted for publication,

Sacks, R., '"Synthesis of General Lincar Networks," Corncll University
Memorandum, July 1967,

Anderson, B. D, 0,, "Passive Timc-Variable Scattering Matrix Synthesis,'
submitted for publication,

Newcomb, R. W., "Active Integrated Circult Synthesis," Prentice-Hall,

1968,

Exerciscs

Synthesize by a passive structure the voltage transfer functions

rn - p+2
3) TP =
hY T(t,1) = trze-(t-T)l(t-r)

Synthesize by the methods described the time-invariant admittance

2p
y(p) = 243

From the result discuss various simplifications which can be made,

or nced to be made, in the theory.
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Give a synthesis for time-invariant voltage transfer functions using
ideas similar to those of Section C, For this one can choose any
positive definite constant matrix V and solve for 2' to yield

Eq. (IX-5c),

Synthesize the voltage transfer function
1
T(p) = el

by the method of Section C, From the result discuss why a passive

network need not be stable.
Discuss means of solving Eq, (IX-9c¢) for 9.
[
Develop a state-variable synthesis of passive scattering matrices,

Extend the results of this chapter to nonpassive structures and

discuss the meaning of your methods,
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Nous vivons a coté de notre véritable vie
et nous sentons que nos pensées les
plus intimes et les plus profondes
meme ne nous regardent pas, car nous
sommes autre chose que nos pensées
et que nos réves, Et ce n'est qu'a certains
moments et presque par distraction que
nous vivons nous-mé€mes,

M. Maeterlinck
"Les Avertis" du "Trésor des Humbles"

CONCLUSIONS

Paradoxically the simple expediant of introducing a set of first
order differentizl equations to describe high order ones has led to the
solution of previously unsolved problems, such as the determination of
all equivalent active structures for a given network, As we have seen
there are many areas where the ideas can be applied, perhaps with a
possibility of gaining insight into the behavior of a system,

Thus, because most systems of practical significance possess an
identifiable state, the state-variable equations give a general, or
universal, means of observing systems. By keeping track of the
solutions of the describing equations in state-variable form one can
keep track of the behavior of the subparts of a system in orderly fashion,
And because this tracking can be done orderly, the theory allows readily
for the computer analysis of networks, this analysis having the possibil-
ity of proceeding in two ways, as we have seen in Chapter II in either
the topological or capacitor extraction form, Once a computer analysis
is set up in this manner the results can be used for other purposes
than keeping a record of voltages and currents; for example Chapter VI
has shown how a sensitivity analysis can proceed from a state-variable
analysis program,

But the most striking uses of the theory occur when synthesis is
considered, Here we have seen that minimal degree realizations, that is
minimum reactive element circuits, result for general transfer functions

hy the theory of Chapter 1V. Even though this latter is somewhat
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abstract its significance should not be overlooked. Because of its
form it allows convenient integrated circuit constructions as well as
analog modeling for simulation and preliminary testing of designs. Also
because of its algebraic form the realizaticn technique allows for the

complete computer design of a system, though as yet such a program

. remains to be carried out. In the area of classical multiport synthesis,

Chapter VII has shown that the introduction of state-variables can lead
to & contribution since a minimal resistor and minimal capacitor circuit
results by application of the given method,

Still it is by way of generalization of the positive-real admittance
synthesis where the most significant contributions of state-variable
theory secem to be made, We have illustrated this in two different ways,
The first is through the introduction of a second variable to allow for
design with both lumped and distributed elements, as covered in Chapter
VIII. The second generalization is that of Chapter IX for the synthesis
of time-variable circuits, Though this latter is as yet not completely
finished, to us it represents a beautiful application of the theory which
in almost all parts is carried out in the time domain,

Once a circuit has been designed the material of Chapter V on
equivalence shows how many other circuits, in fact almost all, with the
same terminal behavior can be found, To complete the picture any of
these can be, in turn, analyzed by the methods of Chapters I and II to
check its performance,

In summary, the theory of state-variables has allowed an almost
complete picture of the theory of networks, in fact within the larger
framework of scientific systems, It has, however, raised many fascinating
problems, some of which we have tried to point out along the way, Thus,
though the theory may offer little to some people it can offer an immense
amount to those who would allow it -- so is it with almost all that we

meat,

Quel jour deviendrons-nous ce que nous sommes?
Nous nous écartions sans rien dire et nous
comprenions tout sans rien savior,

M. Maeterlinck
"Les Avertis" du "Trésor du Humbles"
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No mds, sino que Dios te guarde,
y 4 m{ me dé paciencia para

llevar bien el mal que han de

decir de m{ mas de cuatro
sotiles y almidonados-vale,

o

M. de Cervantes, 'Novelas Ejemplares,"
M, Alvarez, Cadiz, 1915, p, 6
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