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Ici regnalt aussl cet amour qui ne 
s'oxprime plus parce qu'll ne partlcipe 
pas a la vie de ce monde.  II ne 
supporterait peut-etre aucune epreuve, 
11 semble a chaque Instant trahl, et 
la molndre amiti£ ordinaire a l'air 
de la vaincre, et cependant sa vie est 
plus profonde que nous-memes et 
peut-etre ne nous semble-t-il 
indifferent que parce qu'll se salt 
reserve* pour des temps plus longs 
et plus surs. 

M. Maeterlinck 
"Les Avert!s" du "Tresor des Humbles' 

PREFACE 

The nine chapters which follow represent the set of lectures given as a 

final year one semester course at L'Universite Catholique de Louvain for 

the first semester of the 1967-68 school year.  Because of the presence 

of two national languages with the lectures given in a vhird it was 

decided to record the material as covered for student assistance and 

availability for future studies. Also the material often records in 

a consistent whole unavailable research results, and puts on further 

record the nature of Joint cooperation between our associated research 

groups at Stanford and Louvain. 

In the field of electrical engineering the theory of state-variables 

has raised some rather paradoxical situations. On the one hand it is 

often claimed that nothing can be achieved with state-variables that can 

not be done with more classical methods. This point is most frequently 

raised by those who wish to construct working circuits. On the other 

hand the mathematically inclined have a tendency to develop rather minute 

points or to get involved in the elegence of the theory with an attendant 

sacrifice of the practically important aspects. As a consequence the 

two natures of theory and practice tend to become further separated when 

state-variables are involved.  Here we would at least make an attempt 

to resolve this paradoxical situation; that is, we would try to bring 
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theory closer to practice and vice versa. This is done by presenting a 

coherent whole with emphasis upon thos_ aspects of the theory for which 

use can almost immediately be seen or which have proven themselves in 

practice. Actually the subject was suggested by the University as we 

felt that some value could result in the intended types of treatment we 

have enjoyed the challenge and hope that the venture has proven profitable 

for all concerned. 

It should be remembered that the material represents lectures and 

not a polished book, even though it has somewhat the form of a book for 

convenience of the user. As a consequence of its lecture form as well 

as the circumstances of its construction, there is much omitted which 

could profitably be contained. For example, there are points of 

derivations which could profitably be put into notes for completeness 

but which have been omitted in order to cover the material desired in 

the allotted time. Of equal importance is the scarcity of references; 

generally only a single reference available to the author's students 

at the time is given while multiple referencing would be much preferable. 

Likewise there are some topics, as topological and nonlinear synthesis, 

which have been almost entirely omitted but which should properly not be 

for completeness. Among works which we would have liked to add, perhaps 

to be saved for a revised edition, are those of J. Hiller (active theory), 

P. Wang (infinite dimensional theory), H. Watanabe (nonlinear theory), 

R. Yarlagada (topological synthesis), and D. Youla (lumped-distributed 

synthesis). A list of symbols and an index is appended for convenience. 

In conjunction with our belief that life should be constructive 

and associated with a masculine spirit of verse which enhances its 

poetry, we incorporate some nontrivial concepts of the Flemish writer 

in French, M. Maeterlinck. 

R. Newcomb 
Louvain, January 1968 
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Om dat die leeke van alien zaken 
Rime ende dichte willen maken 
Gheijc clerken, dat wonder es, 
So hebbic mi bewonden des 
Dat ic nu wil bringhen voort 
Wat enen dichter toe behoort, 
Die te rechte sal dichten wel; 
Want dichten en is gheen spel. 
Men sal ooc voren versinnen, 
Hoemen dat dicht zal beghinnen, 
Middelen ende daer toe enden. 

Jan Boendale 
"De Leke Spieghel, III' 

ACKNOWLEDGMENTS 

It is with the greatest pleasure that the author takes this 

opportunity to acknowledge, and publicly thank, Professor N. Rouche 

whose efforts, immediate and through past cooperative researches, made 

our stay at Louvain possible. Perhaps this work can be considered as a 

tribute to the program carried out by Professor Rouche. Likewise we 

owe an equal debt of gratitude to Professor V. Belevitch who first 

proposed such a visit to us. Another special debt is owed to Colonel 

B. R. Agins and Captain A. Dayton of the US AFOSR who supported much of 

the research presented. Among many others who have been helpful during 

our stay we would acknowledge the following who have been of particular 

assistance:  B. Anderson, M. Bhushan, M. Blanko, G. Biorci, R. Boite, 

B. Cayphas, S. Chiappone, M. Davio, H. P. Debruyn, C. Desoer, J. Deutsch, 

P. Dewilde (especially), V. and S. Dolezal, T. Duson, G. Francois, 

L. Fritz, A. Friziani, A. Gonzalez-Domfnguez, E. Godor, W, Heinlein, 

W. Holmes, P. Jespers, Y. Kamp, J. Linvill, L. Lloyd, M. Martens, 

J. Neirynck, M. Noväk, R. G. de Oliveira, L, Pope, E. and C. Sautter, 

L. Silverman, R. Spence, F. Stumpers, B. Tellegen, M. E. Terry, 

P. Van Bastelaer, A. Vander Vorst, E. Van Lantschoot, R. Van Overstraeten, 

J. Winkler. 

iv SEL-67-110 



r 

In the words of M. Maeterlinck f'Les Avertis" du "Tresor des Humbles"] 

L'on sent que e'est l'heure enfin 
d'affirmer une chose plus grave, plus humaine, 
plus reelle et plus profonde que l'amiti£, 
la pitie ou 1'amour; une chose qui bat 
mortellernent de l'aile tout au fond de la 
gorge, et qu'on ignore, et qu'on n'a 
jamais dite, et qu'il n'est plus possible 
de dire, car tant de vies se passent 
a se taire! ... Et le temps presse. 

for 

M. A. Gillett 
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Souvent, nous n'avons pas le temps de 
les apercevoir; ils s'en vont sans rien 
dire et ceux-la nous demeurent a Jamals 
inconnus. 

M. Maeterlinck 
"Les Avertis" du "Tresor des Humbles" 

CHAPTER I 

INTRODUCTION - THE STATE 

A. Summary 

Here we briefly review the philosophical nature of the state giving 

a more or less precise mathematical fontulation in terms of system 

transformations and network relationships. An example concerning the 

Brun« structure is given to illustrate various points of the theory to 

be considered. 

B. The State - Intuitively 

Intuitively an object can be described at a given instant by a 

certain set of conditions which in fact are specified by the object be- 

ing described; these conditions are often referred to as the state of 

the object. However, in scientific discussions the state is usually 

taken to mean that set of conditions which when specified at a given 

instant of initiation of an excitation lead to a predicted response over 

the period of excitation. Thus the concept is generally applied to 

causal (that is, nonanticipatory or equivalently antecedal) systems where 

it is possible to predict the output to a given input.  A specification 

of the necessary conditions to allow determination of the output, that 

is an assignment of initial conditions, is essentially a specification 

of the state. The state then is that entity, described through a set 

of parameters (perhaps uncountably infinite in number), which when pre- 

scribed initially allows a unique motion of the entity under determinate 

excitations. We shall soon make the concept precise mathematically at 
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which time we will see that a slight modification is of interest for 

treating networks. 

C. The State - Uses 

Although of the most recent development, our primary interest will 

be the use of the state for design or synthesis.  For synthesis we neod 

to develop a formulation which is convenient for decomposition and 

construction.  In obtaining a suitable development we shall investigate 

analysis methods fi'om which we will see that by isolating a set of 

state variables a convenient analysis method is obtained. The method 

is especially convenient for digital computer formulation, and thus, we 

will obtain several methods for digital computer analysis for circuits. 

The results are further useful for investigation of the transient and 

frequency responses of networks as well as for the determination of 

natural frequencies. Similarly a useful technique for investigating 

sensitivity is btained.- Of particular importance is also the means of 

determining "all" possible equivalents. By reversing the analysis 

process one is led to several design formulations. For example, given 

a transfer function one can algebraically set up a canonical set of 

state variable equations, by a means suitable for digital computer 

programming. From the canonical equations one can revert to an analog 

computer realization, the result being of considerable use for integrated 

circuit design using operational amplifiers. By another interpretation 

of the canonical equations one can obtain an alternate minimal capacitor 

synthesis by loading a gyrator-resistor network. By proper generaliza- 

tion of multivariable functions we can also develop a synthesis for 

lumped-distributed circuits. 

Although it can be claimed that the state variables are nothing more 

than an appropriate choice of variables for ini tial conditions, such an 

outlook is rather narrow. In fact previous results obtained from an 

"initial condition" outlook are rather weak and shallow when compared 

to what has been achieved by the state variable outlook. From the 

previous paragraph we can summarize the results of state variable theory 

to be discussed in the sequel by the following topics; 
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1. Digital Computer Analysis 

a. Formulation of canonical equations 

(1) Topolopxcal means 

(2) Reactive extractions 

b. Transient analysis 

c. Frequency response 

2. Analog Simulation 

a. Integrated circuits 

b. Filter design 

3. Equivalence 

a. Minimal realization transformations 

b. Nonminimal (encirclements) 

4. Sensitivity 

5. Finite Synthesis 

a. Minimal realizations 

b. Loaded n-port theory 

c. Lossless synthesis (hybrid) 

6. Multivariable Realizations 

a. Minimal realizations, etc. 

b. Lumped-distributed synthesis 

c. Noncommensurate line synthesis 

7. Distributional Generalizations 

a. Representations 

b. Time-variable circuits 

8. Inifinite-Dimensional Extensions 

D. The State - Mathematical 

Let us consider as given a system designed to map inputs u  into 

outputs  y.  If we know all inputs applied to the system from its time 

of construction to the time of observation,  t,  then y(t)  is "uniquely" 

known and is determined through a knowledge of the system transformation. 

However, it is more frequent that we have on hand a given system which we 

will begin to use at time t ,  generally without a knowledge of the in- 

puts applied before t .  We will assume that there is a set of parameters 
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s(t )  which we can measure, or somehow determine, such that if the 
«w o 
input u(t)  is known for t > t  then also for t > t  the output —-— m — o — o     -— 
y(t) is uniquely determined [upon a specification of the state s(t )], 
«M ——— ** o 
Since the output is uniquely determined, there exists a transformation 

T[•,•]  such that 

y = T[u,s(to)], t > t — o (1-1) 

Since t  can vary, the state s is also a "function" of time as is 
o ^* 

of course reasonable on intuitive grounds. We point out that in general 

y, u,  and particularly s are multidimensional quantities; we will 

take u as an m-vector, y as an n-vector, and s as a k-vector [for 

example, k will often be the number of capacitors and inductors in a 

circuit],  Pictorially Eq. (1-1) is represented as in Fig. 1-1. 

input transformation 
(with state s) output 

O—> 
y 3 T[u,s(t )] 

■>—0 * ° 

t > t 
- o 

Fig. 1-1.  SYSTEMS REPRESENTATION. 

A system which can be represented by a transformation of the form 

of Eq. (1-1) is conveniently called a state determined system. One can 

in fact make a detailed study of the general types of state determined 

systems [1, p. 67] but it seems more important for our purposes to proceed 

to other studies.  However, we define a few useful concepts. First is 

that of the zero state 0,  defined through 

0 = T[O,0(t )]. t > t 
— o (1-2) 

In other words a zero state is any state which gives a zero output for 

a zero input. As an example of a nonzero zero state consider the balanced 

bridge circuit of Fig. 1-2 where the capacitor voltage serves as the 
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state,  s(t) u [v  (t)}, and we take the applied voltage as Input with 
**      c 

the source current as output. When the applied voltage is zero no in- 

put current flows as is seen by the redrawing shown 'n the (b) portion 

of the figure; thus,  0 = {v (t)}. We observe that in this system all 

y = i 

u = v 

(a) 

-II- 
•v + 

c 

v=0 
C «*• V 
T   C 

i =y 

7 

(b) 

Fig. 1-2.  NONZERO ZEiJO-STATE EXAMPLE. 

states are the zero state, but in general such will not be he case. 

For example if we had taken i  as the output, the output would only 

have been zero if v =0,  that is for this new system, with u = v, 

y = i,  the state s = fv (t)l  is only tha zero state when it is zero; 
1 •»    c  ' 

0 m   f0}. 

With the concept of the zero state on hand we can consider the 

definition of a linear system.  A system is called linear (with respect 

to inputs) if for all constants k,  all initial states s(t ), all 

zero states 0(t ),  and all inputs u,  and u_ , 
«M o ,  "-1      »-Z 

T[k(u -u ),0(t )] = kr[un,s(t )]-kT[u ,s(t )]     (1-3) 

We observe that because of the need to consider the state there is a 

difference between a linear system (in its mathematical representation) 

and a linear transformation. An immediate consequence of this definition 

of linearity is the fundamental decomposition obtained by taking k = 1, 

Ü2 = °- 
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;fcS(V]   = Tfo,s(t )]+T[u,e(t)] (1-4) 

That is, for a linear system the total response can be broken into the 

sum of two parts, one of which is the zero input response and the other 

of which is the zero state response. Thus, superposition not only holds 

with respect to inputs, as Eq. (1-3) shows, but also with respect to 

tne response from initial conditions. 

R, C, K j£ 0 
real constants 

Fig. 1-3.  INTEGRATOR. 

As an example of the decomposition let us consider the integrator 

of Fig. 1-3. The describing equations can be taken as 

Bi - v - -J , 
Cd[v /K - v J 

o' o_ 
dt 

which upon simple substitution of the first into the second yields the 

following-differential equation completely in terms of input and output 

variables. 

RC(l-K) dVo 
K dt K = v. (I-5a) 

To obtain the transformation napping the input into the output this 

differential equation must be solved. We find by any of several means 

(Laplace transforms, for example) 
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,W ■ «„<'„> -»[- erhj (*-*.>]*J[tj«»[- STT5H <« jfcclhj vi(T)J dT 

T[0,s(t )]    + T[u,0(t )]  (I-5b) *»»»*•* o 

We see that Eq. (1-4) is satisfied and that s(t) = {v (t)} = {y(t)} 
"*  1-K ° 

is a suitable choice for the state. Since v =   v  we also see 
c   K  o 

that an appropriate (alternate) choice for the state is s(t) = (v (t)}. 

Perhaps much more should be said about the domains of definition 

of the various quantities but such discussions can also get lengthy. 

We merely mention that for a given system there is usually some restric- 

tion on the type of inputs allowed as well as the range of outputs for 

which the mathematical transformation T[«,-] is valid. In our study 

we will most often assume that the input and output are zero before 

t = t  and that they, along vith the state, are real valued. 

For linear systems it will often be possible to find a description 

in ehe form 

%^ = A(t)s(t) + B(t)u(t) 
dt        mm* m *n 

(I-6a) 

y(t)  = C(t)s(t) + D(t)u(t) + E(t) $fe) (l-6b) 

If such can be found, these equations are called a canonical representa- 

tion and the set 

is called a realization. For such a system having the dimension, k, 

of the state finite, we ascribe the name finite or differential system. 

Likewise, if the coefficient matrices, A(t), ..., are constant then 

the system is called time-invariant (actually this time-invariance is a 

special case of a more general definition applicable to any state 
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determined system [2, p. j).  In most situations of interest the useful 

information about the system is contained in the matrices A, B,  and 

£,  so we will often assume that either E=0 or D=E=0. Thus, 

most of our concern will be with the canonical set of equations 

and the realization 

y = C s + D u (l-7b) 

R = {A,B,C,D} (l-7c) 

It is possible to interrelate the canonical equations with the zero 

state response, T[u,p(t )],  in the time-invariant case (a similar 

development holds for time-varying systems).  When the realization R 

is constant, Eqs. (l-6) yield a continuous transformation, in the sense 

of distribution theory, mapping inputs into outputs (in the zero state). 

Consequently, there exists a matrix J}(0  such that [3, p. J23] 

/no 

h(t-T) U(T) dT (1-8) 
-oo 

where * denotes convolution, that is, the integration exhibited (recall 

that JJ(T) is zero for T < t ). The n X m matrix hi consists of 

distributions (functions, impulses, etc.) and is called a distributional 

kernel; physically it represents a matrix of impulse responses.  For 

Fig. 1-2 we have, for example, 

h(t) =i 6(t) (l-9a) 
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while for Fig.   1-3 we have 

h(t) * RcTT=K7Jexp [" ränHc)]}l(t> (l_9b) 

where    l(t)    is the unit step function and    o(t) = dl(t)/dt    is the unit 

impulse.    By taking Laplace transforms,  denoted by    £[   ],    we have from 

Eq.   (1-8) 

tfillltf]] =fi(p) *[u] (l-10a) 

H(p) = tfhj (i-lOb) 

where JH(p)f P = a + j<u, is called the transfer function matrix (it is 

n X m also). By taking Laplace transforms in Eq. (l-6) we can obtain, 

by straightforward substitution, an alternate expression for the transfer 

function matrix 

H(p) = PE + D + £(Plk - A)"
1 5 (1-iOc) 

where L  is the k X k identity matrix. One of the problems of the 

theory is then to find a realization R = {A,g,C,D,E} given a transfer 

function H(P) since then the canonical equations are on hand. A similar 

problem is to obtain the canonical equations from a given physical struc- 

ture. We comment that Eq. (i-lOc) shows that the transfer functions re- 

sulting from the canonical equations are always rational, when k is 

finite, and possess at most a simple pole at infinity; in the more commonly 

treated case where E = £,  H(P) ^as no pole at infinity. 

We will illustrate some of the above points, while exhibiting a set 

of canonical equations, in the following example of a Brune section. How- 

ever, first we comment that we have considered a given construct as a sys- 

tem by "orienting" its variables, that is, by specifying inputs t.nd outputs. 

Thus, as we already saw in Fig. 1-2, a given construct can yield several 

different systems by having different inputs and outputs assigned. Never- 

theless, the state will generally remain invariant; that is, given a con- 

struct, there is an associated state which in fact can be used with all 
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svsterns obtained from the construct.  Further, a network has been de- 

fined by the set of all pairs  [v.ij  of voltages  v and currents  i 

allowed at its ports [4, p. 7]. We could proceed from this definition 

of a network to introduce the state as a set of parameters needed at 

time  t   to specify allowed pairs  [v.ij  for t > t .  But for our 

purposes it is sufficient to orient variables at the network ports and 

work with inputs and outputs, as for example through the admittance or 

scattering matrices.  We note, though, that in any characterization 

there is a minimum value for the size,  k,  of the state. This minimum 

size is often referred to as the degree 6  of the system; through 

Eq. (i-lOc) we see that  &  is characterized through H;  thus we can 

write 5[H(P)J  or (precisely only when E = 0) 

5 = min k = &[H(P)] = system degree 

We will later see how to calculate 6 directly from H(p)  but for now 

we merely comment that 5 physically represents the minimum number of 

integrators necessary for an analog simulation of the system described 

by the canonical equations (l-7).  We do mention that it is sometimes 

of interest to have more than the minimum number of components of the 

state present, especially for the determination of equivalent realiza- 

tions to satisfy some specified constraints (as for example the desire 

to incorporate only a certain type of transistor in a design).  Fig- 

ure 1-2 has already illustrated an example of a nonminimal/realization, 

where we define a minimal realization as one where the A matrix is 

& x 6,  that is, has its order equal to the degree of H(p).  In this 

case H(P) = l/r, &[ll ] = 0,  and we see that the system of Fig. 1-2 is 

equivalent to a resistor, the situation being as shown in Fig. 1-4, 

where Fig. I-2a has been redrawn in the (b) portion. 

E.  The State - Bruno Section Example 

At this point let us set up the canonical equations for thj non- 

reciprocal Brune section of Fig. 1-5 [5, p.  J, where we make the 
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—o— 

u=v t r   s u^v Q - c 

7-7 i r 
v = O.v + O.v 
c    c 

i =0.vc + 7v 

(a) (b) 

Fig. 1-4.  ZERO AND ONE-DIMENSION REALIZATIONS OF H(p) = l/r. 

♦" I    H\  H I % 

o 1—I—I—il   o 

+ o 

C1'C2 

(a) (b) 

Fig. 1-5. NONRECIPROCAL BRÜNE SECTION (a) WITH CAPACITOR EXTRACTION (b). 

particular choice of input and output (of later use for modeling of 

filters for integrated circuit realization). 

u = 
-i. 

■** 
(l-9a) 

In order to analyze the Brune section to obtain the canonical state 

variable equations we first separate the dynamical elements by removing 

the capacitors as a load on a purely resistive 4-port, as shown in 
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Fig. I-5b. We also take as a convention for the gyrators the symbolism 

of Fig. 1-6. 

1_ 

+ o- 

-O- 

) ( 

-o + 

v. - H: g 

g  o 

-o- 

Fig. 1-6.  GYRATOR CONVENTIONS. 

By summing currents at the nodes marked a, b, c (in Fig. 1-5) and 

summing voltages around the loop d,  respectively, we obtain 

"0  0  0 

0  0  0 

-gx g2 0  0 

-1110 

r~v~i 1 

2 

i 

V2 

v„ — 
3 

v. L -u 

-i o i on 

0  1-10 

0  0  0  1 

oooo 

(l-9b) 

A suitable choice for the state is generally the set of capacitor voltages 

or charges and inductor currents or flux, thus we let 

s = 

C1V3 

c v 
2 4 

(l-9c) 

for which it follows, from Fig. I-5b, that 

L1! 
(l-9d) 

We can therefore rewrite Eq. (l-9b) to specifically exhibit the quantities 

of interest by rearranging the columns. 
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"   0         0~ 

0         1 [•::]• 
"0      -1~ 

0         0 [:]' 
-«1 ° 
-1         0 

«2       ° 
1          0 

«l/C2_ 

B2/C2 

0 
KJ "l     o" 

-1      0 

0       1 0 

0 0      0 0 _°J  (l-9e) 

If we add the second row to the first and -g_ times the last row to the 

third, we can Isolate y fror s to get 

0 

0   I 
'1 

V*i ° 
-1  o 

u + 

0 -1 

0 0 

0 0 

1 0 

y + 

o (grg2)/c2 

o    -g,/c. 

K
2/°i 

*2' 2 

0 
s + 

0 0 

■1 0 

0 1 

0 0 

s = 0 

Using the third row multiplied by -1 and the second row gives 

(l-9f) 

& = 

0 mP  /c t2/   2 
1    + Ml 

0       1 

_ g2-/ci 
0 Ji-H °_ 

a (l-9g) 

while the fourth (by -l) row and then the first give the desired output 

equation 

■i/Cl 0 

o   (vga)/c2 

s + 

1  0 

0  1 

(l-9h) 

These last two equations are the canonical equations for the Brune 

section. 
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• -1 Using Hj[p)  = J) + C (pi    - £)    B    we can find the transfer function. 

H(P)   = 

1 Ö" 

+ 

0 1 
L_ 

0 (g^/c. 

P g
2/

C2 

-1 _ 

Vci ifrg2   °j 

1       0 

0       1 

+ ~2 

"1 

0 (*rv 

P -B9/c 

2 2 
2'~1~2 

P     + g9/C.c 

2       glg2 
P    + c c 12 

"JL 
c. 

f 

(gx-g2)' 2 
P     + 

glg2 
C1C2 

2'   2 

g
2/

Cl P 

0 1 

grg2    0 

(l-9i) 

We comment that one of the alternate choices available for the state is 

s = 

and that for this, or any other choice for the state, we obtain the same 

transfer function.  In fact we observe that there is a nonsingular trans- 

formation mapping one choice for the state into another, that is, 

s = T s ,  T = 

0 

(1-10) 
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As we will later see, any minimal realization Is related to any other 

through a nonsingular transformation on the state as In Eq. (i-lO).  In 

this case 6[HJ = 2,  and thus the realization 

-1 

R = 

—    0 

is minimal. 

gl "g2 
(grK2) 

r. 

2-1   L. 

F.  Discussion 

By way of introduction (or review, depending upon previous back- 

ground) , we have considered the meaning of the state and given the 

primary equations related to our further studies.  For differential 

systems the equations of most interest are the canonical ones. 

s = A s + B u 
•Mt     «WM*     M A 

y = C s + D u 

(i-lla) 

(i-llb) 

with the associated transfer function yielding the output y in terms 

of the input u, when initially in the zero state js(t ) = 0(t ), 

through 

y = h * u 
<M>    ** MS 

given by 

-1. f ^ = ij(p) = E+ « ^pik " ä)~ 2» 

(i-llc) 

(i-lld) 

We observe that in this differential system case the state is that set 

of parameters for which a matrix set of first order differential equations 

can be set up in terms of the transfer function and its realization. The 

matrix h is the impulse response matrix with its Laplace transform 

f[h] being the transfer function. From the expression for J[(p)  in 
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terms of the realization R = {A.B.C.Dl matrices, it is clear that the 

poles of H(P)  are zeros of the determinant of pi  - A,  that is, the 
*■"■ ""k  — 

natural frequencies of the system are eigenvalues of the matrix A. 

We also observe that if we have two realizations  R = {A.B.C.D,} 

and R = (A,B,C D)  related through 

Ä = T_1A T,   B = T_1B,  C=CI,  fi = E»        (i-lle) 

with T nonsingular, then the two transfer functions are identical. 

Thus we have 

A/ \  A  A /     ^\-I7* /  -1    -1  \-l -1 
H(p) = D + C (pi, - A)  B = D + C T (pT T - T A T) T B 

= D + C (pi, - A)-1B = H(p) 

consequently we can investigate equivalent systems by manipulating the 

state variable e iations through methods associated with the transforma- 

tion of Eq. (I-lle), which in fact can be interpreted in terms of the 

state as a basis change in the state space through s = T s.  We are then 

led to observ i  that there is a k-dimen3ional space, the state space, in 

which we have introduced (Cartesian) coordinates against which the com- 

ponents of ^ for the canonical equations are measured.  The actual 

state, for a given input u(t)  and an initial state s(t ), traverses 

the state space on a trajectory s(t), this trajectory giving the "motion" 

or behavior of the system, as verified by Eq, (l-lla,b). 

Our primary interest will be with linear networks considered as 

systems through the transformation formulation so far discussed.  One 

could consider the more general nonlinear case described by the matrix 

differential equations 

i. = JL (£.• ü- Ü.) (l-12a) 

i = i (£• ü' iO (i-i2b) 

However, very little is available in the way of synthesis for such 

equations, so we have chosen to concentrate on the linear case.  We also 

choose to devote efforts primarily to the continuous-time case since it 
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Is of most interest for network studies.  But because our treatment will 

generally be of an algebraic nature, the results are almost all valid for 

discrete-time systems, which in fact have considerable practical impor- 

tance, for example, through the theory of automata. 

In our treatment we have not proceeded in the most rigorous manner 

possible since we wish to bring out only the basic and most important 

points for our later use. Once the concepts we have treated are grasped 

in principle, the more detailed works are available to those interested 

[lj,[6j.  However we have not wished to sacrifice completely the rigor of 

the theory so have proceeded in a rather precise manner for the detail 

given.  Although most of our emphasis will be upon networks, we have 

given a somewhat general systems formulation in order not to overly limit 

the treatment. As a consequence we will most frequently work with a net- 

work in an input-output situation, as for example through the admittance 

matrix where the input  u is the set of port voltages v,  and the 

output  y the port currents  i  (in which case m = n).  Since such a 

(port) description tells very little about the internal structure we will 

use the state to discuss internal operation and construction of the 

network. A network is a system with electrical inputs and outputs. 

It is of interest to know means of obtaining the canonical equations 

so we next turn to a discussion of the setting up of state variable equ- 

ations. 
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Exercises 

1.  Set up the canonical equations for the Hazony section of Fig. 

EI-1.  Do this for the input-output variables of Eq. (l-9a) as 

well as for the admittance and impedance matrices as transfer 

functions. 

c 

Fig. EI-1.  HAZONY SECTION. 

1 " 1 
g 

o  
)     ( 

 o 

*2.  Given the canonical equations for the admittance matrix (as the 

transfer function) and those for the impedance matrix, find the 

relations between the two realization set matrices.  Repeat for 

the scattering matrix and the admittance matrix given. 

3.  A given network has the canonical equations 

s = 

1 

s  + 

1" 

q_ _0_ 

(El-la) 

y 0   -Q ä + CO u (EI-lb) 

Plot the 

a. Find the transfer function. _ 

b. Find the zero input response for s(t ) =1   I 
, , °   L-2J 

trajectory s^t; in state space. 

*4.       Discuss a formulation for "transfer functions" in terms of the 

realization matrices for time-variable networks. 

5, As we have mentioned, the state applies to much more than sci- 

entific or physical systems. Investigate the concept in terms 

of, for example, language formation or motion picture production. 

6. Consider any network of interest and set up the appropriate state 

space equations.  From these, investigate the minimality of the 

realization as well as other sets of canonical equations yielding 

the desired transfer function. 
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Mais d'autres s'attardent un peu, nous 
rcgardent en souriant attentivement, 
semblant sur le point d'avouer qu'ils ont 
tout coiapris. 

M. Maeterlinck 
"Les Avert is" du "Tresor des Humbles" 

CHAPTER II 

FORMULATION OF CANONICAL EQUATIONS 

A.  Summary 

By the »s? of appropriate replacements and capacitor extractions a 

simple method of equation formulation suitable for digital computer use 

is presented; the method is described in terms of the admittance descrip- 

tion but can be used in other situations. This method is followed by 

the outline of a topological one which exhibits a more general set of 

equations. 

B.  Capacitor Extractions 

Let us consider as given a finite circuit, that is, a connection of 

a finite number of resistors, capacitors, indue.ors, transformers, gyra- 

tors, and devices, such as transistors, which can be modeled by the 

above elements.  (We assume linear but perhaps time variable and active 

elements at this point; that is, negative as well as positive element 

values which may vary with time are allowed.)  To illustrate the method, 

we search for the canonical state variable equations for the admittance 

matrix as transfer function [lj.  To concentrate on fundamental concepts, 

we replace all inductors by the capacitor-loaded gyrator equivalent 

shown in Fig. II—1, 

After making such a replacement we extract all capacitors into a 

separate network which loads a multiport described completely by alge- 

braic constraints.  If the admittance matrix is  n X n and if there are 

c  capacitors extracted, the situation is shown in Fig. II-2, where 

the "resistive" (n + c)-port is loaded by a capacitive c-port. 
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g = 1 

d£i 
dt 

)     ( 
c = I 

V   = _ iiisMi 
g      dt 

(a) (b) 

Fig. II-l.  INDUCTOR EQUIVALENT. 

resistive 
(n+c)-port 
[algebraic 
constraints] 

Jh 
+ 

C                v                   c n e 
***        > 

Fig. II-2.  CAPACITOR EXTRACTION. 

Our reason, of course, for isolating the capacitors is that their 

charges, or voltages, can serve as state variables. We can obtain a 

general description, that is, an fl v = %  i characterization, for the 

resistive (n + c)-port, but let us assume that this (n + c)-port 

also possesses an admittance description Y ,  where since we are allow- 

ing the presence of time-variable circuit elements, we have that Y = 

Y (t).  In order to be able to apply the load constraints to obtain the 

state-variable description, we can partition Y  according to the ports. 

i to* 

= Y 

v 

=: 
Zll -2>12 v 

k\ •«2 «Xai ^22_ A 
(II-l) 

SFX-67-110 20 



We point out that the existence- of  Y   is an assumption of the theory, 

and one which places a restriction (which is often not too severe) on 

the class of circuits considered. 

At this point it is convenient to rewrite the above equations in a 

partitioned form more useful for finding the canonical equations.  Thus, 

■«•n H H -11 

L^21J 

[*]- «i'l2 

_JÜ22_ 

[I2J 71 

•j mm   I 

(U-2a) 

Next we observe that we should be able to choose the capacitor charge as 

the state, in which case we define 

s = c v (ll-2b) 

while from the load constraint we observe 

■*2 

d a  v0 ■•» »«2 

dt 
(ll-2c) 

Here we have taken the matrix  .  as the e X c diagonal matrix of 

capacitance values; any capacitive coupling we assume to have been taken 

into account through transformers absorbed into the resistive (n + c)- 

port.  We also assume  c(t)  to be nonsingular.  (Any singularity can 

actually be accounted for again by a change in the (n + c)-port, but 

we omit discussion of this rather tricky point in order to clearly pro- 

ceed.)  Substituting the (b) and (c) portions of Eq. (lI-2) into the (a) 

one yields 

1 
"*n H- 

1 
"*C 

>£ll 

_A2L. 

H .^12 «k 

Jki2 *"> 

[J 
(II-3) 
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The second set of (c) equations gives the derivative portion of the 

canonical equations, while the first set of n equations gives the 

output portion. Thus, 

-1 
»«•»  ~*«22 «■»  -*  «*21 «■» 

(ll-4a) 

i -     '1 

•»«  «»«12 "•"  •*»  ""11 (ll-4b) 

We have obtained the realization 

R={^22^1'^21'Il2^1'ill} (ll-4c) 

in a simple manner.  It is worth mentioning that if time-variable elements 

are present the realization matrices are functions of time, in which case 

we have succeeded in setting up the canonical state-variable equations for 

time—variable circuits.  In the time-invariant situation we observe that 

the method proceeds only when there is no pole in the (n-nort) admittance 

matrix at infinity; we will later (Sec. C) obtain a graph theory con- 

dition for no pole at infinity such that a test can be directly made on 

the circuit graph.  In any case, time-variable or not, the method proceeds 

if and only if the coupling admittance matrix Y  exists; the existence 

of Y  is equivalent to the existence of the inverse of the $ matrix in 

the general description, d v =S i,  for the (n + c)-port coupling network. 

As an example, let us consider the 2-port of Fig. II-3, which is a 

subportion of the nonreciprocal Brune section, useful for its own sake 

(since it is equivalent to a series inductor in cascade with a trans- 

former) . 

<D ) ( 2) ( 02) 
o 

(a) 
Fig.   I1-3.     SHUNT-CAPACITOR LOADED-GYRATOR CASCADE. 
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By extracting the capacitor as shown in the (b) portion of the figure, 

we can obtain the appropriate equations.  First we write the general 

description for the 3-port coupling structure (by respectively summing 

currents at node a and then writing i 

through the gyrator relationships). 

and i  in terms of v 
2. «5 

E. g2 
0 V, "o 0 1 i. Kl 1 1 

0 0 gl V2 
= 1 0 0 l2 

0 0 -g~ V- 0 1 0 i„ 
3. _ 3J mm _ 3j 

(ll-5a) 

The coefficient matrix of the currents is nonsingular, being a permuta- 

tion matrix, and thus on premultiplying Eq. (ll-5a) by its inverse we 

find 

Y = 
««c 

0 10 

0 0 1 

10  0 

-gl 

0 

0 

g2 

0 

0 

0 

'3 J 

0 0 gl 

0 0 
"g2 

-gl g2 
0 

(ll-5b) 

where we have made the partition appropriate to Eq. (il-l).  Note that 

Y  is skew-symmetric,  Y =-Y  (where    means transpose), as ex- 
**C "**C   ""'C 

pected, since it is constructed solely from gyrators. 

Equation (lI-3) is directly 

~i     o~ li 
- " 0~ w- 

0       1 

0       0 

_\ 
0 

1 

"" ° 0~ _Vl" 
- 

0 0 V2 

_-gl g2 

gl/C2 

■g2/C2 

w 

(ll-5c) 

where we have partitioned itie last c = 1 equations to be split off, 

Thus we have, by such a split, the canonical equations directly as 

O.s + [gj -g2. (ll-5d) 
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ll h/C2 
s + 

"0 0" 
*vl" 

UJ _ &2/\ _0 0, Lv2J 
(ll-5e) 

We comment that, since the nonreciprocal Brune section itself has a pole 

at infinity, no Y  exists for it.  However, on removal of the pole at 

infinity, Eqs. (lI-5) result; hence the canonical equations for the 

admittance description of the Brune section are merely obtained from 

Eqs. (ll-5d,e) by adding 

c   -c 
1    1 

to the right of Eq. (ll-5e).  Note also that the canonical equations 

previously found for the Brune section were for a different set of input- 

output variables (that is, a different system).  Still the same method 

was applied at that point. 

We also comment that, upon adding suitable ports and ignoring vari- 

ables of no interest, we can use the same method to find almost any 

input-output canonical set uf slaLe-variabie equations, perhaps also after 

simple transformations on the variables.  This result is directly seen by 

setting up equations in hybrid form. 

Since the steps carried out are easily programmed, the procedure is 

a very convenient one for use in setting up canonical equations on a 

digital computer.  For such purposes one needs a method for obtaining 

ihr coupling admittance Y  on the computer.  Perhaps the most co e- 

nu>n» wethod is to reduce the indefinite admittance matrix [2, p.  äj 

for the resistive coupling network to obtain Y ;  several programs are 
*nc 

available for finding the indefinite admittance matrix, but a program is 

also very easily written from scratch.  An alternate and almost equally 

useful method is to use the topological methods which we now discuss. 
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C. Topological Formulation 

Let us again consider a unite circuit for which the equivalence of 

Flg. II-l is used to replace inductors; again this replacement is not 

necessary but is convenient for simplification of already complicated 

expressions.  Also we will assume that the admittance description is 

desired for which voltage sources have been placed at the ports. 

By replacing each circuit element branch by a line segment, with an 

arbitrarily assigned orientation, as shown in Fig. II-4, we obtain an 

oriented graph to represent the circuit, the branches of which we can 

-O   O    i 0   P  O    i   i   O 

) ( 

Fig. II-4.  EXAMPLE GRAPH REPLACEMENTS. 

number in some useful manner. A graph associated with a network or 

circuit structure will be called a network graph. 

In order to proceed we introduce the following somewhat standard 

nomenclature associated with a network graph: 

node=vertex 

branch 

path 

a dot on the graph (= a terminal of a circuit 
element branch) 

a line connecting two nodes ( = a circuit element 
branch) 

a sequence of branches and associated nodes 

connected graph a network graph in which every node is connected 
to every other node by a path 

separate part   a maximally connected subgraph (that is, a sub- 
graph for which all branches are connected to all 
other branches in the subgraph and to no others) 

tree 

forest 

cotree 

link 

a maximally connected subgraph of a separate part 
which contains no closed path 

a collection of trees of a graph, one for eacl. 
separate part 

the set of branches (in a separate part) which 
remain when a (fixed) tree is deleted 

a bianch of a (fixed) cotree 
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Although these definitions are not completely rigorous (for example 

"connected" and "closed path" are not made precise), they should be in- 

tuitively clear, perhaps after an example, and are sufficient for our 

purposes. To further proceed we introduce the following symbols: 

b = total number of branches 

l>  = total number of links (cotree branches) 

s = number of separate parts 

t = total number of tree branches 

v - totel number of nodes 

Here !■■      and t are formed by summing over all > rees in a forest. For 

each separate part the number of tree branches is oie less than the 

number of nodes while it is also clear that b = t + t. Thus we can 

directly predict the number of tree branches and links, without express- 

ly exhibiting a tree, through 

t = v s, 1=  b - v + s (II-6) 

As an example, let us consider the 2-port of Fig. II-5 which has 

been closed, as mentioned above, on voltage sources (as will be appro- 

priate to setting up the canonical equations; note that this network is 

identical in port behavior ,o the nonreciprocal Brune section of Fig. 

1-5). A possible network graph is shown in the (b) portion, with other 

graphs resulting by different choices of branch orientation and number- 

ing.  Note that by simple count b = 8, s = 2. v - 5,  and thus, by 

Eq. (lI-6),  t = 3 and i  = 5; these numbers are checked from the graph 

where a possible choice for a tree is shown in boldface (note that there 

are other choices for a tree, but that in a given analysis only one at a 

time is need). v7 

t 
T 

) ( T 

(a) 

) c 3 
Fig.   II-5       EXAMPLE  GRAPH FROM CIRCUIT STRUCTURE. 

SEL-67-110 26 



Since we will wish to .sum currents; :ii Ihr nmli s, »e have also labeled 

them.  We observe that lor a node analysis we wish u> choose tree branch 

voltages as independent variables while lor a loop analysis we wish to 

choose link currents.  In setting up the state-variable equations we 

actually will work with both types of variables. 

Next we introduce the following (column) vector variables: 

i. = vector of branch currents (b X l) 
«•b 
v. = vector of branch voltages (b X l) 
"•b 
j^, = vector of link currents (l X l) 

v = vector of tree branch voltages (t X l) 
**t 
^ = vector of port (source) voltages (n x l) 

i = vector of port currents (n x l) 

Along with these variables we assume the polarity of a given branch's 

variables in conjunction with the given branch orientation as shown in 

Fig. II-6. 

\ 
i 

Fig. 11-6.  POLARITY OF VARIABLES. 

Now we introduce the cut set and tie set matrices from which the 

analysis can truly begin.  For a given circuit we pick a fixed forest. 

The cut set matrix C  is defined by considering the tree branches in 

numerical order; for each tree branch a circle (or similar curve) is 

drawn such that of all the tree branches only the prescribed one is cut 

by the circle.  The (oriented) set of branches cut by any one circle is 

called a cut set. For any one cut set all the currents entering the 

circle on the cut set branches must sum to zero by Kirchhoff's current 

law; considering all  t cut sets we obtain 

0 = a  i (II-7) 

where <■■     is the t x b cut set matrix (consisting of 0 or ±  l's). 

As an example, Fig. II-7 shows the cuts for the particular graph. The 
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resulting cut set matrix is given as the coefficient matrix in the 

equation 

cut I  -*■ 0 1 0 0  0 Al 
cut II •*• 0 = 0 1 1   0 h 
cut III •* 0 0 -1 0  -1_ l3 

K 
Si] HI 

cut set 1 = branch 1 

(II-8) 

cut set II s branch 2 (out) and branch 
3 (out) 

cut set III = branch 2 (in) and branch 
4 (in) 

Fig. II-7.  EXAMPLE COTS FOR  C. 

The tie set matrix  ;i is defined in a somewhat dual manner. Again 

a forest is chosen.  On removing all links a particular link is rein- 

serted; the (oriented) branches forming a closed path under this rein- 

sertion are the associated tie set.  Ordering all tie sets according to 

the numerical order of the links defines, through Kirchhoff's voltage law 

(applied to each loop of Lie set branches), 

0 = 5 v^ (II-9) 

where Ji  is the I   X  b tie set matrix (again consisting of 0 or 

± l's).  For example, Fig. II-8 has 

[ :r c:: :j 
\  V3 

(II-10) 
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lie set I  = branch 2 {+) and branch 1 ( + ) 

tie set II = branch 3 (+), branch 1 (+) 
and branch 4 (-) 

Fig. II-8.  EXAMPLE TIES FOR M. 

We also claim that it is possible to write (recall that 

transpose) 

Mb    Ml «it 
(il-lla) 

iu = 3  i , (ll-llb) 

For the plausibility of Eq. (il-lla), say, let us argue as follows.  By 

Kirchhoff's voltage law it should be clear that the tree branch voltages 

determine all link voltages; hence there Is a linear transformation to 

give v = 4k J[ 1 where ^ is some b X t  matrix in fact consisting of 

zeros and  (+ or -) ones.  If we consider the graph as a closed system 

then the total input power is zero,  PJ  = v. i = 0. Thus y. i = 
in  "**b *"b *"*b ""D *** «> 

v A i, = 0.  Since the tree branch voltages can be arbitrarily assigned 
«•t  **b 
(when the graph is considered as an abstract object), we must require 

A ky, ~  Ä*  *n otner words if we choose Eq. (Il-lla), then Eq. (lI-7) 

follows as a possibility.  [Of course, a proof requires that we argue in 

reverse, but this can be done by beginning with Eqs. (il-ll) at first.] 

For convenience of notation we next choose a numbering of branches 

such that all the branches occur first; thus 

v 
-t 

iba 

^t 
(il-llc) 
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in which case Eqs. (ll-lla,b) show that the cut set ,md tie set matrices 

can be partitioned as 

c = [i ; cj ,      y = [T : i. 
«   «ft i *       m        q  i »(* 

(il-lld) 

where ,£ and T are, respectively t x I    and £ X t matrices; 1      is, 

of course, the t X t  identity. We observe that 

<4n "~    Ä 
(il-lle) 

since again 

vh4. = 0 =J.[lt C] —-tV"D        ~"t «»t "* 

ilJ 

i» = v JT + C]i- = 0 

and v  and £«    can be arbitrarily assigned. 

Our next step is to place all voltage sources in tree branches. 

(We remark that we are only considering the presence of voltage sources; 

if current sources are present, only simple modifications are necessary, 

or one can use the equivalence of Fig. U-9,)  Next we place as many 

1 

)  C v = 1 

Fig. II-9.  CURRENT SOURCE EQUIVALENT. 

as possible of the capacitors in tree branches—any left over are some- 

how "excess"; but the need for considering these excess capacitors is in 

fact the reason for our treating this topological method.  It follows 

that if there is a capacitor link then the path formed by the associated 

tie set branches consists entirely of voltage sources and capacitors— 

such gives rise to a pole at infinity, for example, in the admittance 

matrix.  Let us now further fix our numbering of branches such that 

v,  and v„    take the form 
*»t     mlo 
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Zt = 

h
rt 

U ' (11-12) 

where the subscripts c and r refer to capacitor and resistor portions 

of the graph. 

At this point we can begin the real procedure for setting up the 

state-variable equations [3]. If we partition the matrix JT, of Eq. 

(il-lld), using C = -J, we find for Eq. (lI-9), £ = Jv^,  and for 

il + "£ 
= 

" T 
-Ml 

T 0 ««ci 0" 
MM Set 

Art 

ß .■^21 ^22 T 
"•»23 Ä «ir£ 2n« 

Är£ 

(ll-13a) 

source ■* 

ct -* 

rt -*■ 

1 
•»n 

Ä 

0 

1 .   0 *»ct   «** 

0   1 rt 

•Ml -421 

Al 2 £22 

»*    Wl' '23 

i 
-ct 

i 
«•rt 

ic4 

±r£ 

(ll-13b) 

In these equations T  = jO since if there is a capacitor in a link then 

there is no resistor in the tree branches of the associated tie set. We 

also write i  for the source current and note i = -i,  where i is «•»s ««is  M1 m 
the port current. 
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The circuit element constraints are next assumed to be of the 

form 

- 

Jet 

Ki 
= 

•>»rt 

ir£ 
_                 _, 

dStitt/dt 

d£^i/dt 

«*t*Tt 

SiM 

(ll-14a) 

In actual fact this form places some restrictions on the types of cir- 

cuits allowed since no coupling between tree branch and link resistive 

(gyrntor) elements is allowed; for example, the circuit of Fig. 11-10 

is ruled out.  Of course a more general treatment is possible by using 

(ll-14b) 

irt St Sti Art 

1   9 £.et &t <*r£ 
_, m L      J 

but as we will see. the result is already ;■■ implicated enough in notation 

note:  1 and 6 are required tree branches 

Fig. 11-10.  EXAMPLE OF RESISTIVE COUPLING BETWEEN 
TREE BRANCHES. 

Our next Job is to make appropriate substitutions, etc. Through 

the various equations indexed as shown we can write the right side of 

Eq. (ll-14a) as 
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Identity 

different Ute c< ■* 

Identity 

r/- 

dCv ./dt 

d£/Sci/dt 

«»t—rt 

£/*r* 

r ä 

dC, 

di   -11 

-&t% *ai 

d£&2St" 
dt 

0 

-SA>2£t" 

£At 

d^/dt 

d£t^t/
dt 

S^ 4«rt 

ict 

"£«Iii     ~££Iä 
-l 

irt 

-fi^aSt 

(ll-15a) 

while the left side can be expressed as 

ct Li* -T 
-12 

0  ol 
IM     UM J 

i . 
MtCt 

-ci 

*«rt 

iri 

=  f  1 , = f G„v o (ll-15b) 
i22«r£  *22SjgÄri 

Substituting Eqs. (ll-15a,b) into (ll-14a) yields desirable equations 

with v n    eliminated; but the presence of JJ   and ^ « is unwanted 

so we proceed to eliminate them also. We have 

ri •> v TT   T   T ! L-21  -22  -23J —ct 

Art 

(ll-15c) 
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and 

rt -*• i  = lL„i o -  iLrJifV . = G v (ll-15d) 

Combining these last two gives 

-I =: 
£rt    "   %    I23M-2I      ~22     «^ iwrt £ct 

V 
"«rt 

which on solution  for    v gives 

-1ä 1„-1ä -1 
>rt 

l±rt   +St J23SÄ31    ^t^SÄl      ^Ä   ] 
C v •*t~ct 

(ll-15e) 

Equation  (ll-15c)  then gives 

Is 
-ü   = [-irl 'Wirt + & Jas&W£ J23Sj > 

-1 
[»21  «22«^t J 

C4v , 
*t~ct 

(ll-15f) 

Now let us finally substitute Eqs. (ll-15a,b) into (ll-14a) to get 

SdBji-lri   +  ^23(irt   + Ä^AW'VW^ÜBI      «t^ C4.V       > •«•t««ct 

dC, 
r ~      m* 

=    T      T L**12d t *«11 T 
«12 

d£i£i2£t     ~ -i-, 
dt S12SÄH      ict   +^12£Äl2£t   J dx/dt 

dC v     /dt 

(ll-15g) 
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Equation   (,II-15g)   is   the  sanic  as 

s  = As+Bu +  Fu (ll-16a) 
w MM «a a«   M 

where we have 

s = C v u  = v (il-lfib) 
M *»t"»Ct *» "» 

[-1 
ict  4 2l2^Iia-t 

-n-Mf  ^fes;1 

-;i2 dt 

+ 522£i[-ir£ + ^23^rt + $t lasSAs^ S^sSlJ ~22£t 

r        , -ijV   d£i 
~ = [ict  + Sl^ÄlÄ  J  j*12   dt~ ~11 

+ I22^e ["±r£ + -23(irt  + £t «fej&Ia^    St 2a3&] I: 21 

F = -i i. + f^c.T^c:1! V.C#T, (II-,6< 
- -[ict +3i2£e2a2£t J ii2^Cii 

For the output equations we can use the source portion of Eq. (ll-13b) 

to get 

-i = T,,l „  + T„i „ (11-17) 
w»  >»ll»c£  "»21T£ 

But,   iromEq.   (ll-14a),    j^ c dg^/dt     and   iri = G^;     the   J^ 

part   can be evaluated from Eq.   (ll-15a),   and  the    i   0 part   from Eq.   (il- 

15f).     Thus we find 

j; = £.5 + £u + £ * (n-isa) 
with 

£*£ (ll-18b) 

„      d£^12£t - -1 
C  = T„    ~     + T,,C„T,   C    A - T„,G,, 
*•     *»11 dt «»«ll>~^'->12«"t »»     w»21«»* 

X [***■! + W4t   + S^S^^A^fe^ 
35 SEL-67-110 



-   dc.4        ~ -1 
£. = ~11  dt~~ «11  + ""ll«.£ll2»t £ ~ ~21«Ü 

[■irl + -23{irt + Zl%32ße3]~ £ h£z]$. 

E =  T, ,C„T,, + T C.T-.C  F 
•v.   t»l 1WH£M1 1    *«ll>*£".12»"t *" (ll-18c) 

Thus we observe that the equations obtained are not the canonical 

set but the pair [4] 

s=As+Bu + Fu 

y = Cs + Du + Eu 
MM     ******     **% M«     tu*  «Hi 

(ll-16a) 

(ll-18a) 

Nevertheless if C* = 0 then F = 0 and E = 0, and thus, when thore 

are no capacitor-source tie sets, we obtain the canonical equations. It 

should be observed that the results are valid for time-variable elements 

and that the only real restriction on the result is the requirement that 

there be no resistive coupling between tree branches and links, that is, 

zero (g g    and G*   inEq. (ll-14b). 

Even in the time-invariant case where there are no capacitor-source 

tie sets, where considerable simplification occurs, the equations still 

remain rather messy.  Thus we observe that, although the formulation is 

important for illustrating the general nature of network state-space- 

like equations, the approach is not the most useful to be taken for 

normal analysis or synthesis. 

As an example, let us reconsider the nonreciprocal Brune section of 

Fig. 1-5.  This is redrawn in Fig. 11-11, where the appropriate tree is 

shown with the numbering requested by the theory. 

C 

0*."* 
(a) (b) K   '      Fig. 11-11.  NONRECIPROCAL BRUNE SECTION GRAPH. 
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The tie set and cut set matrices are found as 

4 ■+ ("0 

5 ■*    0 

6 -*    0 

7 -+•    0 
( 

8 ■* LP 

-1 1 0 1 0 0 0 0" 

-1 0 0 0 1 0 0 0 

0 0 -1 0 0 1 0 0 

0 0   1 -1 0 0 0 1 0 

0 -1 0 0 0 0 0 1. 

LV8 

(ll-19a) 

" 1 0 0 ; l l 0 0 o- 

0 1 0 | -l 0 0 0 1 

0 0 i ! 0 0 1 1 0_ 

*4 

. 18_ 

(ll-19b) 

Next we have the element value constraints 
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l3 

l4 

l5 
= 

*6 

h 

>. 

dc2v3/dt 

dcv   /dt 
1   4' 

0       B. 

"gl     ° 

0       0 

0       0 

0       0 

0       0 0      g 

B2 

'V5 

V6 

2 V7 

V8 

(ll-19c) 

Then 

^22^-22      _ 
A  =   -   =   U 

£ =  -Z22^21  =   [gl       "g2j 

,£ =   [0       Oj 

*2l£fo 
gl/C2 

2/'C2 -g2/
c 

D = T    c.T.,   + f01G«T„,   = c, 
*•     «»11  l-ll      -<21"'*A21 1 

1       -1 

•1 1 

E = T,nc-Tln   = c. 
<~     »11   1—11 1 

1     -1 

-1       1 

In this case the resulting equations are canonical  and  take the form 

v 
s = 0-s  +   [-gx       gj       L (ll-19d) 
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r & /c i V 2 

VC2 

s + c. 

rl  -In 

-1   1 

+ c. 

rl  -l 

-l   l 

(ll-19e) 

The result is checked by calculating the transfer function matrix in the 

time-invariant case. 

D. Transformation to Canonical Form 

Because of the presence of F in the resultant topological equations, 

it is of interest to find a transformation to eliminate the derivative of 

the input in the differential equation for the state. Fo~ this let us 

assume that we have on hand a set of equations 

x = Ax + Bu + Fü 

y = Cx + Du + Eu 

The transformation 

x = s + F u 

leads to the canonical set 

s=As+(B+F- F)U 
w    Mi in *•    Mt    <Ut 'tm 

y = C s + (O + F)u + E Ü 
M«    Mt Mt      «M    Mt  •*     "•* *" 

(ll-20a) 

(ll-20b) 

(ll-20c) 

(ll-20d) 

(ll-20e) 

We observe that such a transformation, for which the input becomes part 

of the state, leaves the A. C, and E matrices unchanged. 

E.  Combination of Methods 

If one applies the topological method to a purely resistive structure, 

the results are considerably simplified.  In the cases where there is no 

coupling betveen tree branches and links, one merely has that the admit- 

tance is given by J) of Eq. (ll-18c).  We poin* out that the operations 
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to obtain  D arc in this resistive case relatively easy to set up on a 

computer.  Hence if capacitor extractions are first made and then a 

topological analysis carried out on the resulting; resistive structure, a 

very convenient method of setting up state-variable equations via the 

computer results.  The method is alpo quite easily extended to cover 

those cases where there is resistive coupling between links and tree 

branches. 

By first setting up the graph of the circuit, the topological ap- 

proach can be used to check the circuit for capacitor-source tie sets to 

establish the existence of the E matrix.  If there are such tie sets, 
MM 

the topological formulation to calculate E can actually be carried out-- 

the last of Eq. (ll-18c)—since this calculation in itself is not too 

difficult. 

F.  Discussion 

Because we feel it important to understand somewhat more fully how 

state-variable equations can arise, as well as more of their meaning, we 

have presented two convenient methods of setting up the canonical equa- 

tions.  Although both methods cover most situations of inte" st and have 

been presented for tie time-varying case, neither one is in Itself com- 

pletely general.  The capacitor extraction method is lacking in that 

there can be no capacitor-source tie sets in the circuit while the 

topological method needs to be extended to cover the case where non- 

dynamical (that is, resistive) portions have coupling between the tree 

branches and the links.  The capacitor extraction method has the advan- 

tage of simplicity while the topological method has the advantage of 

proceeding directly from the circuit structure.  When the two methods 

are combined by applying the topological techniques to the nondynamic 

portions resulting from the capacitor extractions, an excellent method 

appropriate for computer analysis of networks results. 

To this point we have not commented upon the existence of various 

inverses needed in the topological approach.  To investigate these would 

cause an inappropriate diversion so we merely mention that in the case of 

passive time-invariant circuit elements all inverses are known to exist 

[3, p. 511J. 

SEL-67-110 40 



In many applications, especially for integrated circuits, one meets 

voltage-controlled voltage sources.  By changing somewhat the theory, 

these can be handled directly, but for our purposes it is worth observing 

that the topological theory presented applies if one is willing to use 

the equivalence of Fig. 11-12, for which each of the cascade portions 

posseses a conductance matrix. 

v. 
S>-V2=kvl 

«t 

1 1 
o 

♦ 

o  

)fl*l )( 

 o—— 

)( 
kv 

 O 

Fig. 11-12.  CONTROLLED SOURCE EQUIVALENT. 

Since the topological method is in itself a bit complicated in end 

results, it is of interest to note that the results are almost identical 

to those obtained by Bryant [4] by very similar means. 

Our next step will be to reverse the procedure and set up a physical 

realization from a state-variable realization. 
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H.  Exercises 

Set up canonical state-variables equations for the filter 

circuit of Fig. EII-1. 

" = \6 

i 

-AAV— 

&i 

) ±    )(    i     )( = y 

Fig. EII-1.  DEGREE TWO FILTER. 

2.   Set up the canonical state-variable equations for the classical 

degree two feedback section of Fig. El1-2. 

u . v^ 

1 
AAAr 

-H- 

-AAA— 
r     c r {£> 

Fig. ElI-2.  DEGREE TWO FEEDBACK SECTION. 

*3.   Develop a method for the analysis by topological means of the 

general resistive structure coming from the capacitor extrac- 

tion method such has been proposed by E. Bailey [öj. 

4.   Set up the canonical state-variable equations for the inte- 

grated circuit integrator of Fig. III-4b and investigate var- 

ious transformations on the resultant equations. 

*5.   Investigate the existence Of the inverses needed to form A, 

J3, £ of Eq. (ll-16c).  From such an investigation, exhibit an 

example of a circuit with no canonical set of state-varidble 

equations.  Further, investigate the set of equations needed 

to be discussed such that all circuits, active or passive but 

with differential equation descriptions, are covered. 

6.   Set up the canonical equations by the topological method with- 

out using gyrator replacements when only inductors and 

capacitors (as well as sources) are present. 
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A la hate, sagement et minutieusement, 
ils se preparent a vivre. 

Et puis, vers la vingtlerne annee, 
s'eloignent a la häte, en etouffant leurs 
pas, comme s'ils venaient de d4couvrir 
qu'ils s'etaient trompes de demeure et 
qu'ils allaient passer leur vie pannl des 
homines qu'ils ne cost!?.issaient pas. 

M, Maeterlinck 
"Les Avert is" du 'Tresor des Humbles" 

CHAPTER III 

INTEGRATED AND ANALOG CIRCUIT CONFIGURATIONS 

A. Summary 

The canonical equations are convenient for system simulation, espe- 

cially through the use of integrated circuits.  Here we discuss the con- 

cepts of interest in terms of appropriate integrated circuit configurations. 

In the development special operational amplifier circuits are considered 

to illustrate some of the points associated with integrated circuit struc- 

tures . 

B. Canonical Equation Simulation - Block Diagram 

Let us consider the canonical equations of the form 

s = A g  + g u (l-7a) 

y = C s + D u (l"7b) 

where the dot has been used to denote time differentiation.  If we integrate 

these canonical equations while denoting Ih^ (zero state) integral operator 

as  l/p,  ihat is, 

H (ill-la) 
t 
o 
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then we arrive  at   the useful  equations  for analog  simulation 

s =A 1, )   [As+BuJ 

C  s   + D  u 

(Ill-lb) 

(lll-lc^ 

where, as before, JL  is the k »  k     identity, the state £ being a 

vrrtor.     For any input ^ the system can be simulated from a given 

realisation R = j^.jg.Cjg},  such that the output y is determined 

by the block diagram of Fig. Ill—1.  Note that since the various sub- 

systems are multidimensional, the separate blocks have, in general, 

multiple inputs and outputs. 

Ü O- £~~U±(r>~-o ?l. ii. s C mm 
, +/ 

r p -iK *   I 

A 

Fig. III-l.  BLOCK DIAGRAM FOR CANONICAL EQUATIONS. 

Several things can be noted concerning Fig. III-l: 

1. Positive feedback is used and hence for (asymptotic) stability 
we require ^A  to have all of its eigenvalues negative. 

2. Except for the integrators, all blocks consist simply of gain 
elements.  Such multidimensional gain blocks can be constructed 
by interconnecting one-dimensional gain blocks, as shown for 
example in Fig. III-2 for the 2-input, 3-output case.  We shall 
later see a method of summing, with gain, many inputs using a 
single amplifier, but at this point remark that the gain blocks 
as well as summers need consist only of operational amplifiers 
and resistors. 

3. All integrators are uncoupled and of unity gain.  In practice, 
and especially with integrated circuits, nonunity gain integra- 
tors must be used, necessitating a scale change.  Since it is 
most convenient to construct all components identicnl with in- 
tegrated circuits, it is practically more useful to simulate ti.- 
system through the equations 
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* 
=
 (PJ*)|A**X 

J[ = £ä + H 

a (lll-2a) 

(lll-2b) 

where A  is an appropriate gain constant.  A simulation of 
these latter equations is just as for the previous ones except 
that the integrator and _A,  J3 blocks are scaled in gain. 

4. For most practical simulations It is customary to use voltages 
as vaript-les, in which case all gains are for voltage transfer 
elements. 

5. Time-variable realizations R are allowed, in which case it is 
of interest to observe that our use of p is as a differential 
operator and not as the Laplace transform variable. 

au  "12 

B21   a22 

32 

Fig. III-2.  THE 2-INPUT, 3-OUTPUT GAIN BLOCK. 

C.  Integrators and Summers 

In order to simulate the canonical equations we see that it is of 

Interest to have gain blocks, integrators, and summers. A glance at 

Fig. III-2, as well as the manner in which summation occurs in Fig. II1-1, 

shows that the gain portions can be incorporated in the summers,  Con- 

sequently, we concentrate upon one-dimensional integrators and multiple- 

input, single-output summers with emphasis upon structures suitable for 

integrated circuits. 

The basic building block is the operational amplifier.  For inte- 

grated circuits one likes to use symmetrical structures with equal resis- 

tors, with quantities ol interest determined by ratios of resistors in 
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place of absolute values, where possible.  Likewise one generally avoids 

pnp transistors where possible because of processing problems associated 

with making both npn and pnp transistors simultaneously. One is 

therefore led to consider the basic operational amplifier structure of 

Fig. III-3, on which many refinements are made to obtain various types 

of improvements, as higher gain by cascading of input amplifiers. For 

reasonable values of R,  larger than the T  emitter-base resistance 

(say R «3 kii),  the gain of the device is roughly [l, p.  J 

K ^7?^; V, U 10 V  at room temperature j (HI-3) 

where q = electron charge, k = Boltzmann's constant, T = absolute tempera- 

ture. We observe that a differential amplifier is obtained, this being 

convenient for summers which both add and subtract. On the circuit 

diagram some of the dc voltages have been Indicated for convenience with 

the input voltages v  and v  assumed held at zero volts dc by exter- 

nal circuitry under the application of no signal. The zener diode is 

inserted in order to allow proper bias of T . 
Q V = V + V./2 
j a   z   b 

v = K(v 
o      + v ) 

differential 
input (gain) 

(a) 

emitter follower 
(output) 

(b) 

Fig. III-3.  BASIC DIFFERENTIAL OPERATIONAL AMPLIFIER. 

One can, of course, use the standard capacitor feedback structure 

for integration, as shown in Fig. III-4a, but if a completely integrated 

device is desired, which includes integrated capacitors, then it is most 
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V  = 
o 

-1 

?o £>-vw 

1\ . 1  i E««(l + i) + i 
V  = 

(a) (b) 

Fig. II1-4.  POSSIBLE INTEGRATORS. 

convenient to use the integrator of Fig. III-4b, which in fact gives a 

slightly larger gain constant also. Note that as with most su h opera- 

tional amplifier circuits we desire infinite gain, K = oo,  in the basic 

amplifier itself, in which case the grounded amplifier configuration gives 

v = ——— v 
o  RpC  i 

(III-4) 

Concerning summation, the diagram of Fig. II1-5 yields a convenient 

circuit for integration which has, for K = oo,  the input-output relation- 

ship [l, p. ] 

V RG +  1 _+ +   V D^" " = \   G.v. -  > RG.v (lll-5a) 

j=l j=l 

Through this relationship any values of the coefficients can be obtained 

through a solution of simultaneous equations since, for the resistance 

R  and R. we have the necessary conductances defined as 
J       J 

j=0 j=0 "j 

G = -- 
J 

(lll-5b) 
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Fig. III-5.  SUMMER. 

However, it should be observed that inconvenient values for construction 

through the use of integrated circuits can occur and thus a cascade of 

components may sometimes be necessary. 

D.  Scalar Degree Two Realizations 

The most practically met situations are those of scalar transfer 

functions.  In such cases the transfer function can be written as the 

product of oeg.'ee one and two factors, having real coefficients if we 

assume that the original transfer function is rational with real coeffi- 

cients.  For sensitivity reasons it is most useful to construct the trans- 

fer function through its factors instead of in one complete form. Thus 

we exhibit a structure for the transfer function 

T(p) = d + -s 
c2P + cx 

2       ny 2 p + 2QD p + OJ 
^n    n 

(lll-6a) 

where we assume for stability reasons that the undamped natural frequency 

(ju  and the damping ratio t 
n 

factor Q can be defined by 

OJ      and the damping ratio t    are nonnegat ivt>.  We *omark that the qualitv 
n 
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and that degree one transfer functions are simply realized (and hrncc 

loft as an exercise). 

We claim that a realization of the general degree two transfer func- 

tion is given by [application of Eq. (i-lOc) gives Eq. (lll-6a)l 

A 

0 

ID 

1 

-2$u 

B fi- I«, 
1 

. J 

D = d 

(lll-6c) 

Assuming nonnegative c , c , d,  a circuit diagram suitable for integra- 

tion would be as shown in Fig. III-6 where the values of resistance can 

be adjusted for available capacitance ranges.  The presence of feedback 

loops can readily be seen, as well as an appreciation gained for the 

complications attendant on going to the complete simulation of higher 

degree transfer functions (without the initial factorization). We observe 

that the minimum number of capacitors, two, is used for Fig. II1-6. 

nAA for d 

for 

Fig. III-6.  POSSIBLE DEGREE TWO SCALAR SIMULATION. 

49 SEn-67-110 



E. Canonical Equation Simulation - Admittances 

In Section Il-b we saw that the state-variable equations could be 

set up for admittance "transfer" function (matrices) by extracting 

capacitors. Here we can reverse the procedure. Thus consider the resis- 

tive (n-t-c)-port, assumed time-invariant, described by 

Je" 
An   &2 

&1   &2 

(lll-7a) 

and loaded in its final c-ports by c unit capacitors, as shown in 

Fig. II1-7. We calc late for the input admittance 

>Zin "III  -Jtl2(p*c +-?22)"^21 (ni-7b; 

If we compare the result with that of the tiansier function 

-1. 
T(p) =D +£(pik -ApB (l-10c) 

we see thai the identification 

*c = U  J (lll-7c) 

is possible, with the dimension of the state chosen as the number of 

capacitors, k = c. Consequently, given a minimal (or even nonminimal) 

resistive 
n            coupling                  c 

(n+c)-port 
v 

«tin - 

0 r ^— s J° 

Y 
<c 

.1 

Fig.   II1-7.     CAPACITOR LOADED STRUCTURE. 
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realization  R = I.A.g,£,ß),  we can construct a circuit, when the Irans 

fer function is an admittance matrix, by synthesizing Y  of Eq. (lll-7i j 

and loading in k = c unit capacitors.  But Y  being a constant matrix 

is realized through the use of (positive and negative) resistors and 

gyrators. Later we will show how Y  can be transformed to become posi- 

tive-real, if the original transfer function admittance,  y. ,  is positive 
■*ln 

real but such requires the development of more theory. We can remark, how- 

ever, that if the state-variable equations have a term E ü added to thr 

output equations, this term can be synthesized by a transformer network 

(constructed from gyrators if desired) loaded in unit capacitors with th»- 

result connected in parallel with that of Fig. III-7. 

To synthesize Y  Itself, we can proceed by decomposing it into : t.- 
^c 

symmetric and skew-symmetric parts, 

Y = Y    + Y 
*c  *c sy m c sk (iII-Ha 

where 

2Y 
*c sy 

= Y + Y  , 
■*c  »c ' 

2Y    = Y  - Y ■*"c sk  "c  T 
Lil-Sh! 

net ric and again, the super tilde    denotes transposition.  The skew-Bvmmr 

part is immediately constructed from gyrators, one for each nonzero pntw 

for example.  The symmetric part can be further decomposed u- 

'c sy 
= £[ir+; (-ir )]j (m-8c; 

where + denotes the direct sum of two matrices.  The right side of 

Eq. (lll-8c) can be synthesized by loading a gyrator coupling network of 

admittance matrix 

L-fi SJ 

11 r T K,I 

5] 
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in r  unit positive resistors and r_ unit negative resistors, as 

shown in Fig. III-8 [recall that a formula similar to Eq. (lll-7b) 

applivf•■]. The coupling structure Itself results as a parallel connection 

of the circuits for the symmetric and skew-symmetric parts of Y . 

"c ay f )   C 2 P-1 

3-* 
Fig. 111-8.  CONFIGURATION FOR SYMMET ..:?.  PART OF Y . 

c 

As an example of the method, let us conrider the degree two lowpass 

admittance 

(p) = 
in"   p2 + 2Cp+ 1 

(lll-9a) 

We observe that this admittance is not positive real (as l/y   has a 
1X1 

double pole at infinity) in which case active devices must be incorporated. 

Combining the realization of Eqs  (lll-6c) with Y  of Eq. (lll-7c) 

yields 

0 -1 0 

Y    = 0 0 -1 
>»c 

1 1 2C 
(lll-9b) 

which has the symmetric and skew-symmetric parts 

sy 

• 0  -1/2 1/2" 

-1/2  0  0 

. 1/2  0  at 

*c sk 

0   -l/2  -1/2' 

l/2   0   -1 

1/2   1   0 . 

(lll-9c) 

SEL-67-110 52 



To diagonalize ihe symmetric part we can add  ~l/4"  times the last row 

to :he first aid then add -4£ times the first row to  the second.  in 

terms of elementary matrices this gives 

V o      o 

j-4C  1   0 

L o  c  i. 

p 

t 
0 -t/«C 

1 0 

0 1 . 

0 -1/2 1/1- 1          0 n" P 
I 

~»e 0 -1/8"    0         0  - 

1/2 0 0 0         1 0 1 0 « o     ?r.    o 

1/2 0 H. n/*t o l. 0 1. 0         0         2' 

On multiplying out the inverses of the transformation matrices (which 

are easily found by changing sign on th*> off-diagonal terms), we arrive 

at 

Y 
*>c sy 

'1    0  l/4cT 

4£   1   0 

0    0   1 

-l/8£ 0   0 ' 

0   2£  0 

0   0   2£ 

1   4C  0 

0   10 

l/4C 0   1 

(lll-9d) 

We observe that the diagonal matrix is not quite in the form used in 

Eq. (lll-8c), but this is not crucial since we merely use nonunit resis- 

tors with the negative one placed first (the other form can easily be 

obtained by using some additional steps). We then wish to load a eyrn- 

tor 6-port described by 

Y  = 
»ig 

0           0 0 1 0 

0           0 0 «c 1 

0           0 0 0 0 

1        -4C 0 0 0 

0         -1 0 0 0 

1/4C    0 1 0 0 

1/4C 

0 

1 

0 

0 

0 

(lll-9e; 
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In one negative and two positive resistors to obtain Y      The result 
K»C  sy 

is shown  in Fig.   III-9a. 

I. 

3=3 en Port 1 

Port 2 

Port  3 

xfifcz 

2" 8tfl 

Port 1 

fen 
-o~x 1 
-o 5n« 

JttrrH 
(a) (b) 

Fig. III-9.  CIRCUITS FOR Y      (a) AND Y 
>*c sy *»i c sk 

(b). 

Port 2 

The circuit for ^     is similarly obtained and is shown in the 

(b) pcrtion of Fig. III-9. The two portions of this figure are connected 

in parallel with the final two ports loaded in unit capacitors to obtain 

the desired input admittance at port 1. 

F.  Discussion 

Using the canonical state-variable equations, analog configurations 

can easily be set up using a block diagram representation of the equa- 

tions; the resulting components are realized through summevs and inte- 

grators, the latter being obtained through the use of operational amplifier 

circuits.  Since integrated operational amplifiers have proven extremely 

practical and since the only other elements needed are resistors and ca- 

pacitors, both of which can be integrated, the method is quite useful 

for integrated circuit designs. 

It is of interest to observe that exactly as many capacitors are 

used as there are state variables, and in fact no fewer can ever be used. 

Since, of the components required here, capacitors are the most difficult 

elements to make in integrated circuits, the method Is about as conve- 

nient as could ever be hoped for. As a consequence we have introduced 

some basic configurations particularly suited for integration. 
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It should be mentioned that in integrated circuits the ratios of 

resistors are rather accurately obtained, whjroas absolute values are 

extremely hi'rd to fix accurately.  If we observe the coefficients for the 

summer multipliers, Eq. (lll-5a), we see thst indeed these coefficients 

depend only upon ratios of resistances. The situation is somewhat dif- 

ferent for the integrator where both resistance and capacitance are 

involved.  In fact, since RC products only quite far away from unity are 

available in Integrated circuit form, it is important to introduce an 

integrating scale constant in the state-variable equations, the A of 

Eq. (lll-2b). 

We observe that although the equations allow time-variable coeffi- 

cients and, in fact, the circuit representations hold for such coeffi- 

cients, it is practically quite difficult to perform time variations on 

the operational amplifier structures. 

Although we have not discussed the possibility, it is actually more 

convenient to perform time variations by use of the capacitance extrac- 

tion method. But we have discussed how the previous analysis method, 

through capacitor extraction, can be carried over to synthesis to create 

a resistive coupling structure by specifying the admittance coupling 

matrix ,Y  in terms of the realization R = {Ä.g.g.ß} .  In conjunction 

with this we have given one method of synthesis of Y  in terms of gyra- 

tors, which can be integrated [2], and positive and negative resistors. 

Since the negative resistors cause some concern for practical integration, 

it is of perhaps more practical interest to point out that Y  can be 

obtained as "in interconnection of voltage-controlled current sources and 

that such sources are relatively easy to integrate [l, p. ]. 

Of the two methods presented, the first probably has the advantage 

in scalar situations of allowing for smaller sensitivities. To obtain 

these sensitivities of small size it is important to decompose the trans- 

fer function into degree one or two portions and cascade the resulting 

sections. However it is worth mentioning that a good sensitivity analysis 

of the second (capacitor extraction) method has as yet not been made. 

Here we really only treated the synthesis of voltage transfer func- 

tions (by the operational amplifier techniques) or of admittance matrices 
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(by the capacitor extraction methods). However, by the use of voltage- 

to-current or current converters, other specifications can equally well 

be realized. 

G.  References 
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H.  Exercises 

1. Set up the state-variable configuration using integrated opera- 

tional amplifiers for the degree one transfer function. Compare 

with results obtainable with simple RC circuits. 

2. Discuss modifications needed in the theories if terms of the 

form E ü are present. Explain why these are avoided, where 

possible, in the operational amplifier techniques. 

3. Complete the example of Section E by drawing the final overall 

circuit. Compare with alternate methods and discuss advantages 

and disadvantages of the method. 

4. Synthesize 

'i>> ■ i   Z   ; 
p + 2gp + 1 

5. Discuss circuits for obtaining the gyrators and negative resis- 

tors needed in Fig. II1-9. 

6. Investigate methods of obtaining practical realizations for the 

case of time-variable structures. 
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IIs sont etranges.  Ils semblent plus 
pres de la que les autres et ne rien 
soupconner, et cependant leurs yeux ont 
une certitude si profonde qu'll faut qu'lls 
sachent tout et qu'lls alent eu plus d'un 
aoir le temps de se dire leur secret. 

M. Maeterlinck 
"Les Avert is" du "Tresor des Humbles" 

IV.  MINIMAL REALIZATION CHEATION 

A. Summary 

By conversion of a high order differential equation to a set of first 

degree ones a minimal realization is relatively easily obtained in the 

scalar case.  For matrix transfer functions the algebraic method of Ho 

is presented for obtaining minimal realizations. 

B. Scalar Minimal Realizations 

Previously we have seen how a given circuit can be analyzed to ob- 

tain an appropriate set of canonical equations.  Likewise we have seen how 

a circuit can be obtained when a realization is on hand, that is when the 

canonical equations are on hand.  Here we complete the picture for time- 

invariant structures by giving an algebraic procedure for finding a min- 

imal realization from a given transfer function.  We begin with the scalar 

case for which the result can be easily given. 

We therefore first begin by assuming as given the scalar transfer 

function 

dp + dp   + ... + d,.p + d, 
T(P) = -g %-, 1 1 (TV-1) 

p + a6p   + . . . + a2p + al 

of degree &•  If we treat  p as the differential operator d/dt this 

transfer function defines the differential equation 
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Lp    + app +   ...   + a2p + a^y =   LdP    f d
g P +   • • •  + d

2P + diJu 

(lV-2a) 

We can now  introduce some changes of variables beginning '."ith 

y = sT   + du (lV-2b) 

which results  in 

[p°-1 + a6p°"2 +  ...  + «gJp9! + a
1
s

1 = [(defa
6

d)P°"    +••••'   (dj-a^flu 

Next letting 

p8l = s2 + (d5-a&d) (lV-2c) 

results in 

r 6-2     5-3        -i 
[p   + a5p   + ...+ a3Jps2 + a2s2 + a^ = 

Continuing by letting 

PS2 = S3 + Kd5-l"6-ld) * a5(V
a5d)^ (lV"2d) 

etc., results in the final equation 

ps& + a6s6 + •B.li6.1 + ... + a2s2 + a1a1 = bgU      (lV-2e) 

where b_  is a combination of the a.  and d.  coefficients.  We have 
o 11 

then obtained the canonical equations which can be summarized as 
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-Bl    ~ 

'2 

S
3 

■ = 

Vi 

Jb - 

0 10 

0 0 1 

0 0 0 

-a       -a       -p 1 2 

0 0 *" s 1 

0 0 S2 

0 0 S3 
-» 

0 1 Vl 

Vl ~v -S8« 

d.    - avd 
o o 

L      b6 

=[1000 0     0] 

—■ -^ 
sl 

S2 

83 
• 
a 

V •1 

_85 

+ du (lV-3) 

We observe that the realization is minimal since A is 6 > & and 

T(P) has degree 5. Also, the same procedure holds for the time-varying 

case with these however being additional derivatives of coefficients in 

the B matrix. 

From Eq. (lV-3) many other (in fact all) minimal realizations can be 

obtained by use of nonsingular transformations on the state, that is by 

introducing 

3 = T s 
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C,  Matrix Minimal Realizations 

The matrix case is much more difficult to pursue. We follow the 

algebraic procedure of Ho [l] by first introducing a nonminimal realiza- 

tion which is reduced to be minimal. 

We begin by observing the form of the transfer function matrix in 

terms of the realization matrices. Assuming the realization to be min- 

imal, that is the state of minimal dimension 6, k = 6, we obtain on 

expanding the Inverse of pi„ - A about p = ou, 

k-1- 

-S+fjfi-TiTJi       ' <IV"4a) 
1=0  p 

.i th 
where A  is the i   power of A. By making a direct expansion of 

T(p)  itself about p = oo yields the coefficients A  for the series 

I(P) =4-i + L -TTT (iv"4b) 
i=0 p 

Since ,T(p)  is rational we can equate term by term in the last two ex- 

pressions to obtain that R = (A,g,£,Jjl  is a realization if and only if 

U = 2Li = XW <iv-4c) 

&± =&^S   >        l = °- 1> -•• (IV"4d) 

Our job is to hunt for an A, ja, £ which satisfy, Fq. (lV-4d); we com- 

ment that this last equation holds no matter if the realization is 

minimal or not, but that we are actually searching for a minimal one. 

Since T(p)  is rational there is a relationship among the A  of 

Eq. (lV-4b).  To obtain this relationship we can find the least common 

denominator polynomial 

g(p) = P + arp   + ... + ax (lV-5a) 
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of T(P) which next allows us to write the transfer function as a matrix 

polynomial divided by g(p). Thus 

,,  ^r+l *  P1"1 ^r * •' • * p32 + &1 
T(P) = r r^T (lV-5b) 

p + a p   + ... + a. r i 

As a consequence the product gfpjj^p) is polynomial and on using the 

expansion of Eq. (lV-4b) we have 

E v'"1 E V) ■ E-v" 
Equating those coefficients,  )>  a A.  _ ,  of p   to zero we find 

ik = " 2-f aA-r+j-l 3=1 
k > r 

(lV-5c) 

As we saw in Eq. (lV-3) the A matrix was the companion matrix 

determined solely by g(p). As a consequence we introduce its general- 

ization, for which we recall that T(p)  is an n X m matrix. Thus, th* 

generalized (rn X rn) companion matrix for g(p)  is defined by 

-n 

0 «•n *n Ä 0 

0 tm 
1 

—n 

0 
■mt & 

0 
Ml 

0 1 

:\K 2-n 'a3in • ■ • -a 1 
r"*n (lV-6a) 

where,   as before,     1       is the    n   ■  n    identity matrix.    To accompany this 

companion matrix wt> nerd  the generalized     (rr.       rm)     Hankel  matrix. 
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r4)     *i 

~A1    A2 

A  ,   A 
_~r-l  —r 

Ar-P 

A 
— r 

A2r-2 (lV-6b) 

From Eq. (lV-5c) we observe that fjn acts to shift rows, or columns, of 

S  when the two are multiplied, that is 
T 

\ *2 
• •  • A 

T 

n s 
•"n-r = s n  = -r-m 

h *3 ... A     i -r+1 

* • • • 
• • • • 
' • • • 

A 
—r 

A     , 
~r+l -2r-l (lV-6c) 

where the superscript tilde denotes matrix transposition. As a conse- 

quence premultiplication of ,§  by jj  brings A  to the (l,l) posicion 

of the result.  In order to isolate this position we define the p x y 

matrix 

""9,7      L-p  !  SpX7-,. ] 
(lV-6d) 

for which the first p columns are the identity matrix with the remain- 

ing columns zero. Then 

A. = 1     (fi1S ) 1 
-l  -n.rn -n-r -m, rm (lV-6e) 

A possible realization is 

A = fi  ,    B = S 1 
m.rm 

C = 1     ,   D = T(w) 
-  -n,rn     -   -v ' 

(lV-7) 
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for note that Eq. (lV-6e) Is just  A. = C A B which is as required by 

Eq. (lV-4d).  This realization however is not generally minimal, having 

k = rn which is generally larger than the minimum size, 6,  required; 

as we will see, Eq. (lV-13), this latter is given by 6 = rank S . As 

a consequence let 

5 = rank S (lV-8a) 

in which case one can readily find nonsingular matrices M and N to 

bring J  to diagonal form 

M §    ä =  1R   1R (IV-8b) — T -  -o,rn -6,1TB 

In terms of the matrices defined to this point we can now exhibit a min- 

imal realization.  Our result is:  a rational n X m transfer function 

matrix T(p),  finite at infinity, has a minimal realization given by 

A = 1R        |ß   J    NL , B = 1R MSI - -o,rn        n    r - - b,rm -      "-o.rn-T -m,rm 

C=l SNL , I>= T(oo) (lV-9) 
- "• n,rn ""r &, rm ~      -^   ' ' 

To see that Eqs. (lV-9) do define a minimal realization we car. pro- 

ceed as follows.  First we observe that 

S* = N L   1R   M (lV-10a) - r  — ~o,rm -o, rn —• 

acts as a pseudo-inverse for jS^ since direct calculation gives 

s =i sf s  ,    S#--S#S S# (lV-10b) 
r   r T — r     T   r—r**r 

Next consider the following sequence of operations which begins from 

Eq. (lV-6e). 

63 SEL-Ö7-110 



A, = l        (fi1 s ) l        =1        n1 s   s" s   I ■"~i      -Mi.rn   — n ~-r    — m.rm      «^n.rn — n -r -r -r -m,rm 

= 1       s   n   s"s   I       =1       s   s^ s   a   s^ s   l 
~n,rn -r -m -r -r -m,rm     ~n,rn~r-r-r -m »r -r ~m,rm 

=  (l           S    N 1-       )(lR        MS    n1 N L       )(lR        MSI ) 
~n,rn »r o,rm    -o,rn ~ - r -m - -o,rm   »o,rn - T -m,rm 

= C  (l, M fi    S    N L       )* B = C A*B m.     «n.rn —   "»n — r •—   — n   rm       —        — ~   — ■o,rn - -n -r— -6,rm 

Here the next  to the lest step is justified by iteration of the result 

ifi      M s   $5   N i       = l.      M n   s   s^ s   a   N L 
— o,rn ■—r-m---5,rm     ^o,rn —    n-r ~r ~r-m - -6,rm 

iR      M n   s   N L      i_      M n   s   N L •~o,rn » ~n -r - -6,rm ~5,rn — - n -r -• ~6,i 

As a consequence a realization has been obtained and it only remains to 

show that it is minimal. 

For this latter demonstration let us introduce the ordinary observa- 

bility and controllability matrices 

P = [C, A C A1"1 C] ,   Q = [B, A B A**"1 B]     (iV-ll) 

Then for any realization, since _A =CA B,     we find from direct multi- 

plication that 

-S
r 

=i S (lV-12) 

Now suppose that there exists a realization having A of size k X k 

with k < 6 = rank S . We have a contradiction since 
*r 

rank S § min [rank P, rank Q] %  k < 6 = rank S      (lV-13) 
~r —     - ~r     v    ' 

where the middle inequality follows from P and Q being of sizes 

k X rm. We conclude that the realization is the smallest possible with 

5 being what we have previously called the degree. 
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0. Examples 

Consider the transfer function 

T(P) = 
P + 1 

(p+l)(p+2) 

(lV-l<*a) 

One procedure would be to connect a degree one realization between the 

Input and first output and a degree two realization between the input and 

sei.<> i output .  however the i inal re. ;ilt wouid have a 3-dimenslonal state, 

which would not be minimal since, as we nexi show, two dimensions suit ice. 

Hence we proceed to apply the theory of the previous section. 

The least common denominator is 

2 2 
g(p) = p + 3p + 2 = p + a2p + B1 (lV-14b) 

Thus we have 

m = 1 , n = 2 r = 2 (lV-14c) 

and for S  we must calculate the expansion of T(p) about infinity up 

to A_.  We find by simply dividing the denominators into the numerators 

beginning with the highest powers of p 

T(p) ■'CHrj'Mj 
i   j_   j_ 

m-l  + p «o +  2 «1 + 3 «2 + ' '' 
P      P 

(lV-14d) 

The Hankol matrix can then be formed 

*r = 
w0    *>1 [:] t:] 

(lV-14e) 
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and one finds by the use of elementary operations Ihüi 

MS     N  = 
m    H*I*   mm 

l 0 0 I) 1 -1 

0 1 Ü 0 0 1 

l 0 1 0 -1 1 

-l 2 0 1 1 3 

[i :] 
1 0 

0 1 

0 0 

0 0 
J (lV-14-f) 

We also have 

""6,rn [: : 
0 

0 
"?>,rm L* 

(lV-14-g) 

The final matrix necessary for Eqs. (lV-9) is the companion matrix asso- 

ciated with g(,p). 

0 0 1 0 

0 0 0 1 

2 0 -3 0 

0 -2 0 -3 

We can then calculate the minimal realization using Eq. (lV-9) 

A = h     o    o    o' 

[o      1      0      0 

1 0 0 0 0 0 1 0 1 -1 

Ü 1 0 0 0 0 0 1 0 1 

1 0 1 0 -2 0 -3 0 -1 1 

-1 2 0 1 0 -2 0 3 1 -3 

[1      0      0      o" 

0       10       0 

1 0 0 0 I -1 1 = 1 

0 1 0 0 0 1 0 0 
L    J L 

1 0 1 0 -1 1 

-1 2 t) 1 1 -3 

10       0        0 

0       10       0 

1 -1 1 1 1 0 = 1 0 

0 1 0 1 0 1 0 ] 
L _ _» 

-1 ] 

1 -3 

(lY-14h) 

[::] 
•1      o 

]      -2 

(rV-15a) 

(lV-15b) 

( IV-15 
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■[:] (lV-15d) 

One can easily check that T(p) results from this realization through the 

calculation of D + C(p 1    - A) B. 

By physically constructing, as in Chapter III, the canonical state 

variable equations 

K] • C: -TO • H ■ (lV-15e) 

(lV-15f) 

one can obtain a device with the given transfer function and which uses 

the minimum number of dynamical elements (capacitors, say, for integrated 

circuits). 

Next let us consider the minimal realization of the general degree 

two scalar 

T(p) = d + 
c2p + cx 

2 2 
p + 2tm p + au r      nr   n (lll-6a) 

which was previously considered (Fig. III-6). We have 

m = n = 1  , r = 6 = 2 (lV-16a) 

and Eqs. (lV-7) already give a minimal realization, as do Eqs. (lV-3) as 

well as Eqs. (lll-6c). For Eqs. (lV-7) we have 

*1- 
-CD ■a& ÜJ_ (lV-16b) 

which follows on identification of terms from 

/   \ 2 „ 2 2 
g(p)   = p     + 2CJCüP  + OJis  p    + n- n 

67 

a„o + a. S
2P (lV-16c) 
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Likcwi so 

-20: c 
n 2 

2t,w c 
n 1 

3C' «• 

it 2 

which follows 1 rum the ox puns ion of f(j>) about infinity 

T(p) = ,1 ♦ —  , 
i' 

Equations (lV-7^ give 

Ü     1 

c, - 2C.' f.,   2t,>.  c, - (l+4^2) -j2c.. 
1      n 2      n 1 n 2 

A » 0. ■ 
—  —1 

-21,. 
n      n 

C = 1 
*•»  — n. rn 

1   ii 

» = S  1 
"*■  - r - m, rm 

D --  (I 

c, - 26. c 
]    • ii 2 

(iV-ltid) 

( IV-l«o) 

(iV-lfii) 

We obsorvo that U.o calculations for Eq. (lV-9) are sometimes unneces- 

sarily burdensome, as for example, in this case M and  N  are not even 

needed.  Also from the simplicity of Eq. (lll-6c) which has C = |c , c j 

we see that perhaps there is a more convenient method (as yet undiscovered) 

lor finding minimal realizations. 

E.  Discussion 

Using a basic equation, (lV-6e), for a decomposition of the matrices 

A  obtained by expanding the transfer function T(p)  about infinity a 
~i "*" 
generally nonminimal realization, Eq. (IV-7), is easily found from which 

simple but ingenious manipulations lead to a minimal realization, Eq. 

flV-9'.  The matrix case is seen to be somewhat .-i generalization of the 

scalar situation where a minimal realization is relatively easily obtained 

by converting a higher order differential equation to a set of first order 

ones.  Because the method proceeds in an algebraic manner directly from 
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the transfer function it is quite suitable for computer synthesis of 

systems, although as yet we are unaware of such a program being carried 

out.  In fact it appears that it is worthwhile looking for improved meth- 

ods, since, as the last example has shown, there are sometimes situations 

when easier calculations than those called for by the general theory can 

be used. 

There are of course other methods of obtaining minimal realizations. 

One such is to augment T such that m = n,  make appropriate frequency 

shifts and constant additions such that it is positive or bounded-real, 

and then give a minimal reactive synthesis of the result [2j. Other 

methods exist which work in the time domain from impulse response ma- 

trices [3 J [4 J. But for the time-invariant case the procedure of Ho, 

given here, presents the most promising because of its possibilities for 

computer synthesis of systems.  Nevertheless we will later, Chapter IX, 

briefly look at the time-domain for time-variable synthesis procedures. 

At this point we have on hand the basic portions of the important 

theories. We have seen how to set up the canonical equations from a 

circuit, and now from a transfer function, and we have shown how to ob- 

tain a circuit from the canonical equations and thus from a transfer 

function. As a consequence our remaining topics are all associated with 

Improvements and extensions of the basic results. We first look into meth- 

ods of finding equivalents, which require more knowledge of the concepts 

of observability and controllability. 
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Exercises 

1. Find j} in compact form for Eq. (IV-3). 

2. For the general degree two scalar transfer function, exhibit 

completely Eq. (lV-3) and compare with the several other 

results available. 

3. Insert the modifications required for Eq. (lV-3) to hold for 

time-variable circuits. 

Find a realization for 

 1_ 

P +.1 
T(p) (pTTTC •(P+2)J 

and compare with the results of Eq. (lV-15) 

Find a realization for 

T(p) = 

p - r 
p + 

2 

i 

_p + a 

for an arbitrary.  What is the nature of the result when 

a = 1? 

*6.  Investigate the realization of T(p) by factorization into 

degree one or two parts and the realization in minimal form of 

each part. 

7. For Eq. (lV-15d) find M and _N and determine a minimal 

realization using the general theory associated with this M 

and ^N. Compare with the realization of Eq. (lV-15f). 

8. Find a realization for T(p) = l/(p+l)  and one for T(p) = 

l/(p+l)(p+2)  and "connect" the two to obtain a realization 

for the text example of Eq. (lV-14a).  Compare the result with 

that of the text and discuss with specific reference to 

minimality. 
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II passe, entre duex etres que se rencontrent 
pour la premiere fois, d'etranges secrets 
de vie et de mort; et bien d'autres secrets 
qui n'ont pas encore de nom, mais qui 
s'emparent immediatement de notre 
attitude, de nos regards et de notre 
visage. 

M. Maeterlinck 
"Les Avertis" du "Tresor des Humbles" 

CHAPTER V 

EQUIVALENCE 

A. Summary 

Through the use of various transformations on the canonical state- 

variable equations one can generally find all canonical equation 

representations for a given transfer function. When the realizations 

are minimal this occurs through nonsingular transformations on the 

state. When it is a question of nonminimal equivalents, decompositions 

involving the "encirclement" of controllable and observable portions 

result. 

B. Minimal Equivalents 

Given a transfer function matrix T(p) which is rational and having 

T(°°) well defined we have seen in the last chapter how to obtain a 

canonical set of state variable equations 

s = As + Bu (I-lla) 
an      «M    mm 

y = Cs + Du (I-llb) 
^ HIM     »•» 

such that the state has minimal dimension,  6,  and with 

T(p) = D + C(plfi-A)
_1B (I-lld) 
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One problem of equivalence, and that which we treat here, is that of 

finding other realizations R = {A, B, C, Dl,  perhaps nonminimal, for 

which the above equations are true.  Hero in fact we will find all such 

realizations.  However we iirst show how to find all minimal realizations. 

Let us consider as on hand two minimal realizations R -  (A, B, C, Dl 

and R - |A, B, C, D|  of a given transfer function n; in matrix T(p). 
w ' •> m     «•< *■> 

We define the observability,  P and P,  matrices and controllability, 

Q    and Q,  matrices as before, Fq. (IV-11); then v/e find 

S  - PQ = PQ (V-la) 
*mr       *» "*       **«* 

We also recall that P and Q have o rows and are of rank 6,  in 

which case QQ,  PP,  and the same expressions in terms of £ and 6, 
»«' ••' >*•<     .2,' 

are bxo nonsingular matrices.  If we premultiply S  by P we obtain 
«»■*r *•*» 

Q =  [(PP)_1p£]Q = TQ (V-lb) 

which serves to define the transformation matrix T = (PP) PP which 

is nonsingular by the fact that 

S  -- PTQ = PQ 

has rank b and T is 6x6.  Postmultiplying both sides of this latter 
/\ 

by the transpose of Q gives, on cancellation of the nonsingular matrix 

QQ, 

P = PT (V-lc) 

Since the first m columns in Q are B we conclude from Eq. (V-]b) that 

B = TB.  Likewise since the first n rows of P are C wr have from 
A, 

Eq. (V-lc) that C = CT.  The canonical state variable equations are then 

s = As + TBu        s  = As + Bu (V-ld) 
Vi»\ HA >hi»« vM* 

A.      —1 AA 
y    =    CT     s  + Du y     =    Cs   •• Dii (V-le) 
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It is then reasonable that the identification 

= Ts (V-lf) 

should be made, in which case T ATs = As. As any initial state is 

allowed we can cancel the s to conclude that any two minimal realiza- 

tions are related through a nonsingular transformation by the relation- 

ships 

A = T AT, 
* -1 
B = T B, 
M       •>  At» 

e = cr (V-2a) 

In other words, any two minimal realizations are given one in terms of 

the other through Eqs. (V-2a) where in fact 

T = (PP)-1W (V-2b) 

By letting T run through all nonsingular 5x6 matrices we obtain all 

minimal realizations from a given one. 

We comment that previously we checked, at Eq. (I-lle), that this 

transformation, Eq. (V-2a), does leave the transfer function invariant. 

As an example let us reconsider the Brune section of Chapter I for 

which 

s    = 

L«a" 0 grg2    o 

u (I-9g) 

y   = -l/c, 

(grg2)/c2J 

s  + 1      0 

0      1 

(l-9h) 

If it is desired to have a skew-symmetric A matrix we can set 

T = 
*ll  t12l 

*2i *nJ 

and examine the set of (nonlinear in t..) entries in 
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T    AT    such   that   the resit] 1   is skew-symmetric.    We find a suitable    T 

MS 

fc~2        N/C5 

(V-3a) 

Thus,  wo  lind 

T    AT 
Jv   c 

T     B 
e — E 

fa,     ^ 

VK2 
A  c2     /Cj 

-1 

2 

CT ■i/v/^ 'Vc! 
(g1-S2)/v/c2        (Bj-ggJ^/cv 

(V-3b) 

which wc know yields an equivalent structure to the original Brune 

section. 

C.  Controllability and Observability 

In order to proceed to nonminimal equivalents it is necessary to 

introduce the concepts of controllability and observability which we 

have already seen inter into the theory of equivalence through the 

matrices P and Q. 

To be somewhat precise we say that an initial state s,(t )  is J *>1 o 
controllable if there exists a finite time  t   and an input u(t), 

t < t< t;, ,  such that s,(t) = t) lor t > t, 
o —  —  1 «•]     i-        —  1 

that is, such that 

the state can be brought to zero (which is also the origin of the state 

space).  By beginning on a trajectory of a controllable state starting 

at  t  we see that later values of time yield controllable initial 
o 

states and hence we can work with controllable states  s(t)  in which 

case we can decompose the stale space into the set of controllable stales 
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and those which are not, the uncontrollable states (this requires also 

letting t  tend to infinity). 

On the other hand an initial state s, (t )  is observable if there 
<*1 o     *  

exists a finite time  t  and a zero input output y(t),  t < t < t , 
1 VM O —    —   1 

such that a knowledge of y(t)  determines s„(t ).  Again we extend 
t* «wl  O 

the concept to all times and hence can decompose the set of states into 

those which are observable and nonobservable. 

Unfortunately the background concepts needed to derive useful 

results from these definitions are rather complicated so we will state 

ome  of the results omitting to some extent noncrucial proofs. As back- 

ground we recall that a vector x is in the nullspace of a matrix M 

if Mx = 0.  Considering the time-invariant case, a state s(t )  is 

controllable if it is not in the null-space of [1, p. 409] 

\ 
W(t ,t,)  =  f eÄ(to"t)BBeÄ(t"to)dt (v-4a) 
«>» o 1     J •»«■ 

t o 

Likewise a state is observable if it is not in the null-space of 

M(t ,t,)  = f eÄ(Vt)CCe-(t-to)dt (V-4b) 
•ft  O  1      J "•"* 

t o 

One can see the validity of this latter, for example, by noting that 

the zero input-output is 

y(t)  = Ce-(t"to)s(t ) 
Mt •» ■-    O 

If we multiply by exp[A(t -t)]C and integrate we have o 

t. 

[e-(to~t)Cy(t)dt = M(t ,t,)s(t ) J •>■ ««  O  1 •>*  O 
t o 

from which s(t )  can be determined if it is not in the null-space of *« o 
M(t ,t.). 
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From the similarity in form and associated statements of W and M 

we see that the controllability and observability properties ot 

s  = As t- Bu (I-lla) 
at*        «W IM     «VM 

y = Cs i On (I-llb) 

are respectively the observability and controllability properties of the 

transposed system 

x    AN + Cii (V-5a) 

y,  - Bx t Du (V-5b) 
^ t     *•«   n»wt 

This result is customarily referred to as the principle of system 

duality and essentially means tli.il '.'.••■ need !o consider only oiv nl Hi« 

two concepts (controllability or observability) as independent. 

Actually the matrices M and W are rather difficult to work with 

and have been only introduced to obtain the principle» of duality which 

links the concepts.  Equivalent results arc expressed in terms of the 

observability and controllability matrices 

P = fC, AC \ _1Ci,    Q = [B, AB, ..., A -1B]  (V-6) 

where k  is the order of A.  Thus the sei of controllable (initial) 

states is the space sparncd by lh<' columns oj ()    while the set of non- 

observable states is perpendicular to the space spanned by the columns 

of  P [2, pp. 500, 50'1 ',  These criterion are easier to apply, as com- 

pared to those for M and W.  We note that if  P and Q have rank 

k  then al] stales are controllable and observable; in this situation 

it is actually true that the realization is minimal,  k = o  (as S 

of Eq. (IV-12) has rank k). 

I).  Nonminimal Equivalents 

Al thi.: point we can nirn lo the general result.  from Iwo sections 

previous we know how to find :ill minimal equivalents so we are interested 
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in the cases where the dimension k of the state is larger than the 

minimum size 6. Such can occur when there are either uncontrollable or 

nonobservable states present, or both.  Consequently it is convenient to 

partition the state vector s into vr-ious canonical components, as 

s 
«c ■ [5 

en „CO ~un uo. 
, s , s ] (V-6) 

where the superscript indices have the following meaning: 

c:  controllable 

•    o:  observable 

u:  uncontrollable 

n: nonobservable 
uo 

Thus, for example,  s   is the set of uncontrollable but observable 

states. 

To accompany the partition of the states we can partition a given 

realization to obtain the canonical equations in the form 

r «en -1 
s - r A.. A,„ A,0 

.             en 
-11 -12 «vl3 -»14 ■M -1 

• CO CO 
s A„, A  A„„ A„„ s H,. 
M -21 £22 -^23 -24 «* -2 
• un un 
s A A „ A„„ A„. s B. — "31 "32 £33 *34 «K £3 
• UO UO 
s «41 A42 h.3 *-44 s  J LB* 

nU (V-7a) 

I  =  [Si£2£3f4] 
en 

- s 
m\            [ 

CO 
s «*>» 
un 

s •*\ 
UO 

L s  J 

n + Du (V-7b) 

In order to have the state s partitioned in the form given by 

Eq. (V-6) generally requires that a transformation be performed upon 

the state.  But once such a partition has been performed we see from 

the physical meaning of controllability and observability that B„, B., 

C , C_  are zero.  Also since there should be no way for the input to 

couple to the uncontrollable states, A  , A , A  and A   are also 

zero.  Since also the nonobservable states should not be seen at the out- 

put even after coupling through observable states we find A , A  and 
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A..  arc also zoo,  Thus vr  can obtain I he decomposition 

• . en ~ 
s - 
■■ cc 
s 
MA 

•Uli 
s 
■M 

• uo 
s 

to •*            — 

"11 il2 »13 
(1 

*22 
0 

0 u AM 
0 0 0 

, r  <:n"| r     -i 
A, . s + H, -14 

CO 
«1 

A„, s n. 
~24 m 

Uli 
-2 

A„„ s 0 
-3-* 

uo 
■*! 

A.. s 0 
-44J L~     -1 iMtf     _ 

(V-8a) 

r« c2 o c4] ■  en" 
s 

CO 
s      i 

Uli 
s 
uo s 

+ Uu (V-8b) 

I'oii.i I i Diic   (V-M   ^iV'    .i   canon 1 i,i i   inn   'rn   realisations  of   ■;  RIVII   i • -ui'-i ■ r 

function    T(p)     when   iln_-  state lias nonminimal   size.     They  tan  lie obtain«'«! 

from any other i cali/ai im*   i>y  .'   i rann I ormat ion    '1       applied  to   the s l-;i t • ■ 

s     ::«,  I».   172 i 

T   s- 
«,C«"«' 

(V-Kc) 

To nc.lunlly find T   tin re arc fixed proce«lti»>s. Inn we remark that the 

dimensions oi the lour subcomponents of  s  can be determined from V 

and Q in which case one can solve for T  by hunting for a canonical 
«- •~c  ' 

realization  R  - (A , B , C , D),  (hat is, one of :ho form of Kqs. 
(■    *• c  «(!  «- c  *> 

(V-Ha,b), in terms of a given one 1! - (A. B, C, l)i  by applying the 

result 

T A   = AT ,     T 13   ~     B, 
«c-c    ~-c     ">c'"«c    «- 

CT (V-«d) 

which holds since V.(\,   (V-Kc) is valid. 

The important point lo observe is that only the matrices of a 

minimal realization Ii  - |A„_, B„, c , 1)1 enter into T(p) .  dial is 
in   -22    -2    " 1 *» 

since 

T(p)  = D 4 C(pl -A) \i  -  I) i (_,,(!.] -A  )_1nfJ    (V-<0 
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the other nonzero entries of R  are com4letely arbitrary. Thus, given 

any minimal realization we can find all other realizations, nonminimal 

or not, by "encircling" the minimal one arbitrarily but as required by 

Eqs. (V-8a,b) and then transforming by arbitrary (nonslngular) T  as 

required by Eq. (V-8d). This being the case we can derive any realization 

ft from any other R at; shown in Fig. V-l [4], 

bus is 
f. hange 
T 

minimal 
extraction 

m 
basis 

change 
T 

encirclement 
basis 
change 

«-C 

Equivalence for Two Realizations R and ß 

Figure V-l 

Of most practical interest to us is the derivation of nonminimal 

realizations from minimal ones. Since we can readily find a minimal 

realization the procedure of encirclement is convenient for taking a 

given transfer function T(p) and finding all realizations. Note that 

Eq. (V-9) shows that minimal realizations have all state components 

controllable and observable. 

As an example, the circuit of Fig. V-2 has 

s = -s+u 

y = s 

(V-lOa) 

(V-lOb) 

If for some reason one were to want a configuration using two capacitors, 

perhaps to be used jointly for some other purpose, but with only observable 

portions one could proceed from 

• co" 
s — -1 a co" 

s + 1 
• uo 
s 0 ß 

uo 
s .0. 

y a [1 r) 
CO' s 
UO s 

(V-lOc) 

(V-lOd) 
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Dm- tan easily check that those two sots of canonical equations yi> Hi 

the same transfer function.  To obtain the most (general real i/ti t i->.  M 

the tyi"1 required on«-- next can apply the traust uiuui t imi .>i K<I. (V-^'Ii, 

■» <v— -w#- 

vl =U 

- 0- 

1   * 

Example Circuit 

Figure V-2 

In Eqs. (V-10) we comment that a,  f.,   ,- are arbitrary constants. 

However, 1( y -  0  then s   is not observable so that there is some 

further constraint placed on the arbitrariness of the matrix C ;  this 

constraint we believe remains to be determined hut should be expressaiili.- 

in terms of the observability matrix  P. 
im 

From Section Ill-d) we know that for u = v  and y = i  the 

equations of Eq. (V-10) can be physically realized by loading a circuit 

realization of the coupling admittance matrix 

Y 0 -1  -r 

1 l  -a 

o  o  -p 

(V-10e) 

in two unit capacitors.  To obtain the output as a voltage one can then 

insert a resistor and its negative in series with the source to convert 

y = i  to y a v ,  as shown in Fig. V-3.  Such gives an alternate but 

not too practical realization scheme. 
i 

Y 
+1  *c 

-p/w-i—*#— 

Augmentation  to Convert  to Voltage Output 

Figure  V-3 
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E.  Discussion 

Given one set of canonical state variable equations we have shown 

in this chapter how to find all others possessing the same transfer 

function.  Since we have previously seen how to find one realization, in 

fact minimal, from a transfer function, we are now in a position to 

find all state variable realizations from a given transfer function. 

In some sense then we have found all equivalents. 

However in another sense we have not completed the picture since 

we have not shown how to find aLl physical circuits yielding a given set 

of canonical equations. To be sure there are several since, for example, 

we can give an analog simulation or we can synthesize a resistive coupl- 

ing network to load in capacitors and indeed these two methods yield 

different structures. However, one can apply the standard theory of 

Howitt [5] to generally find all physical resistive coupling circuits, 

the ones containing operational amplifiers usually being included in 

the result. 

The theory has been given for time-invariant systems. The primary 

reason for excluding time-variable ones at this point is that one can 

not generally expect the decomposition of the state into the components 

r ,cn  ,co „un  ,uo,  «..,..   ,, ..    ,    .. 
s=[s  ,s  ,s  ,s    to hold for all time unless there is some 

restriction placed upon the system. Of course time-invariance is a 

sufficient restriction in which case a constant transformation exists to 

bring the realization into canonical form. Nevertheless much can be 

said about the time-variable case where the use of proper transformations, 

which may be time-variable even in the time-invariant case, yields a 

different canonical form [6],  Perhaps the flow pattern of Fig. V-4 is of 

interest in depicting the structure of the actual decomposition. 

The somewhat complete nature of the equivalence results, which have- 

not been obtained by other means, should give sufficient justification 

for the existence and study of state variable theory.  Nevertheless the 

concepts of controllability and observability can be expressed in terms 

of cancellations in [pL-A]  B and C[pl.-A]  ,  respectively [1, 

pp. 389, 408],  Likewise, if internal variables are considered in an 

(iv = Si description the concepts can be expressed in terms of the (i 

and 9>    matrices [7], 
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Flow Pattern for Canonical Realization 

Figure V-4 

In summary, using the dual concepts of controllability and 

observability we have been able to obtain a feeling for the internal 

structure of time-invariant systems through the form of canonical 

realizations. Using the results we have also been able to obtain all 

canonical state variable equations, thus allowing a designer maximum 

freedom of choice to obtain a desired circuit configuration. 
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G. Exercises 

1. Complete two syntheses of the canonical equations of Eq. (V-10). 

Compare the results and discuss relationships between them. 

2. Find all canonical equations using two state parameters for 

equivalents to the circuit of Fig. V-2. What chants if an arbitrary 

number of capacitors are allowed? 

3. Suppose that it is possible to find a time-variable transformation 

T (t) to bring the state to the canonical form of Eq. (V-6). 

Discuss the changes in Eqs. (V-8) and Fig. V-l. 

4. Discuss why the basis change T for Fig, V-l could actually be 

omitted from the figure. 

5. Show how T  can be created, at least to a great extent, directly 

from P and Q [4, p. 374]. 

6. Find all equivalents for the integrator of Fig. III-4a) and discuss 

factors influencing the choice of one over another. 
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Rein h'est visible et cependant nous 
voyono tout. 11s  ont peur de nov.s, parce 
que nous les avertissons sans cesse et 
malgre nous; et a peine les avons-nous 
aborde's qu'ils sentent que nous 
reagissons r.ontre leur avenir. 

M. Maeterlinck 
"Les Avcrtis" du "Tresor des Humbles* 

CHAPTER VI 

SENSITIVITY AND TRANSITION MATRICES 

A.  Summary 

Using the canonical equations transfer function sensitivity can be 

conveniently expressed, this being done here for scalar transfer func- 

tions. Time domain calculations can also be made in which case conve- 

nient methods of computation for fundamental matrices are also presented. 

B.  Scalar Transfer Function Sensitivity 

In tsrms of precent changes it is of interest to know how much a 

transfer function changes with a given change in some parameter. Thus, 

for transistor circuits it is of interest often to know th^ effects of 

replacing one transistor by another one having the same characteristics 

except for a different current gain, p. Or alternatively with integrated 

circuits one would desire to know how the overall performance is affected 

by a change in temperature. To study such, the sensitivity of a (scalar) 

transfer function T(p)  to a parameter x has been defined as [l] 

T(p)      x  3T(p) 
sx   = T(PT~5X- m~x) 

Note that in this definition the sensitivity is a complex valued function 

of a complex variable p.  In most cases of interest one really desires 

i> know the behavior of the magnitude of the transfer function for 

sinusoidal signals, that is the actually desired quantity is  S'     '. 
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However this latter is analytically difficult to work with and one does 

have the relationships 

5T(p)  _ jT(p)| . tj4  T(p) 
$x~ S'v"'  = S1'""' + J*c VV" (VI-2a) 

X        x ^x 

and 

|ST(P)( >  |8|T(p)|, (VI.2b) 

both of which are relatively easy to check. 

The sensitivity can be evaluated in terms of a state- space realiz- 

tion through (iffcrenliation of 

T(p)  = D + C(pl-A)~1B (VI-3a) 

If for any matrix G we realize that 

3x     ->  ox — 

then we obtain 

7* - ^+i^(pik-^ s + £<pik-Ä>   ^(pak^> £ 
(VI-4) 

+ C(pl -A)"
1 4? 

•- <-k —   ix 

We observe that, except for the derivations, the only operations involved 

are those already used in forming the transfer function from the realiza- 

tion. Consequently, this method of determining the sensitivity is quite 

applicable to computer analysis of circuits where we have previously 

seen that there are convenient methods of obtaining the realization 

R = fA, B, C, D] from the circuit diagram. We observe, for example, 

that if the realization is set up in the special form of Eq. (IV-3) 

where C = [1, 0, ,,,,  0],  then r<C/r>x = 0 while ?)A/^x    also takes a 

simple form (having only nonzero entries in the last row). 
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As an example Kt us consider the sensitivity to the damping factor 

'  of 

T(p)  = 

Froia Eq. (IV-151) we have 

A 
ft* 

r o    1 

2   2' 

2 2 
p + 2Cu) p + cc 

n    n 

(VI-5a) 

,   C = [1, 0],   D = 0  (VI-5b) 

Then we have 

(Pl9-A) 
-1 

T(p) 

p+2^o 

in which case Eq. (VI-4) gives 

.    # ■ 

0   o 

0  -2 ÜJ 

(VI-5c) 

S£ " l^pl^A)"1 ^(Pljs-A)-^]  . -2CanPT(p)    (VI-5d) 

sJ(JV| = 
T( ic ) ! " 

Si   hi  in which case &  1;' change in C  causes no more than 

If the sensitivi y is desired at p = ja.-,  we find 

a If  change in  |T(j,-i, ) Note also that the sensitivity is zero at 

both zero and infinity frequencies. Of course we could have obtained 

the same results by differentiating T(p''  with respect to C,     directly. 

But if T(p)  is available in terms of the canbnical equations and 

calculated in terms of a digital computer, this direct method of calcu- 

lating the sensitivity generally calls for added routines over that us- 

ing Eq. (VI-4). 

C. Pole Position Sensitivities 

A useful set of design parameters is the set of pole position 

sensitivities defined through 

•>, 
(VI-6) 
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whore p  is a polo of the transfer function T(p).  In general the 

polos of T(p)  arc eigenvalues of A or, what is the same, zeros of 

the determinant  ,(p)  of pi -A.  If wo assume that p.  is a simple 
~ k .- k       

eigenvalue of A  then wo can evaluate the polo sensitivity s ^ for 

p.  with respect to x as follows.  Wo have, which serves to define 

the polynomial  K(p), 

,A(p)  -  (p-Pk)K(p),    K(pk)  / 0 (VI-7a) 

on differentiation 

!^2l    =  (p.„,-^.Ti(p) (vi-7b) 
rX k   x     f X 

Solving for Tp / x on letting p = p  gives, on noting that K(p ) 

kMp)/ >p evaluated at p = p , 
K 

x      x        A(P)/<P I 

P = P., 

where 

A(p)  = det(pl-A) (VI-7d) 

As a consequence the pole position sensitivity is roJative.lv ensilv 

evaluated in terms of the A matrix and with the use of a compute) \2 

To illustrate the situation lot us again consider the transfer 

function of Eq. (VI-5;0 , we have 

,\(p) =    dot (pi -A) =    p  f 2?,:  p f /,        (VI-8a) 
"2. - ^ n    n 

and thus 

cV5i(p)/.''(  = 2n p,      A(p)/.p = 2p ^ 2'      (VI-8b) 

There are two poles of T(p),  lot us consider 
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>! = -<nU,  + ^^1 (VI-8c) 

Then Eq. (VI-7c) gives 

S,.    =  fi) 
k+JFTi 

fa 

(VI-8d) 

D. Time-Domain Variations 

In many situations the quantity of most importance is the actual 

output change as a function of time due to a parameter change.  In such 

situations the canonical state variable equations 

s = As + Bu 

y = Cs + Du 

(VI-9a) 

(VI-9b) 

can advantageously be used. 

Again let us consider a parameter x,  as well as constant (in 

time) realization matrices A, B, C, D,  the last one being a scalar by 

virtue of our treatment of single input single output systems.  Then we 

find on differentiation with respect to x 

TtW 

?y 
7* 

•" r'X    LpX-   Ax 

= C(ve) + T*S + -v-u ** ÖX   Ax-  ,• >x 

(VI-10a) 

(VI-10b) 

To determine Ay/öx we can first solve Eq. (VI-9a) for s and then 

Eq. (VI-10a) for cWT.x.  The important thing to observe is that the 

same matrix A occurs in the two situations, only the forcing functions 

differ being Bu in the first case and (."W x)s + ( •B/.^x)u in the 

second. 

The problem in this case is one of solving the differential equation 

z = Az + f with f known.  Such solutions are obtained in a straight- 
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forward manner, and are in fact conveniently obtained on a digital 

computer, as discussed in the next section.  Consequently, the variations 

in the output,  ^y/.^x,  as a function of time are conveniently obtained. 

Of course they can also be normalized, as for the transfer function, to 

give percent changes if so desired. 

E. Transition Matrix Evaluation 

Theoretically it is a relatively simple matter to solve the 

differential equation 

s  = Az + f (Vl-lJa) 
«     mm        •" 

where f is a known forcing function independent ol  x and A is a 
<m MM •* 

square kxk matrix, also independent of x but perhaps not of time. 

To solve Eq. (VI-lla), which is the type of equation appearing in Eqs. 

(VI-9a, 10a), we first solve the equation 

Z = AZ,    Z(t )  = 1, (VI-llb) 

which is the original one with the k-vector x replaced by the kvk 

matrix Z, without the forcing function and with the identity matrix for 

initial conditions.  The solution to the latter equation can be denoted 

by $'(t,t )  and is called the transition matrix for the system.  In the 

case where A is constant in time this transition matrix can he explic- 

itly evaluated as 

<T>(t,t )  = e«*t-to ,  constant A (VI-12a) 

where the exponential of a matrix is defined precisely by 

At 2 t i t 
e-  = lk + At + A -p  + ... + A jr  - ...     (VI-12b) 

In fact one can directly check that the exponential transition matrix of 

Fq. (VI-12a) does solve the unforced differentia] equation of (VT-11M. 
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As an example, if as in Eq. (V-3b) we have 

A = a 0 -1 

1 0 

(VI-13a) 

then 

2   2 
A = a -1  0 

0 -1 

A3      3 A = a 0  1 

-1  0 

4   4       5   5 
A = a 10,   A = a A (VI-13b) 

in which case Eq. (VI-12b) gives 

At 2 2 4 4 
1-a t /2'.+a  t /41+... 

3 3 5 5. 
-at+a t /31-a t /5I+. 

33 55 22 44 
at-a t /3'.+a t /5'.+... 1-a t /2'.-m t /4'.+... 

cos jat -j  sin jat 

j  sin jat cos jat 

(VI-13c) 

In the case of the zero input situation with k-vector £   we simply 

multiply Z(t ) by z(t ) to get 
•'«WO       •»  O 

z(t)  = *(t,t )z(t ) (VI-14) 

which yields the zero input response.  If f / 0,  then by treating z 

as the output we can apply the fundamental decomposition of Eq. (1-4). 

In the time-invariant case we then wish to convolute the impulse response 

!(t,n)l(t) with f(t), where l(t)  is the unit-step function. Thus 

the general solution of interest to Eq. (V-lla) is 

t 

z(t)  = e-(t_to)z(t ) + fe&(t"T)f(T)dT,  t> t    (VI-15) 

t 
o 

One can check that this latter is a solution by direct substitution in 

the original differential equation. 

90 SEL-67-110 



Several points of observation are worth observing. We see that in 

the time-invariant case the transition matrix is found by summing an 

infinite series. Since the series is always uniformly convergent one 

can use the series summation as a method for finding the transition 

matrix on a digital computer. Such a method involves only summation 

and matrix multiplication and the error after a finite number of te»-mB 

are considered is relatively easily determined [3], Alternate methods 

result from noting that exp At is the inverse Laplace transform of 
-1 ** 

(pi,-A)   as Eq, (VI-llb) shows.  Consequently, all entries in exp At 
•»k •* ■» 

are exponentials or time multiplied exponentials; these can be determined 

from a partial fraction expansion of (pi -A)   where in fact iterative 
*• k m 

methods can be used to replace evaluation of his inverse by simple 

matrix multiplications [4] [5], If also f has a rational Laplace 

transform the final z(t) for Eq. (VI-15) can be relatively simply 

found by inversion of Laplace transforms. Alternatively the needed 

convolution can be carried out directly, though less conveniently, on 

the computer. 

F, Discussion 

In terms of the realization matrices several types of sensitivity 

have been discussed and evaluated, all for scalar transfer functions of 

time-invariant networks.  Both transfer function and pole position 

sensitivity are relatively easily evaluated while time domain variations 

require a solution of the canonical equations to find the transition 

matrix exp At. 

Actually to determine the variations in the output y(t)  due to x 

parameter changes, öy/rix, requires two solutions of the equations 

z = Az + f,  first with f = Bu,  with z(t ) = s(t ),  and then with 

f = (?A/f>x)s + (;W?>x)u subject to ,"te(t )/cOc = z(t ),  this latter 
*.      M  '  *»      m *"0        —  O 

often being taken as zero. Typical results in the somewhat unrealistic 

situations where x = a   are plotted in [2, p. 341], 

Because changes in responses due to circuit element variations can 

be disturbing it is often desirable to try to find circuitry which 

minimizes such variations.  One can see from the formula T(p) - D + 
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C(pl.-A) 'B    that if the entire transfer function is obtained by a single 

realization then the feedback supplied by the configuration will generally 

mean that each circuit element can possibly strongly interact with all 

other components resulting in relatively high sensitivity.  On the other 

hand if the transfer function is broken into degree one or two factor« 

c b 
as T(p) - nfd. i lirTD + C (pi -A )  B i  then those circuit elements 

i  i  P+at j .1  ~! -2-,]  -l 

occurring in a given portion only relatively strongly Interact with thos«' 

components associated with ihe appropriate degree one or two realization. 

Consequently there is practical value in designs based upon the factor- 

ization of transfer functions into small degree sub-portions, 

Finally we mention that, as with most oilier state-variable techniques, 

the theory of sensitivity is made practical tor the use of digital com- 

puters through the techniques discussed. 
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H.  Exercises 

1. Exhibit  a  formula for      y,Ox    in  terms of   the  realization matrices 

and   the  initial   state  and  input. 

2. Show [4]   that 

k:.]   k-i-1 

(pi -A)"1   =   N -^TT-r-0, fck i« £_    cl(n) "i 
i - <' 
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where 

k k-1 
d(p)     =    p    + dxp        + ...  + dj^jP + dk 

and 

So  = h>      Si  = U + diik   ••• 

Äc-i  - 5k-2Ä + Viik'      £ - IwA + \h 

3. Find the sensitivity of the Brune section, Fig. 1-5, to variations 

in the two gyrators.  From this determine which gyrator should be 

most stably constructed. 

4. Discuss the actual programming involved in setting up Eq. (Vl-15). 

Give a flow chart for a program to determine cty/c»x on a digital 

computer. 
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II se peut qu'il n*y xlt aucune arriere - 
pensee entre deux hommes. mais 11 y 
a des choses plus imperieuses et 
plus profondes que la pensee. J'ai 
6t6  plusieurs fols temoin de ces 
choses, et un jour Je les al vues de 
si pres que je ne savais plus s'il 
s'agissait d'un autre ou de moi-meme ... 

M. Maeterlinck 
"Les Avertis" du "Tresor des Humbles" 

CHAPTER VII 

POSITIVE-REAL ADMITTANCE SYNTHESIS 

A. Summary 

The results of the Positive-Real Lemma, whose proof is merely outlined, 

are applied to obtain a transformation which yields a positive-real coupl- 

ing admittance to load in capacitors such that a passive circuit synthesises 

a positive-real admittance Y(p). 

B. Introductory Remarks 

Previously, Section III D), we saw that if an admittance matrix 

Y(p)  has a state-variable realization R = (A, B, C, D]  then a physical 

structure yielding Y(p)  as the input n-port admittance results from 

loading a resistive coupling  (n+k)-port structure described by the 

admittance 

Y D  -C 

B  -A 

(III-7:) 

in k unit capacitors.  Here Y(p)  is an nxn matrix while k is 

the size of the state; conveniently k is taken as the minimal value 

6,  this being the degree of Y(p).  The structure is as in Fig. VII-1 

which is Fig. III-7 repeated for convenience. 
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X<p) 

Z£ 
resistive 
coupling 
(n+6)-port 

Y    = r D -Cl 

LB -A j 

1 

Realization Structure 

6 = 6[Y(p)] for Minimal 

Figure VII-1 

However, even when Y(p)  can be obtained through the use of only passive 

circuit elements, this method may require other than passive elements 

since Y  may not be obtainable without the use of active elements, 
">C 

Consequently we recall that all minimal equivalents can be obtained by 

transformations performed upon Y ;  thus all minimal capacitor structures 

result by allowing T to vary in 

T-1B 

-CT 

-T_1AT 

(VII-1) 

Our interest here is to search for a proper choice of the transformation 

T such that the new coupling admittance matrix Y  can be realized by 

passive resistors (and gyrators, recall Fig. III-8). 

We recall that the condition for a given rational nyr. matrix Y_(p) 

to be the admittance matrix of a passive n-port constructed r»f only 

passive circuit elements is that Y(p)  is positive-real [1, n. 240]. 

By definition a matrix Y(p) is positive-real if 

a) Y(p)  is holomorphic in Re p > C 

b) Y(p*) = Y*(p)  in Re p > 0 
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c) The Hermitian part Y„(p), 2Y„(p) = Y(p) +Y(p), is 

nonnegative definite in Re p > 0, 

where the superscript asterisk denotes complex conjugation. If Y(p) 

is positive-real and rational we will call it PR for convenience. 

Since it is known that any rational positive-real matrix has a 

passive synthesis in the form of Fig. VII-1, it is then a matter of 

searching for a suitable transformation T to make Y  positive-real 

when Y(p) is. The purpose of the next sections is to obtain the desired 

2- 

C. The PR Lemma 

First we recall that any PR matrix Y(p)  can be decomposed into 

the sum of two matrices 

Y(p)  = Yf(p) + Y (p) (VII-3) 
v» **1J       **0 

where Y ,  the lossless part has all its poles on the ju  axis [and 
**L 

satisfies YT(p) = -Y (~p)] while Y (p)  has poles only in the open 
«•»L      i"L »»O 

left half plane; both Y»  and Y  are PR while the decr-ioosition can r »L     "O 
be obtained through a partial fraction expansion.  Since the poles of 

Y.  and Y  can net coincide, a minimal realization for Y.  can be ■»L      *"0 "»L 
"added" to a minimal realization for Y  to obtain one for Y.  As a 

consequence we will first obtain properties of these separate realizations 

and then show how to combine them to give the proper meaning to the word 

"added." For convenience we assume Y(°°) = Y («). 

The basic result in the theory is as follows [2], 

The PR Lemma:  Let Y(p)  be an nxn rational matrix with real co- 

efficients and with no poles in Re p > 0, and let R = (A, B, C, D} 

be a minimal realization. Then Y(p)  is PR if and only if there 

exist matrices W , L, and a (unique) positive definite (symmetric) 

P satisfying 

PA + AP = -LL (VII-3a) 

PB = C - LW (VII-3b) 
»•*       at    «««00 
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w \v =    D •» l> (vu-:ic) 

Outline <ii Demonstration:  \s the steps in th" proof arc detailed and 

involved f2"* we merely outline 1 he main ideas with emphasis upon those 

points of Interest for actual calculations. 

To see that if Eqs. (Vll-3) hold then Y(p) 1s PI? is straight 

forward from the following calculations, sine« Y(i>) i^ as sunn d holo- 

morphtc in R«* p.- <> and has real coefficients. 

w* -   Y(p")  » Y(P)    =   D+D + Bd^if-A)" r     r(pif-;\r n 

t    w w     f iii (p*l.-A)-1P + P(plc-/\)_1 IB 

+ B<p*lf-Ä)"1l.W>ä v WJ,(plf-A) B 

=    W W     + B(pfrl,-A)-1[ P(p+pv)+LL|(pK-Al   TIi 

4 B(p"lt-A)_1i.W +W L(pl,-A)~ R 

=    |\V   +B(p*l. -A)_1L|r\V   +L(pl,-A)~  B| 

+  B(pyl,-A)'"1[(p+P*)P|(pjF-A)~   B (VI I- 1) 

Thin last show« that  Y (p)  is positive semidefintte for all  p with 

|np * 0,  that is in the right half plane, since  P can also be 
1/2 1/2 ""* 

factored into P - P  P    with the square roots also symmetric. 
«k       *m. «*■ 

To show that Y(p)  is PR only if Eqs. (VII-3) hold is more 

difficult. We first find a W(p)  satisfying 

Y(p) + Y(-p)  = W(-p)W(p) (VII-5a) 

where   luvl.h«'i     W(p)     is  holomorphie.   together  vvllh   its   right   inverse 

A      ,      in   ll\<    right   half   i>lan> .     Such    W(r<)     ran  lie   found  i'onven i en I lv. 
- r 
Im;    (lie  calculations   can   become   involved | .". j,     The   use  • •!    ihis   nirM   ul.n 

\V(p)        IS   liSCll    HI   '/llili-jl'l I ec    l lie   111 i H 1"! 1 1 1 I V    o|        W(|i),       o|l<ll    ..lül'l'l 

1 act onza i ions  as   the  one  ol   (»«witti-Ll »Jü.   JJJ^V1..J'^H,I ,[»•  UM;»-   In   .nlv;    ' i 

........ JUI. TRIW. WEP&JL :: 
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One can then show that W(p) has the minimal realization R = 

(A. 3, L, W j which serves tc define L; note that the matrices A 

and B are identical for Y(p) and W(p). We then transform the 

minimal realization 

R, ~ fit -A LW 
m »CO J 

, [W L, -B], W W {  (VII-5b) 

of W(-p)W(p)  through Eq. (V-2a) using 

T = h   £ (VII-5c) 

to get the equivalent realization for W(-p)W(p) 

R2 = ([.*   2 
Ho  -A ?B + LW , 

m» m ^ t>co 

[W L+BP, -B], W W )      (VII-5d) 

Here P is the unique positive definite solution of the equation 

PA + A?   - LL 
m. w* m\  » 

(VII-^a) 

Next we note that a realization for Y(p)+Y(~p)  is 

R3 = A  01, FBI, [C, -B], D + Dj 

0 -ÄJ LcJ ' 

(VII-5e) 

On noting the conditions for equivalence and identification of realizations 

we obtain R_ = R_ and the PR Lemma follows, Q.E.D, 

On noting that almost all of the previous holds except that W = 0,. 

and hence L = ö, when Y is lossless and  zero at infinity, we 

conclude that in the lossless case there exists a positive definite 

(symmetric) K    such that 
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J?A+äiA - £ (VTI-6a) 

•»lÄi - £L 
(VII-6b) 

where (A , B , C , 0}  is a minimal realization of the lossless PR 

admittance which is zero at infinity. As a consequence we can replace 

the conditions of the PR Lemma to allow simple poles on the ju) axis, 

none though at infinity, if we use 

P n    P + P , 
«    »L  *»o 

A = A + A 
■*    *»L  ""O 

B = h 
B 

,   C = [C_, C ],   L = 
' m *L  ""O       "» 

L 
""O 

(VII-7) 

where the subscript zeros refer to the realization of Y , that portion 

of Y(p) with only open left half plane poles. Note, however, that now 

P is no longer unique by virtue of the presence of P . 

In conclusion, if Y(p)  is PR with no pole at infinity then 

Eqs. (VII-3) hold with the various matrices obtained using Eq. (VII-7) 

upon decomposing Y(p)  into the sum of a lossless part YT(p) and a 

nonlossless part Y (p). The calculations are theoretically very 

straightforward but the computation for W(p) with the proper holomorphic 

inverse gives considerable difficulty in practice.  However once such a 

W(p)  is found Eqs. (VII-3a) can be solved for P  in a very straight- 

forward manner as a set of linear algebraic equations subject to the 

positive definite constraints. As it stands the method does not allow 

the direct treatment of poles at infinity and these must therefore be 

extracted separately as an added term pC^,,  for the right iside of Eq. 

(VII-2), to be independently considered for synthesis purposes. 

D. PR Admittance Synthesis 

We assume as given an nxn PR admittance matrix which we can, as a 

consequence, decompose into 
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Y(p)  = Y (p) + YT(p) + PC (VII-8) 

where Y (p)  is holomorphic in Re p > 0, all the poles of YT(p) are 

on the Ju) axis and simple with none at infinity, and all three terms on 

the right of Eq. (VI-8) are separately PR. The term pC  is separately 

synthesized, using for example only capacitors loading transformers 

[1, p. 204];  the resulting network for pC  is connected in parallel 

with one of Y + Y. . 
»o  —L 

To synthesize    Y    + YT     we find any minimal  realization "*°     "*« 
R - ([A»+A ]> r^Tl>    CCt >c ]>  D)     and tnen determine a desired    P = 

LB0J 
PT+P  as for Eq. (VII-7).  Since P is positive definite we find its 

1/2 
(unique) positive definite square root P  . Thus 

P = P1/2P1/2 (VII-9a) 

1/2 
In actual fact, since P is in direct sum form we can also write P 

in direct sum form as 

pi/2  .  pi/2;pi/2 (VXMb) 
<"       ««L    »*0 

Next we apply the theory of equivalence of Chapter V, choosing 

T = P'1/2 (VII-9c) 

-1/2 1/2 
where P     is the inverse of P    [note that the P of Eq. (V-2b) 

has a different meaning than the P of Eq. (VII-9c) whereas the T's 

are the samel. We then have a realization ft = {P1/2AP_1  , P1/2B, 
-1/2 

CP   , D}  derived from the original R having its entries as given by 

Eqs. (VII-7). As a consequence, by our introductory comments and Eq. 

(VII-1) we can form 

U D 
«MM 

„«I/2 

-CP tan«* (VII-10a) 

t,l/2« P      B -P1/2AP-1/2 
Ml             W«m                     J 
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YT (») + Y (*>) 

1/2. 1/2 

-rc.fi KP:
1/2

 ; p"1/2) 1 "L-o -L    «*o 
1/2-1/2. -1/2- -\/2, 

(VII-10b) 

(^V'ViLi -(P^V'^VA KP^V7') 
-L  -o   "L     "L  -o  L-L -oJ -L   -o 

L»0J 
By our previous reasoning Y(p)-pC  results from loading the resistive 

coupling network having the admittance matrix Y  in 6 unit capacitors, 

where 6 is the degree of Y(p)-pC . Our claim is now that Y*  is PR 

if Y(p)  is, such that a circuit structure from Y  need use only 

7 , „~c -1/2 a/raters and positive resistors.     That  is,   the- choice    T = P has 

allowed a completely passive synthesis of a    PR    admittance matrix. 

To see  that    $       is    PR    we merely need  to chec:k  to see if   it has 
-c 

a positive semidefinite Hermitian part.     Thus we form 

Y    +f »•c      «c D + D 

P1/2B 
^"1/2- 
P C 

„ -1/2       ,--1/2 
-CP + BP 

-P1/2AP"1/2 p-1/2^1/2 

(VII-lla) 

a ;P-
1/2

) 
p«n      «- 

W W -C  + BP 
„ CO »CO — — *. 

PB -  C       -PA - AP J 

(1     + P~1/2)     (VII-llb) -n 

•1/2.   -1/2. _  ~ 
=  <i +p     +prt   ) «.n —L        —o 

w w       0 
„00-CO » 

-L W 0 
. »0*00      r*. 

-w L n 
mcotO 

L L 
»0-0 -J 

(1 +P~1/2;P"1/2 (VII-HC) 
■»n «L   ""O 

1/2 "1/2   1/2 
where we have used the fact that P    is symmetric, P   = P  , as 

well as Eqs. (VII-3) in their extended form valid for the inclusion of 

lossless parts, Eq. (VII-7). That is, w  is that W(») which corre- 

sponds to Y (p) while £ = [0, L ].  If W^ has rank r,  that is if 

r is the rank of Y (p) + Y (p),  then we can rewrite Eq. (VII-llc) as 
«*0       *"0 

Y +Y «c  »c 
W 
<w 00 

0 

-*1/2i J 
«•0  i—O 

-1/2 
1 rw , 0. -L p  1 
»r u*oo' -»' mo.-o 

(VII-lld) 

101 SEL-67-110 



As shown by Section III D), Y  can now be synthesized by gyrators and 

r positive resistors.  For instance Fig. III-8 applies to synthesize 

the symmetric part, which is one-half of Eq. (Vll-lld), with r unit 

resistors and a gyrator coupling network described by the gyrator conduc- 

tance matrix 

1 
Q--l* 

w 
toco 

0 

1 /2_~ 
L-P -o 

(Vll-lle) 

We comment that zeros in G which designate rows and columns of 

zeros in the symmetric part of Y  are as expected since they are 

associated with the lossless part YT(p) for which no resistors are 

necessary.  In fact since 

r = rank[Y(p)+Y(-p)] (VII-llf) 

and since this rank corresponds to the minimum number of resistors pos- 

sible in a synthesis, we see that besides using a minimum number of 

capacitors this method uses the minimum number of resistors.  In fact in 

the case where the original Y(p)  is lossless, G    of Eq. (VII-lle) 

reduces completely to zero.  Of course the vanishing of the P 

portions of Eq. (VTI-lld) does not mean that JP,  never enters into 
JU 

consideration; for example P  occurs in the skew-symmetric portion 

which acts through gyrators to couple the capacitors to the input ports 

in a lossless manner. 

E.  Example 

Let us apply the method to the PR scalar 

3    2 
/ x    4p  + 2p  + 18p 

y(p) = -~ ~ — (VII-12a) 
p  1- 2p  + <ip + 8 
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2p      lp 
2   ,  P + 2 

p  + 1 
(VII-12b) 

The latter split gives the decomposition into lossless and nonlossless 

parts; thus  y,(p) = 2p/(p +4),  y (p) = 4p/(p+2). 
L o 

Fo)- v,  and y  appropriate realizations  R  and R      are obtain- ■ L       o L       o 
ed from Ecj. (IV-3) as 

0  1], 

-4  0 

1, 0], jo) i 

i 
(VII-12C) 

Rn     =     ([-2],  j-81.  rii,  I4H (VII-12d) 

For y  we have 
o 

y (p) + y (-p) 
o      o 

■Sn ("^lf-,)^)    (VII"12e) -p+2    p+2 
-p  + 4 

We observe that W(p)  is unique to within a minus sipn; we choose 

W(p) 
2j/2p 
p+2 

(VII-l2f) 

for which a realization following Eq. (IV-3) is  ([-2], 1-4^2], [1], 

[2/2]}. We thus desire to choose a transformation T = 1/^2    to bring 

this  B of  -4,/2~ to T B = -8.  Thus we have as the appropriate 

realization R      for W 
w 

RW = fr-2]» r-8"i, [i/v/2.]» i2v/2n (VII-12g) 

We have at  this point    L    = l/J~2    and    W    = 2^2.     The  transformation 

P      is  found from 
o 

PA    + A P 
o o o o -4P      =    -L L       =    -1/2 (VII-12h) o o o 

or 

P       =     1/8, P 
o o 

1/2 1/2/2 (VII-12i) 
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To find r  we observe that y (p) + y (-p) =0 in which case 
L L      L 

L = 0 and we simply solve for a positive definite P  satisfying 

hk+^L=^2'     that iS 

p
li pi2   j ■   0 1 + ' 0 -4 ■ Pll P12l 

= 

P12 p
22' .-4 0 1 0 lP12 P22. 

0  0 1 

0  0 

(VII-12J) 

The (1,1)  and (2,2)  entries require p = 0 whilo ihe (1,2) 

entry gives p  = 4p   as does the (2,1) term. Positive definiteness 
XX      £*£ 

merely requires p  > 0 while P B = C requires 8p  = 1. Thus 

-PL 
1/2   0 

0   1/8 J 

pi/2 
—L 

l/v/2 0 

0 l/2/2~J 

(VII-12k) 

Now the original coupling admittance, before the application of 

P   is 

Y 
— c 

4 -1 0 -1 

2 0 -1 0 

0 4 0 0 

-8 0 0 2 

(VII-121) 

which is not PR as can be seen by the principal middle submatrix A^ , 

We then form 

,1/2 1/2. 
Y   = [i; P^]Y [i; P-1"] 
»»c       •»   >«c   »» 

(VII-12m) 

„1/2  „1/2 • „ 
where P   = P,  + P  or 

*    -L    o 
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0       0 

/* 

0 0 

0     o   -v     0 

:     l 
0       0       0       —- 

4 -^2       0 -2^" 

^2 0-2 0 

0 2       0 0 

-2v/^ 0       0 2 

4 -1 0 -l"l 

2 0 -1 0 

0 4 0 0 

-8 0 0 2 

10 0 0 

0    y/2 0 0 

0       0 7^2       0 

0       0 0 2yfi 

y i-c sy 

Finally we have for    $    = $ + $ 
»c  «c sy ««c sk 

4  0 0 -2^J2~ 

0  0 0 0 

0  0 0 0 

-2^/2    0 0 2 

0 

-A 

[2 0 0 -/2] 

«c sk 
0 -A 0     0 

A 0 -2     0 

0 2 0     0 

0 0 0     0 

Note that $     takes the form predicted by Eq. (VIT-lld).  The final 
«c sy 

circuit diagram is shown in Fig. VI1-2. 

In the figure we observe that y  and y  are  separately realized 

and then connected in parallel.  In all situations y     will be 
wc  sy 

associated only with y (p)  but in this case the skew symmetric part 

has only occurred while synthesizing y (p).  Note that even though a 
L 

minimum number of capacitors and resistors have been used an excess 

number of gyrators occurs.  By shifting elements through the gyvators 
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y(p) 

^ u 

>       < IT' V ? 
2 y (p)  through 

)  < ! 41 Y      . •»o sk 

£ fl 

y  (p)   through 

Y «c  sy 

' 
0   J-i 
o     T 

2 
L               4— 

_ 

)       C 

Final Example Configuration 

Figure VI1-2 

we can easily obtain Fig. VII-3a) from Fig. VII-2, or by direct synthesis. 

Decomposing this latter circuit yields I he resistive circuit of Fig. 

VII-3b), loaded in capacitors. We observe however that this latter 

configuration possesses no admittance coupling matrix, uu conclusion 

is that always our synthesis of PR admittances will wor*. but that in 

some instances more than the minimum number of gyiators will be used, 

though never more than the minimum number of capacitors and resistors 

is needed. 

o  •   ± 
J                                 c   T 

*    X 
 Mrt •—I 

1/2 

1/4 

a) b) 

Minimal Gyrator Realization 

Figure VII-3 
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F.  Discussion 

In this chapter we have presented a method of synthesis of positive- 

real rational admittance matrices, and by duality impedance matrices. 

The method is based upon only algebraic operations and thus is readily 

programmed on a computer.  The key point of the theory is the proper 

application of the PR Lemma to obtain the appropriate transformation. 

However it is in the application of this Lemma where the greatest 

difficulty occurs since a rather complicated factorization of the para- 

Hermitian pari or Y(p'  sometimes must be undertaken In order to obtain 

W(p).  For nonpositive-real matrices or pos1tive-roal matrices of infinite 

dimension similar stops appear to be possible but as ye' have not been 

extensively studied. 

The ideas of the method can be applied to a   hybrid coupling matrix 

in such a manner that some promise holds for minima] gyrator synthesis 

r4"].  That is. Y  can be interpreted as n hybrid matrix if some ports 

are loaded in inductors in place of cspacitors; in such a case one still 

desires Y  PR when Y(p)  is.  Alternately, by using the hybrid 
• c *** 

interpretation one can give a synthesis in terms oi the cut set and tie 

set matrices previously studied, at least in the lossless (and gyrator- 

less) case [5],  However, as with the minimal gyrator situation improved 

conditions are still needed to complete the theory.  Nevertheless the 

nonlinear theory has been interestingly investigated [6j. 

Because of the situation illustrated in Fig, VII-3, where no coupl- 

ing admittance matrix exists, it seems important to extend the method to 

scattering matrices where partial results ol the PH Lemma type are 

available [7],  The work of Youla and Tissi represents a step in this 

direction [8], 

Since it was possible to find one transformation T taking any 

minimal realization into a passive1 one it is of Intel ■   \   to find all 

such T.  As yet little solid theory is available in this direction but 

the theory of continuous transformation groups seems applicable. 
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H.   Exercises 

1.     Synthesize   the     PR    impedance  miilrix 

Z(p) 2   „ 
p  +2 

'l-d1 
1     4p 

■2] 

»+1i-2 4J 

bv convertinp, to the admittance matrix ami applying ! he methods of 

this chapter. 
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2. Fill in the steps of the PR Lemma proof. 

*3.  Discuss a positive-real lemma for nonrational matrices and how 

this might be used for synthesis, 

4. Investigate possible methods of determining W(p), [3], [1, p. 168J 

and discuss the simplest for machine calculation. 

5. Show that the synthesis of the text uses both the minimum number 

of resistors and capacitors. 

*6.  For the example of the text: 

a) find all minimal realizations and isolate those for which 

Y  is PR. 
■•c 

b) investigate possible ways of accounting for Fig. VI1-3. 

c) find all minimal realizations on a scattering matrix basis. 

7.  Discuss the various methods of calculating the matrix P [9], 

*8.  Investigate methods of synthesizing bounded-real rational matrices 

by the techniques of the text [7]. 

*9, Show how the same techniques can be extended to cover nonminimal 

synthesis of PR matrices and discuss how such may be of importance 

for minimal gyrator synthesis. 

10.  Apply the PR Lemma to show how to synthesize through the equations 

[10] 

1   ~ 1 ~ * 
s = -(A-A)s + Bv — Lv 

i = Bs 

1 
,  _  __ Ls 

y/2""" 

subject to i = -v*.  In particular show that a network realization 

occurs by terminating the gyrator network 

Y r o 0 -B         '] *«c IM «■n 

1    L 0 0 
ft" 

B -L -i(A-A) 
■* ,/2 2 *» — 

in unit resistors and unit capacitors.  Show that the minimum number 

of resistors and capacitors are used. 
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IIs somblaient par moments nous 
regarder du haut d'une tour.  II est 
vrai que rien n'est cach£; et vous 
tous qui me rencontrez, vous savez 
ce que j'ai fait et ce que je ferai, 
vous savez ce que je pense et ce 
que j 'ai pense". 

M. Maeterlinck 
"Les Avertis" du "Tresor les Humbles" 

CHAPTER VIII 

LUMPED-DISTRIBUTED LOSSLESS SYNTHESIS 

A.  Summary 

Here we briefly summarize the application of the previously discussed 

techniques to the synthesis of networks constructed of lossless lumped 

circuit elements and LC transmission lines.  The theory is based upon 

the use of frequency transformations to obtain lossless but r*  oaal 2- 

variable matrices. 

B.  Introductory Material 

We first review some properties of LC transmission lines as well as 

a method of treating circuits constructed from lumped circuit elements 

in conjunction with the LC lines. This will lead us to positive-real 

and rational 2-variable matrices and their synthesis.  As we will see 

the admittance description, which we adhere to, is not rational in the 

true frequency variable, and as a consequence we introduce a second 

frequency variable to obtain rationality. 

Let us first consider a lossless transmission line of length i 

and inductance L and capacitance C per unit length.  As shown in 

Fig. VIII-1 this line can be treated as a 2-port having the admittance 

matrix [1, p. 66] 

f ctnh yp  -csch y-p ~]   y  = •J'LC £ 

Y(p)  =  y (VIIl-la) 

-csch yp  ccanh yp J  y  = ,/C/L 
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Lossless Transmission Line 

Figure VIII-1 

We observe that the admittance matrix Y(p)  is not rational in p but 

that the positive-real frequency transformation 

X = ctnh (rp/2) (VIII-lb) 

yields a rational positive-real admittance description 

r)(X)  = Y(p)  = y. 

1+X 
2X 

L 2X 

1-X 
2X 

1-X2  1+X2 

2X 

(VIII-lc) 

In fact we observe that any transmission line which has its y    an 

integer multiple of this basic line also has an admittance matrix which 

is rational in X.  Since given a set of transmission lines for which 

the y's are rationally related there always exists a smallest y    for 

which the admittance description is Eq. (VIII-lc), we will assume that 

all lines under consideration are rationally related, that is have 

rationally related y's. 

If next we assume the presence of lumped capacitors, inductors and 

gyrators, as well as the rationally related LC lines considered in the 

X piano, a node analysis yields branch admittances of the form 

yij  = CijP + (1/Lijp) +ci'1+ (1/£iiX) + sij   (VIII-2a) 

and for i / j 

y . .  -  C. .p + (l/L, .p) + c. .X + (1//. .X) - R. .    (VIII-213) 
ji     ij       i.l     1.1       1.1     1.1 
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Such a network we will call lumped distributed.  We note that for passive 

elements a lumped distributed network has an admittance matrix y(p,X) 

at any ports which is positive-real in both variables and satisfies the 

lossless constraint 

y(P,X)  = -y(-p,-X) (VIII-2c) 

In actual fact y(p,X)  satisfies the 2-variable positive-real constraints. 
MM 

Thr.t is, by definition a matrix is 2-variable positive-real if [2, p. 252) 

a) y(P>X)  is holomorphic in Ro p > 0, Re X > 0. 

b) y(p,X)  is real for p and X  real in Re p > 0, 

Re X > 0, 

c) the Hermitian part of y(p,X)  is positive semi- 
mi . 

definite in  Re p N 0, Re 1 ; 0. 

A rational 2-variable positive-real matrix will also be called PR. 

A property of interest for synthesis is that the poles on the 

imaginary axes can be separately extracted to yield [3, p. 34] 

y(p,x) - y,(p) + y0(x) + y (P,X>       (VIII-3) 
*v »*1       *<^       *-0 

where y , y, ,  and y  are all separately positive-real and rational 
»■O  »tel i->2 

when y  is rational; here y  has only poles which explicitly depend 
«MM V~  O 

upon both p and X. Of primary interest is the fact that y (p,X) 

has no poles at infinity in either variable. 

To head toward synthesis it is of importance to note that those 

lines which have lengths onc-hali the basic length, called unit-elements, 

are described by 

Y}  (X)  = Y  (p)  = y 
- 'ue      —uc o 

x     -v/?.:n 

NAA-I     X 

(VIII-4) 

Although such a description is not rational we observe that when loaded 

in a short circuit the unit-element appeal's as a capacitor of capacitance 
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y   in the X-planc when observed at the input.  Similarly loading in an 

open circuit yields a X-plane inductor at the inpm.  These relation- 

ships can be depicted as shown in Fig. VII1-2. 

Lrnz 
uni ( - 

el omen t 
V 

o 
0 0 

p-plane •-plan«' 
a) 

I <r- 6/2  -> | 

OZZD- 

U- 1/2   -)1 

°~~o yo "y^ 

p-plane 

""1 

A-plam 

c = y. 

= Vy. 

b) 

p vs. X-Plane Elements 

Figure VII1-2 

With this last observation we see that a synthesis method could 

possibly arise by loading a p-plane (n+c)-port described by 

\Zn(p) ■?12(p)l 
Y   (p)     = 
fltC 

L*21(p) J22(P)-I 

(VIII-5a) 

by a set of c unit X-plane capacitors (which are p-plane shorted unit- 

elements), as shown in Fig. VIII-3.  If such occurs then one obtains 

y(P,X)   -   y..(p) - y19<p)rxi +y99(P) I   y91<P> (viii-5b) 
IM .«11 *»1^ -C  m.l£ _ l\ 
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y(p,x) -» 

I Y (p) I L y.cx 
P*C _,ü 

1 
IT 

J/X) = xi c 

Possible Configuration 

Figure VII1-3 

We observe the following.  In the general expansion of a 2-variable 

PR matrix, Eq. (VIII-3) , the matrix y_(X)  can not be absorbed in Eq. 

(VIII-5b) while y (p)  can.  However, both y  and y  can be synthe- 

sized by standard methods with the resulting networks being placed in 

parallel with that for y .  Hence we really need only consider Eq. 
•-o 

(VIII-5b) for y (p,X).  Now Eq. (VIII-5b) is in the form of previous 
•*o 

results except that the realization matrices vary with p.  Thus we are 

after a realization R(p) = (A(p), B(p), C(p), D(p)} = (-y22> Y12, 
-J21' Jll^ 

in which case the previous theory should hold.  In fact we can use the 

methods of Chapter IV to create a minimal realization  R(p).  However, the 

transformation to bring Y (p)  to be PR though obtainable in theory is tm c 
not known in explicite form. Thus we proceed by directly finding a PR 

coupling admittance, this being possible because of the lossless nature 

imposed. 

C.  Minimal Realization Creation 

To obtain a realization  R(p)  for an  nyn  PR y (p,X),  for which 
•MM O 

Y (p)  is also PR we will simply modify the previous realization theory, 

presenting the method of Rao [4], in some places omitting the details of 

proof which can be rather lengthy for their content. 

As before we write 

y (p.x) 

rB n(p) + Xr" B (p) + ... + AB,,(p) f B,(p) 
•«r+1        T —2 1 

X  + a ,(p)X   + . . . + a (p) 
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A-1
(P) 

^ A (p) 
\ »-i 

+ }     —: i+1 
i-0 

(VIII-6a) 

where the latter is the expansion about  > = «>.  The rnyrn companion 

matrix is deiined as 

U  (P)  = 
•MI 

0 
-n 

0 
T. 

-a1(P)ln   -S(PUn !  CD)]   J 
r  »n 

(VIII-6b) 

and a modified Hankcl matrix defined by 

T (p) 
•»r Vp) 

Ä1<P> 

Vp) 
-~i2

(p) 

*2(P) A_(p) 
»WO 

(-I)1" *A  ,(p) 
T-l 

■r-1 (P) 

-A (p) 

•■">  , (p) 

(-^r'\r-2W 

(VIII-6c) 

y • T (P) ^•o  »r 
iual to T f-p) Because of the lossless nature of 

[the para-Hcrmitian property] and it is nonnogativo scmidefinite foi 

P 

used at Eq. (VIII-5a), to obtain 

ju).  Consequently T (p)  ca:i bo factored, in fad by the method 

T (p)  =  U(p)tK-p) (VIII-6d) 

where U(p)  as well as its loft inverse 1;  (p)  are holomorpuJ.c in 

Re p > 0;  this factorization preserves the real-iational nature of T , 

that is,  U(p)  is also rational with real coefficients.  Further the 

matrix U can be taken of size nr>,c,  where r,  is the rank of T (p) 
>— XX x—r 

and then partitioned into n>L  blocks to define the cv tries in 
A 
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u(p)   =  ru (p), u.(p), ..., 11  .(p)i (VIII-6e) 

Noting that A (p) = -y,„(p)yon(p) = U (p)U (p)(-p)  we see that as we 

desire y  (p) = -y10(-p)  because of the lossless constraint, we are 
a» 21 r* 1 ^ 

led to define 

y19(p) ■ -y91(-p) - u (P) ^.12 «•*! ""O 
(VIII-7a) 

Noting further the previous method of defining A by Eq. (IV-9) sorae- 

what justifies the definition 

-1 
y22(P) - vt  (p)nn(p)uo(p) (VIII-7b) 

Of course we also define 

y„(p) = yAp,™) (VIII-7c) 

With these the coupling admittance matrix of Eq. (VIII-5a) is completely 

specified.  In fact Y (p)  is PR and satisfies the lossless condition 

Y (p) = -Y (-p)  though both these properties, especially the PR one, 

are rather delicate to prove; the interested reader is referred to [4], 

Further, the degree of Y (p)  is the minimum possible and equal to the 

p degree of  y (p,\)  defined as I     = max cfy (p,V 1.  The number of 
»»O p    ,    „o    o 

"o 
A-plane capacitors is equal to  c  where in fact  o. = max o[y (p ,X'| = 

A A   n   *»o o 

rank T (p). We comment that the whole process could have been undertaken 
-r 

by making p-plane capacitor extractions from which wc conclude that  i_ 
P 

represents the minimum possible number of p-plane reactive elements, 

while 6  gives the minimum number of X-plane reactive elements. 
A 

In summary, loading the PR (n+b )x(n+6 )  matrix 
A A 

YJP) = w>C y0(p,») UO(P) 

^o      *>ii   «n   *~o 

(VIII-7d) 
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realization !.n I  unit )-plane capacitors (which are shorted unit- 

elements) yields y (p,>) = y (p, ctnhTirp/21)  at the n input ports.  A 
0* O J**0 

synthesis of the lossless coupling admittance Y (p)  by a minimum number 

of reactive p-plane reactive elements, which is readily possible [1, 

Chap 8], yields a network possessing a minimum number of lumped reactive 

elements as well as (p-plane) transmission lines. 

D. Examples 

Let us synthesize the function 

y(p,X)     - 
X(p/2)   +  1 

2 
X   +   ([2+p   ]/2p) 

(VTII-Hn) 

We  have 

1 JL 
2 ~   4 [-<7fl>][-<^-l>i (VlII-8b) 

with 

uo(P) =    - |(P+^ ' U 
-1 -2 2+p 

2p (VIII-8c) 

i >r which 

Y   (p) -p- i 

-P\/2 

(VUJ-Hni 

Using  ii   short,   circuited  transmission   lin<    for   the   \-plane  capacitor 

yields  the circuit of Fig.   VIII-4. 

1/2 

.1/2 

y(p,x>"> 
Itr 
Li 

Example Synthesis 

Figure  VTII-4 
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To illustrate the difficulties of the more general situations 

consider the lossless PR 

y(p,x) 

2 
X p+2X 
2 

X +pX+2 
(VIII-9a) 

The expansion about X = "> gives 

y(p,x)   = p + 1£IE!> + 1E!Z1E> +HjVi) + _    (VIII_9b) 
A. A 

Thus 

T9 
2-p 3 . 

P -4p 

3       4  2 
-p +4p  -p +€p -4 

(VIII-9c) 

One then needs to factor this as discussed at Eq. (VIII-6d), which is no 

simple task.  Hence we drop this example at this point with the comment 

that a simple factorization to produce the holomorphic factor would be 

most welcome. 

E.  Symmetrization 

As we saw in the last figure the method may use gyrators where 

actually none a'y? apparently required.  Here we show how these gyrators 

can be avoided by the procedure of Koga f3, p. 44]. 

Given the PR admittance Y (p),  of Eq. (VIII-7d) for example, if 

it is not already symmetric we form the following coupling admittance 

matrix 

Y_(P)     = JSfll Jl2S        Jl2A 

Jl2S      i22S Ü22A 

^12A      2f22A .Vrjpc 

(VTII-lOa) 

where 
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2Ü[l2S     "   Zl2  + Z21 ZZl2A Jl2 " ^21 (VIII-10b) 

*22S     =   222*222 *22A    =   J22 ' ja2 (VIH-lOc) 

with the subscript S and A standing for the symmetric and (skew) 

antisymmetric parts.  The matrix Y„(p)  is PR and lossless with 

Y (p),  and y (p,X)  results at the first n ports of a circuit 

realization by loading the final 25  ports in unit X-plane capacitors, 
A 

as we will discuss below.  If next we extract a (cascade) gyrator from 

each of the final ports, as shown in Fig. VIII-5a), we obtain a 

symmetric coupling admittance matrix Y ;  for example, when (as is the 

normal situation) yooc  is nonsingular 

YC(P)   = 2ll+2l 2Ay*22Syi 2A 
-1   - 

Zl 2S+Z22Ay.22Sya 2A 
-1   .. 

2r22Sy,12A 

-1   ~ -1 
^12S+Il2A^22sX22A Il2fiZ22S 

-1   _ -1 
•y22S+J22A?22Sy22A y22Ay»22S 

-1   ~ -1 
Jf22S^22A ^22S 

(VIII-10d) 

The extracted gyrators can be combined with the loading capacitors to 

yield s-plane inductors while Y (p)  can be synthesized by a reciprocal, 

passive, lossless p-plane configuration.  The overall structure is then 

reciprocal with y (p,X)  and as shown in Fig. VIII-5b). 
«»■vG 

=  yl?p»3 

reciprocal 
p-plane 

»-C 

J"ibx 

Z3± -•—J bX 

s-plane 

a) b) 

Procedure for Reciprocal Synthesis 

of a Symmetric y (p,X) 
«xO 

Figure VII1-5 
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To see why the method works let us reason as follows.  Since 

v (p,>)  is assumed symmetric we can write in 

In  -KV*«,* ^Z11(P)- ^.yl2(p)LV22(l))+XicXr221(p)  <VI"-lla> 

+ J21(p)[/22(p)+)i6>;" il2(p) 

for which  a  realization  is  seen   to come  irom  the  coupling admittance 

matrix 

Y. (P) 
1 1     - 

V     V     V 
ill /2-12      /2-2] 

/2 -21      ^22 

1 

L/5 ,Jl2 0 

0 

V 

(VIII-llb) 

That is, a circuit realization for Y  yields y  at the input when 
— )       • ~n 

terminated  by     2i       unit    '-plane  capacitors.     NeM   we   lind  an  equivalent 

realization usiiu   K<|.   (V-2.il   v 1 I h   lit«    urtlio^vif]    ir.ir.si  .lmaMon 

1        T, 
v' - 

(VIII-llc) 

Thus we obtain 

Y,.(p) 1   +TIY, (p)Tl   +-T" 
-n  -   -j »n  — 

(VTIl-lld) 

which  cm s   I f| .    (VlI!-1Ja).     Thi       PR     property   a-   v. .-11   .1-   r».sh'«snMs?   is 

presorvod   thron&'i   I hese  operations.     Final]'.   '.'■"   fnrwi'*n <    I ha I   il     y 
S 22S 

is  not   r»ons i iv:ii ■ ;■;    !•>>   I (|.   1 Vlll-ii'd)    it   can   hi>  '".n!-    s"   i»v   .HI  orthogonal 

( vnnsl <i'i'i ' ' > 'ir     i ,.    ,1.1.1       / i"      y,' ,        '      !' ' ' '•       '    , '1       ■■•!.■" 1 .'! 

I.l'      !    -v 

,11    ptcvii'lis   1 xnmi'!'    "!    r<i .    (VlN-^dl 

We   ha\ 

' v    1 '. |l T 1   . 

NOT REPitU w ,.<■ * 

! 2i' I -ri7-l ]" 



^(P) P    -P     ß 
2 

-P   P+-    0 

-y/2 0 
2 

(VIII-12a) 

Extraction of the gyrator at port three yields 

VP)  =  2 
2r, -J2p 

P + "2-   "P     2 
p +2 p +2 

-P 

-p +2 

p + -   0 
P 

p +2 

(VIH-12b) 

Synthesis of Y_(p), which is symmetric, yields y (p,X) at the input 

when the second port is loaded in a unit capacitor and the third port in 

a unit inductor, the latter two being p-plane short and open circuited 

LC transmission lines. Note however that four p-plane (lumped) reactive 

elements must be used to synthesize Y_(p),    in contrast to the two used 

at Fig. VIII-4. 

F.  Discussion 

Given a nonrational admittance matrix in p, Y(p), if there exists 

a x    such that Y(p) = y(p,X) is rational, PR, and lossless in the 
Ml prt 

two variables p and \ =  ctanh(y-p/2), then the procedures of his 

chapter can be used to obtain a synthesis.  In particular the synthesis 

uses both lumped and distributed LC components, a minimum number of 

all types when gyrators are also allowed.  If the original matrix is 

symmetric then also a series of operations can be used to eliminate the 

gyrators, but an excess number of reactive elements is needed for the 

given procedure, though it seems that other methods should be available 

to reduce this number. 

In the treatment given we have extracted X-plane elements as the 

load to obtain realization matrices which depend upon the other variable 

p,  R(p) = {A(p), B(p), C(p), D(p)}.  Of course we could have reversed 
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the role of X and p since in y(p,X)  there is no real preference. 

The only difference occurs in the synthesis where the extraction of the 

lumped p-plane elements means that the X-planc counling network needs to 

be synthesized in terms of distributed elements.  This latter though can 

be conveniently carried out in terms of cascade synthesis methods using 

the unit-elements [1, Chap. 7] and is, thus, in some ways superior. 

The same methods can be used for the synthesis of lumped-distributed 

RC networks of considerable interest to the theory of integrated circuits. 

For such one introduces a different variable s = Vp~.  T -n a given admit- 

tance Y(p)  can be synthesized by a synthesis of the lossless admittance 

[5] 

y(s,X) = -^ Y<P> (VIII-13) 

Such a synthesis can follow that of the text with the s-plane elements 

replaced by resistorc (for the inductors) and capacitors while the X- 

plane elements are replaced by RC lines to obtain the original p-plane 

Y(p). 
M» 

In the case where tliere are nonrationally related lines the methods 

discussed can be extended by considering v-variable matrices, with v > 2, 

Although minimal realizations can relatively easily be given, as yet it 

has not been possible to obtain a PR coupling admittance in terms of 

v-1 of the variables. 
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H. Exercises 

1. Synthesize the lossless PR 

a) y(p,x) = 

b) y(p,X) 

2X(2p2+l) 

4Xp+2p +1 

4Xp+2p2+l 

2X(2p2+l) 

2. Prove that Y (p) of Eq. (VIII-7d) is PR and lossless. 

3. Carry out the steps for p-plane, instead of X-plane, extractions. 

4. Show that the gyrator extraction of Fig. VIII-5a) yields Y_,(p)  of 

Eq. (VIII-10d).  Carry out the details when y___ is singular. 

5. Obtain a realization for y (p,X) using the method of Chapter IV 

and show how to obtain the realization of this chapter from the other. 

6. Analyze any 2-port lossless lumped-distributed circuit and from the 

resulting y(p,X)  synthesize the network by the methods of this 

chapter. Compare the final circuit with the original and discuss 

the problems raised. 
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II y a alnsi une part de la vie, — et 
c'est la mellleure, la plus pure et la 
plus grande, — qul ne se rnele pas 
a la vie ordinaire, et les yeux des 
amants eux-memes ne percent 
presque Jamals cette digue de 
silence et d'amour. 

M. Maeterlinck 
"Les Avertis" du "Tresor des Rumbles" 

CHAPTER IX 

TIME-VARIABLE SYNTHESIS 

A. Summary 

Using similar but generally somewhat different techniques than for 

time-invariant structures, realizations for impulse responses can be 

obtained and manipulated to yield synthesis results. Of primary interest 

is that discussed for transfer voltage functions and that for special 

types of admittances. 

B. Properties of Impulse Response Matrices 

If we a.*e given the state-variable equations with time variable 

coefficients 

s(t) = A(t)s(t) + B(t)u(t) 

y(t) = C(t)s(t) + D(t)u(t) 

we can find the zero state output through 

00 

y(t)  = /"[D(t)6(t-T)+C(t)<P(t,T)B(x)]u(T)dT 

-oo 

where *(t,T) is the state transition matrix satisfying 

(IX-la) 

(IX-lb) 

(IX-lc) 
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d^t,T) = A(t)*(t,T),  t> T (IX-ld) 

«>(T,T)  =  1.,   *(t,T)  r;  0.    t< T (IX-le> 

In actual fact since <f satisfies the differential equation of Eq. 

(IX-ld) it can be shown [1, p.530] to be the product of two matrices, 

one in t and one in x 

*(t,T)  = E(t)A(T)l(t-T) (IX-lf) 

where l(t-x)  is the unit step function. Further the number of rows in 

A(T) can be assumed reduced to its minimal size b,    this size being 

independent of T for reasonably behaved A(t)  [1, p.530j 

As a consequence, we can associate with the state-variable equations 

an impulse response matrix [here 6(t)  is the unit impulse] 

T(t,T)  = D(t)6(t-T)+C(t)H(t)A(T)B(T)l(t-r)      (IX-2a) 

such that 

y(t)  = [  T(t,T)u(T)dT (IX-2b) 

-00 

This latter can be conveniently denoted as 

y = T»u (IX-2c) 

Since T contains impulses it is often referred to as a distributional 
m 

kernel defining the mapping of u into y, y = T«u. If we have two 

such mappings defined by kernels T and T we can apply one after 

another, as might occur in a cascade of voltage transfer functions. This 

leads to the definition of the composition T oT  through ■* 1  ^2 

y    =    T..[T _»u]     =    [T.oT0>u (IX-2d) 
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As an integral this conposition takes the form 

uo 

T.oT_(t,T)  = f  T.(t,X)T.(X,T)dX (IX-2e) 

—00 

Through the concept of composition the inverse of a kxk kernel can be 

defined by 

T_1oT = ToT-1 = &(t-T)l. (IX-2f) 

Consequently T can be given the representation alternate to Eq. (IX-2a) 

as 

T = D&+(C6)o[5'l1-A&]~
1o(B&) (IX-3a) 

Since [&'(t-T)]~ = l(t-x) we see by comparison with this last expression 

that if we are given 

T(t,T) = H(t)6(t-r)+¥(t)0(T)l(t-T) (IX-3b) 
«M MM «A      *» 

then a possible realization is 

A = 0,   B = 0,   C = ¥,   D=H (IX-3c) 

This is minimal if the number cf rows in 9    has been minimized,. 
"»• 

If we make a transformation on the state 

s(t)  = lJ(t)s(t) (IX-4a) 

then,   since the transforming matrix must now be differentiated we have 

K    =    ffArMr1,       B    =   TIB,       C    =    Cf1 (IX-4b) 

Consequently, the freedom of using time-variable transformations allows 

one to change the structure of the A matrix, resulting in some rather 

interesting phenomena. 

126 SEL-67-110 



C. Passive Voltage Transfer Function Synthesis 

Let us consider the problem of synthesis of kernels mapping voltages 

into voltages; the material follows to a large extent the ideas of 

Silvermar. [2]. 

As a preliminary, let us first observe that if we define, for a 

given A(t) and a fixed t . 
•* o' 

t 

V(t)  = /"»(t,T)j|(t,T)dT,  t> tQ (IX-5a) 

*o 

(which is positive definite) then the choice 

-1 1/2 
? =  (V ) <IX-5b) 
»»    ■» 

yields on using Eqs. (IX-ld, 4b). 

A + Ä* = -V"1 (IX-5c) 

As a consequence, from what we previously learned at Eq. (VII-11) we 

should be able to use this transformation for a passive synthesis. We 

comment, however, that V(t)  varies with time even in the time-invariant 
* * «to 

case so that slightly different procedures are preferable when A, B, C 

are constant. 

As the next preliminary let us synthesize a voltage to current 

transfer function (kernel) T,  il = T»v,, where i*  and v,  are 
«' >"2  wi »I'       *»2     »1 

measured at different ports. Given any realization, say the one of 

Eq. (IX-3c) let us perform ohe transformation of Eq. (IX-5b) to obtain 

s = AS + Bv (IX-6a) 

il = 6S + Dv, (IX-6b) 
M> 2     * *   ■* "*1 

Let us next introduce another set of variables, the current i, 
■»I 

associated with the first ports and v'  the voltage associated with the 

final ports to write 
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/v AA 
S  =  AS [6,ei 

2i 

-2 

(IX-6c) 

-1! 

i2 

s + 0 

D 

-D 
ah 

0 v 
~2 

(IX-6d) 

Note that if v.c s«. t  v' - 0 mid iernon the input port current*;  i 

then the origir1 .1 description is returned. However, as in the time- 

invariant case, Eqs. (IX-6c,d) define a coupling (time-variable) resistive 

network through 

Y (t,t) = 0 -D(t) -|(t) 

D(t) Q -C(t) 

B(t)   C(t)   -A(t) J 

6(t-T) (IX-6e) 

Note that, by virtue of Eq. (IX-5c) 

Y + Y  = 0 + V-1(t)6(t-T) 
*• C   •* C      i*»   »** 

(IX-6f) 

in which case Y  can be synthesized by time-variable gyrators and 

resistors both of which are passive.  Termination of the resultant net- 

work in unit capacitors yields Eq. (IX-6c,d).  At the final ports we 

can next insert unit gyrators to obtain 

v  = i' .   i  = v' »2    £2'        £2 ~2 (IX-7a) 

Setting v' = 0 results in an open circuit load while i' = v„ yields 

v  = T«v 
«>2    * "1 

(IX-7b) 

As a consequence the procedure results, for t > t ,  in a passive 

realization of any T(t,-r)  of the form of Eq. (IX-3b).  Since practically 

such constructs are only used after a finite time, the  t > t  restriction 
o 

is of no practical restriction; but in some cases  t = -°° can be used 
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in which case the theory of Silverman results when D = 0. The synthesis 

is summarized in Fig. IX-1. 

-1 

<■£ 
§ 

^i2  i *a 

DEI 
>< A.y^ i 2v 

H 

Transfer Voltage Realization 

Figure IX-1 

As an example to illustrate the various points let us synthesize 

the time-invariant transfer function 

ll    -   IP.    3 .:£. 
Vj    p+2       p+2 (IX-8a) 

We have 

T(t,t) = 36(t-T) + (-6e"2t)(e2t)l(t-T)       (IX-8b) 

For a realization we can take 

A * 0,   8=6*,   C =-6e"  , •  D = 3        (IX-8c) 

Then, for any fixed t , 

V(t) =  I dx = t-t ,   t > t J o'        c (IX-8d) 

which is positive definite for t > t  as expected; we have for Eq. 

(IX-5b) 
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:i(t) = 

yr-: (IX-8u; 

From the transformed realization equations we find 

2t 
x. h-1 - -y* 

jt-t 
B - e      C = -6^/t^T e"2t,  D = 3  (IX-8f) 

/t-t 

Thus Y  takes the form 

Y  (t,T)  = 
•»C 

^ 

-3 

2t 
° -6v/t^t    e v       o 
t-t 

2t 
■e    //t-t v        o 

6/t-t     e~2t 

» n 

-2t 1/2 

/t-t 

6(t-T)     (IX-8g) 

The structure of the circuit realization is shown in Fig. IX-2. It 

should be observed that a) the elements are all passive, (b) the elements 

■I 

v_ > I 

—0 

/W^T 
I  < 

^ 3 
6,/t-t e 
-*   ° 

-2t 

) ( 

^^ 

Circuit for V2 = (3p/[p+2])V 

Figure IX-2 

are timc-variab]c even though the overall network is time-invariant, c) 

the elements bocome unbounded for t approaching t .  If we would have 
o 

chosen A = -2 and t = -» this latter (unboundednoss) could have 

been avoiriod while a slightly different approach (sec the Exercises) 

would nllcw a  time-invariant synthesis. 
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D. Passive Admittance Synthesis 

Following the previous Ideas we can form the coupling admittance 

matrix 

»c 
-1 

D(t) -C(t)?(t) 

-1 .  -l 
J(t)B(t)  -J(t)A(t)J(t)-?(t)J(t) 

6(t-x)  (IX-9a) 

We then wish for a passive synthesis to be able to choose J such that 

the symmetric part of Y  Is positive semidefin: 
•MC 

symmetric part we have, assuming a symmetric J, 

the symmetric part of Y  Is positive semidefinite. On evaluating this 
•• c 

Y +Y 
«c >c 

D+D [B^-C]?"1 

.rVs-c] -rv^Lfm-1 
(IX-9D) 

• 9  •  • 
where we have also used J = Jtf+35.  In the case where D+D, which is 

m ** mm *< *mf 

twice the symmetric part of D, is positive definite and A, B, C have 

bounded entries the (Riccati) equation 

3-2A+ÄJ2+[J2]  = -[J2E-C][D+D]_:i[BJ2-C] (IX-9c) 

is known [3] to have a solution for a nonsingular symmetric J. Con- 

sequently, 

Y +Y = 
kC »c 

(D+D) 

o J'VVCXD+D)""
172 

1 
-n 

1 
L«~nJ 

U il L".n *nj 
(D+D) 

1/2 

0  (D+D)"1/2(BJ2-C)?"1 
m\ m    MM «<■   Ma •» 

(IX-9d) 

which shows that Y  can be synthesized by n constant resistors 

loading time-variable gyrators (for the symmetric part) and time-variable 

gyrators (for the skew-symmetric part); here n is the number of terminal 

ports. 

We conclude that if a given nxn admittance kernel 

y(t,T)     =    D(t)B(t-T)  + C(t)B(T)l(t-T) 
** <** I» MM 
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has the symmetric part of I) positive definite (as well as bounded 

minimal C and 13 matrices) then a passive synthesis can be given. 

Such results by solving the nonlinear Riccati equation, (IX-9c), for 

Jl(t), and forming Y  which then yields y(t,x)  by loading of the 
•» »»C w 

passive coupling structure in unit capacitors. Several observations are 

worth noting. First i  is very difficult to obtain, if not impossible 

practically, since a nonlinear variable coefficient differential equation 

must be solved.  Second, Eq. (IX-9d) shows where difficulty arises if 

the symmetric part of D is singular; hence the method seems hard to 

extend to cover more general cases.  Third, the presence of terms 

E(t)b'(t-T)  is handled bv writing E(t)t*(t-r) = J(t)J<T)u'(t-t) - 

J(t)J(t)6(t-T>;  if y  is known to come from a passive network this 

decomposition is always possible since E is then positive semidefinite. 

Fourth, although the passivity conditions on D (and E) are known, 

those on B and C arc not, except in the lossless case where B = C 

is possible and an alternate synthesis applies to cover all cases [4] 

f 'f = 1  holds to yield a skew-symmetric Y ]. 
#»  #n *       -c' 

An alternate and interesting method results from the following 

manipulation [5].  Let 

A = MAT1 + MM-1 

B = :IB,  6 = CM" 

(IX-lla) 

(IX-llb) 

then from Eq. (IX-9c) 

Ä+Ä - -:r1[:i2B-c][D+ß]*1rB;r2-clM"1 (IX-llc) 

=    2LL 

where 1 is defined as 

= __L (D+n)"
1/2[ß:1

2-cl:r] (IX-lld) 

If further wo define 
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nÄ /2 
/2+IK   = z (IX-lle) 

where the positive definite symmetric square root is again meant, we 

obtain 

s = -(A-A)s + (B+l,z)v-Lv 
MM ^  W  IW  Ü    «  MM*  «■»„«» 

i = (B+Lz)s+zv* 

i* = -v* = -ls-zv 

(IX-12a) 

(IX-12b) 

(IX-12c) 

Here direct substitution of the last constraint upon noticing that 

2zL = £-tJ yields the original set of equations 

s s  As+Bv, i = Cs+[*-3"]v (IX-12d) 

The constraint i = -v* corresponds to resistive loads at the v*, V 
An tm V* IM» 

ports.  As a consequence we consider the coupling admittance matrix 

-c 

-z 

A   A~ 
B+Lz 

0 

-ß+z£ 

A 1      A    A 

-L      -±<A~A> «•»        2 *»  *" 

(IX-13) 

which is skew-symmetric and hence realizable by gyrators.  When loaded 

at the final ports by unit resistors and at the next to final ports by 

unit capacitors,the input admittance y(t,t)  occurs at the input ports. 

In this manner an alternate synthesis results when D+D is nonsingular, 

for a passive y(t,T).  It should be observed that this method requires 

that the skew-symmetric part of D must be extracted before Eqs. (IX-12) 

are considered, as seen from Eq. (IX-12d).  Of course the skew-symmetric 

part of D is obtained by gyrators connected in parallel with the input 

ports.  Note that this again shows that all time-variations for time- 

variable circuits can be placed in the gyrators. 
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lj.j 

E.  Discussion 

Because the state-variable equations are expressed in the time 

domain they are primarily suited for obtaining syntheses of time-variable 

networks.  Here we have investigated two types of synthesis, one for 

voltage transfer and the other for n-port admittance impulse responses. 

Empharif, has been placed upon passive structures but it is clear 

that the same ideas can be applied to synthesis using active elements, 

perhaps in an even simpler manner. The transfer function synthesis 

contains relatively simple calculations while the solution of a nonlinear 

differential equation makes the admittance syntheses extremely difficult 

to carry out. Consequently one would hope for a simpler admittance 

synthesis and in fact one which relaxes the unnecessary constraint of a 

nonsingular symmetric part for D. 

In the time-invariant case the methods yield, in general, circuits 

with time-variable components.  In some instances these can be combined 

to obtain time-invariant components but the result does show that perhaps 

some other synthesis methods exist which reduce to the known time- 

invariant techniques perviously discussed.  It is worth observing though 

that many of the previous concepts discussed only for time-invariant 

structures do extend to the time-variable situation.  For example it 

seems relatively simple to set up a theory of equivalence for time- 

variable- structures from the discussions in Chapter V. 

Although the n-port synthesis techniques have been given in terms 

of admittances the classical synthesis methods in terms of scattering 

matrices can also be extended [6] [7] [8] though as yet these latter 

time-variable methods have not really applied the concepts of state- 

variable theory for their success. 

As a point of philosophical interest we point out thfit the passive 

synthesis of Section C can be applied to non-stable network functions, 

such as T = l/(p-l).  Consequently one can relatively easily construct 

passive unstable networks, a rather paradoxical situation when it is 

realized that many intuitive deductions concerning passive networks have 

rested upon the "stability" of passive structures. 
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G. Exercises 

1.  Synthesize by a passive structure the voltage transfer functions 

p+2 
a) T(p)  = 

(p+3)(p+l) 

b)  T(t,r)  s tT
2e"(t"T)l(t-r) 

2.  Synthesize by the methods described' the time-invnriant admittance 

y(p)  = -p73 

From the result discuss various simplifications which can be made, 

or need to be made, in the theory. 
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3. Give a synthesis for time-invariant voltage transfer functions using 

ideas similar to those of Section C. For this one can choose any 

positive definite constant matrix V and solve for J to yield 

Eq. (IX-5c). 

4. Synthesize the voltage transfer function 

T(
P> " FT 

by the method of Section C. From the result discuss why a passive 

network need not be stable. 

5. Discuss means of solving Eq. (IX-9c) for 5. 

*6. Develop a state-variable synthesis of passive scattering matrices. 

7.  Extend the results of this chapter to nonpassive structures and 

discuss the meaning of your methods. 
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Nous vivons a cote de notre veritable vie 
et nous sentons que nos pens^es les 
plus intimes et les plus profondes 
meme ne nous regardent pas, car nous 
sommes autre chose que nos pensees 
et que nos reves.  Et ce n'est qu'a certains 
moments et presque par distraction que 
nous vivons nous-memes. 

M. Maeterlinck 
"Les Avertis" du "Tresor des Humbles" 

CONCLUSIONS 

Paradoxically the simple expediant of introducing a set of first 

order differential equations to describe high order ones has led to the 

solution of previously unsolved problems, such as the determination of 

all equivalent active structures for a given network. As we have seen 

there are many areas where the ideas can be applied, perhaps with a 

possibility of gaining insight into the behavior of a system. 

Thus, because most systems of practical significance possess an 

identifiable state, the state-variable equations give a general, or 

universal, means of observing systems.  By keeping track of the 

solutions of the describing equations in state-variable form one can 

keep track of the behavior of the subparts of a system in orderly fashion. 

And because this tracking can be done orderly, the theory allows readily 

for the computer analysis of networks, this analysis having the possibil- 

ity of proceeding in two ways, as we have seen in Chapter II in either 

the topological or capacitor extraction form. Once a computer analysis 

is set up in this manner the results can be used for other purposes 

than keeping a record of voltages and currents; for example Chapter VI 

has shown how a sensitivity analysis can proceed from a state-variable 

analysis program. 

But the most striking uses of the theory occur when synthesis is 

considered. Here we have seen that minimal degree realizations, that is 

minimum reactive element circuits, result for general transfer functions 

by the theory of Chapter IV.  Even though this latter is somewhat 
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abstract its significance should not be overlooked.  Because of its 

form it allows convenient integrated circuit constructions as well as 

analog modeling for simulation and preliminary testing of designs. Also 

because of its algebraic form the realization technique allows for the 

complete computer design of a system, though as yet such a program 

remains to be carried out.  In the area of classical multiport synthesis, 

Chapter VII has shown that the introduction of state-variables can lead 

to a contribution since a minimal resistor and minimal capacitor circuit 

results by application of the given method. 

Still it is by way of generalization of the positive-real admittance 

synthesis where the most significant contributions of state-variable 

theory seem to be made. We hav*e illustrated this in two different ways. 

The first is through the introduction of a second variable to allow for 

design with both lumped and distributed elements, as covered in Chapter 

VIII. The second generalization is that of Chapter IX for the synthesis 

of time-variable circuits. Though this latter is as yet not completely 

finished, to us it represents a beautiful application of the theory which 

in almost all parts is carried out in the time domain. 

Once a circuit has been designed the material of Chapter V on 

equivalence shows how many other circuits, in fact almost all, with the 

same terminal behavior can be found. To complete the picture any of 

these can be, in turn, analyzed by the methods of Chapters I and II to 

check its performance. 

In summary, the theory of state-variables has allowed an almost 

complete picture of the theory of networks, in fact within the larger 

framework of scientific systems.  It has, however, raised many fascinating 

problems, some of which we have tried to point out along the way. Thus, 

though the theory may offer little to some people it can offer an immense 

amount to those who would allow it — so is it with almost all that we 

meat. 

Quel jour deviendrons-nous ce que nous sommes? 
Nous nous ecartions sans rien dire et nous 
comprenions tout sans rien savior. 

M. Maeterlinck 
"Les Avertis" du "Tresor du Humbles" 
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LIST OF PRINCIPAL SYMBOLS 

A, state coefficient matrix....7 

b, number of branches  26 

B, input-state matrix 7 

C, state-output matrix 7 

C, capacitance matrix  21 

cut set matrix 27 

D, canonical equation matrix.,.7 

E, coefficient matrix  7 

g(p), least common 

denominator........... 80 

h, impulse response. 8 

H, transfer function  9 

1, port currents 27 

£ [ ] > Laplace transform. 9 

i, number of links 26 

m, input size 4 

n, output size  .4 

p s o+ju, frequency 9 

P, observability matrix 64 

PR lemma matrix 96 

Q, quality factor 48 

Q. controllability matrix 64 

R, realization 7 

resistance 6 

s, number of separate ports... 26 
Pk s  , pole position 

sensitivity 86 

s, state 4 

ST*p), sensitivity 84 

S . Hankel matrix 62 
wr' 
t, number of tree branches.... 26 

time 3 

139 

t , initial time 3 
o' 

T, state transformation 16 

T[,], system transformation 4 

T , modified Hankel matrix 115 
• r 
3, tie set matrix 28 

state transformation 126 

u, input 3 

U, factor of T  115 
m' r 
U~ . left inverse of U 115 

v, number of vertices 26 

v, port voltages 27 

V, transition energy form 127 

W(p), para-Hermitian factor 97 

W , right inverse of W 97 

y, output 3 

y(t,x), admittance kernel 131 
Ml 

Y , coupling admittance...,20, 128 

Y_, symmetric coupling 
rwC 

admittance  .119 

Y , gyrator coupling matrix,....51 

b, impulse, = 6[ ] 9, 10 

B. , X-degree = rank T „...115, 116 
A r 

X, frequency variable Ill 

9,  zero state 4 

u) , undamped natural frequency. .48 

n , companion matrix 61, 115 
■»n 
0, zero matrix 4 

l(t), unit step 9 

1, , kyk identi ty 9 
•»k 
1   , partial identity matrix;.,62 

+, direct sum 51 

~f   transpose 23 

• ,o, compositions L25 
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INDEX 

Admittance matrix 17 

Canonical equation 

simulation 50 

Coupling 20, 128 

Kernel 131 

Synthesis 99, 131, 133 

Transmission line 110 

Branch 25 

Brune section 11 

Canonical equations..13, 24 

Equivalents 73 

Canonical Representation 7 

Block diagram. 44 

Capacitor extraction 

form 22 

Degree two 48 

Equations 7, 15 

Formulation 19 

General network form 36 

Scaled form 45 

Time-variable 126 

Topological derivation...25 

Transformation of 16 

Transformation to 39 

Capacitor extraction 20 

Companion matrix 61 

Composition 125 

Computer use 24 

Controllability 74 

Matrix 64 

Controlled source equivalent..41 

Coupling admittance 20 

Synthesis use...95, 109 , 128 

Current source replacement 30 

Cut set 27 

Degree 10 

Relation to Hankel 

matrix 63, 64 

Degree two realization 48 

Differential amplifier 46 

Differential system 7 

Distributional kernel 8 

Duality of systems 76 

Equivalent controlled sources...41 

Equivalence transformation 72 

Equivalent realizations 16, 71 

Nonminimal 77 

Finite system 7 

Frequency equivalents 113 

Fundamental decomposition 5 

General description 20 

Graph 25 

Gyrator 12 

Hankel matrix 62 

Modified. 115 

Hazony section 18 

Identity matrix 9 

Impulse response 8 

Differential system form..125 

Integrator  .6, 47 

Kernel 8 

Synthesis 124 

Kirchhoffs current law 27 
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Kirchhoff's voltage law..28 

Lambda degree 115, 116 

Linear system 5 

Link 25 

Lossless 

Admittance 96 

Two-variable matrix 112 

Luraped-distributed synthesis.110 

Minimal realization 10 

Creation 57 

Example 65 

Result 63 

Two-variable 114 

Network 10, 17 

Graph 25 

Node 25 

Nonminimal equivalents 77 

Observability 75 

Matrix 64 

Passive synthesis 

PR matrices 109 

Time-variable 127, 131 

Two-variable lossless...114 

Positive-real 

Definition 95 

Example synthesis 103 

Lemma 96 

Lossless 96 

Synthesis 100, 109 

Two-variable 112 

Quality factor 48 

Realization 7 

Equivalent 16 

Frequency dependent 114 

Minimal 10, 63 

Positive-real 100 

Reciprocal 2-variable 

synthesis 119 

Riccati equation 131 

Sensitivity 

Computer evaluation 85 

Definition 84 

Pole position 86 

Time-domain 88 

State 

Block diagram 44 

Computer programming 24 

Definition 4 

Equations 7 

Equivalence 73 

Intuitive definition 1 

Mathematical definition 4 

Summary,  .15 

Time-variable network 124 

Topological formulation....25 

Transformation....16, 39, 126 

Uses 3 

Zero 4 

State-variable equations....7, 124 

Minimal form 63 

Skew-symmetric part 51 

Symmetric part 51 

Symmetrization 118 

Tie set 28 

Time-invariant system 7 

Time-variable synthesis 124 

Topological Tormulation 25 

Resul ts 35 
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Transfer function ,... 9 

Synthesis 127 

Transition matrix 89 

Sensitivity use 88 

Transmission line 110 

Transpose 23 

System 76 

Tree 25 

Two-variable 

PR 112 

Synthesis 116 

Unit-element 112 

Zero state 4 

Examples 5 

No mas, sino que Dios te guarde, 
y i. mi  me de- paciencia para 
llevar bien el mal que han de 
decir de mi mas de cuatro 
sotiles y almidonados-Vale. 

M. de Cervantes, "Novelas Ejemplares" 
M. Alvarez, Cadiz, 1915, p. 6 

,  ArOSK, 

ndcr Contract/Grant fj*<f6XO~~^  '" 
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