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FOREWORD

This paper was given originally at a symposium
of the Washington, D. C., Chapter of the Association
for Computing Machinery, 18 May 1967.
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Why Simulation?




INTRODUCTION

Only a short time ago it was quite difficult to obtain funds for a simulation
project outside certain areas of very specialized research. Practical managers
who really expected useful answers to questions concerning operating problems
were rarely interested in investing money in simulation. In the past 2 years this
reluctance seems to have diminished considerably. Simulation is now looked on
in many areas as a practicable means to obtain answers to questions raised by
managers running a business, operating a government agency, or conducting a
military operation. Simulation has joined the growing mimber of “OK words”
used in our profession. Simulation is “in® along with management-information
systems, real time,and timesharing.

In many respects we should be delighted with this turn of events. Simula-
tion is generally a great deal of fun. It is very much like being given a giant
erector set with which one can build the most elegant and esoteric toys ever.
Most desirable of all—simulation is considered to be a form of research, and
therefore the practitioner is seldom faced with embarrassing questions about
the real value of his expensive project. With any luck at all the simulation-
project manager can so dazgle the customer with tales of the elegance of the
simulation language and complexity of the model that he may never be asked if
any useful product has been obtained.

Of course there have been many useful and productive simulation projects.
Fortunately, these successes have occurred with a high enough frequency to
maintain our faith in the value of the technique. My concern is that there seem
to be altogether too many simulation models being built that are unlikely to
produce any useful results. More dangerous still, there seem to be many sim-
ulation models that produce apparently useful, but unverifiable answers. They
must be either ignored or accepted on faith.

From a professional point of view, I am concerned that we are overselling
simulation as a technique. From a practical point of view, I am concerned that
the pendulum may well swing back in the next 2 years to the point where sim-
ulation is regarded as an untrustworthy and expensive form of boondoggle.
Simulation is an extremely valuable tool when used properly to attack problems
amenable to simulation, but a most wasteful and inappropriate tool when other
techniques are available.

Now that people have lost their skepticism, the next problem is to develop
our own restraints if we are to avoid wasteful and misleading simulation projects.




DEVELOPMENT OF SIMULATION

H the limitations of a simulation are to be discussed, first we must define
simulation. The literature in the field is of limited usefulness in defining
the term exactly. The more recent the document, the more likely it is that the
author will quote several alternative definitions, reject them all, and proceed
to develop his own, which is more general and less restricting than any of those
given (see Naylor et al'). The use of the term *“simulation” seems to outgrow
even the broadest definition. I will not attempt a precise definition but as an
alternative will suggest that the history of the development of simulation as
it is known today may be a less rigorous but more satisfying way to describe
simulation.

The origins of simulation are generally traced to the work of von Neuman
and Ulman in the late 1940’s. They coined the term “Monte Carlo analysis,” to
describe a technique whereby essentially deterministic problems too expensive
or too complex to solve analytically could be solved by treating them as stochas-
tic problems. The genius of their method was that it was an inversion of the
usual approach to stochastic problems—that of treating stochastic problems as
if they were deterministic, in order to solve them analytically. The Monte Carlo
approach was, then, the process of finding a stochastic analog to the determin-
istic problem in order to estimate the solution through simulation.

Figure 1 is a greatly simplified example of Monte Carlo analysis. The area
enclosed by the outline of the glass could be calculated through integration of
the function that represents the sides of the glass, but such integration might
be difficult and costly. The Monte Carlo approach would be to enclose the cross
section of the glass by a rectangle of known area. An appropriate sample of
randomly generated points is thenplotted in such a way that all points within the
rectangle have an equal chance of being selected. The area within the giass is
then estimated by multiplying the fraction of all points that fall within the glass
by the area of the rectangle. This example is a relatively simple two-dimen-
sionai case; however, the basic technique can be applied to problems of signifi-
cantly greater complexity that may not be solvable by analytical means.

The development of Monte Carlo analysis occurred concurrently with the
development of the high-speed computer, and as a result most applications
were soon being conducted with the use of a computer. The techniques so de-
veloped were then applied to problems that were basically stochastic. Then
followed a rapid application of the technique to many of the classic stochastic
problems not amenable to analytic solution, e.g., processes involving multiple-
channel queues. A great deal is known about scheduling and relating problems
as a result of the availability of these techniques and the digital computer. In
the process a body of knowledge concerning the computer modeling of real-world
processes was developed that has become the real basis of computer simulation
as it is known today.

Figure 2 indicates a simple example of the stochastic simulation of a
stochastic process. Here the problem is the interaction of the arrival of orders
and the service time of each of the processes that lead to queues forming ahead
of some processes and a particular distribution of total order-processing time.
Here the rate of arrival of new orders is known,as is the distribution of service
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Fig. 1—Monte Carlo Stochastic Approximation of a Deterministic Value
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tim 3 for each o1 (he processes. The basic simulation approach is to generate
arrivals and service times by selecting from the known distributions of the
times through the use of random numbers. Thus the whole procedure can be de-
scribed as the development of a distribution for the total process, based on de-
tailed knowledge of the behavior of each of the components.

A key point not always recognized is that the simulation of large queueing
systems began after a well-developed theory of the behavior of the single-channel
queue was available. Large simulation models of queueing systems were then
constructed using components that were understood. The success of this general
type of model has led some to attempt the modeling of large systems in which
little is known of the behavior of the individual components.

A somewhat later development was the use of computer modeling techniques
to study business, econumic, and organizational problems. Clearly these pro-
cesses are probabilistic in nature and not deterministic. Yet some of the fore-
most practitioners chose to develop deterministic models of these systems.

For example, Jay Forrester’s industrial dynamics® approach is essentially de-
terministic. Forrester chose to study the dynamic character of industrial sys-
tems first without the noise created by random events; only later did he introduce
stochastic elements to observe their effect. This approach is prompted by the
belief that the probability functions of such processes are not yet known in suf-
ficient detail to support a useful stochastic model and further that there is much
to be learned about the dynamic properties of these processes aside from their
probabilistic elements. Thus an essentially deterministic approach is used to
study a probabilistic process.

Figure 3 is a simple example of the deterministic approach such as might
be used in an industrial dynamics simulation. Here the focus is on the feedback

Inventory level
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Fig. 3—The Deterministic Simulation of a Stochastic Process

problem of control. The controlling manager observes the level of inventories
and, acting on this information, regulates the flow of resources into the manu-
facturing process. The emphasis here is on the oscillations of the system that
may be created by the information and control mechanism.




Although this review has certainly not definc4 simulation in any rigorous
way, simulation models can now be characterized in two ways: first by de-
scribing what they are not. Simulation models do not purport to find the best
solution to any problem; they are not optimizing in any sense. The best to be
said about any simulation model is that it describes the object process, using
characteristics that are important to the results the model builder wishes to
study. A simulation model thus serves its function by demonstrating the con-
sequences of a particular set of inputs and decision rules applied to the process.
The model builder is free to change any of these in the hope of improving the
result, but improvement is by no means guaranteed. Thus, if optimization or
improvement is the model builder’s goal, that improvement must be obtained
through inference from the model’s behavior.

Second, we can say what simulation is like. Simulation has many of the
characteristics of a laboratory experiment; it certainly can be controlled.

Any run of any simulation can be replicated precisely, or any element changed
to exactly the degree wished. Since the digital computer is a deterministic
mechanism, the conditions of the simulation can actually be controlied to run
more accurately than the conditions of the laboratory model.’

Simulation, like laboratory experiment, is also an abstraction from the
real world. Laboratory experiments seem at first to have an advantage in that
we usually separate some material, an actual part of the real world, and place
it in the controlled conditions of the laboratory. One is tempted, therefore, to
think that the laboratory experimenter has no problems in proving the validity
of the abstraction, but clearly this is not the case. The laboratory experimenter
must be concerned that in his abstraction the basic condition he wishes to study
has not been altered. He must be concerned that he is faithfully reproducing
in the laboratory the conditions that are important to the process he wigshes to
explore. This, of course, is precisely the problem that the simulation- model
builder must consider.

If simulation is in effect an experimental process, a number of things can
be inferred from the experience gained in the laboratory experiment. One is
that laboratory procedure is carefully followed and reported in such experiments.
The simulation analog of this may be the strict control and reporting of the
random-number generators used, the collection and tabulation techniques used
in gathering the basic data, the sample sizes used, and other related techniques.

An important point here is that in simulation there is not yet a formalized
set of control techniques that ensures the accuracy of simulation experiments.
The skill, experience, and thoroughness of the individual experimenter are all-
important. There is no cookbook formula that permits the nonparticipant to
assure himself that the results of a simulation experiment are valid.

Another similarity between a simulation and laboratory experiment is the
results that one can reasonably expect. The simulation- model builder hopes
that he will be surprised by the results of his model. He hopes that the model
will behave in 2 manner that he would not have predicted and yet not violate
any of the known characteristics or relations of the object system. For, if
surprising results occur, the model builder may have discovered some new
and interesting property of the object system not apparent before.

Of course, many surprises turn out to be the result of a failure in the
model rather than a legitimate key to new understanding. The separation of




surprises into these two categories is one of the most difficult problems of
simulation.

A second result that one can hope for from simulation and experimentation
is that the relative merit of two or more courses of action can be tested. Ac-
knowledging the imperfections of the models, one may still hope that they will
be capable of distinguishing a better set of decision rules or a more favorable
set of inputs. This implies the measurement of the result against the changes
to the model or its inputs. Consequently the measurement of results is as
vital in simulation as it-is in physical experimentation.

ADVANTAGES OF SIMULATION

The limitations as well as the advantages of simulation are perhaps most
succinctly stated by Teichroew and Lubin® as the following:

Simulation problems are characterized by being mathematically intractable and
having resisted solution by analytic methods. The problems usually involve many
variables, many parameters, functions which are not well behaved mathematically and
random variables. Thus, simulation is a technique of last resort. Yet, much effort is
now devoted to ‘computer simulation’ because it is a technique that gives answers in
spite of its difficulties, costs and time required.

One advantage of simulation then is that problems not otherwise feasibly
solved are open to investigation. I would submit that this is the only true ad-
vantage. In all other respects—cost, elapsed time required for solution, skill
required of the analyst, and accuracy of the results—simulation is second best
if a reasonably realistic analytic solution is available.

There are, of course, cases where analytic or experimental solution is
theoretically possible but practically difficult or infeasible. In the vast majority
of cases, however, if an analytic solution is available it should by all means
be used. The point here is that simulation’s single overwhelming advantage is
that it is often the only feasible approach to important problems.

This idea is not always popular with people in the simulation field. Other
additional advantages are often cited. One of the proposed advantages is that
simulation permits more complex, more elegant, and hence more realistic
models. This is certainly true. The number of variables and parameters may
in some cases be larger (by an order of magnitude) than currently available
optimizing models. Types of functions not feasible in analytic models can be
used relatively easily in simulation models. The richness and variety of the
modeling language available to simulation is certainly greater by far than in
available optimizing models.

The real question is, “Does the complexity pay off?” Elegance for its
own sake is not very valuable. Complexity pays off only if it truly adds to the
realism of the model and if that realism is necessary to a useful solution.
Thus complexity is not an advantage per se, but only if it is the sole recogniz
able path to solution.

Another advantage sometimes cited is that simulation can be used even
in the cases where the process is not fully understood and/or the data are not
complete. This too is quite true. If one is willing to make the necessary
assumptions, a simulation model can be developed for virtually anything that




can be conceived. In some cases the construction of a simulation model may
be excellent preparation for the gathering of additional data. The process of
building and exercising a simulation model has a remarkable way of focusing
one’s attention on the need for specific data, and the necessity for better under-
standing of particular aspects of the object process. But then isn’t this a

claim that can be made for all model building?

There is much to be said for an approach to problem solving that uses
simulation to test the consequences of data and hypotheses already at hand
and to focus on the areas in which additional work needs to be done. Two
things must be said of this approach: First, other modeling methods can make
the same claim; hence, if simulation is chosen, it should be because no simpler
or cheaper approach may be used. Second, there is great danger in this approach
in that the first answers are all too often taken as the answers. Thus simulation
in the face of poor data and weak theoretical foundation is an advantage only if
the weakness of the outputs as well as of the inputs is recognized. Simulation
is not a machine that converts weak inputs and assumptions to strong results
and conclusions.

Finally, it is sometimes stated that one of the advantages of simulation is
that the manager himself can understand simulation models without the intensive
training or technical background generally thought necessary for the use of
optimizing models. This conclusion is subject to considerable argument. First,
let us recognize that those citing this as an advantage are generally talking about
operating problems and nontechnical managers. It is true that one can generally
explain the basic approach to simulation to nontechnical managers more readily
than one can explain, e.g., linear programming. Further, the outputs of simula-
tion are frequently easier to understand because they are themselves simula-
tions of object-system reports. I this advantage is restated to read, “The re-
sults of simulation models are easier to sell because they can produce results
similar to those produced by the object system,” then I think we must admit
this is true.

Simulation can be described as the computerization of experience. That is,
in the study of operating processes we build our model based on the practical
knowledge of the object process and then, by running it repeatedly, gain “years”
of experience in a relatively short time. Thus, although the manager may not
understand the intricacies of stochastic processes, he can appreciate the basic
trial-and-error approach.

It seems to me that this advantage is also a danger. Simulation models,
no matter how thin the data or how limited the understanding of the object pro-
cesses, can almost always come up with answers. X the answers are super-
ficially understood, a source of misinformation may be created. I would there-
fore suggest that this advantage is also a trap. It might be better if the results
of simulation could not be understood without extensive training and in-depth
understanding.

MODELING PROBLEMS AND SIMULATION

It is not always popular to refer to the problems that are encountered
in any endeavor. We prefer to discuss interesting situations or challenges.




In simulation there are a number of interesting situations that one should re-
cognize before plunging into the world of simulation modeling.

One of the first to be recognized is the fact that good simulation requires
skilled and experienced analysts. The analyst’s first and perhaps most im-
portant job is to select the properties of the object system that are important
to the process being studied. This implies deep understanding of the process
itself, and considerable skill in modeling. The model builder thus needs
thorcugh familiarity with the object process, skill in working with the modeling
language, and skill in exercising the model.

Few simulation models are constructed in this fashion. Their functions
are more commonly separated. One individual or group examines the object
process and determines the properties that are important; a second individual
or group then maps these properties using the simulation language. In many
cases a third individual or group then conducts experiments with the model
and interprets the results. There would seem to be no necessity for having a
single person perform these tasks; however, there is certainly a clear need
for superior communication to ensure that the modeling process or the ex-
periments do not go beyond the capability of the conceptual model.

A second requirement is thorough technical kncwledge of the statistical
processes involved. Experiments with simulation models should be as care-
fully controlled as any physical experiment. The achievement of the steady
state by the model, measurement of the behavior of the model, and selection
of the sample size to be used are all tasks that require considerable technical
capacity beyond that which is normally considered necessary for programming.

Finally, considerable skill in planning experiments and interpreting their
results is needed. In its present state of development, simulation is an art,
not a science. Experience and intuitive skill play a very important part in
differentiating betwe~n gemiine new information of the object process and the
anomalies of the model itself.

A fundamental problem affecting all models, but particularly simulation
models, is the difficulty of determining the model’s validity. This problem
has not been solved in any rigorous sense and may never be solved rigorously.
One aspect of the problem is illustrated by the following two statements:

(a) Simulation models are valuable because they permit observation of
processes otherwise difficult or impossible to observe in the real world.

(b) Simulation models are valid if they behave as the object system
behaves.

These statements are of course simplified and perhaps imprecise but
they do summarize valid points. A model, by definition, will not behave in all
respects as the object system behaves. One of the important characteristics
of a model is that it permits concentration on the parts of the object process
that are believed to be important. Yet ultimately the findings that are most
important to us are not directly observable in the object system. One can
always deflate a simulation- model builder by classifying all his results in
two categories, (a) those results obtained by observing the system directly
and (b) those results that are unsupported.

The validity problem is summarized in Fig. 4. A is the object system,
and B is that portion of the object system directly observable, such that B is
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a subset of A.* C is then the model. Now the model by definition does not
contain all the characteristics of the real system. Thus AC’ and ABC’are
not empty. In addition, A‘C will not be empty, i.e., the model will contain
anomalies that are characteristic of the model and not of the object system.
AB’C is valuable information. These are the characteristics of the model
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Fig. 4—The Object System Validity Problem
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and of the object system that are not observable. ABC is the validity confirma-
tion space. That is, it is in this region that the validity of the model may be

" tested by comparing its performance with the observed performance of the
object system.

Now the above discussion is a conceptual one, but it illustrates the fun-
damental problem of simulation; i.e., as each experiment is conducted on the
mode! the results may be classified into two categories. One category consists
of the region ABC, which contains the points in which the observable portion of
the object system and the model coincide. This is the region on which our
rlaims for the validity of the model is based.

The second classification consists of the union of A'C and AB'C (A'CU
AB'C). That is, the results may consist of invalid and/or valid results of the
model. Herein lies the crux of the validity problem. The valid and invalid
results cannot be distinguished without resorting to information outside the
simulation process.

The usual defense against attacks on the validity of one’s model is to
point to the great detail and precision of the model itself. It is implied that
greater detail and complexity ensures greater realism and, it is hoped, greater
validity. In short, simulation- model builders frequently find themselves driven
to larger and larger models of unfathomable complexity. One gets the impres-
sion that the prize poes to the most complex model rather than the one with the
most useful results.

*B will not be a subset of A unless our observations of the system are completely
accurate. A‘B is in fact the region of inaccurate observations.

11
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This complexity leads to some curious situations. It is not uncommon to
discover that a simulation model of a sequential process is made up of com-
ponents that vary widely in their levels of detail. One component may be built
in the greatest detail with all the elegance and complexity that its builder can
devise; its outputs, however, may be digested by the next component in such a
manner as to lose the detail generated in the previous step.

Model complexity is in itself a problem. It is the unexpected result that
is most desired in model building and experimentation. When that unexpected
result is found, however, a reasonable explanation is normally sought, i.e.,
an attempt is made to explain the outcome as the result of known properties of
the object system. The complexity of models works against us in this situation.
It is found sometimes that our model is so complex that we are unable to trace
the outcome to the originating causes within the object system. When this
situation occurs, the model builder has a difficult choice. He must redesign
the model, search elsewhere for confirmation, or plunge into conclusions know-
ing they may be based on characteristics in the model but not in the object
system.

In our earlier definition of simulation, we characterized simulation as
nonoptimizing. It hardly seems fair now to state this as a limitation. I would
submit, however, that this characteristic of simulation is an operational limi-
tation as well as a theoretical limitation.

In actual practice we really do not expect to optimize real-world processes
as a result of “optimizing” models. Such models tend to oversimplify the real
world, and they can rarely be put directly into practice. Optimization is an
elusive goal; it is extremely difficult if not impossible to formulate our true
objectives in precise form, let alone solve for them.

Optimizing models do, however, have one great operational advantage:
we know when tiie stated objective has been accomplished. This is not to say
that the model cannot be reformulated or the objective function altered; but,
given the model and its objective function, experimentation does end.

Simulation models have no such built-in assurances. It may be possible
to identify improvements, but one can never be assured that some small change
will not result in a major improvement. Progress is being made in the devel-
opment of techniques for the systematic exploration of simulation models,

e.g., SimOptimization.® However, currently, a systematic means to locate
improvements is still unfound.

CONCLUSIONS

Simulation is a powerful technique that has been used in the past and will
be used in the future to solve important problems. Simulation is, however, not
a cure-all or a panacea. It is a technique of last resort. A perfectly valid goal
of simulation may be the organization of ideas and knowledge of a problem to
the point where other techniques may be applied.

It is not uncommon for simulation- model builders to discover that they
can predict the results of runs using their models with relatively simple
analytical procedures.
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If this is true, then simulation analysts should study optimizing techniques
thoroughly, both to avoid attempting simulation of analytically solvable prob-
lems and to direct their thinking toward the kinds of solutions that may be
most useful and productive.

It is concluded that simulation models should not attempt too much in one
leap. I massive breakthroughs are attempted in one step, the results will
likely be unverifiable. We may be unable to distinguish the results that are
truly new information about the object process from those that are aberrations
of the model.

Finally, we, as computer professionals and those to whom simulation
problems ultimately come, should be most careful in explaining to the customer
what he may reasonably expect from simulation.
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