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FOREWORD

This paper was prepared for presentation at the Nineteenth
National Meeting of the Joint Study Group on Military Resou.rce
Allocation Methodology, Washington, D.C., 9-12 May 1967.
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ABSTRACT

An important aspect of cost research is the measurement of the uncertainty in-

herent in the projection of system cost. Approaches to this problem have in the past

centered on intuition of the decision maker or on sensitivity analysis. Only receutly

have approaches utilizing such tools as s'-tistical decision theory and probability theory

been formulated. The study described here explores and evaluates three such techniques.
Each approach requires:

(a) Expression of input estimates as probability distributions reflecting un-

certainty.
(b) Cost equations pertinent to the particular model.

Each approach generates:
(a) Frequency distributions for cost elements and aggregations.
(b) Statistical measures that illustrate the nature and magnitude of the sys-

tem cost uncertaiaty.
The approtches evaluated are:

(a) Derivation of Moments Technique. This employs equations for deriving

the woments and distributions for cost elements and aggregations.
(b) Monte Carlo Technique. Thie is a simulation routine to be used in con-

junction with RAC's Individual System/Organization Cost model.

(c) Symmetric Approximation, This is a special case of the derivation of

moments technique. a
Finally the evaIhtion ims at two considerations:

(a) The value of such information on uncertainty to the Army decision maker

and analyst.
(b) Comparison of the relative costs and advantages of each approach de-

scribed above.
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INTRODUCTION

The purpose of this paper is to describe ongoing research for improving
and evaluating methodologies for quantifying uncertainty in cost analysis. This
research was conducted under the sponsorship of the Director of Cost Analysis
of the Office of the Comptroller of the Army. Approaches to the measurement
of the uncertainty present in cost models have in the past centered at worst on
the intuition of the decision maker and at best on sensitivity analysis. Only
recently have approaches based on statistical-decision theory and probability
theory been attempted. The purpose of the study is to explore and evaluate
three such approaches. More specifically this research attempts to:

(a) Determine the value of information on uncertainty to the Army de-
cision maker and the analyst.

(b) Compare relative costs and advantages of each approach studied.
(c) Develop an operational technique for use by RAC and Army cost

analysts.
The three approaches ,inde. -valuation are:
(a) Derivation of Moments Technique. This employs equations for de-

riving moments of cost elements and aggregations and distribution parameters
of aggregations.

(b) Monte Carlo Technique. This is a simulation routine to be used in
conjunction with RAC's Individual System/Organization Cost (ISOC) Model. '2

(c) Symmetric Approximation. This is a special case of the derivation
of moments technique.

COST UNCERTAINTY IN DECISION MAKING

The process of decision making and thuF the fundamental task of the de-
cision maker is to choose among alternative 7 urses of action. Often such
choice will involve a cost-benefit analysis of either a formal or informal na-
ture. With a iormai analysis as our context, let us examine what has been
given the decision maker as costs.

The precise calculation of costs is not a difficult task. The availability
of computers and cost models can reduce this to routine. The calculation
itself is precise and can be done rapidly in minute detail.

The inputs to these precise calculations are, however, not precise; in
fact they are often quite the opposite. The errors present in each input are
passed on to various aggregations until one arrives at a total cost that some-
how involves each individual error. Thus, cost inputs are combined in a com-
puter model with a multiplicity of equations and hundreds of other inputs to
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form a single estimate of total costs. This single estimate is presented to
the decision maker with the implication that although it may not be perfect, it
is certainly the best available estimate, without any statement as to likelihood
of occurrence or range of other possible values.

But in the generation of this aggregate number, hundreds of imprecise
numbers may have been used. T'Ais fact is not emphasized to the decision
maker, nor does he have a basis to judge the precision of the numbers. Cost
models as currently conceived and used, then, uniformly withhold from the de-
cision maker some information that might be vital to his decision. We have
neglected to tell him all we know about the subject of the accuracy of our esti-
mate s.

As an example, let us suppose that one of the cost elements is a missile
airframe. The missile is not yet designed or built, so no production-cost data
are available. A cost estimating relation (CER) could be used, for example,
to estimate that the airframe cost for a new missile would be about $32,000.
The design group, however, warns that some added sophistication might make
the CER predict on the low side, but that improvements in some manufacturing
techniques promise lower costs. Some quick calculations show estimates as
low as $26,000 and as high as $45,000. Each of these calculations is based on
a set of assumptions concerning labor and overhead rates, material costs in
the future, and design details not yet firm and subject to some uncertainty.
Each factor is considered,and the analyst enters his final estimate as $36,000.

For each of a multitude of other important inputs, similar decisions are
made, and a single aggregate cost is obtained as the output of the cost model.
This is somewhat analogous to describing the outcome of a dice throw by the
most likely outcome, 7. It says nothing about the almost as likely 6's and 8's
or of the extremes of 2 and 12 as shown by Fig. 1. Expanding this analogy to
eight dice each with 100 sides, we begin to approach the variations possible
in cost estimates for decision making.

Obviously we are not telling this hypothetical decision maker all we know
or all he needs to know to make a rational decision when we report a single-
cost estimate.

741 dan-ers of the single-cost estimate have been recognized for years,
and oeveral strategies have been developed for augmenting the analysis or
circumventing the difficulty. One is isolation of the differences ttween alter-
natives. Cost elements common to alternatives are estimated in a similar or
identical manner so that only the uncertainties of the unique features of alter-
natives affect relative cost. Another is thc use of sensitivity analysis. Sinsi-
tivity analysis computes the impact of errors in estimates and assumptions,
identifying error sources important to the choice of alternatives. It can pro-
duce prod of insensitivity,or it can provide evidence that, within a relevant
range of values, choice is or is not affected by estimation error.

Returning to the dice analogy of Fig. 1, this is like saying 7 is most
likely, but the number could go as low is 2 or as high as 12. If ihe possibility
of 2 or 12 affects choice, supplying that information tells the decision maker
somethiag he needs to make a choice. However, the fact that 2 or L2 are the
least likely outcomes has not been given. In a similar manner, sensitivity
analysis, using judgments about the relevant range, produces an array of [lum-
bers that include the analysts' beliefs concerning the limits of the variables
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but excludes any knowledge of relative probability. No probability statements
are furnished, and the decision maker could be ied to believe that all numbers
in the array are equally likely.

The choice of a relevant range of values for sensitivity analysis is both
difficult and critical to its usefulness. It also reveals a dilemma inherent in
the application of sensitivity analysis. If the analyst has evidence that the
value of one of the inputs is constrained within some upper and lower limits,
then this same evidence may provide information on the relative likelihood of
particular values. If he has only an intuitive belief about the ratie, this too
may be accomplished by equally valid suppositions concerning probabilities
of the values within the range.

In the previous examp.1 of the missile cost, if the reasoning that fixed
the relevant range of costs at $26,000 to $45,000 could yield information un
the probability of occurrence, then we could supply the missing information
in a form useful to the decision. A possible statement might be that there is
a 29 percent probability that the cost is less than $44,000. Combined with the
other elements of the cost model with similar staternents, we might say that
although the maximum ccst produced by the sensitivity analysis is, say, $800
million, there is a 99 perk.ent p;.,b.4bility that the cost will not exceed $720
million. In the sensitivity analysis, if the $800 million number exceeded
slightly the cost of another a'ternative under similar sensitivity assumptions,
the decision maker may have been furnished an unlikely cost set for consider-
ation along with all other sensitir'ty sets, and this set may uniquely favor a
different alternative. Knowing just a few simple probability statements, then,
can preclude earnest consideration of cost estimates whose likelihood is very
remote.

In short, although sensitivity analysis is a powerful tool for portraying
the results of estimating error, it leads to pondering highly unlikely situations.
The same reasoning that leads to a determination of relevant range for sensi-
ti,"ty analysis has the potential of providing key information in decision making.
The importance of utilizing this information is, we believe, as great as that of
providing cost analyses at all.

VALUE OF UNCERTAINTY ANALYSIS

Having considered the shortcomings of present approaches, let us con-
sider what benefits can be expected for analyst and decision maker from use
of probability information.

Principal valae for the analyst seems to lie in the isolation of major
sources of uncertainty in the model. We can construct for conceptual purposes
the matrix shown in Fig. 2 illustrating the nature of inputs.

Without probability-distribution techniques the analyst was unable in the
past to ascertain into which of the cells of the matrix an -out item fell. Now
applyi.,g probability techniques one can determine this kind of information and
feed it back to the analyst. Particularly important are the isolation of X 11-type
inputs, i.e., those possessing highest uncertainty and contribution to total cost.
Presumably cost analysts would want to work on developing more accurate
estimates of these items than, say, X,1 items where total contribution is lowest
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despite high uncertainty. At any rate this information can tell the analyst
more clearly than ever before to which inputs the total cost is most sensitive.

Uncertainty

Highest - sP Lowest

Highest X11  X 12  XIM

Contribution X . 2 X 2 2  X2 n
to total cost

Lowest
X 1 X2 X

Fig. 2-Inputs Matrix

Potential value to the decision maker can best be described by some il-
lustrations. In cacn illustration the frequency distributions for two alterna-
tives are shown. The horizontal axis in each case represents the cost of the
alternative and is increasing to the right. The vertical axis represents the
likelihood of occurrence at each cost level. Each of these is a hypothetical
case in which equal effectiveness or other benefits are assumed. The deci-
sion maker's problem is that of choosing the least-cost alternative. If only
single-point cost estimates were provided, the decision maker would of course
feel constrained to select the lower cost in each case. However, Fig. 3 demon-
strates how information provided by probability estimation could modify his
outlootk.

A

Fig. 3-Alternative Comparison-Case 1

Most likely value A > most likely value E
variance A < varionce B

The peak of each curve is at the most likely, or modal, value, and that is,
in our hypothetical cases, the only cost total that would be furnished a decision
maker in the absence of uncertainty analysis. In this example,B is expected
to be less expensive, but it has a larger variance so that higher costs are
more likely than with A. Faced with this dilemma, the decision maker may
decide to avoid extreme costs by choosing A or to gamble on the expected
lower costs of B. We cannot prescribe for him, but by providing the probabil-
ity distributions, we have made known to him a pitfall in selecting the "less
expensive' alternative.

Figure 4 illustrates a clear-cut case. The largest possible cost of one
alternative is less than the smallest possible cost of the other. Decision
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makers furnished with this information are not likely to choose differently than
if only point estimates were given. They are, however, furnished an assurance
that no combination of likely errors of estimation would result in a reversal
of relative costs. It should be noted that this cannot be done with sensitivity
analysis. There might exist a combination of extreme values, each within a
relevant range, in which the cost ranking is reversed, but sensitivity analysis
would furnish no clue that it is a condition with negligible probability of occur-
rence.

A 8

Fig. 4-Alternative Comparison-Case 2

Most likely value A < most likely value B
No overlap of distributions

In Fig. 5 a single-point estimate would furnish no basis for choice. With
mean values essentially the same the decision maker must look elsewhere for
differences. If the probability distributions are furnished, however, it is ap-
parent that the costs cannot be regarded as equal. If they appear as shown
here, we presume that A would be chosen, since it can be better accomuodated
in the budgeting and financial management system. The possibility of much
lower than mean costs may have some value too, and as a result it becomes
impossible to speculate on choice outside specific cases. The important
thing is that information helpful in the decision process has been furnished
that would not otherwise be available.

Fig. 5-Alternative Comparison-Case 3

Most likely value A most likely value B
Variance A < vuriance B

The costs associated with two alternatives may or may not be signifi-
cantly different. Fig. 6 illustrates two cost totals, each with the same variance.
If variance is low, the situation is as in the second example; costs are
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different and offer a basis for choice as conclusive as the magnitude of the
difference might indicate. Larger variances diminish the importance of the
most likely value cost difference. At some combination of 'closeness" and high
variance the cost difference may noL be of significance in the selection of an
alternative. In any case, quantification of the probabilities of the differences
is a useful contribution to the decision maker's understanding.

A' 13"

Fig. 6-Alternative Comparison-Case 4

Most likely value A < most likely -lue B
Variance A - varance B; most likely value A most likely value B
Variance A' variance B'; variance A' < variance A
Vorianc-" 5' variance B

These four examples, it should be noted, differ only quantitatively. They
are offered in these forms to illustrate the range of possib!ilties in which use-
ful information may come from a knowledge of the probability distributions of
total cost.

DESCRIPTION OF TECHNIQUES

Having looked at shortcomings of present approaches and possible bene-
fits of providing probability information, let us now turn to a discussion of
three techniques for providing such information.

Each technique utilizes a different method of producing the same kinds
of information. Each assumes that cost distributions are approximated by
beta distributions. This does not seem illogical. Beta distributions are uni-
modal, finite, and continuous. All of these seem to be characteristics of most
cost items dealt with in Army models. Each technique further assumes inde-
pendence of cost inputs. This could prove limiting in certain situations. A
number of approaches to handling dependency can be applied. Among these
are incorporation in the model of the functional relation between the variables,
statement of the dependent variable in terms of auxiliary variables, and use of
joint probability distributions. The problem of independence is not felt to be
prohibitive although the systematic handling of input dependency is still an
area for research. Finally the beta distribution can, as opposed to, for exam-
ple, normal distributions, describe various conditions of skewness and peak-
edness, which is desirable in the context of cost analysis. In each section
there is a discussion of (a) the general logic of each technique, (b) required
inputs, and I-) characteristic outputs.
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Finally for one of these techniques, the derivation of moments, an ex-
tremely simple model is presented both to illustrate the workings of this
model and to give a better understanding of what this kind of technique can do.

Derivation of Moments Technique

The principles underlying this technique are (a) a distribution may be
described by its first four statistical moments, and (b) these moments may be
combined according to certain equations to give the moments and the distribu-
tions of various cost aggregations.

Figure 7 is a generalized flow diagram of the derivation of moments tech-
nique. We note that this routine has three major sections or phases. Phase I
accepts user input describing cost items and converts this for each cost item
to the first four statistical moments of the beta distribution determined by the
input. These sets of moments become input to Phase 1U, along with a descrip-
tion of the relations between cost items in a particular model. Phase Ii com-
bines moments according to these predetermined relations. The outputs of
Phase II then are the first four moments of each combination or aggregation.
Finally Phase III computes the parameters and produces plots of the beta cU s-
tributions determined by the aggregate moments.

P P p

H H H

Cost input relations

Fig. 7-Derivation of Moments Technique

This technique is an adaptation of an approach first formulated by Sobel
of MITRE. 3 However, sever . changes that were felt to be significant were
made in the original program.

Perhaps the most important adaptation was the complete revision of
Phase I of the program. The original routine required a user to input the fol-
lowing four parameters: XP, most probable value; XH, high value; XL, low

value; and CR, 80 percent central range (defined to be that range of the vari-
able which contains 80 percent of the probability). The estimation of this lat-
ter parameter was felt to be extremely difficult and at best subject to great
error. Efforts toward modifying this requirement led to the following new
approach. It is in principle similar to that described by Dienemann. 4 Instead
of allowing the analyst to specify any beta distribution, a fixed set of distribu-
tions, each of which could be described qualitatively in terms of variance and
skewness, was developed. Figure 8 illustrates the set of nine distributions
with which tests are being run. In this scheme variances are listed as high,
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medium, and low, and distributions are skewed right, symmetric, and skewed left.
Thus the user specifies the type of distribution selected from the given set
and any two of the following three parameters: most probable value, high
value, and low value. Since the parameters of the distributions have been
fixed, specification of three of the above parameters would overspecify the
distribution and could produce distortions in the representations of the curve.
Experience with analysts at RAC indicates that the analyst seems better able
to pick a particular distribution from a fixed set than to estimate a number
like the 80 percent central range. In addition the fixed-set approach allows
for testing sensitivity of results to type of distribution 'elected. Thus the
analyst may wish to see what happens to his cost figures if he assumes dis-
tributions are skewed right as opposed to symmetric. This fixed-set approach,
then, is one of the major revisions to the original approach set forth by Sobel.

Skewed left Symmetric Skewed right

High ,*

variince

variance

Low
variance

Fig. 8-Sample Set of Distributions

Several additions have been made to the original formulation. Previously
only the parameters of the beta distribution were printed out by Phase III of
the program. These consisted of the alpha and beta parameters along with the
limits of a selected probability area such as upper and lower 10 percent tails.
However, a routine has been added to plot the frequency distribution of differ-
ent cost aggregations. This provides a graphic display of the possible cost
spread along with the likelihood of different cost levels. This type of display
is particularly effective in the comparison of alternatives. Finally, several

11
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H ~ HH

A A A

E E

F/W I

Personnel x pay = P1

F1 x F/W Main = P2
PI + P2 = Total

Fig. 9-Format for Derivation of Moments Technique for To-Equation Model

additions of an operational nature, such as the automatic linking of phases of
the program, have been made.

It might be helpful as a means of further illustrating this technique to
trace its operation in the context of an extremely simple example. Figure 9
illustrates the flow diagram for a cost model consisting of the following two
equations:

(a) PERSONNEL (expressed in number of men) x PAY (expressed in
dollars per man)

(b) FIXED-WING AIRCRAFT (expressed in number of planes) x FIXED-
WING MAINTENANCE (expressed in dollars per plane)

As inputs to Phase I the user specifies the most probable, high, and low values
in addition to type of distribution. Phase I then outputs the first four moments
c( the beta distribution determined by each input set. Thus this model will out-
put four sets of moments.

These four sets of moments now become input to Phase II. Along with
these go the following three equations that make up our model:

P1i Personnel x pay

P2 -F/W x F/W maintenance

Total cost = PI+ P2

Phase 11 then outputs three sets of four moments. The first set represents
the product of personnel and pay; the second, the product of fixed-wing craft
and fixed-wing maintenance; and the third, the sum of these two products.
These three sets now enter Phase Ill. The results of this phase will be the
distributions determined 'y the three sets. They illustrate the cost spread
implied in this model along with the relative frequency of each cost level. In
addition, various parameters such as mean,variance, limits of probability
areas, etc., can be readily obtained.

To further clarify operations of this technique, Fig. 10 illustrates the
flow for the same two-equation model with sample Phase I input and Phase
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III output. Thus for personnel, XP = 10,000 men, XH 13,000 men,

XL = 8,000 men, and type of distribution is 8. The selection of type 8 distri-
bution from our list of nine implies a distribution of low variance with sym-
metry. Apparently the analyst here feels that a level of 10,000 men is fairly
certain (indicated by picking low variance) and whatever deviation did occur
would be likely to occur in either direction (indicated by pickirg symmetric
distribution).

Outputs for Phases I and II are not shown since their addition would add
no real understanding. Also only the frequency curves were shown as Phase
II output because of space limitations. This simple example then illustrates

the operation of tie derivation of moments technique.

Monte Carlo Technique

Figure 11 is a general flow diagram of the Monte Carlo technique. This
technique is quite similar to one formulated by Dienemann of the RAND Cor-
poration. The principle underlying this technique is that if many iterations
of the same cost model can be computed, while changing the value of the mod-
el's inputs in accordance with the given distributions on each iteration, the
relative frequency of various cost levels can be computed, plotted, and statis-
tically analyzed. The speed of the computer enables us to do this. Thus in
this technique we construct, compute, and analyze a large number of iterations
of the same cc.-t model. These three functions provide a useful framework for
examining the flow chart of Fig. 11.

The Monte Carlo subroutine functions as the constructor of the inputs to
the iterations. It does this by selecting sets of values for the cost inputs. The
subroutine accepts from the user the most probable, high, and low values along
with a type of distribution for each cost input. These are the same parameters
required by the derivation of moments technique. Based on the type of distri-
bution and using a random number generator, the subroutine selects a value
for each cost input. This set of values will be used for this particular itera-
tion only. These values are next combined in the ISOC subroutine.

The ISOC subroutine is an adaptation of the ISOC computerized cost model
formulated by RAC. ,' It will accept (a) a different set of values selected "'y the
Monte Carlo subroutine for each iteration and (b) the relations between the
cost inputs. Since these relations hold for each iteration, they need only be
input during the first iteration. With these inputs and relations the ISOC model
will compute cost aggregations including total cost and store the results of the
iterations for selected aggregations. Having stored this information the model
will ask whether a sufficient number of iterations have been run. A number of
methods for choosing this can be applied. If more iterations are required,
control is sent back to the Monte Carlo subroutine for the generation of another
set of values. If the required iterations have been executed, control passes to
the final phase of the technique, the analysis subroutine.

The analysis subroutine (a) prepares a frequency distribution for each
selected aggregation and (b) computes such statistical measures as mean and
variance for the aggregations. The output of this subroutine thus closely re-
sembles that of P.ase III of the derivation of moments technique. In this ap-
proach, however, the distributions are not plotted from the parameters of a
beta distribution but from the frequency of occurrence of various cost levels.
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Symmetric -Approximation Technique

Figure 12 illustrates the symmetric-approximation technique. This
method differs from the derivation of moments technique only in the calcula-
tion of cost-input moments. Since the remaining two phases are identical, we
need only focus attention on Phase I of this technique. The heart of the tech-
nique lies in the four equations shown in Fig. 12. These are equations for
approximating the moments of beta distributions. Note that the third and fourth
moments are zero. This implies (a) the distribution is symmetric, and (b) the
distribution has the same flatness as a normal curve. These equations were
first formulated in the development of program evaluation and review tech-
niques (PERT) when th- time needed to complete a project was assumed to be
beta-distributed. These equations do not require the user to input the type of
distribution he feels characterizes a cost input. Thus the user Inputs most
probable, high, and low values only, and Phase I computes the first and second
moments. These .re then input along with cost input relations to Phase II-
identical to Phase II of the derivation of moments technique. Once again mo-
ments of aggregations are outputs of Phase II and feed into a Phase Ill identi-
cal to that of the derivation of moments technique.

Several reasons "rompted selection of the technique for evaluation. Such
equations have been used to develop cost ranges for cost-effectiveness studies.
The author also wished to find whether results were significantly affected by
attempts to measure skewress and peakedness. Finally the author was inter-
ested in measuring at least qualitatively the validity or accuracy of these ap-
proximating equations.

FUTURE STUDY

As was mentioned at the start, this paper describes an ongoing study at
RAC. This means that what has been presented here is not a final product.
Rather, it represents a progress report designed to develop interest in these
kinds ot techni, Ps and possibly to provide a basis for dialogue with others
working in this iield of uncertainty quantification. Also it extended the oppor-
tunity for the author to pull together the pieces of the study, to evaluate efforts
to date, and to give direction to future research. The following are several
areas that will be investigated in the future.

Comparison of Techniques

Consistent with objectives, first effort will go to a comparison of relative
costs and advantages of each technique. Thus far comparison has been limited
since one of the models is not yet completely operational. However, some con-
clusions that seem significant have been reached.

I. The Monte Carlo approach seems more flexible since one could allow
distributions other than beta as inputs with minimal programming cianges.

2. Monte Carlo also allows use of existing cost models in its total scheme
whereas the other two currently accept the format of the derivation -4 moments
technique only.
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3. Time required per iterttion in the Monte Carlo technique could prove
to be prohibitive for large-scale models. The other two seem quite reasonable
in the consumption of computer time.

4. The symmetric approximation technique seems inadequate as it takes
no account of any skewness. Analysts generally believe cost distributions to
be skewed right. If this proves widespread, the error induced by this approxi-
mation will certainly prove more important than the simplification offered.

These statements are inconclusive and provide only the beginnings of a
basis for evaluation. Once all techniques are operational, the evaluation of
their relative merits and costs is the item of first priority for the future.

Sample Analysis for Large-Scale Cost Model

The approach to date has been operations rather than applications oriented.
Thus the models developed were test cases containing considerably fewer
equations than a typical Army application. Plans now are to apply the uncer-
tainty techniques to a division cost model recently developed by the Cost Re-
search Division of the Office of the Comptroller of the Army. In order to do
this for the derivation of moments technique, plans are being formulated for a
-outine that will automatically link the ISOC format to that of the derivation of
moments. This will give the derivation of moments technique the capability
of processing existing cost models. This could be a determining factor in the
f- .I selection of techniques. At any rate a large-scale model consisting of
100 to 200 cost equations is the next target for application of these uncertainty
analysis techniques.

Development of 'Best' Set(s) of Distributions

The third area of study is a determination of the number and types of in-
put distributions that would comprise a "best" set for use by analysts. It is,
however, not clear that a single set could be chosen to handle all models in all
cases. Perhaps instead a different set of distributions would be appropriate
for different kinds of cost models. A paper" now in process of publication
introduces the concept of "families' of Army cost models. This paper pro-
poses tha. the cost structure of each family such as aircraft systems models
has certain standard characteristics even though individual models may vary
in some details. The usefulness of such a framework for the definition of best
sets will be studied. A final point pertaining to this selection is that criteria
for choice do not seem obvious at all. At present we conceive of a method of
testing these families of models with various distrtbution types, discussing
results oi these tests with other analysts, and perhaps coming to agreement
on a set for different models. Thu,; at this point in time the area o definition
of best sets of distributions seems an important though extremely difficult task.

CONCLUSION

Although much research remains to be done before these techniques can
be properly evaluated and implemented, there is cause for optimism about their
potential usefulness to both decision maker and analyst. Techniques such as

ese will not eliminate uncertainty from input data but can provide a powerful
tool for decision making by measuring uncertainty in a way never before possible.
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