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Abstract

‘ A theoretical derivation of the char~nteristic of a spherical probe in a flowing 1
Maxwellian plasma is given together with various limiting forms of the equations.
The limitations imposed on the validity of the theory by the characteristics of the :
sheath are discussed. The theory is then extended to the case of an n-grid sensor.
Finally, the application of the theory to the determination of plasma parameters ;
from the probe characteristic is discussed. :
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An Analysis of the Behavior of a Multi-Grid Spherical
Sensor in a Drifting Maxwellian Plasma

L. INTROBUCTION

The use of a probe to determine the parameters of a plasma has long been one
of the standard methods of experimental measurement. The foundations of probe
theory were laid down in a classic series of papers by Langmuir.

In this paper, the details of the calculation are given for the current flow to a
sphere in a plasma containing charged particles, where these particles have a
Maxwellian velocity distribution with a superimposed drift. The current is obtained
as a function of the potential difference between the sphere and the plasma and,
foilowing Langmuir, the retarding and accelerating cases are treated separately.
The discussion in Section 7 imposes an important limitation on the conditions under
which the expressions can be considered valid. The general theory of an n-grid
sensor is developed in Section 10, and the particular case of a two-element sensor
is discussed in Section 11, This last section, using various special cases of the
expressions developed earlier, discusses the problem of obtaining the parameters
describing the plasma; namely—density, temperature, mass, and plasma potential,
from an observed current-voltage curve, A summary of the equations with the
numerical constants most useful in practical applications is given in the appendix.

(Received for publication 11 December 1968)
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2. THE INTEGRAL FOR THE CURRENT

The current crossing an element cf area dS is given by J - dS where J is the
current density. If J is due to the motion of charged particles then we can write
J = Nev, where N is the charged particle density, e the charge on each of the
particles, and v their velocity. If the charged particles have a velocity distribution,
then the number of particles with velocities in the range v, v + dv may be written
N f(v) dv, and the current density due to this group of particles is Ne f(v)dv. The
current flowing across the element of area dS is Nef(v) dv(v - g§). The total current
flowing across a surface S due to all of the charged particles can be written

I=ffNef(!)dv(x-gl§) ,
S

where the surface integral is taken over the surface under consideration, and the velocity
integral, over the range of velocities possessed by particles which cross that surface.

We consider a spherical collector of radius R situated in a gas in which the velocity
distribution of the charged particles is Maxwellian and there is, in addition, a super-
imposed steady drift motion relative to the sphere. To calculate the current to the
sphere, we surround it by a concentric spherical surface of radius r and calculate the
current flowing between the two spheres. The problem now consists of developing the
appropriate distribution function for a Maxwell distribution with a superimposed drift,
calculating the appropriate limits for the velocity integral in terms of the potential
difference between the two surfaces, and finally evaluating the integral.

3. The distribution function

The Maxwell distribution function may be written

3
f(v)'(, v;,, v'z ) = (?r') exp [-a (v': + v'y2 + v'zz) ] ,

where v'x, v'y, v'z, are the components of the velocity parallel to a rectangular set
of axes, x'y'z', at rest in the gas; and a = m/2kT where m is the mass of the particle, :
T is the temperature of the gas, and k is Boltzmann's constant. If we now super-
impose a steady driit Vo in the z direction, then the velocities Vo vy, Vg in a set
of axes xyz at rest in the sphere, become Ve © v'x, v‘y = v'y, and v, = v'z+ vor
To calculate the o' crent crossing a spherical surface of radius r we require
v dS which can be written vrr2 sin 6d0d$, where v, is the radial component of the
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velocity, and 6 and ¢ are the colatitude and longitude angles in conventional spherical
coordinate notation. We must, therefore, express the distribution function in terms
of the radial velocity. The velocity of the particles can be represented in terms

of Ve Vg vq> , Which are the components in a local cartesian system representing

the rectangular components of velocity in the directions of increasing r, 6, and ¢ at
the particular point concerned. Sincev_, v_, v, and Vi Vg v¢ are two sets of

'y
rectangular components relative to axes which are at rest in the sphere, then

2 2 2 _ .2 2 2
vx+vy+vz—\rr«l-vB +v¢
and

2
z

2

12 12 .
vx+vy+\ 0)

2 2
vx+vy+(vz+v

2 2 2 2
Ve + vy + v, +v0 + 2v0vz

= vf+ v92+ v¢2+ v02+ 2v0(vrcose - Vg sin 6)

In the transformed system, the volume element dv, dv dv, becomes dvrdv9 dv¢
since this is still a rectangular system.. To evaluate the integral, a further transform-
ation is required into a spherical cocrdinate system in velocity space. The colatitude
¢ is meusured from the v,. direction and the longitude A is the plane defined by vg
and Vo from the vy direction.

Carrying through the appropriate substitutions gives

2

2 2 2
vix + vly

+v'z =v +vg+2vv0(cose cos O - sgine cosA sinb)

where v is the total velocity of the particle.
The volume element now becomes v2 sin ¢ dv de dA and the integral for the
current crossing the sphere is

27 L4

3
2
I= f f /fﬁe(;) exp [-a:v2+v02+ 2vv0(cos€ cos 6 -
vV € A

$=0 6=0

- sinA cosA sinO){](vcos e)(vzsine) dAdedv (r2 sin6) do d¢.
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Figure 1. The Coordinate System

Figure 2. The Coordinate System
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The convention followed so far is that the positive direction is outward from the
center of the sphere, so that the current I given by this expression is the current
flowing outward. Since we are interested in the current flowing to a spherical
electrode in the plasma we need the current flowing inwards and it is convenient to
change from the convention at this point. The velocity v is always positive but we
now measure its colatitude from the inward directed radius vector, rather than the

. outward. Hence, if we write €'= 7 - €, then ¢ varies over the range 0 to 7/2 for

inward flowing currents. The expression for I now becomes

7 7 g
I= Ne(2) ex La}v?’+v2 - 2vv, (cos¢' cos¢ +
T p[ 0 0 G
6=0 v ¢' A

$=0
+ sine'cos A sinO)” v3(-cos €') sine' dA (-de') dv r2 sin 6 do d¢

We shall, henceforth, drop the prime from ¢, it now being understood thail ¢ is
measured from the inward directed radius vector.
The integrand is not a function of ¢, which we would expect from the axial

symmetry of the problem about the drift velocity. Hence, we can write

3

(2 7
I=27r’Ne (%) exp(-avoz) / f f/:rs exp [-a ‘vz - 2vv,
0=0 v ¢ A

(cos e cos0 + sinX cosA sinB)” cos ¢ sine sin0 dAde dv dO

Note that the symmetry of the problem also requires that the same current be
obtained regardless of the sign of Vo (This is not immediately obvious from the
above expression. )

We now nced the limits for the velocity integral.

Lo LTS OF INTEGR ATION

3 We assume that the velocity distribution of the particles at radius r is given by

the distribution function derived above. We also assume a potential difference V

between this surface and the spherical collector radius R, We now calculate the
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possible renge of velocities a particle can have at radius r if it is to be able to reach
the col!~rtor radius R.

The calculation divides into two cases: the retarding case when the sign of the
charge on the particle and the sign of the potential on the sphere are the same, and the
accelerating case when they are opposite. These two cases were distinguished by
Langmuir.

Considering first the retarding case, then a particle with velocity v travelling at
a~. angle ¢ to the (inward)radius vector a! radius r will arrive at the collector radius
R with velocity vy travelling at an angle €, to the radius vector where these quantities
are related by the laws of conservation of angular momentumn and energy. If the
potent.al difference between the collector and the surface radius r is V, then from
energy considerations

-i-mvz - mv12+ |eV|

We define a velocity VR by the relation %- va2 = |eV| and this equation then

becomes

+v

2_.2
v Vl

2
R
From angular momentum considerations

rv sineg = va sin.;1

The particle will be collected if it arrives at the collector travelling
tangentially (sin 1= 1), thatis, if

rv sine
Svl s

which on substituting in the energy relation gives

22 .2
ve-vlaylz rv sine
R R




Hence, for a given value of v, the particle is collected if

2
2 v
sntes By 1-28) .,
r \'4

with the limiting value, sin €R’ being given by the equality sign. The limits for the
¢ integration are, therefore, 0 and €R-

Note that the upper limit of ¢ is a function of v, one of the other variables in the
integration. We obtain the limits for v by noting that the smallest value of sinzé is

2 2 ..
zero and, hence, v© - v = 0or v=v,. The limits on v, therefore, become VR

R~ R
and~ . Finally, for the limits on A we note that the a1 uments given above are
valid for allvalues of A, and, hence, the limits for the A integration are 0 and 27.

The expression for the current now becomes

3
3 L
I=21rr2Ne(a?) exp(-avoz) f ff / v3
0 A=0

0=0 v:R
exp [-—a}v2 - 2vv0(cosscose + sine coslsme)”cosesinesine dAdedvdo .

For the accelerating cas=, e and Vnow have opposite signs and the energy relation
can be written

é-mv2 B ;- mvl2 = IeV!

Defining a velocity v'A by the relation é-mv'A2 = |eV|, we have

2 _ .2 2
v —v1+v'A

Following the same steps as before,

> rzv2 sinzg

v2+v'A2
R




The integral must now be evaluated in two parts. The above relation is satisfied
for all values of ¢ from 0 to 7/2 if

2 2
v2+v'A22rv
R

or

Defining @ = R*Ar” - R%) and V2 = a v'2, the limits for the first part of the
integral become 0 to 7/2 for ¢ and 0 to va for v. (Note é-vaz = a |eV|,) The
current I may now be written

3 T
'2- 7r 4 27
I, = 21rr2Ne 2 exp(-avz) Al v3
1 T 0
0=0%0 =0 YA=0

1l
exp [-agv2 - 2vv0(cos€ cos 9 + sin¢ cos As'mo)“cos € Sin¢ sin® dAdedvdo .

If the particle has a velocity greater than Va it will be collected if

or if

.2 o VA
sin eSa-—+1-(l+——2).

Again, the limiting value €, is given by the equality sign. Hence, the second
part of the integral becomes




3
4 o e (v) 27
I '212N -a—gex (-a 2) A v3
g = er 1r pl-avy
6=0 Va 0 A=0

exp [-a}v2 - 2vv0 (cos e cos® + sin¢ cosA sinﬁ)’] cos ¢ sine sin® dAdedvdod .

3. EVALUATION OF THE INTEGRAL
The three integrals formulated in the last section are identical as far as the 6

and A integrations are concerned, so we evaluate these first. The integration
required is

7l' 4
f exp[Zawo(cose cos 0 + 3ine cosA sine)] sin ® dA de

0 =0 "A=0
vsine
vVCosé€
Figure 3, Limits of Integration
vsine
\ ~d
N
\
\
\
\
€, |
A v cOos €

Figure 4. Limits of Integration
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We can regard this as an integration over the unit sphere in 8 A space. The
direction cosines of a point on the unit sphere are given by L= sin® cos A,
m = 8in® sinA, n =cos®. Writing A = 2a v, we have for the integral

/]éxp A (n cos e+ Isine¢) dS,
s

where S represents the unit sphere and dS is the element of area sin® dA dé in
spherical polar coordinates. Making a cyclical notation of the direction cosine gives

j];xp A(n cose + Isin¢) dS = ﬂepr (Lcos e + msine) dS =
s s

T 27
/ exp‘A(si.nB coSA cos ¢ + 8in6 sinA sine){ sin® d6 dAa =
8=0 A=0

T L
/ f exp {A sin® cos(A - ¢) {sin® dé dA
0=0 A=0

Substituting A' = A - ¢ gives
T T-¢
f expl A s8in6 cosh';sine de da' |,
0=0 A'=-¢

and, since the integrand is periodic in A' and we are integrating over a complete
period, any complete period can be used. Therefore,

T W27 -¢ T p2T
f explAs'me cosl'%sine do dA' = /f exp; A sin® cosx'{

0=0 A'=-¢ 0=0 A'=0

T W27
sin® de da' = ff2 exp:AsinO cos)\: sin® do da = [/exp(Al) ds =
s

0=0 A=0
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T 27
=[/exp(An)dS= // exp (A cos0) sin6 d6 dA =
s 0

=0 A=0
=|.2z% exp (A cos0) 1r= - Z__lexp (-2avv,) - exp (2avv,)
.y o awy | 0 P 0

Substituting the above result into the expression for current gives

3

Z
I= 21rr2 Ne (%) exp (-avg) fj:axp (-av2) % : exp (-2avv0) - exp (2aw0):
vV €

CcoS ¢ sin¢ de dv

and so

1
2
I= 21rr2 Ne (%) é— /f v2 lexp :-a (v - vo)2 f - exp :-a(v + VO)Z"
0
V €

coS ¢ sine¢ de dv

We now continue this integration for the retarding case. For the ¢ integral

we have

€ 2
R 2 v
/ cosesin€d€=é-sinzeR=é-—Rz(l- R)
b r v

Substituting this result gives

-, n2 21 [ 2.2 TS I 2)
I = »R” Ne Gv—o [ (v vR) [exp} a(v vO) [~ exP a(V+YO) f dv .
R

These integrals may be evaluated in terms of the error function which we define as

as
X

erf (x) =\ﬁz'- [ exp (-t2) dt
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Using this definition, we have

© 1
.[ v2 exp! -a(v - vo)zadv =(Eli + vg) % Jg—;erf 3'2' (vR - vo) +2%(VR + vo)

R

exp :-a(vR - v0)2= ,

f v2 [exp t-a(v - vo)zf - exp‘-a(v + vO)Z!]dv =1 Vr;i (215 + voz)

YR

1
Vo t VvV
[erf a.z (vR + vo) - erf af (vR - vo)] + _R_2a_0 exp [-a(vR - VO)ZJ-

v -V
R Vo ; 2
S [exp a(vR + "0) ]

00 1
[ sz exp ;-a(v - v0)2,dv = %J; vﬁ [1 - erf az-(vR - vo)]

R

@0

f sz [exp ‘-a(v - "0)2‘ - exp{-a(v + vo)2 }] dv =
v

R

1
=g J— [erf a (v + vo) -erf ag (vR - VO)}

On substituting in these results and simplifying, we get

1 1
L
I=7R NeJil [-2- g +v0-vR2) ;erfaz(vR+v0)-erfa2-(vR-vo)i+

VotV

+ iza_'o exp ‘-a.(vR - VO)ZI = vlz-ai exp }-a(vR + VO)Z}]




et S

It is convenient to define two new parameters

m _2 ) x2=avR2= levl

72=av2= v
0o 3ZkT 'O

1 Finally, we have

I=1rl’{2 Ne'ﬁ% -1_)7 %—GA 72 -xz){erf(x+y) -erf(x - 'y);+

+é.(x+ ) exp{-(x - ‘y)za-é-(x - v) exp ]-(x+ 7)2 E]

Turning now to the accelerating form of the expression, the ¢ integral for the

first part is simply
T[2

a
& f COS(Sined€=é- s

0

giving for I;

v
A
I = 7r° Ne "% 316 j v2 [exp {-a(v - vo)2 - exp %-a(v + vO)Z;] dv .
0

This can again be evaluated in terms of the error function

VA i 1
f v2 exp : -a(v - vo)zgdv =;- ;(-213 + vg) [erf a’ (vA - "’0) + erf afv[)] +

| 0

E +v0 ex (-av2)-vA+V0 ex {-a(v -v)2=
72 XP o) " °XP A~ Vo

and

I

i
i
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v
A
/ v2 [exp‘-a(v - v0)2} -exp‘-a(v+ v0)2;] dv = é- J'_:'—(EIE + v02)
0
1 1 1 v
[ert‘ajz'(vA - vo) - erf ag(vA+ vo) + 2 erfa.zvo] + a_O exp (-avoz) -

vy tv Va =V
0
- exp ety - vghfe S e Jaty ¢ vg)?]
For the contribution of the first part of the integral to the current, this gives

1 1
I1 =1rr2 Ne E %[%JET(EIE + v: ){ert‘az-(vA -vo) —erfag(vA+vo)+

1
v Vat Vv
+ 2 erf arvoj + ?0- exp (-avoz) - _Ah_o_ exp {'a("A - vo)2 +

\

+ _AZE—O exp} -a(vA + v0)2”

The ¢ integral for the second part is

(A V2

. 21 .2 _1 «a A
cosesmede-2-5m AT 7T 1+—2 s

0 av

giving for Iy

oo 2
_ .2 a1 o 2 . 'A 2 { 2
I2 = rr” Ne J;;-(-)- a7 T /(v + -a—) [exp ;-a(v - vo) : - exp l-a(V+ vo) } dv.
v
A

This is identical to the expression involved in the retarding form of the

expression, except for the values of the constants. Hence, we have immediately,
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2 1
o2 {al e L gmf1 , 2, A 7
Iy =m"Ne §7 35 a_lT{?Ja__(EE+VO+T)!erfa(VA+VO)'

1
Vat v
-erf az (vA - VO); + —%a—o exp{ -a(vA - v0)2 -
Vy -V
'—Z_-Aa 0 exp{ -a(vA+v0)2” .

For the total current Il + 12, we now have

1
-] 1 71 2 7 Vo 2
= mr” Ne {g K [J;(?a_ + v, )erfa Vot 5 exp(-avy) -

1
B a_+l'r=’.12' Jg—(ili + v(? N "'.1\2)[‘"'f a!("A +vg) - eI'fag(vA - vo)] +

vatv Va =V
+ _Aza_O exp [-a(vA - v0)2] - _Aza_O exp [-a(vA + v0)2”]

Defining parameters as for the retarding case,

2_,.2_ m 2 2_ .2 _ ieVl
Y —avo-mvo » X "aVA-Q

We have finally

=l NC\/% %vg“ + 272) erf y+ 'yexp(-')’z) =
-a_ir\/g(é-*"yz -x2)[erf(x+ 'y) - erf (x -y) ]+

+%(x+ v) exp

-(x-'y)zl -é-(x - v) exp I-(x+y)2H] .

Note that the expression within the braces multiplied by 1/(y + 1) is identical
to the retarding expression in form, but that x has a slightly different definition.
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It is also worth noting that the coefficient outside the whole expression contains the
radius of the collector R r. the retarding case, and the radius of the outer spherical
surface r in the acceleratin, case.

6. LIMITING FORM OF THE EXPRESSIONS FOR NO-DRIFT

The expression for no-drift cin be obtained from the equations derived here by
taking the limit Vo~ 0, that is, ¥ = 0. This forms an important cneck on the
expressions, as the equations for no-drift are relatively easily derived from first
principles.

Considering first the retarding expression, we require

lim -1-{\@ (é-+ 72 -xz){erf(:ﬁ- v) - erf (x -Y): + é-(x+ v) exp%-(x -y)zz -

=07

-é-(x - y) exp t-(x+ y)zl] z }y“_’f‘o[‘g. (é. ry2 - xz\) erf(x + VL'erf(x L

2 2
+ zl-x exp{-(x - y) }Y' exp{-(x+ Y7}, é-exp {- (x - 7)2{+ ,}exp 1-(x+ v)ZI]=

Qé'r-(é' - xz)\/‘;‘ exp (-xz) + é-x 4x exp (-x2) = 2 exp (_xz)

Hence on substituting, we obtain
- o2 1 2
I=27R Ne\ﬁr—aexp(x)

The accelerating expression can be dealt with in a similar manner and involves
the same limiting expressions

-lyir-!:o %[vg(l + 272) erf y+ v exp (-72) - a_];_'_r{\/gt(%_‘_ 72 _ XZ)

[erf (x+ ) -erf(x - y)] + é-(x+ ) exp [-(x - 7)2] =

-%(x - ¥) exp [—(x + 7)2 l”ﬁi%[@ er,f Y+ exp (-72) -
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1 V{1 2\erfix+ y) -erf(x - y), 1_ expl -(x - )2]-exp( -(x-‘y)2]
n‘r{ 2(2 "X ) * e *

¥ 2 ¥

+ é-exp [-(x - 7)2] + é- exp [-(x + 7)2] }] =2 - Fi—rrg(% - xz)} exp (-xz) +
+ 2x2 exp (-x2)+ exp (-xz); =2 [1 - E+l— exp (-xz)] .
HYence, for the current we have

1= 21rr2 Neﬁl'T' [1 - a_lTT exp (-xz)] .

Note that for x = 0 (that is, V = 0) both expressions r.duce to the same equation,

namely,

I=27R% Ne -

7. THE SHEATH

Referring back to the calculations we have made, we see that in setting up our
original integral we considered particles crossing a spherical surface of radius r.
In defining the limits of integration we determined which of these particles is capable
of reaching a concentric spherical surface of radius R where R < r when there is a
potential difference V between the two surfaces. We also considered only inward-
travelling particles in setting up the limits of integration. This means that we
preclude the possibility of the potential on the inner sphere influencing an outward-
travelling particle at radius r in such a way as to reverse its outward motion so
that it can eventually reach the sphere radius R. This is equivalent to supposing
that the electric field due to the potential on the inner sphere does not extend beyond
a distance r. This, then, is very close to Langmuir's concept of the sheath radius.

In deriving the above expressions, we have assumed that we can equate the
potential to zero over the sphere radius r, that is, that no particle outside this
spherical surface can experience any force from the influence of the field. We have
assumed that the velocity distribution of the inward-traveiling particles at radius
r follows Maxwell's law. (The velocity distribution of the outward-travelling
particles is immaterial, as they do not enter into the calculation.) In deriving the
expressions for the limits, we used the energy and momentum of the particle at

i
g
1
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the two surfaces only and applied the conservation laws. We, therefore, implicitly
assumed that there are no particle collisions between the two surfaces. Also in
applying these results, it is assumed that the potential distribution between the two
surfaces is such that the radial velocity of the particle nowhere becomes zero, that
is, that there is no potential barrier which the particle cannot surmount. This is
worth considering in a little more detail as it has important applications in considering
a multi-grid sensor.

The argument follows closely that used to obtain the limits of the integral.
Suppose we have a particle at the sheath edge at radius r; travelling with velocity
] at an angle € to the radius vector, and suppose that at some arbitrary value ofr,
R<rc« r., the velocity and anglc are v and €. For the particle to rezch the collector,
not only must sine, (the value at the collector) be less than unity, but sin ¢ must be
less than unity for all values of r within the sheath. This means, from the arguments

given earlier, that

2
sm2€i<r7( u;) .

r. myv.
1 vl

This condition will apply in both retarding and accelerating cases if e and V
are considered to contain the sign as well as the magnitnde of charge and voltage.
But the relation between the limiting values of € and Vi if the particle is to be
collected at all, satisfy the equation

2 2eV
n2. <R[ ¢
sin“¢; = =5 — | .

mv.
!‘1 i

where Vc is the potential of the collector. Hence, eliminating v

a
2 r: sin“e.
. 2 r \'2 i i
Pinls{< =5 [1+V' (—2—— 1)]
r; c R

which on rearranging gives
2 2
i

.2 \' I vr
wcf- -2
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The most stringent case to be satisfied occurs for the accelerating condition
when €; can assume the value x/2. Hence, the condition is satisfied for all cases

if
2 2

(1-V) foovoh) o,
e l/\2? Y% Rr?

which on rearranging gives

2 2
v §i°T R2
>
vc_ r. - R ;2-

Since Vc and V may be either positive or negative, this result expressed as a

condition for V becomes

2 2
r

o < 2
V1> Sl
i

Note that, since we defined the potential in the plasma outside the sheath to be
zergand also R<r < r, the limiting condition implies that 0 < IVI < IVCI .

8. POWER SERIES EXPANSION OF THE ACCELERATING EQUATION

A useful expression can be obtained by expanding the expression for the acceler-
ating case as a Taylor series in powers of V, valid near the origin V = 0. The first

three terms in the series are

2

dI 1 {d%1) 2
I=1,+ v+ Dve+. ..
0 (ac)o E(dVZ)O

where the subscript 0 means the value of the quantity concerned at V = 0. The
expression derived earlier gives I as a function of x rather than of V. A compli-

cation arises now, since we defined x using the magnitude of eV —

%2 =a|eVl
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It is convenient to calculate the derivative (dI/dV) as (dl/dx){dx/dV), but in
differentiating the equation which relates x to V, the sign of dx/dV is ambiguous.
This is readily resolved by noting that the sign of the derivative is the same as the
sign of e, that is, it is positive for positively charged particles, and negative for
negatively charged particles. The following expressions are now quite straight-
forward toobtain

1
10 = 7R” Ne = ;[;- (1+ 272) erfy+ vy exp(-'yz)]

T?T 2erfy . Positive particles
Negative particles

2 2
d°I 2 1 1 ( e ) 2
—5) = 7R" Ne —_ a (-4v) exp (-7°)
( ) Nra ¥ \KT
Hence, the expansion for I becomes

1

8 WRZ NEﬁ

<=

[“/g(l + 272)]erf7 - vy exp (-72)#

*Jg 2{erf y%(%)- %—a Ylexp (-v%) I(E\%)z .. ] ,

or with some rearrangement of the constants,

_ 52 1 2 1 2 1 ev\
= 7R” Ne v, [(l+;2-) erf7+ﬁ 2—‘Y-exp( Y )+;2-%erf Yl(m)

1 21 2, ev)\?
-faﬁ-z-ygexp(-'y %FT

On referring back to the complete expression for the accelerating case we note
that it contains the "sheath radius" r rather than the collector radius R. We also
recall that r is the radius of the spherical surface on which we can assume V = 0
and this will presumably be a function of V, the voltage on the collector. Hence,

we do not have I explicitly expressed as a function of V for the accelerating case
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until we have r as a function of V. However, in the series expansion, the collector
radius R appears outside the expression and r, which occurs in o, does not appear
until the term in V2. Therefore, the linear approximation (the first two terms) is
independent of the behavior of the sheath. Unfortunately, we cannot estimate how
large the voltage must be before the linear approximation breaks down, since the
next higher order term does depend upon the behavior of the sheath.

It is readily verified from the retarding expression that the values of I0 and
(o:lI/dV)0 are identical to those obtained from the accelerating expression. Thus,
the curve of I versus V is continuous and so is its derivative at V = 0, that is, as
we go from retarding to accelerating. There is, however, a discontinuity in the
second derivative (dZIIdVZ)o.

9. LIMITING FORM OF THE EXPRESSIONS FOR LARGE DRIFT VELOCITIES

The behavior of the expressions for large drift velocities can be obtained from
the power series expansion. This expansion was derived above for the accelerating

case, and since vy = v/va, this may be written

S| 21 21y fev)_
I1=aR Neﬁl(7+27) erf-y+w_ exp(y)xy,e;fyl‘(m)

2
_é. a\;- é-}exp (-'yz){(% .. ]

If we now consider large drift velocities then we need the case for large y. The
. . . . . . 2

second term in the expression rapidly goes to zero since it varies as exp (-y"). The
error function becomes asymptotically unity for large values of the argument, thus
the constant term in the expression becomr rs equal to y. The term containir.g
(eV/kT)2 is difficult to deal with since it contains a. However, we note that it also
contains exp (-72) which tends to zero very rapidly for large yv. For smaller values
of (eV/kT), where the secord and higher order terms can certainly be neglected,

we have

_ 2 Na 1 eV
1=2R NLVO {l *;?E'T

Thus, the linearity of the accelerating characteristic is not destroyed by large
rocket velocities. In fact, the linear approximation may be better at larger rocket
velocities, since the linear term decreases as (erf y)/vy, whereas, the square term
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decreases as exp (-72). The term containing v2

also has a in its coefficient, and
the variation of @ with y has not been calculated. However, it seems unlikely that
a will increase with sufficient speed with v to offset the extremely rapid decrease
due to the exponential factor. Consequently the square term becomes relatively
less important in comparison with the linear term.

The slope (dI/dV) decreases as (1/v02) and thus, in the limit, becomes zero.
The current is now independent of the voltage and, as we would expect from

elementary considerations, has the value

I0 = 1rR2 Ne Vo

Carrying through a similar expansion for the retarding case gives
- 1 1 21 W2y o1 ev) _
1=7R Ne.ﬁ[(')ww)erf-yﬁﬁfexp(y);;{erfy’(m)

13 Hew cAl(3)

Note that this expression (valid for all ¥) tends to the series expansion for
exp {eV/kT) for ¥ = 0 as it should. For large y the constant term and the term in
(eV/KT) are identical to those for the accelerating case and hence, the continuity
of I and (dI/dV) at V = 0 (the changeover from retarding to accelerating ) is pre-
served at high drift velocities. The exponential form, however, is destroyed. The
ratio of the coefficients of V2 and V in the expansion is

2
1 e yexp(-7y°)
25 KT erf y

As Vo becomes large this tends to zero as y exp (-'yz) and the second order
term diminishes very rapidly with increasing drift. The retarding characteristic
also becomes linear, and from the continuity noted above the straight line of the
accelerating characteristic is extended into the retarding region. For a fixed value
of Vo if the voltage is increased sufficiently, x will eventually dominate over ¥
again in the expression and the curve departs from linearity, and the exponential

form is regained.
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10. THE MULTI -GRID SENSOR

To extend the analysis for a case where the incoming particles flow from the
ambient plasma through a set of concentric spherical grids to a central collector,
it is necessary to take the :quation for I (p. 11)

1

Zz
I-= 21rr2 Ne(%) éo f/v2 Exp {-a(v - vo)zg - exp{-a (v+ vo)zg]cosesinede dv.
v

and perform the final integrations according to "he limits on v and ¢, given by
energy and momentum equations in transition from grid to grid.

Consider a particle at grid i of radius r; with velocity v;atan angle €; to the
inward radius vector arriving at grid i + 1 radius Tiv 1

at an angle €+ 10 If potentials on the two grids are Vi and Vi +1° then from

(r; , 1< r;) with velocity

Vit
energy considerations

1 2_1 2 i
-2-mvi--2-mvi+l+ 8(V1+1 Vi)

Defining a velocity u; by the relation é-mui2 = eVi, this equation becomes

From angular momentum considerations,
.v.sin e, =r, \2 sin ¢,
Iivysin g i+l "i+1 €i+1

The particle will just enter the grid i + 1 if it arrives at the grid travelling

tangentially, that is, if sin €41 % 1, that is, if

ViI‘i
. 2V, ———
+1= :
i+1 ir;

v sine; ,

1

which, on substituting in the energy relationship, gives

2
2, .2 2_ .2 T 2
Vi+ U.i ui+12Vi'r——2 sin Ei .

i+l
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Hence, for a given value of v, the particle passes through grid i + 1 if

r S uz-u 2]
. 2 i+1 i i+1
sin € s rz 1+ )
i Vi

We note that the above relation is satisfied for all ‘i (0= ti = -;) if

2 2
r. u. - u.
i+l i i+l
r2 1+ v2 21
i i
or
2
r.
y y 2 i+l
V=g s w5 ——
Ti “ T

which can only apply for ui2 >Yi+ 1, that is, accelerating potentials from grid i

39 & q 2 2 2
to grid i + 1 since v = 0. For vi'>(uj -u; "o,

r 2
o .t
g r2 -r 2
i i+1
Limits on ¢; are then given by the limits on v; of Vilmin) and Vi (max)* thus
2 : 2 2 2 2
S U U W S8 | RS T U B Sl €
T | e |
i i(min) i i(max)

N 7 . 2 2 TR
For reta‘rdmg potentials uj<u Ly, a lower limit is imposed on vi by the
condition that zin € = 0, hence




e L

or

2_ 2 2
0<vis(uf -, ey

0= SinzeiS 1

(retarding)

(accelerating)

25

on v, and < imposed by the condition that the particle reach the i+ lth grid, can

! th

be extended to the i + k™ grid, since the velocity with which the particle emerges

at this grid is a function only of Vp€p 4 Ty

Hence for the kth grid

2 2

22 _ Yivk Y Uik

sin"¢;S —y— 14 —m—
r; vy

. . - nd 1
Fori =0, let ry T r, and u, = 0. Hence, for the 1th grid smzcs?

dropping the 0th subscript.

1

1

1

and r,

i+ k’ i+ k'

r

2

2
u;
i

l-—
v

e ot s et ft "‘ﬁ“)‘h‘”"‘
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The effects of the various grids in limiting v and ¢ (the initial particle parameters
at grid 0) can now be compared and the integral I performed according to the way
each grid (i = 1, 2, 3, etc.) limits the values of v and ¢. Since the lower limit on

€ is always zero, the ¢ integration may be performed prior to discussing the

speciflc applicable limits on v, writing r /r -Bz

i we have
£
'[ cosesmedg-zsmc = 1'1’

Hence, we may write for I,

1
2
2 u;
ctnlsfg [t
v i ’

o
The limits imposed by v2 on sinze can be illustrated by plotting the limiting

curve

for each grid of radius r; with potential Vi (ui2 = 2eVi/m).

Various potentials will be considered for a four-grid case, to illustrate the
progression of limits on the I integral. These are so chosen to inclide all possible
I integrals but do not cover all possible potential differences between the various
grids. The resulting equations will then be extended to cover the general case for
N grids.

. .th th . .

Consider the i~ and the k™ grid, where k > i.

and

pet—

Y

Aot S0 Al

it
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The intersection point of these two curves is given by

2 2 2 2
2_ 2 Py By 2 1l
ViRV T By=2
ko pf._p Lo
k i i
2 2eV,

2 i
Sm € = Sm €. —2__2——._2__2 .
ik B °. B ug i m
and for the intersection point to lie within the domain of the integral (¢, v) then

2>
Vik g

and

0= sinfe, <1,

Since Bk2> Bi2> 1 then

P 2
B Y-

Giving the restrictions on ui2 of

2 2 L2
uy= u fox uy =
and for real €k Vik and where i < k.
- 2
for u. < 0

[~
-t
W
=
&
Y
—
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Before turning to specific cases it is of interest to note that for the outer grid
radius r, defined to be at zero potential,

2
2 _r° _ 2 _
[30-_2.-1 anduO-O.
r
Hence,
2
2 _ Yk
Yok~ 32
Bk-l
. 2 _
sin eOk-l

From which it can be seen that, for the outer grid to contribute to the I integral,
the kth grid potential must be such at ulf < 0. Hereafter, the grid k having “k2< 0,
that is, er < 0 or the sign of the grid potential being opposite to that of the particle
charge, will be termed an accelerating grid. Conversely, one having ukzz 0, will
be termed a retarding grid.

Since the above equations define an upper limit to sinzs, the limits of integration
lie below the limiting curves.

Taking a configuration of four grids with the radii having the ratios

» 20 2. 3- . . .
r .rl.rz.r3-1.0.8.0.4.0.2,

hence,
B2=r2=125 B2 =2.5 and B2=5.0
1 ‘;‘-2 . » 2 o n 3 o« Vo
1

We can now investigate the successive limits on the I integral by applying various
combinations of voltages to grids 1, 2, and 3.

2 2 2
(a) ug>uy>u’>0

2

The limiting curves for u32 =6, uy = 4, and ul2 = 3 are shown in Figure 5.

Since “12 ’ uk2’ no curves intersect and the limits on v go from point A to infinity
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along the curve defined by u32 = 6, that is, the potential on grid 3 defines the limit on
I and becomes the only active grid (that is, the only grid limiting the current flow).
The intersection of uZ = 6 with sin?e; = 0 is given by v2 = uZ = 6, and I has the

value
7 2
© 2 u 2
S Ne(%) vlo ./ ;32 [1 ) 32] [exp z'a‘“ _vo)zg Sexp Al Vo) ;]dv.
u 3 1

Or, writing
1
Z

ZNNe(;-) ‘}_0. =P , [exp {-a(v - V0)2=' exp{-a(v + VO)Z}] = E(v) ,

and substituting

B2 oL
3 :2
3
gives
o0 2 v2 u32
I=Pf rg & (1 - [EV dv . )
v
U3
| . . ) .
o8|’
ost :':._, _________________
sin?e "
2, ’/”
04|, o
4
/ "Zz @ meemmmmm=m ==
S e
2 i -
0213 /7 T
/ P
” ,’, A uy 13
0 L Pl ) R |
0 2 ] 8 10 12 73 = P

G o 5
Figure 5. Limits of Integration for ug > u, > uf >0

P4
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2 2 2
(b) u1>u2> u3>0

Figure 6 shows curves for ug =1, u22 =2, andu 2. 3. The condition for real

intersection, uizz ukz, is now fulfilled by grids 1, 2, 1and 3, but not by grid 0. The
three intersection points are given by vlz2 =4, v123= 11/3, and v223 =3 at Bl’ B, and
B2 respectively.

The limits on v, now commence at A with the intersection of sinze = 0 and the
most retarding grid (in this case grid 1) intersecting at v2 =3. The limiting curve
is then given by uf = 3 up to the smaller of the two values v122 and vlz3 . Here,
vi3 = B = 11/3 has the smallest v, and for v2> 11/3, the limiting curve becomes
u32 = 1. The integral I is now the sum of two parts—from A to B along “12 = 3 and

from B to« along ug =1, and grids 1 and 3 are active grids.

Y13 2 u? o 2 u?

. 2 v ] 2 v Yy

I—P/ r -2-[1 ?]E(V)d\f‘l" fl‘3 —2- 1 ?}E(V)W;: (2)
u

1 Vis

where,
2.2 2 2
2_ 1" "T3Y3
i3t T T T
'y T3

It is worth noting that in both Eq.1 and Eq. 2, where the active grids are
retarding, the expression for I is independent of r, the outer grid radius.

[Ke/ T T T T T T —T T T
2
o.al-w,
Il|z 3 mmmmmmmT T
o4+ _se==T 1
"——‘—
-
il € -7
2 -~
L
04, s s
7 mmmmm——
T
A w2
-
o2} B2 =
by X uy? =l
Lo
/7
1, '] A i 1 1 A 1 I 1 L —d
(+] 2 4 6 10 12 14 [ 18 20
2

. N . 2 2 2
Figure 6. L'mits of Integration for ug >uy >uy >0
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(c) 0>uz>u22

1 >u

W o

Figure 7 has u32 = -8, “22 = -6, and uf = -1.5. The condition now becomes

ui2> ukzﬂizlﬂf for real intersections. This condition is only met by i =0, k =1,

2, and 3, where VOZI =6, v 2 . 4, and VO?S = 2,as shown in the figure at Bz, Bl’ and

02
B respectively.

Thel integral is now defined by sinze = 1 up to the smallest of Vorr Voo and
Vo3 in this instance, Vo3 For v2> v023 is limited by the curve ug = -8, making
grids 0 and 3 the only active grids. The case where the integral is limited by
sinze = 1 is rather a special case, since the limiting case is given by ug =0and is
independent of v. Returning to the ¢ integral, when € = %2

€.

! 1
f cOSeSl'.nede=2-
0

Hence, in general,

(o3 2 ® 2 ul:
I=P r2 Y E(v) dv + 2 X h-23 |Emav (3)
I T 3 T 21 '
0 Vo3
where
2 2
v2-_T3"s
03 ""'—'2ra+r3

Since the 'most retarding grid' in this case is in fact an accelerating grid ('least
accelerating') the current now becomes dependent on the outer grid radius r.
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——— &z =15
-6
u,z--a
o2py
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Figure 7. Limits of Integration for 0 > ul2 > u22 > u32

2 2
>
(d) O u>u2>u3

Where Figure 8 now shows u’ = -8, uZ = -6, andu? = -0.25, sin®c =1 (uZ = 0)
is the lumtmg curve up to B, the smallest intercept of v032 2(B ), Vo 2 493 )
and V01 = 1 (B), making grid 0 an actwe grid. The lumt is then given by ul = -0. 25
up to C, the smallest intercepi of v12 =5.5 (C ) and v = 7/3(C). The final

portion is from C to » a‘ong us 2. = -8 making gmds 1 and 3 the active grids, and

Yo , 2 13, 2 u}
I=P/ r’ o E(v) dv + / ry 1--;2- E(v) dv +

0 Vo1
. (4)
= 2 u
2 v 3
+ f ry oy [1 ?]E(v)dv} s
Vi3
where
2 2 r2 42 2
S B TR y2-1% "T3
Vor1" 2 7 13-~ 2 3
r I‘l rl -I‘3

We will finally take two examples where all three grids become active and the
outer grid is active or not according to whether all active grids are accelerating or

not.
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Figure 8. Limits of Integration for 0> uZ >uZ >u2

2 2 2
>
{e) u > uy >0 >u3

Illustrated in Figure 9 are u32 = -8, ug =2, and ul2 = 3. For the first lower

limit on v, we examine retarding grids and determine the greatest u?, that is,
ul2 = 3, giving point A at V2 = u2 = 3. From A the limiting curve is ul2 =3 up to
the smallest of vlz2 = 4(B) and v 5 = 20/3 (Bl)' The integral from B is limited by

uz2 = 2 up to the intercept v223 = 12 (C), and from C to = along u32 = -8 giving

v 2 v 2
12 . 2 u 23 2 u
1=p{/ 2 [1-_;}E(v)dv+ [ rl Y [1--;%—]E(v)dv+

Y 12
® 2 v2 u.’)‘zw {2
+ f rg o [1 - :2 E(v) dv 5
Va3
where
£2,2. 2,2
I T ot L2 . T2t g U3
Vie T T T_ & 23 ° T 2 __ 2
1" "2 3/° ©3
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Figure 9. Limits of Integration for u12> u22 > 0> u32

2 2 2
() 0> u1>u2>u3

Finally, Figure 10 has u = -32, uJ = -6, and uj = -0.25. Because all grids
are accelerating, we compare voz1 =1 (B), v022 =4 (Bl), and v023 =8 (Bz). gnd find
that grid 1 has the smallest intercept to give first integral term along sin“¢ = 1 from
A to B. The second term is then limited by ul2 = -0. 25 from B to the smallest of

Vig ® 5.5 (C) and vli =31/3 (Cl), giving v, , as the upper limit of the second term

and the lower limit of the third. The next term is then limited by u22 = -6 up to
v223 = 20 (D) and the last term from D to » by ug = -32. Whence,
f o1, 2 iz, 2 u?
I=Pl/ r —Z-E(v)var / r’ oo 1-—2]E(v)dv +
v
e Vo1
(6)
\'A
+/23 2v21-u22 E()dv+fm2v2 1-u; E(v) d
I‘2 T - v A !‘3 o -;2 v v
Vi2 v 23
where
rZud -2l
v.2.=L,21__2!—J ; i=0,1,2 j=i+1.
R r; -r
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Figure 10, Limits of Integration for 0 > u12 > uz2 > u32

From these examples it can be seen that three types of integrals are involved in the

summation for I, namely,

and

® 2 v2 url2
I, = / r, o [l-czlh(v)dv.
Vin
The summation is to be performed over the active grids taken in sequence from the
outermost to the innermost grids. We will first evaluate these three integral types
and then develop the summation for I for a general case having n grids.

For brevity in writing out the resulting equations, let

exp (-axz) = B(x)
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and
erf (/ax) = F(x)
where
X
2
erf (x) = 2 f et at
vr
1 0
l by definition.
The above integrals can now be expressed in terms of
B B
Iy = f E(v - vg) dv - / E(v+ vy dv
A A
1 and
E;.
B
I, = 2 E(v - v) dv - 2 E(v + vg) d
2 v 0 v v+ vy dv

which are both standard forms.

1

7
{ E(v + vO) dv = é- (%) [F(B+ vo) -F(A+ vo)

B
/ sz(v+v0)dv=-213(B—vO)E(B+v0)--21-§(A—vO)E(A+v0)-
A

1

- é(g)f (v§+2%)[F(B+"0) - F(A + v)

Using these general expressions we may, upon inserting the appropriate limits
A and B, evaluate the three desired integrals IQ, Im, and Iu’ noting that for Iﬂ'
when A — 0
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E(A + vo) — E(vo) ,
and
F(A + vo) ——F(vo)
For Iu when B o,
E(B + vo)—* o,

ard

F(B + vo) - 1

B oi

*0i 5 2 5

I, = r E{(v)dv =r

. / T (1]
0 22 a0

I 2 E(vg) - Blvg; + vg) + Elvg) + Elvg; - vo)| - o2
p T y7a Yo Voi ™ Vo Vo Voi " Vo T3

(avo2 + é-) 7
[E(VOi - vg) - Elvg; +vg) ] - _25——(%) [F(VOi+ vo) -

- }"(v‘,Ji - vO) - F(vo) - F(VO)]

; 2,1 3

2 . p v, av, t

L = rz_:(a"o ! %)(%) Fleg) v 5 lifv) (—%a—z)(g) IF("Oi“'o) - Flvg; -volJ
Voit Vo Voi "o
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E Vik 2 u? 2 Xk r2u? Yk
E 1m = f rj2 _v2_ [1 - —&-] E(v) dv =-2']- / v2 E(v) dv - JZ_J f E(v) dv.
v
- Yij Yij Yij
2 2
r B=v r. u; B=v.
jk _7j jk
N [IZIA- [Io] 3
1A=y A-vi.
2 2, 1) é 2,1 ,}
1= o 2 F(, +vy) - Bl -v,) Lo *2)(
m T ) 2@ E) k' Vo ik Vo' | T TIa \a

Vikt Vo Vik Vo
F(vij +vg) - F(vij - VO), ~ ——g— I:(vjk -vg) t ——— E(vij +vg) +

2 2 -
V..t v V. -V r; u? z
i 0 ij "o j J .1
+ —12——a E(vij - vo) - ._-’Ea_. E(vij + VO)} -y { E(g)

1

z
1 (7
[F("jk *vg - Flvy - "0’] i ?(E) [F("ij *vg) - Flvyy - "o’”

1

2
re av + - au; Z
- 0 Z 7
1=+ }- (_Za_l)(a) [F(vjk+ vy) - F(vjk - vo)] -

1
V., + o= g

2.1 2
k Vo A4 k Vo } (avo + 2' S auj )
- — E(vyy -vo+ e e Elvj + vg) + Ta (

o=

)

ViJ + VO vi_] = VO
[F(vij *vg) = Flvy, = vgll + =g Blvy; - vg) - —gg— Elvj; + vy

2

r 2 2
I = frz V2 "n] r. Bew r 2 B=w
u n 1 - E(v) dv = [I ] - u [I I
T[ ve 7 [ 2]asy n {o Asvy,

o

vjn jn
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2
_ r ‘VO Vin l
I, == | %= E(vjn + )+ E(vjn -vg) |+ _2%_ l E(vjn - vy - E(vjn +vg) | -
1 1
av +-5- 7 un2 i 7
[—F(vjn b g+ By = vo) |+ (a )

_n
[—F(vjn + VO) + F(an - vo) ] = T{_Za_(

v -V

v. tvVv q
- jn = "0 _ _jn "0 _
[““’jn" Vo) - Flyj - "0)] + B Blvy, - vo) - By E(v, "o)‘ :

Writing out the resulting expression for Example 5, we note that the first
integral is of the type Im with Vij =y, vjk =Vgs the second has v-ij = Vg ij = Vog
and the last is Iu with vjn =Vog- The sequence of intercepts is Uy, Vigs Vo3 ®

giving for I:

rlzi (av0+é--au1 1‘_'2' Via* Vo
=Pl 3 (a') [F(v12+ Vo) = Flvyp - "o)] T Bl vt
v -V av2+ 1 - auz) %
12" Vo oty (7 _
t—m Byt vt __Z'a——(E) [F‘“l +vg) - Flay - "0)] *
: - 2 ( (o denad) 3

N ul VO E( ) )- u VO E( N W I‘2 ) aVO 7 all2 P

By v Bl vl 72 (5)

I Vag * Vo 23 " Vo
Flvyg+ vg) - Flvgg - "0’, - Elvyg - vp) + =g Elvyg + v+

1
Vg eV

av. + = - au z
0otz -auyl, 0 .
+ 3 (E) [F(VIZ PV s Flvy s v |t g By, - vp) -

i N it i i
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1

2.1 2)
+ x - au z u, + v
0 2 1 (':') {F(“1+Vo)'F(“1 - Vo) +-12?iE(“1"’0)'

U _ Vo 2 2 a":*%'a"lzz -
—ga— Elu + vl + (rz & ) Ta (E) [F“’12 Ty -
i )+"12+"o E(v.. - y - Y12~ Vo Bv. 4+ v.) s

Vi2 " Vo —7a “WVi2 Vo T EWVi2 T VY

2,1 2
ave + o4 - av 7
+ (r32 - rzz); 2 Zza ) (57'-) [F‘(v23 + vo) - F(v23 - VO)] +

Vaz*t o Va3 = Vo
+ =gz Elvyg - Vo) - —7— Elvy3+ vy

For Case 6, the scquence of intercepts is 0, Vorr Vi2r Va3 giving, in the same

way as 5

av§+é7r2- Vo 2 2 a"oz“L%'a"gl
(5) 2F(vy) + gz 2B(vo)f + (rf - r°) —-

7r.2-F( +vg) - F( )+v01+v0 E(v,, - y - 201" Y0
(a‘ Vor* Vo' T FWor " Vo' | T zm— *WYo1 "Vo! T m

5 2 _ 2 | 2 _ 2 { )
L(v01+v0)= +(r2 rl) }‘ +(r3 r2) bee e

arim i,




Thus for a sequence of active grids, r, i=0,1, 2, 3, ...n.

_ 2 1
- TAiLi), 2
_P 2 (a"o g Tl 1) 7
I=9 (’" ri-l) pE (E) FOvig, it Vo) - Fvioy, i - Vol |*
i=0,1
v .tV V. .=V
i-1,1 0 . _ _i-1,i 0
* 3 E(vi_y,i" Vo = Elviy, 1+ v
Putting
= ayl = I 2
Y Tavy T3rp Vo
2 r1-laui-2l EY
G-1,i - VE-1)i ) ,
r,y-r

2 _ %Y
where S then get

FOgop, 1o = {erfv( gy ; BBvol=erfix; ) | +v}
and
- 2) _ 2
E(V(i-l), i + vo) = exp } '('P‘V(i-l),i :tJévO) | =exp }- (x(i_l)‘i:t'y)

3

1 2kT Y
Taking QE =(T) outside the summation, we have

7Ne

4
<2~
<X

P _
Zqﬁ'
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1

z
where P = 22Ne (i) -l— 5
7] Vg

Hence

_ 7Ne 8kT 1 2 2.1 2 2 F
I=== \’m 3 Z(ri ‘”1-1’“2*7 "‘(i-n,i) 7
i

1 e L %60, it Y
[erf'x(i_l)’i-r -y{ erflx(i_l)' i 24 ‘l b ———

. 2 x(i-l), i ~Y ‘ 2
exp}-(h‘i'”»i S : T Xy, i Y :

A Where, if the first active grid is retarding , that is, eVlZ 0, u; = 0, summation

starts at i = 1 wi.h r1r*= 0. For the first active grid accelerating, eVl< 0,
=r_; =0. Note that with 7, =0
(by definition) and rg=r for the retarding first grid:

u12< 0, summation starts at i = 0 with riy

= 2 2
3 ( . 2)_ 2 d 2-l‘oauo-r1 auy . 2
ry-rgsr; an %01 T au;
o ~ 1
and for an accelerating first grid:
2 2 2_.2
) 2 2 r_laul-roauo.0
g Sy Pieirgisins s S xS T2 )
17 %o

and

T



i P g

<

43

2
1

2 2
rg - r; ro-r;
The method used to determine the active grid sequence i = 0 or 1 through n from

the total grid sequence K = 0 through N may be summarized as follows:
{a) Compare the sequence of intercepts

2_ 2
2 Tx 3y

X"
r 'l'k

k = 1 through N, and find the grid K = kq having the least xof, this k' grid is the
first active grid, If this value Xgy 1s negative or zero, this k~ grid is retarding

and i = 1. If two or more grids give the same intercept, the one with the higher k
is chosen.

(b) Compare the sequence of intercepts

2
r, aukl - ray
52 -
k. k 2 2 ’
1 rk - T

k= kl + 1 through N, again finding the grid k = k2 having the least xkﬁc , this grid
is now the second active grid (i = 2).

{c) Repeat step (b) until k, =N when the active grid sequence is complete
(i =n). Note that the NtD (innermost) grid is always an active grid because its
limiting curve, whether accelerating or retarding, tends asymptotically to
sin?¢ = 1/4313 = rl\? /2
grids in the system and being the final integral in the sum for I.

as v2—>w, thus having the least value of sin% of all the

From the foregoing discussion of a system of concentric spherical grids placed
in a drifting Maxwellian plasma, we conclude that the current flow through the
innermost grid:
(a) is 2 function of the plasma parameters: charged particle number
density N, particle temperature T, particle mass m, particle charge ¢, and the
drift speed Voi
(b) is not necessarily dependent upon all grid radii and the potentials thereon;

il
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(¢) if one or more grids are retarding, is independent of any grids of radii
greater than the most retarding grid, including the outermost. If, however, no grids
are retarding, the current flow is dependent on the outer grid radius but independent
of any grids of radii greater than that of the "least accelerating® grid.

1. APPLICATIONS

The relations derived in the preceeding sections can be used to obtain the plasma
parameters from the observed current-voltage curve for the probe.

Since the various expressions all involve particles of only one sign - it is of
interest, at this point, to investigate the possibility of using a probe which responds
to particles of one sign only, rejecting the other. To this end, it seems that a
reasonable method would be to put a large enough bias on the collecting surface to
repel all particles of one sign, but to surround this element with a perforated grid
so that the effects of this bias will not penetrate the surrounding plasma. This, then,
gives us a two-element sensor. The final conclusions in Section 10 stated that the
inward-current flow is a summation over all active grids and always includes a
term containing the potential and radius of the innermost grid, in the present case,
the collector. This term is for an attractive potential V2

2 281, 2 _aN= |
T, = (r; - rz){(-2-+ ¥© - x12) T{erf=x12+ 'y; -erfix,, - y!] +

Xqo+ ¥ Xig - ¥
12 I_ _ 2 _ 12 i 21
+ T—exp' (x12 y) ! T exp' (x12 + 'y) §

It can be shown that if x122 > ‘.'2 and X122 >> 1 the above term tends to zero,
and the current flow will be independent of the inner grid potential for the attracted
sign particle. For the retarded particle, however, the total current flow has only
one term (under the assumption that |V2| > lVl P, namely,

_7Ne J8kt 1 _2|f1_ .2 _ 2\ | _l.
1=Te g2kt 2 ’2{(7” XOZ) z [erf%xozwi extjxgy - 7| I+

Xgp t ¥ -y
+_022__ exp}-(xo2 --y)2 i-%_ exp{-(x02+ 7)2%

Again, if xog > 72 and xog > 1, then the total current will tend to zero and there
will be no contribution from the retarded sign particle.

Putting
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2 2
c \"
2 I‘lau1 rzauz 2:En . m e 2
Y27 TT. .2 . AUy Tpr . AT gpp - A YCAY
1 2

the conditions for attracted particle 'saturation' become:

(a) for y>1, xlg > 72.

2 2
e(-V)»lmv2 I‘—l-l -rl eV s
2 7 0 2 2 1 ’
r r
2 2
and
2
(b) for y<1, x,0> 1,
12
2 2
1 !
e( 'V2) > kT(—-—Z -1 ) ‘—-.2 eVl
ry r,

On the other hand, for the retarded particle, putting

2
(a) for y2 1, x5 > 7,
1 2
e(V2) »> gmvy
and
(b) for y< 1, x,2 5 1
Y » 02 >> ’
e (V2) >» kT.
Since the equations for the attracted particles involve the geometry of the
sensor, and those for the retarded particles do not, and since one potential must
satisfy both sets of equations; the sensor design, as well as the expected

tempceratures and velocitics, will determine which set of equations imposes the

most stringent limit on V,,.
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e,

On the assumption that the bias potential on the collecting electrode satisfies
the set of conditions, we may proceed with the analysis on the basis of having a
spherical probe of radius R(= rl) ata potentialV(=Vl) measuring particles of one
sign only.
Not all of the particles which are incident upon the sphere with radius equal to that
of the outer (perforated) grid will contribute to the current since some will strike
the grid wires. The obgerved current is reduced by the transmission factor of the
outer grid £ . The true current I will, therefore, be the measured current divided
by ¢. A further complication arises from the fact that all potentials in the preceding
sections are referred to the plasma potential which is unknown. In practice, the
sweep potential applied to the probe must be referred to some other point in the
system such as one of the electrodes in a discharge tube or the skin of a rocket in
a rocket experiment. The plasma potential is one of the unknowns we would like
to determine. In the following, V is understood to be measured from the reference
potential, and it is assumed that the potential difference between the reference
electrode and the plasma remains constant regardless of the potential applied to the
probe.

First, we consider the case for no-drift. In the retarding region, for the

relation between I and V, we can write

1 I= IB exp (— %‘.Ir;)

To simplify the discussion we will consider the case of electrons, and defining
a = |e|/kT, we have

I= IB exp (aV) .

In the "near accelerating™ region, where the current may be represented hy

the first two terms of the Taylor expansion, we can write
1= a(V - VA)

We have now introduced four constants: IB' @, a, and VA. They are not,
however, all independent, since we have shown that the gradient (dI/dV) must be
the same at the plasma potential for both retarding and accelerating expressions.

Differentiating the above expressions gives

-g‘l, =al retarding
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-&% =a accelerating

At the plasma potential VO the current flow will be Io. Equating these two
gradients at the plasma potential gives

an = a,

or

el
"
RI®

This gives us a means of obtaining the current at plasma potential Ioe We plot
log I versus V, which will be a straight line in the retarding region. The slope of
this line is @. A plot of I versus V will give a straight line in the near accelerating
region. If the conditions for the particular experiment are appropriate, there will
be a reasonably large range of voltage over which the two-term Taylor expression
will be a good approximation, and this straight line will be readily located. Its
slope is a and the current at plasma potential is obtained as the ratio of the two
slopes. Note that the determination of this current did not involve an accurate
determination of the plasma potential. The slope o is simply related to the

temperature, hence, electron temperature is obtained from the equation

Rl

. - €
T=x

The electron density is given by

-16

1. =2 48821 X 10”16 (47R%) NNT

0

The intercept of the straight line Vj can also be determined, and from the

equation
Iy = a(V0 - VA) s
we have
_1
Vo=z+Vy

which gives the plasma potential.

g




it oo

48

We have now determined three plasma parameters from the current-voltage
characteristic of the probe, namely, the electron temperature, the electron
densgity, and the plasma potential. This is the maximum number that can be obtained.
The curve fitting process introduces four parameters as already noted. However,
there is one relationship between them, that is, the condition to match the slopes of
the two curves at plasma potential. Thus, there are only three independent parameters.

" This particular point has more sighificance for positive ions when the mass m
is also an unknown. In this case only three of the four unknowns can be obtained
from the probe characteristic; the temperature is obtained from «, the plasma
potential from o and Vy, and then using a in conjunction with a to give Ig, we get
N/Nm, Hence, either m must be known so that N can be calculated, or vice versa.

When the drift velocity cannot be neglected, the equations are much more
involved. The straight line part of the accelerating characteristic now extends into
the retarding region as noted earlier but even with large drift velocities, if x
(that is, voltage) is made large enough, a curvature in the characteristic will
eventually occur. This is likely to be of limited practical importance, since
making the voltage large for the retarding case implies very small currents which
will probably be less than the noise level. Even if this can be observed, there is
still no simple analytic procedure which can be apolied to it comparable to that
which we can use in the case for no-drift. However, there is still the straight line
part of the I-V characteristic (which now extends over parts of both the retarding
and accelerating regions) from which a slope and an intercept may be obtained.

The slope obtained from this line is given by

27R% Ne2erf y ,'_m
mv ( 0 2KkT )

This expression contains the density N, the mass m, and the temperature T,
all of which are unknowns. Note that the plasma potential does not enter into this

expression. To obtain an expression for the intercept suppose we fit the expression
1=a(Vv - VA)

to the data so that Vy is the intercept on the voltage axis. For the plasma
potential we have

Iy = a(V0 = VA) ,

and since a is the slope,
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=(d! -

Using the expressions already developed for Iy and (dIldV)0 we obtain

2
V.-V, = *m"o 1, 4+ 1 exp (-v9)
0 "A Ze 2_72 Wr ~ erl(y) ’

where the upper sign applies to positive particles and the lower to negative particles.

This expression involves the three unknowns: plasma potential VO, the mass m,
and the temperature T, which occur in y. Note that the density N does not enter
into this expression.

We now have two relations between four unknowns. These enter into the
expressions in such a way, that if independent estimates can be made of any two
unknowns, the other two can be determined. However, some cases will be much
simpler to compute than others. For example, solving for V0 and N, when m and
T are known, is straightforward. On the other hand, solving for m requires a
numerical iteration process.

As an example of how the procedure might apply in practice, consider the case
of a rocket carrying two probes —one measuring electrons, and the other, positive
ions. In practice, due to the high thermal velocity of the electrons, the rocket
velocity can be neglected for the electron probe, however, for the ion probe, v is
likely to have a value of about unity. For the electron probe there will be only
three unknowns since the electron mass is known. From the retarding part of the
characteristic we obtain electron temperature, and using the accelerating
characteristic as well, gives density and plasma potential. We might now assume
electrical neutrality so that the ion density is equal to the electron density. Since
the plasma potential has already been determined, we have V0 and N for the positive
probe and can use the probe results to obtain mass and temperature. Alternatively,
we might assume that the ion temperature is equal to the neutral temperature which
is known from independent experiments and determine N and m from the probe
data, or we might use independent results on composition to obtain m and determine
N and T.
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Appendix

We list below the equations we have derived, together with some of their special

forms. The following notations are used throughout:

I = current flowing to the spherical collector,

V = potential difference between collector and plasma,

R = radius of collector,
radius of sheath,
charged particle density in the plasma,
charge on the particle,

r
N
e
m = mass of charged particle,
k
T

Boltzmam} ] constant,
= Temperature of charged particle being collected,

Vo * drift velocity of plasma relative to collector,

a = m/2kT,

y Javy

a= R2/(r? - R?),

|eV/kT for retarding voltages,

(R2/(r? - Rz)(leVI [kT) for accelerating voltages,

erfy =J:2? ]exp(-tz)dt.

X =

3

S

e g TR
ffk-‘&:hﬂﬂm&m

W,

e

e RN AR AR B R A T T

w —




i

e

p——

s

52

(a) Retarding Expression:-

i= 'RzNeﬁl’i %[.’2’- (é-+ 72 -xz) {ert‘(x+ y) - erf (x -'y)‘+

+ ;-(x+ ¥) exp ;-(x - 7)2% -é-(x - ) exp }-(x+ 7)2; ]

(b) Accelerating Expression:-

1= 7rr2 Niﬁr% %—[‘@ (1+ 272) erf y+ yexp (-',vz) - '&’4-1_1' ;—(é + 'y2 - x2)
[erf (x+ ) - erf(x - 'y)] + %-(x + 7) exp [—(x - 7)2]-
-%(x--y) exp[-(x+ 7)2]” c
(c) Taylor Expansion of Accelerating Expression:-
2 1 2 1 2 1 ey
1=7R“Nev (l+ )erf(y)+ exp (-¥°) 3 Verf (y)! ( ) -
ot )i 7 fert o] (it

2
1 2 2 \'4
-7 & 7o -y )i(ﬁ-.r) + ] ,
where the upper sign is for positive particles, and the lower for negative.
(d) Current at Plasma Potential (V = 0): -
2 1 2 1 2
I,=7R“Nev [(l+ )erf‘y+——exp('7)
: o[t gl 7

(¢) Derivative of th? Current at Plasma Potential: -

a1\ _  27R% Ne?
av (¥} - F

erfy
mv,
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where the upper sign is for positive particles, and the lower for negative.

When the drift velocity is zero, the above expressions reduce as follows:
(f) Retarding Expression:-

. 2 ’ET _ev
1 = 47R” Ne mexp( ET)

(g) Accelerating Expression:-

i 2 2 2
-4 Ne Yy ll L e (T‘R_Z' 1?1")]
o r r“ -R

(h) Taylor Expansion of Accelerating Expression:-

g 2
- 2 ’ kT eV 1 R” eV
I = 47R" Ne m[l*m';m(m) ..-]
(i) Current at Plasma Potential: -

= 2 kT
IO = 47’R Ne -z—m—n

Note that the average particle velocity in a Maxwell distribution is given by

7= YT
.V m »

so that the above current can be expressed as

This checks with the result obtained from elementary kinetic theory— the number
of particles crossing unit arca in unit time is given by Nv /4.
The expression for I, contains the universal constants e and k and the numerical

1Y oulomb, k = 1. 38054 X 10723

values may b~ inserted. Taking e =1.60210 X 10
-31

joule/°K and considering electrons for which m = 9, 1091 X 10 kg, we obtain

RIS

i g
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1, = 2. 48821 x 1071 (42R%) NAT,
where I0 is the current in amperes, R is the distance in meters, and N equals the

particles per cutic meter.

Considering positive ions of atomic mass M, and taking the atomic mass unit to

be 1. 65979 X 10”2 kg, we have

= . -18 2 ‘,T
IO = 5.82906 X 10 (47R") N M

(j) Derivative of Current at Plasm: Potential; -

Substituting numerical values as above, we have for electrons

(é"lr\ = 2.88753 x 10”12 (4RHON |
o NT

and for positive ions,

dl) . 6. 76453 x 10714 (47rH) D
avr 0 ™




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of Lutle, body of cbstract and indexing . anotation must be enicred when the overall report 1s classified)

! ORIGINATING ACTIVITY {Corporate author) . 20. REPORT SECURITY CLASSIFICATION
Air Force Cambridge Research Laboratories (CRP) * Unclas;ified

L. G. Hanscom Field .
Bedford, Massachusetts 01730 LLLE

3. REPORT TITLE

AN ANALYSIS OF THE BEHAVIOR OF A MULTI-GRID SPHERICAL SENSOR IN A
DRIFTING MAXWELLIAN PLASMA

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Scientific. Interim.

s. AUTHORIS) (First name, middle initial, last name)

Michael Smiddy
Robert D. Stuart

& REPORT DATE

January 1969

7a TOTAL NO. OF PAGES

59

75 NO. OF REFS
none

8a. CONTRACT OR GRANT NO.

92 ORIGINATOR'S REPORT NUMBEN'S)

AFCRL-69-0013

b, PROJECT, TASK, work uniT Nos. 8617-02-01

c. oopeLement 61102F
(18 2-1:’;%:’:5.’0" u):(S) (Any other numbers that may be

s report
d. poosuseLement 681310 PSRP No,, a4

10. DISTRIBUTION STATEMENY
1 - Distribution of this dccument is unlimited. It may be released to the ('iearing-
house, Department of Comnerce, for sale to the general public.

TZ ‘vonmmunnv ACTVITY
Air Force Cambridge Research

Laboratories (CRP)
L. G. Hanscom Field
Bedford, Massachusetts 01730

19. SUPPLEMENTARAY NOTES

TECH, OTHER

S

13, ABSTRACT

A theoretical derivation of the characteristic of a spherical probe in a flowing
Maxwellian plasma is given together with various limiting forms of the equations.
The limitations imposed on the validity of the theory by the characteristics of the
sheath are discussed. The theory is then extended to the case of an n-grid sensor.
Finally, the application of the theory to the determination of plasma paramzters from
the probe characteristic is discussed.

DD FORM ‘473

1 NOV 63

UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Claaaification

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE

T

ROLE wT

Current flow

Spherical electrostatic probe
Sheath effects

Plasma

Parameters

Density

Temperature

Rockets

Satcllites

Ma>wellian

UNCLASSIFIED

Security Classification




