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Abstract 

A theoretical derivation of the characteristic of a spherical probe in a flowing 
Maxwellian plasma is given together with various limiting forms of the equations. 
IJie limitations imposed on the validity of the theory by the characteristics of the 
sheath are discussed.   The theory is then extended to the case of an n-grid sensor. 
Finally, the application of the theory to the determination of plasma parameters 
from the probe characteristic is discussed. 
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An Analysis of the Behavior of a Multi-Grid Spherical 

Sensor in a Drifting Maxwellian Plasma 

l. INTRODUCTION 

The use of a probe to determine the parameters of a plasma has long been one 

of the standard methods of experimental measurement.   The foundations of probe 

theory were laid down in a classic series of papers by Langmuir. 

In this paper, the details of the calculation are given for the current flow to a 

sphere in a plasma containing charged particles, where these particles have a 

Maxwellian velocity distribution with a superimposed drift.   The current is obtained 

as a function of the potential difference between the sphere and the plasma and, 

following Langmuir, the retarding and accelerating cases are treated separately. 

The discussion in Section 7 imposes an important limitation on the conditions under 

which the expressions can bt considered valid.    The general theory of an n-grid 

sensor is developed in Section 10, and the particular case of a two-element sensor 

is discussed in Section 11.   This last section, using various special cases ot the 

expressions developed earlier, discusses the problem of obtaining the parameters 

describing the plasma; namely—density, temperature, mass, and plasma potential, 

from an observed current-voltage curve.   A summary of the equations with the 

numerical constants most useful in practical applications is given in the appendix. 

(Received for publication 11 December 1068) 



2. THE INTKCilUL FOR THK CURRENT 

The current crossing an element of area dS is given by J • dS where J is the 

current density.   If J is due to the motion of charged particles then we can^write 

J = Nev, where N is the charged particle density, e the charge on each of the 

particles, and v their velocity.   If the charged particles have a velocity distribution, 

then the number of particles with velocities in the range v, v + dv may be written 

N f(v) dv, and the current density due to this group of particles is Ne f(v) dv.    The 

current flowing across the element of area dS is Nef (v) dv(v • dS).    The total current 

flowing across a surface S due to all of the charged particles can be written 

I =    /   / Nef(v)dv(v dS)    , =   j    fxe f(v] 

where the surface integral is taken over the surface under consideration, and the velocity 

integral, over the range of velocities possessed by particles which cross that surface. 

We consider a spherical collector of radius R situated in a gas in which the velocity 

distribution of the charged particles ?s Maxwellian and there is, in addition, a super- 

imposed steady drift motion relative to the sphere.   To calculate the current to the 

sphere, we surround it by a concentric spherical surface of radius r and calculate the 

current flowing between the two spheres.   The problem now consists of developing the 

appropriate distribution function for a Maxwell distribution with a superimposed drift, 

calculating the appropriate limits for the velocity integral in terms of the potential 

difference between the two surfaces, and finally evaluating the integral. 

3.   The distribution function 

The Maxwell distribution function may be written 

3 

'(vi.v'.v-y-d)    exp[.a(v«x
2 + Vy

2 + v»z
2)] 

where v' , v1 , v'    are the components of the velocity parallel to a rectangular set x      y     z 
of axes, x'y'z», at rest in the gas; and a = m/2kT where m is the mass of the particle, 

T is the temperature of the gas, and k is Boltzmann's constant.   If we now super- 

impose a steady driit v0 in the z direction, then the velocities vx, v , vz, in a set 

of axes xyz at rest in the sphere, become vx * v'^ v   ■ v1 . and vz 
s v'^ VQ. 

To calculate the «r rrent crossing a spherical surface of radius r we require 

v • dS which can be written vrr
2 sin eded4>, where vr is the radial component of the 
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velocity, and 9 and <j) are the colatitude and longitude angles in conventional spherical 

coordinate notation.   We must, therefore, express the distribution function in terms 

of the radial velocity.    The velocity of the particles can be represented in terms 

of v , v0, v. , which are the components in a local cartesian system representing 

the rectangular components of velocity in the directions of increasing r, 9, and 4> at 

the particular point concerned.   Since v , v , v   and v , ve, v.   are two sets of 

rectangular components relative to axes which are at rest in the sphere, then 

vv2 + v
v

2 + v.2 s v? + vfi2 + vf x       y       z       r       ö        9 

and 

v.x2 + v.y2 + v.2 =vx
2
+vy

2
+(vz+v0)2 

= vx2+vy2 + vz2 + v0 + 2v0vz 

= vr + v92 + v6 + v0 + 2v0 ^vr cos e  " v0 sin 8 ^    • 

In the transformed system, the volume element dv
x
dvydv

z becomes dv dve dv. 
since this is still a rectangular system.   To evaluate the integral, a further transform- 

ation is required into a spherical coordinate system in velocity space.    The colatitude 

€ is measured from the v   direction and the longitude X is the plane defined by VQ 

and v.   from the ve direction. 

Carrying through  the appropriate substitutions gives 

2 2 2       2        2 v,x + vlv + v,z s: v   + v0 + 2vv0 ^cos € cose  " sin€ cosX sin 9) 

where v is the total velocity of the particle. 

The volume element now b 

current crossing the sphere is 

2 
The volume element now becomes v   sin c dv dc dX and the integral for the 

2*     jr      ^    *  * | 
s f   f   f fße{j) exp ra|v2 ^ vo+ 2vvo(COS€ cose ■ 

•VO "BsO     V    €    X 

- sinX cosX ain9)!|(vcos c)(v  sine) dXdedv (r   sin9)d9d<t>. 

. 



Figure 1.    The Coordinate System 

Figure 2.    The Coordinate System 



The convention followed so far is that the positive direction is outward from the 

center of the sphere,  so that the current I given by this expression is the current 

flowing outward.    Since we are interested in the current flowing to a spherical 

electrode in the plasma we need the current flowing inwards and it is convenient to 

change from the convention at this point.    The velocity v is always positive but we 

now measure its colatitude from the inward directed radius vector,  rather than the 

outward.   Hence, if we write £'= T- f, thenc'varies over the range 0 to tf/2 for 

inward flowing currents.    The expression for I now becomes 

/* it t 

/       /    /    /Ne(^)   exP   ~av   +vo  - 2vv0 (cose' cos<j) + 
t)=0    6=0    v    e1    X 

+ sin e1 cos A sinO ) v3(-cos€') sine1 dX^de») dv r2 sinO de d<|) 

We shall, henceforth,  drop the prime from e,  it now being understood that c is 

measured from the inward directed radius vector. 

The integrand is not a function of 4>, which we would expect from the axial 

symmetry of the problem about the drift velocity.   Hence, we can write 

I = 27rr2Nef-)     exp(-av0
2)   j        j     /  fv3 exp   -a jv2 - 2vv0 

1)=0    v    €    \ 

(cos e cos 0 + sin A cos \ sin6 ) I cos e sine sinO dAde dv dö 

Note that the symmetry of the problem also requires that the same current be 

obtained regardless of the sign of Vg.    (This is not immediatel> obvious from the 

above expression. ) 

We now need the limits for the velocity integral. 

I. siMMsm ivrmminN 

We assume that the velocity distribution of the particks at radius r is given by 

the distribution function derived above.    We also assume a potential difference V 

between this surface and the spherical collector radius R.    We now calculate the 
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possible range of velocities a particle can have at radius r if it is to be able to reach 
the colV ^tor radius R. 

The calculation divides into two cases:   the retarding case when the sign of the 
charge on the particle and the sign of the potential on the sphere are the same, and the 

accelerating case when they are opposite.    These two cases were distinguished by 
Langmuir. 

Considering first the retarding case, then a particle with velocity v travelling at 

a*-, angle c to the (inward)radius vector at radius r will arrive at the collector radius 
R with velocity v- travelling at an angle ci to the radius vector where these quantities 
are related by the laws of conservation of angular momentum and energy.    If the 
potential difference between the collector and the surface radius r is V, then from 
energy considerations 

^mv2=^mv1
2+ |ev| 

1 2      i      i We define a velocity vR by the relation TrmvR ■ |eV| and this equation then 

becomes 

2        2        2 
'    -V1+VR      • 

From angular momentum considerations 

rv sine B Rv, sine- 

The particle will be collected if it arrives at the collector travelling 

tangentially (sin j^ 1), that is, if 

rv sine = v 1      ' 

which on substituting in the energy relation gives 

2        2 .    2>   r2v2 sm2e 
v    - VR :: vl "  ^2  
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Hence, for a given value of v, the particle is collected if 

sin2
e< 5- 

r (■4) • 
with the limiting value, sin cR, being given by the equality sign.   The limits for the 

c integration are, therefore, 0 and cR. 

Note that the upper limit of e is a function of v, one of the other variables in the 
2 . 

integration.   We obtain the limits for v by noting that the smallest value of sin c is 
2 2 zero and, hence, v    - vR > 0 or v> vR.    TTie limits on v, therefore, become vR 

and« .    Finally, for the limits on X we note that the ai^uments given above are 

valid for all values of \, and, hence, the limits for the \ integration are 0 and 2n. 

The expression for the current now becomes 

t        3 
I = 2*r2Ne(i)    exP(-av0

2)   ^      J  J J v 

6=0   vR    0 X=0 

exp |-a  v   - 2WQ(COS c cos 0 + sine cos \ sin 9)    cos c sine sin 9 dXdcdvd9 . 

For the accelerating case, e and Vnowhave opposite signs and the energy relation 

can be written 

12     1        2      I      I 
jmv   * 2mvl  "  le^ ' 

Defining a velocity v\ by the relation «• mv'«   a |eV|, we have 

2        2^,2 
v   = vl + v A      ' 

Following the same steps as before, 

v2 +   .2, r2v2sin2
e 

A RZ 
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The integral must now be evaluated in two parts.    The above relation is satisfied 
for all values of c from 0 to *V2 if 

v2 + v.*^ 
R' 

or 

2<    ,2      IT 
v   " VA -5 2     ' 

r2 - R2 

,2«  2     „2, n n 

Defining a = RÄ/(rÄ - RÄ) and V.   = or v'. , the limits for the first part of the 
1        2 l      I 

integral become 0 to Jr/2 for e and 0 to v. for v.   (Note TmvA  ~ a  ieVl-)    The 

current I may now be written 

»      v. 
Ij = 27rr Ne(|)7exp(-av0

2)/,     f * f  [ v* 
^9=0''0     •'€=0-/\=0 

exp -ajv    - 2w0(cos c cos 9 + sin e cos X sin 0 )   cos e sine sin 9 dXdc dv de 

If the particle has a velocity greater than v *,  it will be collected if 

,2 
.2   <R2   /1 + 

V,A\ 

or if 

. 2 
sin c '^k-h) 
Again, the limiting value e* is given by the equality sign.   Hence, the second 

part of the integral becomes 



*      J*   €A<V)    J,2V 

I2 = 2^' Ne(|)    exp(-av0
2)   J     J  f       J 

"6=0   V.-'O \=0 

H exp   -a v   - 2wn (cos c cos 6 + sine cos \ sin 0)    cos c sine sine dXdcdvde il 
5. EVALUATION OF THE INTEGRAL 

TTie three integrals formulated in the last section are identical as far as the 6 

and X integrations are concerned, so we evaluate these first.    The integration 

required is 

jr   2"' 

2awQ(cos € cosö + sin c cosX sine)| sin 6 dXd8 
G ^0 *X=0 

sine)   sir 

vsmc 

▼R VCOS( 

Figure 3.     Limits of Integration 

vsm € 

VCOS£ 

Figure 4.     Limits of Integration 
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We can regard this as an integration over the unit sphere in 6 X space.    The 

direction cosines of a point on the unit sphere are given by    I- sin0 cosX, 
m = sin 6 sinX, n s cosö.   Writing  A = 2a w0, we have for the integral 

//exp A (n cos c + /sin c) dS, 
s 

where S represents the unit sphere and dS is the element of area sin 9 dXd6 in 
spherical polar coordinates.    Making a cyclical notation of the direction cosine gives 

//exp A (n cos c + /sin c) dS =    // exp A (/cos c + m sin c) dS = 

s s 

f* f** =   11       exp j A (sin 0 cos X cos c + sine sin X sin c)! sin 9 d6 dX = 

9=0  X=0 

-   I     I     exp  A sin9 cos(X - c) jsin9 d9 dX 

9=0   X=0 

Substituting X" = X - c gives 

/JT   ^2ff-e 

/ exp| A sin 9 cosX'jsin9 d9 dX1 

9=0    X^-c 

and, since the integrand is periodic in X' and we are integrating over a complete 

period, any complete period can be used.    Therefore, 

fit    -*«-€ *Vf61T 

j    1 expJAsin9 cosX,jsin9 d9 dX1   =     / /        expj A sin9 cosX' | 

)=0   X' = -€ 9=0   X^O 

/ /    expJAsinO cosX    sin9 de dX =     //exp(A/) dS sine de dx' = 
9 =0   X=0 
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= //exp (An) dS = / /  exp (A cos 6 ) sinG de dX = 

s 6=0 \=0 

= Mf exp (A cos 6)     = - ^1— jexp (-2avv0) - exp (2avv0){ 

Substituting the above result into the expression for current gives 

3 

I = 2irr   Ne(|)     exP <-avo^   /    /exP t"av ^ ^T     exP (-2aw0) - exp (2aw0)| 

cos c sin c dc dv 

and so 

I = 2^r2 Ne (|J    i    /" /" v2   exp j -a (v - v0)2 j - exp { -a(v + v0)2j| 

v   e 

cos e sin f de dv    . 

We now continue this integration for the retarding case.    For the € integral 

we have 

/R 12 1   R2   /       VR  I 
cose sine dc=^sin eR = j -^   ^1 - ^   . 

Substituting this result gives 

(v2 - vR
2)    exp [ -a (v - v0)2 { - exp } -a(v + |0)2 j dv   . 

These integrals may be evaluated in terms of the error function which we define as 

as 
x 

erf (x) =J   f exp(-t2) d 
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Using this definition, we have 

/ \ 1 

/  v2 exP| '** - v0>2 | ^ = (Ä + vo) 7 VFKf ^ <VR - v0>| ^ <VR + v0) 

^R 

exp j-a(vR-v0)2} ^ 

y v2 [exp j.a(v - v0)2{ - exp [-a(v + v0)2| ]dv = ^ {i   (^ + v2] 

[ 
1 1 

erf a   (vR + v0) - erf a   (vR " V]   + T- «P (-a<vR - V0>2J- 

!R^!2.|exp-a(vR + v0)2 

z-00 1 

/   vR
2 exp {-a(v - v0)2 j dv = ^ VT'I  [l " erf a7<vR " VJ 

R 

y   vR   exp j-a(v - v0)  j - exp -a(v + v0)  j  d\ - 

'R 

iJi v2 
7 lä VR 

7 2" |erf a   (vR + VQ) - erf a   (vT 'R-VJ • 

On substituting in these results and simplifying, we get 

1 1 
1 ^R2 Ne V? ^ [^ VI fe+ vo " VR) jerf a?<V-+ ^ " erf a^ 'RT v0' VR     v0' 

+ !R^ exp {-a(vR - v0)2 j - 1^1 exp j -a(vR + v0)2j]      . 
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It is convenient to define two new parameters 

2 2 _    m     2 
Y   = av0 " OT V0 

x2 = av 
2       ev 

R 'nrr 

Finally, we have 

+ ^(x+ r) exp|-(x - T)2j4( x - y) exp j-(x+ r)2 (      • 

Turning now ,o the accelerating torn, of the expression, the c integral for the 

first part is simply 

*/2 

/ 
cos € sine Qe - JJ

- 

giving for 1^ 

,   = „2 Ne   fy ^  fA v2 |exP |-a(v - v/j - exp }-a(v + v/j dv   . 

This can again in be evaluated in terms of the error function 

1 * 
/9 1     , ^2\l   -l^P/1    + v2\  erf a2 {vA - vJ+ erf a  vn    + 

v2 exp j -a(v - v0) jdv = 7 ^(ällä + M [erI a   v A       0 OJ 

2ä exP(-av0
2)-V-^i

JL^l-a(VA-V 

and 
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f   v2 [exp|-a(v - v0)2 j -exp{.a(v + v/}] dv = \ ^fe + v02) 

1 1 IT 
i        7 7 7 vo 2 
erf a   (vA - v0) - erf a   (vA + v0) + 2 erf a   vo I + "^ exP ^^ 

VA + V0 VA    " Vr ^-2. exp j-a (vA - v0)2 {+   A^O. exp j .a (VA + ^,21     . 

For the contribution of the first part of the integral to the current, this gives 

Ij = Trr 

1 1 
Ne VF y * V* (^+vo )|eri a7 <VA - vo> - -" J <v 

A+v0> + 

1     1     v 
+ 2 erf a7v0    t ^ exp (-av0

2) - ^1°-   exp j-a(vA - v0)2| + 

vA + v 
^I°expj-a(vA + v0)2j]      . 

The c integral for the second part is 

/A 1        2 1      a       /       VA2   \ I      coscsinedc = 7 sin fA = ^ ^-^ ^ + ^2 j 

giving for Ig 

i2 ■ *r- 

" 2 
Ne V^ ^ 5-fr /f2 + ^) |exP |-a(v " V2! - CX

P |-a(v + vo)2{jdv- 

This is identical to the expression involved in the retarding form of the 

expression, except for the values of the constants.   Hence, we have immediately. 
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■2-"2"eVH   ^T IM+^^U'K*^ 
7 )       VA + 

- erf aJ (vA - v0)    + "ST 
0      J    / — expj -a( VA - v0> 

V
A " vn       I 2l 

-Tä-2 exP  -a(vA + V 

For the total current 1. + I«, we now have 

I = »rr   Ne 

1 

v0) -erfa7(vA - v0)| 

VA + V0 , ,2l       VA 'v0 
■a(vA "V      '      2a        exp + -Tr- exP 

Defining parameters as for the retarding case, 

-a(vA + v •111 • 

2 .      2 _    m       2 y -avo "iirrvo 

We have finally 

x    = av»  = a eV| 
TT" 

I = Trr2 Ne ^1 i V^(i + 2y2) erty+ vexp(-r2) - 

x + y) - erf (x - y) 

+ j (x + y) exp     -(x - y)2     - ^ (x - y) exp    -(x + y)2   j 

Note that the expression within the braces multiplied by l/(y + 1) is identical 

to the retarding expression in form, but that x has a slightly different definition. 
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' 
It is also worth noting that the coefficient outside the whole expression contains the 
radius of the collector R   r. the retarding case, and the radius of the outer spherical 
surface r in the accelerating case. 

6. LIMITING FORM OF THE EXPRESSIONS FOR NO-ORIFT 

The expression for no-drift c^n be obtained from the equations derived here by 
taking the limit v0 — 0, that is, y -* 0,    This forms an important cneck on the 
expressions, as the equations for no-drift are relatively easily derived from first 
principles. 

Considering first the retarding expression, we require 

lim Tlf (s+ Y2 -x2jjerf(x+Y) - erf (x -V)} + ^ (x + y) expj-(x - y)2\  - 

- * (x - y) exp |-(x + Y)2}] - ^0[t (^ v2 - x2)-^* + ^-erf(x - y) , 

+ 1 x exp{-(x-v)Vexp{-(x.Y)2) + ^ exp j . (x . y)2 j4 ^ exp |.(x + y)2jl 

=Vf fe " x2)v^ exp ("x2) + 7 x 4x exp ("x2) = 2 exp ("x2)     ' 

Hence on substituting, we obtain 

I = 27rR2 NeJL exp (-x2)    . 

The accelerating expression can be dealt with in a similar manner and involves 
the same limiting expressions 

jerf (x + Y) - erf (x - y)    + ^ (x + y) exp I -(x - y)      - 

4 (x - y) exp   j-(x + v)2 H] = ^„[t ^ *** ^ " 
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1    U/1    ^2\ erfU + y) - erf(x - y) .  l^ exp( -(x-yf] - exp( -(x -y)2J   . 
-trrrJ7\7 -x ; y +2X-C ^ + 

^exp |.(x - r)2] ^ exp[.(x+y)2] |] = 2 .^^-x^expC- 

+ 2x2 exp (-x2) + exp (-x2)    = 2 f 1 - ^^T exp ("x2)l      ' 

x2) + 

Hence, for the current we have 

I = 2nr2 Ne^. 1-ä4-Texp'-x2>] 

Note that for x = 0 (that is, V = 0) both expressions reduce to the same equation, 

namely. 

I = 27rR2 Ne   1 

7. THE SHEATH 

Referring back to the calculations we have made, we see that in setting up our 

original integral we considered particles crossing a spherical surface of radius r. 

In defining the limits of integration we determined which of these particles is capable 

of reaching a concentric spherical surface of radius R where R < r when there is a 

potential difference V between the two surfaces.    We also considered only inward- 

travelling particles in setting up the limits of integration.    This means that we 

preclude the possibility of the potential on the inner sphere influencing an outward- 

travelling particle at radius r in such a way as to reverse its outward motion so 

that it can eventually reach the sphere radius R.    This is equivalent to supposing 

that the electric field due to the potential on the inner sphere does not extend beyond 

a distance r.    This, then,  is very close to Langmuir's concept of the sheath radius. 

In deriving the above expressions, we have assumed that we can equate the 

potential to zero over the sphere radius r, that is, that no particle outside this 

spherical surface can experience any force from the influence of the field.    We have 

assumed that the velocity distribution of the inward-travelling particles at radius 

r follows Maxwell's law.    (The velocity distribution of the outward-travelling 

particles is immaterial, as they do not enter into the calculation.)   In deriving the 

expressions for the limits, we used the energy and momentum of the particle at 
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the two surfaces only and applied the conservation laws.   We, therefore, implicitly 

assumed that there are no particle collisions between the two surfaces.   Also in 

applying these results,  it is assumed that the potential distribution between the two 

surfaces is such that the radial velocity of the particle nowhere becomes zero, that 
■ 

is, that there is no potential barrier which the particle cannot surmount.   This is 

worth considering in a little more detail as it has important applications in considering 

a multi-grid sensor. 

TTie argument follows closely that used to obtain the limits of the integral. 

Suppose we have a particle at the sheath edge at radius r. travelling with velocity 

v. at an angle c. to the radius vector, and suppose that at some arbitrary value of r, 

R < r < r., the velocity and angle are v and c.   For the particle to reach the collector, 

not only must sine   (the value at the collector) be less than unity, but sin e must be 

less than unity for all values of r within the sheath.    This means, from the arguments 

given earlier, that 

.2        r2 L     2eV \ 
r.   \      mv. / 

This condition will apply in both retarding and accelerating cases if e and V 

are considered to contain the sign as well as the magnitude of charge and voltage. 

But the relation between the limiting values of c: and v.,  if the particle is to be 

collected at all, satisfy the equation 

2 /      2eV   \ 
.2        IT /.     c \ 

1    rf \      mv.   / 

where V   is the potential of the collector.   Hence, eliminating v. 

.2        r2 

sm fi< -j 
ri 

I + ^ 

._2 
V (^ •')] 

which on rearranging gives 

2 
.  2 sin e ^i1"^)/^"^) 
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The most stringent case to be satisfied occurs for the accelerating condition 

er 

if 

when c: can assume the value jr/2.   Hence, the condition is satisfied for all cases 

H)/(Ui) 
which on rearranging gives 

>1 

V    lll_R2 

Since V  and V may be either positive or negative, this result expressed as a 

condition for V becomes 

ivi>4^4^ivci. 
r.  - n      r 

Note that, since we defined the potential in the plasma outside the sheath to be 

zero^and also R < r < r., the limiting condition implies that 0 <  |v| <  |v | . 

8.  POWER SERIES EXPANSION OF THE ACCELERATING EQIATION 

A useful expression can be obtained by expanding the expression for the acceler- 

ating case as a Taylor series in powers of V, valid near the origin V = 0.    The first 

three terms in the series are 

I = I0 + ft'*H$y. 
where the subscript 0 means the value of the quantity concerned at V = 0.    The 

expression derived earlier gives I as a function of x rather than of V.    A compli- 

cation arises now,  since we defined x using the magnitude of eV — 

2 
x ■-& ■ 
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It is convenient to calculate the derivative (dl/dV) as   (dI/dx)(dx/dV), but in 
differentiating the equation which relates x to V, the sign of dx/dV is ambiguous. 
This is readily resolved by noting that the sign of the derivative is the same as the 
sign of e, that is,  it is positive for positively charged particles, and negative for 
negatively charged particles.    The following expressions are now quite straight- 
forward to obtain 

I0 = irR2 Ne^ ^ |f (1 + 2y2) erf r + y exp (-y2)|    . 

ftl- TTR   Ne ^Tr^'y Positive particles 
Negative particles 

Hence, the expansion for I becomes 

I = i^Ne-L ^r|0 + 2y2)|erf Y - rexp(-y2)=F 

^2M(£HH^(-'2'I(£)2'-- 
or with some rearrangement of the constants, 

■ ^ Ne vo [(» + ^l) er^+J Jy exp '-^'V lerf y I(IT) - 

12   1) ,    2,l/eV\2      1 

On referring back to the complete expression for the accelerating case we note 

that it contains the "sheath radius" r rather than the collector radius R.    We also 

recall that r is the radius of the spherical surface on which we can assume V = 0 

and this will presumably be a function of V, the voltage on the collector.    Hence, 

we do not have I explicitly expressed as a function of V for the accelerating case 
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until we have r as a function of V.   However, in the series expansion, the collector 

radius R appears outside the expression and r, which occurs in a, does not appear 
2     — until the term in V .    Therefore, the linear approximation (the first two terms) is 

independent of the behavior of the sheath.    Unfortunately, we cannot estimate how 

large the voltage must be before the linear approximation breaks down, since the 

next higher order term does depend upon the behavior of the sheath. 

It is readily verified from the retarding expression that the values of I« and 

(dI/dV)0 are identical to those obtained from the accelerating expression.    Thus, 

the curve of I versus V is continuous and so is its derivative at V = 0, that is, as 

we go from retarding to accelerating.    There is, however, a discontinuity in the 
2 2 second derivative (d I/dV )0. 

«».  LIMITING FORM OF THE EXPRKSSIONS FOR LARGE DRIFT VELOCITIES 

The behavior of the expressions for large drift velocities can be obtained from 

the power series expansion.    This expansion was derived above for the accelerating 

case, and since v^ = vMT, this may be written 

I = TTR' Nei[(r + *F) 
erf y +J= * exp {-y2) T 'y lerf ^Klr)" 

If we now consider large drift velocities then we need the case for large y.    The 
2 

second term in the expression rapidly goes to zero since it varies as exp {-y ).    The 

error function becomes asymptotically unity for large values of the argument, thus 

the constant term in the expression becorr ^s equal to y.    The term containing 
2 

(eV/kT)    is difficult to deal with since it contains a.    However, we note that it also 
2 

contains exp (-y ) which tends to zero very rapidly for large y.    For smaller values 

of (eV/kT), where the second and higher order terms can certainly be neglected, 

we have 

I = TTR
2
 Ne v0 

.       1    eV 1T7 ^ 

Thus, the linearity of the accelerating characteristic is not destroyed by large 

rocket velocities. In fact, the linear approximation may be better at larger rocket 

velocities,  since the linear term decreases as (erf y)ly, whereas,  the square term 
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2       - 2 decreases as exp (-y ).    The term containing V   also has a in its coefficient, and 

the variation of a with y has not been calculated.   However,  it seems unlikely that 

a will increase with sufficient speed with y to offset the extremely rapid decrease 

due to the exponential factor.    Consequently the square term becomes relatively 

less important in comparison with the linear term. 
2 

The slope (dl/dV) decreases as Ü/v«) and thus,  in the limit, becomes zero. 

The current is now independent of the voltage and, as we would expect from 

elementary considerations, has the value 

I0 = jrR   Ne v0 

Carrying through a similar expansion for the retarding case gives 

I = ,R2Ne^[(r+^)erfy+|l   exp(-r2)Ti|erfrj(^). 

-Kl^p<-2>!(£)2+--l   • 
Note that this expression (valid for all y) tends to the series expansion for 

exp (eV/kT) for y -* 0 as it should.    For large y the constant term and the term in 

(eV/kT) are identical to those for the accelerating case an4 hence, the continuity 

of I and  (dl/dV) at V = 0  (the changeover from retarding to accelerating ) is pre- 

served at high drift velocities.    The exponential form, however,  is destroyed.    The 
2 

ratio of the coefficients of V   and V in the expansion is 

2 
1     e     y exp (-y ) 
^ET erTy 

2 
As v0 becomes large this tends to zero as y exp (-y ) and the second order 

term diminishes very rapidly with increasing drift.    The retarding characteristic 

also becomes linear, and from the continuity noted above the straight line of the 

accelerating characteristic is extended into the retarding region.    For a fixed value 

of VQ,  if the voltage is increased sufficiently, x will eventually dominate over y 

again in the expression and the curve departs from linearity, and the exponential 

form is regained. 
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10. THE MIJLTI-GRID SENSOR 

To extend the analysis for a case where the incoming particles flow from the 

ambient plasma through a set of concentric spherical grids to a central collector, 

it is necessary to take the equation for I (p. 11) 

I = 27rr2 Ne/M     -      j fv    lexp   -a(v - v0)  j - exp j-a (V + VQ)  j  cos € sin edc dv. 

and perform the final integrations according to  he limits on v and c, given by 

energy and momentum equations in transition from grid to grid. 

Consider a particle at grid i of radius r. with velocity v. at an angle t. to the 

inward radius vector arriving at grid i + 1 radius r.     i ^r- + i < r)  wüh velocity 

v. + , at an angle €i + t-    If potentials on the two grids are V. and V. + ., then from 

energy considerations 

zmvf4mvi+i 
+ e(vi+i-

vi> • 
1        2 Defining a velocity u. by the relation 7 mu.  = eV., this equation becomes 

i z        i i 

2 2   J 2       2 
vi ^1+ 1 +ui+ l-

ui     • 

From angular momentum considerations, 

rivisinei = ri+i
vi + i

sinei + i   • 

The particle will just enter the grid i + 1 if it arrives at the grid travelling 

tangentially, that is,  if sin f; + ! i   l, that is,  if 

Vi vi + l^
vi7-77 sm*i   ' 

which, on substituting in the energy relationship, gives 

2 
2       2 2       2   ri .2 vr+ui -ui+i

2vi—ism H 
ri+i 
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Hence, for a given value of v., the particle passes through grid i + 1 if 

.2        ri + 1 sin f.^ 
ri 

1 + 

2 
Ui -Ui 

21 
+ 1 

2 
vi 

We note that the above relation is satisfied for all 6. (o < € < £) if 

r. i+ 1 

r. 
i 

1 + 

-i 

»? -ui 
2 

+ 1 
2 

vi 

»1 

or 

r. 2     / 2 2^1+1 vi^(ui  '"i + lW 
ri " ri + 1 

2     u     ^ 
which can only apply for u.  >   i + 1, that is, accelerating potentials from grid i 

2 I 2        2 2 
to grid i + 1 since vi i 0.    For Vj > (ui - u^ + l^i + 1 

i+1 ai + l 'I T 
ri " ri + i 

Limits on c- are then given by the limits on v^ of vj/min)ancl vi(max)* t,lus 

r. i+ 1 
~2~ 
ri 

I + 

2 2 
ui  " ui + 1 

v. i(min) 

2 
_   . 2    ^ ri + 1 

ri 

1 + 

2 2 
ui -uni 

i(niax) 

For retarding potentials uT < u. + ., a lower limit is imposed on v. by the 

condition that a in f. « 0, hence 
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r. i+ 1 

ri 

1 + 

7 2 
ui -ui+l 

vi 

>0 

or 

2^        2       2 
vi-ui+l-

ui 

The set of limits. 

2 2^ n ui " ui + l" 
0 (retarding) 

h/t-f]-^, 

ri 

2 2 

vi 

u.   -Ui+1<0 (accelerating) 

0<v^(u2-u. + 21)(,. + 1 <urui+
2i'ai + i<v?£' 

0< sin2^^  1 0<sin2c^^i 
ri 

1 + 

2 2 
ui -ui + l 

"TT 
vi 

on v. and c-,  imposed by the condition that the particle reach the i + 1     grid,  can 
1 1 th be extended to the i ♦ k     grid, since the velocity with which the particle emerges 

at this grid is a function only of v.,e.,  u.,   r., u. ,  . , and r.     . . 

Hence for the k     grid 

■> ri f k sm i.^  —-- 
r. 

i 

l \ 
ui " ui ^ k 
 2  

vi 

.th ...2      *\ For i = 0,  let r0 = r, and u() = 0.    Hence,  for the i     grici sin r"^ 

dropping the 0^1 subscript. 

1 - 

2 u. 
i 

T 
V 
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The effects of the various grids in limiting v and c (the initial particle parameters 

at grid 0) can now be compared and the integral I performed according to the way 

each grid (1*1, 2, 3, etc.) limits the values of v and e.   Since the lower limit on 

e. is always zero, the c integration may be performed prior to discussing the 
2     2        2 specific applicable limits on v, writing r /r.  sß-, we have 

/ 1       2 
cose sin c dc = Tj- sin ■^Ml- 

Hence, we may write for I, 

1 

I = 27rr2 4/^ »v       i. 

I - < expl-a(v -v/j-expj- + v..)2! a(v+ v0) dv. 

2 2 The limits imposed by v   on sin e can be illustrated by plotting the limiting 

curve 

2 
. 2        ri 

sin c - -2 
r 

2 

v ßff'V 
.  1 

for each grid of radius r. with potential V. (u.  = 2eV./m). 

Various potentials will be considered for a four-grid case, to illustrate the 

progression of limits on the I integral.    These are so chosen to incli'.de all possible 

I integrals but do not cover all possible potential differences between the various 

grids.    The resulting equations will then be extended to cover the general case for 

N grids. 

Consider the i    and the k     grid, where k > i. 

Sin2. =   ' *r 
2-] 

v 
and 

. 2        1 
Sm £ "^ 

u 2 

I   - 
k 

"7 
V 



The intersection point of these two curves is given by 
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„2    2     .2    2 
2        2     ßk ui  - ^i uk 

v       vik = 2 2  

2        2 
.2          .2                  ui  " uk 

sin   e = sin   €..   = n n n n 
lk V ui - "i uk 

u2=ÜXi 
i       m 

and for the intersection point to lie within the domain of the integral (e, v) then 

vikao 

and 

0< sin2c.k< 1 

Since \> ß^ l then 

2.   "k^^k'^f-" 
uk >  -r- > 5  

Giving the restrictions on u. of 

2        2 
Ui-Uk for u^ 0 

and for real e., v.. and where i < k. 

2 2^-' 
ui^uk^— 

"k-1 

for u^ < 0 
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Before turning to specific cases it is of interest to note that for the outer grid 
radius r, defined to be at zero potential, 

^=4'1 andu0
2 = 0. 

r 

Hence, 

V02
k = 

-t 
$ - 1 

sin t Ok = 1 

From which it can be seen that, for the outer grid to contribute to the I integral, 

the k    grid potential must be such at u,  < 0.   Hereafter, the grid k having u, < 0, 

that is, eV. < 0 or the sign of the grid potential being opposite to that of the particle 
2 charge, will be termed an accelerating grid.   Conversely, one having Uj>  0, will 

be termed a retarding grid. 
2 

Since the above equations define an upper limit to sin e, the limits of integration 

lie below the limiting curves. 

Taking a configuration of four grids with the radii having the ratios 

r2 : r,2 : r 2 : r,3 * 1 : 0. 8: 0. 4: 0. 2, 

hence, 

2 
fl2 ^ * 1.25,     /*2

2 = 2. 5.   and    ^ = 5. 0. 
rl 

We can now investigate the successive limits on the I integral by applying various 

combinations of voltages to grids 1, 2, and 3. 

(a)  U32> u2
2> UjS 0 

2 2 2 The limiting curves for u« = 6, u2 = 4, and u,   = 3 are shown in Figure 5. 
2 2 «3 * i 

Since u. > \, no curves intersect and the limits on v go from point A to infinity 
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along the curve defined by u3 = 6, that is, the potential on grid 3 defines the limit on 

I and becomes the only active grid (that is, the only grid limiting the current flow). 
2 2 2        2 The intersection of u3 = 6 with sin CQ = 0 is given by v    = u^ = 6, and I has the 

value 

I = 2nr   Nef (^/äl'-IIhH-vH- «'11 2ß' 
u3        3 

dv. 

Or, writing 

7 
27rNe/M     i- = P l.Ne(|) exp J-a(v - vn)   J - exp -a(v + v0)2j    = E(v)   , 

and substituting 

r3 

gives 

I = P 
/ 

r2v2 

r3 T 

2^ 
1 - "7 v 

E(v) dv (1) 

tin2« 

8 20 

Figure 5.    Limits of Integration for u.T "> u" > u,  > 0 
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(b) u^ u2
2> u3

2>0 

2 2 2 Figure 6 shows curves ior u„ =1, u0 =2, and u,   = 3.    TTie condition for real 
2       2                     st i 

intersection, u. ^ u. ,  is now fulfilled by grids 1, 2, and 3, but not by grid 0.    Hie 
2 2 2 three intersection points are given by Vj« = 4, v13= 11/3, and Vgo = 3 at B-, B, and 

B9 respectively. 
Ä 2 

The limits on v0 now commence at A with the intersection of sin c = 0 and the 
2 most retarding grid   (in this case grid 1) intersecting at v    =3.    The limiting curve 

2 2 2 is then given by u.   ^ 3 up to the smaller of the two values v12and v.«.   Here, 
v13= ^ = lif* has the smallest v , and for v  > 11/3, the limiting curve becomes 

9 2 u« s 1.    The integral I is now the sum of two parts—from A to B along u,   = 3 and 
2 from B to« along u3 = 1, and grids 1 and 3 are active grids. 

-{/"'■-Ml—/'' 
lul v13 

E(v) dv r (2) 

where. 
2    2 2    2 

'13 

rfur -r3 u3 
 r2       2 

rl     r3 

It is worth noting that in both Eq. 1 and Eq.  2, where the active grids are 

retarding, the expression for I is independent of r, the outer grid radius. 

I.O 

oe 

 1 1 1 1 r 1 1 1 1 1 

.4.2                                                                                                                                                                                                                                            1 
F| — 

-Pi- 

/ / 

2 .» 
06 

»in2 5 

04 
  

02 

0 

./,        ^■2 

i i i 

0 2              4             6              8              10             12 14 16 18           2C 

2        2        2 Figure 6.    Limits of Integration for u3 > u2 > Uj > 0 
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(c)  0>u1
2>u2

2>U32 

2 2 2 Figure 7 has u« = -8, u9 = -6, and u,   = -1. 5.    The condition now becomes 
2 2 2     2 u. > u.  0. /ft   for real intersections.    This condition is only met by i = 0, k =1, 
i        K    i     K 2 9 4 

2, and 3, where VQ, = 6, v.« = 4, and v03 = 2(as shown in the figure at B«, B., and 
Q respectively. 

2 
Ttiel integral is now defined by sin e = 1 up to the smallest of v01, VQ«, and 

VQ3, in this instance, v03.    For v  > v03 is limited by the curve u3  = -8, making 
grids 0 and 3 the only active grids.    The case where the integral is limited by 

2 2 sin e = 1 is rather a special case, since the limiting case is given by u0 = 0 and is 
independent of v.    Returning to the e integral, when f. = ir/2 

i cos c sin c dc = 7 

Hence, in general. 

Y0k     o     2 
^n2       *     *   f   *   r2  £    ^v)dv sin^e^i 

and, in this case. 

I = P \f",'£„„*. f ,i4[,S 3 
"7 

v03 

E(v) dv }   , (3) 

where 

2      -r3 u3 
V03=    2.     2 r   + r0 

2 2 
3 
-2 
3 

Since the 'most retarding grid' in this case is in fact an accelerating grid ("least 

accelerating1) the current now becomes dependent on the outer grid radius r. 
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08 

06- 

04 

02 

*.Z 

Pt- 
ujz.-e 

-*»z- 

8 » 12 
_i 1— 

« 20 

2        2        2 Figure 7.    Limits of Integration for 0 > Uj > u2 > u3 

(d)   0> u^ u2
2> Ug2 

_ 2 2 2 2 2 Where r igure 8 now shows uq = -8, u0 = -6, and u,   = -0.25, sin c = 1 (uA = 0) 

is the limiting curve up to B, the smallest intercept ofv^r, = 2(8,), v™ = ^^o^ 
and Vni = 1 (B), making grid 0 an active grid.    The limit is then given by uT = -0. 25 

2 2 up to C, the smallest intercepi; of v.g = 5. 5 (Cj) and v13 = 7/3 (C).    The final 

portion is from C to « a'ong u« = -8 making grids 1 and 3 the active grids, and 

-il 01 
r2   v2 r    T E(v) dv + 

13 

/' 
'13 

r2   v 

r3   T 1 -"? v 

/ 
'01 

E(v) dv 

~2C 1   T^ 
ul 

v 
E(v) dv + 

(4) 

where 

'01 

2    2 
-rl ul 
1 ? r   -rj 

and 
'13 

2    2        2    2 
rl ul   - r3 u3 
 2 2  

rl  -r3 

We will finally take two examples where all three grids become active and the 

outer grid is active or not according to whether all active grids are accelerating or 

not. 



33 

w?C 

18 20 

2        2        2 
Figure 8.    Limits of Integration for 0 > u,   > Ug > u3 

(e)   u1
2> u2

2>0 >U32 

Illustrated in Figure 9 are u2 = -8, u* = 2, and uf = 3.    For the first lower 

limit on v, we examine retarding grids and determine the greatest u^ ttat is, 

u2 = 3, giving point A at V2 = u2 = 3.    From A the limiting curve is ^  =3 up to 

ti!e smallest of v^ = 4(B) and v^ = 20/3 (B^.    The integral from B is limited by 

u2 = 2 up to the intercept v2 = 12 (C), and from C to «along Ug = -8 giving 

I = P 1/ 
/ 

12      2 
rl 

2 
V 
T 

^      2 
r3 

2 
V 

v23 

1 - 

2, 
V 
T 
v 

E(v) dv 

^12 

23        2   v2 
r2 -r 

2 

1     U3 1 "-2 
V 

1 - _J I E(v) dv + 
v 

(5) 

E(v) dv 

where 

2  . 
2    2        2    2 

r1  Uj   - r2 u2 

L2 2        2 
rl   -r2 

and 

2    2        2    2 
2   . r2 u2   " r3 U3 

'23 
r2-r3 
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\M?C 

2'3 "Tl 

B 10 12 M 
«2 

18 20 

2       2 2 
Figure 9.    Limits of Integration for Uj > Ug > 0 > u3 

(f)   0> u^ u2
2 > U32 

Finally, Figure 10 has u2 = -32, u2 = -6, and \x\ = -0. 25.   Because all grids 

are accelerating, we compare VQ
2
 = 1 (B), v0| = 4 (Bj), and v03 = 8 (B2), and find 

that grid 1 has the smallest intercept to give first integral term along sin e = 1 from 

A to B.    The second term is then limited by u2 = -0. 25 from B to the smallest of 

v^ = 5. 5 (C) and Vjg = 31/3 (Cj), giving v12 as the upper limit of the second term 

and the lower limit of the third.    The next term is then limited by u9 = -6 up to 
9 2 

v23 - 20 (D) and the last term from D to • by u3  = -32.   Whence, 

■■'!/ 
^0 

01      2    v2 

r
z   v    E(v) dv + 

v12 

.2   v 
r2   T 

2  r    u.; 

r-m-i 
'01 

/oo 

r 
v23 

- -^ I E(v) dv 
2 v' 
3 T 

E(v) dv    + 

(6) 

- -^ I  E(v) dv} 

where 

2   2       2.2 
2     ri ui ' rj Uj 

Vij ' "XT2" r.  -v. 
i = 0,   1,  2;       j = i+ 1 
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2        2        2 Figure 10.   Limits of Integration for 0 > u,   > u2 > u3 

From these examples it can be seen that three types of integrals are involved in the 

summation for I, namely, 

lr 
v 

/ 

01     2 v2 

S \ E(v) dv. 

m / 
vij 

-vjk 2   v2 

rj  T 

u2 

-I 
V 

1-4-1   E(v) dv 

and 

v 2   v' 1 - 
V 

E(v) dv. 

The summation is to be performed over the active grids taken in sequence from the 

outermost to the innermost grids.    We will first evaluate these three integral types 

and then develop the summation for I for a general case having n grids. 

For brevity in writing out the resulting equations,  let 

2 
exp (-ax ) = E(x) 
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and 

erf (,/5x) =F(x) 

where 

X       2 
.1    /"et erf (x) = ^    /   e       dt 

•6 

by definition. 

The above integrals can now be expressed in terms of 

B B 

I0 =     A   E(v - v0) dv -   y     E(v + v0) dv 

A A 

and 

/   v2 E(v - v0) dv -      /   v2 E(v + v0) dv 
■/ 

which are both standard forms. 

j   E(v + v0) dv =  \ (f)      [F(B + v0) - F(A + v0) 

/ 
v2 E(v + v0) dv = ^j. (B - v0) E(B + v0) - 25 <A - v0) E(A + v0) - 

-Mi) W^ih + v0) - F(A + v0) 

Using these general expressions we may, upon inserting the appropriate limits 

A and B, evaluate the three desired integrals 1^, Im, and Iu, noting that for 1^, 

when A — 0 



E(A + VQ) ■*■ E(v0) 

and 

F( A + v0) -^ F(v0) 

For I   when B-^®, 

E(B +vJ-*- 0    , 

and 

F(B + v0) -^ 1 
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•Oi    0     2 /U1    9     ^ r2  V    EMdv^fg —2  -     - B=v0i 

A = 0 

2  r v„ 
T    _ r 0 E(v0)-E(v0i+v0)+E(v0)+E(v0i-v0) 

v01 
■2^ 

2 ,   1 

E(v0i - v0) - K(voi+ v0) ]   -^Y7^  (^)7 |F(v0i+ v0) 

-F(v0).F(v0)|| "  F(v0i " v0) 

= T|(avo ^)(^)7 l'(vo> • 7 '^(^ -'^r1*!^Ki+V - ^oi - V- 

V0i+V0   r/ ,4 
V()i "' o    r/      .      J 

-^—   L<v0i - V0) 4        2a h(v0i 4 v0)       ' 
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2    2 v,, 

Im =     /       rj   ^-   [l - -^    E(v) dv = -^L     /       v2 E(v) dv - -^-J-        /      E(v) 

Vij V Vij Vij 

dv. 

2 r. 

'm'i 
2    2 B=vik      r, u; 

I-I        Jk   - J    J 

JA=vij 

. .ri j K^Wu +v) F.   v,i+(!r»iiV«f •m    Tj   —Zä—(a)    [F(jk+vO>    F(ik    VJ + —S U) 

«vy + v0) - FCVy - v0) ] - lü^Il. E(vjk - v0) + ^jl2_   E(vij + v0) 

^- ^ - v0) - ^^  ^ + v0, j -4i | - 1(f) 

F(vjk + v0 - F(vjk - v0)] 4 (|)    [FCvy + v0) - ^v.j - v0)] j 

^[-(-m—i)(i) K jk+V-^jk-V 

- ^w^- E<vjk - v+^ E(Vjk+Vo) >o;i-au?> (g) 

Ffvy + V0) - FWy - v0)]   + lii^I"-   E(V.. - v0) - lüjjll.   EW. + v0)j 

■u' An' v2 

jn 

ll_ 1 r 
1 - -^    E(v) dv = -£■ 

v 

2 c. 2 

'2   , -T-Un   Po JA=v. 
jn 

B=oo 

A=v. 
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.   .rnlV0 
'u    T|2ä E(vjn + v0) + E(vjn - V0) | + ^ E(vjn-v0)-E<vjn+v0) 

I 

K+vo)+^n-v0,].
r|{ti4i!i)(^ 

|F(vjn + v0) - F<vjn - v0)] + 
VJ^1. E(vjn - v0) - VJ^°- E(v.n - v,,) j . 

Writing out the resulting expression for Example 5, we note that the first 
integral is of the type Im with v^ = u^ v-  = v12; the second has v.. = v12, v«   = v23; 

and the last is I   with v.    = Vgo.    The sequence of intercepts is u«, v.,,, Vg,, « , 
giving for I: 

V12+V0    F. , ^ 
2a        E<v

12 " V + 

/     2      1 2\      i 

* V-^- E<vi2 + v0' +  laV0 +l " "^(f)2  [^"j ^ v0) - F(a1 - v0)) + 

I     r22   (  (avn+7-au22)/„vT Ul + V0  „ 1 UT,/ \ 1. Wn/ +      2a      ^I-VQ»-      2a       E( 

I      v23+ V0                              v''3 " v0 
F(v23 + vö) ■ F(v23 " V I JiT— E(v23 ■ v0> +  2i  E(v23 + v0) + 

•fc^N(f)i F(v12 + v0)-F(v12-Vo) + —23 Mv12 "V- 
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V12-V0 
 2a  E(v 12 + V|^2{^4r^(^hv23 + V0,-F< v23 "v0)| + 

v23+vO   „ v23 " v0 
+ ^V^ E(V23 - v0) - ^T-^ E<v23 + M 

Collecting terms together. 

I = ^jt^W^fl,,.,.,.,..,.....,].^ ■-— E(U1 " V0) 

Ul - vo        ) E(u1 + v0)} + -sr K-oK "t+i-^V* 

F(v12 - v0 ) + ^ E<v12-
V0)- 

-sr 

v12 " v0 

(f) K 12 + v0) " 

21— E'v12 + v0)  + 

"•32-r22){('Yo+aV'V23VrflF(:< !(-)> 

+ "^i-2- E(v23 " V0) " ^2a U E(v23 + v0) 
V23 " V0 

For Case 6, the sequence of intercepts is 0, v01, v.g. Voo,   CD, giving,  in the same 

way as 5 

I «i 
2(/av02+7\/^7 

■2i—A*)    2F(v0) .^ 2E(v0)| + (r- - r*) 
l/avo+7-avoi 

"ST 

(^y i^o^v-^oi-v . V01 + vo   ,,, 
+—Zä L(v0l - v0) ET 

voi -vo 

E<V01 + V0>    +(r22 "^    I" 
1   + ir? - rh    I... I ' t       l 3        2'    i" 'l 
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Thus for a sequence of active grids, r., i= 0,  1, 2,  3,  . .. n. 

I = t[(^.){&4^(i)>vu* vo>-F(vi-i,i-vo)l + 

V-    ,    • + V 
+ IilMJ^E(Vi.M.Vo). 

vi-i.i-vo vi +    J 

Putting 

2 2       m     2 y =avo =^rvo • 

2 2       2     2 
2      .av      2     .^i-l^i-l-^i^i 

x(i-l), i     av(i-l), i ~5—12  
ri-l " ri 

2     eVi where aui = ^m- ;     we then get 

F(v(i-1), i * V = {erf^v(i-l).i ^v^-ertixj.jj ±>} 

and 

E(v{i-iU±vo)=exP r^i-D.i^V2!  sexP|-<x(MU±y)2| 

Taking 1       /2kTV 
i^lT outside the summation, we have 

P    = TrNe  I . TrNe   JWT 1 
^p ~ ^ä    y ' ~2~   ^f ^m   v 
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1 

where P = 23rNe f 
\*l v0 

Hence 

^^E'-f-^K^^-vfu) 

ferfL +Yi-erflx -y ! 1 ^ VlUll [erT(i-l), i + Y)    erl |x(i-l), i   y 11 2 

exp Mx - v)2'    - X<i-1>>i'y    exD l -(x + v)2 ' I 
|U(i-l).i     y}  j 2 eXpl   (X(i-l).i     ^    {      " 

2 
Where,  if the first active grid is retarding , that is, eV^— 0, u, — 0,  summation 

starts at i = 1 wi„h r.  . = r0 = 0,    For the first active grid accelerating, eV1< 0, 

u, < 0, summation starts at i = 0 with r.  , = r_. = 0.     Note that with v0 = 0 

(by definition) and r0 = r for the retarding first grid: 

2      2 2      2 
rn au^  - r,    au. ,222           .                  2     *0""0     *1   "Ml 5 

(rl  " V B rl       and x01 = 2 2   = aul 
ro -ri 

and for an accelerating first grid: 

2        2 2      2 
,22,22 2      r-l au-l   " r0 au0      n 
(r0 -r-l) = ro =r      '    x.10= 2 2    =0 

r-i - r0 

and 



2 
X01' 

2^2 roauo 
2       2 

" rl aul 
2 2 

rl aul 
2 

r0  ' 
2 

rl 
2 2 r   -rj 

The method used to determine the active grid sequence i = 0 or 1 through n from 
the total grid sequence K s 0 through N may be summarized as follows: 

(a) Compare the sequence of intercepts 

2.     rkauk 
x0k = "T 

r   -rk 
o tu. 

k = 1 through N, and find the grid K = kj having the least XQ^, this kj     grid is the 
first active grid.    If this value XQ.  is negative or zero, this k    grid is retarding 
and i = 1.    If two or more grids give the same intercept, the one with the higher k 
is chosen. 

(b)   Compare the sequence of intercepts 

2   2   2  2 
rki 

auk1 " rk auk 
Xkik =      T"2   7* ' 1 rk1 " rk 

2 
k = k, ■♦• 1 through N, again finding the grid k = k2 having the least XJ^,  this grid 

is now the second active grid (i = 2). 

(c)  Repeat step (b) until k   = N when the active grid sequence is complete 

(i = n).   Note that the N"1 (innermost) grid is always an active grid because its 

limiting curve, whether accelerating or retarding, tends asymptotically to 
2 2        2      2 2 2 sin  c   = 1/&, = rN /r     as v -^«, thus having the least value of sin C   of all the 

grids in the system and being the final integral in the sum for I. 

From the foregoing discussion of a system of concentric spherical grids placed 

in a drifting Maxwellian plasma, we conclude that the current flow through the 

innermost grid: 
(a) is 3 function of the plasma parameters:   charged particle number 

density N,  particle temperature T, particle mass m, particle charge c, and the 

drift speed v0; 
(b) is not necessarily dependent upon all grid radii and the potentials thereon; 
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(c) if one or more grids are retarding,  is independent of any grids of radii 
greater than the most retarding grid, including the outermost.   If, however, no grids 
are retarding, the current flow is dependent on the outer grid radius but independent 
of any grids of radii greater than that of the "least accelerating" grid. 

II. APPLHATIONS 

The relations derived in the preceeding sections can be used to obtain the plasma 
parameters from the observed current-voltage curve for the probe. 

Since the various expressions all involve particles of only one sign - it is of 
interest, at this point, to investigate the possibility of using a probe which responds 
to particles of one sign only,  rejecting the other.    To this end,  it seems that a 
reasonable method would be to put a large enough bias on the collecting surface to 

repel all particles of one sign, but to surround this element with a perforated grid 
so that the effects of this bias will not penetrate the surrounding plasma.    This, then, 
gives us a two-element sensor.   The final conclusions in Section 10 stated that the 

inward-current flow is a summation over all active grids and always includes a 
term containing the potential and radius of the innermost grid,  in the present case, 
the collector.    This term is for an attractive potential V? 

T2 = <rl2 - r22,|(7+ ^ - x12) 7[erflx12 + y\ - erflx12 " V|j   + 

+ !i2lJlexpj-(x12 - y)2 j-^i^-H exp}-(x12+ r)2|j 

2 2 2 
It can be shown that if x^ » ''   and xi2 ^   1 the above term tends to zero, 

and the current flow will be independent of the inner grid potential for the attracted 

sign particle.    For the retarded particle, however, the total current flow has only 

one term (under the assumption that |v2| » IV,^, namely, 

^Ne     JSkT 1    ,2/1.2 .v 2\N5 JSkT  1       2(/l 
l"im  y   r2j\2 i ^ ^ - ^„    . :\^+ y - xo2) i [erf |xo2+ y\ -erf|xo2 - yI 

+ !^1! expj-(x02 -y)2   { -^V-7 expj-(x02+ r)2{ 

2 2 2 Again,   if x02 » y    and x )2  » 1,  then the total current will tend to zero and there 

will be no contribution from the retarded sign particle. 

Putting 
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x 

2       2        2      2 
„        r. au.   - r2au2 2     eVn m 2 

rl  -r2 

the conditions for attracted particle 'saturation' become: 
2 2 (a)   for Y > 1, x12 » y , 

(2 v        r
2 

r0 /       r0 

and 

(b) for  Y< 1, x^ » I, 

2 2 

e(-V2)»kT(-^.l\-^eV1      . 

On the other hand,  for the retarded particle, putting 

2 r2 au2 2      eV2 
X02 5 au2   ~ ITT 

■r2 

2 
(a) for 7> 1, xn9 » y, '02 

e(V0) » imv. 

and 

2 
(b) for 7< 1,  x02 »  1. 

e (V2) » kT. 

Since the equations for the attracted particles involve the geometry of the 

sensor,  and those for the retarded particles do not, and since one potential must 

satisfy both sets of equations; the sensor design, as well as the expected 

temperatures and velocities,  will determine which set of equations imposes the 

most stringent limit on V«. 
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On the assumption that the bias potential on the collecting electrode satisfies 

the set of conditions, we may proceed with the analysis on the basis of having a 
spherical probe of radius R^r.) at a potentialV(=Vj) measuring particles of one 
sign only. 

Not all of the particles which are incident upon the sphere with radius equal to that 

of the outer (perforated) grid will contribute to the current since some will strike 

the grid wires.    The observed current is reduced by the transmission factor of the 

outer grid (, .    The true current I will, therefore,  be the measured current divided 

by  ^ .    A further complication arises from the fact that all potentials in the preceding 

sections are referred to the plasma potential which is unknown.    In practice, the 

sweep potential applied to the probe must be referred to some other point in the 

system such as one of the electrodes in a discharge tube or the skin of a rocket in 

a rocket experiment.    The plasma potential is one of the unknowns we would like 

to determine.    In the following, V is understood to be measured from the reference 

potential, and it is assumed that the potential difference between the reference 

electrode and the plasma remains constant regardless of the potential applied to Uie 

probe. 

First, we consider the case for no-drift.    In the retarding region, for the 

relation between I and V, we can write 

To simplify the discussion we will consider the case of electrons, and defining 

a = |e| /kT, we have 

I=IBexp(aV)      . 

In the "near accelerating" region, where the current may be represented by 

the first two terms of the Taylor expansion, we can write 

I = a(V - VA)       . 

We have now introduced four constants: !„, a, a, and V».    They are not, 

however, all independent,  since we have shown that the gradient (dl/dV) must be 

the same at the plasma potential for both retarding and accelerating expressions. 

Differentiating the above expressions gives 

-r~ = al retarding 
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-Si = a accelerating 

At the plasma potential V0 the current flow will be IQ.    Equating these two 

gradients at the plasma potential gives 

aIo = a' 

or 

I   =5: 

This gives us a means of obtaining the current at plasma potential I0.   We plot 

log I versus V, which will be a straight line in the retarding region.    The slope of 

this line is a.   A plot of I versus V will give a straight line in the near accelerating 

region.    If the conditions for the particular experiment are appropriate, there will 

be a reasonably large range of voltage over which the two-term Taylor expression 

will be a good approximation, and this straight line will be readily located.    Its 

slope is a and the current at plasma potential is obtained as the ratio of the two 

slopes.   Note that the determination of this current did not involve an accurate 

determination of the plasma potential.    The slope a is simply related to the 

temperature, hence, electron temperature is obtained from the equation 

T= e   1 

The electron density is given by 

I0 = 2. 4B821 X lO'16 (47rR2) NN/T 

The intercept of the straight line V* can also be determined, and from the 

equation 

I0 = a(V0-VA)     . 

we have 

Vo4+VA      ' 

which gives the plasma potential. 
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We have now determined three plasma parameters from the current-voltage 

characteristic of the probe, namely, the electron temperature, the electron 

density, and the plasma potential.    TTiis is the maximum number that can be obtained. 

Hie curve fitting process introduces four parameters as already noted.   However, 

there is one relationship between them, that is, the condition to match the slopes of 

the two curves at plasma potential.   Thus, there ar«» only three independent parameters. 

This particular point has more significance for positive ions when the mass m 

is also an unknown.    In this case only three of the four unknowns can be obtained 

from the probe characteristic; the temperature is obtained from a, the plasma 

potential from a and V*, and then using a in conjunction with a to give I0, we get 

N/Vm.   Hence, either m must be known so that N can be calculated, or vice versa. 

When the drift velocity cannot be neglected, the equations are much more 

involved.    The straight line part of the accelerating characteristic now extends into 

the retarding region as noted earlier but even with large drift velocities,  if x 

(that is, voltage) is made large enough, a curvature in the characteristic will 

eventually occur.    This is likely to be of limited practical importance, since 

making the voltage large for the retarding case implies very small currents which 

will probably be less than the noise level.    Even if this can be observed, there is 

still no simple analytic procedure which can be applied to it comparable to that 

which we can use in the case for no-drift.    However, there is still the straight line 

part of the I-V characteristic (which now extends over parts of both the retarding 

and accelerating regions) from which a slope and an intercept may be obtained. 

The slope obtained from this line is given by 

2jrR2 Ne2       /.        J 
mv0 -f(vo   fwt). 

This expression contains the density N, the mass m, and the temperature T, 

all of which are unknowns. Note that the plasma potential does not enter into this 

expression.    To obtain an expression for the intercept; suppose we fit the expression 

I = a(V - VA) 

to the data so that V. is the intercept on the voltage axis.    For the plasma 

potential we have 

I0 = a(V0-VA)     , 

and since a is the slope, 
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•A> 'o ■ (av)0 <vo - VA 

Using the expressions already developed for I0 and (dl/dV)« we obtain 

0 " VA "   ^-Ze"!^ + 1)   *W       erl(r)J 

where the upper sign applies to positive particles and the lower to negative particles. 

This expression involves the three unknowns:   plasma potential V«, the mass m, 

and the temperature T, which occur in y.   Note that the density N does not enter 

into this expression. 

We now have two relations between four unknowns.    These enter into the 

expressions in such a way, that if independent estimates can be made of any two 

unknowns, the other two can be determined.   However, some cases will be much 

simpler to compute than others.    For example, solving for V0 and N, when m and 

T are known, is straightforward.   On the other hand, solving for m requires a 

numerical iteration process. 

As an example of how the procedure might apply in practice, consider the case 

of a rocket carrying two probes —one measuring electrons, and the other, positive 

ions.    In practice, due to the high thermal velocity of the electrons, the rocket 

velocity can be neglected for the electron probe, however,  for the ion probe, y is 

likely to have a value of about unity.    For the electron probe there will be only 

three unknowns since the electron mass is known.    From the retarding part of the 

characteristic we obtain electron temperature, and using the accelerating 

characteristic as well, gives density and plasma potential.   We might now assume 

electrical neutrality so that the ion density is equal to the electron density.    Since 

the plasma potential has already been determined, we have V« and N for the positive 

probe and can use the probe results to obtain mass and temperature.   Alternatively, 

we might assume that the ion temperature is equal to the neutral temperature which 

is known from independent experiments and determine N and m from the probe 

data, or we might use independent results on composition to obtain m and determine 

N and T. 
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I 

Appendix 

We list below the equations we have derived, together with some of their special 

forms.    The following notations are used throughout: 

I s current flowing to the spherical collector, 

V ■ potential difference between collector and plasma, 

R ■ radius of collector, 

r ■ radius of sheath, 

N ■ charged particle density in the plasma, 

e = charge on the particle, 

m ■ mass of charged particle, 

k = Boltzmann A constant, 
T ■ Temperature of charged particle being collected, 

v0 
9 drift velocity of plasma relative to collector, 

a =m/2kT, 

a=R2/(r2 -R2), 
!|eV/kT for retarding voltages, 

(R2/(r2 - R2)(|eV|/kT) for accelerating voltages, 

erfy = £    / exp(-t2)dt. 
> 
/■ 
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(a)   Retarding Expression:- 

I = irirNe ^i[5(7+^2-x2)lerf(x+r)"erf(x"Y)!+ 

+ j(x + y) exp j-(x - y)2\ -^{x - y) exp Ux + y)2j 

(b)   Accelerating Expression:- 

erf (x + y) - erf (x - y)    + ^ (x + y) exp    -(x - y)2 - 

-^(x-y)expf-(x+y)2j|       . 

(c)   Taylor Expansion of Accelerating Expression:- 

I = = ^R2 Ne v0 [(l + -J^erf (y) +£ ^ exp (-y2) ^ | erf (y)| ^) 

^i^|-P(-r2)|g)2+... 

where the upper sign is for positive particles, and the lower for negative. 

(d) Current at Plasma Potential (V = 0):- 

I0 = .R2 Ne v0 [(l + -1^) erf y+J   i exp (-y2) 

(e)   De-ivativc of tin Current at Plasma Potential:- 

2 «,.2 /dl \     .      grgf Ne^ 
W/„    '     mvo y 
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where the upper sign is for positive particles, and the lower for negative. 
When the drift velocity is zero, the above expressions reduce as follows: 

<f)   Retarding Express ion:- 

I = 47rR2 Ne   J~C exp (■s) 
(g) Accelerating Expression:- 

1 ■4-2 Ne VH" 1 - 
2 r   - -R2 .vJ      R2    evl 7-exp(-7TFH 

<h) Taylor Expansion of Accelerating Expression:- 

I = 47rRÄ Ne kT 
Tim il T 

eV      1       R2      /eV\; 

FT  " ? r2 ; R2 \Vtj 

I 
(i)   Current at Plasma Potential:- 

In = 47rR2 Ne    W^ 
0 i ^Trm 

Note that the average particle velocity in a Maxwell distribution is given by 

-_   JikT 

so that the above current can be expressed as 

I0 = wR   Ne v . 

This checks with the result obtained from elementary kinetic theory— the number 

of particles crossing unit area in unit time is given by Nv/4. 
The expression for I0 contains the universal constants e and k and the numerical 

values may bn inserted.    Taking e = 1. 60210 X 10'iy coulomb,  k = 1. 38054 X 10"23 

-31 ' joule/0K and considering electrons for which m = 9, 1091 X 10       kg, we obtain 
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I0 = 2.48821 X 10"16<47rR2)NN/T\ 

where I0 is the current in amperes,  R is the distance in meters, and N equals the 

particles per cubic meter. 

Considering positive ions of atomic mass M, and taking the atomic mass unit to 

be 1. 65979 X 10"27kg, we have 

I0 = 5. 82906 X 10"18 (47rR2) N   ^      . 

(j)      Derivative of Current at Plasnu  Potential:- 

o 

Substituting numerical values as above, we have for electrons 

{&]    = 2.88753 X 10"12 (47rR2)^. 

and for positive ions. 

{jn\    = 6.76453 X :r M. r   _, -14 />)_„2) N 

y/TM 
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