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PREFACE

This Memorandum is part of RAND's continuing program to develop

basic analytical techniques for application to Air For- problems.

The validity of many economic relations derived by applying the

ordinary linear least-squares regression method to time series is of-

ten questionable, because the implicit assumption of serially indepen-

dent disturbances cannot be justified The principal alternative mod-

el considered assumes that the disturbances are generated by a first-

order autoregressive process. Several estimators under the latter as-

sumption have been suggested, but little is known about their small

sample properties. This study describes the relative performance of

the estimators based on results of a Monte Carlo experiment.

The Memorandum is intended for operational and economic analysts

who deal with time series data. It is assumed that the reader is fa-

miliar with basic econometric literature on time series analysis Two

potential areas of Air Force application are manpower prediction and

demand prediction for spares.

Clifford Hildreth is a consultant to the Logistics Department of

RAND.
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STNXARY

Economists interested In analyzing time series have long recog-

nized autocorrelated dicturbances as one of the principal hazards that

may cause serious inefficiencies _n their analyses. In the past de-

cade, several econometricians have studied a statistical oodel !.n which

the disturbances are assumed to be generated by a simple, first-order

autoregressive process, and have proposed several estimators of the

unknown parameters. Because little is known of the probability laws

governing the estimatcrs and therefore of their relative desirability

in various circumstances, and because determininp the laws analytically

poses severe problems, a study of the behavior of alternative estima-

tors applied to artificiallv generated data with known parameter values

was undercaken, and its results are rerorted herein.

To generate artificial data for this experiment, eight structures

were specified. Each structure differs from the others in one or more

of the folliwing aspects: the pattern of observed values of the inde-

pendent variables (these are arranged in a matrix denoted by Z); the

value of the autocorrelation coefficient (c); and the sample size.

Samples of size 30 were drawn for fou. structures and samples of size

100 were drawn for four others. For each structure, 300 samples of

the selected size were drawn and estimates of unknown parameters were

calculated for eich sample by five different methods. They were Haxi-

mum likelihood (Ml.) estimators, Theil-Nagar (TN) estimators, approxi-

mate Bayes (AR) estimators, Durbin (D) estimators and Least squares

(LS) estimators.

--f
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Analyses of the performance of the above five estimators leads

to several general observations:

1. When p is nonnegative, ML, TN and D estimators all have a
persistent tendency to underestimate p on the average.

2. Judging by the absolute deviations of sample means from their
respective true values, the TN estimator of p looks slightly
better for samples of size 30 and relatively small p, i.e.,
fjo ' 0.3; however, 1l4 appears to perform better for samples
of size 100 and relatively large absolute values of 0. The
Durbin procedure appears a little less biased than TN for
samples with 100 observations, but, in general, it apears
least favorable among the three estimators.

3. The TN estimator of P has a smaller variance than the ML es-
timator for samples with 30 observations and relatively small
p. However, the variance of the ML estimator is smaller for
sampl-s ..f 100 obrarvitinr' and relativelv larRe I.

.. On the average, the D estimator of p has a larger variance
than the other two estimators.

5. The sample means of all the estimators of y's are similar and
are close to their true values, even for samples with as few
as 30 observations.

6. Judging by low mean square error, TN estimates of y's are a
little better than ML for samples with 30 observations, but
for samples with 100 observations, both estimators perform
about the same, The D esdimator is slightly worse than both
ML and TN estimators regardless of sample size.

7. For samples with only 30 observations and p as large as 0.3,
the other three estimators do not have advantages over the
LS estimator. LS also estimates coefficients well when the
columns of Z are "smooth."

Besides examining the performance of various estimators, we also

checked the behavior of several commonlv tised tests of independence

of regression disturbances. The tests considered were the Von Neumann

ratio test, the Durbin-Watson test, the Theil-Nagar test, the likeli-

hood ratio tdst, and the test based on the asympt,-,c distribution of

the ML estimate of o (we shall call this the 6 test). Some general

observations are an follows:

8. There were many inconclusive applications of the DW test, as
previously noted by both theorists and practical workers.
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9. For the sample sizes used in this study, the TN tc3t amounts
to rejecting the null hypothesis in those cases where the DW
test either rejects or is inconclusive. Inspection of the TN
and 13W tables reveal- that this will be virtually true except
for quite small samples.

10. TN rejected a true null hypothesis much too frequently for
samples of size 30.

11. The tendency noted above for ML to underestimate p was

reflected in low frequencies of rejection of true null hypo-
theses by one-tailed 0 tests and high frequencies for two-
tailed tests. Thus, the j test cannot be recommended when
based on the asymptotic distribution. In considering this
bias in the actual significance level, however, the rejec-
tion rates for false hypotheses were relatively large. This
suggests that a powerful test can be based on 6 if a good ap-
proximation to its finite sample distribution can be found.

Hildreth [13] has shown that the ML estimators are asymptotically

normal and that the vector, ?, of estimates of coefficients is asymp-

totically independent of , 0, the estimators of the autocorrelation

coefficient and the variance. It was conjectured that, for many pur-

poses, the asymptotic distribution of ' would prove a tolerable approx-

imation in the sample sizes often encountered in econometric studies,

but that for 6 and 0 the asymptotic distributions would be less saris-

2
factory. This tends to be confirmed by the x goodness-of-fit statis-

tics computed from the generated data.

In conclusion, the reader must be aware that the above obsetva-

tiona arc descriptive statements of how certain statistics beha'ed in

this particular experiment. Since 300 samples were drawn for each

structure, we hope that the observed characteristics are geuwrally rep-

resentative of these structures. The characteristics of the ",*. ious

structures were chosen to represent a varietv of circumstances that

might reasonably be encountered in practical work. To know just how

representative the structures are, however, would require a careful
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survey of applications, and this has not 1 en undertaken. It is de-

sirable that hints furnished by a study such as this be supplanted by

analytical results whenever poss e. For imnortant pronerties that

remain intractible after further theoretical analysis, additional Monte

Carlo experiments are in order.
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I. INTRODUCTION

Economists have long been concerned that nonindependent distur-

bances may be a frequent cause of inefficiency in estimates of regres-

sion coefficients for time series. In the past decade, several econ-

ometricians have studied an alternative model in which the disturbances

are assumed to be generated by a simple, first-order autoregressive

proces., and have proposed several estimators of the unknown varameters.

Because little is known of the probability laws cf the estimators

and therefore of their relative desirability in various circumstances,

and because determining the laws analytically poses severe problems,

we undertook a study of the behavior of alternative estimators applied

to artificially generated data with known parameter values. Such studies,

of course, furnish hints rather than conclusions about the behavior of

various statistics. The investigator determines certain structures in

advance and generates samples by drawing random components according

to a specified probability law, with the aid of tables of random num-

bers or other random devices. The results may be misleading because

of special features of the structures chosen or because statistical

accidents occur in generating samples [18, especially pp. 3-5].

The hints from a particular study can be strengthened by drawing

many samples for each structure (thus insuring a low probability of

misleading statistical accidents), and by examining a wide array of

representative structures, Of course, each tactic increases the re-

sources needed, and the study's final design is always a compromise

See [3, 6, 7, 17, 211
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between the cost of resources and the desire to make the results am

reliable as possible.

In this study, eight structures were chosen, with samples of size

30 drawn for four structures and of size 100 for four others. For

oach structure, 300 samples of the selected size were drawn, estimates

of unknown parameters were calculated for each sample by alternative

methods, and characteristics of the resulting frequency distributions

of estimates were calculated and tabulated.

Section II completes a sketch of the study's design nd gives rea-

sons for some of the choices. Section III presents and discusses the

study's results. Appendices A through D describe in some detail the

ethods used to generate artificial data and to obtain the maximum

likelihood estimator.
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II. DESIGN OF THE STUDY

The model employed specifies that an observed vector y of order

equal to the sample size (30 or 100) comes from a multivariate normal

population with mean vector Zy and variance matrix vA,

where Z : a known matrix of order T x K representing T observed values
of each of the K independent variables;

a T T matrix with typical element a - [1/(l-p ) I  ,

p : a constant, IPI < 1, called the autocorrelation coefficient;

: a positive constant,

The interpretation is that an element yt of y is determined as a

linear combination of corresponding elements of Z plus a disturbance

that is liLiearly relate' to the disturbance of the preceding observa-

tion; i.e.,

K

(1) yt Z Y + ut where

k-1

(2) ut  - OutI + vt  , t - 2, 3, ... , T,

1 -and

the vt are normal, identical, and independent with mean 0 and variance

V.

We chose a sample size of 30 for four structures because many

etudieq of economic time series involve 20 to 40 observations. We

chose 100 as the other sample size because autocorrelation is very

likely to be present in quarterly or monthly data, and in these cases
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the sampie size may be much larger--100 or more is not uncommon. And

it seemed desirable to have two sample sizes far enough apart so that

we might note any tendencies for asymptotic properties to be more

nearly rea'tzed in the larger samples.

Past theoretical studies [2, 4, 6] show that properties of some

suggested procedures depend critically on the value of p and on the

pattern of Z. It therefore seemed useful to arrange a set of struc-

tures that included various combinations of values of p and patterns

of Z.

In the present model, the principal aspect of Z (other than -ample

variances of its rows and sample correlations among rows, which are

important in any regression situation) that proved important is the

relation of its columns to the characteristic vectors of an approxi-

mation to the inverse of the variance matrix A [4, pp. 13-18].

If the colunms of Z are linear combinations of K characteristic

vectors of this modified inverse, then least-squares estimates of y

are best unbiased and tests of p - 0 (like those of Durbin and Watson)

based essentially on a V.. Neumann ratio formed from least-squares

residuals are unifoi..ly most powerful against alternatives in the in-

terval (0, 1). Furthermore, the characteristic vectors are harmonic

series, an4 if -he K characteristic vectors that approximate Z are of

j low frequency, then one f the approximations employed by Theil and

Nagar [19] can be shown to be close.

For these reasons the Z's employed in three of our structures

have been formed so that the last three columns (the first column con-

siots entirely of ones in all of our structures) would be approximste-

ly equal (see Appendix B for details) to three characteristic vectors

Ill
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of :elatively low frequency, thus9 insuring that the above conditions

apprrximately hold. These Z's are described as "smooth" (S). For

three other structures, called "rough" (R), the Z-matrices are con-

structed so that they cannot be closely approximated by any K of the

characteristic vectors. For the remaining two structures, called

"empirical" (E), three rows of Z are taken from observed time series

of important economic variables.

The characteristics of our structures cited so far are summarized

in Table 1.,

Table I

CHARACTERISTICS OF STRUCTURES

Structure Nature Sample
Number p of Z Size

1 .3 S 30
2 0 S 30
3 -.7 S 100
4 .7 R 30
5 3 R 100
6 0 R 100
7 .5 E 30

8 .9 E 100

In all of the structures,

y - and v - 1

Simple sample correlations between columns of Z other than the first

vary from -0.349 to 0.937, and sauple variances of these columns vary

from 0.46 to 0.75. These arrangements insure that the random term

contributes substantially to the variation in the dependent variable
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in all structures, while letting other structural characteristics vary.

See Appendix B for a more detailed account.

For comperison with each other and with ordinary least-squares

estimates of parameters, the following estimators were employed.

MAXIMUM LIKELIHOOD (ML)

For the model defined in (1) and (2), the likelihood function is

proportional to

y P, V) - t/2 (1 - p2)1 2 exp (y - Zy)' A-l(y - Zy)

Hildreth and Lu [10] suggest one algorithm for maximizing the loga-

rithm of the above function. Computations were originally performed

partly by graphs and partly by hand calculations, but a program for

t
digital computers has subsequently been pepared. The authors [10]

showed that WL estimates are consistent, and Hildreth [12, 13] subse-

quently showed that they are asymptotically normal and asymptotically

efficient. Klein [14] suggests another algorithm, and Fuller and Martin

[8] develop an approximate procedure. It has also been claimed that

an iterative procedure suggested by Cochrane and Orcutt [3] converges

to ML estimates. The Hildreth-Lu algorithm was uied in this study be-

cause it contains some safeguords against undetected multile maxima.

THEIL-NAGAR (TN)

These authors suggest a two-step procedure for estimating the pa-

rameters of the model in (1) and (2). Based on an extension of a

The algorithm is described in AppendIx D.
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procedure they suggest for testing the hypothesis of serial indepen-

dence [19], ",ey obtain an estimate of te first-order autocorrelation

coefficient, say . Other parameters are then estimated by applying

the classical least-squares regression of

(yt - Yt- )  tl t-l4l tK t-l,K

Their procedure for estimating p is based on an approximate dis-

tribution of the Von Neumann -atio obtained by fittmag a 8-distribution

to approximate moments, after which is obtained by linear interpola-

tion:

T 2[ - (1/2)R] + K 2

T 2 _ K2
-T -

where R is the Von Neumann ratio defined on p. 31.

Since some approximation errors do not disappear with increasing

sample size, the estimator is not consistent. Thus, for any given

structure, there must be a sample size for which a consistent proce-

dure (e.e., HL above or D below) becomes superior. Although Theil and

Nagar ore uneole to evaluate all the approximations they employ, their

rationalization is generally cogent and it seoas impo-tnt to obtain

whatever rlues our data contain about the relative performance of this

estimator with typical sample sizes.

APPROXIMATE BAYES (AD)

It would have been desirable to compare other estimators with the

man of the Bayesian posterior Jistribution corresponding to a diffuse

prior. Unfortunately, this would have extended the computing task

-- o
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beyond what could be contemplated in the present study. Instead, the

mean of an approximate prior suggested by Zellner and Tiao (22] is used.

From (1) and (2)

K K

(3) + ky k - / tl,kYk 0 + t 2, 3 . T
k=l kal

Each of the nonlinear terms ykp in (3) is expanded about the ML esti-

mators, say ?k and i, as follows:

tk

(4) y - + 'o -1 + ('k -Y

where "-" may be read "is approximated bh." Inserting (4) into (3)

and collecting terms with the same unknown parameters Yk and g, yields

t YkZt-l,k o 't-l - k YkZt-l,k)

k k

+ (Z - ztlk) + v
k

which is linear in Yk and o. The fitted least squares regression of

(Yt "kZt-l,k on (yt-l zt-lk), (rtl t-),I ) .
k

(zt - z

Lives estimates of the coefficients p and y's. Since this estimator

is an adjuatmnt of the ML estimator, its relation to the latter is

of particular interest.



-9-

DURBIN (D)

Durbin [5] suggests another two-step procedure. Let v' and z'
t tK

be deviations from the respective sample means of yt and z tK* The

procedure involves taking the linear regression of v' on y
t. t-'

1
t,

" . t' t-l' ..., z'~ The resulting regression coefficient

of Yt- is its estimate of o, say o. We then apply once more the

least-squares regression of (yt - QYt-i ) on (zti - ozt_l l,

(ztK - ZtlK ). Although these estimators are consistent and asymp-

totically equivalent to ML, there is room for doubt about their finite

sample properties. Equation (3) differs from a standard linear model

in having a lagged dependent explanatory variable. It is also clear

that the variables on the right will be nearly multicollinear in many

economic applications.
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III. RESULTS

PERFORMANCE OF THE ESTIMATORS

Summary Tables

Tables ' and 3 sunnarize the principal calculations. For each

structure and each estimation procedure, the tables show the mean,

variance, and mean square error of the 300 estimates for each of the

six parameters. Each entry in a column headed "Mean" is the simple

arithmetic mean of the 300 estimates of the parameter indicated by

the row label and the structure indicated by the row group, using the

estimation method indicated by the column group. The 'NSF" (mean

square error) and the "Var" (variance) columns are similarly set up.

For example, the calculation of the entrv 0.049 in row three, column

five of Table 2 may be indicated

300

(2) -(2) - (2)\ 2
(6) r- -

ni 3

where r-2 ) - the calculated variance of the 300 Theil-Nagar estimates
Y3 of Y3 in structure 2,

~(2) th
Y GO the Theil-Nagar estimate of y in the n sample generated

n by structure 2, and

?IC2 the arithmetic mean, 1.008, of these estimators (it ap-

Y3 pears in row three, colunn 4).

The corresponding mean square error, 0.049, in colunm six may be in-

dicated

300

2) 1 N .(2) -(2Y'2

Y3 " - l n1 n

I
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SU1NThARY OF ESTIMATES FOR SMVflLE SIZE

St nacturt Eatimtton Pbthods
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0.3 G13001002 0.11 o0!.. 0.154 .01 00O1i1.09O.O*2 0.0I

01 1 1.5 0.05 3 0, 0. 03 72305 1 0.080 9I0 0.0821 1"W4 0'0@5 't7 0"03 0.052I0.091

1 1002 0.076 0.076 100.0076 0.076 u.90.093 0.091 1.64 0.121 0.164'0 .9*3 0.075O07

0 0. 7 {01F 0.1 ii 00- 2 1 .0.00do0 12#!.A OO 019 F,1.11 _01001_0 0 1 ., O O !0.133 0.1))

1 1.060;0.t901 04, 1 0,9 0.460 o..8' 1.089. 0 0,58 588 1.04' 0 5 0 11) 1.082 0.5N0 .51

I 0.9311080 591o" ol L: 3 176[ 0.31oo .9' .$ 0.)"~ 0. 992 0 5 0.601

I 1 . A LN 0,11 '0, 3' 0 ' 0",38 010 09 ' 1,000 9541 0.113

04021 0. 019 1 010 0. 0 10 6 0.0 99 020 22L10 GL4 ,9 31 29) I0.:) 1.?"4 021&9 0.213

1 0.9" 0.0*1 0.04 0)9009 0 0 04 1 '16 - L14 0,145440.1t 0.01 0, Wo 0.047 10.101

0.79710.0040.091~~~~~~~~ 079 11- 055, -Pt09011 1 ~ 09305 076O o-ii~

iI 0.91,910.01A 0.030 58 0 09 9 0 8 1 18 0.9 1.40 0 14 119 12 0.1)7V017 0.W, 0.070 0.049

"II o 0))~7' 0.3 0.0039 0.30), 0n0 09' 04 0046,1J.* 0 0' OS9 00 6O'' 0.0)8

0.99910.51l0.03 099 a'* 0 01'1*& 0.9 017302~0910 07 08 0 002,

1.00l.01 .029100 2 02 104 0 0 1,1004 0060.0 0 . 02all0.09.9

0 O.S11 3l.~040 0 M. 0 0,9 0 ,06 0 908 0'013 O.042 0'" 2 0.01%4 0!0I

11001009 0 6010 14001 0.1$ 092: 1.08.0 1 06 001 1^4 14j '5051 g's 09 0.'91 0.0,91 0101
0ni 41 04 a4 me 0.10 '1 "5. 0.19 0 ,04)b wto0
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T~jhl 3

SL'MYARY OF ESIIMAITS FOR SA NPLE SIZE 10)

Structure __ t lEition Methods
A . _ w LS D 1

Paramtlr True n 1 I - '

1D o l u tate~t d V&L A Meaan eJ . z I u..5 PW &n , .. ..a L

3 0 0.000 0.004 0.004 0.000 0.004 0. I 0.001 0.004 0.004 0.000 0.0040004 0000 0004 0.004

1 0.997 0.00 0.007 0.997 0.006 0.006 0.997 0.0o 0.010 0.991 0.007 0.007 0.996 0.007 0.007

1 1.006 0.007 0.007 1.007 0.007 0.007 1.00 0.)09 1 0.009 1.006 0.007 0.007 1.006 0,007 0.007

1 1,004 0,006 0.006 1.004 0.006 .006 1.003 0.0071 0.007 1.00' 0.006 0.006 1.003 0.006 0.006

-0.7 -0.696 10.006 10.006 -0.67, 0.0060.007 - - - -0.696 0.006 0.006 -0.694 0.006 0.006

1 0.953 0.023 0.026 0.9,6 0.02' 0,026 1.926 0.2791 1.137 1,008 0.026 0.026 0.934! 0022 0.026

1 1003 0.025 0.025 1.006 0.027 0.007 0.030 1.315 1.061 0.029 0.033 0.981 0.024 0.025

__ __ _ 1..0 0.4 . . -0-- -. -

-0 .011 OOo 0.009 -o.01 o.oo q -oo0!1,1Too. 79 0,009 -0.012 0.009 0.010 -0.011 0.009 0.009

2 1 001 0.012 0.012 1.001 oo 0.012 .00.1 0 012 1,001 0.012 0.012 1.003 0.014 0.014
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1.00 0 14(, 0.014 0.014 1.001 0.014 0.014 I 1.004 0.01 0.015 1.005 0.015 0.0161 .0! .1 0.014 .1

0 -0.039 0.010 0.011 -0.026 0.009 0.010 - - -0.033 0.010 0.011 -0,034 0.009 0.011
1I 0. 014002
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where y(2) the true vplue of y 1, in structure 2.
3  3

Two sets of estimates of the variance, v, were obtained for each

structure-method combination. The first is the quotient of the sum

of squares of residuals over the number of observations. Empirical

means, variances and mean square errors for estimates calculated in

this way appear in the upper rows labeled '. in each of the four sec-

tions of the tables.

For methods other than LS, the second set of estimates of v (fig-

ures in parentheses) are calculated by dividing each sum of squares

of residuals by T-5 instead of T. Fitting 5 parameters to achieve a

low sum of squares tends to make the resultina sum less than that

which would correspond to true values of p and y. Since the estimates

are nonlinear, one does not know that this is the appropriate adjust-

ment, but it seems a reasonable one to try.

For LS, the second set of estimates of v are the sum cf squares

of residuals divided by T-4. This is what someone who applied L_

would ordinarily use to estimate the variance. for p 0 0 it is known

to be biased, but the bias could not be computed without knowing the

true value of p.

Table 2 includes the structures involving 30 observations, and

Table 3 includes those with 100 observations in each sample. The

structures in each table are arranged in order of increasing value of

P.

Part of the information about relative MSEs in Tables 2 and 3 is

presented more simply in Table 4. The first column corresponding to

each method contains MSE averages for estimates of the four y's for

each structure and for various sets of structures. For instance, 0.059
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is the average of four mean square errors of y's estimated by the ML

method for structure 2, and 0.142 is the average of these mean square

errors over all structures with 30 observations in each sample. For

methods other than LS the second column contains MSEs of estimates of

p for each structure and averages for selected groups of structures.

Each entry in the third column is a weighted average of the correspond-

ing entries in the first two columns and represents the average MSE

for estimates of all five coefficients for the indicated method and

structure (or group of stru-.:ures). Mean square errors for estimates

of v are excluded in Table 4 since they depend on adjustments for fit-

ted coefficients, and the appropriate adjustments for our nonlinear

estimates are not knowiL.

Comparison of the Various Estimators of p

To compare the biases of the various estimators, the pertinent

Monte Carlo information was extracted from Tables 2 and 3 and summar-

ized in Table 5. Inspection of the table leads to several general

observations.

Table 5

MEANS OF DIFFERENT ESTIMATORSa OF P

Structure p ML TN D

2 0 -0.120 -0.062 -0.136
0.3 0.153 0.194 0.109

7 0.5 0.298 0.309 0.268

4 0.7 0.613 0.512 0.552

3 -0.7 -u. -0.672 -0.694
T-DO 6 0 -0.039 1-0.026 -0.034

T=O 0.3 0.270 0.263 0.264

0.9 0.870 0.797 0.822

a'ho AB estimator was excluded because it is an ad-
Justuent of the ML procedure and appears to be nuiner-
ically close to the ML estimators for most samples.
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A. When p is nonnegative, all three eatir-itors persistently tend
to underestimate p on the average. Since we have only one
structAr with negative p and the three estimators come close
to the true value, we have negligible evidence for this case.

B. Judging by the absolute deviatiorx of sample means from their
respective tre values, the TAI estimator of p looks slightly
better for samples with 30 observations and relatively small

p, i.e., I~I < 0.3; however, ML appears to perform better for
savples with 100 observations and r6latively large absolute
values of p. The Durbin procedure appears to be a little
better than TA7 for samples with ZOO observations, but overall
it appears least favorable among the three estimators.

Since an estimator's performance depends not only on the magnitude

of its average bias but also on its variance, we have computed the ra-

tios of the mean square errors of TN and D estimates over those of the

ML estimates. The results, presented in Table 6, tend to confirm the

above observations regarding the relative performances of the three

estimators.

Table 6

RATIOS OF MEAN SQUARE ERRORS OF TN AND D ESTIMATORS OF p TO ML ESTIMATOR

ME of TN estimate of p MSE of D estimate of p
Structure ME of ML estimate of p MSE of ML estimate of p

2 0 0.717 1.038

1 0.3 0.742 1.258
T-30 [ .7 0.5 0.819 1.217

L4 0.7 1.550 1.450

r3 -0.7 1.167 1.000

T-100 6 0 0.909 1.000
I 0.3 0.923 0.923
8 O.5 2.667 1.833

C. The ME of the TN ostimator of p in smaller than that of the
ML estimator for samples with relatively small p a'id with 30
observations. The ML estimator, however, has a smaller MSY
for sewvos with relatively large p and 100 observations. Re-
farring back to Tables 2 and 3, one see that TN variangos am
noflsistefltly smaller than ML tvai-iL-ioe for eca~le suxe 30 and
sZightly smaller in bo cases with sawVle eipp 100. The g en-
orally mal er MSEa for ML estimates with 100 observations
aie therefore dwo to smaller biases.

- .-
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D. The D estimator seems inferior to the 1:ther two estimators

in terms of t.e mean square error ratios.

Comparison of the Various Estimators of I's

E. The sample means of all the estimators of y's are similar and
are close to their true values. The LS estimator is known to
be unbiased. The other estimator! also seem to show very lit-
tle bias even with a 30-observation sample.

To examine the relative efficiency of the various y estimators,

we divided the average mean square error of Y's for each of the three

estimators, ML, TN and D, by that of the LS estimator. This gives some

indication of what an investigator will gain if he uses one of the more

complicated methods instead of the ordinary least squares L.thod. Re-

sults are presented in Table 7. For instance, the first entry in the

table, 1.035, wad obtained by dividing 0.059 by 0.057. These mean

square average errors fzr y's are given in Table 4.

Table 7

RELATIVE EFFICIENCY OF DIFFERENT ESTIMATORS
OF y's COMPARED TO LS ESTIMATOR

Structure P_ ML/LS TN/LS D/LS

2 0 1.035 1.035 1.053

T-30 1 0.3 1.012 1.000 1.094
!-7 0.5 0.869 0.843 0.895

40.7 0.707 0.695 0.820

34 0.723 -0.7 0.750 0.750 0.750

6 0 1.000 1.167
0.3 0.905 0.9CS 1.048

_8 10.9 0.540 0.448 2.700

F. Judging by the relative efficienay, TN is a little better

than ML for .axyles of se 30 and about the sawe for sa-
ples of size 1O0. The D estimator performe slightly worse
than both the AC and TN estimators.

G. For sanoles with only 30 observations and relatively small value
of p (0.3), the other three estimators do not have advantages over
the LS estimator.
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Interpretation of comparisons for groups of structures is compli-

cated because the number of structures that could be investigated pre-

vented construction of a balanced design ref lecting all of the prop-

erties cL.sidered important. Thus the three structures with smooth

Z's include two with T - 30 and one with T - 100, while the three with

rough Z's include two larger samples and one smaller one. Comparison

of the smooth and rough rows, therefore, indicates only that the ef-

fect of smoothness in Table 4 is small relative to sample size in our

experiment.

A little better hint can be obtained by averaging VSEs for struc-

tures I and 3 and comparing these with averages for 4 and 5; the re-

sults are shown in Table 8.

Table 8

AVERAGE MSE FOR ALL COEFFICIENTS AND SELECTED STRUCTURES

Combination ML TN LS AB

1, 3 (S) 0.043 0.042 0,047 0.048 0.048
4, 5 (R) 10.060 0.061__0.0941 0.081 0.071

The comparisons in Table 8 are a little more meaningful than the S and

R rows of Table 4, sinct each row of Table 8 refers to a pair of struc-

tures with T values 30 and 100 and lol equal to 3 and 7 (see the de-

scription of structures in Table 1). This shows a tendency for lower

?SE with smoth indapendent variables, particularly for LS. It is

clear, however, that any conclusions on effect of smoothness based on

data from the present study would be very tenuous. This should be in-

vestigated further analytically and, if necessary, by Moote Carlo

trials specifically designed for this purpose.
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AB estimates are obtained by adjusting ML estimates. From Tables

2 through 4, it appears that, on the average, the adjustment worsens

the estimates, at least when judged by MSE. It is also of interest to

know whether or not the adjustment is typically large or small. That

it was less than 0.05 in most cases in the present study is indicated

by Table 9, which contains frequencies of the differences in AB and

ML estimates of p and of y2 "

Table 9

COMPARISON OF MAXIMUM LIXELIHOOD ESTIMATES WITH APPROXIMATE
BAYES ESTIMATES

Structures

T=30 T-10
Differences of
2 Estimators 2 1 7 4 3 6 5 8

P(ML)-p(AB)

-0.50
-0.50 - -0.20
-0.20 - -0.05 3 5 7 2 2
-0.05 - 0.05 296 286 289 256 300 300 300 295
0.05- 0.20 1 9 4 41 3
0.20 - 0.50 1
0.50

'Y2 (ML) -y2 (A()

-0.50 9
-0.50 - -0.20 5 6 37
-0.2U' -0.0i 70 79 63 9
-0.05 -- 0.05 158 135 80 3 300 300 300 283
0.05- 0.20 63 76 67 8
0.20 0.50 4 4 39
0.50- 5

Truo values I
of o 0 0.3 0.5 0.7 -0.7 0 0.3 0.9

It should be noted that the above observations and others to fol-

low are, In the first instance, dascriptive statessat& of how certain
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statistics behaved in this one experiment. Since 300 samples were

drawn for each structure, we hope that the observed characteristics

are generally representative of these structures. It is unknown how

well these structures represent those commonly encountered in practice

;nd how many of the properties we have noted will hold for different

structures. Thus it is desirable that hints furnished by these studies

be supplanted by precise analytical results as quickly and completely

as possible. For important properties that remain intractable, further

jMonte Carlo experiments with different structures are in order.

ML, TN and D seem to understate p estematically (at least for

nonnegative p), suggesting that a systematic adjustment in each esti-

mator might improve its accuracy, especially for small samples. This

seems worth pursuing, but the authors believe that further analysis of

the distributions of the two estimators is in order before recommenda-

tions are formulated. For the ML estimator, the matter is discussed

a little further in connection with the discussion on tests of good-

ness of fit.

The tendency for maximum likelihood to give better estimates than

alternative procedures when loi is large is confirmed by a study con-

ducted independently by David F. Reilly [16).

TESTS OF SIGNIFICANCE

Although this study's emphasis is on estimator performance, it

would have been wasteful not to have used the data generated tc check

the behavior of coinonly used tests of significance ag well. Accord-

ingly, Tables 10 and 11 present the fraction of samples that, for each

of several tests, rejects the null hypothesis r : 0 (one-sided) or
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p - 0 (two-sided) for each structure. Each entry is the fraction of

300 samples in which the indicated test rejected the null hypothesis

in question. The result of the Durbin-Watson test is sometimes incon-

clusive (see [6], p. 409). The proportion of cases in which this oc-

curred is indicated in parentheses beside the entry indicating the Dro-

portion in which the null hypothesis was rejected.

The Von Neumann ratio test [20], the Theil-Nagar test [19], and I
the Durbin-Watson test [6, 7] have frequently been used in econometrics.

All are based on the Von Neumann ratio of mean successive difference

to sample variance. An investigator using likelihood methods would

find , the ML estir i of P, or the likelihood ratio a natural test

statistic.

Hildreth shows [12] that 6 is asvmptotically normally distributed
2

with mean p and variance 1-T --. Hence, a test based on this asymptotic

distribution may be applied to these null hypotheses by referring to

a normal distribution with zero mean and variance l/T.

The likelihood ratio test has been applied bx Assuming that

-2 log ) (where X is the likelihood ratio) is aproximately x2. The I|
likelihood ratio i., of course, only useful for two-tailed tests.

Since the burbin and Watson tables do not provide for a I-percent

tvo-tailed test, the reslts shown or the tvo-tailed M test are for

an intended "-percent significanca level. Theil ane Nagar did not rec-

o-nd that two-tailed tests be performed using their tabl,; but, be-

cause their tabulated critical points are almost identIcal to the

critical pcints d in the Durbin-Watson tables (see result D below),u

one could obtain the results for two-tailed TN tests by adding the

The refinement of the Theil-Nagar tert euRge, ted by HenOaw (9]
came to our attention after comnutationa were under way.
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regular entry in the DW column to the parenthetical entry immediately

to the right.

Principal results indicated by Table 8 are the following:

4. There were many inconc usive applications of DW, as previous-
ly noted by both theorists and practical workers.

3. 'The low empir?al significance levels associated with one-
tailed 6 tess when o is actually zero, and the high Zevels

for two-tai 'o Z tests, are ocnsistent with the tendency pre-

vious'y noted for 6 to be negative when p = 0. This suggests

that tests based on 6 cannot be recommended for moderate-

sized samrpies until a better approximation to it Jistribu-
tion 7.s de, eloped.

For sarpZes of size 30, the tabuZated power of the 77; test
mu be discount_.* because the test rejects a true nuZ hy-

pothesis mn4ch more frequently than it shoul .

3. A comparison of the TN and DW columns for one-tailed tedts
indicates that the proportion rejected bL 1 .:s equa. (with-

in rowidiny error) to the proportion rejected by DW plus the

proportion inconclusive by DW. Inspection of their tables

indicates that the TN critical values are within 0.O of the
corresponding upper W critical values ;'>x -pt for sarples

smaller than 20. Thus, in practice, applying TN is virtually

the s we as applying 2W and rejecting the null hypothesis if

the DW procedure either indicates rejection or is inconclu-
s' "e.

F. The LR test based on the asymptotic distribution is not very

pawerful for sapes of size 0 and, for samples of size 100,
the rejection rate for true hytiotheses is lower than the in-
tended siani fica_,e level.

APPROXIMATE DISTRIBUTIONS

As mentioned in Sec. I, llildreth (13] has shown that the ML es-

timators are asymptotically distributed according to a multfvariate

normal law with j, 6, 0 mutually asymptotically independent. The

asymptotic variances are

Limits of these moments are nown to equal the corresponding
m oments of the limiting distribution, since it can be shown that fourth

moments of the ML estimators are bounded. See (13], p. 10.
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(8)ir E."F (I - y)I -y)' v)V
T-w

2lir EVTF (0 - P), - (I - 02)
T-*.

2 2
lim E/T( - v) , 2 v
T_.

where y, p, v are the ML estimates and

V lim T Z'A Z

It was conjectured that, for many purposes, the asymptotic distribu-

tion of I would prove a tolerable approximation in samples of the size

often encountered in econometric studies, but that for A and 0 the

asymptotic distributions would be less satisfact.,y.

2
The X goodness-of-fit statistics listed in Tables 12, 13, and

14 tend to confirm this conjecture. Table 12 was constructed by de-

termining 13 intervals for each comoonent of y and computing the ex-

pected frequency of estimates in each Interval under the assumptltn

that the estimator was distributed according to its asymptotic law.

Adjacent intervals with small expected frequencies were combined to

follow Cochrane's recommendation that no more than 20 percent of the

remaining intervals should have expected frequencies smaller than 5.

This determined tle "df" entries.

Observed frequencies in each interval were then tabulated and a

2
x value for each estimator was computed by the familiar one-way formula,

(9) X2 =  (Ei - 01)2

-I Ei

i,
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Table 12

X2 STATISTICS FOR ASYMPTOTIC DISTRIBUTION OF Y

Structure df. 5. Points . f 57,. Point% 5V7 Poti.ts df. 5% P 1int "-

15. 111.9 io 1 18. 3.6 8 15.5 18. 1 7

I 18,1 7.. 10 18.1 1 6 8 15 5 10.7 1 18. toe.7
7 , . .3 19 7 16 ) ic I 1. 19w 7 15 .2_ .

[ '9.1 12 1 . i5 5 . 15.5 ,. 8 5.o II

8.. 6 2.6 55.9H
2 .. 6 8. 6 6 12 6 9 5

d to is. 1 .. . 1 o 18.1 3 .2 81 15 5 6.1

where Oi% Ei are respectively the observed and expected frequencies,

and the number of intervals is I.

Table 13 was constructed similarly except that alternative theo-

retical distributions were used to determine expected frequencies in

calculating the 2 statistics appearing in the last two columns. For

the colum headed 8 , a modified B- distribution was determined by

'L- 
p '

( - x 
q

. I for 0 -. x - I be a ,-densitv and let w 2x - I Then'Let f B(.0 ,q)

1 p-I q-1g(u) = Jl + w)p- ,l -u
q -

2 p+q-
'  B(p,q)

for -I S w K I . the dnsitv of w

Ew -. C Vi(w) - 4PQ

Pw S + V (p + q) ' q + I)

Setting Ew o, Var w P L. yitids

P Lq 22

St ttint E o -, ( Var w ( P) yieds

St:~!U_ t ' 0T 2

I ART_ + A]_I _AB2T2

P 2 2 + o)T( - ) + 2 + ;)[('t + "

IiO, A + 0 + +

T T T
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transforming the variable so that the interval of nonnegative density

was (-1, 1) rather than (0, 1), and then determining the remainf-g

free parameters to make the mean and variance equal to their asymptotic

values, p and 1-

=T

Table 13

x 2STATISTICS FOR

Calculated Values of2

Structure p d.f.- 57% Points Asymptotic B

2 O 8 15.5 196.7 194.23 8.95
T=30 8 15.5 317.9 277.56 5.1217 058 15.5 945.6 686.57 28.28

L4 0.7 6 12.6 70.6 194.69 103.79
3 -0.7 4 9.49 1.8 4.05 11.40

T=100 0 6 12.6 52.3 51.78 10.10
5 036 12.6 40.7 37.76 5.08
00.9___4 9.49 131.8 131.89 149.29

The theoretical distribution used in calculating the column

headed as similar to that for and ce t that the mean was set

equal to p - 3(1 + p) and the variance equal to + (T T__

The latter expressions crudely approximat' Lite means and variances

that appear in Tables 2 and 3 for various values of p. The 8 and B

distributions were superficial guesses made in a quick attempt to find

a better approximation to the 41,striburion of in typical samples.

Though c does reduce the "badness' of fit substantially, except for

high values of p, it does nct look promising to us. and we believe an

attempt to determine more properties of the finite-sample distribution

of 6 analytically should precede further attempts to find a better ap-

proximation.
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2
Table 14 also contains x values calculated from the asymptotic

distribution (this time of ') and another which, it was guessed, might

provide a better fit for typical samples. The asymptotic distribu-

tion is normal with mean 1 and variance 2/T; the alternative was ob-

tained by assuming that TO was XTK 1_ The latter amounts to treat-

ing 0 as though it entered linearly. Though this approximation did

fit well for samples of size 30, neither it nor the asymptotic dis-

tribution was a good approximation for samles of size 100. Here,

again, closer study of properties of the actual finite sample distri-

bution is in order.

Table 14

2x STATISTICS FOR

S.ptotic Gamma

Structure d.f. 5% Points X2  d.f. 5% Points X

2 10 18.3 157.48 9 16.9 9.94

10 18.3 16274 9 16.9 4.12~~T-30""
7 10 i 18.3 246.431 9 1  16.9 19.78

[4 10 18.3 158.66j 9 16.9 6.56

[3 6 12.6 41.24 7 14.1 27.97

T-10 6 i_ 12.6 51.55 7 14.1 168.25
5 6 12. 6 33.84 7 4,1 1 3.70

__ 6 12.6 13.04 7 14.1 37.90

One reason for examining the fit of approximations to the maxi-

mum likelihood estimators is the conjecture that it may be possible

to construct a useful approximate Bayesian procedure for applica ions

of this model if a sufficiently simple and accurate approximation can

be found. Prospects for such a procedure are enhanced if the esti-

.

See pp. 426-427 of (11].
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mators y, p, v are "approximately" independent in samples encountered

in practice. The aspect of independence that can most readily be

checked (and is quite possibly the '', i,.;:tir ,t -.f utility

functions are approximately linear) is linear noncorrelation.

For this prospect, Table 15 is highly encou raging. Simple corre-

lation coefficients between O, ', and components of ' are presented

for each structure.

Table 15

SIMPLE CORRELATION COEFFICIENTS

-- Struchtures
Pairs of _tr__tures

Estimators 1 2 5 6 7 8

Yl 0.084 -0.004 10.i05 -0.049 -0.056 0.003 0.076 -0.076

Y2  -0.096 0.024 0.005 -0.051 0.008 0.070 0.036 -0.072

3 -0.047 0.060 0 0.048 0.005 0.045 -0.031 0 008

Y4 -0.045 0.058 0.104 0.084 0.082 -0.003 -0.061 -0.128

'Y 0.078 -0.023 0.0C7 -0.100 0.037 -0.025 0 -0.156

Y2 -0.028 0.028 0.026 0.073 -0.053 0 0.016 -0.038

Y3 0.109 0.045 -0.043 -0.104 0.053 0 025 0.007 0.001

4 -0.045 -0.031 -0.082 -0.027 -0.043 0.087 -0.019 0.122

-0.096 0.177 -0.067 0.186 0.142 -0 001 0.297 0.195

For 300 observations, the significance points of the sampling dis-

tributien of simple correlation coefficients under the assumptions of

normality and p - 0 are + 0.1133 at the 5-percent level. Consequently,

among the 81 correlation coefficients examined, only 7 rejected the

null hypothesis. Since 5 out of the 7 rejected cases involve corre-

lation coefficients between 6 and '3, we probably cannot ausume that
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they are independent in most samples encountered in practice; however,

the elements of '~are approximately uncorrelated with ~3and 3
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Appendix A

METHOD FOR GZ.ERATING ARTIFICIAL DATA

Our procedure for generating time series with known properties

consisted of the following steps:

a. We first decided on a particular combination of parameter

values for the model represenLed by (1) and (2). All together,

eig.t different combinations of the parameter values wece con-

sid.red (see Table 1, p. 5).

b. The values assumed by all the explanatory variables, Ztk, for

t = 1..., T and k = 1_...., K, were also specified. In

general, these values were varied from one structure to another.

c. We then generated T random numbers, each of which was normally

and independently distributed with mean 0 and variance I.

d. These random numbers were used as independent disturbances of

the model and T obsetiations were obtained on the dependent

varLiables, conditioned on tte assumed values of the parameters

and the explanatory variables. The yt's thus generated, to-

gether with the corresponding Z tk'a constituted a sample.

e. The four estimating methods (ML, TN, AB, and D), plus the least

squares (LS) method, were each applied to the above sample for

estimating Nk's, v, p and the Von Neumann ratio statistic R.

T 2

t where is the LS estimate

71lt  of the disturbance ut
t-lt.



-32-

f. For each of the eight structures, step' () through (e) were

repeated 300 times. The resulting 300 sets of parameter

estimates became the basic data for our sampling experiment

with respect to that structure.

Procedures for generating data as described above were programmed

in FORTRAN IV. For those interested in further experimentation using

samples with different characteristics, usage of the program is de-

scribed in Appendix D.

It took approximately 25 minutes of IBM 7044 computer time to
obtain 300 sets of parameter estimates.

aU

... . .......... . ,. e ,
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Appendix B

SPECIFICATIONS AND PROPERTIES OF ztks

For reasons discussed in Sec. II, we constructed three different

types of independent variables. The values of the independent vari-

ables in structures 1, 2, and 3 are such that they approximate the con-

ditions favorable to TN and LS: those for structures 4, 5, and 6 do

not. The independent variables for structures 7 and 8 wete based on

empirical time series.

To specify the independent variables of structures 1 to 6, let

us define a typical element in the jth characteristic vector of an

approximation to the inverse of the variance matrix A as (4, p. 17]

(11) R(j, t) - cos [2t T n] t - 1, 2, ..., T

Using the above notation, the independent variables for structures 1

to 6 are presented in Table 16.

Characteristics of the assumed values of the independent vari-

ables for various structures are summarized in Table 17. Note :hat

the sample varian-es of all the Z variables are less than 1, and that

their sample correlation coefficients are small except for those based

on the empirical data.

S
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Tabli It

SPE(CIFh ATiONS OF THE Z MATRICES FOR STRItCTIRES I TO h

Independent Variables

Structure f'nstant Term 2 3

1 , R(2,) + C P11,r) . c R(h,t) ctSt I

2 R(0,t) R(2,t) + ck(j]) + R(ht) +

3 R(0,t) R(4,t) + Et  R(23,t) + R(I Ut) +

4 R(O,t) - £ R(j,t) - R( t
S2 ]L

il : I a I ' 0 2) 2 ."2 5,[1.17,21,2b 7 , j , , | 1 . 2

h_ _ _ __J2 IJ 3

J r ' ' 'l ' O b i J2 
= 

. .'. .! 21 2 : J 3 . . 1 18 2 .

. men as Structule

NOTI: A random element was added to each of the ndependnt ariables (L'ther than the constant

term) in the firsu three structures. For Strutu es 7 and 8, tne origin+It ata were taken from
three sets of empirical time series from U.S. Statistical Absrat. ' holesale price .n1er;

(2) numbrs of imigrants; (3) exports of toodstuff. The values of these indepenJent varlabies

had bn adiusted so that their sample varizances wouli be 0.75 , whithh is smAi rej:ive to the
variance of the random disturbances. This was intended tor easier interpretation of zhe samp Ing

experiment results.

t is a norsial deviate with mean 0 and variance -

lt I, ! 7

(IIARA(rERISTICc OF Z VARIABLES: MEANS, VARIANCES, AND

CORRELATION COEFFICt tENTS

structures

Variables t 2 5 4'

H.enrs

l2 0.04O -0 01 0 006 o 000 0 000 -0 0 000FOOO

z0 015 -0 024 .0 00' 0 025 0 020 0 000 0 001

0 015 -0.024 -0 001 0 02 0 020 0 000 . 0O~X

Varienceii
z 0 466 0 5310 i55) 0 !50 0 517 0 750 0 '50

z 0 711 10 0 0 578 0 ?27 0 50 0 "50 0 718

0 660 0 477 0 &0' 0 *. 0 ;S 0 'SO 0 750

CorrelatiomCo*|fficiont s

17.1 0 111 0 I1 0 021 0 010 a 015 0 41 0 ,S
0., 40i4 015 .0040 -0 14)1 n oi O 94 0 291

0 9 0 5 Ctolo 0 'l 0 too
I. .A6 __ _
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Appendix C

MAXIMIZING THE LIKELIHOOD FUNCTION

The likelihood function of this study differs from the one devel-

oped in .10 only in the adde d assumption that the u in Eq. (1) ha,

a stationary distribution. In particular, it is assumed that all of

the ut's are normally distri ited with zero means and equal variances

1(1 ) 2J J.

To obtain ML estimates of N and o the following procedure was

used: Assumn a particular value of 0, and comDute the corresponding

estimates of y and the sum of squared residuals from (12) and (13),

respective ly:

(12) Z 'A- Z Z A- y

(13) S'(o) rv - (:)] A-  y

) = _.v A- I y - z ? ( o
(13 Z'Y(PY,

This is done for a number of selected values of o, and the value

which approximately minimizes S(O, is determined to j desired accuracy.

If the value, 0 , ot 2 that minimizes S(c) can be found, then and

are Mt. estimates of - and y.

A compiter progv:am was developed for numerik:al search of a mrinimum

point of ;o) in the interval - c < 1. Since §(.) is . .vnomiai

of high degrees in c, a procedure was provided for safegua:ding against

I"tiple minima. This was done by examining the success:ve first-

differences ut S(0) evaluated in tth. above interval at an increment of

The model based on this assumption of statioivaritv is discussed
in 6ome detail in Append. A of 10j and 13, p. 2-8.
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0.01. If the values of these first differences should change sign

more than once, we would conclude that the function probably did not

have i unique minimum. It should be noted that no multiple-minima

s. tation appeared to exist in all the samples generated for the study.

After we were reasonably assured of having no multiple minima,

numerical s-ar h for the minimum sum of -quares of residuals was

carried out as follo's:

(a) S(,) is initially evaluated at p = p0 - d, 0 + d,

where d - 0.

(b) Pick the value of p that corresponds to he smallest S(p,

in Step (a) above. Call this value p02)

Steps (a) and (b) make up the first iterati-.,, In the second iteration,
(tedat (2) d (2) (2) d

S(P) is e o e at 0 0  ' P0  + . In general, in the

ith iteration, the function is being evaluated at

(i) _d (i) M~i d

0 - 00 ' PO + i-I
2

In our program, we set

(M = 0, d - 0.5 and i = 1, 2,..., 10.

p0

A FORTRAN program for the above search procedure is given in

Appendix D.
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Appendix D

COMPUTER PROGRAM FOR GENERATING A SAMPLE FOR THE MONTE CARLO STUDY

-4-

A computer program was developed for generating the independent

variables and dependent varieble for a given combination of parameter

values. (See Tables 1 and 16.)

This appendix describes how to prepare inputs to this program.

The correspondence between the notation used below and that of the

main text is as follows:

RHO a true value of p

GAM W vector of true values of y s

KZV[iI = j in Eq. (11) for specifying the ith

independent variables in structures 1, 2, and 3.

KZVk[i] = j in Eq. (11) for specifying the kth element

of the ith independent variable for structures

4, 5, and 6.

INPUT

Five input cards and three methods are explained. The first

three cards remain the same and provide input for all three methods.

The use of card" 4 and 5 varies, depending on the method.

First Card. Ccntains 7 integers each of field width 3:

Col. 1-3: K (usually S 4; program modification required if greater
than 4)

Col. 4-6: T (S200)

Col. 7-9: NTIMES - N - number of cases to be run.

tThis was programmed by R. J. Clasen of the Computer Sciences

Department at RAND.
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Col. 10-12: NRN (>0). This means that NRN-1 runs will be copied from
tape NTAP2 onto tape NTAP and then this run will be writ-
ten as the NRNth run on tape NTAP. If NRN 1 1, NAP2
need not be specified.

Col. 13-15: ITYPE = I if first method of Z matrix input is used. It
specifies the Z matrices for Structures 1, 2, and 3.

ITYPE > I if second method of Z matrix input is used. It
specifies the Z matrices for Structures 4, 5, and 6.

ITYPE = 0 if third method of Z matrix input is used. It
specifies the Z matrices of Structures 7 and 8,

The value for ITYPE is the number of KZV cards to be read
in when ITYPE > 1.

Col. 16-18: NTAP--the FORTRAN tape unit number of the binary tape on
which the results will be written.

Col. 19-21: NTAP2--the FORTRAN tape number of the old tpc wliici is
copied onto NTAP. Usually NTAP - 8 and NTAP2 - 9, cr
N1.P2 - 8 and NTAP - 9.

Second Card. Columns 1-12 contain the value of RHO punch with a

decimal point. (FORMAT (F12.6)).

Third Card. Contains the vector GAM (-GAMMA), with 12 columns

per number (6F12.6).

Method One (ITYPE = 1)

Fourth Card (Method 1). Contains the KZV vector with 3 columns

per integer (2413). The ith column of Z is generated by

Z[i] - R[KZV[ii] + M(i)

where c(i) - 0 1 1
Ic 0 i , 1

and c is rea. in by the next card.0

Fifth Card (Method 1). Columns 1-12 contain the value for

(F12.6).0
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Method 2 (ITYPE > 1)

The input for method 2 consist# of the first three cards above,

plus ITYPE cards of the form of the fourth card of method 1. Let K

be the ith number on the Jth such card. Then KZV k(i],

Z[l] - vector of all ones.

ITYPE

Zi] - -11 R [KZ i for i > 1.

Note that each KZV card contains space for K numbers, but that KZV[l]

is never used (KZV[2] is in columns 4-6, etc.).

Method 3 (ITYPE - 0)

The Z matrix is read in from T cards, each card containing a row

of the Z matrix. The T cards follow the 3 cards that are common to

all methods. The first column of Z is set to 1; hence each card need

contain only K-I numbers. FORMAT 203 in the MAIN (LU) Drogram is used.

Currently, this format is (10X, 8FI0.5), but this may change in the

future for the convenience of card punching.

INPUT FOR THE TAPE POSITIONING AND PRINTING PROGRAM

The input for this program consists of one card with three inte-

gers punched in fields of three-column width 013).

Col. 1-3: NTAP - the FORTRAN unit on which the tape is mounted

Col. 4-6: NRN

Col. 7-9: NOGO

If NOGO - 0, the program will rewind NTAP, and will then space NRN-l

runs forward on the tape, so that the tape will be sitting at the
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beginning of the run NRN. If NOGO 0 0, the tape will be positioned

as above, but run NRN will then be printed in a compact form. After

printing is completed, the tape will be rewound.

U U

- i
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