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PREFACE

This Memorandum is part of RAND's continuing program to develop
basic analytical techniques for application to Air For~: problems.

The validity of many economic relations derived by applying the
ordinary linear least-squares regression method to time series is of-
ten guestionable, because the implicit assumption of serially indepen-
dent disturbances cannot be justified The principal alternative mod-
el considered assumes that the disturbances are generated by a first-
srder autcoregressive process. Several estimators under the latter as-
sumption have been suggested, but little is known about their small
sample properties. This study describes the relative performance of
the estimators based on resulte of a Monte Carlo experiment.

The Memorandum is intended for operational and economic analysts
who deal with time series data. It 1s assumed that the reader {s fa-
miliar with basic econometric literature on time series analysis. Two
potential areas of Air Force application are manpower prediction and
demand prediction for spares.

Clitford Hildreth is a consultant to the Logistics Department of

RAND.
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SUMMARY

Economists interested in analyzing time series have long recog-
nized autocorrelated di<turbances as one of the principal hazards that
may cause serious inefficiencies :n their analyses. In the past de-
cade, several econometricians have studied a statistical model /n which
the disturbances are assumed to be generated by a simple, first-order
autoregressive process, and have proposed several estimators of the
unknown parameters. Becauge little is known of the probability laws
governing the estimatcrs and therefore of their relative desirability
in various circumstances, and because determining the laws analytically
poses severe problems, a study of the behavior of alternative estima-
tors applied to artificially generated data with known parameter values
was undervaken, and {ts regults are reprrted herein.

To generate artificial data for this experiment, eight structures
were specified. Each srructure differs from the others in one or more
of the following aspects: the pattern of observed values of the inde-
pendent varliables (these are arranged I{n a matrix denoted by Z); the
value of the autocorrelation cecefficient (p); and the sample sfize.
Samples vf size 30 were drawn for fou. structures and samples of glze
100 were drawn for four others. For each structure, 300 samples of
the selected slze were drawn and estimates of unknown parameters were
calculated for esch sample by five different methods. They were Maxi-
mum likelihood (ML) estimators, Theil-Nagar (IN) estimators, approxi-
mate Baves (AB) estimators, Durbin () estimators and least squares

(LS) eatimators,
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Analyses of the performance of the above five estimators leads
to several general observations:

1. When p is nonnegative, ML, TN and D estimators all have a
persistent tendency to underestimate p on the average.

2, Judging by the absolute doviations of sample means from their
respective true values, the TN estimator of p looks slightly
better for samples of size 30 and relatively gmall p, {.e.,
lo] £0.3; however, ML. appears to perform better for samplee
of size 100 and relatively large absolute valuea of p. The
Durbin procedure appears a little less biased than TN for
samples with 100 observations, but, in general, 1t appears
least favorable among the three estimators.

3. The TN estimator of p has a smaller variance than the ML es-
timator for samples with 30 ohservations and relatively small
p. However, the variance of the ML estimator is smaller for

samploc of 100 obrervatione and relativelv large p.

. On the average, the D estimator of o has a larger variance
than the other two estimators.

5. The sample means of all the estimators of y's are similar and
are close to their true values, even for samples with as few
as 30 observations.

6. Judging by low mean square error, TN estimates of y's are a
little better than ML for samples with 30 observations, but
for samples with 100 observations, both estimators perform
about the same, The D esiimator is slightly worse than both
ML and TN estimators regardless of sample aize.

7. For samples with only 30 observations and p as large as 0.3,
the other three sstimators do not have advantages over the
LS estimator. LS also estimates coefficients well when the
columns of Z are "'smooth.”

Besides examining the performance of various estimators, we also
checkad the behavior of several commonly used tests of independence
of regression disturbances. The teats considerad were the Von Neumann
retio test, the Durbin-Watson test, the Theil-Nagar test, the likel{i-
hood ratio %ast, and the test based on the asympt. .c distribution of
the ML estimate of p (we shall call this the § tast). Some general
observations are as follows:

8. There vere many inconclusive applications of the DW test, as
previously noted by both theoriste and practical workers.
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9. For the sample sizes used in this study, the TN tc3t amounts
to rejecting the null hypothesis in those cases where the DW
test either rejects or is inconclusive. Ingpection of the TN
and "W tables revealc that this will be virtually true except
for quite small samples.

10. TN rejected a true null hypothesis much too frequentiv for
samples of size 30.

11. The tendency noted above for ML to underestimate p was
reflected in low frequencies of rejection of true null hypo-
theses by one-tailed § tests and high frequencies for two-
tailed tests. Thus, the § test cannot be recommended when
based on the asymptotic distribution. In considering this
bias in the actual significance level, however, the rejec-
tion rates for false hypotheses were relatively large. This
suggests that a powerful test can be bagsed on § 1f a good ap-
proximation to its finite sample distribution can be found.

Hildreth [13] has shown that the ML estimators are asymptotically
normal and that the vector, Y, of estimates of coefficients 1is asymp-
totically independent of £, ¥, the estimators of the autocorrelation
coefficient and the variance. It was conjectured that, for many pur-
poses, the asymptotic distribution of ¥ would prove a tolerable approx-
imation in the sample sfzes often encountered in econometric studies,
but that for § and v the asymptotic distributions would be less satis-
factory. This tends to be confirmed by the xz goodness-of-fit statis-
tice computed from the generated data.

In conclusion, the reader must be aware that the above observa-
tions are descriptive statements of how certain statistics behaved in
this particular experiment. Since 300 samples were draswn for each
structure, we hope that the observed character{stice are geuerally rep-
resentative of these structures. The characteristice of the ~..ious
structures were chosen to represent a variety of circumstances that

might reasonably be encountered in practical work. To know just how

representative the structures are, however, would require a careful
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survey of applications, and this has not ! an undertaken. It is de-
sirable that hints furnished by a study such as this be supplanted by
analytical results whenever poss. ‘e, For important pronerties that
remain Iintractable after fyrther theoretical analygils, additional Monte

Carle experiments are in order.
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I. INTRODUCTION

Economists have long been concerned that nonindependent distur-
bances may be a frequent cause of Inefficiency in estimates of regres-
sion coefficients for time serines.-‘L In the past decade, several econ-
ometricians have studied an alternative model in which the disturbances
are assumed to be generated by a simple, firat-order autoregressive
proces., and have proposed several estimators of the unknown parameters.

Because little is known of the probability laws cf the estimators
and therefore of their relative desirability in various circumstances,
and because determining the laws analytically poses severe problems,

we undertook a study of the behavior of alternat.ve estimators applied

to artificially generated data with known parameter values. Such studies,

of course, furnish hints rather than conclusions about the behavior cof
various statistics, The investigator determines certain structures in
advance and generates samples by drawing random components according

to a specified probability law, with the aid of tables of random num-

bers or other random devices. The results may be misleading because

of special features of the structures chosen or bacause statistical
asccidents occur in generating samples [18, especially pp. 3-5].

The hints from a particular study can be strengthened by drawing
many samples for each structure (thus insuring a low probability of
misleading statistical accidents), and bv examining a wide array of
representative structures. Of course, each tactic increases the re-

sources needed, and the studv's final design {s always a compromise

‘see [3, 6, 7, 17, 21].




-2-

between the cost of resources and the desire to make the results as
reliable ss possible.

In this study, eight structures were chosen, with samples of size
30 drawn for four structures and of size 100 for four others. For
~ach structure, 300 samples of the selected size were drawn, estimates
of unknown parameterg were calculated for each sample by alternative
methods, and characteristics of the resulting frequency distributions
of estimates were calculated and tabulated.

Section II completes a sketch of the study's design ~nd gives rea-
sons for some of the choices. Section IIT presents and discusses the
study's results. Appendices A through D describe in some detail the
methods ugsed to generate artificial data and to obtain the maximum

likelihood estimator.




ey T

II. DESIGN OF THE STUDY

The model employed specifies that an observed vector y of order
equal to the sample size (30 or 100) comes from a multivariate normal
population with mean vector Zy and variance matrix vA,

where Z : a known matrix of order T x K representing T observed values
of each of the K independent variables;

v : a vector of K unknown coefficients to be estimated;

A:aT~T matrix with typical element ast = [1/(1-92)]plt-s|;

p ' a constant, Ipl < 1, called the autocorrelation coefficient;

v ¢ a positive constant,
The intevpretation is that an element Ve of y is determined as a
linear combination of corresponding elements of Z plus a disturbance

that is linearly relate”’ to the disturbance of the preceding observa-

tion; i.e.,
K
(1) yt - >. zCkYk + ut ’ where
k=1
(2) u, = Dut—l + Ve o t=2,3, ..., T,
v

— and
1 4 _ 02

the v, are normal, identical, and independent with mean O and variance

We choge a sample size of 30 for four structures because many
studies of economic time series involve 20 to 40 observations. We
chose 100 as the other sample size because sutocorrelation is very

likely to be present in quarterly or monthly data, and in these cases
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the sampis size may be much larger--100 or more is not uncommon. And
it seemed desirable to have two sample sizes far encugh apart so that
we might note any tendencies for asymptotic properties to be more
nearly rea’{zed in the larger samples.

Past theoretical studies [2, 4, 6] show that properties o! sone
suggested procedures depend critically on the value of p and on the
pattern of Z, It therefore seemed useful to arrange a set of struc-
tures that included various combinations of values of p and patterns
of Z.

In the present model, the principal aspect of Z (other than ~ample
variances of its rows and sample correlations among rows, which are
important in any regression situation) that proved fmportant is the
relation of its columns to the characteristic vectors of an approxi-
mation to the inverse of the variance matrix A [4, pp. 13-18].

If the colums of Z are linear combinations of K characteristic
vectors of this modified inverse, then least-squares estimates of y
are best unbiased and tests of p = 0 (like those of Durbin and Watson)
based essentially on a V... Neumann ratio formed from least-squares
residuals are unifoi.ly mogt powerful against alternatives in the in-
terval (0, 1). Furthermore, the characteristic vectors are harmonic
series, an, if :he X characteristic vectors that approximnate Z are of
low frequency, then one ¢ the spproximations employed by Theil and
Nagar [19] can be shown to be close.

For these reasons the Z's employed in threa of our structures
have beaen formed so that the last three columns (the first column con-
siste entirely of onss in all of our structures) would be approximate-

ly equal (see Appendix B for details) to three characteristic vectors

TR Y 4 P b K 1 et s
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of relatively low frequency, thus insuring that the above conditions
apprrximately hoid. These Z's are described as 'smooth" (§). For
three other structures, called "rough" (R), the Z-matrices are con-
structed so that they cannot be closely approximated by any K of the
charactexistic vectors. For the remaining two structures, called
“empirical" (E), three rows of Z are taken from observed time series

of important economic variables.

The characteristics of our structures cited so far are summarized

in Table 1,

Table 1

CHARACTERISTICS OF STRUCTURES

Structure Nature Sample
Number o of Z Size
1 .3 S 30
2 0 S 30
3 -.7 S 100
4 .7 R 30
5 .3 R 100
6 0 R 100
7 .5 E 30
8 .9 E 100

In all of the structures,

and v = 1

—— e S

Sieple sample correlations between columns of Z other than the first
vary from -0.349 to 0.937, and sample variances of these columns vary
from 0,46 to 0.75. These arrangements insure that the random term

contributes substantially to the variation in the dependent variable

e u——




in all structures, while letting other structural characteristics vary.
See Appendix B for a more detailed account.
For comperison with each other and with ordinary least-squares

estimates of parameters, the following estimators were employed.

MAXIMUM LIKELIHOOD (ML)

For the model defined in (1) and (2), the likelihood function is

proportional to

t/2 S | R |
/ exp L- 7 (y-2Zy)' A " (y - ZY)J .

1/2

0y, o, V) = v 20 - oY)

Hildreth and Lu [10] suggest one algorithm for maximizing the loga-
rithm of the above function. Computations were originally performed
partly by graphs and partly by hand calculations, but a program for
digital computers has subsequently been pupm'ed.Jr The authors ([10]
showed that ML estimates are consistent, and Hildreth [12, 13] subse-
quently showed that they are asymptotically normal and asymptotically

ef ficient. Klein [14] suggests another algorithm, and Fuller and Martin

[8] develop an approximate procedure. It has also been claimed that

an iterative procedure suggested by Cochrane and Orcutt [3] converges
to ML estimates. The Hildreth-Lu algorithm was used in this study be-

cause it contains some gafegusr~ds against undetected multi,le maxima.

THEIL-NAGAR (TN)

These authors suggest a two-step procedure for estimating the pa-

rameaters of the model in (1) and (2). Based on an axtension of a

The algorithm is described in Appendix D.
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procedure they suggest for testing the hypothesis of gserial indepen-~
dence [19], *“ey obtain an estimate of the firat-order autocorrelation
coefficient, say p. Other parameters are then estimated by applying

the classical leagt-squares regression of

(yp = oyy_y) om {2y =02y )y oees (zyg = PZey @)
Their procedure for estimating p is based on an approximate dis-
tribution of the Von Neumann -atio obtained by fittiang a B-distribution
to approximate moments, after which b 1s obtained by linear interpola-

tion:

5 - (1 - /)R] + K°

T2 - Kz

-

where R 18 the Von Neumann ratio defined on p. 31,

Since som# approximation errors do not disappear with increasing
sample size, the estimatcr is not consistent. Thus, for any given
structure, there must be a sample size for which a consiatent proce-
dure (e.e., ML above or D below) becomes superior. Although Theill and
Nagar are unzvle to svaluate all the approximations they employ, their
rationslization is generally cogent and it secems {mpc-tant to obtain
vhatever ~lues our data contain about the relative performance of this

estimator with typical sample sizes.

APPROXIMATE BAYES (AB)

It would have bean desirable to compare other astimators with the
mean of the Bayesian posterior Jdistribution corresponding to a diffuse

prior. Unfortunately, this would have extended the computing task
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beyond what could be contemplated in the present study. Instead, the
mean of an approximate prior suggested by Zellner and Tiao [22] 1s used.

From (1) and (2)

i

K
(3 y, =y._p+ A ;Zl 2 etV tm23 ., T

k

Each of the nonlinear terms Ykp in (3) is expanded about the ML esti-

mators, say ?k and 6, as follows:
PR - ) g
4) Ykp Yk5 + 0 5)Yk + (Yk lk,b ’

where "='" may be read "is approximated bv." Inserting (4) into (3)

and collecting terms with the same unknown parameters Yy and o, ylelds

N
\

(5) y, -6

t ;—Ykz:—l,k =00y, - )

Y2, _
K kt-1,k

+ ; Vel ~ B ) T Ve

which {s linear in A\ and po. The fitted least squares regression of

k)

> : Vo \
(yp -0 c Nle-1k) O Wely - %-th-l,k)’ 2oy =62y o ees

(z . - p2

tx -1,k

gives estimates of the coefficients p and y's. Since this estimator
is an adjustwent of the ML estimator, its relation to the latter is

of particular interest,.




DURBIN (D)
Durbin [5] suggests another two-step procedure. Let yé and z;K
be deviations from the respective sample means of Y, and Zog The

procedure involves taking the linear regression of yé on yé_l, zél,

. ZéK' Zé-l,l' RN Zé-l,K' The resulting regression coefficient

of Y. is its estimate of p, say 0. We then apply once more the

-1
Yo eens

leagt-squares regression of (yt - oyt_l) on (ztl - th—l,l

(th - Ezt~l,K)' Although these estimators are consistent and asymp-
totically equivalent to ML, there is room for doubt about their finite
sample proparties. Equation (3) differs from a standard linear model
in having a lagged dependent explanatorv variable. It is also clear

that the variables on the right will be nearly multicollinear in many

economic applications.
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ITI. RESULTS

PERFORMANCE OF THE ESTIMATORS

Summary Tables

Tables Z and 3 summarize the principal calculations. For each
structure and each estimation procedure, the tables show the mean,
variance, and mean square error of the 300 estimates for each of the
six parameters. Each entry in a column headed 'Mean' is the simple
arithmetic mean of the 300 estimates of the parameter indicated by
the row label and the structure indigated by the row group, using the
estimaticn method indicated by the colummn group. The "™MSE" (mean
square error) and the '"Var” (variance) columns are similarly set up.
For example, the calculation of the entrv 0.049 in row three, column

five of Table 2 may be indicated

300
) 1 @) ()2
(6) r~ = Y - M
00 -: \ ’
Y, 300 N3Ny
where rgl) = the calculated variance of the 300 Theil-Nagar estimates
3 of Yy {n structure 2,
~(2) \ th
Y « the Theil-Nagar estimate of Y4 in the n  sample generated
n by structure 2, and
HSZ’ the arithmetic mean, 1.008, of these astimators (it ap-
3 pears in row three, column 4).

The correspording mean square error, 0.049, in coluan six mav be in-

dicated

300

) 1N .2 ()2
7 5, T30 -, \3 Ty

Y3 nel
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Table 2 .

SIMMARY OF ESTIMATES FOR SAMPLE SIZE 10

Structure Estimation Methods
w ™ Ls A D
Paramster | Trum T
1D No.| Rstimmted | Value Man | Var 1] Mean | Var 14 Mo o Yatr wE Mego | Ver | MSE | Maaa | Var | NSE
i
2 v o | —.015/0.033]0.033 ] -0.015/0.033 {0.033]-0.015 | 5.033| 6.033] -0.013 | 0.035 {0038} - 0.016{0.03%[0.03¢
!
1 1 0.99116.07710.077F 0.99110.076 {0.076 § .0.993 | 0.071]0.071] 0.996 :0.084 | 0.084 .987 10.07¢[0.076
Y 1 1.208]0.000]0.0% ] 1.008{0.049 [0.049 1.007|0.04910.049} 1.005 |0.054 |2.034) [.004 {0.052;0.052
N 1 1 o18lo.o7ai0 078§ 1.018/0.077 [0.078 1.015 [0.079 | c.07sh 1.61s 008000800 1.013]0.070]0.C78
i f
5 ) -2.12010.039 [ 0.053 | -0.062{0.034 [0.038] - - - F-o12110.039 [0.053] -0.136 {0.037 | 0.053
v 1 0.834/0.051 {0.079 | 0.8380.052 {0,078 0.8% [0 210.067| 1.041 [0.077 |0.079}; 0.806 |0.050 | 0.088
|- 1 Lwonla.or3l0.073 ] 1.00600.078 [0.075{ 1.011 [ 0.06% {0069 1.269 ;O 111 [0.172] 0.97 :0.072{0.07) p
i e
RS 0 07008]0.085 | 0.08% | 0.007]0.083 |0.085 [ -0.0 7 10.063 | 0.063] -0.002 {0.073 {0.073] -0.011 {0.¢70 | 0.070
! v 1 0.99300.118 lo.117 | 0.996(0.i14 lo.1ta ] 0.9%6 [0.113 0.113] 0.998 [0.130 10 130 0.9%0 0,123 0123
i i i \ !
* z
S ! 0.997,0.060 |0.060 | 0.98910.060 [0.060 | C.988 |0.061 0.081} 0.988 [0.089 0.0¢0ll 0.989 [0 064 | 2.0es
i i : )
o 1 1.ovio.t0z fo.102 b 1.0 i0.102 {002 1013|0102 0102} 1.009 0,117 0112|1012 0.1 0113
t : i : :
} ‘ ’ : ‘ . 5 i
P 0.y | c.isyjo.car;o.0e2 ) o.1edlo.0ns looeef - - - 0.13% 10,041 [0.062 1.109}0.042 5.078 )
. ; 0.01500.03310.080 | <0.83702.05) (0.0s0" - &2 }0.070 0 082} 1.040 [C.088 ;0.087 0.803 0.03:|0.00 '
. P 1.002/0.076:0.076 | 1.004.0.07¢ :0.0%6p 4..29;0.093:0.0%:] 1.288-0.122 0,18 ¢.9¢) 0.075] 0.0 :
e - - b : b — 3
A B 9.00710 130 T0.130 ] 0.001]0.12% 10,19 0.007 | 0.129, C.19| -0.001 | 0.142 0147y 0.008:0.13370.13) .
! | ' ' : ‘ ‘ ! 1
i i B 4 N L N
oo i 1,079 0.480 [0.487] 1.086 [ 0,580 0.388] 1.087 [0 303 j0.313f 1.082 0.308; 0312
v I 0.9:9:0.37) 10,9787 0.9) {04391 0.48)F 0.9% (0.9 0399 0.9 om!onm b
1 : i !
1 i N t t
N P 1.010/0.189 01890 0.993 {0.228 0.1is; "W ;2.19)j0.293 1.004 .0 11)'0.:13 g
: : = ; : ‘ ! 5
5 L 0.309.0.002 [0.008k - | - - 208 D A4 i 0. 081 0.38F 0.047{0.101 %
| i ; ! ;
. (1 0.7%/0.0%5 [0.095F o.920] 0103 911l o2 io0ay 0.0ayf 0.738 0.0490.108 :
[ - i1 o.emio0r oo 1oe2 o.uoéo 1ed 1% 0120 [0.13e] 2908 00701007 E
—_—— + e e + + e —4 .
[ AN 001816373 .37 § 0.07010.339 0.339F 0.7 0. 37 2 M7 00480372 0374] 3.03),9.437]0.4M
: ! I : ; : i ! ;
N ovesio oM 00M | o9 0ou o] camjoanioan! cemieoy o] 1004,0.043{000)
i : i i ; : 1
i ; i i ; ; : : : {
Loy ovsloonioon) cwricosr.oen] ceoloomio i oer 003y 203 1.006 0.0M 0.0
i i . i : : i .
i : : : H H i ' k|
Lo 1.003]0.01¢  g.028 ] 1 00t0.017 {0 01r] 1o foorriootel 104 0016 0.0n] 10110019001
| ! i . | . ;
z ; 1 . ‘ loon oom |
P Do | esisjemrioceef 000008 - - 0408 {0.01) 0.042 o.s.u:moui-o.ou
o - cmrjooericoar| owcicossioansf 1wfoeionn] rormioom sonf orrioenicnn
I T O | [ Lotzjoomioom| yossioovnjotee] 160 o.arriosar] 1 ey 0an o.nogo.anlo o8 3




Table 3

SIMMARY OF ESTIMATES FOR SAMPLE SIZE 100

Structure _ ] ) " tatimation Methods - ]
M. ™ A D

Parsmstar | True

Estimated | Vale Mean var e | Mean Var -1 r_m Var MSE | Meag Yag MSE || Mesn | Vax
" 0 0.00C | 0.004 10.004 0.000 | 0.004 | D.00& 0.00110.004( 0.004 | 0.000 | 0.004 [ 0.004 0.000| 0.004 | 0.004
2 1 0.992 [ 0.006 {0.00? 06.997 1 0.006 | 0.00¢ 0.99710.0107 2.010 I 0.998] 0.007 {0.007 0.996 | 0.007 | 0,007
vy 1 1.006 | 0.007 |0.007 1.007 | 0.007 { 0.007 1.010}10.)09! 0.009 1.006 | 0,007 | 0.007 1.006 | 0.007 | 0.007
Yo 1 1.004 | £.006 0. 006 1.004 | 0.006 | 3.006 1.00310.007| 0.007 1.004  0.006 | 0.006 1.003( 0.006 | 0.006
¢ -0.7 -0.696 | 0.006 |0.006 -0.67210.006 | C.007 - - - [ -0.696 | 0.006 | 0.006 |1 ~0.694| 0.006 | 0,006
v 1 0.95) [ 0.02) {0,028 0.956 ] 0.024 1 C.026 1.926 1 0.279] 1.197 1,008 0.026 | 0.026 0.934 0.022 {0.026
v [ 1.003 ;0,028 [0.025 1.006 { 0.027]0.027 2.00010.303 1.315% |1 1 061! 0.029 | 0.033 0.98)| 0.024 : 0.02%
" i: 0 -0.011 {0.009 | 0.009 -0.011 | 0.009 | 0.009 ~0.01110.009] 0.009 -0.C12{ 0,009 | 0.010 || -0.011! 0,009 | 0,009
" ‘ 1 1.001 {0.012 |0Q.012 1.001{0.012]0.012 i.002 | 0.0127 0.012 1.001| 0.012 V0,012 1.003| 0.014 { 0.014
Ty \ i 1.005 10.013 {0.01) 1.00%10.011]0.013 1.006 | 0.013; 0.61) 1,005 0.013 { 0.013 1.007( 0.C15 | 0,014
\A >| H 1.004 | 0.014 [0.014 1.004 ] 0,014 [ 0.014 1.001 | 0.014; 0.014 1.004} 0.01% | 0.013% 1.005( 0.015 [ 0.016
3 i o -0.039 | 0.010 |0.011 -0.026 | 0.009 ! 0.010 - - - -0.0331 0,010 { 0.011 -O‘OJhl 0.009 | 0.011

1 0.94% {0.018 |0.021 0.94% | 0.018) 0.021 0.9%5 [ 0.0.8; 0.020 1,004 { 0.021§0.021 0.93%]| 0.018 ; 0.022
B i 0.99% j 0.0 j0.020 0.995(0.0207 0.020 0.99% | 0.020f 0.020 1.08710.023{0.026 0.985| 0.019 § 0.020
S} % 0 ¢.010 [0.018 {0.Cls 0.010 | 0.018;0.018 0.009 {0.018] 0.0i8 0.008 0.018 | 0.018 0.007 ! 0.019 ; 0.019
B ! 1 0.992 | 2.020 10.020 C.99) | 0.0204} 0.020 $.995 [ 0.023] 0.02) 0.991} 0.020 { 0.020 0 986 0.024 ; 0.024
vy ' 1 ! 0.99% | 0.020 l0 220 0.99¢ | 0.020{ 0.020 0.996 | 0.0:1 v.021 0.999 ! 0.020 | 0.020 0.990; 0.022 | 0.022
LN t 1 ’ 1.009 |{0.020 |0.020 1.009 { 0.019 | 0.019 1.91210.022] 0.022 1.01010.019 1 0.020 |j 1.003} ¢.022 1v.012
i

° | 0.1 t 0.2 |0.912 {0.01) 0.26)10.0101 0,012 - - - 0.270{0.612]0.01) 0.264 ] 0.011 | 0.012
N : 1 0.9¢0 | 0.017 |0.010 0.96110.017]0.018 1.047 | 0.028] 0.027 |, 1.022]0.01%0.020 0.949 ) 0.017 | 0.019
v 1 1.011 j0.019 10.019 1.012 1 6.019 | 0.019 1.091{0.027] 0.0) 1.076} 0,021 | 0.927 0.999 | 0.019 : 0.019
" 0 0.031 §1.9%1 ji.%%2 0.0%¢ ; 1.108 | 1.109 0.0%¢°1.032] 1.03% -0.079 | 6.4%6 ] 6.4012 -0.1080 | $.128 | 9.140
" 1 1.017 {0,192 |0.192 1.013j0.27070,2" 1 0?!5]0.9’0 1.002 1.01770.19) | 0.19) 1.0171 0.19: | D.191
B 1 0.9%8  0.100 }13.100 0.998;0.120]0.12% 0,931 11.024) 1.028 0.994{ 0.100{ 0.10i 0.998 ] 0.098 | 0.048
AN 1 i 0.99¢ | 0.0%2 {0.0%2 ] 06)! 0.082 (| 0.062 1.077 10,481 O 447 0.99%} 0,052 0.082 0.998 0.0%% 1 0.0%%
¢ 0.9 0.8°0 1 0.00% | Q.00 0.7 0.00%] 0.018 - - - 0.8'1|0.000] 0.006 0.822§0.00% 0.011
v 1 i 0.98? , 0.02¢ 10.028 1.020]0.031{0.03 J.086 [ 2.717) $.4C, 1.031106.037 | 0,020 0.944 ] 0.021]0.02¢4
~ 1 L{ 1.03e ! n.027:0.018 1.074{ 0.0} | 0.040 ¥.733 [ 2.948]110.431 {1 2861 0.0 0.0)7 0.994| 0.023] 0.02)
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(2)

where Ty o the true vzlue of Yqs 1, in structure 2.

7 PRt TR

Two sets of estimates of the variance, v, were ohtained for each

i structure-method combination. The first is the quotient of the sum

of squares of residuals over the number of observations. Empirical

means, varlances and mean square errors for estimates calculated in
this way appear in the upper rows labeled . in each of the four sec-
tions of the tables,
For methods other than LS, the second set of estimates of v (fig-

ureg in parentheses) are calculated by dividing each sum of squares

of residuals by T-5 instead of T. Fitting 5 parameters to achleve a

low sum of squares tends to make the resulting sum less than that

which would correspond to true values of p and y. Since the estimates

are nonlinear, one doez not know that this 1is the appropriate adjust-

ment, but it seems a reasonable one to try.

For LS, the second set of estimates of v are the sum cf squares

of residuals divided by T-4. This is what someone who applied L.

would ordinarily use to estimate the variance. For p # 0 it 1s known

to be biased, but the bias could not be computed without knowing the

true value of p.

Table 2 includes the structures involviay 30 observations, and

Table 3 includes those with 100 observatirns in each sample. The

structures in each table are arranged in order of increasing value of

P.

Part of the information about relative MSEs in Tables 2 and 3 is

presented more simply {n Table 4. The first column corresponding to

each method contains MSE averages for estimates of the four y's for

each structure and for various sets of structures. For instance, 0.059
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is the average of four mean square errors of y's estimated by the ML
method for structure 2, and 0.142 is the average of these mean square
errors over all structures with 30 chgervations in each sample. For
methods other than LS the sccond column contains MSEs of estimates of
p for each structure and averages for selected groups of structures.
Each entry in the third column is a weighted average of the correspond-
ing entries in the first two coluﬁns and represents the average MSE
for eatimates of all five coefficients for the indicated method and
structure (or proup of structures). Mean square errors for estimates
of v are excluded in Table 4 since they depend on adjustments for fit-
ted coefficients, and the appropriate adjustments for our nonlinear

estimates are not knowu.

Comparison of the Varlous Estimators of p

To compare the blases of the various estimators, the pertinent
Monte Carlo information was extracted from Tables 2 and 3 and summar-

1zed in Table 5. Inspection of the table leads tc several ganeral

obpervations,

Table 5

MEANS OF DIFFERENT ESTIMATORS® OF p

Structure 0 ML ™ D
21 o |-0.120]|-0.062 | -0.136
30 | 1] 03] 0.153] 0.194 | 0.109
71 0.5l 0.298] 0.309| 0.268
4| 0.7 0.613] 0.512] 0.552
"3 -0.7 f-u.. -0.672 | -0.694
6! o [-0.039(-0.026|-0.03
™100 | s | 5.3 0.270| 0.263| 0.264
| 8| 0.9 0.870| 0.797| 0.822

%The AB estimator wvas excluded because {t is an ad-
justwent of the ML procedure and appears to be numer-
fcally close to the ML astimators for most samples.
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:

% A. When o is nonnegaiive, all three estirutors persistently tend
£ to widerestimate p on the average. Since we have only one

H structure with negative p and the three estimators come close
¥ to the true value, we have negligible evidence for this case.
§ B. Judging by the absolute deviations of sample meang frcm their

regpective true values, the TN estimator of o looks slightly
better for samples with 30 observations and relatively small
p, .., |p| < 0.3; however, ML appears to perform better for
samples with 100 observations and relatively large absolute
values of p. The Durbin procedure appears to be a little
better than TN for samples with 100 observations, but overall
it appears least favorable among the three estimators.

Since an estimator's performance depends not only on the magnitude
of its average bias but also on its variance, we have computed the ra-
tios of the mean square errors of TN and D estimates over those of the
M. estimates. The resulte, presented in Table 6, tend to confirm the

above observations regarding the relative performances of the three

i egtimators.

Table 6

RATIOS OF MEAN SQUARE ERRORS OF TN AND D ESTIMATORS OF o TO ML ESTIMATOR

MSE of TN estimate of p | MSE of D estimate of p

Structure o MSE of ML estimate of p | MSE of ML estimate of p
[ 2 0 0,717 1.038
1 0.3 0,742 1.258
=30 15 o5 0.819 1.217
Le 0,7 1.550 1.450
(3 -0.7 1.167 1.000
6 0 0.909 1.000
T=190 | ¢ 4.3 0.923 0.923
L8 0.6 2.667 1.833

C. The MSE of the TN cstimator of p ta smaller than that of the
NL estimator for samples with relatively small p and with 30
observations. The ML estimator, however, has a smaller MSE
for samples with relatively large o and 100 observations. Re-
farring back to Tables 2 and 3, one sess that TN variancss are
sonsiatently smaller than ML varidice for sample sixe 30 and
alightly smaller in two cases with sample eire 100. The gen-
erally smaller NSEs for ML estimates with 100 observations
sre therefore due to smaller biasas.

S e e
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D. The D estimator seems inferior to the cther two estimators
in terms of the mean square error ratios.

Comparison of the Varinus Estimators of y's

E. The sample means of all the estimators of y's are similar and
are close to their true values. The LS estimator is knowm to
be unbiased, The other estimatore also seem tc ehow very lit-
tle bias even with a Z0-observation sample.

To examine the relative efficiency of the various v estimators,

we divided the average mean square error of v's for each of the three
estimators, ML, TN and D, by that of the LS estimator. This gives some
indication of what an investigator wili gain {f he uses one of the more
complicated methods instead of the ordinary least squares .~2thod. Re-
b sults are presented in Table 7. For instance, the first entry in the

table, 1.035, was obtained by dividing 0.059 by 0.057. Thes2 mean

square average errors for y's are given in Table 4.

e e e

Table 7

RELATIVE EFFICIENCY OF DIFFERENT ESTIMATORS
OF +'s COMPARED TO LS ESTIMATOR

i
i
; . Structure | p |IML/LS| TN/LS {D/LS
i
i (z 0 {[1.035]1.035]1.053
- Te30 |1 ]0-3]/1.012| 1,000 | 1.094 %
' 710.5[/0.869| 0.843]0.895 1
B L4 10.7(10.707, 0.695|0.820 3
- 3 1-0.7110.750 | 0.750 | 0.750 ’
£ 6] 0 ||1.000] 1.000 | 1.167
§ ¢ T=10C 151 0.3]0.905 | 0.975 | 1.048
$ 810.9]0.560] 0.448 |2.700

F. Judging by the relative efficiency, TN is a little better
than ML for samples of sxe 30 and about the same for sam-
ples of sise 100, The D estimator performs slightly worse
than both the ML and TN estimatore.

For samples with only 30 odservations and relatively small value
cf o (0.3), the other three estimators do not have advaritages over
the LS estimator.

W W e
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Interpretation of comparisons for groups of structures is compli-
cated because the number of structures that could be investigated pre-
vented construction of a balanced design reflecting all of the prop-
erties ccuusidered important. Thus the three structures with smooth
2's include two with T = 30 and one with T = 100, while the three with
rough Z's include two larger samples and one smaller one. Comparison
of the smooth and rough rows, therefore, indicates only that the ef-
fect of smoocthness in Table 4 is small relative to samnle size in our
experiment.

A little better hint can be obtained by averaging MSEs for struc-
tures 1 and 3 and comparing these with averages for 4 and 5; the re-

sults are shown in Table 8.

Table 8

AVERAGE MSE FOR ALL COEFFICIENTS AND SELECTED STRUCTURES

Structure
Combination ML TN LS AB D
1, 3 (S) 0.043 ]| 0.042 | 0.047 0,048 | 0,048
4, 5 (R) 0.060 | 0.061 { 0,094 0,081 10.071

The comparisons in Table 8 are a little more meaningful than the S and
R rows of Table &4, since each row of Table 8 refers to a pair of struc-
tures with T values 30 and 100 and lpl equal to 3 and 7 (see the de-
scription of structures in Tablie 1). This shows a tendency for lower
MSE with smooth independent variables, particularly for LS. It {s
clear, howaver, that any conclusions on effect of smoothness based on
dats from the present study would be very tenuous. This should be in-
vestigated further analytically and, {f necessary, by Moute Carlo

triale specifically designed for this purpose.

R R T
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AB estimates are obtained by adjusting ML estimates. From Tables
2 through 4, it appears that, on the average, the adjustment worsens
the estimates, at least when judged by MSE. It is also of interest to
know whether or not the adjustment is typically large or small. That
it was less than 0.05 in wost cases in the present study is indicated
by Table 9, which contains frequencies of the differences {n AB and

ML estimates of p and of Yoe

Table 9

COMPARISON OF MAXIMUM LIXELIHOOD ESTIMATES WITH APPROXIMATE
BAYES ESTIMATES

H Structures

Differences of T=30 T=100
2 Estimators 2 1 7 4 3 6 5 8

: p (ML) -p (AB)

i -0.50

y -0.50 ~ -0.20

B -0.20 ~ -0.05 31 s 711 2 2

-0.05 ~ 0.05 | 296 {286 [285| 256] 300 | 300 | 300 | 295
0.05 ~ 0.20 1| 9| 4] 61 3
0.20 ~ 0.50 1
0.50 ~

-0.50 9
-0.50 ~ -0.20 5 6| 37
-0.26 ~ -0.0> 70 791 63 9
-0.05 ~ 0.05 158 | 135 80| 300§ 300 | 300 | 300 | 283
0.05 ~ 0.20 63 76 | 67 8
0.20 ~ 0.50 4 41 39
0.50 ~ 5
True values
of » 0{0.3{0.5}{ 0.7§-0.7 0]0.310.9

it should be noted that the above observations and others to fol-

low are, i the first fnstance, descriptive statemsnts of how certain

R I - i AN AT kT e e R B o sine oo . . - e e ame e ———
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statistics behaved in this one experiment. Since 300 samples were
drawn for each structure, we hope that the observed characteristics

are generally representative of these structures. It is unknown how
well these structures represent those commonly encountered in practice
and how many Jf the pruperties we have noted will hold for different
structures. Thus it is desirable that hints furnished by these studies
be supplanted by precisc analytical results as quickly and completely
as possible. For important properties that remain intractable, further
Monte Carlo experiments with different structures are in order.

ML, TN and D seem to understate p svstematically (at least for
nonnegative p), suggesting that a avgtematic adjustment in each esti-
mator might improve its accuracy, especially for small samples. This
seems worth pursuing, but the authors believe that further analysis of
the distributions of the two estimators is in order before recommenda-
tions are formulated. For the ML estimator, the matter is discussed
a little further in connection with the discussion on tests of good-
ness of fit.

The tendency for maximum likelihood to give better estimates than
alternative procedures when fpl is large is confirmed by a study con-

ducted {ndependently by David F. Reilly [16].

TESTS OF SIGNIFICANCE

Although this study's emphasis {s on estimator performance, it
would have been wasteful not to have used the data generated tc check
the behavior of commonly used tests of significance as well. Accord-
ingly, Tables 10 and 11 present the fraction of samples that, for each

of several tests, rejects the null hypothesis ¢ 2 0 (one-sided) or

e e e s

e a2 e
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p = 0 (two-sided) for each structure. Each entry is the fraction of
300 samples in which the indicated test rejected the null hypothesis

in question, The result of the Durbin-Watson test is sometimes incon-
clusive (see [6], p. 409). The proportion of cases in which this oc-
curred is indicated in parentheses beside the entry indicating the oro-
portion in which the null hypothesis was rejected.

The Von Neumann ratio test [20], the Theil-Nagar test [19]), and

the Durbin-Watson test [6, 7; have frequently been used in econometrics.

All are based on the Von Neumann ratio of mean successive difference
to sample varianca, An investigator using likelihood methods would
find £, the ML estir 3 of p, or the likelihood ratio a natural test
statiscic.+

Hildreth shows [12] that £ is asymptotically normally distributed
with mean p and variance E%EEu Hence, a test based on this asymptotic
distribution may be applied to these null hypotheses by referring to
a normal distribution with zero mean and variance 1/T.

The likelihood ratio test has teen applied bv assuming that
-2 log *» (where ) 1{s the likelihood ratio) is approximately xi. The
likelthood ratic is, of course, only useful for two-tailed tests.

Since the Durbin and Watson tables do not provide for a l-percent
tvo-tailed test, the results shown for the two-tailed W test are for
an intended 2-percent significanca leveal. Theil anc YNagar did not rec-
ormend that two-tailed tests be perforwmed using cheir tabi.; but, be-
cause their tabulated critical points are almost identical to the

critical pcintas du in the Durbin-Watson tsbles (see result D below),

one could obtain the results for two-tsiled TN tests by adding the

‘The refinement of the Thei{l-Nagar teg: suggc-ted by Henshav (9]
came to our attention after computations wvere under way.
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regular entry in the DW column to the parenthetical entry immediately
to the right.
Principal results indicated by Table 8 are the following:

A. There were many inconclugive applications of DW, as previous-
ly noted by both theorists and yractical workers.

B. The low ermpiri:al significance levels associated with one-
tailed § tee*s when ¢ is actually zero, and the high levels
For two-tai el tests, are consistent with the tendency pre-
vious’y noted for § to be negative when p = 0. Thie suggests
that tests based on 6 canmot be recommended for moderate-
sized sarples until a better approximation to tts listribu-
tion 18 developed.

7. For gawles of size 30, the tabulatel power of the TN test
me. © be discounte . because the test rejecte a true null hy-
pothegis ruch more ‘requently than it shoul .

2. A comparison of the TN and DW colums for one-tailed tests
indicates that the proportion rejected bu TV is equal (with-
in rowuding error) to the proportion rejected by DW plus the
proportion inconclusive by DW. Inspection of their tables
indicates that the TN critical values are within 0.0 of the
corresponding upper DW critical values #xz::pt ‘or sarples
emaller than 20. Thua, in practice, applying "N is virtually
the same as applying DW and rejecting the null hypothesig if
the DW procedure either indizates rejection or ig inconelu-
s'e.

trs

. The LR test based on the agsymptotic distribution is not very !
powerful for samples of size O and, for samples of size 100, j
the rejection rate for true hypotheses is lower than the in- ‘
tended signi fleance level.

APPROXIMATE DISTRIBUTIONS '

As mentioned in Sec. I, Hildreth [13] has shown that the ML es- ™
timators are asymptotically distributed according to a multivariate

normal law with ¢, §, O mutually asymptotically independent. The

L

asymptotic variances are

‘Limits of these moments are .nown to equal the corresponding
moments of the limiting distribution, since {t can be shown that fourth
moments of the ML estimators are bounded. See [13], p. 10.
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(8) HnET G - Y)E - y)' W

T+

lim EVT (6 - o)2 = (1 ~ 02)

T-rio

lim EVT (¢ - v)2 - 2vz ,

Tre
vhere vy, p, v are the Ml estimates and

/ 1 -1 -1
V= \iim f‘Z'A Z/ .

T
It was conjectured that, for many purposes, the asymptotic distribu-
tion of ¥ would prove a tolerable approximation in samples of the size
often encountered in econcmetric studiea, but that for £ and J the
asymptotic distributions would be less satiafactocy.

The x2 goodneas-of-fit statistics listed in Tables 12, 13, and
14 tend to confirm this conjecture. Table 12 was constructed by de-
termining 13 intervals for each component of vy and computing the ex-
pected frequency of estimates in each interval under the assumpticn
that the estimator was distributed according to its asymptotic law.
Adjacent intervals with small expected frequenciss ware combined to
follow Cochrane's recommendation that no more than 20 percent of the
remaining intervals should have expected frequencies smaller than 5.
This determined the 'df" entries.

Observed frequencies in each intarval were then tabulated and a

xz value for each estimator was computed by the familiar one-way formula,

I 2
2 E‘ (E; - 0))
X“w L =
121 {

(9)




26~

Table 12

7 ~
x~ STATISTICS FOR ASYMPTOTIC DISTRIBUTION OF y's

1 2 Yy "4

. 2 ? 7 N

Steuctureg d.f. | 5% Points " 4.t | 5% Points . c.f. | 5% points | d.f.] 5% Puints]
A 15.5 Lot i 18,3 [ls.nfl 8 15.5 200 o 8.4 |
I=30 Lo 183 ey U 18.3 el o8 15.5 jlo.7f 10 181 1.7
o 193 0 e 1t 19 7 mof 1l 19,7 15.2 0 v 16 4 3.8
4o 197 jt29f 8 i5.5 Y 15.5 w08 15.3 ..
s 9.5 l hBl % 12 6 ol s 2.6 Lifos 126 5.9
. LI 125 LR I 12,6 Bef o 12.6 15 e 126 B3
. 12.6 g.8] 12,6 sl e 12.6 66| 126 95
df 1o 18 a6 16.9 X4 18.3 |2 s 15.5 6.1

where 01, Ei are respectively the observed and expected frequencies,

and the number of intervals is I.

Table 13 was constructed similarly except that alternative theo
retical distributions were usad to determine expected frequencies in
calculating the 42 statistics appearing in the last two columms. For

* &
the column headed B , a modified 8- distribution was datermined by

A;'Lel f.(x) = 1 xp-l (1 - x)q'l for 0 < x <. 1 be a 3-density and let w = 2x - 1. Then

3 B(p.q)
g(w) = ,_ll e wP b ot
M Bpa)
for -1 Sw s 1 (4 the density of w
Ew = E__;_ﬂ . Var(w) = "L;q
P (p+Q(prat b
|- 2
Setting Ew = p, Var w = ———!,-L- yields
S (LN )] g - Lo )
2 ' 2
| £ 9
Setting Ew = o - —: (1 +2), Var w = -—r--P-— i (1 » p) ylelds
T

2.2
1 alar? A ¢ =3 AR T vl
P2l vy T -0 + 07 ' A

¥y, 3
At A (e - 2.2 B-(l-o*;*'ﬁ
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transforming the variable so that the interval of nonnegative density
was (-1, 1) rather than (0, 1), and then determining the remainf-g

free parameters to make the mean and variance equal to their asymptotic

1- 2
values, p and Tp
Table 13
x2 STATISTICS FOR @
2
Calculated Values of x
* [3
Structure || p Id.f.| 57 Points | Asymptotic 8 8 *
[2] 0 8 15.5 196.7 194.23 8.95
T=30 1 0.3] 8 15.5 317.9 277.56 5.12
71 0.5 8 15.5 945.6 686.57 28.28
(4| 0.7] 6 12.6 70.6 194.69 | 103.79
[3]-0.7] 4 9.49 1.8 4.05 | 11.40
T=100 63 0 6 12.6 52.3 51.78 10.10
5] 0.3] 6 12.6 40.7 37.76 5.08
[ 89 0.9; &4 9.49 131.8 131.89 | 149.29

The theoretical distribution used in calculating the column
*k *
headed 8 was similar to that for B eacept that the mean was set
2
equal to p - 3 ; ) and the variance equal to }—%~£-+ —% 1+0).

4

The latter expressions crudely approximat~ .ue means and variances
that appear in Tables 2 and 3 for various values of 5. The B* and B**
cistributions were superficial guesses made in a quick attempt to find
a better approximation tu the distribucion of § in typical samples.
Though B** does reduce the "badness" of fit substantially, except for
high values of p, 1t does nct look promising to us, and we believe an
attempt to determine more propertiss of the finite-sample distribution

of § analytically should precede further attempte to find a better ap-

proximation,
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Table 14 also contains x2 values calculated from the asymptotic
distribution (this time of V) and another which, it was guessed, might

provide a better fit for typical samples. The asymptotic distribu-

tion is normal with mean 1 and variance 2/T; the alternative was ob-

tained by assuming that TV was Xi-K-l' The latter amounts to treat-
ing o as though it entered linearly. Though this approximation did

fit well for samples of size 30, neither it nor the asymptotic dis-

T Y PR

tribution was a good approximation for samples of size 100. Here,
again, closer atudy of properties of the actual finite sample distri-

bution is in order.

Table 14

—in 5 2 e v e A i s i

x2 STATISTICS FOR ¢

Asymptotic Gamma
Structure Jd.f. | 5% Points x2  d.£. | 5% Points x2
i
2] 10 18.3 157.48 9 16.9 9.94
T=30 1| 10 18.3 162.74 9 16.9 4.12
7] 10 18.3 246 .43 9 16.9 19.78
, L4 ] 10 18.3 158. 66 9 16.9 6.56
: 3 6 | 12.6 461.24 7 14.1 27.97
]

| 6 6 12.6 51.55 7 14.1 168.25
I =100 15 ] 6 126 | 338 7 W1 | 13.70
’ 8] 6 12.6 13.04 7 14.1 37.90

§ One reason for examining the fit of approximations to the maxi-
g ; mum likelihood estimators is the conjecture that it may be possible

to construct a useful spproximate Bayesian procedure for applicacions

e e o s et e e Sot il

of this model if a sufficiently simple and accurate approximation can

+

be found. Prospects for such a procedure are enhanced if the esti-

o

“See pp. 426-427 of [11].

T e N 13 SR 1 5 R i
T ‘“"“"i*%ﬂ.‘;}.‘g
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mators vy, ¢, v are '"approximately" independent in samples encountered
in practice. The aspect of independence that can most readily be
checked (and is quite possibly the most impoitan* asiect tf utility
functions are approximately linear) is linear noncorrelation,
For this prospect, Table 15 is highly encou}aging. Simple corre- 4
lation coefficients between p, v, and components of ¥ are presented

for each structure.

Table 15

SIMPLE CORRELATION COEFFICIENTS

) Stru res
Pairs of ructu

Estimators 1 'E 4 5 | 6 7 8

P §1 0.084| -0.004 | 0.i05) -0.049 |-0.056 | 0.003 | 0.076 | -0.076

s ?2 -0.096 | 0.024 | 0.005 -0.051 | 0.008 | 0.070 | 0.036 -0.072

By, ||-0.047 0.060 | 0 0.048 | 0.005 | 06.045 |-0.031 0 008
8§, ||-0.045| 0.058 | 0.104| 0.084 | 0.082 | -0.003 | -0.061  -0.128 ﬁ
vy 0.078 | -0.023 | 0.0¢7 | -0.100 | 0.037 | -0.025 | 0 | -0.156
¢y, |[l-0.028| 0.028 | 0.026| 0.073 |-0.053| 0O 0.016 -0.038

v y3 0.109] 0.045 {-0.043| -0.104 | 0.053 | 0 0251 0.007 | 0.001

v Q& -0.045 | -0.031 |-0.082 -0.027 |-0.043 | 0.087 {-0.019; 0.722

v o 0.096| 0.177 |-0.067| 0.186 | 0.142 | -0.001 | ©.297 | 0.195

For 300 observitions, the significance points of tha sampling dis-
tribution of simple correlatioen cosfficients under the assumptions of
norsality and p = O are + 0.1133 at the 5-percent level. Consequently,
among the 81 correlation coefficients examined, only 7 rejected the
null hypothesis. Since 5 out of the 7 rejected cases involve corre-

lation coefficients between p and U, we probably cannot assume that

J . . £ A i o s e A o
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they are independent in most samples encountered in practice; however,

the elements of { are approximately uncorrelated with p and V.

e RN

aRd
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Appendix A

METHOD FOKR GCWERATING ARTIFICIAL DATA

Our procedure for generating time series with known properties

congigted of the following steps:

a. We first decided on a particular combination of parameter

values for the mode!l represented by (1) and (2). All together,

eigit different combinations of the parameter values wece con-

sidered (see Table 1, p. 5).

The values assumed by all the explanatory variables, Ztk’ for

1,..., T and k = 1,,.., K, were also specified. In

general, these values were varied from one structure to another.

We then generated T random numbers, each of which was normally

and independently distributed with mean O and variance 1.

These random numbers were used as independent disturbances of

the model and T observations were obtained on the dependent

variables, conditioned on the assumed values of the parameters

and the explanatory variables. The yt's thus genersted, to-

gether with the corresponding ch's, constituted a sample.

The four estimating methods (ML, TN, AB, and D), plus the least

squares (LS) method, were each applied to the above sample for

+
estimating yk's, v, p and the Von Neumann ratio statistic R.’

where :( is the LS estimate

of the disturbance Uy -




e g 0

e o

- b T

t. For each of the eight structures, sters (¢) through (e) were

repecated 300 times., The resulting 300 sets of parameter

estimates became the basic data for our sampling experiment

4

with respect to that structure,

Procedures for generating data as described above were programmed

in FORTRAN IV. For those interested in further experimentation using
samples with different characteristics, usage of the program is de-

scribed in Appendix D.

It took approximately 25 minutes of IBM 7044 computer time to
obtain 300 sets of parameter estimates.

T TN S T SR R 5T

.
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Appendix B

SPECIFICATIONS AND PROPERTIES CF z, k:§

5

For reasons discussed in Sec. II, we constructed three different
types of independent variables. The values of the independent vari-
ables in structures 1, 2, and 3 are such that they approximate the con-
ditions favorable to TN and LS: those for structures 4, 5, and 6 do
not. The independent variables for structures 7 and 8 wetre based on
empirical time series,

To specify the independent variables of structures 1 to €, let
us define a typical element in the jth characteristic vector of an

approximation to the inverge of the variance matrix A as [4, p. 17]

(11) R(j,t)-cos[Zt;ljn] tm1,2,...,T.

Using the above notatfon, the independent variables for structures 1
to 6 are presented in Table 16,

Characteristics of the assumed values of the independent vari-
ables for varlous structures are summarized in Table 17, Note rhat
the sample varian~es of all the Z variables are less than 1, and that
their sample correlation coefficients are small excent for those based

on the empirical dats.
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} Tabl.: 1€ ,
!
. }
€ SPECIFICATIONS OF THE 72 MATRIUES FOR STRUCTURES 1 TO & i
¥’
¥
! ' Independent Variables ‘
1 . i
Structure BC~nstant Term 2 3 4 !
T 1 R(u,:, R(2,t) + e RO+ ¢ R(S,0) + ¢, 4]
i |
\ 2 R(0,t) R(2,t) + < RELL, ey + e R(5,t) + e :
%
: 3 RO, ) R(&,t) + € R(23,0) + e R(L0.€) + ¢ !
}
| o | | . |
= - Y Ry, = R(), ) .
E 4 R(0,¢t) 7L R(}. ) : ().t 7 L ) :
j._]l sz 1y :
‘ Jpm Ihe305,20,29 0 = 25,1117, 20,2601 5, s 36, 1,18,23,27
i 1 (SN |
i b R{O, ) 5 2 R(1,0) 3 }OR().T) E Ry,
! - .
é J""l J-JZ ]J’
! J e (1,4,8,15,20,60° 3" (2,5, 10,07, 21,72 Jy ot 3.b.13,18,23,89
' L
( 6 Same a3 Structure

NOTE: A random elewent vas added to each of the independ=nt variables (other than the conatant
term) in the firsi three structures. For Structures 7 and 8, fhe Oorigindl Jata vere taken from
three scts of empirical time series from U.S. Statistical Abscract. Y wholesale price index;
(2) numbers of immigrants; (1) exporcs of toodstuff. The values of these independent variables
had been adiusted so that their sample variances would be 0.75, which 18 smail relazive to the

variance of the random disturbances. This was tntended for edsier interpretation of the sampling
experiment results.

a

<, i{s a normal deviate with mean O and vartance

Table 17

UHARACTERISTICS OF 2 VARIABLES: MEANS, VARIANCES, AND ’
CORRELATION COEFFIUCLENTS ;

Structures '

! vVeriables t 2 3 4 pLo) ? ]
Maans '

lz 0.084 | -0 061 ¢ 00¢ a 000 GO0 | -0 000 | 0 000 ;

t‘ 0 01y ] -0 024 | -0 00! 0 02% 0.020 0 000 | 0 001

14 0 01y -0.024 { -0 007 o on Q 020 00000 QX

[}
Varisnces .

lz 0 4b¢ 0 %)% 0 533 0 'S0} O 'V 0 r50}0 %0

!’ 1A%} Q ble 0 %78 Q! 0?30 © 730 [0 .8

1‘ 0 460} 04N 0 &% LR 0’30 0 °saf{0 7%
Correlation
Coafficienta . . :

l,.l’ Q1) 0 13} Q D2¢ 9 010 3 QY 0 %) {0 Te

!z.t 0.0i6{ -0 13) | -0 0D [.0 Y49 f [} 0\2_ O 898 ;0 29}

“ t 1
. ) 0 NAg 0 Oy | O C8Y o:xoi-o 0251 0 0M O 108
Y
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Appendix C

MAXIMIZING THE LIKELTHOOD FUNCTION

The likelihood function of this study differs from the one devel-
oped in _10] only in the added assumption that the u, in Eq. (1) has
a stationary distribution. In particular, it is assumed that all of
the UL'S are normally distri :ted with zerc means and equal variances
/(L - 02)] v,

To obtain ML estimates of vy and ¢ the following procedure was
used: Assume a particular value of p, and compute the correspondirg

estimates of y and the sum of squared residuals from (12) and (13),

respectively:

~ B T |
(12) vy() = "Z2°A 2] Z Ay

. ~ . ™~ . -1 ~
(1) So) = Ty - Zy(HI A "y - Zy(p)?

This is done for a number of selected values of g, and the value
which approximately minimizes S(0, is determined to a desired accuracy.
If the value, g, of o that minimizes S{¢) can be found, then 3 and

¥ = v(3) are ML estimates of 5 and vy.

A computer progvam was developed for numerical search of 3 minimum
} prog {

point of S9) in the interval -1 <p < 1. Since S(2) is 2 ~olynomial
of high degrees in o, a procedure was provided for safeguarding against
sultiple minima.  This was done by examining the successive first-

differences uf S(p) evaluated in trz above interval at an increment of

—

The model based on this assumption of stationarity is discussed
in some detail in Append.: A of 10] and (13, pp. 2-8.

ittt R iz
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0.01. If the values of these first differences should change sign

more than once, we would conclude that the function probably did not

have 1 unique minimum. It should be noted that no multiple-minima

s. iation appeared to exist in all the samples generated for the study.
After we were reasonablv assured of having no multiple minima,

numerical sear n for the minimum sum of cquares of residuals was

carried out as follovs:

(1)

(
¢ (1,

(a) §(a) is initially evaluated at p = p Po » Py >
8

d,
whiere d > 0,
(b) Pick the value of p that corresponds to vhe smallest gkp,

in Step (a) above. Call this value péz).

Steps (a) and (k) make up the first iteratic.., In the second iteration,
¥ . X 2 d 2 (2 d
S{p) is ev @ 1ated at o = 9 - 5 pé ), 96 )+ 7 In general, in the

ith iteration, the function is being evaluated at

L) d () (), d__
o T Li-1 %0 0 Po T A

In our program, we set

oé‘h 0,d=05andi =1, 2,..., 10.

A FORTRAN program for the above search procedure is given in

Appendix D.




Appendix D

COMPUTER PROCRAM FOR GENERATING A SAMPLE FOR THE MONTE CARLO STUDY

+
A computer program wag developed for generating the independent

variables and dependent variable for a given combination of parameter
values, (See Tables 1 and 16.)

This appendix describes how to prepare Iinputs to this program.
The correspondence between the notation used below and that of the

main text is as follows:

RHO = true value cof p
GAM = vector of true values of Yis
KZV[i] = 3 in Eq. (11) for specifying the 1ith

independent variables in structures 1, 2, and 3.

KZVk[i] = 3§ in Eq. (11) for specifving the kth element
of the ith independent variable for structures
4, 5, and 6,

INPUT

Five input cards and three methods are explained. The first
three cards remain the same and provide input for all three methods.
The use of carde 4 and 5 varies, depending on the method,

Firgt Card. Ccntains 7 integers each of field width 3:

Col. 1-3: K (usually S 4; program modification required if greater
than 4)

Col. 4~6: T (5200)

Col, 7-9: NTIMES = N = number of cases to be run.

e

+This was programmed by R. J. Clasen of the Computer Sciences
Department at RAND,
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Col. 10-12: NRN (>0). This means that NRN-1 runs will be copied from
tape NTAP2 onto tape NTAP and then this run will be writ-
ten as the NRNth run on tape NTAP. If NRN = 1, M.AP2
need not be specified.

Col. 13-15: ITYPE =1 if first method of Z matrix input is used. It
specifies the Z matrices for Structures 1, 2, and 3.

ITYPE > 1 if second method of Z matrix input is used. It
specifies the Z matrices for Structures 4, 5, and 6.

ITYPE = 0 if third method of Z matrix input is used. It
specifies the Z matrices of Structures 7 and 8.

The value for ITYPE is tiie number of KZV cards to be read
in when ITYPE > 1,

Col. 16-18: NTAP--the PORTRAN tape unit number of the binary tape on
which the results will be written.

Col. 19-21: NTAP2--the FORTRAN tape number of the old tape whilch is

copiad onto NTAP. Usually NTAP = 8 and NTAPZ = §, cr
N1.P2 = 8 and NTAP = 9,

Second Card. Cclumns 1-12 contain the value of RHO punch with a
decimal point. (FORMAT (F12.96)).
Third Card. Contains the vector GAM (=GAMMA), with 12 columns

per number (6F12.6).

Method One (ITYPE = 1)

Fourth Card (Method 1). Contains the KZV vector with 3 columns

per integer (2413). The ith column of Z is generated by

2(1] = R[KZV(i]] re() ,

where (i) = ;z
)

and € is rea. in by the next card.

Fifth Card (Methcd 1). Columns 1-12 contain the value for

. (F12.6),
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Method 2 (ITYPE > 1)

The input for method 2 consists of the first three cards above,
plus ITYPE cards of the form of the fourth card of method 1. Let K

be the ith number on the jth such card. Then KZVklil,

Z[1] = vector of all ones.
ITYPE

2[1] = % kZ; R[kzvk[ilj for 1 > 1.

Note that each KZV card contains space for K numbers, but that XKZV[1]

{2 never used (KZV[2] is in columns 4-6, etc.).

Method 3 (ITYPE = 0)

The Z matrix i8 read in from T cards, each card containing & row

of the Z matrix. The T cards follow the 3 cards that are common to
all methods. The first columi of Z is set to 1; hence each card need
contain only K-1 numbers, FORMAT 203 in the MAIN (LU) program 18 used.
Currently, this format is (10X, 8F10.5), but this may change in the

future for the convenience of card punching.

INPUT FOR THE TAPE POSITIONING AND PRINTING PROGRAM

The input for thig program consists of one card with three inte-
gers punched in fields of three-column width (313).
Col. 1-3: NTAP = the FORTRAN unit on which the tape is mounted
Col. 4-6: NRN
Col. 7-9: NOGO
If NOGO - 0, the program will rewind NTAP, and will then space NRN-1

runs forward on the tape, so that the tape will be sitting at the
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beginning of the run NRN, If NOGO ¢ 0, the tape will be positioned

Lo

as above, but run NRN will then be printed in a compact form. After

S )

printing is completed, the tape will be rewound.

St P B 7 Y S

R BT e
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