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ABSTRACT 

Assume    F    and    G    are distributions on    [O,00)    with 

densities    f    and    g  ,  respectively.     If    G    F    is convex on 
/ 

the support of    F    (an interval),  then 

r(x) - j- G-Vx) -        ^ 
gtG'Mx)] 

(the generalized failure rate function) is nondecreasing in 

x e [0,°°) . We assume G known, r nondecreasing and 

consider the problem of estimating r . A general class of 

i.dotonized fixed and random "window" estimators are proposed 

and studied. These Include the maximum likelihood estimators 

(MLE's) studied by Grenander (1956), Marshall and Proschan 

(1965), and Prakasa Rao (1966). By appropriate choice of 

the window size, we improve, asymptotically, on the MLE. 

Strong consistency is proved for isotonic window estimators 

generalizing and simplifying previous proofs.  Strong 

consistency is proved for a class of isotonic estimators 

when the basic estimator is strongly consistent. 

* - 
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ASYMPTOTIC PROPERTIES OF ISOTONIC ESTIMATORS 
FOR THE GENERALIZED FAILURE RATE FUNCTION 

PART I:  STRONG CONSISTENCY 

by 

Richard E. Barlow 
Willem R. van Zwet 

1.  ISOTONIC ESTIMATION IN THE CASE OF CONVEX ORDERING 

Assume F and G are distributions on [0,°°) with densities f and g , 

respectively. We consider the following convex partial ordering (c-ordering) on 

the space of distribution functions on [O,™) . We say that F is c-ordered with 

respect to G [F < G] if and only if G F is convex on the support of F (an 

interval) [van Zwet (196A)]. We say that F = G if G~ F(x) = ax + b for some 

a > 0 . 

If F < G , then 
c 

(1.1) r(x) - — G"1F(x) ^  
dX g[G'iF(x)] 

is nondecreasing in x e [O,00) . We assume G known, F < G and consider the 

problem of estimating r . Maximum likelihood estimators (MLE) for r in the case 

when G is the exponential or the uniform distribution have been investigated by 

Grenander (1956), Marshall and Proschan (1965), B.L.S.P. Rao (1966), and 

Robertson (1967). 

Let    r      be an initial or basic estimator for    r  .    Let 
n 

0 = w„      < w,       <   ...   < vJ      <  ...    be a subdivision of     [0,00)    and    y  {w.     }    a 
0,n        l,n i,n n   j,n 

00 

sequence of weights on jw.  )   . Assume w,  < x < w .   . We call the inter- 
\  J^fj.Q i'n ~     i+1'n 

val [w.  ,w..,  ] a "window." We will be especially interested in the effect on 
i,n i+1,n 

the estimators with respect to the rapidity with which the window goes to zero. 

Following Brunk, we call 

MMIMMMlMa ■MUS 



(1.2) rn(K) inf  sup 
t>i+l s<i 

t-1 
I     r (w  )u {w,  } 

■jtg n J!!  n J»n 

t-1 
I  U (w.  } 

j=S 

the monotonic regression  or more generally the isotonia regression  of r  with 

respect to the discrete measure u  .  Note that r  is a nondecreasing step r                         n n 

function.  Let F  be the empirical distribution function corresponding to an 

ordered sample 0 = X < X, < X„ < ... < X  from F .  Let £. - (w..,   - w.  )/2 . r       0—1—2-   — n i    i+l,n   i,n 

We call 

'„"i) 
^^i' 

F (w    ) - F (w,  ) 
n i+l.n n ltn 

gG-^q)   (wi+1>n - w^^gG^C^) 

the "naive" estimator for rCC.) .  This has been extensively studied by 

Parzen (1962) and others (in the case G(x) = x  (0 <_ x <_ 1) j and by Watson and 

Leadbetter (1964) and others (in the case G(x) * 1 - e   for x >_ 0 ) . 

If r  is the naive estimator and u U,} ^ gG F U.Hw....   - w.  ) , then 
n n i   0   n i  i+i,n   i,n 

(1.3) r (x) -  inf  sup —r- 
n     .. , . ,   .,  t-i 

t>i+l s<i 

F (w,.  ) - F (w  ) n t,n n s^n 

,-1, -   I    gG"XF (C )(w     " w.  ) 
j.g     n j  J+l,n   j,n 

If the grid  {w,  }  is fixed and not random, then (1.3) is the MLE (in the case 
l, n ' 

G(y.) - 1 - e~X) for a discrete IFR distribution.  [Cf. Marshall and Proschan (1965), 

Section 7.]  If w4  =• X, , then 
l,n   i 

(1.4) 
t - s r (x) - inf sup —-—.— 

n      J , 1 J        t—i   , 
t>i+l s<i    r  ^-1,, /,.->/,,    „ x - - n^gG FnUj)(Xj+1-Xj) 

Is the MLE studied by Grenander (1956), Marshall and Proschan (1965), and 

•ammt^tmmmm 
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B.L.S.P. Rao (1966) (in the case G(x) = 1 - e~X for x >^ 0) and by 

Robertson (1967) (in the case G(x) » x , 0 ^ x ^ 1) .  If G(x) - 1 - e-* , then 

the weight u  itj  - [1/nKn - i) (Xi+1 - X ) is the "total time on test" (divided by 

n) between ordered observations X. and X,,, . We show in Section 2 that in this 

case 

li+l * 

(1^ 

k W * / 
F^Ci/n) 

gC"1? (u)du 
n 

F'1(y) 

*F(^)
a'->s' *F(y) - f gG^FdOdu 

n n 

as i/n ■*■ y    and n -> ^ . We call <l,F(y) ths total time on test distribution  or 

measure   (not necessarily a probability distribution). 

If r  is the naive estimator and U U.,} ■ w....  - w.   , then 
n n i    i+l,n   i,n 

(1.6) r (x) ■ inf  sup 
t>i+l s<i w^  - w   j-s 
—    —   t,n   s,n 

t-1 [F (w.^.  ) - F (w. 

gG Fn(^) 

is the Isotonlzed "naive" estimator. Note that r (x)  is a special kind of average 

with respect to "discrete Lebesgue measure," while r (x)  is a special kind of 

average with respect to "total time on test" weights.  It might be conjectured that 

r (x) will perform better than r (x)  for small samples since the "total time on 
n        * n 

test" for an interval is a measure of our information over that interval and 

r (x)  takes advantage of that fact.  However, as we shall show in the companion 
n 

f 
paper , they are asymptotically equivalent (when the windows of the grid are not 

too wide). 

Another estimator for r can be obtained using the "graphical" estimator 

Asymptotic Properties of Isotonic Estimators for the Generalized Failure Rate 
Function - Part II: Asymptotic Distributions). 



G'lf (w^i  > - G-1? (w,  ) 
(1.7) r (5J " w

i+1'n n—L±- 
n 1       wi+l.n " wi,n 

This is motivated by the identity 

Wi+l,n 
G ^l+l.J -  G F^  ' wi.n) ■ /   r(u)du • 

i.n 

If we use this for our basic estimator and let p U..} ■ w. .,   - w,   , we obtain 
n i    i+l,n   i,n 

G'1?  (wt  ) - G'1?  (W  ) 
/,„.. /v    .r      a t tn n s.n 
(1.8) r (x) - inf  sup  ——» »— . 

t>_i+l s<.i      t,n   s.n 

* 
Although all three estimators,  r (x) , r (x) , r (x) will be shown to be n n n 

asymptotically equivalent  (for certain grids), we can see that    r  (x)    and    r  (x) 

are perhaps more alike since they use the same weighting function.     The similarity 

is also apparent  if we expand    G        in a Taylor's series about    F  (x)   .    Notice 
* - 

that when   G(x)  • x    (0 < x < 1)   ,  r  (x)  - r  (x)  - r (x)   . 
^^       "•«• n ti n 

>   - 
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2.     CONVERGENCE OF TOTAL TIME ON TEST MEASURES 

The total time on test measure,     «I"      ,  plays a crucial role in proving strong 
n 

consistency of r (x) . It also is important in life test theory for the 

exponential distribution. Note that when G(x) = 1 - e   for x >_ 0 , 

F^d/n) 

ß'   /      gG-
1Fn(u)du V" 

1   ,-1 

This transform was introduced in Marshall and Proschan (1965) and exploited by 

B.L.S.P. Rao (1966) (when G(x) - 1 - e ) to obtain the maximum likelihood 

estimate for the failure rate function of monotone failure rate distributions. 
CD 

Assur.e u. ■ J xdF(x) < 00 .  Strong uniform convergence of *_ (y)  to *p(y) , 
0 n 

in this case, is an easy consequence of the Glivenko-Cantelli theorem and the 

strong law since 

However, strong uniform convergence is not trivial for general distributions, G , 

when F (1) ■ " . 

The proof of the following theorem is due to H. D. Brunk. Note that in the 

following theorem we do not  assume F < G . 

Theorem 2.1; 

Suppose that either 

aaHM_aaaHaiMaaBH^M^^^^^^^^^^^Biaa^^^lri 
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(2.1) F^d)   < » 

or 

(2,?) 

and 

00 00 

^(D - - ,    J    xdl^(x)  < ^  ,     f gG'1F(x)dx  < - 
0 0 

(2.3) 4- - gG"1 

has a continuous derivative    ifr    on     [0,1]   .    Then 

•fsup     |*     (y)  - *   (y)I  ^ ol - 1  . 
[0<y<.l        n r J 

(Note that    F < G    implies   J    gG~ F(x)dx < » .1 

To prove Theorem 2.1, we need  the following lemma: 

Lemma 2.2; 

Let 4» : [0,1] -•• R be continuous and set f(u) - f  ^(t)dt , u e [0,1] . 

For positive integers i , n , i <^ n , sat 
I 

•.,, - iHr) - •(;) ■ 

Let Z.,Z7, ...» Z  be independent random variables, each with continuous 

distribution F .  Let  JZ.]  and  ]Z1^[F(Z1)]|  each have finite mean.  For fixed 

positive integer n , let X^X., .... X  be the order statistics of  Z., .... Z 
i z       n in 

Then 

n r 
11m I    A  X ai8* -  I x*[F(x)]dF(x) 



jm!JB'.a.,,!ll!.l.g.'   ■ .' ~ ~~~~  

Proof: 

We show first that 

.",   (   i\ n,i      n 1    ' 
1*1   ' 

Set U, ■ F(X ) .  Then IL , ..., U  are order statistics of a random sample from 

the uniform distribution over  [0,1] . We have 

i/n 

-A ,--^[F(X.)]-  /      [iKu) - iKU.)]du 
n, i  n     i     J i 

(i-D/n 

By the Glivenko-Cantelli theorem, 

llm  sup      sup      |u - U |  » ' 0 . 
n  l<i<n ue[(i-l)/n,i/n] 

But t|; Is uniformly continuous on [0,1] . Hence with probability 1, given e > 0 , 

there exists N (u) such that n >_ N (CJ) implies  |i|;(u) - ^(U )| < E for all 

u e I—~— » — ) » i " ^-»2» ..., n where OJ denotes a sample point. Then 

n ^ N (u)  implies 

I   VAK i  +7*[F(x.)])| <£ I X ^ | i\ n,i  n    i / | — n ^    i 

1 
But with probability 1, -  I  |Xi | -► ElzJ , hence with probability 1 

n 1-1 

lim sup j  JX^A   +n^F(Xi>]) 
n i"l ' 

1eE|Z1l , 

and 



lim l     |X.(A   +^ *(F(X )]) 
„ <-i  i^ n»i  n     i    ' 

a.s. 
0 . 

On the other hand, it follows from the strong Ifv that 

7 I    X.*[F(X.)] a,->S-  f x^F(x)]dF(x) . 

The conclusion of  the lenuna follows. 

Proof of Theorem 2.1i 

Let 0 H X_ < X, < X,, < ... < X  be an ordered sample from F so that 
0—1—2—   — n 

ß ■ I ^{H1) «, - V:' v- 

Case 1: 

Suppose that (2.1) holds. Then for y e [0,1] we have 

l*F w - Vy>! 
n 

Fl^y) 

-/ 

F^Cy) 

[4'(Fn(x)) - 4'(F(x))]dx 

+ I H'(F(x))dx - J 
F'^y) 

4'(F(x))dx 

The first  term on the right converges to    0    with probability 1 by the Glivenko- 

Cantelli theorem,  and the second converges to    0    with probability 1 by the strong 

law. 

Case 2: 

Suppose that (2.2) and (2.3) hold.  Then F~ (1) - » , which Implies 



BHHWP 

*(1) " g[G (1)] - 0 .  For y < 1 , the argument of Case 1 is valid, 

Integrating by parts, we have 

F":L(y) 

♦F(y) - J gG"1F(x)dx - f  gG"1(u)dF"1(u) 

^(^dF'^u) - ny)F"1(y) - f   F"1(u)^(u)du . 

0 0 

F^Cy) 

♦F(y) - ,»'(y)F'1(y) - j xii/[F(x)]dF(x) . 

0 

Since by (2.2),   J    gG" F(x)dx < » , we have 
0 

♦F(l)  - "   /  x^[F(x)]dF(x)   <  «  . 

0 

Set    gk - gG"1(k/n)   ,  k - 0,1,   .... n 

and 

Then 

iKu) - rcu) , u E [o,i] , 

^■i^-ii) 

ß ■ I ^h+ *& j " 1»2,   ..., n 

and 
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n 

*F (i) ' ^ Ä
n iX. n    1-1 a'1 

since gG~ (1) - 0 . The conclusion  !'  (1) a,-*s, it_(l)  now follows from 
r F n 

Lemma 2.2. || 

In applying Theorem 2.1 to prove consistency in Section 3, we assume F = G 

so that Conditions (2.2) and (2.3) become 

(1)  / xdG(x) < - and 
0 

(ii) gG   has a continuous derivative on [0,1] . 

An alternative condition on G is 3 a number 0 < n < 1 9 for y ^ n , gG~ (y) 

KG"
1
(V) is nonlncreasing and 9 _ vjy  is nondecreasing. To prove that these conditions 

are sufficient, we state some additional results. 

Lemma 2.3; 

Let Z,   , i ■ 1,2, ..., a  , n « 1,2, ... have exponential distributions 

with mean 1 and assume that for every fixed n , Z,  ,Z-  , ..., Z    are 
1. n 2. n      a 

a '   '        n.n 

independent.  Then, if »• » for n -*■ 0°  , 
log n 

a n 
lim —  y Z,  - 1 
***    an 1-1 i'* 

with probability one. 

The proof is a straightforward application of the Borel-Cantelli lemma, and we 

omit it. 

Lemma 2.4; 

Let    X..,X2,   ...    be independent and  Identically distributed with continuous 

distribution function    F    and let    F      denote the empirical distribution function 

k     - 



■""■ 

based on X...... X . Then 
1'      n 

11 

lim ^  
log n   • ' n 

sup |F (X) - F(x)I » 0 

with probability 1. 

Proof: 

FroQ the exact  distribution of  the one-sided Kolmogorov-Smirnov  test  statistic, 

we infer 

PCsup   |Fn(x)  - F(x)|   >  z)  <_ 2P(sup   (Fn(x)  - F(x))  >  z)  - 

[n(l-z)] , .n-i. J.-1 
0 <  z <  I 

Consider the function 

f (z) - log (") + (n - i) log (l - z - -i) + i log (z + i) + 2nz: 

for 0 <^ i <_ n(l - z) , i.e., for z <_ 1 - i/n , i » 0,1 n .  For z = 0 , 

the value of f is the logarithm of i binomial probability, hence f(0) <^ 0 . 

Furthermore, for 0 < z < 1 - 1/n , 

f'Cz) - nz K-'-M)10 

and as a result f(z) < 0 for all z under consideration. Hence 

(W-'-ifV^ '    -2nz e 

and 



12 

P(sup |F (x) - F(x)| > z) <. 2e-2nZ  "  -^—^ Zne"2"2 

i-0 z + - 
n 

It follows that for every e > 0 

I    P(l^ SUP lFn(x) - F(X)I > E) 1 2 I    nl"2e2 l08 " < " » 

and the lemma is proved by applying the Borel-Cantelli lemma, j \ 

Lemma 2.5; 

Let    Y..,Y-,   ...     be independent and identically distributed according  to an 

exponential distribution with mean    1    and let     (0 ■ Y„      <) 
0:n 

Y.       < Y0      <  ...   < Y denote  the order statistics corresponding to l:n 2:n n:n r ° 

Y   ,Y   ,   . . . ,  Y    .     Then  for any     0  <^ c <  1  , 

11m J"       (Y.       - Y4   .     ) max  (l - ^— ,   e    :,"1:n) - 1 - c 
r    lu-i       J:n        1-1 :n \ n       ' / n-*»    [cnj+l      J J 

with probability I. 

Proof; 

Define    Z.       -   (n-j+1)(Y,       - Y,   .     )   .     Since    Z.      ,Z0     ,   ....  Z have 
j,n J J;n        j-l;u l,n'  2^' '    n,n 

independent  exponential distributions with mean    1   , 

y    (Y     - Y       )/i - J-^-M - -      y    Z 
[cn]+l      J:n        J-1:n ^ n    I     n    ^^    j.n 

converges almost surely to  (1 - c) for n ->■ <,D by Lemma 2.3. Define 

"Vn 
IL  - 1 - e J'  . Then (0 - U-  <) U.  < ... < U    are distributed as order 
j:n 0:n    l;n        n:n 

statistics from a uniform distribution on (0,1) . To prove the lemma, it suffices 

to show that 

ik. 
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^^^n-Vl^' .1  - 1 
j-l:n n i      V     Z 

n    jti     J»n 

1-1 :n n 

l-J-^i 

2/3 1/3 converges  to zero a.s.    Let    a    ■ n - n and    b    * n - n ,   then 

i      an " 1        -1/3        .    .      bn " 1        -2/3      u 1 > n and    1 > n , hence n       — n       — ' 

.LJLI 
i V T .1-l;n          n         „    1.        r „ 1/3 1 > Z.        • -*—' : :; L < —       / Z, •     sup       n 
"" At     J»n i       .1-1 —a .L, 1,n ,   .r 

n J-l    J,               1 - 'J  n j-1 J' l<J<a 
J-l:n n 

1/3 
  I      Z •       sup n 

n " an    1-a +1    3'n      a +l<1<b J    n n    -J— n 

+ —V I      ZA       •       sup        n1/3 
n
 " bn    j-b+l    j'n      b +l<J<n 

j-l:n n 

j-l:n n 

By Lemnata  2.3 and 2.4,  the right-hand  side of this inequality  tends to zero almost 

surely,  which completes the proof.    | | 

Theorem 2.6; 

Let G be a continuous distribution function on  [O,00) with density g and 

-1 
assume that there exists a number 0 < n < 1 such that for y ^. n , gG (y)  is 

y 
SG"

1
^? nonincreasing and ^—^"tz-  is nondecreasing. Then for every y < c < 1 , 

n-H» (Vl) - x^) <  1 - c 

with probability 1.    Hence, 

11m /*G  (1)  - *G(1)\ - 0 
Or**  \     n / 

with probability 1. 
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Proof; 

n      n       [cn]+l 

where X.   is an order statistic from G .  If we define Y.   by 
j:n J:n 

G~ \1 - e ■''n/ - X^  . then Y.   is an order statistic from an exponential 
J:n J :n 

distribution with mean    1   .    With probability 1,   there exists a number    N    such 
-Y -1 

that for    n >_ N    and    j   >_ [en] + 1    we have    1 - e    ^"  "" > n  .    Since    ^"_' 

is nondecreasing for    y ^ n  , we have for    n >_ N    and    j  >_ [en] + 1 

X.._ - X. ,._- (Y,._ - Y, ,..) - _ 
j:n   j-l:n   j:n   J-l:n 

"Yj-l:n 

j:n   ^^ gG^(l - e-Vl:n) 

-Y       . 
where Y ,  <Y.  <Y.  . If 1-e J"1:n> ^ " •  we have for n > N and 

j-l:n — j:n— j:n —  n — 

J > [en] + 1 

G-I/1JU.\ (X  - x4 . ) < 
•  \ n  /  j :n   j-l:n - 

"YJ-l:n   --1/J - 1\ 

< (Y4  - Y4 .  )(l - J-JLjl) -  j:n   j-ltn'V     n / 

-1 -Y 
again since | - ™'     is nondecreasing for y^_n.  If 1-e    '  < J—r— i 

we use the fact that gG~ (y) is nonincreasing for y ^ n to obtain 
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Hence for n ^ N , 

•c <» - *0 i^) -  ,  L «i:* -  ^-l:„> - (l - H1 • e"Yj-1:n) • n       n       [cnj+l  J     J 

Application of Lemma 2.5 completes the proof. || 

We will be mainly interested in isotonic estimators based on grids with wider 

"windows" than those provided by order statistics. We, therefore, define an 

analogue to the empirical distribution for more general grids. Let (w  )    be 
I ^ fi-1 

a subdivision of [O,00) and define 

Fn,N(x) " Fn(wi,N)       for W1,N ^ X < Wi+1,N • 

Suppose  Iw Nl    becomes dense in [O,00) as N ->■ <» In the sense that given 
I i,Nfi-l 

_  * * 
e > 0 , 3 N 9 for arbitrary x and all N>N  3 w9we(x-e,x+e) 

Clearly,  F „(x) < F (x)  for all x and J'       n,N   — n 

llm F* N(x) - F (x) 
N-KO 

n»N      n 

* 
since F „(x) ■ F (x) when the grid includes the order statistics. Also, 

n,N     n 

F  (x) - F (x) -*■      F(x) uniformly in x e [0,b]  for every b < » . The proof 
UyU O       O• S • 

Is similar to  the proof of  the Glivenko-Cantelli theorem. 

Theorem 2.7; 

Suppose the grid    iw      I becomes dense in    [0,°°)     in such a way that 
I     * [i'l 

N»  > N =^/w      V"    c  /w      A"       .     Suppose that either Condition  (2.1) or   (2.2) 
\ i,NU-l     ( ^    fi-l 

and  (2.3)  of Theorem 2.1 hold.     Then 

Pfsup     |* ^(y)  - iviy)\ 
[0<y< 1       F 

*^       -p' ^ o] = 1  . 

■MM^^^^^MB^HH^H^nMMMBM 
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Proof! 

The proof  is  easy If  (2.1)  holds.     Hence,   suppose  (2.2)  and   (2.3)  hold.     Since 
00 
/-I r, * * 

gG    F(x)dx < "  ,  given    z  > 0   A    N     9   for    N  > N 
0 

00 

I    gG'1F(w    N)(w - w )   -  *   (1) e 
<  2   * 

Consider  the discretization of    F  ;   i.e., 

Fd>N(x)   -  F(wi) for    w    < x < w i - i+1 

and apply Theorem 2.1 to F.  . Henct 

ja ne(N,aj ) 9  4. .  (1) - *_(1)  < e 
F        F 
n,N 

and 

|*  (1) - *1j(l) | <  e for all n > n (N,(JJ) and a 11  e > 0 

where w denotes a sample point.  Since N' > N implies  {w  } C {w ,} , it 

follows that $ Ä  (1)  is closer to $_, than * A   is.  It follows that the 

n,N n,N 
convergence is uniform in both n and N so that $ . (1)  -►  *p(l) • I ! 

IAMM> MMMBSHB 
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3.     STRONG CONSISTENCY OF  ISOTONIC  ESTIMATORS  BASED ON TOTAL TIME ON TEST MEASURE 

We assume    F < G    and  show that    r  (x) ■*■ r(x)     with probability one at 

continuity points of    r   .     We use the fact that,  under regularity conditions,   the 

total time on teat distribution    *        is uniformly strongly consistent.     This 
n 

generalizes and simplifies consistency proofs of Mai shall and Proschan  (1965)   for 

the case    G(x) ■ 1 - e        and Robertson  (1967)  for  the case    G(x)  » x     (0 .1 * .1 1) 

The first part of the proof   is similar to  that of Marshall and Proschan  (1965) 

while the use of the uniform consistency of    *_,      was suggested by the proof of 
r n 

Robertson (1967). 

Theorem 3.1; 

Suppose that 

(i) r(x)  - f(x)/gG    F(x)     is nondecreasing  in    x ^ 0  ; 

(ii)       either    {w      }     is the grid determined  by the order statistics or 
l, n 

{w.     }    is a grid which becomes dense on the support of    F    and i»n 

such that    N'   > N    implies    {w      } C {w      ,}   ; 

(Hi) either G":L(1) < » or G^d) - « , / xdG(x) < « and gG-1 

0 
has a continuous derivative on [0,1] . 

Then 

r(x~) < 11m Inf r (x ) < 11m sup r (x ) < r(x ) \ oi— no—     r n o — ' o/ 

with probability one. 

Proof: 

To show lia sup r (x ) <_ r(x ] .  The right hand Inequality is trivial if 

r(x ) ■ 0 or rlx ) ■ ao ; otherwise, let x. > x  satisfy r(x1) < <*    and let 
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a, (n) ■ a,  be the Index of the largest grid point w. ■ w   .1 xi • Let 

N (n) - N  and N2(n) - N2 be defined by 

M%)-M\) r  (x ) ■ -—r n    o        N--1 
,-1 

-vl 
-1 

J-N, 

Let    w.  ■  ;—r^—      and note that J rCx^ 

I      gG-F^Xw^-Wj ) 

w 
* * yl    r(u) 
J+l      j        /       r(xi)       ~  J+1       J 

since    j  + 1 £ a.     implies    w1+1 1. xi     and    r(x) 1 r(xi)     for    x 1 xi  •    He^ce, 

- (,     
T-{\) - M\) 

r«(x) 1^—i • n       — a.-i 

i^ gG-1Fn(.j)(w;+1 -»;) 

G'^CXJ 
Let Y, ;—r^-  where X. ,X«, ..., X  is an ordered sample from F and 

i        rCx.) 12 n 

G*(x)  - P{Y* <_x} - GCrCx^y)   .     Let    G*(x)  - G^w*) - Fn(wi)     for    w^ <. x < w1+1 

*        * * 
where    G       is the empirical distribution corresponding to    Y.  ^Y. £, ... ^Y    . 

Hence, 

mam 
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i(\)-<{\) 

<(\)-<(\) 

(<(\))" V(<(\)) * * 
G n n 

*    *        *    * 
Since w., < x  while w  t x, with probability 1, 

N. — o        a.   1 

lim inf G /w \ - G (w* | 
n-     n\ al/   n\ V 

> 0 

with probability 1.  (Note G (x ) < G (x..)  since G  is increasing on its support; 

an interval.) It follows from Theorem 2.1 (letting F = G ), that 

lim «up r (x ) <^ lim sup  r-jn ^ v v 1*1*   \\  "* r^xi) n o 

G n n m) - v(<(\)) i' 
with probability 1, since * ^(y) a*-^* * Ay)  - (

y >.  uniformly for 0 <_ y <^ 1 
G        G     rUV 

Letting x1 + x , we see that 

lim sup r (x ) < v-fx ) r n o — \ o I n-x» 

with probability 1. 

By a similar argument,  we have 

r(x   | <  11m inf r  (x ) V o/ — no 

with probability 1. | ] 

J 



20 

Remark  1: 

Note   that   the  key  to   the  proof  was   the   un-forn  convergence  of 

a  s 
<J> A(y)     *"*'   * Ä(y)     which does  not  depend  upon    F  .     Hence,  a  similar  consistency 

G G n 
proof can be given for the case  F > G .  In this circumstance, the estimator 

becomes 

F (w  ) - F (w  ) 
/ N        , c  n t,o    n s.n r (x) - sup   inf —: ■ "  

"     t>l+l  s<i  t~1 -*■       I     gG^F (C )(w   n - w  ) 

Remark 2: 

For the grid based on order statistics, the estimator r (x)  is not 
n 

consistent.  However, as Rao (1966) has shown, isotonizing effectively widens the 

"windows" so that r  is strongly consistent. 

Remark 3:  Random Window Estimators 

There are at least two ways of specifying window estimators. One can specify 

the length of the windows and let the number of observations in a window be random 

cr one can specify the number of observations in a window and thus allow the 

interval length to be random.  In practice, it may sometimes be more convenient to 

specify the number of observations in a window rather than the window length.  The 

MLE for  r(t)  assuming r nondecreasing is the isotonic regression of a random 

window estimator which allows precisely one observation per window.  Suppose we 

specify random window intervals to be of the form |X  „ ,X      „ \ for 
\ [in0]  [(i+l)nV 

1 ■ 0,1, ...  and some ß(0 <_ ß < 1) .  Strong consistency of random window 

estimators can be verified either by modifying the proof of Theorem 2.1 for this 

case or by the method to be discussed in the next section, since now the basic 

estimator is consistent. 

 h  —— 
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4.  CONSISTENCY OF ISOTONIC ESTIMATORS WHEN THE BASIC ESTIMATOR IS CONSISTENT 

Brunk (1965) Introduced a general method for proving consistency of isotonic 

estimators when the basic estimator is consistent.  We generalize his results some- 

what in order to treat the generalized failure rate function. A fundamental 

difference between Brunk estimators and our estimators,  r  , defined on 
'  n 

fi  (fi C fi) is that we extend the domain to Ü    and define a version of r  on 
n  n n 

n .  We then wish to prove that this version converges strongly on Ü     (assuming 

n 

Let  (Q,A,u)  be a measure space and let A be a set of A-measurable 

functions; on fi with the following properties: 

(a) \. , A  E A implies max (A ,A ) and min (A.. ,A ) e A , 

(b) A 0 L_(u)  is convex and closed in L_ , 

(c) A is a complete inner product space with inner product 

^VV " f   ^1(w)A2(w)du(w) . 

For any    £  c  L»   ,   there  exists    2.  c  A n L«     such  that 

(4.1) y U -  A)2du 1     /" U -  h2d\i +     f d - A;2du 
il Ü il 

for all    A   e A n L     .     This X, » P(£   |   A D Lj     is  unique     [y]   .     (Cf.   Brunk 

(1965),  Theorem 2.1 and Corollary  2.1.)     P(£   |   A D L.)     is the projection of     i    on 

A n L2 . 

Lemma 4.1; 

If tor some  A  e A , £ f. A«  a.e.  [y] , then  £ .1 A  n.e.  [u] .  If for 

some A  '; A , £ >_ A  a.e. [u]   , then £ _^ A.  a.e. [v]   . 
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Proof: 

Let £ .1 ^7 a.e. [u]   .  If £ > X  on a set of positive \i    measure, 

consider \  = min (£,A ) .  Since A  is A-measurable and min ({.,£) Jl A <_ £ , X 

is square integrable.  Because of Condition (a),  Ä e A , so X e A fl L„ .  On the 

set where £ <_ X. , X » £ .  However on the set where £ > X. , which has positive 

li-measure,  £ j^ X « X < £ .  Hence, 

(£ - X)2 < (£ - £)2 

on    il    with  strict  inequality on a  set of positive measure and  therefore 

/* (£ - X)2du <     r (£ - X)'du  <      Id- £)2dM 

which contradicts (3.1). The proof of the second part of the lemma is similar. ] 

Note that Brunk's (1965) conditions X <_ 0 and X  >_ 0 or p(n) < ^ in his 

Corollary 3.3 are unnecessary. 

Lemma 4.2; 

If  for some    X     ,  X    e A   ,   X1  <_ £  <_ X»    a.e.     [y]   ,   then there exists a 

version of    £    for which 

X1^1X2 

on n  .  [Note that  £ is defined only on sets of positive p-measure.] 

Proof: 

Let Z    be any version of P(£ | A ft L ) on Q    and let 

£ - mln (X2 , max U,^)) 
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Since ^, .1 ^ 1 A  a.e. [v]   ,  I " i    a.e.  [y] . Also, ^i 1 ^ 1 ^2 on fi and 

Ä e A because of Condition (a).  Finally, sincd I  = I    a.e.  [u] , and  J. is 

A-measurable,  £ e L- . || 

We now replace Condition (a) by 

(A) \     e A for all T e T (arbitrary index set) implies 

sup A  , inf X  £ A . 
teT T  TeT T 

This implies that every function $ on fi  for which there exists  X e A with 

^ <_ X has a smallest majorant <£ e A ; if no such \ e A exists, we set if E ^ . 

Similarly, if there exists A <_ 4) , X e A , then $    possesses a largest minorant 

_(£ e A ; if no such X e A exists, we set _£ E -«> .  From Lemma A. 2, we have: 

Lemma 4.3; 

There exists a version of    i    for which    JL .1 ^ .1 ^    on    ^  • 

Note that we can construct  such a version on the basis of    _£    and    I 

(cf.  proof of Lemma  4.2).     From now on,  we  shall only consider  those versions of 

i    that are  indicated  in Lemma  3.3.     Suppose Condition   (A)   holds and   (b)   is 

satisfied for a sequence of measures    u     .     Then we have: 

Theorem 4.4; 

If    J,     e L_(ii   )     and    I      and     i      are  uniformly   (strongly)  consistent n        2    n _n n J   ^ o J 

estimates of  the same    X   e A  ,   then    £    ■ P(£.     1   A D L„)     is also  a uniformly 
' n n   ' 2 

(strongly)  consistent estimator of    X   . 

Proof: 

By Lemma 4.1 and 4.2, \l    - Xl < e  and  II - Xl < e'  on r2  implies J '     'ja        ' — n      ' n   ' — n r 

A 

\i    - Xl < max (e .e') . I ! 1 n   ' —     n n   ' ' 
* 

Theorem 4.4 can be used to prove the (strong) consistency of r (x) , r (x) 
n     n 
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and  r (x) when the basic estimator 
n 

Fn(w    ) - Fo(w. n) 
r (C.) -  " 1+1'n a-fl!  
0        (Wi+l n - «-. n)8G  Fn<^> iTi, n   i, n     n 1 

is (strongly) consistent.  For example, if f  is a uniformly continuous density 

function and 

W-i^i   "WJ  "en        0<a<l i+l,n   i,n 

then    r   (x)     is strongly uniformly consistent.     [Cf.  Nadarya  (1965),  Theorem 1.] 

To utilize Theorem 4.4,  we need  to verify  the uniform  strong consistency of 

r      and    r     .    Since it  is not  obvious that this condition will be realized  in 
n n 

general,  we must utilize a device employed by Marshall and Proschan  (1965).     Let 

M 
F -  (F   I   F < G}    where    G    is specified and    F    ■ {F   I   F < G    and    r(x)   < M}    where 

'       c c — 

—1 ^M ÄM 
r(x)   - f(x)/gG    F(x)   .     Let    r      be the isotonic estimator of    r    subject  to    r 

in    r     .    Assuming    r   (x)     is uniformly strongly consistent, we can show that 

M      -M 
r  and r (x) are uniformly strongly consistent in the same way that the 
n      n 

Glivenko-Cantelli lemma proves that F (x)  is uniformly strongly consistent. 

Furthermore, r  converges in a natural way to r  as M -^ «^ . 
n n 
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