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ABSTRACT

Assume F and G are distributions on [0,») with
densities f and g , respectively. If G-lF is convex on

the support of F (an interval), then

r(x) = dd—x G-]'F(x) = —iﬁl—

glc IF ()]

(the generalized failure rate function) is nondecreasing in
x € [0,») . We assume G known, r nondecreasing and
consider the problem of estimating r . A general class of
igotonized fixed and random "window'" estimators are proposed
and studied. These include the maximum likelihood estimators
(MLE's) studied by Grenander (1956), Marshall and Proschan
(1965), and Prakzsa Rao (1966). By appropriate choice of

the window size, we improve, asymptotically, on the MLE.

. Strong consistency is proved for isotonic window estimators

generalizing and simplifying previous proofs. Strong
consistency is proved for a class of isotonic estimators

when the basic estimator is strongly consistent.




ASYMPTOTIC PROPERTIES OF ISOTONIC ESTIMATORS
FOR THE GENERALIZED FAILURE RATE FUNCTION

PART I: STRONG CONSISTENCY
by

Richard E. Barlow
Willem R. van Zwet

1. TSOTONIC ESTIMATION IN THE CASE OF CONVEX ORDERING

Assume F and G are distributions on [0,») with densities f and g ,
respectively., We consider the following convex partial ordering (c-ordering) on
the space of distribution functions on [0,») . We say that F 1is c~ordered with
respect to G [F g G] 1if and only if G-lF is convex on the support of F (an

interval) [van Zwet (1964)]. We say that F =G if G-lF(x) = ax + b for some

c
a>0.

If F é G , then

(1.1) r) =+ 67l - —HE—
glG "F(x))

is nondecreasing in x ¢ [0,») . We assume G known, F § G aund consider the
problem of estimating r . Maximum likelihood estimators (MLE) for r in the case
when G 1is the exponential or the uniform distribution have been investigated by
Grenander (1956), Marshall and Proschan (1965), B.L.S.P. Rao (1966), and
Robertson (1967).

Let r be an initial or bas7c estimator for r . Let

0= Yo,n < ¥l n < ve. < LY < ... be a subdivision of [0,») and un{wj,n} a

sequence of weights on {wj. }j-o . Assume wi,n <x < wi+l,n . We call the inter-

val ] a "window." We will be especially interested in the effect on

[wi,n’wi+1,n
the estimators with respect to the rapidity with which the window goes to zero.

Following Brunk, we call

-




(t-1 b
o st rn(wj.n)un{wj,n}
(1.2) r (x) = inf sup
n i t-1
t>i+]l s<i
e - ) un{wj o)
i I=s ’ i

the monotonic regression or more generally the Zsotonic regression of r ~with

~

respect to the discrete measure y e Note that r is a nondecreasing step
function. Let Fn be the empirical distribution function corresponding to an

w, )/2.

B (wi+1,n - i,n

ordered sample 0 = Xo_i Xl :_Xz e i_Xn from F . Let Ei

We call
wi+lln) J Fn(wi,n)

-1
- wi’n)gG Fn(Ei)

£ (&) F (
rn(gi) - —? : z—
gG Fn(gi) (

wi+l,n

the "naive" estimator for r(Ei) . This has been extensively studied by
Parzen (1962) and others (in the case G(x) = x (0 < x :_l)) and by Watson and

Leadbetter (1964) and others (in the case G(x) =1 - e * for x 3_0) :

w, ) , then

. , ~1
If r is the naive estimator and un{gi} gG Fn(gi)(wi+l,n i

Fn("t,n) - F g )

(1.3) ;n(x) = inf sup ] 5.0
t>i+l s<i -1
= jzs 86 F(E) Gy -y )

If the grid {wi n} is fixed and not random, then (1.3) is the MLE (in the case
’

G(x) =1 - e-x) for a discrete IFR distribution. {[Cf. Marshall and Proschan (1965),

Section 7.] If wi,n = Xi , then

(1.4) ;n(x) = inf sup =) s
t>1+1  s<i -1
=T = e ) sGTF (DX, - X))

I=s

is the MLE studied by Grenander (1956), Marshall and Proschan (1965), and
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B.L.S.P. Rac (1966) (in the case G(x) =1 -e* for x 3_0) and by
Robertson (1967) (in the case G(x) = x , 0 <x <1) . If G(x) =1 - e X , then

the weight un{Ei} =[1/okn - 1) (X X,) 1is the "total time on test" (divided by

i+1 M1
n) between ordered observations Xi and xi+l . We show in Section 2 that in this
case
. F-(1/n)
“ =51
321 un{Ej} = f 86 F_(u)du
0
(1.5
Fl(y)
i\ a.s. -1
-%(;) T ep(y) = f gG "F(u)du
n 0

as 1i/n+y and n -+ ® ., We call ¢F(y) the total time on test distribution or

measure (not necessarily a probability distribution).

w , then

1f r is the naive estimator and un{Ei} = wi+l,n “ Y

t-1 [Fn( ) - Fn(wj,n)]

* w
(1.6) rn(x) = {nf sup ————— i+l,n

-1
t>i+l s<i M B srm i=s 8G Fn(gj)

is the isotonized "naive" estimator. Note that r:(x) is a special kind of average
with respect to '"discrete Lebesgue measure," while ;n(x) is a special kind of
average with respect to '"totai time on test" weights. It might be conjectured that
;n(x) will perform better than r:(x) for small samples since the '"total time on
test" for an interval is a measure of our information over that interval and

;n(x) takes advantage of that fact. However, as we shall show in the companion
paper+, they are asymptotically equivalent (when the windows of the grid are not

too wide).

Another estimator for r can be obtained using the ''graphical" estimator

fAsymptotic Properties of Isotonic Estimators for the Generalized Failure Rate
Function - Part II: Asymptotic Distributions).




-1, -1
& rn(w1+1,n) - Fn(wi,n)
i+l,n i,n
This is motivated by the identity
-1 -1 wi+1,n
G F(wi+1,n) -G F(wi,n) = r(u)du .
i,n

If we use this for our basic estimator and let w , we obtain

un{ai} - wi+1,n - i,n

-1 -1
- G "F (w ) -G F (w )
(1.8) rn(x) = inf sup n ﬁgln — L_S.0
t>i+l s<i t,n s,n

-~ * -~
Although all three estimators, rn(x) 5 rn(x) . rn(x) will be shown to be
. = .
asymptotically equivalent (for certain grids), we can see that tn(x) and rn(x)
are perhaps more alike since they use the same weighting function. The similarity

is also apparent if we expand G-1 in a Taylor's series about Fn(x) . Notice

that when G(x) = x (0 <x<1), 1 (x) = 1o(x) = £ (x) .




2, CONVERGENCE OF TOTAL TIME ON TEST MEASURES

The total time on test measure, ¢F , plays a crucial role in proving strong
n

~

consistency of rn(x) . It also is important in life test theory for the

exponential distribution. Note that when G(x) = 1 - e * for x >0,

F;l(i/n)

°F (i—)- [ gG-an(u)du

1
-1
J_le BCTF, (X, )Xy - Xy )

L}
a = (n-j+1) (X, - X, ,)
n =1 3 j=-1
This transform was introduced in Marshall and Proschan (1965) and exploited by
B.L.S.P. Rau (1966) (when G(x) =1 - e-x) to obtain the maximum likelihood
estimate for the failure rate function of monotone failure rate distributions.

Assure M " j. xdF(x) < = . Strong uniform convergence of ¢F (y) to ¢F(y) R
0 n

in this case, is an easy consequence of the Glivenko-Cantelli theorem and the

strong law since

0 1) =3 ] (amg-D)(x -x, ) =4 I X, 250
n " jal h| h| L}

However, strong uniform convergence 1is not trivial for general distributions, G ,

when F-l(l) -,

The proof of the following theorem is due to H. D. Brunk. Note that in the

following theorem we do not assume F S G .

Theorem 2.1:

Suppose that either




2.1) Fla) <=

or

- -1 : ~1

(2.2) F (1) ==, xd)'(x) < = , gG "F(x)dx < =
0 0

and

2.3) v = gg !

has 2 continuous derivative ¢ on [0,1] . Then

P[sup |¢F (y) - ¢F(Y)| = 0] =1,
O<y<l n

(Note that F § G implies f gG-lF(x)dx < )
0

To prove Theorem 2.1, we need the following lemma:

Lemma 2.2:

Let ¢ : [0,1] » R be continuous and set Y(u) = Z p(t)dt , u ¢ [0,1] .

For positive integers i , n , i < n , sat

Let 2.,Z., ..., Z_ be independent random variables, each with continuous
1272 n

distribution F . Let |Z and Ile[F(Zl)]l each have finite mean. For fixed

1!

positive integer n , let xl,xz, . iy xn be the order statistics of 2 yA

UL

Then

n
n | B, Xy LA f xy [F(x) JdF (x)
e im] 0
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Proof:

We show first that

g 1 a.s
) xi(An ita “F(Xi)]) 1 Ok
1=1 ’

Set U = F(X) . Then U,

the uniform distribution over [0,1] . We have

300K Un are order statistics of a random sample from

i/n
1
-An,i " n W[F(Xi)] f [y(u) - W(Ui)]du )
(1=1)/n
By the Glivenko-Cantelli theorem, I
lim  sup sup lu - U a.s. o

n 1l<i<n ue[(i-1)/n,1/n] i

But ¢ 1is uniformly continuous on [0,1] . Hence with probability 1, given ¢ > 0 ,

there exists Ne(w) such that n Z.Ne(“’) implies |w(u) - w(Ui)] < e for all

upte (i ; L ’ %) , 1i=1,2, ..., n where w denotes a sample point. Then

o> Ne(w) implies

1 e ¢
xi(An,i + 3 ulFa])| < £ 121 L

i=1

: n
But with probability 1, % Z |Xi| = E|le , hence with probability 1
i=1

n
1
1 X(A + = F(X,)]
ims:p 1§1|1 b nw[(i).)

i€E|21| ;

and




& 1 a.s.
1m )xi(An’i+;w[p(xi)1) 50,

n 1i=1

On the other hand, it follows from the strong lswv that

n
2] xpulFx)) F _[xtb[F(x)]dF(x) :
i=1 0

The conclusion of the lemma follows. ||

Proof of Theorem 2.1:

Let O = Xo <X =2 Xp £ eee 2 Xn be an ordered sample from F so that
P13 -
°F(_)' L ec ( n )(xj'le)'
n j=1
Case 1:

Suppose that (2.1) holds. Then for y e [0,1] we have

F‘l(y)
|¢Fn(y) -0l < [¥Y(F_(x)) - ¥(F(x))]ldx
Fly) Fl(y) ;
+ Y(F(x))dx - f Y(F(x))dx| .

The first term on the right converges to 0 with probability 1 by the Glivenko-

Cantelli theorem, and the second converges to 0 with probability 1 by the strong

law.

Case 2:

Suppose that (2.2) and (2.3) hold. Then F-l(l) = » _ which implies

g e - - NP o—e ﬁ




¥(1) = g[G_l(l)] = 0. For y <1, the argument of Case 1 is valid.

Integrating by parts, we have

-1

F “(y) y
@F(y) - f gG-lF(x)dx = f gc‘l(u)dF'l(u)
0 0
y y
-1 -1 -1
- f ¥(udF L(w) = v(y)Fl(y) - f F L) p(wdu .
0 0

Fl(y)

OF(y) - ‘i’(y)F-l(y) - f xy(F(x)]dF(x) .
0

Since by (2.2), I gG-lF(x)dx < ® , we have
0

QF(l) =~ f xY[F(x)]dF(x) < = ,
0

Set g, " gG-l(k/n) y k=0,1, ..., n

W(U) = ¥'(u) y U E [Os]-] ’

and
o1 =¥ 5) - ()
Then
opn(-}) - 1§1 b, Xy * 84, 3 iy 2 AL

and

n




-
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since gG—l(l) = 0 . The conclusion @F (1) 888 ®F(l) now follows from
n
Lemma 2.2. ||

In applying Theorem 2.1 to prove consistency in Section 3, we assume F = G
so that Conditions (2.2) and (2.3) become
(1) f xdG(x) < @ and
0
-1
(i1) g6 has a continuous derivative on [0,1] .

An alternative condition on G is d a number 0 <n<1 3 for y >n, gG-l(y)
-1
is nmonincreasing and %9:_511 is nondecreasing. To prove that these conditions

are sufficient, we state some additional results,

Lemma 2.3:

Let Z1 n i=1,2, ..., a ,n= 1,2, ... have exponential distributions
?
with mean 1 and assume that for every fixed n , Z y 2 B are
1,n”"2,n a n
a »
independent. Then, if L b ® for no+e .
log n

with probability one.
The proof is a straightforward application of the Borel-Cantelli lemma, and we

omit it.

Lemma 2.4:

Let xl,xz, «+. be independent and identically distributed with continuous

distribution furiction F and let Fn denote the empirical distribution function




based on Xl, Seoh Xn . Then
|
( = =
lim Tog sup an\x) F(x)| =0
n-+ X

with probability 1.

Proof:

Frum the exact distribution of the one-sided Kolmogorov-Smirnov

we infer

P(sup IFn(x) - F(x)| > z) < 2P(sup (F (x) - F(x)) > z) =

s e d )"

Consider the function

f(z) = log (:)+(n-i) log (l-z—;il-)+ilog (z+%)+2n

for 0 <i<n(l-2), 1ie., for z<1-4i/n,1i=0,1, ..., n.
the value of f 1is the logarithm of a2 binomial probability, hence

Furthermore, for 0 <z <1 - i/n,

' - _ 1
o)

and as a result £(z) < 0 for all 2z wunder consideration. Hence

i

n-1 2
(n)(l -2 - l) (z + -1‘-) < e—2nz ’
i n n/ —

and

=7

11

test statistic,

2

z ’

For z =0,

gy = @'«
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2nz

P(sup |Fn(x) - F(x)| > z) < 2e”

It follows that for every € > 0

o 2
z n1--25 log n <

s }
nzl P\Tog n VP an(x) - F(x)| > ¢ <2 L

and the lemma is proved by applying the Borel-Cantelli lemma. ||

Lemma 2.5:

Let Yl’YZ’ a0 be independent and identically distributed according to an
exponential distribution with mean 1 and let (0 = YO'n <)

Y <Y < e < Y denote the order statistics corresponding to
1:n 2:n n:n

Yl’YZ' «eey Y . Then for any 0 <c<1,

lim (Y,. =Y, .. ) max ( —,
v [cn§+1 j:n j-1:n n

with probability 1,

Proof:

Define Zj,n = (n-J+l)(Yj:n - Yj—l:u) . Since zl,n’ZZ,n’ o&ar zn,n have

independent exponential distributions with mean 1 ,

) (Yj:n - Yj-l:n)(1 - i—i—l) - )

- R

Z
[en]+1 [en]+1 J»n

converges almost surely to (1 - ¢) for n + = by Lemma 2.3. Define

-Y

= =Rt =

Uj:n 1-e . Then (O UO:n <) Ul:n 0 & Un:n are distributed as order
(0,1) . To prove the lemma, it suffices

statistics from a uniform distribution on

to show that

I
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n n U g
] (o, -¥, ;. )-|v e d-lin___n
=1 j:n j-1:n j=l:n n n j‘:l j,n 1 - j-1
n
converges to zero a.s. Let a =n- nZ/3 and bn =n - n]‘/3 » then
a -1 b -1
1l- __nn > n_]'/3 and 1 - ___nn > n_2/ , hence
n IU 1=l %n
-=1l:n n 1 1/3 -1
1 Z Z - < = z Z +  sup n - +
a 3=l j,n 1 - J—;—,_l- ay j=1 D lsea j-1l:n n
bn
+b f z Z * sup n1/3U_l. —'L%—]‘ +
n n j=a_+1 3, an+1_<_j<b J-lin
n
e T aad P =
a gb+1 37 b +1cyen -l

By Lemmata 2.3 and 2.4, the right-hand side of this inequality tends to zero almost

surely, which completes the proof. ||

Theorem 2.6:

Let G be a continuous distribution function on [0,») with density g and

assume that there exists a number 0 < n <1 such that for y > n, gG-l(y) is

-1
nonincreasing and %G_—(yﬁ- is nondecreasing. Then for every y <c <1,
1o - len] -
11m(<bc(1) oc(n)il c
n-+ n n
with probability 1., Hence,
1im (°c ) - oc(l)) =0
e n

with probability 1.

T




P Sy ———

14

Proof:
n
g (1) - & ('L%ll) ! 36-1@_-5_1) Kyin = Xyo1e0)
n n [en]+]
where xj'n is an order statistic from G . If we define Yj'n by
-1 -Yj'n>
G (1 -e "/ = xj'n » then Yj'n is an order statistic from an exponential
distribution with mean 1 . With probability 1, there exists a number N such
-Y -1
that for n> N and j > {cn] + 1 we have 1 - e RS >n . Since %Q:_éll
is nondecreasing for y > n , we have for n > N and j > [en] + 1
Y*
e- Jin
Keon = Fj-ten = Y5 = Yyo1iw? ( y ) =
gG-l l-e Jin
j-1l:n
< (YJ n - Yj"l n) -1< -Y _1. )
g6 "\1 - e j-l:n
* “Yy-1:n ] -1
where Y <Y <Y . If 1-e > , we have for n > N and
j-lin— "J:in — j:n - n -
jJ 2 [en] +1
-1/ ~1
8¢ ( n ) (Xj n Xj-l:n) =
-Y
j=1l:n -1/1 -1
-1 e + 8G o
:-(Yj'n - Yj-l'n)(l " n )' -Y =
(1 - 1;—1-) : gc'l(l _ o i-lm)
- = .1_'_1)
< (Yj n Yj-l:n)(1 n
g6 Ly Y1 g-1
again since 1-y is nondecreasing for y > n . If 1 - e R

we use the fact that gG-l(y) is nonincreasing for y > n to obtain
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Hence for n > N,

n

_ [en]) . _ ( -1 -YJ'li )
o @ - o (Ih) e ) (W = Yyopp) max (L= A5, e I7000)
n n [en]+1

Application of Lemma 2.5 completes the proof. H

We will be mainly interested in isotonic estimators based on grids with wider
"windows'" than those provided by order statistics. We, therefore, define an
analogue to the empirical distribution for more general grids. Let {wi’N}:al be
a subdivision of {0,») and define

) for w < x

*
Fa,n&) = Fo T P TS

; n“YiN

Suppose {wi N}m becomes dense in [0,) as N »+ » 1in the sense that given
*Thi=1

* *
€e>0,d N ? for arbitrary x and all N> N Jd w Iw
i,N? YN

*
Clearly, Fn,N(x) < Fn(x) for all x and

lim F:’N(x) = Fn(x)

N-+

*

since Fn N(x) = Fn(x) when the grid includes the order statistics. Alsc,
]

* *

F (x) = F(x) + F(x) uniformly in x ¢ [0,b] for every b < » ., The proof

n,n n a.s.

is similar to the proof of the Glivenko-Cantelli theorem.

Theorem 2.7:

Suppose the grid {wi N}m becomes dense in [0,~) in such a way that
*7)im1

N' > N=}w ® W, o > m Suppose that either Condition (2.1) or (2.2)
! S R (L P
and (2.3) of Theorem 2.1 hold. Then

Pl sup [¢ ,(y) - 0F(y)| +0]=1.
O<y<l Fo

e (x-¢, x+¢).
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Proof:

The proof is easy if (2.1) holds. Hence, suppose (2.2) and (2.3) hold. Since
- -]
- * *
by assumption, J' gG 1F(x)dx <w  given € >0 d N 3 for N >N
0

) gG-lF(wi’N) (w

-w) -0 (| < £,
15 1 F 2

i+1

Consider the discretization of F ; i.e.,

F (x) = F(wi) for w, < x <w

d,N 1+1

and apply Theorem 2,1 to F Hence,

d,N

Fn,N

P[H n (Nyw) 3 [0, (1) -0 ()] < ¢

and

l¢F (1) - 4>F(1)| <e forall n>n_(Nw) andall e > o] =1
n

where w denotes a sample point. Since N' > N implies {wi N} (o {wi N,} , it
’ ?
follows that ¢ , (1) 1is closer to ¢F than ¢ is. It follows that the
F n F
n,N n,N

convergence is uniform in both n and N so that ¢ (1) e ¢F(1) <
F L] .
n
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3. STRONG CONSISTENCY OF ISOTONIC ESTIMATORS BASED ON TOTAL TIME ON TEST MEASURE

We assume F & G and show that rn(x) + r(x) with probability one at
continuity points of r . We use the fact that, under regularity conditions, the

total time on teat distribution ¢ is uniformly strongly consistent. This

F
n

generalizes and simplifies consistency proofs of Marshall and Proschan (1965) for
the case G(x) =1 - e * and Robertson (1967) for the case G(x) =x (0 < x <1)
The first part of the proof is similar to that of Marshall and Proschan (1965)

while the use of the uniform consistency of ¢ was suggested by the proof of

F
o

Robertson (1967).

Theorem 3.1:

Suppose that

(1) r(x) = f(x)/gG—lF(x) is nondecreasing in x > 0 ;

(1i) either {wi n} is the grid determined by the order statistics or

]
{wi

such that N' > N implies {wi N} C {w
]

n} is a grid which becomes dense on the support of F and
1]

i,N'} ;

1

(i1i) either G-l(l) < @ or G-l(l) =@ xdG(x) < » and gG

Ot 8

has a continuous derivative on [0,1] .
Then
- ~ - +
r(x ) < lim inf r_(x ) < lim sup r_(x ) < r(xo)

with probability one.

Proof:

To show lim sup rn(xo) :_r(x:) . The right hand inequality is trivial if

+
r(xo) =0 or r(xo) = » ; otherwise, let X, > X satisfy r(xl) < @ and let
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al(n) = a be the index of the largest grid point wj = wj,n S Xy . Let
Nl(n) = Nl and Nz(n) = N2 be defined by
A Fn("Nz) B Fn(le)
1:n(xo) = N2-1
-1
G F -
jZNl g n(wj)(wj‘,,1 wj)
F“(w"l) - F“(WN )
< —_ 1
- ..l *
L -1
G F -
jZNl g n(vnrj)(wj,'_l wj)
. ¢ lr(w,)
Let w, = and note that
3 r(xl)
w
i+l
* r(u)
Y341 T Yy ! T (x,) du £ Wi =Y
]
since j + 1 < a, implies wj+1 <x and r(x) < r(xl) for =x X Hence,
a Fn(wal) - Fn(le)
r_(x) < P .
e (it - )
w, ) (w w
= 8 Tty \Vie T My
-1
x G FX)

Let Y, =

i —IE)—— where xl'XZ’ 080 Xn is an ordered sample from F and

* * * * ; PR
G (x) = P{Y <x} = G(r(xl)y) . Let Gn(x) = Gn(wi) = Fn(wi) or W, <X <w, .

* ® *
where Gn is the empirical distribution corresponding to Yl < Yz < een < Yn c

Hence,
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* * *
Since w, <x while wa + x

with probability 1,
N 1

o]

*
an interval.) It follows from Theorem 2.1 (letting F = G ), that

*
o N
lim sup rn(xo) < lim sup s > r(xl)
\ n*o n->o (20 Gn w -9, Gn vy

G 1 G 1

with probability 1, since ¢ ,(y) Safis o £y) = ;—i——- uniformly for 0 <y < 1.
G

Letting X + X, » we see that

lim sup r (x ) < r(x+)

n-+®

with probability 1.

By a similar argument, we have
r(x-) < lim inf r_(x )
o — n o

with probability 1. ||

* *
with probability 1. (Note G (xo) <G (xl) since G 1s increasing on its support;
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Remark 1:

Note that the key to the proof was the uniform convergence of
¢ L) a5y «(y) which does not depend upon F . Hence, a similar consistency

G G
n

proof can be given for the case F Z G . In this circumstance, the estimator
becones
. Folw ) =F (w, )

r (x) = sup inf L, 21
e t>1+1  s<i

t-1

> -1
JES B Fo (€ ) Cuyyy - vy )

Remark 2:

For the grid based on order statistics, the estimator rn(x) is not
consistent. However, as Rao (1966) has shown, isotonizing effectively widens the

a

"windows'" so that r is strongly consistent.

Remark 3: Random Window Estimators

There are at least two ways of specifying window estimators. One can specify
the length of the windows and let the number of observations in a window be random
cr one can specify the number of o%servations in a window and thus allow the
interval length to be random. In practice, it may sometimes be more convenient to
specify the number of observations in a window rather than the window length. The
MLE for r(t) assuming r nondecreasing is the isotonic regression of a random
window estimator which allows precisely one observation per window. Suppose we
specify random window intervals to be of the form (X »X 8 ) for

[in"] [(i+1)n"]
1=20,1, ... and some B8(0 < 8 < 1) . Strong consistency of random window
estimators can be verified either by modifying the proof of Theorem 2.1 for this
case or by the methqd to be discussed in the next section, since now the basic

estimator is consistent.




4, CONSISTENCY OF ISOTONIC ESTIMATORS WHEN THE BASIC ESTIMATOR IS CONSISTENT

Brunk (1965) introduced a general method for proving consistency of isotonic

what in order to treat the generalized failure rate function. A fundamental
difference between Brunk estimators and our estimators, L defined on

-

Qn (Qn C Q) 1s that we extend the domain to  and define a version of r o on

2 . We then wish to prove that this version converges strongly on & (assuming

—

n

i Q -+ Q) .
Let (Q,A,u) be a measure space and let A be a set of A-measurable

functionc on Q with the following properties:

(a) Al 0 Az € A implies max (Al,A and min (Al,xz) e A,

2)
(b) AN Lz(u) is convex and closed in L2 .

(¢) A 1is a complete inner product space with inner product

(G)ohy) = Qfxl(wnzw)du(w) .

For any ¢ ¢ L2 , there exists 2 ¢ A N L2 such that

(4.1) f(z - 0% > f (- 2y + f (2 - 2k
2 2 2

for all A e ANL This 2 =P | A N L,) 1s unique [u] . (Cf. Brunk

5 -
(1965), Theorem 2.1 and Corollary 2.1.) P(L | A N L2) is the projection of 1
AN L, .
Lemma 4.1:

: if for some AZ eA, L < AZ a.e. [(u] , then i al AZ a.e. [u] . If for
some Al e A, 2 :-Al a.e (u] , then E Z.Al a.e. f[u]

estimators when the basic estimator is consistent. We generalize his results sonme-

on
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Proof:

~

Let & , 2-e. (W] « If & > Az on a set of positive p measure,

| A
>

min (4,),) . Since X is A-measurable and min (2,2) < X < £, A

consider A
is square integrable. Because of Condition (a), A € A, so X € AN L2 . On the

set where 1 :_AZ y A = 2 ., However on the set where & > A2 ,» which has positive
A

~

y-measure, & = X < £ ., Hence,

-2

-0 a-n?

on  with strict inequality on a set of positive measure and therefore

f @ - )2y < f 2 - 2)%d
Q

Q

which contradicts (3.1). The proof of the second part of the lemma is similar. ||

Note that Brunk's (1965) conditions Al <0 and AZ >0 or u(Q) < in his

Corollary 3.3 are unnecessary.

Lemma 4.2:

If for some Al 5 o E N s Al < % <A, a.e. [u] , then there exists a

version of £ for which

-

on 2 . [Note that & is defined only on sets of positive u-measure.]

Proof:

Let 2 be any version of P(2 | A N LZ) on  and let

£ = min (Az , max (z,xl))

k . R . - e -
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-

, ae. (W], 2=2 ae. [u]l . Also, A <2 <)

Since kl <L <A

2 ¢ A because of Condition (a). Finally, since 2 =2 a.e. [p] , and 2 is

~

-~

A-measurable, 1 ¢ L, . |

We now replace Condition (a) by

(A) AT € A for all 1t e T (arbitrary index set) implies
sup A, inf XT e A,

1eT 1eT

This implies that every function ¢ on  for which there exists ) ¢ A with
¢ <A has a smallest majorant $ € A ; 1f no such ) € A exists, we set ¢ = =,
Similarly, if there exists X < ¢ , A ¢ A , then ¢ possesses a largest minorant

$eh; 1f no such A € A exists, we set ¢ = -» ., From Lemma 4.2, we have:

Lemma 4.3:

~

There exists a version of & for which £ <2 <2 on Q.
Note that we can construct such a version on the basis of £ and 2
(cf. proof of Lemma 4.,2), From now on, we shall only consider those versions of

£ that are indicated in Lemma 3.3. Suppose Condition (A) holds and (b) is

satisfied for a sequence of measures My Then we have:

Theorem 4.4:

1f ln € Lz(un) and fﬂ and Qn are uniformly (strongly) consistent
estimates of the same X ¢ A , then £ 1. P(R.n | AN L2) is also a uniformly

(strongly) consistent estimator of A .,

Proof:

By Lemma 4.1 and 4.2, - Al < € and |En - Al < e; on § implies

't
|£n - ] < max (en,e;) <

- *
Theorem 4.4 can be used to prove the (strong) consistency of rn(x) 5 rn(x)
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and rn(x) when the basic estimator

Fn(w1+l,n) - Fn(wi,n)

=]
wi’n)gG Fn(Ei)

rn(Ei) - ( i
wi+1,n

is (strongly) consistent. For example, if f 1is a uniformly continuous density

function and

-a
wi+1,n - wi,n cn 0<ac<l

then rn(x) is strongly uniformly consistent. [Cf. Nadarya (1965), Theorem 1.]
To utilize Theorem 4.4, we need to verify the uniform strong consistency of

rn and ;n . Since it 1s not obvious that this condition will be realized in

general, we must utilize a device employed by Marshall and Proschan (1965). Let

F={F|F S G} where G 1is specified and M. (F | F <G and r(x) < M} where

r(x) = f(x)/gG-lF(x) . Let rg be the isotonic estimator of r subject to FZ

in FM . Assuming rn(x) is uniformly strongly consistent, we can show that

tﬁ and ;ﬁ(x) are uniformly strongly consistent in the same way that the

Glivenko-Cantelli lemma proves that Fn(x) is uniformly strongly consistent.

M
Furthermore, rn converges 1ir. a natural way to rn as M-~»o=,
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